1
|
Gungor Aydin A, Lemenze A, Bieszczad KM. Functional diversities within neurons and astrocytes in the adult rat auditory cortex revealed by single-nucleus RNA sequencing. Sci Rep 2024; 14:25314. [PMID: 39455606 PMCID: PMC11511993 DOI: 10.1038/s41598-024-74732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
The mammalian cerebral cortex is composed of a rich diversity of cell types. Sensory cortical cells are organized into networks that rely on their functional diversity to ultimately carry out a variety of sophisticated cognitive functions for perception, learning, and memory. The auditory cortex (AC) has been most extensively studied for its experience-dependent effects, including for perceptual learning and associative memory. Here, we used single-nucleus RNA sequencing (snRNA-seq) in the AC of the adult rat to investigate the breadth of transcriptionally diverse cell types that likely support the role of AC in experience-dependent functions. A variety of unique excitatory and inhibitory neuron subtypes were identified that harbor unique transcriptional profiles of genes with putative relevance for the adaptive neuroplasticity of cortical microcircuits. In addition, we report for the first time a diversity of astrocytes in AC that may represent functionally unique subtypes, including those that could integrate experience-dependent adult neuroplasticity at cortical synapses. Together, these results pave the way for building models of how cortical neurons work in concert with astrocytes to fulfill dynamic and experience-dependent cognitive functions.
Collapse
Affiliation(s)
- Aysegul Gungor Aydin
- Department of Psychology-Behavioral and Systems Neuroscience, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| | - Alexander Lemenze
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers University, Newark, NJ, 07103, USA
| | - Kasia M Bieszczad
- Department of Psychology-Behavioral and Systems Neuroscience, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
- Rutgers Center for Cognitive Science (RuCCS), Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Otolaryngology-Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
2
|
Patiño M, Rossa MA, Lagos WN, Patne NS, Callaway EM. Transcriptomic cell-type specificity of local cortical circuits. Neuron 2024:S0896-6273(24)00651-2. [PMID: 39353431 DOI: 10.1016/j.neuron.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Complex neocortical functions rely on networks of diverse excitatory and inhibitory neurons. While local connectivity rules between major neuronal subclasses have been established, the specificity of connections at the level of transcriptomic subtypes remains unclear. We introduce single transcriptome assisted rabies tracing (START), a method combining monosynaptic rabies tracing and single-nuclei RNA sequencing to identify transcriptomic cell types, providing inputs to defined neuron populations. We employ START to transcriptomically characterize inhibitory neurons providing monosynaptic input to 5 different layer-specific excitatory cortical neuron populations in mouse primary visual cortex (V1). At the subclass level, we observe results consistent with findings from prior studies that resolve neuronal subclasses using antibody staining, transgenic mouse lines, and morphological reconstruction. With improved neuronal subtype granularity achieved with START, we demonstrate transcriptomic subtype specificity of inhibitory inputs to various excitatory neuron subclasses. These results establish local connectivity rules at the resolution of transcriptomic inhibitory cell types.
Collapse
Affiliation(s)
- Maribel Patiño
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Marley A Rossa
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Willian Nuñez Lagos
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Neelakshi S Patne
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neuroscience Graduate Program, Boston University, Boston, MA, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
3
|
Al Harrach M, Yochum M, Ruffini G, Bartolomei F, Wendling F, Benquet P. NeoCoMM: A neocortical neuroinspired computational model for the reconstruction and simulation of epileptiform events. Comput Biol Med 2024; 180:108934. [PMID: 39079417 DOI: 10.1016/j.compbiomed.2024.108934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Understanding the pathophysiological dynamics that underline Interictal Epileptiform Events (IEEs) such as epileptic spikes, spike-and-waves or High-Frequency Oscillations (HFOs) is of major importance in the context of neocortical refractory epilepsy, as it paves the way for the development of novel therapies. Typically, these events are detected in Local Field Potential (LFP) recordings obtained through depth electrodes during pre-surgical investigations. Although essential, the underlying pathophysiological mechanisms for the generation of these epileptic neuromarkers remain unclear. The aim of this paper is to propose a novel neurophysiologically relevant reconstruction of the neocortical microcircuitry in the context of epilepsy. This reconstruction intends to facilitate the analysis of a comprehensive set of parameters encompassing physiological, morphological, and biophysical aspects that directly impact the generation and recording of different IEEs. METHOD a novel microscale computational model of an epileptic neocortical column was introduced. This model incorporates the intricate multilayered structure of the cortex and allows for the simulation of realistic interictal epileptic signals. The proposed model was validated through comparisons with real IEEs recorded using intracranial stereo-electroencephalography (SEEG) signals from both humans and animals. Using the model, the user can recreate epileptiform patterns observed in different species (human, rodent, and mouse) and study the intracellular activity associated with these patterns. RESULTS Our model allowed us to unravel the relationship between glutamatergic and GABAergic synaptic transmission of the epileptic neural network and the type of generated IEE. Moreover, sensitivity analyses allowed for the exploration of the pathophysiological parameters responsible for the transitions between these events. Finally, the presented modeling framework also provides an Electrode Tissue Model (ETI) that adds realism to the simulated signals and offers the possibility of studying their sensitivity to the electrode characteristics. CONCLUSION The model (NeoCoMM) presented in this work can be of great use in different applications since it offers an in silico framework for sensitivity analysis and hypothesis testing. It can also be used as a starting point for more complex studies.
Collapse
Affiliation(s)
- M Al Harrach
- University of Rennes, INSERM, LTSI-U1099, 35000 Rennes, France.
| | - M Yochum
- Neuroelectrics, Av. Tibidabo 47b, 08035 Barcelona, Spain
| | - G Ruffini
- Neuroelectrics, Av. Tibidabo 47b, 08035 Barcelona, Spain
| | - F Bartolomei
- Hopitaux de Marseille, Service d'Epileptologie et de Rythmologie Cerebrale, Hopital La Timone, Marseille, France
| | - F Wendling
- University of Rennes, INSERM, LTSI-U1099, 35000 Rennes, France
| | - P Benquet
- University of Rennes, INSERM, LTSI-U1099, 35000 Rennes, France
| |
Collapse
|
4
|
Iannone AF, Akgül G, Zhang R, Wacks S, Hussein N, Macias CG, Donatelle A, Bauriedel JMJ, Wright C, Abramov D, Johnson MA, Govek EE, Burré J, Milner TA, De Marco García NV. The chemokine Cxcl14 regulates interneuron differentiation in layer I of the somatosensory cortex. Cell Rep 2024; 43:114531. [PMID: 39058591 PMCID: PMC11373301 DOI: 10.1016/j.celrep.2024.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Spontaneous and sensory-evoked activity sculpts developing circuits. Yet, how these activity patterns intersect with cellular programs regulating the differentiation of neuronal subtypes is not well understood. Through electrophysiological and in vivo longitudinal analyses, we show that C-X-C motif chemokine ligand 14 (Cxcl14), a gene previously characterized for its association with tumor invasion, is expressed by single-bouquet cells (SBCs) in layer I (LI) of the somatosensory cortex during development. Sensory deprivation at neonatal stages markedly decreases Cxcl14 expression. Additionally, we report that loss of function of this gene leads to increased intrinsic excitability of SBCs-but not LI neurogliaform cells-and augments neuronal complexity. Furthermore, Cxcl14 loss impairs sensory map formation and compromises the in vivo recruitment of superficial interneurons by sensory inputs. These results indicate that Cxcl14 is required for LI differentiation and demonstrate the emergent role of chemokines as key players in cortical network development.
Collapse
Affiliation(s)
- Andrew F Iannone
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Gülcan Akgül
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Robin Zhang
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sam Wacks
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nisma Hussein
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carmen Ginelly Macias
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Donatelle
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julia M J Bauriedel
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Cora Wright
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Debra Abramov
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA; Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Jacqueline Burré
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Natalia V De Marco García
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
5
|
Deister CA, Moore AI, Voigts J, Bechek S, Lichtin R, Brown TC, Moore CI. Neocortical inhibitory imbalance predicts successful sensory detection. Cell Rep 2024; 43:114233. [PMID: 38905102 DOI: 10.1016/j.celrep.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/17/2023] [Accepted: 04/26/2024] [Indexed: 06/23/2024] Open
Abstract
Perceptual success depends on fast-spiking, parvalbumin-positive interneurons (FS/PVs). However, competing theories of optimal rate and correlation in pyramidal (PYR) firing make opposing predictions regarding the underlying FS/PV dynamics. We addressed this with population calcium imaging of FS/PVs and putative PYR neurons during threshold detection. In primary somatosensory and visual neocortex, a distinct PYR subset shows increased rate and spike-count correlations on detected trials ("hits"), while most show no rate change and decreased correlations. A larger fraction of FS/PVs predicts hits with either rate increases or decreases. Using computational modeling, we found that inhibitory imbalance, created by excitatory "feedback" and interactions between FS/PV pools, can account for the data. Rate-decreasing FS/PVs increase rate and correlation in a PYR subset, while rate-increasing FS/PVs reduce correlations and offset enhanced excitation in PYR neurons. These findings indicate that selection of informative PYR ensembles, through transient inhibitory imbalance, is a common motif of optimal neocortical processing.
Collapse
Affiliation(s)
- Christopher A Deister
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Alexander I Moore
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Jakob Voigts
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sophia Bechek
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Rebecca Lichtin
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Tyler C Brown
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher I Moore
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
6
|
Vattino LG, MacGregor CP, Liu CJ, Sweeney CG, Takesian AE. Primary auditory thalamus relays directly to cortical layer 1 interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603741. [PMID: 39071266 PMCID: PMC11275971 DOI: 10.1101/2024.07.16.603741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Inhibitory interneurons within cortical layer 1 (L1-INs) integrate inputs from diverse brain regions to modulate sensory processing and plasticity, but the sensory inputs that recruit these interneurons have not been identified. Here we used monosynaptic retrograde tracing and whole-cell electrophysiology to characterize the thalamic inputs onto two major subpopulations of L1-INs in the mouse auditory cortex. We find that the vast majority of auditory thalamic inputs to these L1-INs unexpectedly arise from the ventral subdivision of the medial geniculate body (MGBv), the tonotopically-organized primary auditory thalamus. Moreover, these interneurons receive robust functional monosynaptic MGBv inputs that are comparable to those recorded in the L4 excitatory pyramidal neurons. Our findings identify a direct pathway from the primary auditory thalamus to the L1-INs, suggesting that these interneurons are uniquely positioned to integrate thalamic inputs conveying precise sensory information with top-down inputs carrying information about brain states and learned associations.
Collapse
Affiliation(s)
- Lucas G. Vattino
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Cathryn P. MacGregor
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- These authors contributed equally to this work
| | - Christine Junhui Liu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Graduate Program in Speech and Hearing and Bioscience and Technologies, Harvard Medical School, Boston, MA, USA
- These authors contributed equally to this work
| | - Carolyn G. Sweeney
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Anne E. Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Utashiro N, MacLaren DAA, Liu YC, Yaqubi K, Wojak B, Monyer H. Long-range inhibition from prelimbic to cingulate areas of the medial prefrontal cortex enhances network activity and response execution. Nat Commun 2024; 15:5772. [PMID: 38982042 PMCID: PMC11233578 DOI: 10.1038/s41467-024-50055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
It is well established that the medial prefrontal cortex (mPFC) exerts top-down control of many behaviors, but little is known regarding how cross-talk between distinct areas of the mPFC influences top-down signaling. We performed virus-mediated tracing and functional studies in male mice, homing in on GABAergic projections whose axons are located mainly in layer 1 and that connect two areas of the mPFC, namely the prelimbic area (PrL) with the cingulate area 1 and 2 (Cg1/2). We revealed the identity of the targeted neurons that comprise two distinct types of layer 1 GABAergic interneurons, namely single-bouquet cells (SBCs) and neurogliaform cells (NGFs), and propose that this connectivity links GABAergic projection neurons with cortical canonical circuits. In vitro electrophysiological and in vivo calcium imaging studies support the notion that the GABAergic projection neurons from the PrL to the Cg1/2 exert a crucial role in regulating the activity in the target area by disinhibiting layer 5 output neurons. Finally, we demonstrated that recruitment of these projections affects impulsivity and mechanical responsiveness, behaviors which are known to be modulated by Cg1/2 activity.
Collapse
Affiliation(s)
- Nao Utashiro
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Duncan Archibald Allan MacLaren
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yu-Chao Liu
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kaneschka Yaqubi
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf and Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Birgit Wojak
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
Li F, Zheng X, Wang H, Meng L, Chen M, Hui Y, Liu D, Li Y, Xie K, Zhang J, Guo G. Mediodorsal thalamus projection to medial prefrontal cortical mediates social defeat stress-induced depression-like behaviors. Neuropsychopharmacology 2024; 49:1318-1329. [PMID: 38438592 PMCID: PMC11224337 DOI: 10.1038/s41386-024-01829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/06/2024]
Abstract
Clinical studies have shown that the mediodorsal thalamus (MD) may play an important role in the development of depression. However, the molecular and circuit mechanisms by which the mediodorsal thalamus (MD) participates in the pathological processes of depression remain unclear. Here, we show that in male chronic social defeat stress (CSDS) mice, the calcium signaling activity of glutamatergic neurons in MD is reduced. By combining conventional neurotracer and transneuronal virus tracing techniques, we identify a synaptic circuit connecting MD and medial prefrontal cortex (mPFC) in the mouse. Brain slice electrophysiology and fiber optic recordings reveal that the reduced activity of MD glutamatergic neurons leads to an excitatory-inhibitory imbalance of pyramidal neurons in mPFC. Furthermore, activation of MD glutamatergic neurons restores the electrophysiological properties abnormal in mPFC. Optogenetic activation of the MD-mPFC circuit ameliorates anxiety and depression-like behaviors in CSDS mice. Taken together, these data support the critical role of MD-mPFC circuit on CSDS-induced depression-like behavior and provide a potential mechanistic explanation for depression.
Collapse
Affiliation(s)
- Fang Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuefeng Zheng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Hanjie Wang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Lianghui Meng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Meiying Chen
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Yuqing Hui
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Danlei Liu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yifei Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Keman Xie
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China.
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
9
|
Granato A, Phillips WA, Schulz JM, Suzuki M, Larkum ME. Dysfunctions of cellular context-sensitivity in neurodevelopmental learning disabilities. Neurosci Biobehav Rev 2024; 161:105688. [PMID: 38670298 DOI: 10.1016/j.neubiorev.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Pyramidal neurons have a pivotal role in the cognitive capabilities of neocortex. Though they have been predominantly modeled as integrate-and-fire point processors, many of them have another point of input integration in their apical dendrites that is central to mechanisms endowing them with the sensitivity to context that underlies basic cognitive capabilities. Here we review evidence implicating impairments of those mechanisms in three major neurodevelopmental disabilities, fragile X, Down syndrome, and fetal alcohol spectrum disorders. Multiple dysfunctions of the mechanisms by which pyramidal cells are sensitive to context are found to be implicated in all three syndromes. Further deciphering of these cellular mechanisms would lead to the understanding of and therapies for learning disabilities beyond any that are currently available.
Collapse
Affiliation(s)
- Alberto Granato
- Dept. of Veterinary Sciences. University of Turin, Grugliasco, Turin 10095, Italy.
| | - William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Scotland FK9 4LA, UK
| | - Jan M Schulz
- Roche Pharma Research & Early Development, Neuroscience & Rare Diseases Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Mototaka Suzuki
- Dept. of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Matthew E Larkum
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Institute of Biology, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
10
|
Hartung J, Schroeder A, Péréz Vázquez RA, Poorthuis RB, Letzkus JJ. Layer 1 NDNF interneurons are specialized top-down master regulators of cortical circuits. Cell Rep 2024; 43:114212. [PMID: 38743567 DOI: 10.1016/j.celrep.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Diverse types of inhibitory interneurons (INs) impart computational power and flexibility to neocortical circuits. Whereas markers for different IN types in cortical layers 2-6 (L2-L6) have been instrumental for generating a wealth of functional insights, only the recent identification of a selective marker (neuron-derived neurotrophic factor [NDNF]) has opened comparable opportunities for INs in L1 (L1INs). However, at present we know very little about the connectivity of NDNF L1INs with other IN types, their input-output conversion, and the existence of potential NDNF L1IN subtypes. Here, we report pervasive inhibition of L2/3 INs (including parvalbumin INs and vasoactive intestinal peptide INs) by NDNF L1INs. Intersectional genetics revealed similar physiology and connectivity in the NDNF L1IN subpopulation co-expressing neuropeptide Y. Finally, NDNF L1INs prominently and selectively engage in persistent firing, a physiological hallmark disconnecting their output from the current input. Collectively, our work therefore identifies NDNF L1INs as specialized master regulators of superficial neocortex according to their pervasive top-down afferents.
Collapse
Affiliation(s)
- Jan Hartung
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany.
| | - Anna Schroeder
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| | | | - Rogier B Poorthuis
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Johannes J Letzkus
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModul Basics), University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
11
|
Shao Q, Chen L, Li X, Li M, Cui H, Li X, Zhao X, Shi Y, Sun Q, Yan K, Wang G. A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation. Nat Commun 2024; 15:4122. [PMID: 38750027 PMCID: PMC11096324 DOI: 10.1038/s41467-024-48483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Visual information is important for accurate spatial coding and memory-guided navigation. As a crucial area for spatial cognition, the medial entorhinal cortex (MEC) harbors diverse spatially tuned cells and functions as the major gateway relaying sensory inputs to the hippocampus containing place cells. However, how visual information enters the MEC has not been fully understood. Here, we identify a pathway originating in the secondary visual cortex (V2) and directly targeting MEC layer 5a (L5a). L5a neurons served as a network hub for visual processing in the MEC by routing visual inputs from multiple V2 areas to other local neurons and hippocampal CA1. Interrupting this pathway severely impaired visual stimulus-evoked neural activity in the MEC and performance of mice in navigation tasks. These observations reveal a visual cortical-entorhinal pathway highlighting the role of MEC L5a in sensory information transmission, a function typically attributed to MEC superficial layers before.
Collapse
Affiliation(s)
- Qiming Shao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ligu Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaowan Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Miao Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Hui Cui
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoyue Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinran Zhao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuying Shi
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Qiang Sun
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaiyue Yan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Guangfu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
12
|
Liebergall SR, Goldberg EM. Ndnf Interneuron Excitability Is Spared in a Mouse Model of Dravet Syndrome. J Neurosci 2024; 44:e1977232024. [PMID: 38443186 PMCID: PMC11044195 DOI: 10.1523/jneurosci.1977-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Dravet syndrome (DS) is a neurodevelopmental disorder characterized by epilepsy, developmental delay/intellectual disability, and features of autism spectrum disorder, caused by heterozygous loss-of-function variants in SCN1A encoding the voltage-gated sodium channel α subunit Nav1.1. The dominant model of DS pathogenesis is the "interneuron hypothesis," whereby GABAergic interneurons (INs) express and preferentially rely on Nav1.1-containing sodium channels for action potential (AP) generation. This has been shown for three of the major subclasses of cerebral cortex GABAergic INs: those expressing parvalbumin (PV), somatostatin, and vasoactive intestinal peptide. Here, we define the function of a fourth major subclass of INs expressing neuron-derived neurotrophic factor (Ndnf) in male and female DS (Scn1a+/-) mice. Patch-clamp electrophysiological recordings of Ndnf-INs in brain slices from Scn1a+/â mice and WT controls reveal normal intrinsic membrane properties, properties of AP generation and repetitive firing, and synaptic transmission across development. Immunohistochemistry shows that Nav1.1 is strongly expressed at the axon initial segment (AIS) of PV-expressing INs but is absent at the Ndnf-IN AIS. In vivo two-photon calcium imaging demonstrates that Ndnf-INs in Scn1a+/â mice are recruited similarly to WT controls during arousal. These results suggest that Ndnf-INs are the only major IN subclass that does not prominently rely on Nav1.1 for AP generation and thus retain their excitability in DS. The discovery of a major IN subclass with preserved function in the Scn1a+/â mouse model adds further complexity to the "interneuron hypothesis" and highlights the importance of considering cell-type heterogeneity when investigating mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sophie R Liebergall
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
- Medical Scientist Training Program, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Ethan M Goldberg
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
- Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
- The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
13
|
Aydin AG, Lemenze A, Bieszczad KM. Functional diversities within neurons and astrocytes in the adult rat auditory cortex revealed by single-nucleus RNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589831. [PMID: 38659766 PMCID: PMC11042262 DOI: 10.1101/2024.04.16.589831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The mammalian cerebral cortex is composed of a rich diversity of cell types. Cortical cells are organized into networks that rely on their functional diversity to ultimately carry out a variety of sophisticated cognitive functions. To investigate the breadth of transcriptional diverse cell types in the sensory cortex, we have used single-nucleus RNA sequencing (snRNA-seq) in the auditory cortex of the adult rat. A variety of unique excitatory and inhibitory neuron types were identified. In addition, we report for the first time a diversity of astrocytes in the auditory cortex that may represent functionally unique subtypes. Together, these results pave the way for building models of how neurons in the sensory cortex work in concert with astrocytes at synapses to fulfill high-cognitive functions like learning and memory.
Collapse
|
14
|
Shen Y, Shao M, Hao ZZ, Huang M, Xu N, Liu S. Multimodal Nature of the Single-cell Primate Brain Atlas: Morphology, Transcriptome, Electrophysiology, and Connectivity. Neurosci Bull 2024; 40:517-532. [PMID: 38194157 PMCID: PMC11003949 DOI: 10.1007/s12264-023-01160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/23/2023] [Indexed: 01/10/2024] Open
Abstract
Primates exhibit complex brain structures that augment cognitive function. The neocortex fulfills high-cognitive functions through billions of connected neurons. These neurons have distinct transcriptomic, morphological, and electrophysiological properties, and their connectivity principles vary. These features endow the primate brain atlas with a multimodal nature. The recent integration of next-generation sequencing with modified patch-clamp techniques is revolutionizing the way to census the primate neocortex, enabling a multimodal neuronal atlas to be established in great detail: (1) single-cell/single-nucleus RNA-seq technology establishes high-throughput transcriptomic references, covering all major transcriptomic cell types; (2) patch-seq links the morphological and electrophysiological features to the transcriptomic reference; (3) multicell patch-clamp delineates the principles of local connectivity. Here, we review the applications of these technologies in the primate neocortex and discuss the current advances and tentative gaps for a comprehensive understanding of the primate neocortex.
Collapse
Affiliation(s)
- Yuhui Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mingting Shao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mengyao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
15
|
Shi Y, Wang G. Protocol to study microcircuits in the medial entorhinal cortex in mice using multiple patch-clamp recordings and morphological reconstruction. STAR Protoc 2024; 5:102917. [PMID: 38421863 PMCID: PMC10910315 DOI: 10.1016/j.xpro.2024.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Multiple patch-clamp recordings and morphological reconstruction are powerful approaches for neuronal microcircuitry dissection and cell type classification but are challenging due to the sophisticated expertise needed. Here, we present a protocol for applying these techniques to neurons in the medial entorhinal cortex (MEC) of mice. We detail steps to prepare brain slices containing MEC and perform simultaneous multiple whole-cell recordings, followed by procedures of histological staining and neuronal reconstruction. We then describe how we analyze morphological and electrophysiological features. For complete details on the use and execution of this protocol, please refer to Shi et al.1.
Collapse
Affiliation(s)
- Yuying Shi
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Guangfu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
16
|
Gillon CJ, Pina JE, Lecoq JA, Ahmed R, Billeh YN, Caldejon S, Groblewski P, Henley TM, Kato I, Lee E, Luviano J, Mace K, Nayan C, Nguyen TV, North K, Perkins J, Seid S, Valley MT, Williford A, Bengio Y, Lillicrap TP, Richards BA, Zylberberg J. Responses to Pattern-Violating Visual Stimuli Evolve Differently Over Days in Somata and Distal Apical Dendrites. J Neurosci 2024; 44:e1009232023. [PMID: 37989593 PMCID: PMC10860604 DOI: 10.1523/jneurosci.1009-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 11/23/2023] Open
Abstract
Scientists have long conjectured that the neocortex learns patterns in sensory data to generate top-down predictions of upcoming stimuli. In line with this conjecture, different responses to pattern-matching vs pattern-violating visual stimuli have been observed in both spiking and somatic calcium imaging data. However, it remains unknown whether these pattern-violation signals are different between the distal apical dendrites, which are heavily targeted by top-down signals, and the somata, where bottom-up information is primarily integrated. Furthermore, it is unknown how responses to pattern-violating stimuli evolve over time as an animal gains more experience with them. Here, we address these unanswered questions by analyzing responses of individual somata and dendritic branches of layer 2/3 and layer 5 pyramidal neurons tracked over multiple days in primary visual cortex of awake, behaving female and male mice. We use sequences of Gabor patches with patterns in their orientations to create pattern-matching and pattern-violating stimuli, and two-photon calcium imaging to record neuronal responses. Many neurons in both layers show large differences between their responses to pattern-matching and pattern-violating stimuli. Interestingly, these responses evolve in opposite directions in the somata and distal apical dendrites, with somata becoming less sensitive to pattern-violating stimuli and distal apical dendrites more sensitive. These differences between the somata and distal apical dendrites may be important for hierarchical computation of sensory predictions and learning, since these two compartments tend to receive bottom-up and top-down information, respectively.
Collapse
Affiliation(s)
- Colleen J Gillon
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Mila, Montréal, Québec, Canada
| | - Jason E Pina
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | | | | | | | | | | | - Timothy M Henley
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | | | - Eric Lee
- Allen Institute, Seattle, Washington
| | | | - Kyla Mace
- Allen Institute, Seattle, Washington
| | | | | | - Kat North
- Allen Institute, Seattle, Washington
| | | | - Sam Seid
- Allen Institute, Seattle, Washington
| | | | | | - Yoshua Bengio
- Mila, Montréal, Québec, Canada
- Département d'informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec, Canada
- Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Timothy P Lillicrap
- DeepMind, Inc., London, United Kingdom
- Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom
| | - Blake A Richards
- Mila, Montréal, Québec, Canada
- Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- School of Computer Science, McGill University, Montréal, Québec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Joel Zylberberg
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
- Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Sohn J. Synaptic configuration and reconfiguration in the neocortex are spatiotemporally selective. Anat Sci Int 2024; 99:17-33. [PMID: 37837522 PMCID: PMC10771605 DOI: 10.1007/s12565-023-00743-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/14/2023] [Indexed: 10/16/2023]
Abstract
Brain computation relies on the neural networks. Neurons extend the neurites such as dendrites and axons, and the contacts of these neurites that form chemical synapses are the biological basis of signal transmissions in the central nervous system. Individual neuronal outputs can influence the other neurons within the range of the axonal spread, while the activities of single neurons can be affected by the afferents in their somatodendritic fields. The morphological profile, therefore, binds the functional role each neuron can play. In addition, synaptic connectivity among neurons displays preference based on the characteristics of presynaptic and postsynaptic neurons. Here, the author reviews the "spatial" and "temporal" connection selectivity in the neocortex. The histological description of the neocortical circuitry depends primarily on the classification of cell types, and the development of gene engineering techniques allows the cell type-specific visualization of dendrites and axons as well as somata. Using genetic labeling of particular cell populations combined with immunohistochemistry and imaging at a subcellular spatial resolution, we revealed the "spatial selectivity" of cortical wirings in which synapses are non-uniformly distributed on the subcellular somatodendritic domains in a presynaptic cell type-specific manner. In addition, cortical synaptic dynamics in learning exhibit presynaptic cell type-dependent "temporal selectivity": corticocortical synapses appear only transiently during the learning phase, while learning-induced new thalamocortical synapses persist, indicating that distinct circuits may supervise learning-specific ephemeral synapse and memory-specific immortal synapse formation. The selectivity of spatial configuration and temporal reconfiguration in the neural circuitry may govern diverse functions in the neocortex.
Collapse
Affiliation(s)
- Jaerin Sohn
- Department of Systematic Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
18
|
Rahmatullah N, Schmitt LM, De Stefano L, Post S, Robledo J, Chaudhari G, Pedapati E, Erickson C, Portera-Cailliau C, Goel A. Hypersensitivity to Distractors in Fragile X Syndrome from Loss of Modulation of Cortical VIP Interneurons. J Neurosci 2023; 43:8172-8188. [PMID: 37816596 PMCID: PMC10697397 DOI: 10.1523/jneurosci.0571-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Attention deficit is one of the most prominent and disabling symptoms in Fragile X syndrome (FXS). Hypersensitivity to sensory stimuli contributes to attention difficulties by overwhelming and/or distracting affected individuals, which disrupts activities of daily living at home and learning at school. We find that auditory or visual distractors selectively impair visual discrimination performance in humans and mice with FXS but not in typically developing controls. In both species, males and females were examined. Vasoactive intestinal polypeptide (VIP) neurons were significantly modulated by incorrect responses in the poststimulus period during early distractor trials in WT mice, consistent with their known role as error signals. Strikingly, however, VIP cells from Fmr1 -/- mice showed little modulation in error trials, and this correlated with their poor performance on the distractor task. Thus, VIP interneurons and their reduced modulatory influence on pyramidal cells could be a potential therapeutic target for attentional difficulties in FXS.SIGNIFICANCE STATEMENT Sensory hypersensitivity, impulsivity, and persistent inattention are among the most consistent clinical features of FXS, all of which impede daily functioning and create barriers to learning. However, the neural mechanisms underlying sensory over-reactivity remain elusive. To overcome a significant challenge in translational FXS research we demonstrate a compelling alignment of sensory over-reactivity in both humans with FXS and Fmr1 -/- mice (the principal animal model of FXS) using a novel analogous distractor task. Two-photon microscopy in mice revealed that lack of modulation by VIP cells contributes to susceptibility to distractors. Implementing research efforts we describe here can help identify dysfunctional neural mechanisms associated not only with sensory issues but broader impairments, including those in learning and cognition.
Collapse
Affiliation(s)
- Noorhan Rahmatullah
- Neuroscience Graduate Program, University of California, Riverside, Riverside, California 92521
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45267
| | - Lisa De Stefano
- Department of Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnatti, Ohio 45267
| | - Sam Post
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Jessica Robledo
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Gunvant Chaudhari
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Ernest Pedapati
- Department of Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnatti, Ohio 45267
- Department of Neurology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnatti, Ohio 45267
| | - Craig Erickson
- Department of Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnatti, Ohio 45267
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Anubhuti Goel
- Neuroscience Graduate Program, University of California, Riverside, Riverside, California 92521
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| |
Collapse
|
19
|
Bottemanne H, Berkovitch L, Gauld C, Balcerac A, Schmidt L, Mouchabac S, Fossati P. Storm on predictive brain: A neurocomputational account of ketamine antidepressant effect. Neurosci Biobehav Rev 2023; 154:105410. [PMID: 37793581 DOI: 10.1016/j.neubiorev.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
For the past decade, ketamine, an N-methyl-D-aspartate receptor (NMDAr) antagonist, has been considered a promising treatment for major depressive disorder (MDD). Unlike the delayed effect of monoaminergic treatment, ketamine may produce fast-acting antidepressant effects hours after a single administration at subanesthetic dose. Along with these antidepressant effects, it may also induce transient dissociative (disturbing of the sense of self and reality) symptoms during acute administration which resolve within hours. To understand ketamine's rapid-acting antidepressant effect, several biological hypotheses have been explored, but despite these promising avenues, there is a lack of model to understand the timeframe of antidepressant and dissociative effects of ketamine. In this article, we propose a neurocomputational account of ketamine's antidepressant and dissociative effects based on the Predictive Processing (PP) theory, a framework for cognitive and sensory processing. PP theory suggests that the brain produces top-down predictions to process incoming sensory signals, and generates bottom-up prediction errors (PEs) which are then used to update predictions. This iterative dynamic neural process would relies on N-methyl-D-aspartate (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic receptors (AMPAr), two major component of the glutamatergic signaling. Furthermore, it has been suggested that MDD is characterized by over-rigid predictions which cannot be updated by the PEs, leading to miscalibration of hierarchical inference and self-reinforcing negative feedback loops. Based on former empirical studies using behavioral paradigms, neurophysiological recordings, and computational modeling, we suggest that ketamine impairs top-down predictions by blocking NMDA receptors, and enhances presynaptic glutamate release and PEs, producing transient dissociative symptoms and fast-acting antidepressant effect in hours following acute administration. Moreover, we present data showing that ketamine may enhance a delayed neural plasticity pathways through AMPAr potentiation, triggering a prolonged antidepressant effect up to seven days for unique administration. Taken together, the two sides of antidepressant effects with distinct timeframe could constitute the keystone of antidepressant properties of ketamine. These PP disturbances may also participate to a ketamine-induced time window of mental flexibility, which can be used to improve the psychotherapeutic process. Finally, these proposals could be used as a theoretical framework for future research into fast-acting antidepressants, and combination with existing antidepressant and psychotherapy.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France; Sorbonne University, Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Lucie Berkovitch
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France; Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
| | - Christophe Gauld
- Department of Child Psychiatry, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Alexander Balcerac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Liane Schmidt
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France
| | - Stephane Mouchabac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Psychiatry, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Fossati
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France
| |
Collapse
|
20
|
Nagy-Pál P, Veres JM, Fekete Z, Karlócai MR, Weisz F, Barabás B, Reéb Z, Hájos N. Structural Organization of Perisomatic Inhibition in the Mouse Medial Prefrontal Cortex. J Neurosci 2023; 43:6972-6987. [PMID: 37640552 PMCID: PMC10586541 DOI: 10.1523/jneurosci.0432-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Perisomatic inhibition profoundly controls neural function. However, the structural organization of inhibitory circuits giving rise to the perisomatic inhibition in the higher-order cortices is not completely known. Here, we performed a comprehensive analysis of those GABAergic cells in the medial prefrontal cortex (mPFC) that provide inputs onto the somata and proximal dendrites of pyramidal neurons. Our results show that most GABAergic axonal varicosities contacting the perisomatic region of superficial (layer 2/3) and deep (layer 5) pyramidal cells express parvalbumin (PV) or cannabinoid receptor type 1 (CB1). Further, we found that the ratio of PV/CB1 GABAergic inputs is larger on the somatic membrane surface of pyramidal tract neurons in comparison with those projecting to the contralateral hemisphere. Our morphologic analysis of in vitro labeled PV+ basket cells (PVBC) and CCK/CB1+ basket cells (CCKBC) revealed differences in many features. PVBC dendrites and axons arborized preferentially within the layer where their soma was located. In contrast, the axons of CCKBCs expanded throughout layers, although their dendrites were found preferentially either in superficial or deep layers. Finally, using anterograde trans-synaptic tracing we observed that PVBCs are preferentially innervated by thalamic and basal amygdala afferents in layers 5a and 5b, respectively. Thus, our results suggest that PVBCs can control the local circuit operation in a layer-specific manner via their characteristic arborization, whereas CCKBCs rather provide cross-layer inhibition in the mPFC.SIGNIFICANCE STATEMENT Inhibitory cells in cortical circuits are crucial for the precise control of local network activity. Nevertheless, in higher-order cortical areas that are involved in cognitive functions like decision-making, working memory, and cognitive flexibility, the structural organization of inhibitory cell circuits is not completely understood. In this study we show that perisomatic inhibitory control of excitatory cells in the medial prefrontal cortex is performed by two types of basket cells endowed with different morphologic properties that provide inhibitory inputs with distinct layer specificity on cells projecting to disparate areas. Revealing this difference in innervation strategy of the two basket cell types is a key step toward understanding how they fulfill their distinct roles in cortical network operations.
Collapse
Affiliation(s)
- Petra Nagy-Pál
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Judit M Veres
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Zsuzsanna Fekete
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Mária R Karlócai
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Filippo Weisz
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bence Barabás
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Zsófia Reéb
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Norbert Hájos
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, Indiana 47405
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana 47405
| |
Collapse
|
21
|
Chartrand T, Dalley R, Close J, Goriounova NA, Lee BR, Mann R, Miller JA, Molnar G, Mukora A, Alfiler L, Baker K, Bakken TE, Berg J, Bertagnolli D, Braun T, Brouner K, Casper T, Csajbok EA, Dee N, Egdorf T, Enstrom R, Galakhova AA, Gary A, Gelfand E, Goldy J, Hadley K, Heistek TS, Hill D, Jorstad N, Kim L, Kocsis AK, Kruse L, Kunst M, Leon G, Long B, Mallory M, McGraw M, McMillen D, Melief EJ, Mihut N, Ng L, Nyhus J, Oláh G, Ozsvár A, Omstead V, Peterfi Z, Pom A, Potekhina L, Rajanbabu R, Rozsa M, Ruiz A, Sandle J, Sunkin SM, Szots I, Tieu M, Toth M, Trinh J, Vargas S, Vumbaco D, Williams G, Wilson J, Yao Z, Barzo P, Cobbs C, Ellenbogen RG, Esposito L, Ferreira M, Gouwens NW, Grannan B, Gwinn RP, Hauptman JS, Jarsky T, Keene CD, Ko AL, Koch C, Ojemann JG, Patel A, Ruzevick J, Silbergeld DL, Smith K, Sorensen SA, Tasic B, Ting JT, Waters J, de Kock CPJ, Mansvelder HD, Tamas G, Zeng H, Kalmbach B, Lein ES. Morphoelectric and transcriptomic divergence of the layer 1 interneuron repertoire in human versus mouse neocortex. Science 2023; 382:eadf0805. [PMID: 37824667 DOI: 10.1126/science.adf0805] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1. Subclass and subtype comparisons showed stronger transcriptomic differences in human L1 and were correlated with strong morphoelectric variability along dimensions distinct from mouse L1 variability. Accompanied by greater layer thickness and other cytoarchitecture changes, these findings suggest that L1 has diverged in evolution, reflecting the demands of regulating the expanded human neocortical circuit.
Collapse
Affiliation(s)
| | | | - Jennie Close
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Natalia A Goriounova
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Brian R Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Rusty Mann
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Gabor Molnar
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Alice Mukora
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jim Berg
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Eva Adrienn Csajbok
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tom Egdorf
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Anna A Galakhova
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Tim S Heistek
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - DiJon Hill
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nik Jorstad
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lisa Kim
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Agnes Katalin Kocsis
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Lauren Kruse
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Medea McGraw
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Erica J Melief
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Norbert Mihut
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Lindsay Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Julie Nyhus
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Gáspár Oláh
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Attila Ozsvár
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | | | - Zoltan Peterfi
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Alice Pom
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Marton Rozsa
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | | | - Joanna Sandle
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | | | - Ildiko Szots
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Martin Toth
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | | | - Sara Vargas
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Julia Wilson
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Pal Barzo
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | | | | | | | - Manuel Ferreira
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | - Benjamin Grannan
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | - Jason S Hauptman
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Tim Jarsky
- Allen Institute for Brain Science, Seattle, WA, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andrew L Ko
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Anoop Patel
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Jacob Ruzevick
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Daniel L Silbergeld
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | | | | | - Jonathan T Ting
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Christiaan P J de Kock
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Huib D Mansvelder
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Gabor Tamas
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Kalmbach
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Machold R, Dellal S, Valero M, Zurita H, Kruglikov I, Meng JH, Hanson JL, Hashikawa Y, Schuman B, Buzsáki G, Rudy B. Id2 GABAergic interneurons comprise a neglected fourth major group of cortical inhibitory cells. eLife 2023; 12:e85893. [PMID: 37665123 PMCID: PMC10581691 DOI: 10.7554/elife.85893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Cortical GABAergic interneurons (INs) represent a diverse population of mainly locally projecting cells that provide specialized forms of inhibition to pyramidal neurons and other INs. Most recent work on INs has focused on subtypes distinguished by expression of Parvalbumin (PV), Somatostatin (SST), or Vasoactive Intestinal Peptide (VIP). However, a fourth group that includes neurogliaform cells (NGFCs) has been less well characterized due to a lack of genetic tools. Here, we show that these INs can be accessed experimentally using intersectional genetics with the gene Id2. We find that outside of layer 1 (L1), the majority of Id2 INs are NGFCs that express high levels of neuropeptide Y (NPY) and exhibit a late-spiking firing pattern, with extensive local connectivity. While much sparser, non-NGFC Id2 INs had more variable properties, with most cells corresponding to a diverse group of INs that strongly expresses the neuropeptide CCK. In vivo, using silicon probe recordings, we observed several distinguishing aspects of NGFC activity, including a strong rebound in activity immediately following the cortical down state during NREM sleep. Our study provides insights into IN diversity and NGFC distribution and properties, and outlines an intersectional genetics approach for further study of this underappreciated group of INs.
Collapse
Affiliation(s)
- Robert Machold
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Shlomo Dellal
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Manuel Valero
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Hector Zurita
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Ilya Kruglikov
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - John Hongyu Meng
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Jessica L Hanson
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Yoshiko Hashikawa
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Benjamin Schuman
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - György Buzsáki
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
| | - Bernardo Rudy
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
23
|
Zhu JJ. Architectural organization of ∼1,500-neuron modular minicolumnar disinhibitory circuits in healthy and Alzheimer's cortices. Cell Rep 2023; 42:112904. [PMID: 37531251 DOI: 10.1016/j.celrep.2023.112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/21/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
Acquisition of neuronal circuit architectures, central to understanding brain function and dysfunction, remains prohibitively challenging. Here I report the development of a simultaneous and sequential octuple-sexdecuple whole-cell patch-clamp recording system that enables architectural reconstruction of complex cortical circuits. The method unveils the canonical layer 1 single bouquet cell (SBC)-led disinhibitory neuronal circuits across the mouse somatosensory, motor, prefrontal, and medial entorhinal cortices. The ∼1,500-neuron modular circuits feature the translaminar, unidirectional, minicolumnar, and independent disinhibition and optimize cortical complexity, subtlety, plasticity, variation, and redundancy. Moreover, architectural reconstruction uncovers age-dependent deficits at SBC-disinhibited synapses in the senescence-accelerated mouse prone 8, an animal model of Alzheimer's disease. The deficits exhibit the characteristic Alzheimer's-like cortical spread and correlation with cognitive impairments. These findings decrypt operations of the elementary processing units in healthy and Alzheimer's mouse cortices and validate the efficacy of octuple-sexdecuple patch-clamp recordings for architectural reconstruction of complex neuronal circuits.
Collapse
Affiliation(s)
- J Julius Zhu
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6500 GL Nijmegen, the Netherlands; Departments of Pharmacology and Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
24
|
Shi Y, Cui H, Li X, Chen L, Zhang C, Zhao X, Li X, Shao Q, Sun Q, Yan K, Wang G. Laminar and dorsoventral organization of layer 1 interneuronal microcircuitry in superficial layers of the medial entorhinal cortex. Cell Rep 2023; 42:112782. [PMID: 37436894 DOI: 10.1016/j.celrep.2023.112782] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/03/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023] Open
Abstract
Layer 1 (L1) interneurons (INs) participate in various brain functions by gating information flow in the neocortex, but their role in the medial entorhinal cortex (MEC) is still unknown, largely due to scant knowledge of MEC L1 microcircuitry. Using simultaneous triple-octuple whole-cell recordings and morphological reconstructions, we comprehensively depict L1IN networks in the MEC. We identify three morphologically distinct types of L1INs with characteristic electrophysiological properties. We dissect intra- and inter-laminar cell-type-specific microcircuits of L1INs, showing connectivity patterns different from those in the neocortex. Remarkably, motif analysis reveals transitive and clustered features of L1 networks, as well as over-represented trans-laminar motifs. Finally, we demonstrate the dorsoventral gradient of L1IN microcircuits, with dorsal L1 neurogliaform cells receiving fewer intra-laminar inputs but exerting more inhibition on L2 principal neurons. These results thus present a more comprehensive picture of L1IN microcircuitry, which is indispensable for deciphering the function of L1INs in the MEC.
Collapse
Affiliation(s)
- Yuying Shi
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Hui Cui
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaoyue Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ligu Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Chen Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinran Zhao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaowan Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiming Shao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiang Sun
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kaiyue Yan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Guangfu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
25
|
Fossati G, Kiss-Bodolay D, Prados J, Chéreau R, Husi E, Cadilhac C, Gomez L, Silva BA, Dayer A, Holtmaat A. Bimodal modulation of L1 interneuron activity in anterior cingulate cortex during fear conditioning. Front Neural Circuits 2023; 17:1138358. [PMID: 37334059 PMCID: PMC10272719 DOI: 10.3389/fncir.2023.1138358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
The anterior cingulate cortex (ACC) plays a crucial role in encoding, consolidating and retrieving memories related to emotionally salient experiences, such as aversive and rewarding events. Various studies have highlighted its importance for fear memory processing, but its circuit mechanisms are still poorly understood. Cortical layer 1 (L1) of the ACC might be a particularly important site of signal integration, since it is a major entry point for long-range inputs, which is tightly controlled by local inhibition. Many L1 interneurons express the ionotropic serotonin receptor 3a (5HT3aR), which has been implicated in post-traumatic stress disorder and in models of anxiety. Hence, unraveling the response dynamics of L1 interneurons and subtypes thereof during fear memory processing may provide important insights into the microcircuit organization regulating this process. Here, using 2-photon laser scanning microscopy of genetically encoded calcium indicators through microprisms in awake mice, we longitudinally monitored over days the activity of L1 interneurons in the ACC in a tone-cued fear conditioning paradigm. We observed that tones elicited responses in a substantial fraction of the imaged neurons, which were significantly modulated in a bidirectional manner after the tone was associated to an aversive stimulus. A subpopulation of these neurons, the neurogliaform cells (NGCs), displayed a net increase in tone-evoked responses following fear conditioning. Together, these results suggest that different subpopulations of L1 interneurons may exert distinct functions in the ACC circuitry regulating fear learning and memory.
Collapse
Affiliation(s)
- Giuliana Fossati
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniel Kiss-Bodolay
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
- Lemanic Neuroscience Doctoral School, University of Geneva, Geneva, Switzerland
| | - Julien Prados
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Ronan Chéreau
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Elodie Husi
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christelle Cadilhac
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Lucia Gomez
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Bianca A. Silva
- Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
- National Research Council of Italy, Institute of Neuroscience, Milan, Italy
| | - Alexandre Dayer
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Zhang K, Han Y, Zhang P, Zheng Y, Cheng A. Comparison of fluorescence biosensors and whole-cell patch clamp recording in detecting ACh, NE, and 5-HT. Front Cell Neurosci 2023; 17:1166480. [PMID: 37333890 PMCID: PMC10272411 DOI: 10.3389/fncel.2023.1166480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
The communication between neurons and, in some cases, between neurons and non-neuronal cells, through neurotransmission plays a crucial role in various physiological and pathological processes. Despite its importance, the neuromodulatory transmission in most tissues and organs remains poorly understood due to the limitations of current tools for direct measurement of neuromodulatory transmitters. In order to study the functional roles of neuromodulatory transmitters in animal behaviors and brain disorders, new fluorescent sensors based on bacterial periplasmic binding proteins (PBPs) and G-protein coupled receptors have been developed, but their results have not been compared to or multiplexed with traditional methods such as electrophysiological recordings. In this study, a multiplexed method was developed to measure acetylcholine (ACh), norepinephrine (NE), and serotonin (5-HT) in cultured rat hippocampal slices using simultaneous whole-cell patch clamp recordings and genetically encoded fluorescence sensor imaging. The strengths and weaknesses of each technique were compared, and the results showed that both techniques did not interfere with each other. In general, genetically encoded sensors GRABNE and GRAB5HT1.0 showed better stability compared to electrophysiological recordings in detecting NE and 5-HT, while electrophysiological recordings had faster temporal kinetics in reporting ACh. Moreover, genetically encoded sensors mainly report the presynaptic neurotransmitter release while electrophysiological recordings provide more information of the activation of downstream receptors. In sum, this study demonstrates the use of combined techniques to measure neurotransmitter dynamics and highlights the potential for future multianalyte monitoring.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Han
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqiong Zheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aobing Cheng
- Department of Anesthesiology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Lukacs IP, Francavilla R, Field M, Hunter E, Howarth M, Horie S, Plaha P, Stacey R, Livermore L, Ansorge O, Tamas G, Somogyi P. Differential effects of group III metabotropic glutamate receptors on spontaneous inhibitory synaptic currents in spine-innervating double bouquet and parvalbumin-expressing dendrite-targeting GABAergic interneurons in human neocortex. Cereb Cortex 2023; 33:2101-2142. [PMID: 35667019 PMCID: PMC9977385 DOI: 10.1093/cercor/bhac195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/12/2022] Open
Abstract
Diverse neocortical GABAergic neurons specialize in synaptic targeting and their effects are modulated by presynaptic metabotropic glutamate receptors (mGluRs) suppressing neurotransmitter release in rodents, but their effects in human neocortex are unknown. We tested whether activation of group III mGluRs by L-AP4 changes GABAA receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in 2 distinct dendritic spine-innervating GABAergic interneurons recorded in vitro in human neocortex. Calbindin-positive double bouquet cells (DBCs) had columnar "horsetail" axons descending through layers II-V innervating dendritic spines (48%) and shafts, but not somata of pyramidal and nonpyramidal neurons. Parvalbumin-expressing dendrite-targeting cell (PV-DTC) axons extended in all directions innervating dendritic spines (22%), shafts (65%), and somata (13%). As measured, 20% of GABAergic neuropil synapses innervate spines, hence DBCs, but not PV-DTCs, preferentially select spine targets. Group III mGluR activation paradoxically increased the frequency of sIPSCs in DBCs (to median 137% of baseline) but suppressed it in PV-DTCs (median 92%), leaving the amplitude unchanged. The facilitation of sIPSCs in DBCs may result from their unique GABAergic input being disinhibited via network effect. We conclude that dendritic spines receive specialized, diverse GABAergic inputs, and group III mGluRs differentially regulate GABAergic synaptic transmission to distinct GABAergic cell types in human cortex.
Collapse
Affiliation(s)
- Istvan P Lukacs
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | | | - Martin Field
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Emily Hunter
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Michael Howarth
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Sawa Horie
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe Hospital, OUH NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe Hospital, OUH NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Laurent Livermore
- Department of Neurosurgery, John Radcliffe Hospital, OUH NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Gabor Tamas
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
28
|
Rahmatullah N, Schmitt LM, De Stefano L, Post S, Robledo J, Chaudhari GR, Pedapati E, Erickson CA, Portera-Cailliau C, Goel A. Hypersensitivity to distractors in Fragile X syndrome from loss of modulation of cortical VIP interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522654. [PMID: 36711901 PMCID: PMC9881942 DOI: 10.1101/2023.01.03.522654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Attention deficit is one of the most prominent and disabling symptoms in Fragile X Syndrome (FXS). Hypersensitivity to sensory stimuli contributes to attention difficulties by overwhelming and/or distracting affected individuals, which disrupts activities of daily living at home and learning at school. We find that auditory or visual distractors selectively impair visual discrimination performance in both humans and mice with FXS, but not their typically developing controls. Vasoactive intestinal polypeptide (VIP) neurons were significantly modulated by incorrect responses in the post-stimulus period during early distractor trials in WT mice, consistent with their known role as 'error' signals. Strikingly, however, VIP cells from Fmr1-/- mice showed little modulation in error trials, and this correlated with their poor performance on the distractor task. Thus, VIP interneurons and their reduced modulatory influence on pyramidal cells, could be a potential therapeutic target for attentional difficulties in FXS.
Collapse
Affiliation(s)
- Noorhan Rahmatullah
- Neuroscience Graduate Program, UC Riverside, CA
- Department of Psychology, UC Riverside, CA
| | - Lauren M. Schmitt
- Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, OH
| | - Lisa De Stefano
- Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, OH
| | - Sam Post
- Department of Psychology, UC Riverside, CA
| | | | | | - Ernest Pedapati
- Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, OH
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, OH
| | - Craig A. Erickson
- Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, OH
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at UCLA, CA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, CA
| | - Anubhuti Goel
- Neuroscience Graduate Program, UC Riverside, CA
- Department of Psychology, UC Riverside, CA
| |
Collapse
|
29
|
Casarotto A, Dolfini E, Cardellicchio P, Fadiga L, D'Ausilio A, Koch G. Mechanisms of Hebbian-like plasticity in the ventral premotor - primary motor network. J Physiol 2023; 601:211-226. [PMID: 36327142 PMCID: PMC10100355 DOI: 10.1113/jp283560] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The functional connection between ventral premotor cortex (PMv) and primary motor cortex (M1) is critical for the organization of goal-directed actions. Repeated activation of this connection by means of cortico-cortical paired associative stimulation (cc-PAS), a transcranial magnetic stimulation (TMS) protocol, may induce Hebbian-like plasticity. However, the physiological modifications produced by Hebbian-like plasticity in the PMv-M1 network are poorly understood. To fill this gap, we investigated the effects of cc-PAS on PMv-M1 circuits. We hypothesized that specific interactions would occur with I2 -wave interneurons as measured by the short intracortical facilitation protocol (SICF). We used different paired-pulse TMS protocols to examine the effects of PMv-M1 cc-PAS on SICF, on GABAergic circuits as measured by short (SICI) and long (LICI) intracortical inhibition protocols, and varied the current direction in M1 to target different M1 neuronal populations. Finally, we examined the effects of cc-PAS on PMv-M1 connectivity using a dual coil approach. We found that PMv-M1 cc-PAS induces both a long-term potentiation (LTP)- or long-term depression (LTD)-like after-effect in M1 neuronal activity that is strongly associated with a bidirectional-specific change in I2 -wave activity (SICF = 2.5 ms ISI). Moreover, cc-PAS induces a specific modulation of the LICI circuit and separately modulates PMv-M1 connectivity. We suggest that plasticity within the PMv-M1 circuit is mediated by a selective mechanism exerted by PMv on M1 by targeting I2 -wave interneurons. These results provide new mechanistic insights into how PMv modulates M1 activity that are relevant for the design of brain stimulation protocols in health and disease. KEY POINTS: The I2 -wave is specifically modulated by the induction of ventral premotor cortex - primary motor cortex (PMv-M1) plasticity. After PMv-M1 cortico-cortical paired associative stimulation (cc-PAS), corticospinal excitability correlates negatively with I2 -wave amplitude. Different cc-PAS coil orientations can lead to a long-term potentiation- or long-term depression-like after-effect in M1.
Collapse
Affiliation(s)
- Andrea Casarotto
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy
| | - Elisa Dolfini
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy
| | - Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy
| | - Giacomo Koch
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy.,Experimental Neuropsychophysiology Lab, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
30
|
Mächler P, Fomin-Thunemann N, Thunemann M, Sætra MJ, Desjardins M, Kılıç K, Amra LN, Martin EA, Chen IA, Şencan-Eğilmez I, Li B, Saisan P, Jiang JX, Cheng Q, Weldy KL, Boas DA, Buxton RB, Einevoll GT, Dale AM, Sakadžić S, Devor A. Baseline oxygen consumption decreases with cortical depth. PLoS Biol 2022; 20:e3001440. [PMID: 36301995 PMCID: PMC9642908 DOI: 10.1371/journal.pbio.3001440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/08/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
The cerebral cortex is organized in cortical layers that differ in their cellular density, composition, and wiring. Cortical laminar architecture is also readily revealed by staining for cytochrome oxidase-the last enzyme in the respiratory electron transport chain located in the inner mitochondrial membrane. It has been hypothesized that a high-density band of cytochrome oxidase in cortical layer IV reflects higher oxygen consumption under baseline (unstimulated) conditions. Here, we tested the above hypothesis using direct measurements of the partial pressure of O2 (pO2) in cortical tissue by means of 2-photon phosphorescence lifetime microscopy (2PLM). We revisited our previously developed method for extraction of the cerebral metabolic rate of O2 (CMRO2) based on 2-photon pO2 measurements around diving arterioles and applied this method to estimate baseline CMRO2 in awake mice across cortical layers. To our surprise, our results revealed a decrease in baseline CMRO2 from layer I to layer IV. This decrease of CMRO2 with cortical depth was paralleled by an increase in tissue oxygenation. Higher baseline oxygenation and cytochrome density in layer IV may serve as an O2 reserve during surges of neuronal activity or certain metabolically active brain states rather than reflecting baseline energy needs. Our study provides to our knowledge the first quantification of microscopically resolved CMRO2 across cortical layers as a step towards better understanding of brain energy metabolism.
Collapse
Affiliation(s)
- Philipp Mächler
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Natalie Fomin-Thunemann
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Martin Thunemann
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Marte Julie Sætra
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Michèle Desjardins
- Département de Physique, de Génie Physique et d’Optique and Axe Oncologie, Centre de Recherche du CHU de Québec–Université Laval, Université Laval, Québec, Canada
| | - Kıvılcım Kılıç
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Layth N. Amra
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Emily A. Martin
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Ichun Anderson Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Ikbal Şencan-Eğilmez
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Payam Saisan
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - John X. Jiang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Qun Cheng
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Kimberly L. Weldy
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - David A. Boas
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Richard B. Buxton
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Gaute T. Einevoll
- Department of Physics, University of Oslo, Oslo, Norway
- Department of Physics, Norwegian University of Life Sciences, Ås, Norway
| | - Anders M. Dale
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail: (SS); (AD)
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail: (SS); (AD)
| |
Collapse
|
31
|
Shen S, Jiang X, Scala F, Fu J, Fahey P, Kobak D, Tan Z, Zhou N, Reimer J, Sinz F, Tolias AS. Distinct organization of two cortico-cortical feedback pathways. Nat Commun 2022; 13:6389. [PMID: 36302912 PMCID: PMC9613627 DOI: 10.1038/s41467-022-33883-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
Neocortical feedback is critical for attention, prediction, and learning. To mechanically understand its function requires deciphering its cell-type wiring. Recent studies revealed that feedback between primary motor to primary somatosensory areas in mice is disinhibitory, targeting vasoactive intestinal peptide-expressing interneurons, in addition to pyramidal cells. It is unknown whether this circuit motif represents a general cortico-cortical feedback organizing principle. Here we show that in contrast to this wiring rule, feedback between higher-order lateromedial visual area to primary visual cortex preferentially activates somatostatin-expressing interneurons. Functionally, both feedback circuits temporally sharpen feed-forward excitation eliciting a transient increase-followed by a prolonged decrease-in pyramidal cell activity under sustained feed-forward input. However, under feed-forward transient input, the primary motor to primary somatosensory cortex feedback facilitates bursting while lateromedial area to primary visual cortex feedback increases time precision. Our findings argue for multiple cortico-cortical feedback motifs implementing different dynamic non-linear operations.
Collapse
Affiliation(s)
- Shan Shen
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolong Jiang
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Federico Scala
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jiakun Fu
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Paul Fahey
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Dmitry Kobak
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Zhenghuan Tan
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Na Zhou
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Reimer
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Fabian Sinz
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Andreas S Tolias
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Electrical and Computational Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
32
|
Jing J, Dunbar C, Sonesra A, Chavez A, Park S, Yang R, Soh H, Lee M, Tzingounis AV, Cooper EC, Jiang X, Maheshwari A. Removal of KCNQ2 from parvalbumin-expressing interneurons improves anti-seizure efficacy of retigabine. Exp Neurol 2022; 355:114141. [PMID: 35691372 PMCID: PMC9899633 DOI: 10.1016/j.expneurol.2022.114141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Anti-seizure drug (ASD) targets are widely expressed in both excitatory and inhibitory neurons. It remains unknown if the action of an ASD upon inhibitory neurons could counteract its beneficial effects on excitatory neurons (or vice versa), thereby reducing the efficacy of the ASD. Here, we examine whether the efficacy of the ASD retigabine (RTG) is altered after removal of the Kv7 potassium channel subunit KCNQ2, one of its drug targets, from parvalbumin-expressing interneurons (PV-INs). Parvalbumin-Cre (PV-Cre) mice were crossed with Kcnq2-floxed (Kcnq2fl/fl) mice to conditionally delete Kcnq2 from PV-INs. In these conditional knockout mice (cKO, PV-Kcnq2fl/fl), RTG (10 mg/kg, i.p.) significantly delayed the onset of either picrotoxin (PTX, 10 mg/kg, i.p)- or kainic acid (KA, 30 mg/kg, i.p.)-induced convulsive seizures compared to vehicle, while RTG was not effective in wild-type littermates (WT). Immunostaining for KCNQ2 and KCNQ3 revealed that both subunits were enriched at axon initial segments (AISs) of hippocampal CA1 PV-INs, and their specific expression was selectively abolished in cKO mice. Accordingly, the M-currents recorded from CA1 PV-INs and their sensitivity to RTG were significantly reduced in cKO mice. While the ability of RTG to suppress CA1 excitatory neurons in hippocampal slices was unchanged in cKO mice, its suppressive effect on the spike activity of CA1 PV-INs was significantly reduced compared with WT mice. In addition, the RTG-induced suppression on intrinsic membrane excitability of PV-INs in WT mice was significantly reduced in cKO mice. These findings suggest that preventing RTG from suppressing PV-INs improves its anticonvulsant effect.
Collapse
Affiliation(s)
- Junzhan Jing
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, United States of America
| | - Corrinne Dunbar
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America
| | - Alina Sonesra
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America
| | - Ana Chavez
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America
| | - Suhyeorn Park
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America
| | - Ryan Yang
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America
| | - Heun Soh
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Rd, Storrs, CT 06269, United States of America
| | - Maxwell Lee
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America
| | - Anastasios V Tzingounis
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Rd, Storrs, CT 06269, United States of America
| | - Edward C Cooper
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, United States of America.
| | - Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| |
Collapse
|
33
|
Feldotto B, Eppler JM, Jimenez-Romero C, Bignamini C, Gutierrez CE, Albanese U, Retamino E, Vorobev V, Zolfaghari V, Upton A, Sun Z, Yamaura H, Heidarinejad M, Klijn W, Morrison A, Cruz F, McMurtrie C, Knoll AC, Igarashi J, Yamazaki T, Doya K, Morin FO. Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure. Front Neuroinform 2022; 16:884180. [PMID: 35662903 PMCID: PMC9160925 DOI: 10.3389/fninf.2022.884180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Simulating the brain-body-environment trinity in closed loop is an attractive proposal to investigate how perception, motor activity and interactions with the environment shape brain activity, and vice versa. The relevance of this embodied approach, however, hinges entirely on the modeled complexity of the various simulated phenomena. In this article, we introduce a software framework that is capable of simulating large-scale, biologically realistic networks of spiking neurons embodied in a biomechanically accurate musculoskeletal system that interacts with a physically realistic virtual environment. We deploy this framework on the high performance computing resources of the EBRAINS research infrastructure and we investigate the scaling performance by distributing computation across an increasing number of interconnected compute nodes. Our architecture is based on requested compute nodes as well as persistent virtual machines; this provides a high-performance simulation environment that is accessible to multi-domain users without expert knowledge, with a view to enable users to instantiate and control simulations at custom scale via a web-based graphical user interface. Our simulation environment, entirely open source, is based on the Neurorobotics Platform developed in the context of the Human Brain Project, and the NEST simulator. We characterize the capabilities of our parallelized architecture for large-scale embodied brain simulations through two benchmark experiments, by investigating the effects of scaling compute resources on performance defined in terms of experiment runtime, brain instantiation and simulation time. The first benchmark is based on a large-scale balanced network, while the second one is a multi-region embodied brain simulation consisting of more than a million neurons and a billion synapses. Both benchmarks clearly show how scaling compute resources improves the aforementioned performance metrics in a near-linear fashion. The second benchmark in particular is indicative of both the potential and limitations of a highly distributed simulation in terms of a trade-off between computation speed and resource cost. Our simulation architecture is being prepared to be accessible for everyone as an EBRAINS service, thereby offering a community-wide tool with a unique workflow that should provide momentum to the investigation of closed-loop embodiment within the computational neuroscience community.
Collapse
Affiliation(s)
- Benedikt Feldotto
- Robotics, Artificial Intelligence and Real-Time Systems, Faculty of Informatics, Technical University of Munich, Munich, Germany
| | - Jochen Martin Eppler
- Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Cristian Jimenez-Romero
- Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Carlos Enrique Gutierrez
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ugo Albanese
- Department of Excellence in Robotics and AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Eloy Retamino
- Department of Computer Architecture and Technology, Research Centre for Information and Communication Technologies, University of Granada, Granada, Spain
| | - Viktor Vorobev
- Robotics, Artificial Intelligence and Real-Time Systems, Faculty of Informatics, Technical University of Munich, Munich, Germany
| | - Vahid Zolfaghari
- Robotics, Artificial Intelligence and Real-Time Systems, Faculty of Informatics, Technical University of Munich, Munich, Germany
| | - Alex Upton
- Swiss National Supercomputing Centre (CSCS), ETH Zurich, Lugano, Switzerland
| | - Zhe Sun
- Image Processing Research Team, Center for Advanced Photonics, RIKEN, Wako, Japan
- Computational Engineering Applications Unit, Head Office for Information Systems and Cybersecurity, RIKEN, Wako, Japan
| | - Hiroshi Yamaura
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Morteza Heidarinejad
- Computational Engineering Applications Unit, Head Office for Information Systems and Cybersecurity, RIKEN, Wako, Japan
| | - Wouter Klijn
- Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Abigail Morrison
- Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
- Jülich Research Centre, Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA BRAIN Institute I, Jülich, Germany
- Computer Science 3-Software Engineering, RWTH Aachen University, Aachen, Germany
| | - Felipe Cruz
- Swiss National Supercomputing Centre (CSCS), ETH Zurich, Lugano, Switzerland
| | - Colin McMurtrie
- Swiss National Supercomputing Centre (CSCS), ETH Zurich, Lugano, Switzerland
| | - Alois C. Knoll
- Robotics, Artificial Intelligence and Real-Time Systems, Faculty of Informatics, Technical University of Munich, Munich, Germany
| | - Jun Igarashi
- Computational Engineering Applications Unit, Head Office for Information Systems and Cybersecurity, RIKEN, Wako, Japan
- Center for Computational Science, RIKEN, Kobe, Japan
| | - Tadashi Yamazaki
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Fabrice O. Morin
- Robotics, Artificial Intelligence and Real-Time Systems, Faculty of Informatics, Technical University of Munich, Munich, Germany
| |
Collapse
|
34
|
Tian D, Izumi SI. Transcranial Magnetic Stimulation and Neocortical Neurons: The Micro-Macro Connection. Front Neurosci 2022; 16:866245. [PMID: 35495053 PMCID: PMC9039343 DOI: 10.3389/fnins.2022.866245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the operation of cortical circuits is an important and necessary task in both neuroscience and neurorehabilitation. The functioning of the neocortex results from integrative neuronal activity, which can be probed non-invasively by transcranial magnetic stimulation (TMS). Despite a clear indication of the direct involvement of cortical neurons in TMS, no explicit connection model has been made between the microscopic neuronal landscape and the macroscopic TMS outcome. Here we have performed an integrative review of multidisciplinary evidence regarding motor cortex neurocytology and TMS-related neurophysiology with the aim of elucidating the micro–macro connections underlying TMS. Neurocytological evidence from animal and human studies has been reviewed to describe the landscape of the cortical neurons covering the taxonomy, morphology, circuit wiring, and excitatory–inhibitory balance. Evidence from TMS studies in healthy humans is discussed, with emphasis on the TMS pulse and paradigm selectivity that reflect the underlying neural circuitry constitution. As a result, we propose a preliminary neuronal model of the human motor cortex and then link the TMS mechanisms with the neuronal model by stimulus intensity, direction of induced current, and paired-pulse timing. As TMS bears great developmental potential for both a probe and modulator of neural network activity and neurotransmission, the connection model will act as a foundation for future combined studies of neurocytology and neurophysiology, as well as the technical advances and application of TMS.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- *Correspondence: Dongting Tian,
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Shin-Ichi Izumi,
| |
Collapse
|
35
|
Leptourgos P, Bouttier V, Denève S, Jardri R. From hallucinations to synaesthesia: A circular inference account of unimodal and multimodal erroneous percepts in clinical and drug-induced psychosis. Neurosci Biobehav Rev 2022; 135:104593. [PMID: 35217108 DOI: 10.1016/j.neubiorev.2022.104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
Abstract
Psychedelics distort perception and induce visual and multimodal hallucinations as well as synaesthesia. This is in contradiction with the high prevalence of distressing voices in schizophrenia. Here we introduce a unifying account of unimodal and multimodal erroneous percepts based on circular inference. We show that amplification of top-down predictions (descending loops) leads to an excessive reliance on priors and aberrant levels of integration of the sensory representations, resulting in crossmodal percepts and stronger illusions. By contrast, amplification of bottom-up information (ascending loops) results in overinterpretation of unreliable sensory inputs and high levels of segregation between sensory modalities, bringing about unimodal hallucinations and reduced vulnerability to illusions. We delineate a canonical microcircuit in which layer-specific inhibition controls the propagation of information across hierarchical levels: inhibitory interneurons in the deep layers exert control over priors, removing descending loops. Conversely, inhibition in the supragranular layers counterbalances the effects of the ascending loops. Overall, we put forward a multiscale and transnosographic account of erroneous percepts with important theoretical, conceptual and clinical implications.
Collapse
Affiliation(s)
- Pantelis Leptourgos
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Haven, CT, USA; Laboratoire de Neurosciences Cognitives & Computationnelles (LNC²), ENS, INSERM U-960, PSL Research University, Paris, France.
| | - Vincent Bouttier
- Laboratoire de Neurosciences Cognitives & Computationnelles (LNC²), ENS, INSERM U-960, PSL Research University, Paris, France; Univ Lille, INSERM U-1172, Lille Neurosciences & Cognition Centre, Plasticity and Subjectivity Team, & CHU Lille, Fontan Hospital, CURE Platform, Lille, France
| | - Sophie Denève
- Laboratoire de Neurosciences Cognitives & Computationnelles (LNC²), ENS, INSERM U-960, PSL Research University, Paris, France
| | - Renaud Jardri
- Laboratoire de Neurosciences Cognitives & Computationnelles (LNC²), ENS, INSERM U-960, PSL Research University, Paris, France; Univ Lille, INSERM U-1172, Lille Neurosciences & Cognition Centre, Plasticity and Subjectivity Team, & CHU Lille, Fontan Hospital, CURE Platform, Lille, France.
| |
Collapse
|
36
|
Razenkova VA, Korzhevskii DE. Morphological Changes in GABAergic Structures of the Rat Brain during Postnatal Development. NEUROCHEM J+ 2022. [DOI: 10.1134/s181971242201010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Herrmann T, Gerth M, Dittmann R, Pensold D, Ungelenk M, Liebmann L, Hübner CA. Disruption of KCC2 in Parvalbumin-Positive Interneurons Is Associated With a Decreased Seizure Threshold and a Progressive Loss of Parvalbumin-Positive Interneurons. Front Mol Neurosci 2022; 14:807090. [PMID: 35185464 PMCID: PMC8850922 DOI: 10.3389/fnmol.2021.807090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Abstract
GABAA receptors are ligand-gated ion channels, which are predominantly permeable for chloride. The neuronal K-Cl cotransporter KCC2 lowers the intraneuronal chloride concentration and thus plays an important role for GABA signaling. KCC2 loss-of-function is associated with seizures and epilepsy. Here, we show that KCC2 is expressed in the majority of parvalbumin-positive interneurons (PV-INs) of the mouse brain. PV-INs receive excitatory input from principle cells and in turn control principle cell activity by perisomatic inhibition and inhibitory input from other interneurons. Upon Cre-mediated disruption of KCC2 in mice, the polarity of the GABA response of PV-INs changed from hyperpolarization to depolarization for the majority of PV-INs. Reduced excitatory postsynaptic potential-spike (E-S) coupling and increased spontaneous inhibitory postsynaptic current (sIPSC) frequencies further suggest that PV-INs are disinhibited upon disruption of KCC2. In vivo, PV-IN-specific KCC2 knockout mice display a reduced seizure threshold and develop spontaneous sometimes fatal seizures. We further found a time dependent loss of PV-INs, which was preceded by an up-regulation of pro-apoptotic genes upon disruption of KCC2.
Collapse
|
38
|
Field M, Lukacs IP, Hunter E, Stacey R, Plaha P, Livermore L, Ansorge O, Somogyi P. Tonic GABA A Receptor-Mediated Currents of Human Cortical GABAergic Interneurons Vary Amongst Cell Types. J Neurosci 2021; 41:9702-9719. [PMID: 34667071 PMCID: PMC8612645 DOI: 10.1523/jneurosci.0175-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/03/2022] Open
Abstract
Persistent anion conductances through GABAA receptors (GABAARs) are important modulators of neuronal excitability. However, it is currently unknown how the amplitudes of these currents vary among different cell types in the human neocortex, particularly among diverse GABAergic interneurons. We have recorded 101 interneurons in and near layer 1 from cortical tissue surgically resected from both male and female patients, visualized 84 of them and measured tonic GABAAR currents in 48 cells with an intracellular [Cl-] of 65 mm and in the presence of 5 μm GABA. We compare these tonic currents among five groups of interneurons divided by firing properties and four types of interneuron defined by axonal distributions; rosehip, neurogliaform, stalked-bouton, layer 2-3 innervating and a pool of other cells. Interestingly, the rosehip cell, a type of interneuron only described thus far in human tissue, and layer 2-3 innervating cells exhibit larger tonic currents than other layer 1 interneurons, such as neurogliaform and stalked-bouton cells; the latter two groups showing no difference. The positive allosteric modulators of GABAARs allopregnanolone and DS2 also induced larger current shifts in the rosehip and layer 2-3 innervating cells, consistent with higher expression of the δ subunit of the GABAAR in these neurons. We have also examined how patient parameters, such as age, seizures, type of cancer and anticonvulsant treatment may alter tonic inhibitory currents in human neurons. The cell type-specific differences in tonic inhibitory currents could potentially be used to selectively modulate cortical circuitry.SIGNIFICANCE STATEMENT Tonic currents through GABAA receptors (GABAARs) are a potential therapeutic target for a number of neurologic and psychiatric conditions. Here, we show that these currents in human cerebral cortical GABAergic neurons display cell type-specific differences in their amplitudes which implies differential modulation of their excitability. Additionally, we examine whether the amplitudes of the tonic currents measured in our study show any differences between patient populations, finding some evidence that age, seizures, type of cancer, and anticonvulsant treatment may alter tonic inhibition in human tissue. These results advance our understanding of how pathology affects neuronal excitability and could potentially be used to selectively modulate cortical circuitry.
Collapse
Affiliation(s)
- Martin Field
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Istvan P Lukacs
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Emily Hunter
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| | - Laurent Livermore
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
39
|
Ibrahim LA, Huang S, Fernandez-Otero M, Sherer M, Qiu Y, Vemuri S, Xu Q, Machold R, Pouchelon G, Rudy B, Fishell G. Bottom-up inputs are required for establishment of top-down connectivity onto cortical layer 1 neurogliaform cells. Neuron 2021; 109:3473-3485.e5. [PMID: 34478630 PMCID: PMC9316418 DOI: 10.1016/j.neuron.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Abstract
Higher-order projections to sensory cortical areas converge on layer 1 (L1), the primary site for integration of top-down information via the apical dendrites of pyramidal neurons and L1 GABAergic interneurons. Here we investigated the contribution of early thalamic inputs onto L1 interneurons for establishment of top-down connectivity in the primary visual cortex. We find that bottom-up thalamic inputs predominate during L1 development and preferentially target neurogliaform cells. We show that these projections are critical for the subsequent strengthening of top-down inputs from the anterior cingulate cortex onto L1 neurogliaform cells. Sensory deprivation or selective removal of thalamic afferents blocked this phenomenon. Although early activation of the anterior cingulate cortex resulted in premature strengthening of these top-down afferents, this was dependent on thalamic inputs. Our results demonstrate that proper establishment of top-down connectivity in the visual cortex depends critically on bottom-up inputs from the thalamus during postnatal development.
Collapse
Affiliation(s)
- Leena Ali Ibrahim
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA; King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Shuhan Huang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Marian Fernandez-Otero
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Mia Sherer
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA, USA; Northeastern University, Boston, MA, USA
| | - Yanjie Qiu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | | | - Qing Xu
- Center for Genomics & Systems Biology, New York University, Abu Dhabi, UAE
| | - Robert Machold
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Gabrielle Pouchelon
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA, USA
| | - Bernardo Rudy
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA.
| |
Collapse
|
40
|
Shcherbakova DM. Near-infrared and far-red genetically encoded indicators of neuronal activity. J Neurosci Methods 2021; 362:109314. [PMID: 34375713 PMCID: PMC8403644 DOI: 10.1016/j.jneumeth.2021.109314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/15/2021] [Accepted: 08/05/2021] [Indexed: 12/18/2022]
Abstract
Genetically encoded fluorescent indicators of neuronal activity are ultimately developed to dissect functions of neuronal ensembles during behavior in living animals. Recent development of near-infrared shifted calcium and voltage indicators moved us closer to this goal and enabled crosstalk-free combination with blue light-controlled optogenetic tools for all-optical control and readout. Here I discuss designs of recent near-infrared and far-red calcium and voltage indicators, compare their properties and performance, and overview their applications to spectral multiplexing and in vivo imaging. I also provide perspectives for further development.
Collapse
Affiliation(s)
- Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
41
|
Ter Wal M, Tiesinga PHE. Comprehensive characterization of oscillatory signatures in a model circuit with PV- and SOM-expressing interneurons. BIOLOGICAL CYBERNETICS 2021; 115:487-517. [PMID: 34628539 PMCID: PMC8551150 DOI: 10.1007/s00422-021-00894-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/06/2021] [Indexed: 05/06/2023]
Abstract
Neural circuits contain a wide variety of interneuron types, which differ in their biophysical properties and connectivity patterns. The two most common interneuron types, parvalbumin-expressing and somatostatin-expressing cells, have been shown to be differentially involved in many cognitive functions. These cell types also show different relationships with the power and phase of oscillations in local field potentials. The mechanisms that underlie the emergence of different oscillatory rhythms in neural circuits with more than one interneuron subtype, and the roles specific interneurons play in those mechanisms, are not fully understood. Here, we present a comprehensive analysis of all possible circuit motifs and input regimes that can be achieved in circuits comprised of excitatory cells, PV-like fast-spiking interneurons and SOM-like low-threshold spiking interneurons. We identify 18 unique motifs and simulate their dynamics over a range of input strengths. Using several characteristics, such as oscillation frequency, firing rates, phase of firing and burst fraction, we cluster the resulting circuit dynamics across motifs in order to identify patterns of activity and compare these patterns to behaviors that were generated in circuits with one interneuron type. In addition to the well-known PING and ING gamma oscillations and an asynchronous state, our analysis identified three oscillatory behaviors that were generated by the three-cell-type motifs only: theta-nested gamma oscillations, stable beta oscillations and theta-locked bursting behavior, which have also been observed in experiments. Our characterization provides a map to interpret experimental activity patterns and suggests pharmacological manipulations or optogenetics approaches to validate these conclusions.
Collapse
Affiliation(s)
- Marije Ter Wal
- Department of Neuroinformatics, Donders Institute, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
- School of Psychology, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Paul H E Tiesinga
- Department of Neuroinformatics, Donders Institute, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
42
|
Gutman-Wei AY, Brown SP. Mechanisms Underlying Target Selectivity for Cell Types and Subcellular Domains in Developing Neocortical Circuits. Front Neural Circuits 2021; 15:728832. [PMID: 34630048 PMCID: PMC8497978 DOI: 10.3389/fncir.2021.728832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
The cerebral cortex contains numerous neuronal cell types, distinguished by their molecular identity as well as their electrophysiological and morphological properties. Cortical function is reliant on stereotyped patterns of synaptic connectivity and synaptic function among these neuron types, but how these patterns are established during development remains poorly understood. Selective targeting not only of different cell types but also of distinct postsynaptic neuronal domains occurs in many brain circuits and is directed by multiple mechanisms. These mechanisms include the regulation of axonal and dendritic guidance and fine-scale morphogenesis of pre- and postsynaptic processes, lineage relationships, activity dependent mechanisms and intercellular molecular determinants such as transmembrane and secreted molecules, many of which have also been implicated in neurodevelopmental disorders. However, many studies of synaptic targeting have focused on circuits in which neuronal processes target different lamina, such that cell-type-biased connectivity may be confounded with mechanisms of laminar specificity. In the cerebral cortex, each cortical layer contains cell bodies and processes from intermingled neuronal cell types, an arrangement that presents a challenge for the development of target-selective synapse formation. Here, we address progress and future directions in the study of cell-type-biased synaptic targeting in the cerebral cortex. We highlight challenges to identifying developmental mechanisms generating stereotyped patterns of intracortical connectivity, recent developments in uncovering the determinants of synaptic target selection during cortical synapse formation, and current gaps in the understanding of cortical synapse specificity.
Collapse
Affiliation(s)
- Alan Y. Gutman-Wei
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Solange P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
43
|
Schulz JM, Kay JW, Bischofberger J, Larkum ME. GABA B Receptor-Mediated Regulation of Dendro-Somatic Synergy in Layer 5 Pyramidal Neurons. Front Cell Neurosci 2021; 15:718413. [PMID: 34512268 PMCID: PMC8425515 DOI: 10.3389/fncel.2021.718413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
Synergistic interactions between independent synaptic input streams may fundamentally change the action potential (AP) output. Using partial information decomposition, we demonstrate here a substantial contribution of synergy between somatic and apical dendritic inputs to the information in the AP output of L5b pyramidal neurons. Activation of dendritic GABAB receptors (GABABRs), known to decrease APs in vivo, potently decreased synergy and increased somatic control of AP output. Synergy was the result of the voltage-dependence of the transfer resistance between dendrite and soma, which showed a two-fold increase per 28.7 mV dendritic depolarization. GIRK channels activated by dendritic GABABRs decreased voltage-dependent transfer resistances and AP output. In contrast, inhibition of dendritic L-type Ca2+ channels prevented high-frequency bursts of APs, but did not affect dendro-somatic synergy. Finally, we show that NDNF-positive neurogliaform cells effectively control somatic AP via synaptic activation of dendritic GIRK channels. These results uncover a novel inhibitory mechanism that powerfully gates cellular information flow in the cortex.
Collapse
Affiliation(s)
- Jan M Schulz
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jim W Kay
- Department of Statistics, University of Glasgow, Glasgow, United Kingdom
| | | | - Matthew E Larkum
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
44
|
The Impact of SST and PV Interneurons on Nonlinear Synaptic Integration in the Neocortex. eNeuro 2021; 8:ENEURO.0235-21.2021. [PMID: 34400470 PMCID: PMC8425965 DOI: 10.1523/eneuro.0235-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 01/19/2023] Open
Abstract
Excitatory synaptic inputs arriving at the dendrites of a neuron can engage active mechanisms that nonlinearly amplify the depolarizing currents. This supralinear synaptic integration is subject to modulation by inhibition. However, the specific rules by which different subtypes of interneurons affect the modulation have remained largely elusive. To examine how inhibition influences active synaptic integration, we optogenetically manipulated the activity of the following two subtypes of interneurons: dendrite-targeting somatostatin-expressing (SST) interneurons; and perisomatic-targeting parvalbumin-expressing (PV) interneurons. In acute slices of mouse primary visual cortex, electrical stimulation evoked nonlinear synaptic integration that depended on NMDA receptors. Optogenetic activation of SST interneurons in conjunction with electrical stimulation resulted in predominantly divisive inhibitory gain control, reducing the magnitude of the supralinear response without affecting its threshold. PV interneuron activation, on the other hand, had a minimal effect on the supralinear response. Together, these results delineate the roles for SST and PV neurons in active synaptic integration. Differential effects of inhibition by SST and PV interneurons likely increase the computational capacity of the pyramidal neurons in modulating the nonlinear integration of synaptic output.
Collapse
|
45
|
Cohen-Kashi Malina K, Tsivourakis E, Kushinsky D, Apelblat D, Shtiglitz S, Zohar E, Sokoletsky M, Tasaka GI, Mizrahi A, Lampl I, Spiegel I. NDNF interneurons in layer 1 gain-modulate whole cortical columns according to an animal's behavioral state. Neuron 2021; 109:2150-2164.e5. [PMID: 34038743 DOI: 10.1016/j.neuron.2021.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 01/28/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Processing of sensory information in neural circuits is modulated by an animal's behavioral state, but the underlying cellular mechanisms are not well understood. Focusing on the mouse visual cortex, here we analyze the role of GABAergic interneurons that are located in layer 1 and express Ndnf (L1 NDNF INs) in the state-dependent control over sensory processing. We find that the ongoing and sensory-evoked activity of L1 NDNF INs is strongly enhanced when an animal is aroused and that L1 NDNF INs gain-modulate local excitatory neurons selectively during high-arousal states by inhibiting their apical dendrites while disinhibiting their somata via Parvalbumin-expressing interneurons. Because active NDNF INs are evenly spread in L1 and can affect excitatory neurons across all cortical layers, this indicates that the state-dependent activation of L1 NDNF INs and the subsequent shift of inhibition in excitatory neurons toward their apical dendrites gain-modulate sensory processing in whole cortical columns.
Collapse
Affiliation(s)
| | | | - Dahlia Kushinsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Apelblat
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Stav Shtiglitz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Zohar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Sokoletsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Gen-Ichi Tasaka
- Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Lampl
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ivo Spiegel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
46
|
Bucher EA, Collins JM, King AE, Vickers JC, Kirkcaldie MTK. Coherence and cognition in the cortex: the fundamental role of parvalbumin, myelin, and the perineuronal net. Brain Struct Funct 2021; 226:2041-2055. [PMID: 34175994 DOI: 10.1007/s00429-021-02327-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
The calcium binding protein parvalbumin is expressed in interneurons of two main morphologies, the basket and chandelier cells, which target perisomatic domains on principal cells and are extensively interconnected in laminar networks by synapses and gap junctions. Beyond its utility as a convenient cellular marker, parvalbumin is an unambiguous identifier of the key role that these interneurons play in the fundamental functions of the cortex. They provide a temporal framework for principal cell activity by propagating gamma oscillation, providing coherence for cortical information processing and the basis for timing-dependent plasticity processes. As these parvalbumin networks mature, they are physically and functionally stabilised by axonal myelination and development of the extracellular matrix structure termed the perineuronal net. This maturation correlates with the emergence of high-speed, highly energetic activity and provides a coherent foundation for the unique ability of the cortex to cross-correlate activity across sensory modes and internal representations.
Collapse
Affiliation(s)
- Ellie A Bucher
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, TAS, 7001, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, TAS, 7001, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, TAS, 7001, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, TAS, 7001, Australia
| | - Matthew T K Kirkcaldie
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, TAS, 7001, Australia.
| |
Collapse
|
47
|
Huang Y, Jiang H, Zheng Q, Fok AHK, Li X, Lau CG, Lai CSW. Environmental enrichment or selective activation of parvalbumin-expressing interneurons ameliorates synaptic and behavioral deficits in animal models with schizophrenia-like behaviors during adolescence. Mol Psychiatry 2021; 26:2533-2552. [PMID: 33473150 DOI: 10.1038/s41380-020-01005-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Synaptic deficit-induced excitation and inhibition (E/I) imbalance have been implicated in the pathogenesis of schizophrenia. Using in vivo two-photon microscopy, we examined the dynamic plasticity of dendritic spines of pyramidal neurons (PNs) and "en passant" axonal bouton of parvalbumin-expressing interneurons (PVINs) in the frontal association (FrA) cortex in two adolescent mouse models with schizophrenia-like behaviors. Simultaneous imaging of PN dendritic spines and PV axonal boutons showed that repeated exposure to N-methyl-D-aspartate receptor (NMDAR) antagonist MK801 during adolescence disrupted the normal developmental balance of excitatory and inhibitory synaptic structures. This MK801-induced structural E/I imbalance significantly correlated with animal recognition memory deficits and could be ameliorated by environmental enrichment (EE). In addition, selective chemogenetic activation of PVINs in the FrA mimicked the effects of EE on both synaptic plasticity and animal behavior, while selective inhibition of PVIN abolished EE's beneficial effects. Electrophysiological recordings showed that chronic MK801 treatment significantly suppressed the frequency of mEPSC/mIPSC ratio of layer (L) 2/3 PNs and significantly reduced the resting membrane potential of PVINs, the latter was rescued by selective activation of PVINs. Such manipulations of PVINs also showed similar effects in PV-Cre; ErbB4fl/fl animal model with schizophrenia-like behaviors. EE or selective activation of PVINs in the FrA restored behavioral deficits and structural E/I imbalance in adolescent PV-Cre; ErbB4fl/fl mice, while selective inhibition of PVINs abolished EE's beneficial effects. Our findings suggest that the PVIN activity in the FrA plays a crucial role in regulating excitatory and inhibitory synaptic structural dynamics and animal behaviors, which may provide a potential therapeutic target for schizophrenia treatment.
Collapse
Affiliation(s)
- Yuhua Huang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hehai Jiang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Qiyu Zheng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Albert Hiu Ka Fok
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaoyang Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - C Geoffrey Lau
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong. .,State Key Laboratory of Cognitive and Brain Research, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
48
|
Pang JJ, Gao F, Wu SM. Generators of Pressure-Evoked Currents in Vertebrate Outer Retinal Neurons. Cells 2021; 10:cells10061288. [PMID: 34067375 PMCID: PMC8224636 DOI: 10.3390/cells10061288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: High-tension glaucoma damages the peripheral vision dominated by rods. How mechanosensitive channels (MSCs) in the outer retina mediate pressure responses is unclear. (2) Methods: Immunocytochemistry, patch clamp, and channel fluorescence were used to study MSCs in salamander photoreceptors. (3) Results: Immunoreactivity of transient receptor potential channel vanilloid 4 (TRPV4) was revealed in the outer plexiform layer, K+ channel TRAAK in the photoreceptor outer segment (OS), and TRPV2 in some rod OS disks. Pressure on the rod inner segment evoked sustained currents of three components: (A) the inward current at <-50 mV (Ipi), sensitive to Co2+; (B) leak outward current at ≥-80 mV (Ipo), sensitive to intracellular Cs+ and ruthenium red; and (C) cation current reversed at ~10 mV (Ipc). Hypotonicity induced slow currents like Ipc. Environmental pressure and light increased the FM 1-43-identified open MSCs in the OS membrane, while pressure on the OS with internal Cs+ closed a Ca2+-dependent current reversed at ~0 mV. Rod photocurrents were thermosensitive and affected by MSC blockers. (4) Conclusions: Rods possess depolarizing (TRPV) and hyperpolarizing (K+) MSCs, which mediate mutually compensating currents between -50 mV and 10 mV, serve as an electrical cushion to minimize the impact of ocular mechanical stress.
Collapse
|
49
|
Kullander K, Topolnik L. Cortical disinhibitory circuits: cell types, connectivity and function. Trends Neurosci 2021; 44:643-657. [PMID: 34006387 DOI: 10.1016/j.tins.2021.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
The concept of a dynamic excitation/inhibition balance tuned by circuit disinhibition, which can shape information flow during complex behavioral tasks, has arisen as an important and conserved information-processing motif. In cortical circuits, different subtypes of GABAergic inhibitory interneurons are connected to each other, offering an anatomical foundation for disinhibitory processes. Moreover, a subpopulation of GABAergic cells that express vasoactive intestinal polypeptide (VIP) preferentially innervates inhibitory interneurons, highlighting their central role in disinhibitory modulation. We discuss inhibitory neuron subtypes involved in disinhibition, with a focus on local circuits and long-range synaptic connections that drive disinhibitory function. We highlight multiple layers of disinhibition across cortical circuits that regulate behavior and serve to maintain an excitation/inhibition balance.
Collapse
Affiliation(s)
- Klas Kullander
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology, and Bioinformatics, Laval University, Québec, QC, Canada; Neuroscience Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec (CRCHUQ), Laval University, Québec, QC, Canada.
| |
Collapse
|
50
|
Domhof JWM, Tiesinga PHE. Flexible Frequency Switching in Adult Mouse Visual Cortex Is Mediated by Competition Between Parvalbumin and Somatostatin Expressing Interneurons. Neural Comput 2021; 33:926-966. [PMID: 33513330 DOI: 10.1162/neco_a_01369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 11/09/2020] [Indexed: 11/04/2022]
Abstract
Neuronal networks in rodent primary visual cortex (V1) can generate oscillations in different frequency bands depending on the network state and the level of visual stimulation. High-frequency gamma rhythms, for example, dominate the network's spontaneous activity in adult mice but are attenuated upon visual stimulation, during which the network switches to the beta band instead. The spontaneous local field potential (LFP) of juvenile mouse V1, however, mainly contains beta rhythms and presenting a stimulus does not elicit drastic changes in network oscillations. We study, in a spiking neuron network model, the mechanism in adult mice allowing for flexible switches between multiple frequency bands and contrast this to the network structure in juvenile mice that lack this flexibility. The model comprises excitatory pyramidal cells (PCs) and two types of interneurons: the parvalbumin-expressing (PV) and the somatostatinexpressing (SOM) interneuron. In accordance with experimental findings, the pyramidal-PV and pyramidal-SOM cell subnetworks are associated with gamma and beta oscillations, respectively. In our model, they are both generated via a pyramidal-interneuron gamma (PING) mechanism, wherein the PCs drive the oscillations. Furthermore, we demonstrate that large but not small visual stimulation activates SOM cells, which shift the frequency of resting-state gamma oscillations produced by the pyramidal-PV cell subnetwork so that beta rhythms emerge. Finally, we show that this behavior is obtained for only a subset of PV and SOM interneuron projection strengths, indicating that their influence on the PCs should be balanced so that they can compete for oscillatory control of the PCs. In sum, we propose a mechanism by which visual beta rhythms can emerge from spontaneous gamma oscillations in a network model of the mouse V1; for this mechanism to reproduce V1 dynamics in adult mice, balance between the effective strengths of PV and SOM cells is required.
Collapse
Affiliation(s)
- Justin W M Domhof
- Donders Centre for Neuroscience, Radboud University, 6500 GL Nijmegen, The Netherlands,
| | - Paul H E Tiesinga
- Donders Centre for Neuroscience, Radboud University, 6500 GL Nijmegen, The Netherlands,
| |
Collapse
|