1
|
Razzoli M, McGonigle S, Sahu BS, Rodriguez P, Svedberg D, Rao L, Ruocco C, Nisoli E, Vezzani B, Frontini A, Bartolomucci A. A key role for P2RX5 in brown adipocyte differentiation and energy homeostasis. Adipocyte 2024; 13:2421745. [PMID: 39484996 DOI: 10.1080/21623945.2024.2421745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
Brown adipocytes are defined based on a distinct morphology and genetic signature that includes, amongst others, the expression of the Purinergic 2 Receptor X5 (P2RX5). However, the role of P2RX5 in brown adipocyte and brown adipose tissue function is poorly characterized. In the present study, we conducted a metabolic characterization of P2RX5 knockout male mice; next, we characterized this purinergic pathway in a cell-autonomous context in brown adipocytes. We then tested the role of the P2RX5 receptor agonism in metabolic responses in vivo in conditions of minimal adaptive thermogenesis requirements. Our data show that loss of P2RX5 causes reduced brown adipocyte differentiation in vitro, and browning in vivo. Lastly, we unravel a previously unappreciated role for P2RX5 agonism to exert an anti-obesity effect in the presence of enhanced brown adipose tissue recruitment in male mice housed at thermoneutrality. Altogether, our data support a role for P2RX5 in mediating brown adipocyte differentiation and function that could be further targeted for benefits in the context of adipose tissue pathology and metabolic diseases.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Seth McGonigle
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Bhavani Shankar Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
- Cellular and Molecular Neurosciences Division, DBT- National Brain Research Center, Manesar, Gurgaon, India
| | - Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Svedberg
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Loredana Rao
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Università degli Studi di Ancona, Ancona, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Bianca Vezzani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Università degli Studi di Ancona, Ancona, Italy
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Lloyd KCK. Commentary: The International Mouse Phenotyping Consortium: high-throughput in vivo functional annotation of the mammalian genome. Mamm Genome 2024; 35:537-543. [PMID: 39254744 PMCID: PMC11522054 DOI: 10.1007/s00335-024-10068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
The International Mouse Phenotyping Consortium (IMPC) is a worldwide effort producing and phenotyping knockout mouse lines to expose the pathophysiological roles of all genes in human diseases and make mice and data available and accessible to the global research community. It has created new knowledge on the function of thousands of genes for which little to anything was known. This new knowledge has informed the genetic basis of rare diseases, posited gene product influences on common diseases, influenced research on targeted therapies, revealed functional pleiotropy, essentiality, and sexual dimorphism, and many more insights into the role of genes in health and disease. Its scientific contributions have been many and widespread, however there remain thousands of "dark" genes yet to be illuminated. Nearing the end of its current funding cycle, IMPC is at a crossroads. The vision forward is clear, the path to proceed less so.
Collapse
Affiliation(s)
- K C Kent Lloyd
- Department of Surgery, School of Medicine, University of California, Davis, California, USA.
- Mouse Biology Program, University of California, Davis, California, USA.
| |
Collapse
|
3
|
Grady SK, Peterson KA, Murray SA, Baker EJ, Langston MA, Chesler EJ. A graph theoretical approach to experimental prioritization in genome-scale investigations. Mamm Genome 2024; 35:724-733. [PMID: 39191873 PMCID: PMC11522061 DOI: 10.1007/s00335-024-10066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The goal of systems biology is to gain a network level understanding of how gene interactions influence biological states, and ultimately inform upon human disease. Given the scale and scope of systems biology studies, resource constraints often limit researchers when validating genome-wide phenomena and potentially lead to an incomplete understanding of the underlying mechanisms. Further, prioritization strategies are often biased towards known entities (e.g. previously studied genes/proteins with commercially available reagents), and other technical issues that limit experimental breadth. Here, heterogeneous biological information is modeled as an association graph to which a high-performance minimum dominating set solver is applied to maximize coverage across the graph, and thus increase the breadth of experimentation. First, we tested our model on retrieval of existing gene functional annotations and demonstrated that minimum dominating set returns more diverse terms when compared to other computational methods. Next, we utilized our heterogenous network and minimum dominating set solver to assist in the process of identifying understudied genes to be interrogated by the International Mouse Phenotyping Consortium. Using an unbiased algorithmic strategy, poorly studied genes are prioritized from the remaining thousands of genes yet to be characterized. This method is tunable and extensible with the potential to incorporate additional user-defined prioritizing information. The minimum dominating set approach can be applied to any biological network in order to identify a tractable subset of features to test experimentally or to assist in prioritizing candidate genes associated with human disease.
Collapse
Affiliation(s)
- Stephen K Grady
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA.
| | | | | | - Erich J Baker
- Department of Computer Science, Baylor University, Waco, TX, USA
| | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | | |
Collapse
|
4
|
Nair P, Steel KP, Lewis MA. Investigating the effects of a cryptic splice site in the En2 splice acceptor sequence used in the IKMC knockout-first alleles. Mamm Genome 2024; 35:633-644. [PMID: 39354111 PMCID: PMC11522132 DOI: 10.1007/s00335-024-10071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
Targeted mouse mutants are a common tool used to investigate gene function. The International Knockout Mouse Consortium undertook a large-scale screen of mouse mutants, making use of the knockout-first allele design that contains the En2 splice acceptor sequence coupled to the lacZ reporter gene. Although the knockout-first allele was designed to interfere with splicing and thus disrupt gene function, the En2 sequence has been reported to be transcribed within the host gene mRNA due to a cryptic splice site within the En2 sequence which allows splicing to the next exon of the host gene. In some circumstances, this has the potential to permit translation of a mutant protein. Here, we describe our computational analysis of all the mouse protein-coding genes with established knockout-first embryonic stem cell lines, and our predictions of their transcription outcome should the En2 sequence be included. As part of the large-scale mutagenesis program, mutant mice underwent a broad phenotyping screen, and their phenotypes are available. No wide-scale effects on mouse phenotypes reported were found as a result of the predicted En2 insertion. However, the En2 insertion was found experimentally in the transcripts of 24 of 35 mutant alleles examined, including the five already described, two with evidence of readthrough. Splicing from the cryptic splice site also has the potential to disrupt expression of the lacZ reporter gene. It is recommended that mutant transcripts be checked for this insertion as well as for leaky transcription in studies involving knockout-first alleles.
Collapse
Affiliation(s)
- Prerna Nair
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London, SE1 1UL, UK
| | - Karen P Steel
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London, SE1 1UL, UK
| | - Morag A Lewis
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
5
|
Ohanele C, Peoples JN, Karlstaedt A, Geiger JT, Gayle AD, Ghazal N, Sohani F, Brown ME, Davis ME, Porter GA, Faundez V, Kwong JQ. The mitochondrial citrate carrier SLC25A1 regulates metabolic reprogramming and morphogenesis in the developing heart. Commun Biol 2024; 7:1422. [PMID: 39482367 PMCID: PMC11528069 DOI: 10.1038/s42003-024-07110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
The developing mammalian heart undergoes an important metabolic shift from glycolysis towards mitochondrial oxidation that is critical to support the increasing energetic demands of the maturing heart. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mitochondrial citrate carrier (SLC25A1) knockout mice. Slc25a1 null embryos displayed impaired growth, mitochondrial dysfunction and cardiac malformations that recapitulate the congenital heart defects observed in 22q11.2 deletion syndrome, a microdeletion disorder involving the SLC25A1 locus. Importantly, Slc25a1 heterozygous embryos, while overtly indistinguishable from wild type, exhibited an increased frequency of these defects, suggesting Slc25a1 haploinsuffiency and dose-dependent effects. Mechanistically, SLC25A1 may link mitochondria to transcriptional regulation of metabolism through epigenetic control of gene expression to promote metabolic remodeling in the developing heart. Collectively, this work positions SLC25A1 as a novel mitochondrial regulator of cardiac morphogenesis and metabolic maturation, and suggests a role in congenital heart disease.
Collapse
Affiliation(s)
- Chiemela Ohanele
- Graduate Program in Biochemistry, Cell and Developmental Biology; Graduate Division of Biological and Biomedical Sciences; Emory University, Atlanta, GA, USA
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jessica N Peoples
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Anja Karlstaedt
- Department of Cardiology; Smidt Heart Institute; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua T Geiger
- Division of Vascular Surgery; University of Rochester Medical Center, Rochester, NY, USA
| | - Ashley D Gayle
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Nasab Ghazal
- Graduate Program in Biochemistry, Cell and Developmental Biology; Graduate Division of Biological and Biomedical Sciences; Emory University, Atlanta, GA, USA
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Fateemaa Sohani
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Milton E Brown
- Wallace H. Coulter Department of Biomedical Engineering; Emory University School of Medicine, Atlanta, GA, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering; Emory University School of Medicine, Atlanta, GA, USA
| | - George A Porter
- Department of Pediatrics; Division of Cardiology; University of Rochester Medical Center, Rochester, NY, USA
| | - Victor Faundez
- Department of Cell Biology; Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer Q Kwong
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Cell Biology; Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
6
|
Weber CJ, Weitzel AJ, Liu AY, Gacasan EG, Sah RL, Cooper KL. Cellular and molecular mechanisms that shape the development and evolution of tail vertebral proportion in mice and jerboas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620311. [PMID: 39484405 PMCID: PMC11527341 DOI: 10.1101/2024.10.25.620311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Despite the functional importance of the vertebral skeleton, little is known about how individual vertebrae elongate or achieve disproportionate lengths as in the giraffe neck. Rodent tails are an abundantly diverse and more tractable system to understand mechanisms of vertebral growth and proportion. In many rodents, disproportionately long mid-tail vertebrae form a 'crescendo-decrescendo' of lengths in the tail series. In bipedal jerboas, these vertebrae grow exceptionally long such that the adult tail is 1.5x the length of a mouse tail, relative to body length, with four fewer vertebrae. How do vertebrae with the same regional identity elongate differently from their neighbors to establish and diversify adult proportion? Here, we find that vertebral lengths are largely determined by differences in growth cartilage height and the number of cells progressing through endochondral ossification. Hypertrophic chondrocyte size, a major contributor to differential elongation in mammal limb bones, differs only in the longest jerboa mid-tail vertebrae where they are exceptionally large. To uncover candidate molecular mechanisms of disproportionate vertebral growth, we performed intersectional RNA-Seq of mouse and jerboa tail vertebrae with similar and disproportionate elongation rates. Many regulators of posterior axial identity and endochondral elongation are disproportionately differentially expressed in jerboa vertebrae. Among these, the inhibitory natriuretic peptide receptor C (NPR3) appears in multiple studies of rodent and human skeletal proportion suggesting it refines local growth rates broadly in the skeleton and broadly in mammals. Consistent with this hypothesis, NPR3 loss of function mice have abnormal tail and limb proportions. Therefore, in addition to genetic components of the complex process of vertebral evolution, these studies reveal fundamental mechanisms of skeletal growth and proportion.
Collapse
|
7
|
An H, Hong Y, Goh YT, Koh CWQ, Kanwal S, Zhang Y, Lu Z, Yap PML, Neo SP, Wong CM, Wong AST, Yu Y, Ho JSY, Gunaratne J, Goh WSS. m 6Am sequesters PCF11 to suppress premature termination and drive neuroblastoma differentiation. Mol Cell 2024:S1097-2765(24)00827-X. [PMID: 39481383 DOI: 10.1016/j.molcel.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/08/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024]
Abstract
N6,2'-O-dimethyladenosine (m6Am) is an abundant mRNA modification that impacts multiple diseases, but its function remains controversial because the m6Am reader is unknown. Using quantitative proteomics, we identified transcriptional terminator premature cleavage factor II (PCF11) as a m6Am-specific reader in human cells. Direct quantification of mature versus nascent RNAs reveals that m6Am does not regulate mRNA stability but promotes nascent transcription. Mechanistically, m6Am functions by sequestering PCF11 away from proximal RNA polymerase II (RNA Pol II). This suppresses PCF11 from dissociating RNA Pol II near transcription start sites, thereby promoting full-length transcription of m6Am-modified RNAs. m6Am's unique relationship with PCF11 means m6Am function is enhanced when PCF11 is reduced, which occurs during all-trans-retinoic-acid (ATRA)-induced neuroblastoma-differentiation therapy. Here, m6Am promotes expression of ATF3, which represses neuroblastoma biomarker MYCN. Depleting m6Am suppresses MYCN repression in ATRA-treated neuroblastoma and maintains their tumor-stem-like properties. Collectively, we characterize m6Am as an anti-terminator RNA modification that suppresses premature termination and modulates neuroblastoma's therapeutic response.
Collapse
Affiliation(s)
- Huihui An
- Shenzhen Bay Laboratory, Shenzhen, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yifan Hong
- Shenzhen Bay Laboratory, Shenzhen, China
| | | | | | | | - Yi Zhang
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhaoqi Lu
- Shenzhen Bay Laboratory, Shenzhen, China
| | | | - Suat Peng Neo
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Chun-Ming Wong
- Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Alice S T Wong
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Yang Yu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jessica Sook Yuin Ho
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | | | | |
Collapse
|
8
|
Xu T, Wang S, Ma T, Dong Y, Ashby CR, Hao GF. The identification of essential cellular genes is critical for validating drug targets. Drug Discov Today 2024; 29:104215. [PMID: 39428084 DOI: 10.1016/j.drudis.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Accurately identifying biological targets is crucial for advancing treatment options. Essential genes, vital for cell or organism survival, hold promise as potential drug targets in disease treatment. Although many studies have sought to identify essential genes as therapeutic targets in medicine and bioinformatics, systematic reviews on their relationship with drug targets are relatively rare. This work presents a comprehensive analysis to aid in identifying essential genes as potential targets for drug discovery, encompassing their relevance, identification methods, successful case studies, and challenges. This work will facilitate the identification of essential genes as therapeutic targets, thereby boosting new drug development.
Collapse
Affiliation(s)
- Ting Xu
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Shuang Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Tingting Ma
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Yawen Dong
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China.
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, USA.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
9
|
Thomas HB, Demain LAM, Cabrera-Orefice A, Schrauwen I, Shamseldin HE, Rea A, Bharadwaj T, Smith TB, Oláhová M, Thompson K, He L, Kaur N, Shukla A, Abukhalid M, Ansar M, Rehman S, Riazuddin S, Abdulwahab F, Smith JM, Stark Z, Carrera S, Yue WW, Munro KJ, Alkuraya FS, Jamieson P, Ahmed ZM, Leal SM, Taylor RW, Wittig I, O'Keefe RT, Newman WG. Biallelic variants in MRPL49 cause variable clinical presentations, including sensorineural hearing loss, leukodystrophy, and ovarian insufficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.10.24315152. [PMID: 39417135 PMCID: PMC11483032 DOI: 10.1101/2024.10.10.24315152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Combined oxidative phosphorylation deficiency (COXPD) is a rare multisystem disorder which is clinically and genetically heterogeneous. Genome sequencing identified biallelic MRPL49 variants in individuals from five unrelated families with presentations ranging from Perrault syndrome (primary ovarian insufficiency and sensorineural hearing loss) to severe childhood onset of leukodystrophy, learning disability, microcephaly and retinal dystrophy. Complexome profiling of fibroblasts from affected individuals revealed reduced levels of the small and, a more pronounced reduction of, the large mitochondrial ribosomal subunits. There was no evidence of altered mitoribosomal assembly. The reductions in levels of OXPHOS enzyme complexes I and IV are consistent with a form of COXPD associated with biallelic MRPL49 variants, expanding the understanding of how disruption of the mitochondrial ribosomal large subunit results in multi-system phenotypes.
Collapse
Affiliation(s)
- Huw B Thomas
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Leigh A M Demain
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Alfredo Cabrera-Orefice
- Centre for Functional Proteomics, Institute for Cardiovascular Physiology, Medical Faculty, Goethe University, 60596 Frankfurt am Main, Germany
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Isabelle Schrauwen
- Department of Translational Neurosciences, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Alessandro Rea
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Department of Neurology, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Thomas B Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Monika Oláhová
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Kyle Thompson
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Langping He
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Namanpreet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Musaad Abukhalid
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Sakina Rehman
- Department of Otorhinolaryngology - Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, United States
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, United States
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Janine M Smith
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2000, Australia
- Western Sydney Genetics Program, Department of Clinical Genetics, Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Samantha Carrera
- Genome Editing Unit Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Wyatt W Yue
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness (ManCAD), School of Health Sciences, University of Manchester, Manchester, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Peter Jamieson
- Department of Radiology, Manchester University Hospital NHS Foundation Trust, Manchester, M13 9PW, UK
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, United States
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Neurology, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Alzheimer's Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Center, New York, NY
| | - Robert W Taylor
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Ilka Wittig
- Centre for Functional Proteomics, Institute for Cardiovascular Physiology, Medical Faculty, Goethe University, 60596 Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60596 Frankfurt am Main, Germany
| | - Raymond T O'Keefe
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| |
Collapse
|
10
|
Oh SA, Jeon J, Je SY, Kim S, Jung J, Ko HW. TMEM132A regulates Wnt/β-catenin signaling through stabilizing LRP6 during mouse embryonic development. Cell Commun Signal 2024; 22:482. [PMID: 39385148 PMCID: PMC11465819 DOI: 10.1186/s12964-024-01855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
The Wnt/β-catenin signaling pathway is crucial for embryonic development and adult tissue homeostasis. Dysregulation of Wnt signaling is linked to various developmental anomalies and diseases, notably cancer. Although numerous regulators of the Wnt signaling pathway have been identified, their precise function during mouse embryo development remains unclear. Here, we revealed that TMEM132A is a crucial regulator of canonical Wnt/β-catenin signaling in mouse development. Mouse embryos lacking Tmem132a displayed a range of malformations, including open spina bifida, caudal truncation, syndactyly, and renal defects, similar to the phenotypes of Wnt/β-catenin mutants. Tmem132a knockdown in cultured cells suppressed canonical Wnt/β-catenin signaling. In developing mice, loss of Tmem132a also led to diminished Wnt/β-catenin signaling. Mechanistically, we showed that TMEM132A interacts with the Wnt co-receptor LRP6, thereby stabilizing it and preventing its lysosomal degradation. These findings shed light on a novel role for TMEM132A in regulating LRP6 stability and canonical Wnt/β-catenin signaling during mouse embryo development. This study provides valuable insights into the molecular intricacies of the Wnt signaling pathway. Further research may deepen our understanding of Wnt pathway regulation and offer its potential therapeutic applications.
Collapse
Affiliation(s)
- Shin Ae Oh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Korea
| | - Jiyeon Jeon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Korea
| | - Su-Yeon Je
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Korea
| | - Seoyoung Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Korea
| | - Joohyun Jung
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
11
|
Hamoudi Z, Leung C, Khuong TM, Cooney G, Neely GG. Vitamin B5 is a context-dependent dietary regulator of nociception. G3 (BETHESDA, MD.) 2024; 14:jkae174. [PMID: 39073591 DOI: 10.1093/g3journal/jkae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Chronic pain has an enormous impact on the quality of life of billions of patients, families, and caregivers worldwide. Current therapies do not adequately address pain for most patients. A basic understanding of the conserved genetic framework controlling pain may help us develop better, non-addictive pain therapies. Here, we identify new conserved and druggable analgesic targets using the tissue-specific functional genomic screening of candidate "pain" genes in fly. From these efforts, we describe 23 new pain genes for further consideration. This included Acsl, a fatty acid-metabolizing enzyme, and mammalian orthologs involved in arachidonic acid metabolism. The Acsl knockdown and mutant larvae showed delayed nocifensive responses to localized and global noxious heat. Mechanistically, the Acsl knockdown reduced dendritic branching of nociceptive neurons. Surprisingly, the pain phenotype in these animals could be rescued through dietary intervention with vitamin B5, highlighting the interplay between genetics, metabolism, and nutrient environment to establish sensory perception thresholds. Together, our functional genomic screening within the sensory nociceptor has identified new nociception genes that provide a better understanding of pain biology and can help guide the development of new painkillers.
Collapse
Affiliation(s)
- Zina Hamoudi
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Calvin Leung
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thang Manh Khuong
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gregory Cooney
- Charles Perkins Centre and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - G Gregory Neely
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
12
|
Zupančič M, Keimpema E, Tretiakov EO, Eder SJ, Lev I, Englmaier L, Bhandari P, Fietz SA, Härtig W, Renaux E, Villunger A, Hökfelt T, Zimmer M, Clotman F, Harkany T. Concerted transcriptional regulation of the morphogenesis of hypothalamic neurons by ONECUT3. Nat Commun 2024; 15:8631. [PMID: 39366958 PMCID: PMC11452682 DOI: 10.1038/s41467-024-52762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Acquisition of specialized cellular features is controlled by the ordered expression of transcription factors (TFs) along differentiation trajectories. Here, we find a member of the Onecut TF family, ONECUT3, expressed in postmitotic neurons that leave their Ascl1+/Onecut1/2+ proliferative domain in the vertebrate hypothalamus to instruct neuronal differentiation. We combined single-cell RNA-seq and gain-of-function experiments for gene network reconstruction to show that ONECUT3 affects the polarization and morphogenesis of both hypothalamic GABA-derived dopamine and thyrotropin-releasing hormone (TRH)+ glutamate neurons through neuron navigator-2 (NAV2). In vivo, siRNA-mediated knockdown of ONECUT3 in neonatal mice reduced NAV2 mRNA, as well as neurite complexity in Onecut3-containing neurons, while genetic deletion of Onecut3/ceh-48 in C. elegans impaired neurocircuit wiring, and sensory discrimination-based behaviors. Thus, ONECUT3, conserved across neuronal subtypes and many species, underpins the polarization and morphological plasticity of phenotypically distinct neurons that descend from a common pool of Ascl1+ progenitors in the hypothalamus.
Collapse
Affiliation(s)
- Maja Zupančič
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Evgenii O Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stephanie J Eder
- Department of Neuroscience and Developmental Biology, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Itamar Lev
- Department of Neuroscience and Developmental Biology, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Lukas Englmaier
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Pradeep Bhandari
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Estelle Renaux
- Animal Molecular and Cellular Biology, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Andreas Villunger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Manuel Zimmer
- Department of Neuroscience and Developmental Biology, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Frédéric Clotman
- Animal Molecular and Cellular Biology, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
13
|
Wang X, Yang B, Wu S, Fan Q, Wang Q, Zhang D, Wang H, Feng T, Lv H, Chen T. UBTF haploinsufficiency associated with UBTF-related global developmental delay and distinctive facial features without neuroregression. J Med Genet 2024:jmg-2024-110061. [PMID: 39366741 DOI: 10.1136/jmg-2024-110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND The Upstream Binding Transcription Factor (UBTF) gene encodes two nucleolar proteins, UBTF1 and UBTF2. UBTF1 regulates rRNA transcription by RNA polymerase I, while UBTF2 regulates mRNA transcription by RNA polymerase II. A recurrent de novo dominant mutation c.628G>A (p.Glu210Lys) has been identified as a gain-of-function mutation associated with childhood onset neurodegeneration with brain atrophy (CONDBA). Evidence from large-scale population databases and Ubtf+/- mouse models indicates that UBTF haploinsufficiency is not tolerated. METHODS Three unrelated patients with global developmental delay and distinctive facial features were recruited for the study. Whole exome sequencing (WES) was performed to identify potential genetic abnormalities. Additionally, copy number variation analysis was conducted based on the WES data. RESULTS All three patients exhibited intellectual disabilities, social challenges and developmental delays in language and gross motor skills. Distinctive facial features included a wide forehead, sparse eyebrows, hypertelorism, narrow palpebral fissures, single-fold eyelids, a flat nasal bridge, anteverted nares, a long philtrum and a thin upper lip. Additionally, patient C presented with more severe language delay, recurrent hepatic dysfunction and an atrial septal defect. Patient A was found to have a nonsense variant, c.1327C>T (p.R443Ter), in the exon 13 of UBTF. Patients B and C both carried a heterozygous deletion encompassing the UBTF gene. CONCLUSION In this study, we analysed the detailed phenotypes associated with UBTF haploinsufficiency, which, to our knowledge, have not been previously reported. We propose that UBTF haploinsufficiency-related global developmental delay and distinctive facial features, without neuroregression, constitute a new syndrome distinct from CONDBA.
Collapse
Affiliation(s)
- Xueqian Wang
- Suzhou Clinical Center for Rare Diseases in Children, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Medical Genetics and Prenatal Diagnosis, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bingyu Yang
- Suzhou Clinical Center for Rare Diseases in Children, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shengnan Wu
- Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Qisang Fan
- Suzhou Clinical Center for Rare Diseases in Children, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qing Wang
- Suzhou Clinical Center for Rare Diseases in Children, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dandan Zhang
- Suzhou Clinical Center for Rare Diseases in Children, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongying Wang
- Suzhou Clinical Center for Rare Diseases in Children, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tao Feng
- Suzhou Clinical Center for Rare Diseases in Children, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haitao Lv
- Suzhou Clinical Center for Rare Diseases in Children, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ting Chen
- Suzhou Clinical Center for Rare Diseases in Children, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Pediatrics, Kunshan Sixth People's Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
14
|
Van Sciver RE, Caspary T. A prioritization tool for cilia-associated genes and their in vivo resources unveils new avenues for ciliopathy research. Dis Model Mech 2024; 17:dmm052000. [PMID: 39263856 PMCID: PMC11512102 DOI: 10.1242/dmm.052000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Defects in ciliary signaling or mutations in proteins that localize to primary cilia lead to a class of human diseases known as ciliopathies. Approximately 10% of mammalian genes encode cilia-associated proteins, and a major gap in the cilia research field is knowing which genes to prioritize to study and finding the in vivo vertebrate mutant alleles and reagents available for their study. Here, we present a unified resource listing the cilia-associated human genes cross referenced to available mouse and zebrafish mutant alleles, and their associated phenotypes, as well as expression data in the kidney and functional data for vertebrate Hedgehog signaling. This resource empowers researchers to easily sort and filter genes based on their own expertise and priorities, cross reference with newly generated -omics datasets, and quickly find in vivo resources and phenotypes associated with a gene of interest.
Collapse
Affiliation(s)
- Robert E. Van Sciver
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Chundru VK, Zhang Z, Walter K, Lindsay SJ, Danecek P, Eberhardt RY, Gardner EJ, Malawsky DS, Wigdor EM, Torene R, Retterer K, Wright CF, Ólafsdóttir H, Guillen Sacoto MJ, Ayaz A, Akbeyaz IH, Türkdoğan D, Al Balushi AI, Bertoli-Avella A, Bauer P, Szenker-Ravi E, Reversade B, McWalter K, Sheridan E, Firth HV, Hurles ME, Samocha KE, Ustach VD, Martin HC. Federated analysis of autosomal recessive coding variants in 29,745 developmental disorder patients from diverse populations. Nat Genet 2024; 56:2046-2053. [PMID: 39313616 PMCID: PMC11525179 DOI: 10.1038/s41588-024-01910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/14/2024] [Indexed: 09/25/2024]
Abstract
Autosomal recessive coding variants are well-known causes of rare disorders. We quantified the contribution of these variants to developmental disorders in a large, ancestrally diverse cohort comprising 29,745 trios, of whom 20.4% had genetically inferred non-European ancestries. The estimated fraction of patients attributable to exome-wide autosomal recessive coding variants ranged from ~2-19% across genetically inferred ancestry groups and was significantly correlated with average autozygosity. Established autosomal recessive developmental disorder-associated (ARDD) genes explained 84.0% of the total autosomal recessive coding burden, and 34.4% of the burden in these established genes was explained by variants not already reported as pathogenic in ClinVar. Statistical analyses identified two novel ARDD genes: KBTBD2 and ZDHHC16. This study expands our understanding of the genetic architecture of developmental disorders across diverse genetically inferred ancestry groups and suggests that improving strategies for interpreting missense variants in known ARDD genes may help diagnose more patients than discovering the remaining genes.
Collapse
Affiliation(s)
- V Kartik Chundru
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, UK
| | - Zhancheng Zhang
- GeneDx, Gaithersburg, MD, USA
- Deka Biosciences, Germantown, MD, USA
| | - Klaudia Walter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sarah J Lindsay
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Eugene J Gardner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- MRC Epidemiology Unit, Cambridge, UK
| | | | - Emilie M Wigdor
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Rebecca Torene
- GeneDx, Gaithersburg, MD, USA
- Geisinger, Danville, PA, USA
| | - Kyle Retterer
- GeneDx, Gaithersburg, MD, USA
- Geisinger, Danville, PA, USA
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, UK
| | | | | | - Akif Ayaz
- Istanbul Medipol University, Medical School, Department of Medical Genetics, Istanbul, Turkey
| | - Ismail Hakki Akbeyaz
- Marmara University Medical Faculty, Pendik Training and Research Hospital, Department of Pediatric Neurology, Istanbul, Turkey
| | - Dilşad Türkdoğan
- Marmara University Medical Faculty, Pendik Training and Research Hospital, Department of Pediatric Neurology, Istanbul, Turkey
| | | | | | - Peter Bauer
- Medical Genetics, CENTOGENE GmbH, Rostock, Germany
- Clinic of Internal Medicine, Department of Hematology, Oncology, and Palliative Medicine, University Medicine Rostock, Rostock, Germany
| | | | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia
| | | | - Eamonn Sheridan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
| | - Helen V Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | | | - Kaitlin E Samocha
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
16
|
Dias AP, Rehmani T, Applin BD, Salih M, Tuana B. SLMAP3 is crucial for organogenesis through mechanisms involving primary cilia formation. Open Biol 2024; 14:rsob240206. [PMID: 39417621 PMCID: PMC11484480 DOI: 10.1098/rsob.240206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
SLMAP3 is a constituent of the centrosome and is known to assemble with the striatin-interacting phosphatase and kinase (STRIPAK) complex, where it has been reported to repress Hippo signalling. The global knockout of SLMAP3 in mice results in embryonic/perinatal lethality and stunted growth without changes in the phosphorylation status of YAP. Diverse phenotypes present in the SLMAP3-/- embryos include reduced body axis, small and abnormal organs resembling defects in planar cell polarity (PCP) signalling, while also displaying the notable polycystic kidneys, a known manifestation of ciliopathies. Analysis of cell polarity in primary mouse embryonic fibroblasts (MEFs) including cell migration, orientation and mitotic spindle angle did not reveal any changes due to SLMAP3 loss in these cells, although the expression of DVL3 was significantly reduced. Furthermore, MEFs lacking FGFR1OP2 or STRN3, two other STRIPAK members, did not reveal any significant changes in any of these parameters either. Significant changes in the number of ciliated cells and primary cilium length in SLMAP3 and FGFR1OP2 deficient MEFs were evident, while a reduced primary cilium length was notable in chondrocytes of SLMAP3 deficient embryos. Our findings suggest that SLMAP3 is essential for mouse embryogenesis through novel mechanisms involving the primary cilium/PCP and protein stability independent of Hippo signalling.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| |
Collapse
|
17
|
Lee AS, Ayers LJ, Kosicki M, Chan WM, Fozo LN, Pratt BM, Collins TE, Zhao B, Rose MF, Sanchis-Juan A, Fu JM, Wong I, Zhao X, Tenney AP, Lee C, Laricchia KM, Barry BJ, Bradford VR, Jurgens JA, England EM, Lek M, MacArthur DG, Lee EA, Talkowski ME, Brand H, Pennacchio LA, Engle EC. A cell type-aware framework for nominating non-coding variants in Mendelian regulatory disorders. Nat Commun 2024; 15:8268. [PMID: 39333082 PMCID: PMC11436875 DOI: 10.1038/s41467-024-52463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generate single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. We evaluate enhancer activity for 59 elements using an in vivo transgenic assay and validate 44 (75%), demonstrating that single cell accessibility can be a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieve significant reduction in our variant search space and nominate candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work delivers non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.
Collapse
Affiliation(s)
- Arthur S Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Lauren J Ayers
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wai-Man Chan
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Lydia N Fozo
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brandon M Pratt
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas E Collins
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Boxun Zhao
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Matthew F Rose
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan P Tenney
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cassia Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Victoria R Bradford
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie A Jurgens
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eleina M England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Eunjung Alice Lee
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA.
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Matentzoglu N, Bello SM, Stefancsik R, Alghamdi SM, Anagnostopoulos AV, Balhoff JP, Balk MA, Bradford YM, Bridges Y, Callahan TJ, Caufield H, Cuzick A, Carmody LC, Caron AR, de Souza V, Engel SR, Fey P, Fisher M, Gehrke S, Grove C, Hansen P, Harris NL, Harris MA, Harris L, Ibrahim A, Jacobsen JO, Köhler S, McMurry JA, Munoz-Fuentes V, Munoz-Torres MC, Parkinson H, Pendlington ZM, Pilgrim C, Robb SMC, Robinson PN, Seager J, Segerdell E, Smedley D, Sollis E, Toro S, Vasilevsky N, Wood V, Haendel MA, Mungall CJ, McLaughlin JA, Osumi-Sutherland D. The Unified Phenotype Ontology (uPheno): A framework for cross-species integrative phenomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613276. [PMID: 39345458 PMCID: PMC11429889 DOI: 10.1101/2024.09.18.613276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Phenotypic data are critical for understanding biological mechanisms and consequences of genomic variation, and are pivotal for clinical use cases such as disease diagnostics and treatment development. For over a century, vast quantities of phenotype data have been collected in many different contexts covering a variety of organisms. The emerging field of phenomics focuses on integrating and interpreting these data to inform biological hypotheses. A major impediment in phenomics is the wide range of distinct and disconnected approaches to recording the observable characteristics of an organism. Phenotype data are collected and curated using free text, single terms or combinations of terms, using multiple vocabularies, terminologies, or ontologies. Integrating these heterogeneous and often siloed data enables the application of biological knowledge both within and across species. Existing integration efforts are typically limited to mappings between pairs of terminologies; a generic knowledge representation that captures the full range of cross-species phenomics data is much needed. We have developed the Unified Phenotype Ontology (uPheno) framework, a community effort to provide an integration layer over domain-specific phenotype ontologies, as a single, unified, logical representation. uPheno comprises (1) a system for consistent computational definition of phenotype terms using ontology design patterns, maintained as a community library; (2) a hierarchical vocabulary of species-neutral phenotype terms under which their species-specific counterparts are grouped; and (3) mapping tables between species-specific ontologies. This harmonized representation supports use cases such as cross-species integration of genotype-phenotype associations from different organisms and cross-species informed variant prioritization.
Collapse
Affiliation(s)
| | | | | | | | | | - James P. Balhoff
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC USA
| | - Meghan A. Balk
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | | | - Tiffany J. Callahan
- Department of Biomedical Informatics, Columbia University Irving Medical Center
| | - Harry Caufield
- Lawrence Berkeley National. Laboratory, Berkeley, CA, USA
| | | | | | | | | | | | | | - Malcolm Fisher
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, US
| | | | | | | | - Nomi L. Harris
- Lawrence Berkeley National. Laboratory, Berkeley, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Erik Segerdell
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, US
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Qin Z, Liu H, Zhao P, Wang K, Ren H, Miao C, Li J, Chen YZ, Chen Z. SLAM: Structure-aware lysine β-hydroxybutyrylation prediction with protein language model. Int J Biol Macromol 2024; 280:135741. [PMID: 39293623 DOI: 10.1016/j.ijbiomac.2024.135741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Post-translational modifications (PTMs) diversify protein functions by adding/removing chemical groups to certain amino acid. As a newly-reported PTM, lysine β-hydroxybutyrylation (Kbhb) presents a new avenue to functional proteomics. Therefore, accurate and efficient prediction of Kbhb sites is imperative. However, the current experimental methods for identifying PTM sites are often expensive and time-consuming. Up to now, there is no computational method proposed for Kbhb sites detection. To this end, we present the first deep learning-based method, termed SLAM, to in silico identify lysine β-hydroxybutyrylation sites. The performance of SLAM is evaluated on both 5-fold cross-validation and independent test, achieving 0.890, 0.899, 0.907 and 0.923 in terms of AUROC values, on the general and species-specific independent test sets, respectively. As one example, we predicted the potential Kbhb sites in human S-adenosyl-L-homocysteine hydrolase, which is in agreement with experimentally-verified Kbhb sites. In summary, our method could enable accurate and efficient characterization of novel Kbhb sites that are crucial for the function and stability of proteins and could be applied in the structure-guided identification of other important PTM sites. The SLAM online service and source code is available at https://ai4bio.online/SLAM and https://github.com/Gabriel-QIN/SLAM, respectively.
Collapse
Affiliation(s)
- Zhaohui Qin
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Huixia Liu
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
| | - Kaiyuan Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Haoran Ren
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Chunbo Miao
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Junzhou Li
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yong-Zi Chen
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Zhen Chen
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
20
|
Baumgartner M, Ji Y, Noonan JP. Reconstructing human-specific regulatory functions in model systems. Curr Opin Genet Dev 2024; 89:102259. [PMID: 39270593 DOI: 10.1016/j.gde.2024.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Uniquely human physical traits, such as an expanded cerebral cortex and changes in limb morphology that allow us to use tools and walk upright, are in part due to human-specific genetic changes that altered when, where, and how genes are expressed during development. Over 20 000 putative regulatory elements with potential human-specific functions have been discovered. Understanding how these elements contributed to human evolution requires identifying candidates most likely to have shaped human traits, then studying them in genetically modified animal models. Here, we review the progress and challenges in generating and studying such models and propose a pathway for advancing the field. Finally, we highlight that large-scale collaborations across multiple research domains are essential to decipher what makes us human.
Collapse
Affiliation(s)
| | - Yu Ji
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510 USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
21
|
Yamaguchi H, Barrell WB, Faisal M, Liu KJ, Komatsu Y. Ciliary and non-ciliary functions of Rab34 during craniofacial bone development. Biochem Biophys Res Commun 2024; 724:150174. [PMID: 38852507 DOI: 10.1016/j.bbrc.2024.150174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
The primary cilium is a hair-like projection that controls cell development and tissue homeostasis. Although accumulated studies identify the molecular link between cilia and cilia-related diseases, the underlying etiology of ciliopathies has not been fully understood. In this paper, we determine the function of Rab34, a small GTPase, as a key regulator for controlling ciliogenesis and type I collagen trafficking in craniofacial development. Mechanistically, Rab34 is required to form cilia that control osteogenic proliferation, survival, and differentiation via cilia-mediated Hedgehog signaling. In addition, Rab34 is indispensable for regulating type I collagen trafficking from the ER to the Golgi. These results demonstrate that Rab34 has both ciliary and non-ciliary functions to regulate osteogenesis. Our study highlights the critical function of Rab34, which may contribute to understanding the novel etiology of ciliopathies that are associated with the dysfunction of RAB34 in humans.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - William B Barrell
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Maryam Faisal
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Bioengineering, Rice University George R. Brown School of Engineering, Houston, TX, 77005, USA
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Graduate Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Sato K, Sasaguri H, Kumita W, Sakuma T, Morioka T, Nagata K, Inoue T, Kurotaki Y, Mihira N, Tagami M, Manabe RI, Ozaki K, Okazaki Y, Yamamoto T, Suematsu M, Saido TC, Sasaki E. Production of a heterozygous exon skipping model of common marmosets using gene-editing technology. Lab Anim (NY) 2024; 53:244-251. [PMID: 39215182 PMCID: PMC11368816 DOI: 10.1038/s41684-024-01424-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Nonhuman primates (NHPs), which are closely related to humans, are useful in biomedical research, and an increasing number of NHP disease models have been reported using gene editing. However, many disease-related genes cause perinatal death when manipulated homozygously by gene editing. In addition, NHP resources, which are limited, should be efficiently used. Here, to address these issues, we developed a method of introducing heterozygous genetic modifications into common marmosets by combining Platinum transcription activator-like effector nuclease (TALEN) and a gene-editing strategy in oocytes. We succeeded in introducing the heterozygous exon 9 deletion mutation in the presenilin 1 gene, which causes familial Alzheimer's disease in humans, using this technology. As a result, we obtained animals with the expected genotypes and confirmed several Alzheimer's disease-related biochemical changes. This study suggests that highly efficient heterozygosity-oriented gene editing is possible using TALEN and oocytes and is an effective method for producing genetically modified animals.
Collapse
Affiliation(s)
- Kenya Sato
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, Wako, Japan
| | - Wakako Kumita
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Tetsushi Sakuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tomoe Morioka
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Kenichi Nagata
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Yoko Kurotaki
- Center of Basic Technology in Marmoset, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Michihira Tagami
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ri-Ichiroh Manabe
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kokoro Ozaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Makoto Suematsu
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
- WPI-Bio2Q Research Center, Keio University, Tokyo, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan.
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan.
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
23
|
Chen L, Xing X, Zhang P, Chen L, Pei H. Homeostatic regulation of NAD(H) and NADP(H) in cells. Genes Dis 2024; 11:101146. [PMID: 38988322 PMCID: PMC11233901 DOI: 10.1016/j.gendis.2023.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 07/12/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) and nicotinamide adenine dinucleotide phosphate (NADP+)/reduced NADP+ (NADPH) are essential metabolites involved in multiple metabolic pathways and cellular processes. NAD+ and NADH redox couple plays a vital role in catabolic redox reactions, while NADPH is crucial for cellular anabolism and antioxidant responses. Maintaining NAD(H) and NADP(H) homeostasis is crucial for normal physiological activity and is tightly regulated through various mechanisms, such as biosynthesis, consumption, recycling, and conversion between NAD(H) and NADP(H). The conversions between NAD(H) and NADP(H) are controlled by NAD kinases (NADKs) and NADP(H) phosphatases [specifically, metazoan SpoT homolog-1 (MESH1) and nocturnin (NOCT)]. NADKs facilitate the synthesis of NADP+ from NAD+, while MESH1 and NOCT convert NADP(H) into NAD(H). In this review, we summarize the physiological roles of NAD(H) and NADP(H) and discuss the regulatory mechanisms governing NAD(H) and NADP(H) homeostasis in three key aspects: the transcriptional and posttranslational regulation of NADKs, the role of MESH1 and NOCT in maintaining NAD(H) and NADP(H) homeostasis, and the influence of the circadian clock on NAD(H) and NADP(H) homeostasis. In conclusion, NADKs, MESH1, and NOCT are integral to various cellular processes, regulating NAD(H) and NADP(H) homeostasis. Dysregulation of these enzymes results in various human diseases, such as cancers and metabolic disorders. Hence, strategies aiming to restore NAD(H) and NADP(H) homeostasis hold promise as novel therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Luojun Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Lulu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
24
|
He XD, Taylor LF, Miao X, Shi Y, Lin X, Yang Z, Liu X, Miao YL, Alfandari D, Cui W, Tremblay KD, Mager J. Overlapping peri-implantation phenotypes of ZNHIT1 and ZNHIT2 despite distinct functions during early mouse development. Biol Reprod 2024:ioae128. [PMID: 39194072 DOI: 10.1093/biolre/ioae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/10/2024] [Indexed: 08/29/2024] Open
Abstract
Mammalian preimplantation development culminates in the formation of a blastocyst which undergoes extensive gene expression regulation to successfully implant into the maternal endometrium. Zinc-finger HIT domain-containing (ZNHIT) 1 and 2 are members of a highly conserved family, yet they have been identified as subunits of distinct complexes. Here we report that knockout of either Znhit1 or Znhit2 results in embryonic lethality during peri-implantation stages. Znhit1 and Znhit2 mutant embryos have overlapping phenotypes, including reduced proportion of SOX2-positive ICM cells, a lack of Fgf4 expression and aberrant expression of NANOG and SOX17. Furthermore, we find that the similar phenotypes are caused by distinct mechanisms. Specifically, embryos lacking ZNHIT1 likely fail to incorporate sufficient H2A.Z at the promoter region of Fgf4 and other genes involved in cell projection organization resulting in impaired invasion of trophoblast cells during implantation. In contrast, Znhit2 mutant embryos display a complete lack of nuclear EFTUD2, a key component of U5 spliceosome, indicating a global splicing deficiency. Our findings unveil the indispensable yet distinct roles of ZNHIT1 and ZNHIT2 in early mammalian embryonic development.
Collapse
Affiliation(s)
- Xinjian Doris He
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Louis F Taylor
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Yingchao Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xin Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine Huazhong Agricultural University, Wuhan, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine Huazhong Agricultural University, Wuhan, China
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
25
|
Lee-Ødegård S, Hjorth M, Olsen T, Moen GH, Daubney E, Evans DM, Hevener AL, Lusis AJ, Zhou M, Seldin MM, Allayee H, Hilser J, Viken JK, Gulseth H, Norheim F, Drevon CA, Birkeland KI. Serum proteomic profiling of physical activity reveals CD300LG as a novel exerkine with a potential causal link to glucose homeostasis. eLife 2024; 13:RP96535. [PMID: 39190027 PMCID: PMC11349297 DOI: 10.7554/elife.96535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Background Physical activity has been associated with preventing the development of type 2 diabetes and atherosclerotic cardiovascular disease. However, our understanding of the precise molecular mechanisms underlying these effects remains incomplete and good biomarkers to objectively assess physical activity are lacking. Methods We analyzed 3072 serum proteins in 26 men, normal weight or overweight, undergoing 12 weeks of a combined strength and endurance exercise intervention. We estimated insulin sensitivity with hyperinsulinemic euglycemic clamp, maximum oxygen uptake, muscle strength, and used MRI/MRS to evaluate body composition and organ fat depots. Muscle and subcutaneous adipose tissue biopsies were used for mRNA sequencing. Additional association analyses were performed in samples from up to 47,747 individuals in the UK Biobank, as well as using two-sample Mendelian randomization and mice models. Results Following 12 weeks of exercise intervention, we observed significant changes in 283 serum proteins. Notably, 66 of these proteins were elevated in overweight men and positively associated with liver fat before the exercise regimen, but were normalized after exercise. Furthermore, for 19.7 and 12.1% of the exercise-responsive proteins, corresponding changes in mRNA expression levels in muscle and fat, respectively, were shown. The protein CD300LG displayed consistent alterations in blood, muscle, and fat. Serum CD300LG exhibited positive associations with insulin sensitivity, and to angiogenesis-related gene expression in both muscle and fat. Furthermore, serum CD300LG was positively associated with physical activity and negatively associated with glucose levels in the UK Biobank. In this sample, the association between serum CD300LG and physical activity was significantly stronger in men than in women. Mendelian randomization analysis suggested potential causal relationships between levels of serum CD300LG and fasting glucose, 2 hr glucose after an oral glucose tolerance test, and HbA1c. Additionally, Cd300lg responded to exercise in a mouse model, and we observed signs of impaired glucose tolerance in male, but not female, Cd300lg knockout mice. Conclusions Our study identified several novel proteins in serum whose levels change in response to prolonged exercise and were significantly associated with body composition, liver fat, and glucose homeostasis. Serum CD300LG increased with physical activity and is a potential causal link to improved glucose levels. CD300LG may be a promising exercise biomarker and a therapeutic target in type 2 diabetes. Funding South-Eastern Norway Regional Health Authority, Simon Fougners Fund, Diabetesforbundet, Johan Selmer Kvanes' legat til forskning og bekjempelse av sukkersyke. The UK Biobank resource reference 53641. Australian National Health and Medical Research Council Investigator Grant (APP2017942). Australian Research Council Discovery Early Career Award (DE220101226). Research Council of Norway (Project grant: 325640 and Mobility grant: 287198). The Medical Student Research Program at the University of Oslo. Novo Nordisk Fonden Excellence Emerging Grant in Endocrinology and Metabolism 2023 (NNF23OC0082123). Clinical trial number clinicaltrials.gov: NCT01803568.
Collapse
Affiliation(s)
- Sindre Lee-Ødegård
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of OsloOsloNorway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of OsloOsloNorway
| | - Gunn-Helen Moen
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- The Frazer Institute, The University of QueenslandWoolloongabbaAustralia
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and TechnologyTrondheimNorway
| | - Emily Daubney
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - David M Evans
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and TechnologyTrondheimNorway
- MRC Integrative Epidemiology Unit, University of BristolBristolUnited Kingdom
| | - Andrea L Hevener
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Aldons J Lusis
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Mingqi Zhou
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - Hooman Allayee
- Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - James Hilser
- Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Jonas Krag Viken
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
| | - Hanne Gulseth
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public HealthOsloNorway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of OsloOsloNorway
| | | | - Kåre Inge Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
| |
Collapse
|
26
|
Choi DI, Zayed M, Jeong BH. Novel Single-Nucleotide Polymorphisms (SNPs) and Genetic Studies of the Shadow of Prion Protein ( SPRN) in Quails. Animals (Basel) 2024; 14:2481. [PMID: 39272266 PMCID: PMC11394228 DOI: 10.3390/ani14172481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Prion diseases are a group of deadly neurodegenerative disorders caused by the accumulation of the normal prion protein (PrPC) into misfolding pathological conformations (PrPSc). The PrP gene is essential for the development of prion diseases. Another candidate implicated in prion pathogenesis is the shadow of the prion protein (SPRN) gene. To date, genetic polymorphisms of the SPRN gene and the structure of the Sho protein have not been explored in quails. We used polymerase chain reaction (PCR) to amplify the SPRN gene sequence and then conducted Sanger DNA sequencing to identify the genetic polymorphisms in quail SPRN. Furthermore, we examined the genotype, allele, and haplotype frequencies, and assessed the linkage disequilibrium among the genetic polymorphisms of the SPRN gene in quails. Additionally, we used in silico programs such as MutPred2, SIFT, MUpro, AMYCO, and SODA to predict the pathogenicity of non-synonymous single-nucleotide polymorphisms (SNPs). Alphafold2 predicted the 3D structure of the Sho protein in quails. The results showed that a total of 13 novel polymorphisms were found in 106 quails, including 4 non-synonymous SNPs. Using SIFT and MUpro in silico programs, three out of the four non-synonymous SNPs (A68T, L74P, and M105I) were predicted to have deleterious effects on quail Sho. Furthermore, the 3D structure of quail Sho was predicted to be similar to that of chicken Sho. To our knowledge, this is the first report to investigate the genetic and structural properties of the quail SPRN gene.
Collapse
Affiliation(s)
- Da-In Choi
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
27
|
Kamineni M, Raghu V, Truong B, Alaa A, Schuermans A, Friedman S, Reeder C, Bhattacharya R, Libby P, Ellinor PT, Maddah M, Philippakis A, Hornsby W, Yu Z, Natarajan P. Deep learning-derived splenic radiomics, genomics, and coronary artery disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.16.24312129. [PMID: 39185532 PMCID: PMC11343250 DOI: 10.1101/2024.08.16.24312129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Background Despite advances in managing traditional risk factors, coronary artery disease (CAD) remains the leading cause of mortality. Circulating hematopoietic cells influence risk for CAD, but the role of a key regulating organ, spleen, is unknown. The understudied spleen is a 3-dimensional structure of the hematopoietic system optimally suited for unbiased radiologic investigations toward novel mechanistic insights. Methods Deep learning-based image segmentation and radiomics techniques were utilized to extract splenic radiomic features from abdominal MRIs of 42,059 UK Biobank participants. Regression analysis was used to identify splenic radiomics features associated with CAD. Genome-wide association analyses were applied to identify loci associated with these radiomics features. Overlap between loci associated with CAD and the splenic radiomics features was explored to understand the underlying genetic mechanisms of the role of the spleen in CAD. Results We extracted 107 splenic radiomics features from abdominal MRIs, and of these, 10 features were associated with CAD. Genome-wide association analysis of CAD-associated features identified 219 loci, including 35 previously reported CAD loci, 7 of which were not associated with conventional CAD risk factors. Notably, variants at 9p21 were associated with splenic features such as run length non-uniformity. Conclusions Our study, combining deep learning with genomics, presents a new framework to uncover the splenic axis of CAD. Notably, our study provides evidence for the underlying genetic connection between the spleen as a candidate causal tissue-type and CAD with insight into the mechanisms of 9p21, whose mechanism is still elusive despite its initial discovery in 2007. More broadly, our study provides a unique application of deep learning radiomics to non-invasively find associations between imaging, genetics, and clinical outcomes.
Collapse
Affiliation(s)
| | - Vineet Raghu
- Cardiovascular Imaging Research Center, Department of Radiology, MGH and HMS
- Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts
| | - Buu Truong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Ahmed Alaa
- Computational Precision Health Program, University of California, Berkeley, Berkeley, CA 94720
- Computational Precision Health Program, University of California, San Francisco, San Francisco, CA 94143
| | - Art Schuermans
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Sam Friedman
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Christopher Reeder
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Romit Bhattacharya
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston MA 02114
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Patrick T. Ellinor
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Mahnaz Maddah
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Whitney Hornsby
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Zhi Yu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Pradeep Natarajan
- Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Personalized Medicine, Mass General Brigham, Boston, MA
| |
Collapse
|
28
|
Savolainen A, Kapiainen E, Ronkainen VP, Izzi V, Matzuk MM, Monsivais D, Prunskaite-Hyyryläinen R. 3DMOUSEneST: a volumetric label-free imaging method evaluating embryo-uterine interaction and decidualization efficacy. Development 2024; 151:dev202938. [PMID: 39023143 PMCID: PMC11385321 DOI: 10.1242/dev.202938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Effective interplay between the uterus and the embryo is essential for pregnancy establishment; however, convenient methods to screen embryo implantation success and maternal uterine response in experimental mouse models are currently lacking. Here, we report 3DMOUSEneST, a groundbreaking method for analyzing mouse implantation sites based on label-free higher harmonic generation microscopy, providing unprecedented insights into the embryo-uterine dynamics during early pregnancy. The 3DMOUSEneST method incorporates second-harmonic generation microscopy to image the three-dimensional structure formed by decidual fibrillar collagen, named 'decidual nest', and third-harmonic generation microscopy to evaluate early conceptus (defined as the embryo and extra-embryonic tissues) growth. We demonstrate that decidual nest volume is a measurable indicator of decidualization efficacy and correlates with the probability of early pregnancy progression based on a logistic regression analysis using Smad1/5 and Smad2/3 conditional knockout mice with known implantation defects. 3DMOUSEneST has great potential to become a principal method for studying decidual fibrillar collagen and characterizing mouse models associated with early embryonic lethality and fertility issues.
Collapse
Affiliation(s)
- Audrey Savolainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Emmi Kapiainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | | | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
29
|
Yan B, Gong B, Zheng Y, Sun L, Wu X. Embryonic Lethal Phenotyping to Identify Candidate Genes Related with Birth Defects. Int J Mol Sci 2024; 25:8788. [PMID: 39201474 PMCID: PMC11354474 DOI: 10.3390/ijms25168788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Congenital birth defects contribute significantly to preterm birth, stillbirth, perinatal death, infant mortality, and adult disability. As a first step to exploring the mechanisms underlying this major clinical challenge, we analyzed the embryonic phenotypes of lethal strains generated by random mutagenesis. In this study, we report the gross embryonic and perinatal phenotypes of 55 lethal strains randomly picked from a collection of mutants that carry piggyBac (PB) transposon inserts. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested most of the analyzed mutations hit genes involved in heart and nervous development, or in Notch and Wnt signaling. Among them, 12 loci are known to be associated with human diseases. We confirmed 53 strains as embryonic or perinatal lethal, while others were subviable. Gross morphological phenotypes such as body size abnormality (29/55, 52.73%), growth or developmental delay (35/55, 63.64%), brain defects (9/55, 16.36%), vascular/heart development (31/55, 56.36%), and other structural defects (9/55, 16.36%) could be easily observed in the mutants, while three strains showed phenotypes similar to those of human patients. Furthermore, we detected body weight or body composition alterations in the heterozygotes of eight strains. One of them was the TGF-β signaling gene Smad2. The heterozygotes showed increased energy expenditure and a lower fat-to-body weight ratio compared to wild-type mice. This study provided new insights into mammalian embryonic development and will help understand the pathology of congenital birth defects in humans. In addition, it expanded our understanding of the etiology of obesity.
Collapse
Affiliation(s)
| | | | | | - Lei Sun
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200441, China; (B.Y.); (B.G.); (Y.Z.)
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200441, China; (B.Y.); (B.G.); (Y.Z.)
| |
Collapse
|
30
|
Mellis IA, Melzer ME, Bodkin N, Goyal Y. Prevalence of and gene regulatory constraints on transcriptional adaptation in single cells. Genome Biol 2024; 25:217. [PMID: 39135102 PMCID: PMC11320884 DOI: 10.1186/s13059-024-03351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Cells and tissues have a remarkable ability to adapt to genetic perturbations via a variety of molecular mechanisms. Nonsense-induced transcriptional compensation, a form of transcriptional adaptation, has recently emerged as one such mechanism, in which nonsense mutations in a gene trigger upregulation of related genes, possibly conferring robustness at cellular and organismal levels. However, beyond a handful of developmental contexts and curated sets of genes, no comprehensive genome-wide investigation of this behavior has been undertaken for mammalian cell types and conditions. How the regulatory-level effects of inherently stochastic compensatory gene networks contribute to phenotypic penetrance in single cells remains unclear. RESULTS We analyze existing bulk and single-cell transcriptomic datasets to uncover the prevalence of transcriptional adaptation in mammalian systems across diverse contexts and cell types. We perform regulon gene expression analyses of transcription factor target sets in both bulk and pooled single-cell genetic perturbation datasets. Our results reveal greater robustness in expression of regulons of transcription factors exhibiting transcriptional adaptation compared to those of transcription factors that do not. Stochastic mathematical modeling of minimal compensatory gene networks qualitatively recapitulates several aspects of transcriptional adaptation, including paralog upregulation and robustness to mutation. Combined with machine learning analysis of network features of interest, our framework offers potential explanations for which regulatory steps are most important for transcriptional adaptation. CONCLUSIONS Our integrative approach identifies several putative hits-genes demonstrating possible transcriptional adaptation-to follow-up on experimentally and provides a formal quantitative framework to test and refine models of transcriptional adaptation.
Collapse
Affiliation(s)
- Ian A Mellis
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Madeline E Melzer
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nicholas Bodkin
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- CZ Biohub Chicago, LLC, Chicago, IL, USA.
| |
Collapse
|
31
|
Jovanovic M, Marini JC. Update on the Genetics of Osteogenesis Imperfecta. Calcif Tissue Int 2024:10.1007/s00223-024-01266-5. [PMID: 39127989 DOI: 10.1007/s00223-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous heritable skeletal dysplasia characterized by bone fragility and deformity, growth deficiency, and other secondary connective tissue defects. OI is now understood as a collagen-related disorder caused by defects of genes whose protein products interact with collagen for folding, post-translational modification, processing and trafficking, affecting bone mineralization and osteoblast differentiation. This review provides the latest updates on genetics of OI, including new developments in both dominant and rare OI forms, as well as the signaling pathways involved in OI pathophysiology. There is a special emphasis on discoveries of recessive mutations in TENT5A, MESD, KDELR2 and CCDC134 whose causality of OI types XIX, XX, XXI and XXI, respectively, is now established and expends the complexity of mechanisms underlying OI to overlap LRP5/6 and MAPK/ERK pathways. We also review in detail new discoveries connecting the known OI types to each other, which may underlie an eventual understanding of a final common pathway in OI cellular and bone biology.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Adolescent Bone and Body Composition, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Luo S, Alwattar B, Li Q, Bora K, Blomfield AK, Lin J, Fulton A, Chen J, Agrawal PB. HBS1L deficiency causes retinal dystrophy in a child and in a mouse model associated with defective development of photoreceptor cells. Dis Model Mech 2024; 17:dmm050557. [PMID: 38966981 DOI: 10.1242/dmm.050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Inherited retinal diseases encompass a genetically diverse group of conditions caused by variants in genes critical to retinal function, including handful of ribosome-associated genes. This study focuses on the HBS1L gene, which encodes for the HBS1-like translational GTPase that is crucial for ribosomal rescue. We have reported a female child carrying biallelic HBS1L variants, manifesting with poor growth and neurodevelopmental delay. Here, we describe the ophthalmologic findings in the patient and in Hbs1ltm1a/tm1a hypomorph mice and describe the associated microscopic and molecular perturbations. The patient has impaired visual function, showing dampened amplitudes of a- and b-waves in both rod- and cone-mediated responses. Hbs1ltm1a/tm1a mice exhibited profound thinning of the entire retina, specifically of the outer photoreceptor layer, due to extensive photoreceptor cell apoptosis. Loss of Hbs1l resulted in comprehensive proteomic alterations by mass spectrometry analysis, with an increase in the levels of 169 proteins and a decrease in the levels of 480 proteins, including rhodopsin (Rho) and peripherin 2 (Prph2). Gene Ontology biological process and gene set enrichment analyses reveal that the downregulated proteins are primarily involved in phototransduction, cilium assembly and photoreceptor cell development. These findings underscore the importance of ribosomal rescue proteins in maintaining retinal health, particularly in photoreceptor cells.
Collapse
Affiliation(s)
- Shiyu Luo
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bilal Alwattar
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kiran Bora
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra K Blomfield
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmine Lin
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Fulton
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pankaj B Agrawal
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Yu L, Chen Z, Zhou X, Teng F, Bai QR, Li L, Li Y, Liu Y, Zeng Q, Wang Y, Wang M, Xu Y, Tang X, Wang X. KARS Mutations Impair Brain Myelination by Inducing Oligodendrocyte Deficiency: One Potential Mechanism and Improvement by Melatonin. J Pineal Res 2024; 76:e12998. [PMID: 39087379 DOI: 10.1111/jpi.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
It is very crucial to investigate key molecules that are involved in myelination to gain an understanding of brain development and injury. We have reported for the first time that pathogenic variants p.R477H and p.P505S in KARS, which encodes lysyl-tRNA synthetase (LysRS), cause leukoencephalopathy with progressive cognitive impairment in humans. The role and action mechanisms of KARS in brain myelination during development are unknown. Here, we first generated Kars knock-in mouse models through the CRISPR-Cas9 system. Kars knock-in mice displayed significant cognitive deficits. These mice also showed significantly reduced myelin density and content, as well as significantly decreased myelin thickness during development. In addition, Kars mutations significantly induced oligodendrocyte differentiation arrest and reduction in the brain white matter of mice. Mechanically, oligodendrocytes' significantly imbalanced expression of differentiation regulators and increased capase-3-mediated apoptosis were observed in the brain white matter of Kars knock-in mice. Furthermore, Kars mutations significantly reduced the aminoacylation and steady-state level of mitochondrial tRNALys and decreased the protein expression of subunits of oxidative phosphorylation complexes in the brain white matter. Kars knock-in mice showed decreased activity of complex IV and significantly reduced ATP production and increased reactive oxygen species in the brain white matter. Significantly increased percentages of abnormal mitochondria and mitochondrion area were observed in the oligodendrocytes of Kars knock-in mouse brain. Finally, melatonin (a mitochondrion protectant) significantly attenuated mitochondrion and oligodendrocyte deficiency in the brain white matter of KarsR504H/P532S mice. The mice treated with melatonin also showed significantly restored myelination and cognitive function. Our study first establishes Kars knock-in mammal models of leukoencephalopathy and cognitive impairment and indicates important roles of KARS in the regulation of mitochondria, oligodendrocyte differentiation and survival, and myelination during brain development and application prospects of melatonin in KARS (or even aaRS)-related diseases.
Collapse
Affiliation(s)
- Lijia Yu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhilin Chen
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolong Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lixi Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunhong Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Liu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiyu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Meihua Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yaling Xu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohui Tang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xijin Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Gordon MG, Kathail P, Choy B, Kim MC, Mazumder T, Gearing M, Ye CJ. Population Diversity at the Single-Cell Level. Annu Rev Genomics Hum Genet 2024; 25:27-49. [PMID: 38382493 DOI: 10.1146/annurev-genom-021623-083207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Population-scale single-cell genomics is a transformative approach for unraveling the intricate links between genetic and cellular variation. This approach is facilitated by cutting-edge experimental methodologies, including the development of high-throughput single-cell multiomics and advances in multiplexed environmental and genetic perturbations. Examining the effects of natural or synthetic genetic variants across cellular contexts provides insights into the mutual influence of genetics and the environment in shaping cellular heterogeneity. The development of computational methodologies further enables detailed quantitative analysis of molecular variation, offering an opportunity to examine the respective roles of stochastic, intercellular, and interindividual variation. Future opportunities lie in leveraging long-read sequencing, refining disease-relevant cellular models, and embracing predictive and generative machine learning models. These advancements hold the potential for a deeper understanding of the genetic architecture of human molecular traits, which in turn has important implications for understanding the genetic causes of human disease.
Collapse
Affiliation(s)
| | - Pooja Kathail
- Center for Computational Biology, University of California, Berkeley, California, USA
| | - Bryson Choy
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Min Cheol Kim
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Thomas Mazumder
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Melissa Gearing
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Chun Jimmie Ye
- Arc Institute, Palo Alto, California, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, Gladstone-UCSF Institute of Genomic Immunology, Parker Institute for Cancer Immunotherapy, Department of Epidemiology and Biostatistics, Department of Microbiology and Immunology, and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA;
| |
Collapse
|
35
|
Čunátová K, Fernández-Vizarra E. Pathological variants in nuclear genes causing mitochondrial complex III deficiency: An update. J Inherit Metab Dis 2024. [PMID: 39053894 DOI: 10.1002/jimd.12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 07/27/2024]
Abstract
Mitochondrial disorders are a group of clinically and biochemically heterogeneous genetic diseases within the group of inborn errors of metabolism. Primary mitochondrial diseases are mainly caused by defects in one or several components of the oxidative phosphorylation system (complexes I-V). Within these disorders, those associated with complex III deficiencies are the least common. However, thanks to a deeper knowledge about complex III biogenesis, improved clinical diagnosis and the implementation of next-generation sequencing techniques, the number of pathological variants identified in nuclear genes causing complex III deficiency has expanded significantly. This updated review summarizes the current knowledge concerning the genetic basis of complex III deficiency, and the main clinical features associated with these conditions.
Collapse
Affiliation(s)
- Kristýna Čunátová
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Erika Fernández-Vizarra
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
36
|
Laugwitz L, Cheng F, Collins SC, Hustinx A, Navarro N, Welsch S, Cox H, Hsieh TC, Vijayananth A, Buchert R, Bender B, Efthymiou S, Murphy D, Zafar F, Rana N, Grasshoff U, Falb RJ, Grimmel M, Seibt A, Zheng W, Ghaedi H, Thirion M, Couette S, Azizimalamiri R, Sadeghian S, Galehdari H, Zamani M, Zeighami J, Sedaghat A, Ramshe SM, Zare A, Alipoor B, Klee D, Sturm M, Ossowski S, Houlden H, Riess O, Wieczorek D, Gavin R, Maroofian R, Krawitz P, Yalcin B, Distelmaier F, Haack TB. ZSCAN10 deficiency causes a neurodevelopmental disorder with characteristic oto-facial malformations. Brain 2024; 147:2471-2482. [PMID: 38386308 PMCID: PMC11224597 DOI: 10.1093/brain/awae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/21/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024] Open
Abstract
Neurodevelopmental disorders are major indications for genetic referral and have been linked to more than 1500 loci including genes encoding transcriptional regulators. The dysfunction of transcription factors often results in characteristic syndromic presentations; however, at least half of these patients lack a genetic diagnosis. The implementation of machine learning approaches has the potential to aid in the identification of new disease genes and delineate associated phenotypes. Next generation sequencing was performed in seven affected individuals with neurodevelopmental delay and dysmorphic features. Clinical characterization included reanalysis of available neuroimaging datasets and 2D portrait image analysis with GestaltMatcher. The functional consequences of ZSCAN10 loss were modelled in mouse embryonic stem cells (mESCs), including a knockout and a representative ZSCAN10 protein truncating variant. These models were characterized by gene expression and western blot analyses, chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) and immunofluorescence staining. Zscan10 knockout mouse embryos were generated and phenotyped. We prioritized bi-allelic ZSCAN10 loss-of-function variants in seven affected individuals from five unrelated families as the underlying molecular cause. RNA-sequencing analyses in Zscan10-/- mESCs indicated dysregulation of genes related to stem cell pluripotency. In addition, we established in mESCs the loss-of-function mechanism for a representative human ZSCAN10 protein truncating variant by showing alteration of its expression levels and subcellular localization, interfering with its binding to DNA enhancer targets. Deep phenotyping revealed global developmental delay, facial asymmetry and malformations of the outer ear as consistent clinical features. Cerebral MRI showed dysplasia of the semicircular canals as an anatomical correlate of sensorineural hearing loss. Facial asymmetry was confirmed as a clinical feature by GestaltMatcher and was recapitulated in the Zscan10 mouse model along with inner and outer ear malformations. Our findings provide evidence of a novel syndromic neurodevelopmental disorder caused by bi-allelic loss-of-function variants in ZSCAN10.
Collapse
Affiliation(s)
- Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, 72076, Germany
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen 72076, Germany
| | - Fubo Cheng
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, 72076, Germany
| | | | - Alexander Hustinx
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53127, Germany
| | - Nicolas Navarro
- Biogeosciences, UMR 6282 CNRS, EPHE, Université de Bourgogne, Dijon 2100, France
- EPHE, PSL University, Paris 75014, France
| | - Simon Welsch
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Helen Cox
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women’s and Children’s Hospitals NHS Foundation Trust, Birmingham B15 2TG, UK
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53127, Germany
| | - Aswinkumar Vijayananth
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53127, Germany
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, 72076, Germany
| | - Benjamin Bender
- Diagnostic and Interventional Neuroradiology, Radiologic Clinics, University of Tübingen, Tübingen 72076, Germany
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Faisal Zafar
- Pediatric Neurology, Children’s Hospital, Multan 60000, Pakistan
| | - Nuzhat Rana
- Pediatric Neurology, Children’s Hospital, Multan 60000, Pakistan
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, 72076, Germany
- Center for Rare Disease, University of Tübingen, Tübingen 72072, Germany
| | - Ruth J Falb
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, 72076, Germany
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, 72076, Germany
| | - Annette Seibt
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Wenxu Zheng
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, 72076, Germany
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Marie Thirion
- Inserm UMR1231, Université de Bourgogne, Dijon Cedex 21070, France
| | - Sébastien Couette
- Biogeosciences, UMR 6282 CNRS, EPHE, Université de Bourgogne, Dijon 2100, France
- EPHE, PSL University, Paris 75014, France
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Saeid Sadeghian
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz 6155689467, Iran
| | - Jawaher Zeighami
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz 6155689467, Iran
| | - Alireza Sedaghat
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz 6155689467, Iran
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Samira Molaei Ramshe
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Ali Zare
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj 7591741417, Iran
| | - Dirk Klee
- Department of Pediatric Radiology, Medical Faculty, Institute of Radiology, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, 72076, Germany
- Genomics England, Queen Mary University of London, London EC1M 6BQ, UK
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, 72076, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen 72076, Germany
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, 72076, Germany
- Center for Rare Disease, University of Tübingen, Tübingen 72072, Germany
| | - Dagmar Wieczorek
- Medical Faculty and University Hospital Düsseldorf, Institute of Human Genetics, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Ryan Gavin
- West Midlands Regional Genetics Laboratory, Central and South Genomic Laboratory Hub, Birmingham B15 2TG, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53127, Germany
| | - Binnaz Yalcin
- Inserm UMR1231, Université de Bourgogne, Dijon Cedex 21070, France
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, 72076, Germany
- Center for Rare Disease, University of Tübingen, Tübingen 72072, Germany
| |
Collapse
|
37
|
Jacinto JGP, Letko A, Häfliger IM, Drögemüller C, Agerholm JS. Congenital syndromic Chiari-like malformation (CSCM) in Holstein cattle: towards unravelling of possible genetic causes. Acta Vet Scand 2024; 66:29. [PMID: 38965607 PMCID: PMC11229497 DOI: 10.1186/s13028-024-00752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Chiari malformation type II (CMII) was originally reported in humans as a rare disorder characterized by the downward herniation of the hindbrain and towering cerebellum. The congenital brain malformation is usually accompanied by spina bifida, a congenital spinal anomaly resulting from incomplete closure of the dorsal aspect of the spinal neural tube, and occasionally by other lesions. A similar disorder has been reported in several animal species, including cattle, particularly as a congenital syndrome. A cause of congenital syndromic Chiari-like malformation (CSCM) in cattle has not been reported to date. We collected a series of 14 CSCM-affected Holstein calves (13 purebred, one Red Danish Dairy F1 cross) and performed whole-genome sequencing (WGS). WGS was performed on 33 cattle, including eight cases with parents (trio-based; group 1), three cases with one parent (group 2), and three single cases (solo-based; group 3). RESULTS Sequencing-based genome-wide association study of the 13 Holstein calves with CSCM and 166 controls revealed no significantly associated genome region. Assuming a single Holstein breed-specific recessive allele, no region of shared homozygosity was detected suggesting heterogeneity. Subsequent filtering for protein-changing variants that were only homozygous in the genomes of the individual cases allowed the identification of two missense variants affecting different genes, SHC4 in case 4 in group 1 and WDR45B in case 13 in group 3. Furthermore, these two variants were only observed in Holstein cattle when querying WGS data of > 5,100 animals. Alternatively, potential de novo mutational events were assessed in each case. Filtering for heterozygous private protein-changing variants identified one DYNC1H1 frameshift variant as a candidate causal dominant acting allele in case 12 in group 3. Finally, the presence of larger structural DNA variants and chromosomal abnormalities was investigated in all cases. Depth of coverage analysis revealed two different partial monosomies of chromosome 2 segments in cases 1 and 7 in group 1 and a trisomy of chromosome 12 in the WDR45B homozygous case 13 in group 3. CONCLUSIONS This study presents for the first time a detailed genomic evaluation of CSCM in Holstein cattle and suggests an unexpected genetic and allelic heterogeneity considering the mode of inheritance, as well as the type of variant. For the first time, we propose candidate causal variants that may explain bovine CSCM in a certain proportion of affected calves. We present cattle as a large animal model for human CMII and propose new genes and genomic variants as possible causes for related diseases in both animals and humans.
Collapse
Affiliation(s)
- Joana Goncalves Pontes Jacinto
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
| | - Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
| | - Irene Monika Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland.
| | - Jørgen Steen Agerholm
- Department of Veterinary Clinical Sciences, University of Copenhagen, Højbakkegaard Allé 5A, Taastrup, 2630, Denmark
| |
Collapse
|
38
|
Roston RA, Whikehart SM, Rolfe SM, Maga M. Morphological simulation tests the limits on phenotype discovery in 3D image analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601430. [PMID: 39005442 PMCID: PMC11244899 DOI: 10.1101/2024.06.30.601430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In the past few decades, advances in 3D imaging have created new opportunities for reverse genetic screens. Rapidly growing datasets of 3D images of genetic knockouts require high-throughput, automated computational approaches for identifying and characterizing new phenotypes. However, exploratory, discovery-oriented image analysis pipelines used to discover these phenotypes can be difficult to validate because, by their nature, the expected outcome is not known a priori . Introducing known morphological variation through simulation can help distinguish between real phenotypic differences and random variation; elucidate the effects of sample size; and test the sensitivity and reproducibility of morphometric analyses. Here we present a novel approach for 3D morphological simulation that uses open-source, open-access tools available in 3D Slicer, SlicerMorph, and Advanced Normalization Tools in R (ANTsR). While we focus on diffusible-iodine contrast-enhanced micro-CT (diceCT) images, this approach can be used on any volumetric image. We then use our simulated datasets to test whether tensor-based morphometry (TBM) can recover our introduced differences; to test how effect size and sample size affect detectability; and to determine the reproducibility of our results. In our approach to morphological simulation, we first generate a simulated deformation based on a reference image and then propagate this deformation to subjects using inverse transforms obtained from the registration of subjects to the reference. This produces a new dataset with a shifted population mean while retaining individual variability because each sample deforms more or less based on how different or similar it is from the reference. TBM is a widely-used technique that statistically compares local volume differences associated with local deformations. Our results showed that TBM recovered our introduced morphological differences, but that detectability was dependent on the effect size, the sample size, and the region of interest (ROI) included in the analysis. Detectability of subtle phenotypes can be improved both by increasing the sample size and by limiting analyses to specific body regions. However, it is not always feasible to increase sample sizes in screens of essential genes. Therefore, methodical use of ROIs is a promising way to increase the power of TBM to detect subtle phenotypes. Generating known morphological variation through simulation has broad applicability in developmental, evolutionary, and biomedical morphometrics and is a useful way to distinguish between a failure to detect morphological difference and a true lack of morphological difference. Morphological simulation can also be applied to AI-based supervised learning to augment datasets and overcome dataset limitations.
Collapse
|
39
|
Cacheiro P, Lawson S, Van den Veyver IB, Marengo G, Zocche D, Murray SA, Duyzend M, Robinson PN, Smedley D. Lethal phenotypes in Mendelian disorders. Genet Med 2024; 26:101141. [PMID: 38629401 PMCID: PMC11232373 DOI: 10.1016/j.gim.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE Existing resources that characterize the essentiality status of genes are based on either proliferation assessment in human cell lines, viability evaluation in mouse knockouts, or constraint metrics derived from human population sequencing studies. Several repositories document phenotypic annotations for rare disorders; however, there is a lack of comprehensive reporting on lethal phenotypes. METHODS We queried Online Mendelian Inheritance in Man for terms related to lethality and classified all Mendelian genes according to the earliest age of death recorded for the associated disorders, from prenatal death to no reports of premature death. We characterized the genes across these lethality categories, examined the evidence on viability from mouse models and explored how this information could be used for novel gene discovery. RESULTS We developed the Lethal Phenotypes Portal to showcase this curated catalog of human essential genes. Differences in the mode of inheritance, physiological systems affected, and disease class were found for genes in different lethality categories, as well as discrepancies between the lethal phenotypes observed in mouse and human. CONCLUSION We anticipate that this resource will aid clinicians in the diagnosis of early lethal conditions and assist researchers in investigating the properties that make these genes essential for human development.
Collapse
Affiliation(s)
- Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Samantha Lawson
- ITS Research, Queen Mary University of London, London, United Kingdom
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Gabriel Marengo
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - David Zocche
- North West Thames Regional Genetics Service, Northwick Park and St Mark's Hospitals, London, United Kingdom
| | | | - Michael Duyzend
- Massachusetts General Hospital, Boston, MA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Peter N Robinson
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
40
|
He XD, Phillips S, Hioki K, Majhi PD, Babbitt C, Tremblay KD, Pobezinsky LA, Mager J. TATA-binding associated factors have distinct roles during early mammalian development. Dev Biol 2024; 511:53-62. [PMID: 38593904 PMCID: PMC11143476 DOI: 10.1016/j.ydbio.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Early embryonic development is a finely orchestrated process that requires precise regulation of gene expression coordinated with morphogenetic events. TATA-box binding protein-associated factors (TAFs), integral components of transcription initiation coactivators like TFIID and SAGA, play a crucial role in this intricate process. Here we show that disruptions in TAF5, TAF12 and TAF13 individually lead to embryonic lethality in the mouse, resulting in overlapping yet distinct phenotypes. Taf5 and Taf12 mutant embryos exhibited a failure to implant post-blastocyst formation, and Taf5 mutants have aberrant lineage specification within the inner cell mass. In contrast, Taf13 mutant embryos successfully implant and form egg-cylinder stages but fail to initiate gastrulation. Strikingly, we observed a depletion of pluripotency factors in TAF13-deficient embryos, including OCT4, NANOG and SOX2, highlighting an indispensable role of TAF13 in maintaining pluripotency. Transcriptomic analysis revealed distinct gene targets affected by the loss of TAF5, TAF12 and TAF13. Thus, we propose that TAF5, TAF12 and TAF13 convey locus specificity to the TFIID complex throughout the mouse genome.
Collapse
Affiliation(s)
- Xinjian Doris He
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Shelby Phillips
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kaito Hioki
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Prabin Dhangada Majhi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Courtney Babbitt
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Leonid A Pobezinsky
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
41
|
Abe K, Masuya H, Shiroishi T. The 36th International Mammalian Genome Conference: A scientific gathering under the cherry blossoms in Tsukuba. Genes Cells 2024; 29:525-531. [PMID: 38845473 DOI: 10.1111/gtc.13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
The 36th International Mammalian Genome Conference (IMGC) was held in a hybrid format at the Tsukuba International Congress Center in Tsukuba, Ibaraki, Japan, for 4 days from March 28 to 31, 2023. This international conference on functional genomics of mouse, human, and other mammalian species attracted 246 participants in total, of which 129 were from outside Japan, including Europe, the United States and Asia, and 117 participants were from Japan. The conference included three technical workshops, keynote lectures by domestic researchers, commemorative lectures for the conference awards, 57 oral presentations, and 97 poster presentations. The event was a great success. Topics included the establishment and analysis of disease models using genetically engineered or spontaneous mutant mice, systems genetic analysis using mouse strains such as wild-derived mice and recombinant inbred mouse strains, infectious diseases, immunology, and epigenetics. In addition, as a joint program, a two-day RIKEN Symposium was held, and active discussions continued over the four-day period. Also, there was a trainee symposium, in which young researchers were encouraged to participate, and excellent papers were selected as oral presentations in the main session.
Collapse
Affiliation(s)
- Kuniya Abe
- RIKEN BioResource Research Center, Ibaraki, Japan
| | | | | |
Collapse
|
42
|
Khadka P, Young CKJ, Sachidanandam R, Brard L, Young MJ. Our current understanding of the biological impact of endometrial cancer mtDNA genome mutations and their potential use as a biomarker. Front Oncol 2024; 14:1394699. [PMID: 38993645 PMCID: PMC11236604 DOI: 10.3389/fonc.2024.1394699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Endometrial cancer (EC) is a devastating and common disease affecting women's health. The NCI Surveillance, Epidemiology, and End Results Program predicted that there would be >66,000 new cases in the United States and >13,000 deaths from EC in 2023, and EC is the sixth most common cancer among women worldwide. Regulation of mitochondrial metabolism plays a role in tumorigenesis. In proliferating cancer cells, mitochondria provide the necessary building blocks for biosynthesis of amino acids, lipids, nucleotides, and glucose. One mechanism causing altered mitochondrial activity is mitochondrial DNA (mtDNA) mutation. The polyploid human mtDNA genome is a circular double-stranded molecule essential to vertebrate life that harbors genes critical for oxidative phosphorylation plus mitochondrial-derived peptide genes. Cancer cells display aerobic glycolysis, known as the Warburg effect, which arises from the needs of fast-dividing cells and is characterized by increased glucose uptake and conversion of glucose to lactate. Solid tumors often contain at least one mtDNA substitution. Furthermore, it is common for cancer cells to harbor mixtures of wild-type and mutant mtDNA genotypes, known as heteroplasmy. Considering the increase in cancer cell energy demand, the presence of functionally relevant carcinogenesis-inducing or environment-adapting mtDNA mutations in cancer seems plausible. We review 279 EC tumor-specific mtDNA single nucleotide variants from 111 individuals from different studies. Many transition mutations indicative of error-prone DNA polymerase γ replication and C to U deamination events were present. We examine the spectrum of mutations and their heteroplasmy and discuss the potential biological impact of recurrent, non-synonymous, insertion, and deletion mutations. Lastly, we explore current EC treatments, exploiting cancer cell mitochondria for therapy and the prospect of using mtDNA variants as an EC biomarker.
Collapse
Affiliation(s)
- Pabitra Khadka
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Carolyn K J Young
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | | | - Laurent Brard
- Obstetrics & Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Simmons Cancer Institute, Springfield, IL, United States
| | - Matthew J Young
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
- Simmons Cancer Institute, Springfield, IL, United States
| |
Collapse
|
43
|
Han Z, Yang C, He H, Huang T, Yin Q, Tian G, Wu Y, Hu W, Lu L, Bajpai AK, Mi J, Xu F. Systems Genetics Analyses Reveals Key Genes Related to Behavioral Traits in the Striatum of CFW Mice. J Neurosci 2024; 44:e0252242024. [PMID: 38777602 PMCID: PMC11211725 DOI: 10.1523/jneurosci.0252-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
The striatum plays a central role in directing many complex behaviors ranging from motor control to action choice and reward learning. In our study, we used 55 male CFW mice with rapid decay linkage disequilibrium to systematically mine the striatum-related behavioral functional genes by analyzing their striatal transcriptomes and 79 measured behavioral phenotypic data. By constructing a gene coexpression network, we clustered the genes into 13 modules, with most of them being positively correlated with motor traits. Based on functional annotations as well as Fisher's exact and hypergeometric distribution tests, brown and magenta modules were identified as core modules. They were significantly enriched for striatal-related functional genes. Subsequent Mendelian randomization analysis verified the causal relationship between the core modules and dyskinesia. Through the intramodular gene connectivity analysis, Adcy5 and Kcnma1 were identified as brown and magenta module hub genes, respectively. Knock outs of both Adcy5 and Kcnma1 lead to motor dysfunction in mice, and KCNMA1 acts as a risk gene for schizophrenia and smoking addiction in humans. We also evaluated the cellular composition of each module and identified oligodendrocytes in the striatum to have a positive role in motor regulation.
Collapse
Affiliation(s)
- Zhe Han
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai 264003, Shandong Province, China
| | - Chunhua Yang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai 264003, Shandong Province, China
| | - Hongjie He
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai 264003, Shandong Province, China
| | - Tingting Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai 264003, Shandong Province, China
| | - Quanting Yin
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai 264003, Shandong Province, China
| | - Geng Tian
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai 264003, Shandong Province, China
| | - Yuyong Wu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Wei Hu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Jia Mi
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai 264003, Shandong Province, China
| | - Fuyi Xu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai 264003, Shandong Province, China
| |
Collapse
|
44
|
Foley K, McKee C, Mayer A, Ganguly A, Barnett D, Ward N, Zhang Y, Nairn A, Xia H. PP1β opposes classic PP1 function, inhibiting spine maturation and promoting LTP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525737. [PMID: 36747779 PMCID: PMC9901188 DOI: 10.1101/2023.01.26.525737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Protein phosphatase 1 (PP1) regulates synaptic plasticity and has been described as a molecular constraint on learning and memory. There are three neuronal isoforms, PP1α, PP1β, and PP1γ, but little is known about their individual functions. PP1α and PP1γ are assumed to mediate the effects of PP1 on learning and memory based on their enrichment at dendritic spines and their preferential binding to neurabin and spinophilin, major PP1 synaptic scaffolding proteins. However, it was recently discovered that human de novo PP1β mutations cause intellectual disability, suggesting an important but ill-defined role for PP1β. In this study, we investigated the functions of each PP1 isoform in hippocampal synaptic physiology using conditional CA1-specific knockout mice. In stark contrast to classic PP1 function, we found that PP1β promotes synaptic plasticity as well as spatial memory. These changes in synaptic plasticity and memory are accompanied by changes in GluA1 phosphorylation, GluN2A levels, and dendritic spine density and morphology, including silent synapse number. These functions of PP1β reveal a previously unidentified signaling pathway regulating spine maturation and plasticity, broadening our understanding of the complex role of PP1 in synaptic physiology.
Collapse
|
45
|
Kuula J, Czamara D, Hauta-Alus H, Lahti J, Hovi P, Miettinen ME, Ronkainen J, Eriksson JG, Andersson S, Järvelin MR, Sebert S, Räikkönen K, Binder EB, Kajantie E. Epigenetic signature of very low birth weight in young adult life. Pediatr Res 2024:10.1038/s41390-024-03354-6. [PMID: 38898107 DOI: 10.1038/s41390-024-03354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Globally, one in ten babies is born preterm (<37 weeks), and 1-2% preterm at very low birth weight (VLBW, <1500 g). As adults, they are at increased risk for a plethora of health conditions, e.g., cardiometabolic disease, which may partly be mediated by epigenetic regulation. We compared blood DNA methylation between young adults born at VLBW and controls. METHODS 157 subjects born at VLBW and 161 controls born at term, from the Helsinki Study of Very Low Birth Weight Adults, were assessed for peripheral venous blood DNA methylation levels at mean age of 22 years. Significant CpG-sites (5'-C-phosphate-G-3') were meta-analyzed against continuous birth weight in four independent cohorts (pooled n = 2235) with cohort mean ages varying from 0 to 31 years. RESULTS In the discovery cohort, 66 CpG-sites were differentially methylated between VLBW adults and controls. Top hits were located in HIF3A, EBF4, and an intergenic region nearest to GLI2 (distance 57,533 bp). Five CpG-sites, all in proximity to GLI2, were hypermethylated in VLBW and associated with lower birth weight in the meta-analysis. CONCLUSION We identified differentially methylated CpG-sites suggesting an epigenetic signature of preterm birth at VLBW present in adult life. IMPACT Being born preterm at very low birth weight has major implications for later health and chronic disease risk factors. The mechanism linking preterm birth to later outcomes remains unknown. Our cohort study of 157 very low birth weight adults and 161 controls found 66 differentially methylated sites at mean age of 22 years. Our findings suggest an epigenetic mark of preterm birth present in adulthood, which opens up opportunities for mechanistic studies.
Collapse
Affiliation(s)
- Juho Kuula
- Population Health Research, Finnish Institute for Health and Welfare, Helsinki, Finland.
- HUS Medical Imaging Center, Department of Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Helena Hauta-Alus
- Population Health Research, Finnish Institute for Health and Welfare, Helsinki, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Petteri Hovi
- Population Health Research, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Maija E Miettinen
- Population Health Research, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Justiina Ronkainen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Johan G Eriksson
- Folkhälsan Research Centre, Topeliusgatan 20, 00250, Helsinki, Finland
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Obstetrics & Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sture Andersson
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | | | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Eero Kajantie
- Population Health Research, Finnish Institute for Health and Welfare, Helsinki, Finland
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Clinical Medicine Research Unit, University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
46
|
López-González I, Oseguera-López I, Castillo R, Darszon A. Influence of extracellular ATP on mammalian sperm physiology. Reprod Fertil Dev 2024; 36:RD23227. [PMID: 38870344 DOI: 10.1071/rd23227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
In addition to its central role in cellular metabolism, adenosine 5'-triphosphate (ATP) is an important extracellular signalling molecule involved in various physiological processes. In reproduction, extracellular ATP participates in both autocrine and paracrine paths regulating gametogenesis, gamete maturation and fertilisation. This review focusses on how extracellular ATP modulates sperm physiology with emphasis on the mammalian acrosome reaction. The presence of extracellular ATP in the reproductive tract is primarily determined by the ion channels and transporters that influence its movement within the cells comprising the tract. The main targets of extracellular ATP in spermatozoa are its own transporters, particularly species-specific sperm purinergic receptors. We also discuss notable phenotypes from knock-out mouse models and human Mendelian inheritance related to ATP release mechanisms, along with immunological, proteomic, and functional observations regarding sperm purinergic receptors and their involvement in sperm signalling.
Collapse
Affiliation(s)
- I López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - I Oseguera-López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - R Castillo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - A Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| |
Collapse
|
47
|
Cacheiro P, Pava D, Parkinson H, VanZanten M, Wilson R, Gunes O, The International Mouse Phenotyping Consortium, Smedley D. Computational identification of disease models through cross-species phenotype comparison. Dis Model Mech 2024; 17:dmm050604. [PMID: 38881316 PMCID: PMC11247498 DOI: 10.1242/dmm.050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/11/2024] [Indexed: 06/18/2024] Open
Abstract
The use of standardised phenotyping screens to identify abnormal phenotypes in mouse knockouts, together with the use of ontologies to describe such phenotypic features, allows the implementation of an automated and unbiased pipeline to identify new models of disease by performing phenotype comparisons across species. Using data from the International Mouse Phenotyping Consortium (IMPC), approximately half of mouse mutants are able to mimic, at least partially, the human ortholog disease phenotypes as computed by the PhenoDigm algorithm. We found the number of phenotypic abnormalities in the mouse and the corresponding Mendelian disorder, the pleiotropy and severity of the disease, and the viability and zygosity status of the mouse knockout to be associated with the ability of mouse models to recapitulate the human disorder. An analysis of the IMPC impact on disease gene discovery through a publication-tracking system revealed that the resource has been implicated in at least 109 validated rare disease-gene associations over the last decade.
Collapse
Affiliation(s)
- Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Diego Pava
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Helen Parkinson
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Maya VanZanten
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Wilson
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Osman Gunes
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
48
|
Yamaguchi J, Kokuryo T, Yokoyama Y, Oishi S, Sunagawa M, Mizuno T, Onoe S, Watanabe N, Ogura A, Ebata T. Trefoil factor 1 suppresses stemness and enhances chemosensitivity of pancreatic cancer. Cancer Med 2024; 13:e7395. [PMID: 38872370 PMCID: PMC11176577 DOI: 10.1002/cam4.7395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND AND AIMS Pancreatic cancer is one of the most lethal malignancies, partly due to resistance to conventional chemotherapy. The chemoresistance of malignant tumors is associated with epithelial-mesenchymal transition (EMT) and the stemness of cancer cells. The aim of this study is to investigate the availability and functional mechanisms of trefoil factor family 1 (TFF1), a tumor-suppressive protein in pancreatic carcinogenesis, to treat pancreatic cancer. METHODS To investigate the role of endogenous TFF1 in human and mice, specimens of human pancreatic cancer and genetically engineered mouse model of pancreatic cancer (KPC/TFF1KO; Pdx1-Cre/LSL-KRASG12D/LSL-p53R172H/TFF1-/-) were analyzed by immunohistochemistry (IHC). To explore the efficacy of extracellular administration of TFF1, recombinant and chemically synthesized TFF1 were administered to pancreatic cancer cell lines, a xenograft mouse model and a transgenic mouse model. RESULTS The deficiency of TFF1 was associated with increased EMT of cancer cells in mouse models of pancreatic cancer, KPC. The expression of TFF1 in cancer cells was associated with better survival rate of the patients who underwent chemotherapy, and loss of TFF1 deteriorated the benefit of gemcitabine in KPC mice. Extracellular administration of TFF1 inhibited gemcitabine-induced EMT, Wnt pathway activation and cancer stemness, eventually increased apoptosis of pancreatic cancer cells in vitro. In vivo, combined treatment of gemcitabine and subcutaneous administration of TFF1 arrested tumor growth in xenograft mouse model and resulted in the better survival of KPC mice by inhibiting EMT and cancer stemness. CONCLUSION These results indicate that TFF1 can contribute to establishing a novel strategy to treat pancreatic cancer patients by enhancing chemosensitivity.
Collapse
Affiliation(s)
- Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Kokuryo
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunsuke Oishi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Masaki Sunagawa
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Mizuno
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunsuke Onoe
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuyuki Watanabe
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Ogura
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
49
|
Kasprzyk-Pawelec A, Tan M, Rahhal R, McIntosh A, Fernandez H, Mosaoa R, Jiang L, Pearson GW, Glasgow E, Vockley J, Albanese C, Avantaggiati ML. Loss of the mitochondrial carrier, SLC25A1, during embryogenesis induces a unique senescence program controlled by p53. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549409. [PMID: 37503155 PMCID: PMC10370133 DOI: 10.1101/2023.07.18.549409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Germline inactivating mutations of the SLC25A1 gene contribute to various human developmental disorders, including combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic syndrome characterized by the accumulation of both enantiomers of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 deficiency leads to this disease and the role of 2HG are unclear and no therapies exist. We now show that mice lacking both Slc25a1 alleles display a spectrum of alterations that resemble human D/L-2HGA. Mechanistically, SLC25A1 loss results in a proliferation defect and activates two distinct senescence pathways, oncogene-induced senescence (OIS) and mitochondrial dysfunction-induced senescence (MiDAS), both involving the p53 tumor suppressor and driven by two discernible signals: the accumulation of 2HG, inducing OIS, and mitochondrial dysfunction, triggering MiDAS. Inhibiting these senescence programs or blocking p53 activity reverses the growth defect caused by SLC25A1 dysfunction and restores proliferation. These findings reveal novel pathogenic roles of senescence in human disorders and suggest potential strategies to correct the molecular alterations caused by SLC25A1 loss.
Collapse
|
50
|
Zhao Y, Ansarullah, Kumar P, Mahoney JM, He H, Baker C, George J, Li S. Causal network perturbation analysis identifies known and novel type-2 diabetes driver genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595431. [PMID: 38826370 PMCID: PMC11142180 DOI: 10.1101/2024.05.22.595431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The molecular pathogenesis of diabetes is multifactorial, involving genetic predisposition and environmental factors that are not yet fully understood. However, pancreatic β-cell failure remains among the primary reasons underlying the progression of type-2 diabetes (T2D) making targeting β-cell dysfunction an attractive pathway for diabetes treatment. To identify genetic contributors to β-cell dysfunction, we investigated single-cell gene expression changes in β-cells from healthy (C57BL/6J) and diabetic (NZO/HlLtJ) mice fed with normal or high-fat, high-sugar diet (HFHS). Our study presents an innovative integration of the causal network perturbation assessment (ssNPA) framework with meta-cell transcriptome analysis to explore the genetic underpinnings of type-2 diabetes (T2D). By generating a reference causal network and in silico perturbation, we identified novel genes implicated in T2D and validated our candidates using the Knockout Mouse Phenotyping (KOMP) Project database.
Collapse
Affiliation(s)
- Yue Zhao
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Ansarullah
- Center for Biometric Analysis, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Parveen Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Hao He
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Candice Baker
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|