1
|
do Nascimento THO, Pereira-Figueiredo D, Veroneze L, Nascimento AA, De Logu F, Nassini R, Campello-Costa P, Faria-Melibeu ADC, Souza Monteiro de Araújo D, Calaza KC. Functions of TRPs in retinal tissue in physiological and pathological conditions. Front Mol Neurosci 2024; 17:1459083. [PMID: 39386050 PMCID: PMC11461470 DOI: 10.3389/fnmol.2024.1459083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The Transient Receptor Potential (TRP) constitutes a family of channels subdivided into seven subfamilies: Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM), Mucolipin (TRPML), no-mechano-potential C (TRPN), Polycystic (TRPP), and Vanilloid (TRPV). Although they are structurally similar to one another, the peculiarities of each subfamily are key to the response to stimuli and the signaling pathway that each one triggers. TRPs are non-selective cation channels, most of which are permeable to Ca2+, which is a well-established second messenger that modulates several intracellular signaling pathways and is involved in physiological and pathological conditions in various cell types. TRPs depolarize excitable cells by increasing the influx of Ca2+, Na+, and other cations. Most TRP families are activated by temperature variations, membrane stretching, or chemical agents and, therefore, are defined as polymodal channels. All TPRs are expressed, at some level, in the central nervous system (CNS) and ocular-related structures, such as the retina and optic nerve (ON), except the TRPP in the ON. TRPC, TRPM, TRPV, and TRPML are found in the retinal pigmented cells, whereas only TRPA1 and TRPM are detected in the uvea. Accordingly, several studies have focused on the search to unravel the role of TRPs in physiological and pathological conditions related to the eyes. Thus, this review aims to shed light on endogenous and exogenous modulators, triggered cell signaling pathways, and localization and roles of each subfamily of TRP channels in physiological and pathological conditions in the retina, optic nerve, and retinal pigmented epithelium of vertebrates.
Collapse
Affiliation(s)
- Thaianne Hanah Oliveira do Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Louise Veroneze
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Amanda Alves Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | | | - Karin Costa Calaza
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Zhang K, Liu W, Shen F, Luan G, Han Y, Xu J, Fu C, Wu W, Hou Y, Jiang M, Zhang T, Bai G. Ligustilide covalently binds to Cys703 in the pre-S1 helix of TRPA1, blocking the opening of channel and relieving pain in rats with acute soft tissue injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118217. [PMID: 38641072 DOI: 10.1016/j.jep.2024.118217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The natural anodyne Ligustilide (Lig), derived from Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort., has been traditionally employed for its analgesic properties in the treatment of dysmenorrhea and migraine, and rheumatoid arthritis pain. Despite the existing reports on the correlation between TRP channels and the analgesic effects of Lig, a comprehensive understanding of their underlying mechanisms of action remains elusive. AIM OF THE STUDY The objective of this study is to elucidate the mechanism of action of Lig on the analgesic target TRPA1 channel. METHODS The therapeutic effect of Lig was evaluated in a rat acute soft tissue injury model. The analgesic target was identified through competitive inhibition of TRP channel agonists at the animal level, followed by Fluo-4/Ca2+ imaging on live cells overexpressing TRP proteins. The potential target was verified through in-gel imaging, colocalization using a Lig-derived molecular probe, and a drug affinity response target stability assay. The binding site of Lig was identified through protein spectrometry and further analyzed using molecular docking, site-specific mutation, and multidisciplinary approaches. RESULTS The administration of Lig effectively ameliorated pain and attenuated oxidative stress and inflammatory responses in rats with soft tissue injuries. Moreover, the analgesic effects of Lig were specifically attributed to TRPA1. Mechanistic studies have revealed that Lig directly activates TRPA1 by interacting with the linker domain in the pre-S1 region of TRPA1. Through metabolic transformation, 6,7-epoxyligustilide (EM-Lig) forms a covalent bond with Cys703 of TRPA1 at high concentrations and prolonged exposure time. This irreversible binding prevents endogenous electrophilic products from entering the cysteine active center of ligand-binding pocket of TRPA1, thereby inhibiting Ca2+ influx through the channel opening and ultimately relieving pain. CONCLUSIONS Lig selectively modulates the TRPA1 channel in a bimodal manner via non-electrophilic/electrophilic metabolic conversion. The epoxidized metabolic intermediate EM-Lig exerts analgesic effects by irreversibly inhibiting the activation of TRPA1 on sensory neurons. These findings not only highlight the analgesic mechanism of Lig but also offer a novel nucleophilic attack site for the development of TRPA1 antagonists in the pre-S1 region.
Collapse
Affiliation(s)
- Kaixue Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Guoqing Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Yanqi Han
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Key Laboratory of Quality Markers of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300462, PR China
| | - Jun Xu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Key Laboratory of Quality Markers of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300462, PR China
| | - Cheng Fu
- Jiangxi Baishen Changnuo Pharmaceutical Co., Ltd., Fuzhou, 344000, PR China
| | - Weidong Wu
- Jiangxi Baishen Changnuo Pharmaceutical Co., Ltd., Fuzhou, 344000, PR China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China.
| | - Tiejun Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Key Laboratory of Quality Markers of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300462, PR China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China.
| |
Collapse
|
3
|
Kucera C, Ramalingam A, Srivastava S, Bhatnagar A, Carll AP. Nicotine Formulation Influences the Autonomic and Arrhythmogenic Effects of Electronic Cigarettes. Nicotine Tob Res 2024; 26:536-544. [PMID: 38011908 PMCID: PMC11033561 DOI: 10.1093/ntr/ntad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Evidence is mounting that electronic cigarette (e-cig) use induces cardiac sympathetic dominance and electrical dysfunction conducive to arrhythmias and dependent upon nicotine. A variety of nicotine types and concentrations are available in e-cigs, but their relative cardiovascular effects remain unclear. Here we examine how different nicotine forms (racemic, free base, and salt) and concentrations influence e-cig-evoked cardiac dysfunction and arrhythmogenesis and provide a mechanism for nicotine-salt-induced autonomic imbalance. METHODS ECG-telemetered C57BL/6J mice were exposed to filtered air (FA) or e-cig aerosols from propylene glycol and vegetable glycerin solvents either without nicotine (vehicle) or with increasing nicotine concentrations (1%, 2.5%, and 5%) for three 9-minute puff sessions per concentration. Spontaneous ventricular premature beat (VPB) incidence rates, heart rate, and heart rate variability (HRV) were compared between treatments. Subsequently, to test the role of β1-adrenergic activation in e-cig-induced cardiac effects, mice were pretreated with atenolol and exposed to either FA or 2.5% nicotine salt. RESULTS During puffing and washout phases, ≥2.5% racemic nicotine reduced heart rate and increased HRV relative to FA and vehicle controls, indicating parasympathetic dominance. Relative to both controls, 5% nicotine salt elevated heart rate and decreased HRV during washout, suggesting sympathetic dominance, and also increased VPB frequency. Atenolol abolished e-cig-induced elevations in heart rate and declines in HRV during washout, indicating e-cig-evoked sympathetic dominance is mediated by β1-adrenergic stimulation. CONCLUSIONS Our findings suggest that inhalation of e-cig aerosols from nicotine-salt-containing e-liquids could increase the cardiovascular risks of vaping by inducing sympathetic dominance and cardiac arrhythmias. IMPLICATIONS Exposure to e-cig aerosols containing commercially relevant concentrations of nicotine salts may increase nicotine delivery and impair cardiac function by eliciting β1-adrenoceptor-mediated sympathoexcitation and provoking ventricular arrhythmias. If confirmed in humans, our work suggests that regulatory targeting of nicotine salts through minimum pH standards or limits on acid additives in e-liquids may mitigate the public health risks of vaping.
Collapse
Affiliation(s)
- Cory Kucera
- Department of Physiology, University of Louisville School of Medicine (ULSOM), Louisville, KY, USA
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
| | - Anand Ramalingam
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
| | - Shweta Srivastava
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
- Division of Environmental Medicine, ULSOM, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, ULSOM, Louisville, KY, USA
| | - Alex P Carll
- Department of Physiology, University of Louisville School of Medicine (ULSOM), Louisville, KY, USA
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
- Division of Environmental Medicine, ULSOM, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, ULSOM, Louisville, KY, USA
| |
Collapse
|
4
|
Akinola LS, Gonzales J, Buzzi B, Mathews HL, Papke RL, Stitzel JA, Damaj MI. Investigating the role of nicotinic acetylcholine receptors in menthol's effects in mice. Drug Alcohol Depend 2024; 257:111262. [PMID: 38492255 PMCID: PMC11031278 DOI: 10.1016/j.drugalcdep.2024.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
The use of menthol in tobacco products has been linked to an increased likelihood of developing nicotine dependence. The widespread use of menthol can be attributed to its unique sensory characteristics; however, emerging evidence suggests that menthol also alters sensitivity to nicotine through modulation of nicotinic acetylcholine receptors (nAChRs). Nicotinic subunits, such as β2 and α5, are of interest due to their implications in nicotine reward, reinforcement, intake regulation, and aversion. This study, therefore, examined the in vivo relevance of β2 and α5 nicotinic subunits on the pharmacological and behavioral effects of menthol. Data suggests that the α5 nicotinic subunit modulates menthol intake in mice. Overall, deletion or a reduction in function of the α5 subunit lessened aversion to menthol. α5 KO mice and mice possessing the humanized α5 SNP, a variant that confers a nicotine dependence phenotype in humans, demonstrated increased menthol intake compared to their WT counterparts and in a sex-related fashion for α5 SNP mice. We further reported that the modulatory effects of the α5 subunit do not extend to other aversive tastants like quinine, suggesting that deficits in α5* nAChR signaling may not abolish general sensitivity to the aversive effects of other noxious chemicals. Further probing into the role of α5 in other pharmacological properties of menthol revealed that the α5 subunit does not modulate the antinociceptive properties of menthol in mice and suggests that the in vivo differences observed are likely not due to the direct effects of menthol on α5-containing nAChRs in vitro.
Collapse
Affiliation(s)
- Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jada Gonzales
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Belle Buzzi
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Hunter L Mathews
- Department of Psychology and Neuroscience, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jerry A Stitzel
- Department of Psychology and Neuroscience, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA; Department of Integrative Physiology, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Masuoka T, Kiyoi T, Zheng S, He Q, Liu L, Uwada J, Muramatsu I. Corneal acetylcholine regulates sensory nerve activity via nicotinic receptors. Ocul Surf 2024; 32:60-70. [PMID: 38242319 DOI: 10.1016/j.jtos.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
PURPOSE Sensory nerve terminals are highly distributed in the cornea, and regulate ocular surface sensation and homeostasis in response to various endogenous and exogenous stimuli. However, little is known about mediators regulating the physiological and pathophysiological activities of corneal sensory nerves. The aim of this study was to investigate the presence of cholinergic regulation in sensory nerves in the cornea. METHODS Localization of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (vAChT) was evaluated using western blotting and immunohistochemical analysis. The synthesis and liberation of acetylcholine from the cornea were assessed using corneal segments pre-incubated with [3H]choline. The responsiveness of corneal neurons and nerves to cholinergic drugs was explored using calcium imaging with primary cultures of trigeminal ganglion neurons and extracellular recording from corneal preparations in guinea pigs. RESULTS ChAT, but not vAChT, was highly distributed in the corneal epithelium. In corneal segments, [3H] acetylcholine was synthesized from [3H]choline, and was also released in response to electrical stimuli. In cultured corneal neurons, the population sensitive to a transient receptor potential melastatin 8 (TRPM8) agonist exhibited high probability of responding to nicotine in a calcium imaging experiment. The firing frequency of cold-sensitive corneal nerves was increased by the application of nicotine, but diminished by an α4 nicotinic acetylcholine receptor antagonist. CONCLUSIONS The corneal epithelium can synthesize and release acetylcholine. Corneal acetylcholine can excite sensory nerves via nicotinic receptors containing the α4 subunit. Therefore, corneal acetylcholine may be one of the important regulators of corneal nerve activity arranging ocular surface condition and sensation.
Collapse
Affiliation(s)
- Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan.
| | - Takeshi Kiyoi
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Shijie Zheng
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Qiang He
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Li Liu
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Junsuke Uwada
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Ikunobu Muramatsu
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan; Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Eiheiji, Fukui, 910-1193, Japan
| |
Collapse
|
6
|
Vlachova V, Barvik I, Zimova L. Human Transient Receptor Potential Ankyrin 1 Channel: Structure, Function, and Physiology. Subcell Biochem 2024; 104:207-244. [PMID: 38963489 DOI: 10.1007/978-3-031-58843-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The transient receptor potential ion channel TRPA1 is a Ca2+-permeable nonselective cation channel widely expressed in sensory neurons, but also in many nonneuronal tissues typically possessing barrier functions, such as the skin, joint synoviocytes, cornea, and the respiratory and intestinal tracts. Here, the primary role of TRPA1 is to detect potential danger stimuli that may threaten the tissue homeostasis and the health of the organism. The ability to directly recognize signals of different modalities, including chemical irritants, extreme temperatures, or osmotic changes resides in the characteristic properties of the ion channel protein complex. Recent advances in cryo-electron microscopy have provided an important framework for understanding the molecular basis of TRPA1 function and have suggested novel directions in the search for its pharmacological regulation. This chapter summarizes the current knowledge of human TRPA1 from a structural and functional perspective and discusses the complex allosteric mechanisms of activation and modulation that play important roles under physiological or pathophysiological conditions. In this context, major challenges for future research on TRPA1 are outlined.
Collapse
Affiliation(s)
- Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Ivan Barvik
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
7
|
Lu H, Cao P. Neural Mechanisms Underlying the Coughing Reflex. Neurosci Bull 2023; 39:1823-1839. [PMID: 37606821 PMCID: PMC10661548 DOI: 10.1007/s12264-023-01104-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2023] [Indexed: 08/23/2023] Open
Abstract
Breathing is an intrinsic natural behavior and physiological process that maintains life. The rhythmic exchange of gases regulates the delicate balance of chemical constituents within an organism throughout its lifespan. However, chronic airway diseases, including asthma and chronic obstructive pulmonary disease, affect millions of people worldwide. Pathological airway conditions can disrupt respiration, causing asphyxia, cardiac arrest, and potential death. The innervation of the respiratory tract and the action of the immune system confer robust airway surveillance and protection against environmental irritants and pathogens. However, aberrant activation of the immune system or sensitization of the nervous system can contribute to the development of autoimmune airway disorders. Transient receptor potential ion channels and voltage-gated Na+ channels play critical roles in sensing noxious stimuli within the respiratory tract and interacting with the immune system to generate neurogenic inflammation and airway hypersensitivity. Although recent studies have revealed the involvement of nociceptor neurons in airway diseases, the further neural circuitry underlying airway protection remains elusive. Unraveling the mechanism underpinning neural circuit regulation in the airway may provide precise therapeutic strategies and valuable insights into the management of airway diseases.
Collapse
Affiliation(s)
- Haicheng Lu
- National Institute of Biological Sciences, Beijing, 102206, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| |
Collapse
|
8
|
Mager ML, Ciotu CI, Gold-Binder M, Heber S, Fischer MJM. TRPA1-dependent and -independent activation by commonly used preservatives. Front Pharmacol 2023; 14:1248558. [PMID: 37860113 PMCID: PMC10582264 DOI: 10.3389/fphar.2023.1248558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Background and purpose: Addition of preservatives ensures microbial stability, especially in multidose containers of parenterally administered pharmaceuticals. These compounds can cause side effects, and particularly at the site of application, might elicit or facilitate pain. TRPA1 is a cation channel expressed in peripheral neurons which contributes to pain and inflammation and is sensitive to many irritants. The most commonly used preservatives, in particular with a focus on parenteral formulations, were investigated for their potential to activate TRPA1. Experimental approach: Sixteen preservatives were screened for mediating calcium influx in human TRPA1-transfected HEK293t cells. Untransfected cells served as control, results were further validated in mouse sensory neurons. In addition, proinflammatory mediators serotonin, histamine and prostaglandin E2 were co-administered to probe a potential sensitisation of preservative-induced TRPA1 activation. Key results: Butylparaben, propylparaben, ethylparaben, bronopol, methylparaben, phenylethyl alcohol and phenol induced a TRPA1-dependent calcium influx in transfected HEK293t cells at concentrations used for preservation. Other preservatives increased calcium within the used concentration ranges, but to a similar degree in untransfected controls. Serotonin, histamine, and prostaglandin enhanced TRPA1 activation of phenylethyl alcohol, bronopol, ethylparaben, propylparaben and butylparaben. Conclusion and implications: Systematic screening of common preservatives applied for parenterally administered drugs resulted in identifying several preservatives with substantial TRPA1 channel activation. This activation was enhanced by the addition of proinflammatory meditators. This allows selecting a preservative without TRPA1 activation, particularly in case of pharmaceuticals that could act proinflammatory.
Collapse
Affiliation(s)
| | | | | | | | - Michael J. M. Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Scopelliti F, Dimartino V, Cattani C, Cavani A. Functional TRPA1 Channels Regulate CD56 dimCD16 + NK Cell Cytotoxicity against Tumor Cells. Int J Mol Sci 2023; 24:14736. [PMID: 37834182 PMCID: PMC10572725 DOI: 10.3390/ijms241914736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channels are expressed on the surface of different cell types, including immune cells. However, TRPA1's role in the context of innate and adaptive immune responses has not been fully elucidated so far. In this study, we aimed at investigating the expression and function of TRPA1 channels on NK cells. Among NK cells, TRPA1 was highly expressed by the CD56dimCD16+ subpopulation, but not by CD56brightCD16- cells, as detected by FACS. TRPA1 activation with the potent ligand allyl isothiocyanate (AITC) induces intracellular calcium flux in CD56dimCD16+ cells, which was prevented by the TRPA1 antagonist HC-030031. AITC treatment increased the membrane around NKp44 and strongly decreased CD16 and CD8 expression, while CD158a, CD159a, NKG2d, NKp46 were substantially unaffected. Importantly, AITC increased the granzyme production and CD107 expression and increased NK cell-mediated cytotoxicity towards the K562 cell line and two different melanoma cell lines. In parallel, TRPA1 activation also plays regulatory roles by affecting the survival of NK cells to limit uncontrolled and prolonged NK cell-mediated cytotoxicity. Our results indicate that the activation of TRPA1 is an important regulatory signal for NK cells, and agonists of TRPA1 could be used to strengthen the tumor response of the immune system.
Collapse
Affiliation(s)
- Fernanda Scopelliti
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy (C.C.); (C.A.)
| | - Valentina Dimartino
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy (C.C.); (C.A.)
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy
| | - Caterina Cattani
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy (C.C.); (C.A.)
| | - Andrea Cavani
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy (C.C.); (C.A.)
| |
Collapse
|
10
|
Jesus RLC, Araujo FA, Alves QL, Dourado KC, Silva DF. Targeting temperature-sensitive transient receptor potential channels in hypertension: far beyond the perception of hot and cold. J Hypertens 2023; 41:1351-1370. [PMID: 37334542 DOI: 10.1097/hjh.0000000000003487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Transient receptor potential (TRP) channels are nonselective cation channels and participate in various physiological roles. Thus, changes in TRP channel function or expression have been linked to several disorders. Among the many TRP channel subtypes, the TRP ankyrin type 1 (TRPA1), TRP melastatin type 8 (TRPM8), and TRP vanilloid type 1 (TRPV1) channels are temperature-sensitive and recognized as thermo-TRPs, which are expressed in the primary afferent nerve. Thermal stimuli are converted into neuronal activity. Several studies have described the expression of TRPA1, TRPM8, and TRPV1 in the cardiovascular system, where these channels can modulate physiological and pathological conditions, including hypertension. This review provides a complete understanding of the functional role of the opposing thermo-receptors TRPA1/TRPM8/TRPV1 in hypertension and a more comprehensive appreciation of TRPA1/TRPM8/TRPV1-dependent mechanisms involved in hypertension. These channels varied activation and inactivation have revealed a signaling pathway that may lead to innovative future treatment options for hypertension and correlated vascular diseases.
Collapse
Affiliation(s)
- Rafael Leonne C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Fênix A Araujo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| | - Quiara L Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Keina C Dourado
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Darizy F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| |
Collapse
|
11
|
Potent Activation of Human but Not Mouse TRPA1 by JT010. Int J Mol Sci 2022; 23:ijms232214297. [PMID: 36430781 PMCID: PMC9695908 DOI: 10.3390/ijms232214297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Transient receptor potential (TRP) ankyrin repeat 1 (TRPA1), which is involved in inflammatory pain sensation, is activated by endogenous factors, such as intracellular Zn2+ and hydrogen peroxide, and by irritant chemical compounds. The synthetic compound JT010 potently and selectively activates human TRPA1 (hTRPA1) among the TRPs. Therefore, JT010 is a useful tool for analyzing TRPA1 functions in biological systems. Here, we show that JT010 is a potent activator of hTRPA1, but not mouse TRPA1 (mTRPA1) in human embryonic kidney (HEK) cells expressing hTRPA1 and mTRPA1. Application of 0.3-100 nM of JT010 to HEK cells with hTRPA1 induced large Ca2+ responses. However, in HEK cells with mTRPA1, the response was small. In contrast, both TRPA1s were effectively activated by allyl isothiocyanate (AITC) at 10-100 μM. Similar selective activation of hTRPA1 by JT010 was observed in electrophysiological experiments. Additionally, JT010 activated TRPA1 in human fibroblast-like synoviocytes with inflammation, but not TRPA1 in mouse dorsal root ganglion cells. As cysteine at 621 (C621) of hTRPA1, a critical cysteine for interaction with JT010, is conserved in mTRPA1, we applied JT010 to HEK cells with mutations in mTRPA1, where the different residue of mTRPA1 with tyrosine at 60 (Y60), with histidine at 1023 (H1023), and with asparagine at 1027 (N1027) were substituted with cysteine in hTRPA1. However, these mutants showed low sensitivity to JT010. In contrast, the mutation of hTRPA1 at position 669 from phenylalanine to methionine (F669M), comprising methionine at 670 in mTRPA1 (M670), significantly reduced the response to JT010. Moreover, the double mutant at S669 and M670 of mTRPA1 to S669E and M670F, respectively, induced slight but substantial sensitivity to 30 and 100 nM JT010. Taken together, our findings demonstrate that JT010 potently and selectively activates hTRPA1 but not mTRPA1.
Collapse
|
12
|
Hayes JE, Baker AN. Flavor science in the context of research on electronic cigarettes. Front Neurosci 2022; 16:918082. [PMID: 35968379 PMCID: PMC9365686 DOI: 10.3389/fnins.2022.918082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Thousands start smoking or vaping daily, despite long-standing efforts by public health authorities to curb initiation and use of nicotine containing products. Over the last 15 years, use of electronic nicotine delivery systems has increased dramatically, with a diverse range of products on the market, including pod-based, disposable, and refillable electronic cigarettes (eCigs). Originally intended for harm reduction and smoking cessation, eCigs may encourage nicotine use among never smokers, given the vast range of appealing flavors that are available. To better understand abuse liability and to facilitate appropriate regulations, it is crucial to understand the science of flavor, and flavor perception within the context of eCig use. Here, we (a) provide a brief primer on chemosensory perception and flavor science for addiction and nicotine researchers, and (b) highlight existing some literature regarding flavor and nicotine use, with specific attention given to individual differences in perception, and interaction between different sensory modalities that contribute to flavor. Dramatic increases in use of eCigs highlights the importance of flavor science in contemporary addiction research, both with regards to public health and regulatory efforts. Other recent work summarizes findings on flavored e-liquids and eCig use, but none have focused explicitly on chemosensory processes or flavor perception as they relate to appeal and use of such products. We argue flavor science needs to be considered as perceptual and behavioral phenomena, and not merely from analytical, toxicological and pharmacological perspectives; we help address this gap here.
Collapse
Affiliation(s)
- John E. Hayes
- Sensory Evaluation Center, College of Agricultural Sciences, The Pennsylvania State University, State College, PA, United States
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, State College, PA, United States
- Interdepartmental Neuroscience Program, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States
| | - Allison N. Baker
- Sensory Evaluation Center, College of Agricultural Sciences, The Pennsylvania State University, State College, PA, United States
- Interdepartmental Neuroscience Program, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States
| |
Collapse
|
13
|
Johnson NL, Patten T, Ma M, De Biasi M, Wesson DW. Chemosensory Contributions of E-Cigarette Additives on Nicotine Use. Front Neurosci 2022; 16:893587. [PMID: 35928010 PMCID: PMC9344001 DOI: 10.3389/fnins.2022.893587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
While rates of smoking combustible cigarettes in the United States have trended down in recent years, use of electronic cigarettes (e-cigarettes) has dramatically increased, especially among adolescents. The vast majority of e-cigarette users consume "flavored" products that contain a variety of chemosensory-rich additives, and recent literature suggests that these additives have led to the current "teen vaping epidemic." This review, covering research from both human and rodent models, provides a comprehensive overview of the sensory implications of e-cigarette additives and what is currently known about their impact on nicotine use. In doing so, we specifically address the oronasal sensory contributions of e-cigarette additives. Finally, we summarize the existing gaps in the field and highlight future directions needed to better understand the powerful influence of these additives on nicotine use.
Collapse
Affiliation(s)
- Natalie L. Johnson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Theresa Patten
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mariella De Biasi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel W. Wesson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Xu M, Li C, Yang J, Ye A, Yan L, Yeoh BS, Shi L, Kim YS, Kang J, Vijay-Kumar M, Xiong N. Activation of CD81 + skin ILC2s by cold-sensing TRPM8 + neuron-derived signals maintains cutaneous thermal homeostasis. Sci Immunol 2022; 7:eabe0584. [PMID: 35714201 PMCID: PMC9327500 DOI: 10.1126/sciimmunol.abe0584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As the outermost barrier tissue of the body, the skin harbors a large number of innate lymphoid cells (ILCs) that help maintain local homeostasis in the face of changing environments. How skin-resident ILCs are regulated and function in local homeostatic maintenance is poorly understood. We here report the discovery of a cold-sensing neuron-initiated pathway that activates skin group 2 ILCs (ILC2s) to help maintain thermal homeostasis. In stearoyl-CoA desaturase 1 (SCD1) knockout mice whose skin is defective in heat maintenance, chronic cold stress induced excessive activation of CCR10-CD81+ST2+ skin ILC2s and associated inflammation. Mechanistically, stimulation of the cold-sensing receptor TRPM8 expressed in sensory neurons of the skin led to increased production of IL-18, which, in turn, activated skin ILC2s to promote thermogenesis. Our findings reveal a neuroimmune link that regulates activation of skin ILC2s to support thermal homeostasis and promotes skin inflammation after hyperactivation.
Collapse
Affiliation(s)
- Ming Xu
- Department of Veterinary and Biomedical Sciences, Centre
for Molecular Immunology and Infectious Disease, The Pennsylvania State University,
University Park, PA 16802, USA,Department of Microbiology, Immunology and Molecular
Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
78229, USA
| | - Chao Li
- Department of Microbiology, Immunology and Molecular
Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
78229, USA,Division of Pneumoconiosis, School of Public Health, China
Medical University, Shenyang 110122, China
| | - Jie Yang
- Department of Veterinary and Biomedical Sciences, Centre
for Molecular Immunology and Infectious Disease, The Pennsylvania State University,
University Park, PA 16802, USA
| | - Amy Ye
- Department of Veterinary and Biomedical Sciences, Centre
for Molecular Immunology and Infectious Disease, The Pennsylvania State University,
University Park, PA 16802, USA,Department of Microbiology, Immunology and Molecular
Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
78229, USA
| | - Liping Yan
- Department of Microbiology, Immunology and Molecular
Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
78229, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of
Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Lai Shi
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802, USA
| | - Yu Shin Kim
- Department of Oral & Maxillofacial surgery, University
of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio,
TX 78229
| | - Joonsoo Kang
- Department of Pathology, University of Massachusetts
Medical School, Albert Sherman Center Worcester, MA 01605
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of
Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular
Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
78229, USA,Department of Medicine-Division of Dermatology and
Cutaneous Surgery University of Texas Health Science Center San Antonio, San
Antonio, TX 78229, USA,Correspondence to N.X.
| |
Collapse
|
15
|
Camponogara C, Oliveira SM. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103836. [PMID: 35248760 DOI: 10.1016/j.etap.2022.103836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Burn injuries are underappreciated injuries associated with substantial morbidity and mortality. Overexposure to ultraviolet (UV) radiation has dramatic clinical effects in humans and is a significant public health concern. Although the mechanisms underlying UVB exposure are not fully understood, many studies have made substantial progress in the pathophysiology of sunburn in terms of its molecular aspects in the last few years. It is well established that the transient receptor potential ankyrin 1 (TRPA1), and vanilloid 1 (TRPV1) channels modulate the inflammatory, oxidative, and proliferative processes underlying UVB radiation exposure. However, it is still unknown which mechanisms underlying TRPV1/A1 channel activation are elicited in sunburn induced by UVB radiation. Therefore, in this review, we give an overview of the TRPV1/A1 channel-mediated signalling cascades that may be involved in the pathophysiology of sunburn induced by UVB radiation. These data will undoubtedly help to explain the various features of sunburn and contribute to the development of novel therapeutic approaches to better treat it.
Collapse
Affiliation(s)
- Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
16
|
Nicotine-induced C-shape movements in planarians are reduced by antinociceptive drugs: Implications for pain in planarian paroxysm etiology? Brain Res 2022; 1778:147770. [PMID: 34979130 PMCID: PMC8816893 DOI: 10.1016/j.brainres.2021.147770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/21/2022]
Abstract
C-shapes are stereotyped movements in planarians that are elicited by diverse stimuli (e.g. acidity, excitatory neurotransmitters, psychostimulants, and pro-convulsants). Muscle contraction and seizure contribute to the expression of C-shape movements, but a causative role for pain is understudied and unclear. Here, using nicotine-induced C-shapes as the endpoint, we tested the efficacy of three classes of antinociceptive compounds - an opioid, NSAID (non-steroidal anti-inflammatory drug), and transient receptor potential ankyrin 1 (TRPA1) channel antagonist. For comparison we also tested effects of a neuromuscular blocker. Nicotine (0.1-10 mM) concentration-dependently increased C-shapes. DAMGO (1-10 µM), a selective µ-opioid agonist, inhibited nicotine (5 mM)-induced C-shapes. Naloxone (0.1-10 µM), an opioid receptor antagonist, prevented the DAMGO (1 µM)-induced reduction of nicotine (5 mM)-evoked C-shapes, suggesting an opioid receptor mechanism. C-shapes induced by nicotine (5 mM) were also reduced by meloxicam (10-100 µM), a NSAID; HC 030,031 (1-10 µM), a TRPA1 antagonist; and pancuronium (10-100 µM), a neuromuscular blocker. Evidence that nicotine-induced C-shapes are reduced by antinociceptive drugs from different classes, and require opioid receptor and TRPA1 channel activation, suggest C-shape etiology involves a pain component.
Collapse
|
17
|
Arendt-Nielsen L, Carstens E, Proctor G, Boucher Y, Clavé P, Albin Nielsen K, Nielsen TA, Reeh PW. The Role of TRP Channels in Nicotinic Provoked Pain and Irritation from the Oral Cavity and Throat: Translating Animal Data to Humans. Nicotine Tob Res 2022; 24:1849-1860. [PMID: 35199839 PMCID: PMC9653082 DOI: 10.1093/ntr/ntac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 01/19/2022] [Accepted: 02/22/2022] [Indexed: 01/03/2023]
Abstract
Tobacco smoking-related diseases are estimated to kill more than 8 million people/year and most smokers are willing to stop smoking. The pharmacological approach to aid smoking cessation comprises nicotine replacement therapy (NRT) and inhibitors of the nicotinic acetylcholine receptor, which is activated by nicotine. Common side effects of oral NRT products include hiccoughs, gastrointestinal disturbances and, most notably, irritation, burning and pain in the mouth and throat, which are the most common reasons for premature discontinuation of NRT and termination of cessation efforts. Attempts to reduce the unwanted sensory side effects are warranted, and research discovering the most optimal masking procedures is urgently needed. This requires a firm mechanistic understanding of the neurobiology behind the activation of sensory nerves and their receptors by nicotine. The sensory nerves in the oral cavity and throat express the so-called transient receptor potential (TRP) channels, which are responsible for mediating the nicotine-evoked irritation, burning and pain sensations. Targeting the TRP channels is one way to modulate the unwanted sensory side effects. A variety of natural (Generally Recognized As Safe [GRAS]) compounds interact with the TRP channels, thus making them interesting candidates as safe additives to oral NRT products. The present narrative review will discuss (1) current evidence on how nicotine contributes to irritation, burning and pain in the oral cavity and throat, and (2) options to modulate these unwanted side-effects with the purpose of increasing adherence to NRT. Nicotine provokes irritation, burning and pain in the oral cavity and throat. Managing these side effects will ensure better compliance to oral NRT products and hence increase the success of smoking cessation. A specific class of sensory receptors (TRP channels) are involved in mediating nicotine's sensory side effects, making them to potential treatment targets. Many natural (Generally Recognized As Safe [GRAS]) compounds are potentially beneficial modulators of TRP channels.
Collapse
Affiliation(s)
- Lars Arendt-Nielsen
- Corresponding Author: Lars Arendt-Nielsen PhD, Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark. Telephone: +45 99408831; E-mail:
| | - Earl Carstens
- Neurobiology, Physiology and Behavior, University of California, Davis
| | - Gordon Proctor
- Centre for Host-Microbiome Interactions, Professor of Salivary Biology, King´s CollegeLondon, UK
| | - Yves Boucher
- Laboratory of Orofacial Neurobiology, Paris Diderot University, Paris, France
| | - Pere Clavé
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Hospital de Mataró, Universitat Autònoma de Barcelona, Mataró, Barcelona, Spain
| | | | - Thomas A Nielsen
- Mech-Sense & Centre for Pancreatic Diseases, Department of Gastroenterology & Hepatology, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | - Peter W Reeh
- Institute Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Carstens E, Carstens MI. Sensory Effects of Nicotine and Tobacco. Nicotine Tob Res 2022; 24:306-315. [PMID: 33955474 PMCID: PMC8842437 DOI: 10.1093/ntr/ntab086] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/28/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Ingestion of nicotine by smoking, vaping, or other means elicits various effects including reward, antinociception, and aversion due to irritation, bitter taste, and unpleasant side effects such as nausea and dizziness. AIMS AND METHODS Here we review the sensory effects of nicotine and the underlying neurobiological processes. RESULTS AND CONCLUSIONS Nicotine elicits oral irritation and pain via the activation of neuronal nicotinic acetylcholine receptors (nAChRs) expressed by trigeminal nociceptors. These nociceptors excite neurons in the trigeminal subnucleus caudalis (Vc) and other brainstem regions in a manner that is significantly reduced by the nAChR antagonist mecamylamine. Vc neurons are excited by lingual application of nicotine and exhibit a progressive decline in firing to subsequent applications, consistent with desensitization of peripheral sensory neurons and progressively declining ratings of oral irritation in human psychophysical experiments. Nicotine also elicits a nAChR-mediated bitter taste via excitation of gustatory afferents. Nicotine solutions are avoided even when sweeteners are added. Studies employing oral self-administration have yielded mixed results: Some studies show avoidance of nicotine while others report increased nicotine intake over time, particularly in adolescents and females. Nicotine is consistently reported to increase human pain threshold and tolerance levels. In animal studies, nicotine is antinociceptive when delivered by inhalation of tobacco smoke or systemic infusion, intrathecally, and by intracranial microinjection in the pedunculopontine tegmentum, ventrolateral periaqueductal gray, and rostral ventromedial medulla. The antinociception is thought to be mediated by descending inhibition of spinal nociceptive transmission. Menthol cross-desensitizes nicotine-evoked oral irritation, reducing harshness that may account for its popularity as a flavor additive to tobacco products. IMPLICATIONS Nicotine activates brain systems underlying reward and antinociception, but at the same time elicits aversive sensory effects including oral irritation and pain, bitter taste, and other unpleasant side effects mediated largely by nicotinic acetylcholine receptors (nAChRs). This review discusses the competing aversive and antinociceptive effects of nicotine and exposure to tobacco smoke, and the underlying neurobiology. An improved understanding of the interacting effects of nicotine will hopefully inform novel approaches to mitigate nicotine and tobacco use.
Collapse
Affiliation(s)
- Earl Carstens
- Department of Neurobiology, Physiology and Behavior University of California, Davis, CA, USA
| | - M Iodi Carstens
- Department of Neurobiology, Physiology and Behavior University of California, Davis, CA, USA
| |
Collapse
|
19
|
Romanova J, Rydlovskaya A, Mochalov S, Proskurina O, Gorokh Y, Nebolsin V. The Effect of Anti-Chemokine Oral Drug XC8 on Cough Triggered by The Agonists of TRPA1 But Not TRPV1 Channels in Guinea Pigs. Pulm Ther 2022; 8:105-122. [PMID: 35133638 PMCID: PMC8824739 DOI: 10.1007/s41030-022-00183-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/14/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Chronic cough heavily affects patients’ quality of life, and there are no effective licensed therapies available. Cough is a complication of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection, asthma, and other diseases. Patients with various diseases have a different profile of tussive responses to diverse cough triggers, thereby suggesting sundry mechanisms of neuronal dysfunctions. Previously, we demonstrated that the small molecule drug XC8 shows a clinical anti-asthmatic effect. The objective of the present study was to investigate the effect of XC8 on cough. Methods We studied the antitussive effect of XC8 on cough induced by agonists activating human transient receptor potential (TRP) cation channels TRPA1 or TRPV1 in guinea pigs. We checked the agonistic/antagonistic activity of XC8 on the human cation channels TRPA1, TRPV1, TRPM8, P2X purinoceptor 2 (P2X2), and human acid sensing ion channel 3 (hASIC3) in Fluorescent Imaging Plate Reader (FLIPR) assay. Results XC8 demonstrated clear antitussive activity and dose-dependently inhibited cough in guinea pigs induced by citric acid alone (up to 67.1%) or in combination with IFN-γ (up to 76.4%). XC8 suppressed cough reflexes induced by the repeated inhalation of citric acid (up to 80%) or by cinnamaldehyde (up to 60%). No activity of XC8 against cough evoked by capsaicin was revealed. No direct agonistic/antagonistic activity of XC8 on human TRPA1, TRPV1, TRPM8, P2X2, or hASIC3 was detected. Conclusions XC8 acts against cough evoked by the activation of TRPA1 (citric acid/cinnamaldehyde) but not TRPV1 (capsaicin) channels. XC8 inhibits the cough reflex and suppresses the cough potentiation by IFN-γ. XC8 might be of significant therapeutic value for patients suffering from chronic cough associated with inflammation.
Collapse
Affiliation(s)
- Julia Romanova
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation.
| | - Anastasia Rydlovskaya
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Stepan Mochalov
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Oxana Proskurina
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Yulia Gorokh
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Vladimir Nebolsin
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| |
Collapse
|
20
|
Mori Y, Aoki A, Okamoto Y, Isobe T, Ohkawara S, Hanioka N, Tanaka-Kagawa T, Jinno H. Species-specific activation of transient receptor potential ankyrin 1 by phthalic acid monoesters. Biol Pharm Bull 2022; 45:1839-1846. [DOI: 10.1248/bpb.b22-00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoko Mori
- Faculty of Pharmacy, Meijo University
| | | | | | - Takashi Isobe
- Faculty of Pharmacy, Yokohama University of Pharmacy
| | | | | | | | | |
Collapse
|
21
|
Mahajan N, Khare P, Kondepudi KK, Bishnoi M. TRPA1: Pharmacology, natural activators and role in obesity prevention. Eur J Pharmacol 2021; 912:174553. [PMID: 34627805 DOI: 10.1016/j.ejphar.2021.174553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channel is a calcium permeable, non-selective cation channel, expressed in the sensory neurons and non-neuronal cells of different tissues. Initially studied for its role in pain and inflammation, TRPA1 has now functionally involved in multiple other physiological functions. TRPA1 channel has been extensively studied for modulation by pungent compounds present in the spices and herbs. In the last decade, the role of TRPA1 agonism in body weight reduction, secretion of hunger and satiety hormones, insulin secretion and thermogenesis, has unveiled the potential of the TRPA1 channel to be used as a preventive target to tackle obesity and associated comorbidities including insulin resistance in type 2 diabetes. In this review, we summarized the recent findings of TRPA1 based dietary/non-dietary modulation for its role in obesity prevention and therapeutics.
Collapse
Affiliation(s)
- Neha Mahajan
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Pragyanshu Khare
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India
| | - Mahendra Bishnoi
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
22
|
Mini-review: The nociceptive sensory functions of the polymodal receptor Transient Receptor Potential Ankyrin Type 1 (TRPA1). Neurosci Lett 2021; 764:136286. [PMID: 34624396 DOI: 10.1016/j.neulet.2021.136286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/23/2023]
Abstract
Over the last 17 years since its cloning in 2003, the receptor-channel TRPA1 has received increasing attention due to its polymodal features and prominent role in pain signaling in a variety of human disease states. While evidence has been accumulating for non-neuronal TRPA1 expression, it is the presence of this channel in nociceptive nerve endings which has taken centre stage, due to its potential clinical ramifications. As a consequence, we shall focus in this review on the sensory functions of TRPA1 related to its expression in the peripheral nervous system. While substantial research has been focused on the putative role of TRPA1 in detecting irritant compounds, noxious cold and mechanical stimuli, the current overall picture is, to some extent, still cloudy. The chemosensory function of the channel is well demonstrated, as well as its involvement in the detection of oxidative and nitrosative stress; however, the other sensory features of TRPA1 have not been fully elucidated yet. The current state of the experimental evidence for these physiological roles of TRPA1 in mammals, and particularly in humans, will be discussed in this review.
Collapse
|
23
|
Naert R, López-Requena A, Talavera K. TRPA1 Expression and Pathophysiology in Immune Cells. Int J Mol Sci 2021; 22:ijms222111460. [PMID: 34768891 PMCID: PMC8583806 DOI: 10.3390/ijms222111460] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
The non-selective cation channel TRPA1 is best known as a broadly-tuned sensor expressed in nociceptive neurons, where it plays key functions in chemo-, thermo-, and mechano-sensing. However, in this review we illustrate how this channel is expressed also in cells of the immune system. TRPA1 has been detected, mainly with biochemical techniques, in eosinophils, mast cells, macrophages, dendritic cells, T cells, and B cells, but not in neutrophils. Functional measurements, in contrast, remain very scarce. No studies have been reported in basophils and NK cells. TRPA1 in immune cells has been linked to arthritis (neutrophils), anaphylaxis and atopic dermatitis (mast cells), atherosclerosis, renal injury, cardiac hypertrophy and inflammatory bowel disease (macrophages), and colitis (T cells). The contribution of TRPA1 to immunity is dual: as detector of cell stress, tissue injury, and exogenous noxious stimuli it leads to defensive responses, but in conditions of aberrant regulation it contributes to the exacerbation of inflammatory conditions. Future studies should aim at characterizing the functional properties of TRPA1 in immune cells, an essential step in understanding its roles in inflammation and its potential as therapeutic target.
Collapse
Affiliation(s)
- Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; (R.N.); (A.L.-R.)
| | - Alejandro López-Requena
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; (R.N.); (A.L.-R.)
- Ablynx, Technologiepark 21, 9052 Zwijnaarde, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; (R.N.); (A.L.-R.)
- Correspondence: ; Tel.: +32-16-330469
| |
Collapse
|
24
|
Boonen B, Startek JB, Milici A, López-Requena A, Beelen M, Callaerts P, Talavera K. Activation of Drosophila melanogaster TRPA1 Isoforms by Citronellal and Menthol. Int J Mol Sci 2021; 22:ijms222010997. [PMID: 34681657 PMCID: PMC8541009 DOI: 10.3390/ijms222010997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The transient receptor potential ankyrin 1 (TRPA1) cation channels function as broadly-tuned sensors of noxious chemicals in many species. Recent studies identified four functional TRPA1 isoforms in Drosophila melanogaster (dTRPA1(A) to (D)), but their responses to non-electrophilic chemicals are yet to be fully characterized. METHODS We determined the behavioral responses of adult flies to the mammalian TRPA1 non-electrophilic activators citronellal and menthol, and characterized the effects of these compounds on all four dTRPA1 channel isoforms using intracellular Ca2+ imaging and whole-cell patch-clamp recordings. RESULTS Wild type flies avoided citronellal and menthol in an olfactory test and this behavior was reduced in dTrpA1 mutant flies. Both compounds activate all dTRPA1 isoforms in the heterologous expression system HEK293T, with the following sensitivity series: dTRPA1(C) = dTRPA1(D) > dTRPA1(A) ≫ dTRPA1(B) for citronellal and dTRPA1(A) > dTRPA1(D) > dTRPA1(C) > dTRPA1(B) for menthol. CONCLUSIONS dTrpA1 was required for the normal avoidance of Drosophila melanogaster towards citronellal and menthol. All dTRPA1 isoforms are activated by both compounds, but the dTRPA1(B) is consistently the least sensitive. We discuss how these findings may guide further studies on the physiological roles and the structural bases of chemical sensitivity of TRPA1 channels.
Collapse
Affiliation(s)
- Brett Boonen
- Leuven Center for Brain & Disease Research, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB-KU 3000 Leuven, Belgium; (B.B.); (J.B.S.); (A.M.); (A.L.-R.)
| | - Justyna B. Startek
- Leuven Center for Brain & Disease Research, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB-KU 3000 Leuven, Belgium; (B.B.); (J.B.S.); (A.M.); (A.L.-R.)
| | - Alina Milici
- Leuven Center for Brain & Disease Research, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB-KU 3000 Leuven, Belgium; (B.B.); (J.B.S.); (A.M.); (A.L.-R.)
| | - Alejandro López-Requena
- Leuven Center for Brain & Disease Research, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB-KU 3000 Leuven, Belgium; (B.B.); (J.B.S.); (A.M.); (A.L.-R.)
| | - Melissa Beelen
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (M.B.); (P.C.)
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (M.B.); (P.C.)
| | - Karel Talavera
- Leuven Center for Brain & Disease Research, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB-KU 3000 Leuven, Belgium; (B.B.); (J.B.S.); (A.M.); (A.L.-R.)
- Correspondence: ; Tel.: +32-16-330-469
| |
Collapse
|
25
|
Jin L, Lorkiewicz P, Xie Z, Bhatnagar A, Srivastava S, Conklin DJ. Acrolein but not its metabolite, 3-Hydroxypropylmercapturic acid (3HPMA), activates vascular transient receptor potential Ankyrin-1 (TRPA1): Physiological to toxicological implications. Toxicol Appl Pharmacol 2021; 426:115647. [PMID: 34271065 PMCID: PMC8343963 DOI: 10.1016/j.taap.2021.115647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022]
Abstract
Acrolein, an electrophilic α,β-unsaturated aldehyde, is present in foods and beverages, and is a product of incomplete combustion, and thus, reaches high ppm levels in tobacco smoke and structural fires. Exposure to acrolein is linked with cardiopulmonary toxicity and cardiovascular disease risk. The hypothesis of this study is the direct effects of acrolein in isolated murine blood vessels (aorta and superior mesenteric artery, SMA) are transient receptor potential ankyrin-1 (TRPA1) dependent. Using isometric myography, isolated aorta and SMA were exposed to increasing levels of acrolein. Acrolein inhibited phenylephrine (PE)-induced contractions (approximately 90%) in aorta and SMA of male and female mice in a concentration-dependent (0.01-100 μM) manner. The major metabolite of acrolein, 3-hydroxypropylmercapturic acid (3HPMA), also relaxed PE-precontracted SMA. As the SMA was 20× more sensitive to acrolein than aorta (SMA EC50 0.8 ± 0.2 μM; aorta EC50 > 29.4 ± 4.4 μM), the mechanisms of acrolein-induced relaxation were studied in SMA. The potency of acrolein-induced relaxation was inhibited significantly by: 1) mechanically-impaired endothelium; 2) Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME); 3) guanylyl cyclase (GC) inhibitor (ODQ); and, 4) a TRPA1 antagonist (A967079). TRPA1 positive immunofluorescence was present in the endothelium. Compared with other known TRPA1 agonists, including allyl isothiocyanate (AITC), cinnamaldehyde, crotonaldehyde, and formaldehyde, acrolein stimulated a more potent TRPA1-dependent relaxation. Acrolein, at high concentration [100 μM], induced tension oscillations (spasms) independent of TRPA1 in precontracted SMA but not in aorta. In conclusion, acrolein is vasorelaxant at low levels (physiological) yet vasotoxic at high levels (toxicological).
Collapse
Affiliation(s)
- L Jin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY, USA
| | - P Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY, USA
| | - Z Xie
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - A Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY, USA; Superfund Research Center, University of Louisville, Louisville, KY, USA
| | - S Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY, USA; Superfund Research Center, University of Louisville, Louisville, KY, USA
| | - D J Conklin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY, USA; Superfund Research Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
26
|
Cooper SY, Akers AT, Journigan VB, Henderson BJ. Novel Putative Positive Modulators of α4β2 nAChRs Potentiate Nicotine Reward-Related Behavior. Molecules 2021; 26:4793. [PMID: 34443380 PMCID: PMC8398432 DOI: 10.3390/molecules26164793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
The popular tobacco and e-cigarette chemical flavorant (-)-menthol acts as a nonselective, noncompetitive antagonist of nicotinic acetylcholine receptors (nAChRs), and contributes to multiple physiological effects that exacerbates nicotine addiction-related behavior. Menthol is classically known as a TRPM8 agonist; therefore, some have postulated that TRPM8 antagonists may be potential candidates for novel nicotine cessation pharmacotherapies. Here, we examine a novel class of TRPM8 antagonists for their ability to alter nicotine reward-related behavior in a mouse model of conditioned place preference. We found that these novel ligands enhanced nicotine reward-related behavior in a mouse model of conditioned place preference. To gain an understanding of the potential mechanism, we examined these ligands on mouse α4β2 nAChRs transiently transfected into neuroblastoma-2a cells. Using calcium flux assays, we determined that these ligands act as positive modulators (PMs) on α4β2 nAChRs. Due to α4β2 nAChRs' important role in nicotine dependence, as well as various neurological disorders including Parkinson's disease, the identification of these ligands as α4β2 nAChR PMs is an important finding, and they may serve as novel molecular tools for future nAChR-related investigations.
Collapse
Affiliation(s)
- Skylar Y. Cooper
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
| | - Austin T. Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
| | - Velvet Blair Journigan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, WV 25701, USA
| | - Brandon J. Henderson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
| |
Collapse
|
27
|
Maggi F, Morelli MB, Nabissi M, Marinelli O, Zeppa L, Aguzzi C, Santoni G, Amantini C. Transient Receptor Potential (TRP) Channels in Haematological Malignancies: An Update. Biomolecules 2021; 11:biom11050765. [PMID: 34065398 PMCID: PMC8160608 DOI: 10.3390/biom11050765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential (TRP) channels are improving their importance in different cancers, becoming suitable as promising candidates for precision medicine. Their important contribution in calcium trafficking inside and outside cells is coming to light from many papers published so far. Encouraging results on the correlation between TRP and overall survival (OS) and progression-free survival (PFS) in cancer patients are available, and there are as many promising data from in vitro studies. For what concerns haematological malignancy, the role of TRPs is still not elucidated, and data regarding TRP channel expression have demonstrated great variability throughout blood cancer so far. Thus, the aim of this review is to highlight the most recent findings on TRP channels in leukaemia and lymphoma, demonstrating their important contribution in the perspective of personalised therapies.
Collapse
Affiliation(s)
- Federica Maggi
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy;
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Maria Beatrice Morelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Massimo Nabissi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Oliviero Marinelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Laura Zeppa
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Cristina Aguzzi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Giorgio Santoni
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Consuelo Amantini
- Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Correspondence: ; Tel.: +30-0737403312
| |
Collapse
|
28
|
Sinica V, Vlachová V. Transient receptor potential ankyrin 1 channel: An evolutionarily tuned thermosensor. Physiol Res 2021; 70:363-381. [PMID: 33982589 DOI: 10.33549/physiolres.934697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The discovery of the role of the transient receptor potential ankyrin 1 (TRPA1) channel as a polymodal detector of cold and pain-producing stimuli almost two decades ago catalyzed the consequent identification of various vertebrate and invertebrate orthologues. In different species, the role of TRPA1 has been implicated in numerous physiological functions, indicating that the molecular structure of the channel exhibits evolutionary flexibility. Until very recently, information about the critical elements of the temperature-sensing molecular machinery of thermosensitive ion channels such as TRPA1 had lagged far behind information obtained from mutational and functional analysis. Current developments in single-particle cryo-electron microscopy are revealing precisely how the thermosensitive channels operate, how they might be targeted with drugs, and at which sites they can be critically regulated by membrane lipids. This means that it is now possible to resolve a huge number of very important pharmacological, biophysical and physiological questions in a way we have never had before. In this review, we aim at providing some of the recent knowledge on the molecular mechanisms underlying the temperature sensitivity of TRPA1. We also demonstrate how the search for differences in temperature and chemical sensitivity between human and mouse TRPA1 orthologues can be a useful approach to identifying important domains with a key role in channel activation.
Collapse
Affiliation(s)
- V Sinica
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic. or
| | | |
Collapse
|
29
|
Lin J, Taggart M, Borthwick L, Fisher A, Brodlie M, Sassano MF, Tarran R, Gray MA. Acute cigarette smoke or extract exposure rapidly activates TRPA1-mediated calcium influx in primary human airway smooth muscle cells. Sci Rep 2021; 11:9643. [PMID: 33953304 PMCID: PMC8100124 DOI: 10.1038/s41598-021-89051-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
Tobacco smoking is the largest risk factor for developing chronic obstructive pulmonary disease (COPD), and is associated with hyperresponsiveness of airway smooth muscle (ASM). Chronic exposure to cigarette smoke (CS) leads to airway inflammation and remodelling. However, the direct effect of gaseous CS or CS extract (CSE) on human airway smooth muscle cell (hASMC) function remains poorly understood. This study investigated the acute effect of CS/CSE on calcium homeostasis, a key regulator of ASM physiology and pathophysiology. Primary hASMC were isolated from non-smoking donor lungs, and subjected to Ca2+ imaging studies. We found that both CS, and CSE, rapidly elevated cytosolic Ca2+ in hASMC through stimulation of plasmalemmal Ca2+ influx, but excluded store-operated and L-type Ca2+ channels as mediators of this effect. Using a specific pharmacological inhibitor, or shRNA-driven knockdown, we established that both CS and CSE stimulated Ca2+ influx in hASMC through the neurogenic pain receptor channel, transient receptor potential ankyrin 1 (TRPA1). CS/CSE-dependent, TRPA1-mediated Ca2+ influx led to myosin light-chain phosphorylation, a key process regulating ASM contractility. We conclude that TRPA1 is likely an important link between CS/CSE exposure and airway hyperresponsiveness, and speculate that acute CS/CSE-induced Ca2+ influx could lead to exacerbated ASM contraction and potentially initiate further chronic pathological effects of tobacco smoke.
Collapse
Affiliation(s)
- JinHeng Lin
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Michael Taggart
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Lee Borthwick
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Andrew Fisher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Malcolm Brodlie
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
- Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, Tyne and Wear, UK
| | - M Flori Sassano
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael A Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK.
| |
Collapse
|
30
|
Startek JB, Milici A, Naert R, Segal A, Alpizar YA, Voets T, Talavera K. The Agonist Action of Alkylphenols on TRPA1 Relates to Their Effects on Membrane Lipid Order: Implications for TRPA1-Mediated Chemosensation. Int J Mol Sci 2021; 22:ijms22073368. [PMID: 33806007 PMCID: PMC8037438 DOI: 10.3390/ijms22073368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The Transient Receptor Potential Ankyrin 1 cation channel (TRPA1) is a broadly-tuned chemosensor expressed in nociceptive neurons. Multiple TRPA1 agonists are chemically unrelated non-electrophilic compounds, for which the mechanisms of channel activation remain unknown. Here, we assess the hypothesis that such chemicals activate TRPA1 by inducing mechanical perturbations in the plasma membrane. We characterized the activation of mouse TRPA1 by non-electrophilic alkylphenols (APs) of different carbon chain lengths in the para position of the aromatic ring. Having discarded oxidative stress and the action of electrophilic mediators as activation mechanisms, we determined whether APs induce mechanical perturbations in the plasma membrane using dyes whose fluorescence properties change upon alteration of the lipid environment. APs activated TRPA1, with potency increasing with their lipophilicity. APs increased the generalized polarization of Laurdan fluorescence and the anisotropy of the fluorescence of 1,6-diphenyl-1,3,5-hexatriene (DPH), also according to their lipophilicity. Thus, the potency of APs for TRPA1 activation is an increasing function of their ability to induce lipid order and membrane rigidity. These results support the hypothesis that TRPA1 senses non-electrophilic compounds by detecting the mechanical alterations they produce in the plasma membrane. This may explain how structurally unrelated non-reactive compounds induce TRPA1 activation and support the role of TRPA1 as an unspecific sensor of potentially noxious compounds.
Collapse
Affiliation(s)
- Justyna B. Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Alina Milici
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Yeranddy A. Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-330469
| |
Collapse
|
31
|
Gu Q, Lee LY. TRP channels in airway sensory nerves. Neurosci Lett 2021; 748:135719. [PMID: 33587987 PMCID: PMC7988689 DOI: 10.1016/j.neulet.2021.135719] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Transient Receptor Potential (TRP) channels expressed in specific subsets of airway sensory nerves function as transducers and integrators of a diverse range of sensory inputs including chemical, mechanical and thermal signals. These TRP sensors can detect inhaled irritants as well as endogenously released chemical substances. They play an important role in generating the afferent activity carried by these sensory nerves and regulating the centrally mediated pulmonary defense reflexes. Increasing evidence reported in recent investigations has revealed important involvements of several TRP channels (TRPA1, TRPV1, TRPV4 and TRPM8) in the manifestation of various symptoms and pathogenesis of certain acute and chronic airway diseases. This mini-review focuses primarily on these recent findings of the responses of these TRP sensors to the biological stresses emerging under the pathophysiological conditions of the lung and airways.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA.
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY, 40536-0298, USA.
| |
Collapse
|
32
|
Aloum L, Alefishat E, Shaya J, Petroianu GA. Remedia Sternutatoria over the Centuries: TRP Mediation. Molecules 2021; 26:1627. [PMID: 33804078 PMCID: PMC7998681 DOI: 10.3390/molecules26061627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants.
Collapse
Affiliation(s)
- Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan
| | - Janah Shaya
- Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
| | - Georg A. Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| |
Collapse
|
33
|
Bousquet J, Czarlewski W, Zuberbier T, Mullol J, Blain H, Cristol JP, De La Torre R, Pizarro Lozano N, Le Moing V, Bedbrook A, Agache I, Akdis CA, Canonica GW, Cruz AA, Fiocchi A, Fonseca JA, Fonseca S, Gemicioğlu B, Haahtela T, Iaccarino G, Ivancevich JC, Jutel M, Klimek L, Kraxner H, Kuna P, Larenas-Linnemann DE, Martineau A, Melén E, Okamoto Y, Papadopoulos NG, Pfaar O, Regateiro FS, Reynes J, Rolland Y, Rouadi PW, Samolinski B, Sheikh A, Toppila-Salmi S, Valiulis A, Choi HJ, Kim HJ, Anto JM. Potential Interplay between Nrf2, TRPA1, and TRPV1 in Nutrients for the Control of COVID-19. Int Arch Allergy Immunol 2021; 182:324-338. [PMID: 33567446 PMCID: PMC8018185 DOI: 10.1159/000514204] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
In this article, we propose that differences in COVID-19 morbidity may be associated with transient receptor potential ankyrin 1 (TRPA1) and/or transient receptor potential vanilloid 1 (TRPV1) activation as well as desensitization. TRPA1 and TRPV1 induce inflammation and play a key role in the physiology of almost all organs. They may augment sensory or vagal nerve discharges to evoke pain and several symptoms of COVID-19, including cough, nasal obstruction, vomiting, diarrhea, and, at least partly, sudden and severe loss of smell and taste. TRPA1 can be activated by reactive oxygen species and may therefore be up-regulated in COVID-19. TRPA1 and TRPV1 channels can be activated by pungent compounds including many nuclear factor (erythroid-derived 2) (Nrf2)-interacting foods leading to channel desensitization. Interactions between Nrf2-associated nutrients and TRPA1/TRPV1 may be partly responsible for the severity of some of the COVID-19 symptoms. The regulation by Nrf2 of TRPA1/TRPV1 is still unclear, but suggested from very limited clinical evidence. In COVID-19, it is proposed that rapid desensitization of TRAP1/TRPV1 by some ingredients in foods could reduce symptom severity and provide new therapeutic strategies.
Collapse
Affiliation(s)
- Jean Bousquet
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Charité, and Berlin Institute of Health, Comprehensive Allergy Center, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany, .,University Hospital and MACVIA France, Montpellier, France,
| | | | - Torsten Zuberbier
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Charité, and Berlin Institute of Health, Comprehensive Allergy Center, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joaquim Mullol
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic - Clinical & Experimental Respiratory Immunoallergy, IDIBAPS, CIBERES, Universitat de Barcelona, Barcelona, Spain
| | - Hubert Blain
- Department of Geriatrics, Montpellier University Hospital, Montpellier, France
| | - Jean-Paul Cristol
- Laboratoire de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de, Montpellier, France
| | - Rafael De La Torre
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.,IMIM (Hospital del Mar Research Institute), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut Toxicologia, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | | | - Anna Bedbrook
- University Hospital and MACVIA France, Montpellier, France.,MASK-air, Montpellier, France
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - G Walter Canonica
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS and Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Alvaro A Cruz
- Fundação ProAR, Federal University of Bahia and GARD/WHO Planning Group, Salvador, Brazil
| | - Alessandro Fiocchi
- Division of Allergy, The Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Joao A Fonseca
- CINTESIS, Center for Research in Health Technologies and Information Systems, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,MEDIDA, Lda, Porto, Portugal
| | - Susana Fonseca
- GreenUPorto - Sustainable Agrifood Production Research Centre, DGAOT, Faculty of Sciences, University of Porto, Vila do Conde, Portugal
| | - Bilun Gemicioğlu
- Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Guido Iaccarino
- Interdepartmental Center of Research on Hypertension and Related Conditions CIRIAPA, Federico II University, Napoli, Italy
| | | | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University and ALL-MED Medical Research Institute, Wrocław, Poland
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Helga Kraxner
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Piotr Kuna
- Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
| | - Désirée E Larenas-Linnemann
- Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, Mexico City, Mexico
| | - Adrian Martineau
- Institute for Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet and Sachs' Children's Hospital, Stockholm, Sweden
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Chiba University Hospital, Chiba, Japan
| | - Nikolaos G Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine, Royal Manchester Children's Hospital, University of Manchester, Manchester, United Kingdom.,Allergy Department, 2nd Pediatric Clinic, Athens General Children's Hospital "P&A Kyriakou," University of Athens, Athens, Greece
| | - Oliver Pfaar
- Section of Rhinology and Allergy, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Frederico S Regateiro
- Allergy and Clinical Immunology Unit, Centro Hospitalar e Universitário de Coimbra, Faculty of Medicine, Institute of Immunology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, ICBR - Institute for Clinical and Biomedical Research, CIBB, University of Coimbra, Coimbra, Portugal
| | - Jacques Reynes
- Maladies Infectieuses et Tropicales, CHU, Montpellier, France
| | | | - Philip W Rouadi
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Boleslaw Samolinski
- Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Warsaw, Poland
| | - Aziz Sheikh
- Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sanna Toppila-Salmi
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Arunas Valiulis
- Vilnius University Faculty of Medicine, Institute of Clinical Medicine & Institute of Health Sciences, Vilnius, Lithuania
| | - Hak-Jong Choi
- Research and Development Division, Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hyun Ju Kim
- Strategy and Planning Division, SME Service Department, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Josep M Anto
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut Toxicologia, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,ISGlobAL, Barcelona, Centre for Research in Environmental Epidemiology, Barcelona, Spain
| |
Collapse
|
34
|
Optical Assessment of Nociceptive TRP Channel Function at the Peripheral Nerve Terminal. Int J Mol Sci 2021; 22:ijms22020481. [PMID: 33418928 PMCID: PMC7825137 DOI: 10.3390/ijms22020481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/13/2022] Open
Abstract
Free nerve endings are key structures in sensory transduction of noxious stimuli. In spite of this, little is known about their functional organization. Transient receptor potential (TRP) channels have emerged as key molecular identities in the sensory transduction of pain-producing stimuli, yet the vast majority of our knowledge about sensory TRP channel function is limited to data obtained from in vitro models which do not necessarily reflect physiological conditions. In recent years, the development of novel optical methods such as genetically encoded calcium indicators and photo-modulation of ion channel activity by pharmacological tools has provided an invaluable opportunity to directly assess nociceptive TRP channel function at the nerve terminal.
Collapse
|
35
|
Bagdas D, Jackson A, Carper M, Chen RYT, Akinola LS, Damaj MI. Impact of menthol on nicotine intake and preference in mice: Concentration, sex, and age differences. Neuropharmacology 2020; 179:108274. [PMID: 32827516 PMCID: PMC7572603 DOI: 10.1016/j.neuropharm.2020.108274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
Menthol has been shown to contribute to the appeal of tobacco products in humans. However, factors such as sex, age and menthol concentration remain unclear in the interaction between menthol and nicotine. To understand these factors, we utilized a mouse model to determine the impact of menthol on oral nicotine consumption. A range of menthol concentrations (oral and systemic) were tested with or without oral nicotine using the two-bottle choice paradigm in adolescent and adult female and male C57BL/6J mice. Moreover, genetically modified mice were used to investigate the role of α7 nicotinic acetylcholine receptors (nAChRs) on the effects of menthol. Menthol addition to nicotine solution increased oral nicotine consumption in C57BL/6J mice in a sex- and menthol concentration-dependent manner. At lower menthol concentrations, female mice demonstrated an enhancement of nicotine consumption and male mice showed a similar behavior at higher menthol concentrations. Menthol drinking alone was only significantly different by sex at 60 μg/ml menthol concentration where female mice had higher menthol intake than males. Menthol administered both orally and systemically (intraperitoneal) increased oral nicotine consumption. Adolescent female mice had a higher nicotine intake at lower menthol concentrations compared to their adult counterparts. While α7 nAChR wild type mice consumed more mentholated nicotine solution than nicotine only solution, this effect was abolished in KO mice. Effects of menthol are concentration-, sex-, age-, and α7 nAChR-dependent. Oral and intraperitoneal menthol increases nicotine intake, suggesting that sensory, peripheral, and/or central mechanisms are involved in effects of menthol on oral nicotine consumption.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA; Yale Tobacco Center of Regulatory Science, Yale University, New Haven, CT, USA; The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA.
| | - Asti Jackson
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA; Yale Tobacco Center of Regulatory Science, Yale University, New Haven, CT, USA
| | - Moriah Carper
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Rita Yu-Tzu Chen
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA; The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
36
|
Pullicin AJ, Kim H, Brinkman MC, Buehler SS, Clark PI, Lim J. Impacts of Nicotine and Flavoring on the Sensory Perception of E-Cigarette Aerosol. Nicotine Tob Res 2020; 22:806-813. [PMID: 30997500 DOI: 10.1093/ntr/ntz058] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/12/2019] [Indexed: 12/29/2022]
Abstract
INTRODUCTION To examine the interaction between an added flavoring (cherry) and nicotine on the perception of electronic cigarette (e-cigarette) aerosol and how this impacts the appeal of flavored liquids for e-cigarette (e-liquids). METHODS A total of 19 subjects (13 male, 6 female) vaped six commercially available e-liquids with varying contents of nicotine (0, 6, 12 mg/mL) and cherry flavor (4.7% or 9.3% vol/vol). For each e-liquid, subjects first rated overall liking/disliking of the aerosol using the Labeled Hedonic Scale, followed by perceived intensities of sweetness, bitterness, harshness (irritation), and cherry flavor of the aerosol using the general version of Labeled Magnitude Scale. RESULTS The main findings were that (1) added nicotine increased perceived irritation and bitterness, and decreased the perceived sweetness of the e-cigarette aerosol; (2) cherry flavoring added a characteristic "cherry flavor" and an increase in the flavoring concentration from 4.7% to 9.3% tended to increase perceived intensities of sweetness, harshness, and bitterness; and (3) hedonic ratings of the e-cigarette aerosol decreased as nicotine level increased, but were not affected by flavor level. CONCLUSIONS Our findings indicate that the appeal of the e-cigarette aerosol decreases as nicotine concentration increases. Conversely, perceived sweetness improved liking. An increase in the concentration of cherry flavoring did not appear to impact any of the measured attributes to a significant degree. IMPLICATIONS This work demonstrates that the perception of specific sensory attributes of e-cigarettes and their overall appeal are affected by the e-liquid constituents. Most significantly, the results suggest that nicotine decreases the sensory appeal of e-cigarettes by contributing to the perceived irritation and bitterness of the aerosol. These data have implications for the role that nicotine plays in the sensory perception and appeal of e-cigarettes aerosol and further how these sensory factors can be modulated by sweet flavoring.
Collapse
Affiliation(s)
- Alexa J Pullicin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR
| | - Hyoshin Kim
- Battelle Public Health Center for Tobacco Research, Battelle Memorial Institute, Seattle, WA
| | | | - Stephanie S Buehler
- Battelle Public Health Center for Tobacco Research, Battelle Memorial Institute, Columbus, OH
| | - Pamela I Clark
- School of Public Health, University of Maryland, College Park, MD
| | - Juyun Lim
- Department of Food Science and Technology, Oregon State University, Corvallis, OR
| |
Collapse
|
37
|
Bamps D, Vriens J, de Hoon J, Voets T. TRP Channel Cooperation for Nociception: Therapeutic Opportunities. Annu Rev Pharmacol Toxicol 2020; 61:655-677. [PMID: 32976736 DOI: 10.1146/annurev-pharmtox-010919-023238] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic pain treatment remains a sore challenge, and in our aging society, the number of patients reporting inadequate pain relief continues to grow. Current treatment options all have their drawbacks, including limited efficacy and the propensity of abuse and addiction; the latter is exemplified by the ongoing opioid crisis. Extensive research in the last few decades has focused on mechanisms underlying chronic pain states, thereby producing attractive opportunities for novel, effective and safe pharmaceutical interventions. Members of the transient receptor potential (TRP) ion channel family represent innovative targets to tackle pain sensation at the root. Three TRP channels, TRPV1, TRPM3, and TRPA1, are of particular interest, as they were identified as sensors of chemical- and heat-induced pain in nociceptor neurons. This review summarizes the knowledge regarding TRP channel-based pain therapies, including the bumpy road of the clinical development of TRPV1 antagonists, the current status of TRPA1 antagonists, and the future potential of targeting TRPM3.
Collapse
Affiliation(s)
- Dorien Bamps
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium; .,Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
38
|
Souza Monteiro de Araujo D, Nassini R, Geppetti P, De Logu F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin Ther Targets 2020; 24:997-1008. [PMID: 32838583 PMCID: PMC7610834 DOI: 10.1080/14728222.2020.1815191] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction Chronic pain affects approximatively 30–50% of the population globally. Pathologies such as migraine, diabetic neuropathy, nerve injury and treatment with chemotherapeutic agents, can induce chronic pain. Members of the transient receptor potential (TRP) channels, including the TRP ankyrin 1 (TRPA1), have a major role in pain. Areas covered We focus on TRPA1 as a therapeutic target for pain relief. The structure, localization, and activation of the channel and its implication in different pathways to signal pain are described. This paper underlines the role of pharmacological interventions on TRPA1 to reduce pain in numerous pain conditions. We conducted a literature search in PubMed up to and including July 2020. Expert opinion Our understanding of the molecular mechanisms underlying the sensitization of central and peripheral nociceptive pathways is limited. Preclinical evidence indicates that, in murine models of pain diseases, numerous mechanisms converge on the pathway that encompasses oxidative stress and Schwann cell TRPA1 to sustain chronic pain. Programs to identify and develop treatments to attenuate TRPA1-mediated chronic pain have emerged from this knowledge. Antagonists explored as a novel class of analgesics have a new and promising target in the TRPA1 expressed by peripheral glial cells.
Collapse
Affiliation(s)
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| |
Collapse
|
39
|
Gao S, Kaudimba KK, Guo S, Zhang S, Liu T, Chen P, Wang R. Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Cardiovascular Diseases. Front Physiol 2020; 11:836. [PMID: 32903613 PMCID: PMC7438729 DOI: 10.3389/fphys.2020.00836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease is one of the chronic conditions with the highest mortality rate in the world. Underlying conditions such as hypertension, metabolic disorders, and habits like smoking are contributors to the manifestation of cardiovascular diseases. The treatment of cardiovascular diseases is inseparable from the development of drugs. Consequently, this has led to many researchers to focus on the search for effective drug targets. The transient receptor potential channel Ankyrin 1 (TRPA1) subtype is a non-selective cation channel, which belongs to the transient receptor potential (TRP) ion channel. Previous studies have shown that members of the TRP family contribute significantly to cardiovascular disease. However, many researchers have not explored the role of TRPA1 as a potential target for the treatment of cardiovascular diseases. Furthermore, recent studies revealed that TRPA1 is commonly expressed in the vascular endothelium. The endothelium is linked to the causes of some cardiovascular diseases, such as atherosclerosis, myocardial fibrosis, heart failure, and arrhythmia. The activation of TRPA1 has a positive effect on atherosclerosis, but it has a negative effect on other cardiovascular diseases such as myocardial fibrosis and heart failure. This review introduces the structural and functional characteristics of TRPA1 and its importance on vascular physiology and common cardiovascular diseases. Moreover, this review summarizes some evidence that TRPA1 is correlated to cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Song Gao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | | | - Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shuang Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Institute of Sport Science, Harbin Sport University, Harbin, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Department of Endocrinology and Metabolism, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
40
|
Jin L, Jagatheesan G, Lynch J, Guo L, Conklin DJ. Crotonaldehyde-induced vascular relaxation and toxicity: Role of endothelium and transient receptor potential ankyrin-1 (TRPA1). Toxicol Appl Pharmacol 2020; 398:115012. [PMID: 32320793 PMCID: PMC7375699 DOI: 10.1016/j.taap.2020.115012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Crotonaldehyde (CR) is an electrophilic α,β-unsaturated aldehyde present in foods and beverages and is a minor metabolite of 1,3-butadiene. CR is a product of incomplete combustion, and is at high levels in smoke of cigarettes and structural fires. Exposure to CR has been linked to cardiopulmonary toxicity and cardiovascular disease. OBJECTIVE The purpose of this study was to examine the direct effects of CR in murine blood vessels (aorta and superior mesenteric artery, SMA) using an in vitro system. METHODS AND RESULTS CR induced concentration-dependent (1-300 μM) relaxations (75-80%) in phenylephrine (PE) precontracted aorta and SMA. Because the SMA was 20× more sensitive to CR than aorta (SMA EC50 3.8 ± 0.5 μM; aorta EC50 76.0 ± 2.0 μM), mechanisms of CR relaxation were studied in SMA. The CR-induced relaxation at low concentrations (1-30 μM) was inhibited by: 1) mechanically-impaired endothelium; 2) Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME); 3) guanylyl cyclase (GC) inhibitor (ODQ); 4) transient receptor potential ankyrin-1 (TRPA1) antagonist (A967079); and, 5) by non-vasoactive level of nicotine (1 μM). Similarly, a TRPA1 agonist, allyl isothiocyanate (AITC; mustard oil), stimulated SMA relaxation dependent on TRPA1, endothelium, NO, and GC. Consistent with these mechanisms, TRPA1 was present in the SMA endothelium. CR, at higher concentrations (100-300 μM), induced tension oscillations (spasms) and irreversibly impaired contractility (a vasotoxic effect enhanced by impaired endothelium). CONCLUSIONS CR relaxation depends on a functional endothelium and TRPA1, whereas vasotoxicity is enhanced by endothelium dysfunction. Thus, CR is both vasoactive and vasotoxic along a concentration continuum.
Collapse
Affiliation(s)
- L Jin
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA; Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation Center, University of Louisville, Louisville, KY, USA
| | - G Jagatheesan
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation Center, University of Louisville, Louisville, KY, USA
| | - J Lynch
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA; Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation Center, University of Louisville, Louisville, KY, USA
| | - L Guo
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation Center, University of Louisville, Louisville, KY, USA
| | - D J Conklin
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA; Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
41
|
Voltage-dependent modulation of TRPA1 currents by diphenhydramine. Cell Calcium 2020; 90:102245. [PMID: 32634675 DOI: 10.1016/j.ceca.2020.102245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 11/23/2022]
Abstract
Diphenhydramine (DPH) has been broadly used to treat allergy. When used as a topical medicine, DPH temporarily relieves itching and pain. Although transient receptor potential type A1 (TRPA1) channel is known to play roles in both acute and chronic itch and pain, whether DPH affects the activities of TRPA1 remains unclear. Using whole-cell patch clamp recordings, we demonstrated that DPH modulates the voltage-dependence of TRPA1. When co-applied with a TRPA1 agonist, DPH significantly enhanced the inward currents while suppressing the outward currents of TRPA1, converting the channel from outwardly rectifying to inwardly rectifying. This effect of DPH occurred no matter TRPA1 was activated by an electrophilic or non-electrophilic agonist and for both mouse and human TRPA1. The modulation of TRPA1 by DPH was maintained in the L906C mutant, which by itself also causes inward rectification of TRPA1, indicating that additional acting sites are present for the modulation of TRPA1 currents by DPH. Our recordings also revealed that DPH partially blocked capsaicin evoked TRPV1 currents. These data suggest that DPH may exert its therapeutic effects on itch and pain, through modulation of TRPA1 in a voltage-dependent fashion.
Collapse
|
42
|
Complex Regulatory Role of the TRPA1 Receptor in Acute and Chronic Airway Inflammation Mouse Models. Int J Mol Sci 2020; 21:ijms21114109. [PMID: 32526913 PMCID: PMC7312832 DOI: 10.3390/ijms21114109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 12/31/2022] Open
Abstract
The Transient Receptor Potential Ankyrin 1 (TRPA1) cation channel expressed on capsaicin-sensitive afferents, immune and endothelial cells is activated by inflammatory mediators and exogenous irritants, e.g., endotoxins, nicotine, crotonaldehyde and acrolein. We investigated its involvement in acute and chronic pulmonary inflammation using Trpa1 gene-deleted (Trpa1-/-) mice. Acute pneumonitis was evoked by intranasal Escherichia coli endotoxin (lipopolysaccharide: LPS) administration, chronic bronchitis by daily cigarette smoke exposure (CSE) for 4 months. Frequency, peak inspiratory/expiratory flows, minute ventilation determined by unrestrained whole-body plethysmography were significantly greater, while tidal volume, inspiratory/expiratory/relaxation times were smaller in Trpa1-/- mice. LPS-induced bronchial hyperreactivity, myeloperoxidase activity, frequency-decrease were significantly greater in Trpa1-/- mice. CSE significantly decreased tidal volume, minute ventilation, peak inspiratory/expiratory flows in wildtypes, but not in Trpa1-/- mice. CSE remarkably increased the mean linear intercept (histopathology), as an emphysema indicator after 2 months in wildtypes, but only after 4 months in Trpa1-/- mice. Semiquantitative histopathological scores were not different between strains in either models. TRPA1 has a complex role in basal airway function regulation and inflammatory mechanisms. It protects against LPS-induced acute pneumonitis and hyperresponsiveness, but is required for CSE-evoked emphysema and respiratory deterioration. Further research is needed to determine TRPA1 as a potential pharmacological target in the lung.
Collapse
|
43
|
TRPA1 gene variants hurting our feelings. Pflugers Arch 2020; 472:953-960. [PMID: 32444956 DOI: 10.1007/s00424-020-02397-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
TRPA1 is a Ca2+-permeable, non-selective cation channel that is activated by thermal and mechanical stimuli, an amazing variety of potentially noxious chemicals, and by endogenous molecules that signal tissue injury. The expression of this channel in nociceptive neurons and epithelial cells puts it at the first line of defense and makes it a key determinant of adaptive protective behaviors. For the same reasons, TRPA1 is implicated in a wide variety of disease conditions, such as acute, neuropathic, and inflammatory pains, and is postulated to be a target for therapeutic interventions against acquired diseases featuring aberrant sensory functions. The human TRPA1 gene can bare mutations that have been associated with painful conditions, such as the N855S that relates to the rare familial episodic pain syndrome, or others that have been linked to altered chemosensation in humans. Here, we review the current knowledge on this field, re-evaluating some available functional data, and pointing out the aspects that in our opinion require attention in future research. We make emphasis in that, although the availability of the human TRPA1 structure provides a unique opportunity for further developments, far more classical functional studies using electrophysiology and analysis of channel gating are also required to understand the structure-function relationship of this intriguing channel.
Collapse
|
44
|
Liu Z, Wang P, Lu S, Guo R, Gao W, Tong H, Yin Y, Han X, Liu T, Chen X, Zhu MX, Yang Z. Liquiritin, a novel inhibitor of TRPV1 and TRPA1, protects against LPS-induced acute lung injury. Cell Calcium 2020; 88:102198. [PMID: 32388008 DOI: 10.1016/j.ceca.2020.102198] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
TRPV1 and TRPA1 are cation channels that play key roles in inflammatory signaling pathways. They are co-expressed on airway C-fibers, where they exert synergistic effects on causing inflammation and cough. Licorice, the root of Glycyrrhiza uralensis, has been widely used in China as an anti-inflammatory and anti-coughing herb. To learn if TRPV1 and TRPA1 might be key targets of the anti-inflammatory and antitussive effects of licorice, we examined liquiritin, the main flavonoid compound and active ingredient of licorice, on agonist-evoked TRPV1 and TRPA1 activation. Liquiritin inhibited capsaicin- and allyl isothiocyanate-evoked TRPV1 and TRPA1 whole-cell currents, respectively, with a similar potency and maximal inhibition. In a mouse acute lung injury (ALI) model induced by the bacterial endotoxin lipopolysaccharide, which involves both TRPV1 and TRPA1, an oral gavage of liquiritin prevented tissue damage and suppressed inflammation and the activation of NF-κB signaling pathway in the lung tissue. Liquiritin also suppressed LPS-induced increase in TRPV1 and TRPA1 protein expression in the lung tissue, as well as TRPV1 and TRPA1 mRNA levels in cells contained in mouse bronchoalveolar lavage fluid. In cultured THP-1 monocytes, liguiritin, or TRPV1 and TRPA1 antagonists capsazepine and HC030031, respectively, diminished not only cytokine-induced upregulation of NF-κB function but also TRPV1 and TRPA1 expression at both protein and mRNA levels. We conclude that the anti-inflammatory and antitussive effects of liquiritin are mediated by the dual inhibition of TRPV1 and TRPA1 channels, which are upregulated in nonneuronal cells through the NF-κB pathway during airway inflammation via a positive feedback mechanism.
Collapse
Affiliation(s)
- Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengwen Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shanshan Lu
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Rong Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haiying Tong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yin Yin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuezhen Han
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tiantian Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangyun Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Zhen Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
45
|
Justino AB, Barbosa MF, Neves TV, Silva HCG, Brum EDS, Fialho MFP, Couto AC, Saraiva AL, Avila VDMR, Oliveira SM, Pivatto M, Espindola FS, Silva CR. Stephalagine, an aporphine alkaloid from Annona crassiflora fruit peel, induces antinociceptive effects by TRPA1 and TRPV1 channels modulation in mice. Bioorg Chem 2020; 96:103562. [PMID: 31981911 DOI: 10.1016/j.bioorg.2019.103562] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/03/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022]
Abstract
Pain relief represents a critical unresolved medical need. Consequently, the search for new analgesic agents is intensively studied. Annona crassiflora, a native species of the Brazilian Savanna, represents a potential source for painful treatment. This study aimed to investigate the antinociceptive potential of A. crassiflora fruit peel, focusing on its major alkaloid, stephalagine, in animal models of pain evoked by the activation of transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels. Male C57BL/6/J mice were submitted to formalin-, cinnamaldehyde-, and capsaicin-induced nociception tests to assess nociceptive behavior, and to the open-field and rotarod tests for motor performance analyses. Moreover, the stephalagine's effect was tested on capsaicin- and cinnamaldehyde-induced Ca2+ influx in spinal cord synaptosomes. In silico assessments of the absorption, distribution, metabolism and central nervous system permeability of stephalagine were carried out. The ethanol extract and alkaloidal fraction reduced the nociception induced by formalin. When administered by oral route (1 mg/kg), stephalagine reduced the spontaneous nociception and paw edema induced by TRPV1 agonist, capsaicin, and by TRPA1 agonists, cinnamaldehyde- and formalin, without altering the animals' locomotor activity. The prediction of in silico pharmacokinetic properties of stephalagine suggests its capacity to cross the blood-brain barrier. Furthermore, this alkaloid reduces the capsaicin- and cinnamaldehyde-mediated Ca2+ influx, indicating a possible modulation of TRPV1 and TRPA1 channels, respectively. Together, our results support the antinociceptive and anti-edematogenic effects of the A. crassiflora fruit peel and suggest that these effects are triggered, at least in part, by TRPV1 and TRPA1 modulation by stephalagine.
Collapse
Affiliation(s)
- Allisson Benatti Justino
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil
| | - Marilia Fontes Barbosa
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Thiago Vieira Neves
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil
| | - Heitor Cappato Guerra Silva
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil
| | - Evelyne da Silva Brum
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Biochemistry and Molecular Biology Department, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Biochemistry and Molecular Biology Department, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Ana Cláudia Couto
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil
| | - André Lopes Saraiva
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil
| | - Veridiana de Melo Rodrigues Avila
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Biochemistry and Molecular Biology Department, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Marcos Pivatto
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Foued Salmen Espindola
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil
| | - Cassia Regina Silva
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil.
| |
Collapse
|
46
|
Chung S, Baumlin N, Dennis JS, Moore R, Salathe SF, Whitney PL, Sabater J, Abraham WM, Kim MD, Salathe M. Electronic Cigarette Vapor with Nicotine Causes Airway Mucociliary Dysfunction Preferentially via TRPA1 Receptors. Am J Respir Crit Care Med 2019; 200:1134-1145. [PMID: 31170808 PMCID: PMC6888648 DOI: 10.1164/rccm.201811-2087oc] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Rationale: Electronic cigarette (e-cig) use has been widely adopted under the perception of safety. However, possibly adverse effects of e-cig vapor in never-smokers are not well understood.Objectives: To test the effects of nicotine-containing e-cig vapors on airway mucociliary function in differentiated human bronchial epithelial cells isolated from never-smokers and in the airways of a novel, ovine large animal model.Methods: Mucociliary parameters were measured in human bronchial epithelial cells and in sheep. Systemic nicotine delivery to sheep was quantified using plasma cotinine levels, measured by ELISA.Measurements and Main Results:In vitro, exposure to e-cig vapor reduced airway surface liquid hydration and increased mucus viscosity of human bronchial epithelial cells in a nicotine-dependent manner. Acute nicotine exposure increased intracellular calcium levels, an effect primarily dependent on TRPA1 (transient receptor potential ankyrin 1). TRPA1 inhibition with A967079 restored nicotine-mediated impairment of mucociliary parameters including mucus transport in vitro. Sheep tracheal mucus velocity, an in vivo measure of mucociliary clearance, was also reduced by e-cig vapor. Nebulized e-cig liquid containing nicotine also reduced tracheal mucus velocity in a dose-dependent manner and elevated plasma cotinine levels. Importantly, nebulized A967079 reversed the effects of e-cig liquid on sheep tracheal mucus velocity.Conclusions: Our findings show that inhalation of e-cig vapor causes airway mucociliary dysfunction in vitro and in vivo. Furthermore, they suggest that the main nicotine effect on mucociliary function is mediated by TRPA1 and not nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Samuel Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Nathalie Baumlin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - John S. Dennis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Robert Moore
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Sebastian F. Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Phillip L. Whitney
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Juan Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida
| | - William M. Abraham
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida
| | - Michael D. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Matthias Salathe
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| |
Collapse
|
47
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
48
|
Wang Z, Ye D, Ye J, Wang M, Liu J, Jiang H, Xu Y, Zhang J, Chen J, Wan J. The TRPA1 Channel in the Cardiovascular System: Promising Features and Challenges. Front Pharmacol 2019; 10:1253. [PMID: 31680989 PMCID: PMC6813932 DOI: 10.3389/fphar.2019.01253] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is a calcium-permeable nonselective cation channel in the plasma membrane that belongs to the transient receptor potential (TRP) channel superfamily. Recent studies have suggested that the TRPA1 channel plays an essential role in the development and progression of several cardiovascular conditions, such as atherosclerosis, heart failure, myocardial ischemia-reperfusion injury, myocardial fibrosis, arrhythmia, vasodilation, and hypertension. Activation of the TRPA1 channel has a protective effect against the development of atherosclerosis. Furthermore, TRPA1 channel activation elicits peripheral vasodilation and induces a biphasic blood pressure response. However, loss of channel expression or blockade of its activation suppressed heart failure, myocardial ischemia-reperfusion injury, myocardial fibrosis, and arrhythmia. In this paper, we review recent research progress on the TRPA1 channel and discuss its potential role in the cardiovascular system.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huimin Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jiangbin Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
49
|
Logashina YA, Korolkova YV, Kozlov SA, Andreev YA. TRPA1 Channel as a Regulator of Neurogenic Inflammation and Pain: Structure, Function, Role in Pathophysiology, and Therapeutic Potential of Ligands. BIOCHEMISTRY (MOSCOW) 2019; 84:101-118. [PMID: 31216970 DOI: 10.1134/s0006297919020020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TRPA1 is a cation channel located on the plasma membrane of many types of human and animal cells, including skin sensory neurons and epithelial cells of the intestine, lungs, urinary bladder, etc. TRPA1 is the major chemosensor that also responds to thermal and mechanical stimuli. Substances that activate TRPA1, e.g., allyl isothiocyanates (pungent components of mustard, horseradish, and wasabi), cinnamaldehyde from cinnamon, organosulfur compounds from garlic and onion, tear gas, acrolein and crotonaldehyde from cigarette smoke, etc., cause burning, mechanical and thermal hypersensitivity, cough, eye irritation, sneezing, mucus secretion, and neurogenic inflammation. An increased activity of TRPA1 leads to the emergence of chronic pruritus and allergic dermatitis and is associated with episodic pain syndrome, a hereditary disease characterized by episodes of debilitating pain triggered by stress. TRPA1 is now considered as one of the targets for developing new anti-inflammatory and analgesic drugs. This review summarizes information on the structure, function, and physiological role of this channel, as well as describes known TRPA1 ligands and their significance as therapeutic agents in the treatment of inflammation-associated pain.
Collapse
Affiliation(s)
- Yu A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - Yu V Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - S A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Ya A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| |
Collapse
|
50
|
Duell AK, McWhirter KJ, Korzun T, Strongin RM, Peyton DH. Sucralose-Enhanced Degradation of Electronic Cigarette Liquids during Vaping. Chem Res Toxicol 2019; 32:1241-1249. [PMID: 31079450 PMCID: PMC9831380 DOI: 10.1021/acs.chemrestox.9b00047] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electronic cigarette liquids (e-liquids) with sweetener additives such as sucralose, a synthetic chlorinated disaccharide, are popular among some e-cigarette consumers; sucralose can be added either by the manufacturer or by the consumer. The prevalence of sucralose in commercial e-liquids is not known, nor is the typical concentration of sucralose when present; labels are not required to disclose ingredient information. Here, we report the effects of sucralose on e-liquid degradation upon e-cigarette vaping as studied using 1H NMR spectroscopy, ion chromatography, and gas chromatography coupled with detection by mass spectrometry or flame ionization detector. Sucralose was found to be subject to degradation when included in propylene glycol + glycerol based e-liquids and vaped; the presence of sucralose in the e-liquids also resulted in altered and enhanced solvent degradation. In particular, production of aldehydes (carbonyls) and hemiacetals (which have implications for health) was enhanced, as demonstrated by 1H NMR. The presence of sucralose at 0.03 mol % (0.14 wt %) in an e-liquid also resulted in production of potentially harmful organochlorine compounds and catalyzed the cyclization of aldehydes with solvents to acetals upon vaping; the presence of chloride in e-liquid aerosols was confirmed by ion chromatography. Quantities of sucralose as low as 0.05 mol % (0.24 wt %) in e-liquids lead to significant production of solvent degradation products.
Collapse
Affiliation(s)
- Anna K. Duell
- Department of Chemistry, Portland State University, Portland, Oregon 97207-0751, United States
| | - Kevin J. McWhirter
- Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon 97207-0751, United States
| | - Tetiana Korzun
- Department of Chemistry, Portland State University, Portland, Oregon 97207-0751, United States
| | - Robert M. Strongin
- Department of Chemistry, Portland State University, Portland, Oregon 97207-0751, United States
| | - David H. Peyton
- Department of Chemistry, Portland State University, Portland, Oregon 97207-0751, United States
| |
Collapse
|