1
|
Croft M, Salek-Ardakani S, Ware CF. Targeting the TNF and TNFR superfamilies in autoimmune disease and cancer. Nat Rev Drug Discov 2024:10.1038/s41573-024-01053-9. [PMID: 39448880 DOI: 10.1038/s41573-024-01053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/26/2024]
Abstract
The first anti-tumour necrosis factor (TNF) monoclonal antibody, infliximab (Remicade), celebrated its 25th anniversary of FDA approval in 2023. Inhibitors of TNF have since proved clinically efficacious at reducing inflammation associated with several autoimmune diseases, including rheumatoid arthritis, psoriasis and Crohn's disease. The success of TNF inhibitors raised unrealistic expectations for targeting other members of the TNF superfamily (TNFSF) of ligands and their receptors, with difficulties in part related to their more limited, variable expression and potential redundancy. However, there has been a resurgence of interest and investment, with many of these cytokines or their cognate receptors now under clinical investigation as targets for modulation of autoimmune and inflammatory diseases, as well as cancer. This Review assesses TNFSF-targeted biologics currently in clinical development for immune system-related diseases, highlighting ongoing challenges and future directions.
Collapse
Affiliation(s)
- Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | | | - Carl F Ware
- Laboratory of Molecular Immunology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Mozooni Z, Ghadyani R, Soleimani S, Ahangar ER, Sheikhpour M, Haghighi M, Motallebi M, Movafagh A, Aghaei-Zarch SM. TNF-α, and TNFRs in gastrointestinal cancers. Pathol Res Pract 2024; 263:155665. [PMID: 39442225 DOI: 10.1016/j.prp.2024.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Tumor necrosis factor-alpha (TNF-α) is a multifunctional cytokine that plays a role in the hemostasis of the immune system, inflammation, and cell proliferation. However, it can also have a dark side as it is involved in pro-inflammatory cytokines and pathological processes such as cell growth and death, autoimmunity, and inflammation, leading to a wide range of chronic inflammatory diseases, including digestive cancer. TNF-alpha binds to two distinct receptors, TNFRI and TNFRII. Upon binding of the ligand to these receptors, TNF receptor-associated factors (TRAFs) are recruited to the cytoplasmic receptor, triggering the activation of transcription factors such as NF-kB and Activator protein 1 (AP_1). In contrast, binding of cytokines to certain family members, such as TNF RI and Fas Ligand (Fas L), leads to the secretion and initiation of apoptosis. Gastrointestinal malignancies are among the most common types of cancer globally. Despite extensive research, the exact cause of these tumors remains a mystery. Unfortunately, they often have a poor prognosis and are often detected at a late stage. The global incidence of gastrointestinal cancers, including those of the stomach, esophagus, colon, liver, and pancreas, is on the rise, leading to a surge in both incidence and mortality. Growth factors and cytokines, which are signaling molecules found in the tumor microenvironment, are thought to be major contributors to the development and metastasis of these cancers. In this review, we explored the role of TNF-α, and its receptors in the development of digestive cancers, including its signaling pathways and functions.
Collapse
Affiliation(s)
- Zahra Mozooni
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rezvaneh Ghadyani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahrzad Soleimani
- Department of Molecular Genetics, Institute of Basic Science, Shahrekord Islamic Azad University, Iran
| | | | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mehrdad Haghighi
- Infectious Disease and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Motallebi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Movafagh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ennis CS, Seen M, Chen A, Kang H, Ilinski A, Mahdaviani K, Ko N, Monti S, Denis GV. Plasma exosomes from individuals with type 2 diabetes drive breast cancer aggression in patient-derived organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612950. [PMID: 39345362 PMCID: PMC11429695 DOI: 10.1101/2024.09.13.612950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Women with obesity-driven diabetes are predisposed to more aggressive breast cancers. However, patient metabolic status does not fully inform the current standard of care. We previously identified plasma exosomes as functionally critical actors in intercellular communication and drivers of tumor progression. Here, we generated patient-derived organoids (PDOs) from breast tumor resections to model signaling within the tumor microenvironment (TME). Novel techniques and a short (1-week) culture preserved native tumor-infiltrating lymphocytes for the first time in breast tumor PDOs. After 3-day exosome treatment, we measured the impact of exosomal signaling on PDOs via single-cell RNA sequencing. Exosomes derived from Type 2 diabetic patient plasma significantly upregulated pathways associated with epithelial-to-mesenchymal transition, invasiveness, and cancer stemness, compared to non-diabetic exosome controls. Intratumoral heterogeneity and immune evasion increased in the diabetic context, consistent with enhanced tumor aggressiveness and metastatic potential of these PDOs. Our model of systemic metabolic dysregulation and perturbed transcriptional networks enhances understanding of dynamic interactions within the TME in obesity-driven diabetes and offers new insights into novel exosomal communication.
Collapse
|
4
|
Guttman-Yassky E, Croft M, Geng B, Rynkiewicz N, Lucchesi D, Peakman M, van Krinks C, Valdecantos W, Xing H, Weidinger S. The role of OX40 ligand/OX40 axis signalling in atopic dermatitis. Br J Dermatol 2024; 191:488-496. [PMID: 38836560 DOI: 10.1093/bjd/ljae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Atopic dermatitis (AD) is a heterogeneous inflammatory condition involving multiple immune pathways mediated by pathogenic T cells. OX40 ligand (OX40L) and OX40 are costimulatory immune checkpoint molecules that regulate effector and memory T-cell activity and promote sustained immune responses in multiple immunological pathways, including T helper (Th)2, Th1, Th17 and Th22. As such, OX40L/OX40 signalling between antigen-presenting cells (APCs) and activated T cells postantigen recognition promotes pathogenic T-cell proliferation and survival. Under inflammatory conditions, OX40L is upregulated on APCs, enhancing the magnitude of antigen-specific T-cell responses and secretion of proinflammatory cytokines. In AD, OX40L/OX40 signalling contributes to the amplification and chronic persistence of T-cell-mediated inflammation. Recent therapeutic success in clinical trials has highlighted the importance of the OX40L/OX40 axis as a promising target for the treatment of AD. Here, we discuss the many factors that are involved in the expression of OX40L and OX40, including the cytokine milieu, antigen presentation, the inflammatory environment in AD, and the therapeutic direction influenced by this costimulatory pathway.
Collapse
Affiliation(s)
- Emma Guttman-Yassky
- Departments of Dermatology and Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Michael Croft
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Bob Geng
- Department of Allergy and Immunology, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
5
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024. [PMID: 39248154 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A D King
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Yin Z(S, Wang Z. Strategies for engineering oncolytic viruses to enhance cancer immunotherapy. Front Pharmacol 2024; 15:1450203. [PMID: 39309012 PMCID: PMC11413971 DOI: 10.3389/fphar.2024.1450203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is the predominant form of lung cancer and is characterized by rapid metastasis and high mortality, presenting a challenge for early-stage treatment modalities. The heterogeneity of NSCLC's tumor microenvironment (TME) significantly influences the efficacy of anti-PD-1 immune checkpoint inhibitors (ICIs) therapy, leading to varied patient responses. This review characterized different strains of oncolytic viruses in NSCLC and the different gene edits in pre-existing oncolytic viruses. This study also aimed to provide strategies to enhance anti-PD-1 therapy in NSCLC by engineering oncolytic viruses (OVs). This study offers insights into the genomic adaptations necessary for OVs targeting NSCLC, identify genetic determinants of anti-PD-1 response variability, and propose genomic edits to bolster therapy effectiveness. The primary goal of this study is to present a theoretically designed OV with a detailed genomic framework capable of enhancing the response to anti-PD-1 therapy, thereby advancing the field of cancer immunotherapy.
Collapse
Affiliation(s)
| | - Zhengfeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Rus Bakarurraini NAA, Kamarudin AA, Jamal R, Abu N. Engineered T cells for Colorectal Cancer. Immunotherapy 2024; 16:987-998. [PMID: 39229803 PMCID: PMC11485792 DOI: 10.1080/1750743x.2024.2391733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Colorectal cancer (CRC) is a major contributor to global cancer incidence and mortality. Conventional treatments have limitations; hence, innovative approaches are imperative. Recent advancements in cancer research have led to the development of personalized targeted therapies and immunotherapies. Immunotherapy, in particular, T cell-based therapies, exhibited to be promising in enhancing cancer treatment outcomes. This review focuses on the landscape of engineered T cells as a potential option for the treatment of CRC. It highlights the approaches, challenges and current advancements in this field. As the understanding of molecular mechanisms increases, engineered T cells hold great potential in revolutionizing cancer treatment. To fully explore their safety efficacy in improving patient outcomes, further research and clinical trials are necessary.
Collapse
Affiliation(s)
| | - Ammar Akram Kamarudin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Jiang W, Li X, Zhang Y, Zhou W. Natural Compounds for the Treatment of Acute Pancreatitis: Novel Anti-Inflammatory Therapies. Biomolecules 2024; 14:1101. [PMID: 39334867 PMCID: PMC11430608 DOI: 10.3390/biom14091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/11/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Acute pancreatitis remains a serious public health problem, and the burden of acute pancreatitis is increasing. With significant morbidity and serious complications, appropriate and effective therapies are critical. Great progress has been made in understanding the pathophysiology of acute pancreatitis over the past two decades. However, specific drugs targeting key molecules and pathways involved in acute pancreatitis still require further study. Natural compounds extracted from plants have a variety of biological activities and can inhibit inflammation and oxidative stress in acute pancreatitis by blocking several signaling pathways, such as the nuclear factor kappa-B and mitogen-activated protein kinase pathways. In this article, we review the therapeutic effects of various types of phytochemicals on acute pancreatitis and discuss the mechanism of action of these natural compounds in acute pancreatitis, aiming to provide clearer insights into the treatment of acute pancreatitis.
Collapse
Affiliation(s)
- Wenkai Jiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (W.J.); (X.L.)
| | - Xiao Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (W.J.); (X.L.)
| | - Yi Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730030, China;
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (W.J.); (X.L.)
| |
Collapse
|
9
|
Mattos Pereira V, Thakar A, Nair S. Targeting iRhom2/ADAM17 attenuates COVID-19-induced cytokine release from cultured lung epithelial cells. Biochem Biophys Rep 2024; 39:101811. [PMID: 39253056 PMCID: PMC11382212 DOI: 10.1016/j.bbrep.2024.101811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, continues to pose a significant global health challenge, with acute respiratory distress syndrome (ARDS) being a major cause of mortality. Excessive cytokine release (cytokine storm) has been causally related to COVID-19-associated ARDS. While TNF-α inhibitors have shown potential in reducing inflammation, their broad effects on TNF-α signaling, including both pro- and anti-inflammatory pathways, present significant challenges and side effects in clinical use. Therefore, more precise therapeutic targets are urgently needed. ADAM17 is a key enzyme driving cytokine release, but its broad presence complicates direct inhibition. Targeting iRhom2, a regulator specific to immune cells that controls ADAM17's activity, offers a more focused and effective approach to reducing cytokine release. In this study, we hypothesized that targeted inhibition of ADAM-17/iRhom2 attenuates COVID-19-induced cytokine release in cultured lung epithelial cells. Human primary bronchial/tracheal epithelial cells challenged with COVID-19 pseudo-viral particles resulted in elevated cytokine release, which was attenuated following siRNA-mediated silencing of ADAM17 and iRhom2. Targeting ADAM-17/iRhom2 pathway may thus represent a strategy to overcome the COVID-19-associated ARDS.
Collapse
Affiliation(s)
- Vitoria Mattos Pereira
- University of Wyoming, School of Pharmacy and the Biomedical Sciences Interdisciplinary Graduate Program, Laramie, WY, 82071, USA
| | - Amit Thakar
- University of Wyoming, School of Pharmacy and the Biomedical Sciences Interdisciplinary Graduate Program, Laramie, WY, 82071, USA
| | - Sreejayan Nair
- University of Wyoming, School of Pharmacy and the Biomedical Sciences Interdisciplinary Graduate Program, Laramie, WY, 82071, USA
| |
Collapse
|
10
|
Liu L, Chen F, Li S, Yang T, Chen S, Zhou Y, Lin Z, Zeng G, Feng P, Shu HB, Zhou Q, Ding K, Chen L. Human/mouse CD137 agonist, JNU-0921, effectively shrinks tumors through enhancing the cytotoxicity of CD8 + T cells in cis and in trans. SCIENCE ADVANCES 2024; 10:eadp8647. [PMID: 39178257 PMCID: PMC11343023 DOI: 10.1126/sciadv.adp8647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Agonistic antibodies against CD137 have been demonstrated to completely regress established tumors through activating T cell immunity. Unfortunately, current CD137 antibodies failed to benefit patients with cancer. Moreover, their antitumor mechanisms in vivo remain to be determined. Here, we report the development of a small molecular CD137 agonist, JNU-0921. JNU-0921 effectively activates both human and mouse CD137 through direct binding their extracellular domains to induce oligomerization and signaling and effectively shrinks tumors in vivo. Mechanistically, JNU-0921 enhances effector and memory function of cytotoxic CD8+ T cells (CTLs) and alleviates their exhaustion. JNU-0921 also skews polarization of helper T cells toward T helper 1 type and enhances their activity to boost CTL function. Meanwhile, JNU-0921 attenuates the inhibitory function of regulatory T cells on CTLs. Our current work shows that JNU-0921 shrinks tumors by enhancing the cytotoxicity of CTLs in cis and in trans and sheds light on strategy for developing CD137 small molecular agonists.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fenghua Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shan Li
- Hangzhou Institute of Medicine Chinese Academy of Sciences, Hangzhou 310018 Zhejiang, China
| | - Tong Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuzhen Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zejian Lin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guandi Zeng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pengju Feng
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou, Guangzhou 510632, China
| | - Hong-Bing Shu
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Qian Zhou
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Ansari AW, Jayakumar MN, Ahmad F, Venkatachalam T, Salameh L, Unnikannan H, Raheed T, Mohammed AK, Mahboub B, Al-Ramadi BK, Hamid Q, Steinhoff M, Hamoudi R. Azithromycin targets the CD27 pathway to modulate CD27hi T-lymphocyte expansion and type-1 effector phenotype. Front Immunol 2024; 15:1447625. [PMID: 39211048 PMCID: PMC11357905 DOI: 10.3389/fimmu.2024.1447625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Macrolide antibiotic azithromycin is widely used in clinical practice to treat respiratory tract infections and inflammatory diseases. However, its mechanism of action is not fully understood. Given the involvement of the CD27 pathway in the pathophysiology of various T-lymphocyte-mediated inflammatory, autoimmune, and lymphoproliferative diseases, we examined the impact of AZM on CD27 regulation and potential consequences on CD4+ and CD8+ T-cell phenotypes. Using cellular immunology approaches on healthy donors' peripheral blood mononuclear cells, we demonstrate AZM-mediated downregulation of surface CD27 expression as well as its extracellular release as soluble CD27. Notably, AZM-exposed CD27high (hi) cells were defective in their ability to expand compared to CD27intermediate (Int) and CD27low (lo) subsets. The defective CD27hi subset expansion was found to be associated with impaired cell proliferation and cell division. At the molecular level, the CD27hi subset exhibited lower mTOR activity than other subsets. Functionally, AZM treatment resulted in marked depletion of helper CD4+ (Th1) and cytotoxic CD8+ T-lymphocyte (Tc1)-associated CXCR3+CD27hi effector cells and inhibition of inflammatory cytokine IFN-γ production. These findings provide mechanistic insights on immunomodulatory features of AZM on T-lymphocyte by altering the CD27 pathway. From a clinical perspective, this study also sheds light on potential clinical benefits observed in patients on prophylactic AZM regimens against various respiratory diseases and opens avenues for future adjunct therapy against Th1- and Tc1-dominated inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Abdul Wahid Ansari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Manju Nidagodu Jayakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Fareed Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Thenmozhi Venkatachalam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Laila Salameh
- Department of Pulmonary Medicine, Rashid Hospital, Dubai, United Arab Emirates
| | - Hema Unnikannan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Thesni Raheed
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Khader Mohammed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bassam Mahboub
- Department of Pulmonary Medicine, Rashid Hospital, Dubai, United Arab Emirates
| | - Basel K. Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Qutayba Hamid
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Martin Steinhoff
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- Biomedically Informed Artificial Intelligence Laboratory (BIMAI-Lab), University of Sharjah, Sharjah, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
12
|
Gao M, Ding W, Wang Y, Li B, Huang Z, Liang N, Wei Z. Quantitatively Evaluating Interactions between Patient-Derived Organoids and Autologous Immune Cells by Microfluidic Chip. Anal Chem 2024. [PMID: 39093612 DOI: 10.1021/acs.analchem.4c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The coculture of patient-derived tumor organoids (PDOs) and autologous immune cells has been considered as a useful ex vivo surrogate of in vivo tumor-immune environment. However, the immune interactions between PDOs and autologous immune cells, including immune-mediated killing behaviors and immune-related cytokine variations, have yet to be quantitatively evaluated. This study presents a microfluidic chip for quantifying interactions between PDOs and autologous immune cells (IOI-Chip). A baffle-well structure is designed to ensure efficient trapping, long-term coculturing, and in situ fluorescent observation of a limited amount of precious PDOS and autologous immune cells, while a microbeads-based immunofluorescence assay is designed to simultaneously quantify multiple kinds of immune-related cytokines in situ. The PDO apoptosis and 2 main immune-related cytokines, TNF-α and IFN-γ, are simultaneously quantified using samples from a lung cancer patient. This study provides, for the first time, a capability to quantify interactions between PDOs and autologous immune cells at 2 levels, the immune-mediated killing behavior, and multiple immune-related cytokines, laying the technical foundation of ex vivo assessment of patient immune response.
Collapse
Affiliation(s)
- Mingyao Gao
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Wenyong Ding
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhicheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zewen Wei
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
13
|
Yi L, Yan J, Wei P, Long S, Wang X, Gu M, Yang B, Chen Y, Ma S, Wang C, Zheng M, Sun Q, Shi Y, Wang G. The levels of soluble CD137 are increased in tuberculosis patients and associated with disease severity and prognosis. Eur J Immunol 2024; 54:e2350796. [PMID: 38922884 DOI: 10.1002/eji.202350796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/28/2024]
Abstract
Tuberculosis (TB) was the leading cause of death from a single infectious agent before the coronavirus pandemic. Therefore, it is important to search for severity biomarkers and devise appropriate therapies. A total of 139 pulmonary TB (PTB) patients and 80 healthy controls (HCs) were recruited for plasma soluble CD137 (sCD137) detection through ELISA. Moreover, pleural effusion sCD137 levels were measured in 85 TB patients and 36 untreated lung cancer patients. The plasma cytokine levels in 64 patients with PTB and blood immune cell subpopulations in 68 patients with PTB were analysed via flow cytometry. Blood sCD137 levels were higher in PTB patients (p = 0.012) and correlated with disease severity (p = 0.0056). The level of sCD137 in tuberculous pleurisy effusion (TPE) was markedly higher than that in malignant pleurisy effusion (p = 0.018). Several blood cytokines, such as IL-6 (p = 0.0147), IL-8 (p = 0.0477), IP-10 (p ≤ 0.0001) and MCP-1 (p = 0.0057), and some laboratory indices were significantly elevated in severe PTB (SE) patients, but the percentages of total lymphocytes (p = 0.002) and cytotoxic T cells (p = 0.036) were significantly lower in SE patients than in non-SE patients. In addition, the sCD137 level was negatively correlated with the percentage of total lymphocytes (p = 0.0008) and cytotoxic T cells (p = 0.0021), and PTB patients with higher plasma sCD137 levels had significantly shorter survival times (p = 0.0041). An increase in sCD137 is a potential biomarker for severe TB and indicates a poor prognosis.
Collapse
Affiliation(s)
- Ling Yi
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jun Yan
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Panjian Wei
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Sibo Long
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaojue Wang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Meng Gu
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Yang
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yan Chen
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shang Ma
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Chaohong Wang
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Maike Zheng
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Qing Sun
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yiheng Shi
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Guirong Wang
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Ng BD, Rajagopalan A, Kousa AI, Fischman JS, Chen S, Massa A, Elias HK, Manuele D, Galiano M, Lemarquis AL, Boardman AP, DeWolf S, Pierce J, Bogen B, James SE, van den Brink MRM. IL-18-secreting multiantigen targeting CAR T cells eliminate antigen-low myeloma in an immunocompetent mouse model. Blood 2024; 144:171-186. [PMID: 38579288 PMCID: PMC11302468 DOI: 10.1182/blood.2023022293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
ABSTRACT Multiple myeloma is a plasma cell malignancy that is currently incurable with conventional therapies. Following the success of CD19-targeted chimeric antigen receptor (CAR) T cells in leukemia and lymphoma, CAR T cells targeting B-cell maturation antigen (BCMA) more recently demonstrated impressive activity in relapsed and refractory myeloma patients. However, BCMA-directed therapy can fail due to weak expression of BCMA on myeloma cells, suggesting that novel approaches to better address this antigen-low disease may improve patient outcomes. We hypothesized that engineered secretion of the proinflammatory cytokine interleukin-18 (IL-18) and multiantigen targeting could improve CAR T-cell activity against BCMA-low myeloma. In a syngeneic murine model of myeloma, CAR T cells targeting the myeloma-associated antigens BCMA and B-cell activating factor receptor (BAFF-R) failed to eliminate myeloma when these antigens were weakly expressed, whereas IL-18-secreting CAR T cells targeting these antigens promoted myeloma clearance. IL-18-secreting CAR T cells developed an effector-like T-cell phenotype, promoted interferon-gamma production, reprogrammed the myeloma bone marrow microenvironment through type-I/II interferon signaling, and activated macrophages to mediate antimyeloma activity. Simultaneous targeting of weakly-expressed BCMA and BAFF-R with dual-CAR T cells enhanced T-cell:target-cell avidity, increased overall CAR signal strength, and stimulated antimyeloma activity. Dual-antigen targeting augmented CAR T-cell secretion of engineered IL-18 and facilitated elimination of larger myeloma burdens in vivo. Our results demonstrate that combination of engineered IL-18 secretion and multiantigen targeting can eliminate myeloma with weak antigen expression through distinct mechanisms.
Collapse
Affiliation(s)
- Brandon D. Ng
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Adhithi Rajagopalan
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anastasia I. Kousa
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Jacob S. Fischman
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - Sophia Chen
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alyssa Massa
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Harold K. Elias
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Dylan Manuele
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Michael Galiano
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andri L. Lemarquis
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexander P. Boardman
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Susan DeWolf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jonah Pierce
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY
| | | | - Scott E. James
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marcel R. M. van den Brink
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- City of Hope Comprehensive Cancer Center, Duarte, CA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY
- Department of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
15
|
Porto DM, Costa GJ, Torres LC, Casarini DE. Immune checkpoint expression as prognostic biomarker candidates in non-small cell lung carcinoma patients. J Surg Oncol 2024. [PMID: 38973141 DOI: 10.1002/jso.27763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Cancer immunotherapy has had an important role in oncologic therapeutics for patients with non-small cell lung cancer (NSCLC) using checkpoint inhibitors. We will explore the possible prognosis biomarker candidates such as: soluble OX40 (sOX40), OX40L (sOX40L), Glucocorticoid-induced tumor necrosis factor receptor family-related receptor (GITR), and their ligand (GITRL), 4-1BB or tumor necrosis factor receptor superfamily 9 (TNFRS9) and inducible T cell co-stimulator (ICOS) in peripheral blood of NSCLC patients. METHODS Fifty-eight patients were diagnosed with advanced NSCLC between January 2019 and March 2020. RESULTS High sOX40 and low s4-1BB levels in smokers compared non-smoker NSCLC patients. Lower sOX40L levels were found in the male than female (p < 0.05). High sOX40 and sGITRL in stage III compared to the stage IV (p < 0.05). With follow-up at 21.4 months, 44.1% and 91.1% were alive in the sGITRhigh and sGITRlow groups, respectively (p = 0.02), and 73.3% and 27.7% were alive in the sGITRLhigh and sGITRLlow groups, respectively (p = 0.02). At 22 months, 38.7% and 92.3% were alive in the sOX40Lhigh and sOX40Llow groups, respectively (p = 0.01). CONCLUSION sGITR, sGITRL, and sOX40L levels were potential prognostic biomarkers and could have an important role as new targets of immunotherapy in NSCLC patients. sGITR, sGITRL, sOX40L, and sOX40 levels were associated with smoking, sex, stage, and age in NSCLC.
Collapse
Affiliation(s)
- Débora Maria Porto
- Department of Clinical Research, Hospital de Câncer de Pernambuco (HCP), Recife, Brazil
- Programa de Pós-graduação em Medicina Translacional, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Guilherme Jorge Costa
- Programa de Pós-graduação em Medicina Translacional, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Translational Research Laboratory, Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Recife, Brazil
| | - Leuridan Cavalcante Torres
- Department of Clinical Research, Hospital de Câncer de Pernambuco (HCP), Recife, Brazil
- Programa de Pós-graduação em Medicina Translacional, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Translational Research Laboratory, Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Recife, Brazil
| | - Dulce Elena Casarini
- Programa de Pós-graduação em Medicina Translacional, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
16
|
Liang X, Li X, Wu R, He T, Liu F, Li L, Zhang Y, Gong S, Zhang M, Kou X, Chen T, You Y, Shen M, Wu Q, Gong C. Breaking the Tumor Chronic Inflammation Balance with a Programmable Release and Multi-Stimulation Engineering Scaffold for Potent Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401377. [PMID: 38760901 PMCID: PMC11267263 DOI: 10.1002/advs.202401377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Tumor-associated chronic inflammation severely restricts the efficacy of immunotherapy in cold tumors. Here, a programmable release hydrogel-based engineering scaffold with multi-stimulation and reactive oxygen species (ROS)-response (PHOENIX) is demonstrated to break the chronic inflammatory balance in cold tumors to induce potent immunity. PHOENIX can undergo programmable release of resiquimod and anti-OX40 under ROS. Resiquimod is first released, leading to antigen-presenting cell maturation and the transformation of myeloid-derived suppressor cells and M2 macrophages into an antitumor immune phenotype. Subsequently, anti-OX40 is transported into the tumor microenvironment, leading to effector T-cell activation and inhibition of Treg function. PHOENIX consequently breaks the chronic inflammation in the tumor microenvironment and leads to a potent immune response. In mice bearing subcutaneous triple-negative breast cancer and metastasis models, PHOENIX effectively inhibited 80% and 60% of tumor growth, respectively. Moreover, PHOENIX protected 100% of the mice against TNBC tumor rechallenge by electing a robust long-term antigen-specific immune response. An excellent inhibition and prolonged survival in PHOENIX-treated mice with colorectal cancer and melanoma is also observed. This work presents a potent therapeutic scaffold to improve immunotherapy efficiency, representing a generalizable and facile regimen for cold tumors.
Collapse
Affiliation(s)
- Xiuqi Liang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xinchao Li
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Rui Wu
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Tao He
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Furong Liu
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Lu Li
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Yi Zhang
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Songlin Gong
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Miaomiao Zhang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaorong Kou
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Tao Chen
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Yanjie You
- Department of GastroenterologyPeople's Hospital of Ningxia Hui Autonomous RegionYinchuan750002China
| | - Meiling Shen
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Qinjie Wu
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Changyang Gong
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
17
|
Wei R, Xiao S, Zhao S, Guo W, Liu Y, Mullor MDMR, Rodrìguez RA, Wei Q, Wu Y. Pan-cancer analysis of T-cell proliferation regulatory genes as potential immunotherapeutic targets. Aging (Albany NY) 2024; 16:11224-11247. [PMID: 39068665 PMCID: PMC11315386 DOI: 10.18632/aging.205977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/03/2024] [Indexed: 07/30/2024]
Abstract
T cells are the key to killing tumor cells. However, the exact mechanism of their role in cancer is not fully understood. Therefore, a comprehensive understanding of the role of T-cell proliferation regulatory genes in tumors is needed. In our study, we investigated the expression levels of genes controlling T-cell proliferation, their impact on prognosis, and their genetic variations. Additionally, we explored their associations with TMB, MSI, ESTIMATEScore, ImmuneScore, StromalScore, and immune cell infiltration. We examined the role of these genes in cancer-related pathways using GSEA. Furthermore, we calculated their activity levels across various types of cancer. Drug analysis was also conducted targeting these genes. Single-cell analysis, LASSO Cox model construction, and prognosis analysis were performed. We observed distinct expression patterns of T-cell proliferation regulatory genes across different malignant tumors. Their abnormal expression may be caused by CNA and DNA methylation. In certain cancers, they also showed complex associations with TMB and MSI. Moreover, in many tumors, they exhibited significant positive correlations with ESTIMATEScores, ImmuneScore, and StromalScore. Additionally, in most tumors, their GSVA scores were significantly positively correlated with various T-cell subtypes. GSEA analysis revealed their involvement in multiple immune pathways. Furthermore, we found that model scores were associated with patient prognosis and related to tumor malignancy progression. T-cell proliferation regulatory genes are closely associated with the tumor immune microenvironment (TIM), especially T cells. Targeting them may be an essential approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shihui Xiao
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shijian Zhao
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Kunming Medical University (Fuwai Yunnan Cardiovascular Hospital), Kunming, Yunnan 650000, China
| | - Wenliang Guo
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi 537100, China
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | | | - Raquel Alarcòn Rodrìguez
- Faculty of Health Sciences, University of Almerìa, Carretera de Sacramento, Almeria 04120, Spain
| | - Qingjun Wei
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
18
|
Prince N, Begum S, Mendez KM, Ramirez LG, Chen Y, Chen Q, Chu SH, Kachroo P, Levy O, Diray-Arce J, Palma P, Litonjua AA, Weiss ST, Kelly RS, Lasky-Su JA. Network Analysis Reveals Protein Modules Associated with Childhood Respiratory Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599044. [PMID: 38948790 PMCID: PMC11212915 DOI: 10.1101/2024.06.14.599044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background The first year of life is a period of rapid immune development that can impact health trajectories and the risk of developing respiratory-related diseases, such as asthma, recurrent infections, and eczema. However, the biology underlying subsequent disease development remains unknown. Methods Using weighted gene correlation network analysis (WGCNA), we derived modules of highly correlated immune-related proteins in plasma samples from children at age 1 year (N=294) from the Vitamin D Antenatal Asthma Reduction Trial (VDAART). We applied regression analyses to assess relationships between protein modules and development of childhood respiratory diseases up to age 6 years. We then characterized genomic, environmental, and metabolomic factors associated with modules. Results WGCNA identified four protein modules at age 1 year associated with incidence of childhood asthma and/or recurrent wheeze (Padj range: 0.02-0.03), respiratory infections (Padj range: 6.3×10-9-2.9×10-6), and eczema (Padj=0.01) by age 6 years; three modules were associated with at least one environmental exposure (Padj range: 2.8×10-10-0.03) and disrupted metabolomic pathway(s) (Padj range: 2.8×10-6-0.04). No genome-wide SNPs were identified as significant genetic risk factors for any protein module. Relationships between protein modules with clinical, environmental, and 'omic factors were temporally sensitive and could not be recapitulated in protein profiles at age 6 years. Conclusion These findings suggested protein profiles as early as age 1 year predicted development of respiratory-related diseases through age 6 and were associated with changes in pathways related to amino acid and energy metabolism. These may inform new strategies to identify vulnerable individuals based on immune protein profiling.
Collapse
Affiliation(s)
- Nicole Prince
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sofina Begum
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kevin M Mendez
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Lourdes G Ramirez
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yulu Chen
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Qingwen Chen
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Su H Chu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Joann Diray-Arce
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital at Strong, University of Rochester Medical Center, Rochester, United States
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Nitz K, Herrmann J, Lerman A, Lutgens E. Costimulatory and Coinhibitory Immune Checkpoints in Atherosclerosis: Therapeutic Targets in Atherosclerosis? JACC Basic Transl Sci 2024; 9:827-843. [PMID: 39070270 PMCID: PMC11282889 DOI: 10.1016/j.jacbts.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 07/30/2024]
Abstract
The benefits of current state-of-the-art treatments to combat atherosclerotic cardiovascular disease (ASCVD) have stagnated. Treatments are mostly based on controlling cardiovascular risk factors, especially hyperlipidemia. Although the most recent advances with PCSK-9 inhibitors support the hyperlipidemia aspect of ASCVD, several lines of experimental evidence have outlined that atherosclerosis is also driven by inflammation. In the past years, phase 1, 2, and 3 clinical trials targeting inflammation to combat ASCVD have revealed that patients do tolerate such immune therapies, show decreases in inflammatory markers, and/or have reductions in cardiovascular endpoints. However, the search for the optimal anti-inflammatory or immune-modulating strategy and the stratification of patients who would benefit from such treatments and appropriate treatment regimens to combat ASCVD is only just beginning. In this review, we focus on immune checkpoint-based therapeutics (costimulation and coinhibition), many of which are already approved by the U.S. Food and Drug Administration for the treatment of cancer or autoimmune diseases, and discuss their use as a novel immunotherapeutic strategy to treat ASCVD.
Collapse
Affiliation(s)
- Katrin Nitz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Esther Lutgens
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
20
|
Ziblat A, Horton BL, Higgs EF, Hatogai K, Martinez A, Shapiro JW, Kim DEC, Zha Y, Sweis RF, Gajewski TF. Batf3 + DCs and the 4-1BB/4-1BBL axis are required at the effector phase in the tumor microenvironment for PD-1/PD-L1 blockade efficacy. Cell Rep 2024; 43:114141. [PMID: 38656869 PMCID: PMC11229087 DOI: 10.1016/j.celrep.2024.114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The cellular source of positive signals that reinvigorate T cells within the tumor microenvironment (TME) for the therapeutic efficacy of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade has not been clearly defined. We now show that Batf3-lineage dendritic cells (DCs) are essential in this process. Flow cytometric analysis, gene-targeted mice, and blocking antibody studies revealed that 4-1BBL is a major positive co-stimulatory signal provided by these DCs within the TME that translates to CD8+ T cell functional reinvigoration and tumor regression. Immunofluorescence and spatial transcriptomics on human tumor samples revealed clustering of Batf3+ DCs and CD8+ T cells, which correlates with anti-PD-1 efficacy. In addition, proximity to Batf3+ DCs within the TME is associated with CD8+ T cell transcriptional states linked to anti-PD-1 response. Our results demonstrate that Batf3+ DCs within the TME are critical for PD-1/PD-L1 blockade efficacy and indicate a major role for the 4-1BB/4-1BB ligand (4-1BBL) axis during this process.
Collapse
Affiliation(s)
- Andrea Ziblat
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Brendan L Horton
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Emily F Higgs
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ken Hatogai
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Anna Martinez
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Jason W Shapiro
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Danny E C Kim
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - YuanYuan Zha
- Human Immunological Monitoring Facility, University of Chicago, Chicago, IL 60637, USA
| | - Randy F Sweis
- Department of Medicine, University of Chicago, Chicago, IL 60612, USA
| | - Thomas F Gajewski
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
21
|
Crocetti L, Khlebnikov AI, Guerrini G, Schepetkin IA, Melani F, Giovannoni MP, Quinn MT. Anti-Inflammatory Activity of Pyrazolo[1,5- a]quinazolines. Molecules 2024; 29:2421. [PMID: 38893295 PMCID: PMC11173647 DOI: 10.3390/molecules29112421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic inflammation contributes to a number of diseases. Therefore, control of the inflammatory response is an important therapeutic goal. To identify novel anti-inflammatory compounds, we synthesized and screened a library of 80 pyrazolo[1,5-a]quinazoline compounds and related derivatives. Screening of these compounds for their ability to inhibit lipopolysaccharide (LPS)-induced nuclear factor κB (NF-κB) transcriptional activity in human THP-1Blue monocytic cells identified 13 compounds with anti-inflammatory activity (IC50 < 50 µM) in a cell-based test system, with two of the most potent being compounds 13i (5-[(4-sulfamoylbenzyl)oxy]pyrazolo[1,5-a]quinazoline-3-carboxamide) and 16 (5-[(4-(methylsulfinyl)benzyloxy]pyrazolo[1,5-a]quinazoline-3-carboxamide). Pharmacophore mapping of potential targets predicted that 13i and 16 may be ligands for three mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 2 (ERK2), p38α, and c-Jun N-terminal kinase 3 (JNK3). Indeed, molecular modeling supported that these compounds could effectively bind to ERK2, p38α, and JNK3, with the highest complementarity to JNK3. The key residues of JNK3 important for this binding were identified. Moreover, compounds 13i and 16 exhibited micromolar binding affinities for JNK1, JNK2, and JNK3. Thus, our results demonstrate the potential for developing lead anti-inflammatory drugs based on the pyrazolo[1,5-a]quinazoline and related scaffolds that are targeted toward MAPKs.
Collapse
Affiliation(s)
- Letizia Crocetti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (L.C.); (F.M.); (M.P.G.)
| | - Andrei I. Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Gabriella Guerrini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (L.C.); (F.M.); (M.P.G.)
| | - Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Fabrizio Melani
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (L.C.); (F.M.); (M.P.G.)
| | - Maria Paola Giovannoni
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (L.C.); (F.M.); (M.P.G.)
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
22
|
Santourlidis S, Araúzo-Bravo MJ, Erichsen L, Bendhack ML. Epigenetics Meets CAR-T-Cell Therapy to Fight Cancer. Cancers (Basel) 2024; 16:1941. [PMID: 38792020 PMCID: PMC11119853 DOI: 10.3390/cancers16101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Based on the impressive success of Car-T-cell therapy in the treatment of hematological malignancies, a broad application for solid tumors also appears promising. However, some important hurdles need to be overcome. One of these is certainly the identification of specific target antigens on cancer cells. Hypomethylation is a characteristic epigenetic aberration in many tumor entities. Genome-wide screenings for consistent DNA hypomethylations in tumors enable the identification of aberrantly upregulated transcripts, which might result in cell surface proteins. Thus, this approach provides a new perspective for the discovery of potential new Car-T-cell target antigens for almost every tumor entity. First, we focus on this approach as a possible treatment for prostate cancer.
Collapse
Affiliation(s)
- Simeon Santourlidis
- Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany;
| | - Marcos J. Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Lars Erichsen
- Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany;
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| |
Collapse
|
23
|
Ma Y, Shi R, Li F, Chang H. Emerging strategies for treating autoimmune disease with genetically modified dendritic cells. Cell Commun Signal 2024; 22:262. [PMID: 38715122 PMCID: PMC11075321 DOI: 10.1186/s12964-024-01641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
Gene editing of living cells has become a crucial tool in medical research, enabling scientists to address fundamental biological questions and develop novel strategies for disease treatment. This technology has particularly revolutionized adoptive transfer cell therapy products, leading to significant advancements in tumor treatment and offering promising outcomes in managing transplant rejection, autoimmune disorders, and inflammatory diseases. While recent clinical trials have demonstrated the safety of tolerogenic dendritic cell (TolDC) immunotherapy, concerns remain regarding its effectiveness. This review aims to discuss the application of gene editing techniques to enhance the tolerance function of dendritic cells (DCs), with a particular focus on preclinical strategies that are currently being investigated to optimize the tolerogenic phenotype and function of DCs. We explore potential approaches for in vitro generation of TolDCs and provide an overview of emerging strategies for modifying DCs. Additionally, we highlight the primary challenges hindering the clinical adoption of TolDC therapeutics and propose future research directions in this field.
Collapse
Affiliation(s)
- Yunhan Ma
- School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Ruobing Shi
- School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Fujun Li
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
24
|
Li X, Liang X, Fu W, Luo R, Zhang M, Kou X, Zhang Y, Li Y, Huang D, You Y, Wu Q, Gong C. Reversing cancer immunoediting phases with a tumor-activated and optically reinforced immunoscaffold. Bioact Mater 2024; 35:228-241. [PMID: 38333614 PMCID: PMC10850754 DOI: 10.1016/j.bioactmat.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
In situ vaccine (ISV) is a promising immunotherapeutic tactic due to its complete tumoral antigenic repertoire. However, its efficiency is limited by extrinsic inevitable immunosuppression and intrinsic immunogenicity scarcity. To break this plight, a tumor-activated and optically reinforced immunoscaffold (TURN) is exploited to trigger cancer immunoediting phases regression, thus levering potent systemic antitumor immune responses. Upon response to tumoral reactive oxygen species, TURN will first release RGX-104 to attenuate excessive immunosuppressive cells and cytokines, and thus immunosuppression falls and immunogenicity rises. Subsequently, intermittent laser irradiation-activated photothermal agents (PL) trigger abundant tumor antigens exposure, which causes immunogenicity springs and preliminary infiltration of T cells. Finally, CD137 agonists from TURN further promotes the proliferation, function, and survival of T cells for durable antitumor effects. Therefore, cancer immunoediting phases reverse and systemic antitumor immune responses occur. TURN achieves over 90 % tumor growth inhibition in both primary and secondary tumor lesions, induces potent systemic immune responses, and triggers superior long-term immune memory in vivo. Taken together, TURN provides a prospective sight for ISV from the perspective of immunoediting phases.
Collapse
Affiliation(s)
- Xinchao Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuqi Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wangxian Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Miaomiao Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaorong Kou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yingjie Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dongxue Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanjie You
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
25
|
Li J, Zhang Y, Cai Y, Yao P, Jia Y, Wei X, Du C, Zhang S. Multi-omics analysis elucidates the relationship between intratumor microbiome and host immune heterogeneity in breast cancer. Microbiol Spectr 2024; 12:e0410423. [PMID: 38442004 PMCID: PMC10986513 DOI: 10.1128/spectrum.04104-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Research has indicated that intratumor microbiomes affect the occurrence, progression, and therapeutic response in many cancer types by influencing the immune system. We aim to evaluate the characteristics of immune-related intratumor microbiomes (IRIMs) in breast cancer (BC) and search for potential prognosis prediction factors and treatment targets. The clinical information, microbiome data, transcriptomics data of The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) patients were obtained from Kraken-TCGA-Raw-Data and TCGA portal. The core tumor-infiltrating immune cell was identified using univariate Cox regression analysis. Based on consensus clustering analysis, BC patients were categorized into two immune subtypes, referred to as immune-enriched and immune-deficient subtypes. The immune-enriched subtype, characterized by higher levels of immune infiltration of CD8+ T and macrophage M1 cells, demonstrated a more favorable prognosis. Furthermore, significant differences in alpha-diversity and beta-diversity were observed between the two immune subtypes, and the least discriminant analysis effect size method identified 33 types of IRIMs. An intratumor microbiome-based prognostic signature consisting of four prognostic IRIMs (Acidibacillus, Succinimonas, Lachnoclostridium, and Pseudogulbenkiania) was constructed using the Cox proportional-hazard model, and it had great prognostic value. The prognostic IRIMs were correlated with immune gene expression and the sensitivity of chemotherapy drugs, specifically tamoxifen and docetaxel. In conclusion, our research has successfully identified two distinct immune subtypes in BC, which exhibit contrasting prognoses and possess unique epigenetic and intratumor microbiomes. The critical IRIMs were correlated with prognosis, tumor-infiltrating immune cell abundance, and immunotherapeutic efficacy in BC. Consequently, this study has identified potential IRIMs as biomarkers, providing a novel therapeutic approach for treating BC.IMPORTANCERecent research has substantiated the presence of the intratumor microbiome in tumor immune microenvironment, which could influence tumor occurrence and progression, as well as provide new opportunities for cancer diagnosis and treatment. This study identified the critical immune-related intratumor microbiome (Acidibacillus, Succinimonas, Lachnoclostridium, and Pseudogulbenkiania), which were correlated with prognosis, tumor-infiltrating immune cell abundance, and immunotherapeutic efficacy in breast cancer and might be the novel target to regulate immunotherapy in BC.
Collapse
Affiliation(s)
- Jia Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi, China
| | - Yu Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi, China
| | - Yifan Cai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi, China
| | - Peizhuo Yao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi, China
| | - Yiwei Jia
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinyu Wei
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi, China
| | - Chong Du
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
26
|
Nagato T, Komatsuda H, Hayashi R, Takahara M, Ujiie N, Kosaka A, Ohkuri T, Oikawa K, Sato R, Wakisaka R, Kono M, Yamaki H, Ohara K, Kumai T, Kishibe K, Katada A, Hayashi T, Kobayashi H. Soluble CD27 as a predictive biomarker for intra-tumoral CD70/CD27 interaction in nasopharyngeal carcinoma. Cancer Sci 2024; 115:1073-1084. [PMID: 38279834 PMCID: PMC11007004 DOI: 10.1111/cas.16079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/29/2024] Open
Abstract
In CD70-expressing tumors, the interaction of CD70 on tumor cells with its lymphocyte receptor, CD27, is thought to play a role in immunosuppression in the tumor microenvironment and elevated serum levels of soluble CD27 (sCD27). Previous studies showed that CD70 is expressed in nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-related malignancy. However, the association between intratumoral CD70/CD27 expression and serum levels of sCD27 in NPC remains unclear. In the present study, we show that CD70 is primarily expressed by tumor cells in NPC and that CD27-positive lymphocytes infiltrate around tumor cells. NPC patients with CD27-positive lymphocytes had significantly better prognosis than patients lacking these cells. In addition, high CD70 expression by tumor cells tended to be correlated with shorter survival in NPC patients with CD27-positive lymphocytes. Serum sCD27 levels were significantly increased in patients with NPC and provided good diagnostic accuracy for discriminating patients from healthy individuals. The concentration of serum sCD27 in patients with CD70-positive NPC with CD27-positive lymphocytes was significantly higher than in patients with tumors negative for CD70 and/or CD27, indicating that the intratumoral CD70/CD27 interaction boosts the release of sCD27. Furthermore, positive expression of CD70 by NPC cells was significantly correlated with EBV infection. Our results suggest that CD70/CD27-targeted immunotherapies may be promising treatment options and that sCD27 may become an essential tool for evaluating the applicability of these therapies by predicting the intratumoral CD70/CD27 interaction in NPC.
Collapse
Affiliation(s)
- Toshihiro Nagato
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Hiroki Komatsuda
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Ryusuke Hayashi
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Miki Takahara
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
- Department of Innovative Head and Neck Cancer Research and TreatmentAsahikawa Medical UniversityAsahikawaJapan
| | - Nanami Ujiie
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
- Department of Thoracic Surgery and Breast SurgeryAsahikawa Medical University HospitalAsahikawaJapan
| | - Akemi Kosaka
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Takayuki Ohkuri
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Kensuke Oikawa
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Ryosuke Sato
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Risa Wakisaka
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Michihisa Kono
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Hidekiyo Yamaki
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Kenzo Ohara
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Takumi Kumai
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
- Department of Innovative Head and Neck Cancer Research and TreatmentAsahikawa Medical UniversityAsahikawaJapan
| | - Kan Kishibe
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Akihiro Katada
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Tatsuya Hayashi
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Hiroya Kobayashi
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| |
Collapse
|
27
|
Ma Z, An P, Hao S, Huang Z, Yin A, Li Y, Tian J. Single-cell sequencing analysis and multiple machine-learning models revealed the cellular crosstalk of dendritic cells and identified FABP5 and KLRB1 as novel biomarkers for psoriasis. Front Immunol 2024; 15:1374763. [PMID: 38596682 PMCID: PMC11002082 DOI: 10.3389/fimmu.2024.1374763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Background Psoriasis is an immune-mediated disorder influenced by environmental factors on a genetic basis. Despite advancements, challenges persist, including the diminishing efficacy of biologics and small-molecule targeted agents, alongside managing recurrence and psoriasis-related comorbidities. Unraveling the underlying pathogenesis and identifying valuable biomarkers remain pivotal for diagnosing and treating psoriasis. Methods We employed a series of bioinformatics (including single-cell sequencing data analysis and machine learning techniques) and statistical methods to integrate and analyze multi-level data. We observed the cellular changes in psoriatic skin tissues, screened the key genes Fatty acid binding protein 5 (FABP5) and The killer cell lectin-like receptor B1 (KLRB1), evaluated the efficacy of six widely prescribed drugs on psoriasis treatment in modulating the dendritic cell-associated pathway, and assessed their overall efficacy. Finally, RT-qPCR, immunohistochemistry, and immunofluorescence assays were used to validate. Results The regulatory influence of dendritic cells (DCs) on T cells through the CD70/CD27 signaling pathway may emerge as a significant facet of the inflammatory response in psoriasis. Notably, FABP5 and KLRB1 exhibited up-regulation and co-localization in psoriatic skin tissues and M5-induced HaCaT cells, serving as potential biomarkers influencing psoriasis development. Conclusion Our study analyzed the impact of DC-T cell crosstalk in psoriasis, elucidated the characterization of two biomarkers, FABP5 and KLRB1, in psoriasis, and highlighted the promise and value of tofacitinib in psoriasis therapy targeting DCs.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Pingyu An
- Basic Medical College, Harbin Medical University, Harbin, China
| | - Siyu Hao
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhangxin Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Anqi Yin
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangtian Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| |
Collapse
|
28
|
Wang X, Luo K, Xu Q, Chi L, Guo Y, Jia C, Quan L. Prognostic marker CD27 and its micro-environmental in multiple myeloma. BMC Cancer 2024; 24:352. [PMID: 38504180 PMCID: PMC10949675 DOI: 10.1186/s12885-024-11945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND The Cluster of Differentiation 27 (CD27) is aberrantly expressed in multiple myeloma (MM) -derived. This expression facilitates the interaction between tumor and immune cells within TME via the CD27-CD70 pathway, resulting in immune evasion and subsequent tumor progression. The objective of this study is to investigate the correlation between CD27 expression and the prognosis of MM, and to elucidate its potential relationship with the immune microenvironment. METHODS In this research, CD27 expression in T cells within the 82 newly diagnosed MM microenvironment was assessed via flow cytometry. We then examined the association between CD27 expression levels and patient survival. Subsequent a series of bioinformatics and in vitro experiments were conducted to reveal the role of CD27 in MM. RESULTS Clinical evidence suggests that elevated CD27 expression in T cells within the bone marrow serves as a negative prognostic marker for MM survival. Data analysis from the GEO database has demonstrated a strong association between MM-derived CD27 and the immune response, as well as the hematopoietic system. Importantly, patients with elevated levels of CD27 expression were also found to have an increased presence of MDSCs and macrophages in the bone marrow microenvironment. Furthermore, the PERK-ATF4 signaling pathway has been implicated in mediating the effects of CD27 in MM. CONCLUSIONS We revealed that CD27 expression levels serve as an indicative marker for the prognosis of MM patients. The CD27- PERK-ATF4 is a promising target for the treatment of MM.
Collapse
Affiliation(s)
- Xinya Wang
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Keyang Luo
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Qiuting Xu
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Liqun Chi
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Yiwei Guo
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Chuiming Jia
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China.
| | - Lina Quan
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
29
|
Sanchez S, Dangi T, Awakoaiye B, Irani N, Fourati S, Richner J, Penaloza-MacMaster P. Time-dependent enhancement of mRNA vaccines by 4-1BB costimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582992. [PMID: 38496467 PMCID: PMC10942304 DOI: 10.1101/2024.03.01.582992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
mRNA vaccines have demonstrated efficacy against COVID-19. However, concerns regarding waning immunity and breakthrough infections have motivated the development of next-generation vaccines with enhanced efficacy. In this study, we investigated the impact of 4-1BB costimulation on immune responses elicited by mRNA vaccines in mice. We first vaccinated mice with an mRNA vaccine encoding the SARS-CoV-2 spike antigen like the Moderna and Pfizer-BioNTech vaccines, followed by administration of 4-1BB costimulatory antibodies at various times post-vaccination. Administering 4-1BB costimulatory antibodies during the priming phase did not enhance immune responses. However, administering 4-1BB costimulatory antibodies after 96 hours elicited a significant improvement in CD8 T cell responses, leading to enhanced protection against breakthrough infections. A similar improvement in immune responses was observed with multiple mRNA vaccines, including vaccines against common cold coronavirus, human immunodeficiency virus (HIV), and arenavirus. These findings demonstrate a time-dependent effect by 4-1BB costimulation and provide insights for developing improved mRNA vaccines.
Collapse
Affiliation(s)
- Sarah Sanchez
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tanushree Dangi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bakare Awakoaiye
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nahid Irani
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Slim Fourati
- Department of Medicine, Division of Allergy and Immunology, Feinberg School of Medicine and Center for Human Immunobiology, Northwestern University, Chicago, IL 60611, USA
| | - Justin Richner
- Department of Microbiology & Immunology, University of Illinois Chicago College of Medicine, Chicago, IL 60612, USA
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
30
|
Ma Y, Luo F, Zhang Y, Liu Q, Xue J, Huang Y, Zhao Y, Yang Y, Fang W, Zhou T, Chen G, Cao J, Chen Q, She X, Luo P, Liu G, Zhang L, Zhao H. Preclinical characterization and phase 1 results of ADG106 in patients with advanced solid tumors and non-Hodgkin's lymphoma. Cell Rep Med 2024; 5:101414. [PMID: 38330942 PMCID: PMC10897605 DOI: 10.1016/j.xcrm.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/13/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
ADG106, a ligand-blocking agonistic antibody targeting CD137 (4-1BB), exhibits promising results in preclinical studies, demonstrating tumor suppression in various animal models and showing a balanced profile between safety and efficacy. This phase 1 study enrolls 62 patients with advanced malignancies, revealing favorable tolerability up to the 5.0 mg/kg dose level. Dose-limiting toxicity occurs in only one patient (6.3%) at 10.0 mg/kg, resulting in grade 4 neutropenia. The most frequent treatment-related adverse events include leukopenia (22.6%), neutropenia (22.6%), elevated alanine aminotransferase (22.6%), rash (21.0%), itching (17.7%), and elevated aspartate aminotransferase (17.7%). The overall disease control rates are 47.1% for advanced solid tumors and 54.5% for non-Hodgkin's lymphoma. Circulating biomarkers suggest target engagement by ADG106 and immune modulation of circulating T, B, and natural killer cells and cytokines interferon γ and interleukin-6, which may affect the probability of clinical efficacy. ADG106 has a manageable safety profile and preliminary anti-tumor efficacy in patients with advanced cancers (this study was registered at ClinicalTrials.gov: NCT03802955).
Collapse
Affiliation(s)
- Yuxiang Ma
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Fan Luo
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yang Zhang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Qianwen Liu
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jinhui Xue
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yuanyuan Zhao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ting Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jiaxin Cao
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Qun Chen
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | | | | | | | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|
31
|
Regmi M, Wang Y, Liu W, Dai Y, Liu S, Ma K, Lin G, Yang J, Liu H, Wu J, Yang C. From glioma gloom to immune bloom: unveiling novel immunotherapeutic paradigms-a review. J Exp Clin Cancer Res 2024; 43:47. [PMID: 38342925 PMCID: PMC10860318 DOI: 10.1186/s13046-024-02973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/13/2024] Open
Abstract
In tumor therapeutics, the transition from conventional cytotoxic drugs to targeted molecular therapies, such as those targeting receptor tyrosine kinases, has been pivotal. Despite this progress, the clinical outcomes have remained modest, with glioblastoma patients' median survival stagnating at less than 15 months. This underscores the urgent need for more specialized treatment strategies. Our review delves into the progression toward immunomodulation in glioma treatment. We dissect critical discoveries in immunotherapy, such as spotlighting the instrumental role of tumor-associated macrophages, which account for approximately half of the immune cells in the glioma microenvironment, and myeloid-derived suppressor cells. The complex interplay between tumor cells and the immune microenvironment has been explored, revealing novel therapeutic targets. The uniqueness of our review is its exhaustive approach, synthesizing current research to elucidate the intricate roles of various molecules and receptors within the glioma microenvironment. This comprehensive synthesis not only maps the current landscape but also provides a blueprint for refining immunotherapy for glioma, signifying a paradigm shift toward leveraging immune mechanisms for improved patient prognosis.
Collapse
Affiliation(s)
- Moksada Regmi
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China
| | - Yingjie Wang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Yuwei Dai
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Shikun Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Ke Ma
- Peking University Health Science Center, Beijing, 100191, China
| | - Guozhong Lin
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Hongyi Liu
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China
- National Engineering Research Center for Ophthalmology, Beijing, 100730, China
- Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijing, 100730, China
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Jian Wu
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China.
- National Engineering Research Center for Ophthalmology, Beijing, 100730, China.
- Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijing, 100730, China.
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China.
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China.
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China.
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China.
| |
Collapse
|
32
|
Lee CYC, Kennedy BC, Richoz N, Dean I, Tuong ZK, Gaspal F, Li Z, Willis C, Hasegawa T, Whiteside SK, Posner DA, Carlesso G, Hammond SA, Dovedi SJ, Roychoudhuri R, Withers DR, Clatworthy MR. Tumour-retained activated CCR7 + dendritic cells are heterogeneous and regulate local anti-tumour cytolytic activity. Nat Commun 2024; 15:682. [PMID: 38267413 PMCID: PMC10808534 DOI: 10.1038/s41467-024-44787-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Tumour dendritic cells (DCs) internalise antigen and upregulate CCR7, which directs their migration to tumour-draining lymph nodes (dLN). CCR7 expression is coupled to an activation programme enriched in regulatory molecule expression, including PD-L1. However, the spatio-temporal dynamics of CCR7+ DCs in anti-tumour immune responses remain unclear. Here, we use photoconvertible mice to precisely track DC migration. We report that CCR7+ DCs are the dominant DC population that migrate to the dLN, but a subset remains tumour-resident despite CCR7 expression. These tumour-retained CCR7+ DCs are phenotypically and transcriptionally distinct from their dLN counterparts and heterogeneous. Moreover, they progressively downregulate the expression of antigen presentation and pro-inflammatory transcripts with more prolonged tumour dwell-time. Tumour-residing CCR7+ DCs co-localise with PD-1+CD8+ T cells in human and murine solid tumours, and following anti-PD-L1 treatment, upregulate stimulatory molecules including OX40L, thereby augmenting anti-tumour cytolytic activity. Altogether, these data uncover previously unappreciated heterogeneity in CCR7+ DCs that may underpin a variable capacity to support intratumoural cytotoxic T cells.
Collapse
Affiliation(s)
- Colin Y C Lee
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bethany C Kennedy
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nathan Richoz
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Isaac Dean
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fabrina Gaspal
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhi Li
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claire Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Tetsuo Hasegawa
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | | | - David A Posner
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | | | | | | | | | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
33
|
Wang Q, Gao Y, Li Q, He A, Xu Q, Mou Y. Enhancing Dendritic Cell Activation Through Manganese-Coated Nanovaccine Targeting the cGAS-STING Pathway. Int J Nanomedicine 2024; 19:263-280. [PMID: 38226319 PMCID: PMC10789576 DOI: 10.2147/ijn.s438359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
Background Nanovaccines have emerged as a promising vaccination strategy, exhibiting their capacity to deliver antigens and adjuvants to elicit specific immune responses. Despite this potential, optimizing the design and delivery of nanovaccines remains a challenge. Methods In this study, we engineered a dendritic mesoporous silica-based nanocarrier enveloped in a metal-phenolic network (MPN) layer containing divalent manganese ions and tannic acid (MSN@MT). This nanocarrier was tailored for antigen loading to serve as a nanovaccine, aiming to activate the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway in dendritic cells (DCs). Our experimental approach encompassed both cellular assays and mouse immunizations, allowing a comprehensive evaluation of the nanovaccine's impact on DC activation and its influence on the generation of antigen-specific T-cell responses. Results MSN@MT demonstrated a remarkable enhancement in humoral and cellular immune responses in mice compared to control groups. This highlights the potential of MSN@MT to effectively trigger the cGAS-STING pathway in DCs, resulting in robust immune responses. Conclusion Our study introduces MSN@MT, a unique nanocarrier incorporating divalent manganese ions and tannic acid, showcasing its exceptional ability to amplify immune responses by activating the cGAS-STING pathway in DCs. This innovation signifies a stride in refining nanovaccine design for potent immune activation.
Collapse
Affiliation(s)
- Qiyu Wang
- Department of Oral Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Ying Gao
- Department of Stomatology, the 964 Hospital, Changchun, Jilin, People’s Republic of China
| | - Qiang Li
- Department of Oral Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Ao He
- Department of Oral Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Qinglin Xu
- Department of Oral Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Yongbin Mou
- Department of Oral Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, 210008, People’s Republic of China
| |
Collapse
|
34
|
Qu P, Du S, Wang W, Peng Z, Hu Q, Wang H, Tang X. Treatment of gouty arthritis with traditional Chinese medicine decoction: Meta-analysis, network pharmacology analysis, and molecular docking. Medicine (Baltimore) 2024; 103:e36722. [PMID: 38181263 PMCID: PMC10766312 DOI: 10.1097/md.0000000000036722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Previous studies have shown that traditional Chinese medicine decoction (TCMD) could ameliorate the clinical symptoms and laboratory indicators of gouty arthritis (GA) patients. However, few investigations have been conducted on the efficacy and safety of TCMD for GA, the underlying mechanism of TCMD for GA, and the relationship between the TCMD active ingredients and GA targets. METHODS Randomized controlled trials of TCMD for GA were retrieved from Chinese and English databases. Meta-analysis was conducted by Stata 17 software. Potential sources of heterogeneity were identified through subgroup analysis, meta-regression, and heterogeneity test. Publication bias was assessed by Egger's test and funnel plots. The ingredients and targets related to TCMD and GA were obtained from multiple databases, such as TCMSP and DrugBank. The protein-protein interaction network, GO and KEGG analysis was constructed using STRING and DAVID. Molecular docking and visualization of the results were completed by AutoDock and PyMOL software. RESULTS Eighty-four studies were included, involving 7151 patients and 10 outcome indicators. Meta-analysis showed that, compared to routine treatment, TCMD could better reduce the incidence of adverse events and the level of laboratory indicators including blood uric acid (BUA), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 1β (IL-1β), and tumor necrosis factor-α (TNF-α). In the section of network pharmacology, we retrieved 150 active ingredients and 303 target genes from the top 10 herbs in 84 studies, as well as 3082 disease targets and 195 cross targets of the herbs and GA. The top ranked ingredients, intersection targets, and signaling pathways included quercetin, kaempferol, and wogonin; AKT1, TNF, and TP53; as well as IL-17, HIF-1, and PI3K-AKT, etc. Among the 81 molecular docking results, we visualized 10 results with low binding energy, including IL1B and beta-sitosterol, MYC and beta-sitosterol, etc. CONCLUSION TCMD could be a satisfactory complementary and alternative therapy for GA. However, it should be verified by further studies. Future research could be conducted from the following active ingredients, targets, and signal pathways, such as wogonin, sitosterol, and sitosterol; AKT1, TNF, IL6, and TP53; and IL-17, HIF-1, and PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Pengda Qu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Shiyu Du
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Wei Wang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaorong Peng
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Qian Hu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Haiyang Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaohu Tang
- Department of Rheumatology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
35
|
Yu Y, Li T, Ou M, Luo R, Chen H, Ren H, Li Z, Sun J, Zhang H, Peng S, Zhao Y, Mei L. OX40L-expressing M1-like macrophage exosomes for cancer immunotherapy. J Control Release 2024; 365:469-479. [PMID: 38040340 DOI: 10.1016/j.jconrel.2023.11.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
With only limited clinical patient benefit, focusing on new immune checkpoint pathways could be an important complement to current immune checkpoint drugs. In addition, not only does T cell-mediated adaptive immunity play an important role, but also macrophage-mediated innate immunity, due to its abundant presence in solid tumors. Here, we developed an engineered M1-like macrophage exosome, OX40L M1-exos. OX40L M1-exos can activate the adaptive immunity by activating the OX40/OX40L pathway and can reprogram M2-like tumor-associated macrophages into M1-like macrophages, thereby restoring and enhancing macrophage-mediated innate immunity. Our OX40L M1-exos achieved an effective synergistic effect of innate and adaptive immunity and achieved a potent therapeutic effect in a mouse breast cancer model, effectively inhibiting tumor growth and metastasis. These results suggest that OX40L M1-exos are an attractive therapeutic strategy and may be an important complement to current cancer immunotherapies.
Collapse
Affiliation(s)
- Yongkang Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China; Tianjin Institutes of Health Science, Tianjin 301600, PR China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Tingxuan Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China; Tianjin Institutes of Health Science, Tianjin 301600, PR China
| | - Meitong Ou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China; Tianjin Institutes of Health Science, Tianjin 301600, PR China
| | - Ran Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China; Tianjin Institutes of Health Science, Tianjin 301600, PR China
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China
| | - He Ren
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Hanjie Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China; Tianjin Institutes of Health Science, Tianjin 301600, PR China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, PR China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China; Tianjin Institutes of Health Science, Tianjin 301600, PR China; Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China.
| |
Collapse
|
36
|
Aciole MR, Gonçales JP, Neves PAF, Soares CRP, de Oliveira MI, de Melo HRL, de Lima Neto RG, Moura LCRV, Araújo PSR, de Lorena VMB. Levels of soluble TNF receptors (sTNFR1 and sTNFR2) increase with clinical worsening of patients and are related to COVID-19 mortality. Immunobiology 2024; 229:152748. [PMID: 38128238 DOI: 10.1016/j.imbio.2023.152748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 12/23/2023]
Abstract
The present study aimed to inspect the serum levels of the soluble receptors, sTNFR1 and sTNFR2, in patients with COVID-19. The large production of inflammatory cytokines is an essential process in the pathogenesis of COVID-19. TNF is a multifaceted proinflammatory cytokine which has soluble and membrane receptors. Thus, knowing the role of these receptors will help better understand this disease's immunopathogenesis. We included 131 patients confirmed for SARS-CoV-2, separated into three groups: ward patients without O2 support, group A (n = 14); ward patients with O2 support, group B (n = 85), and patients in an intensive care unit (ICU), group C (n = 32), making up the receptors dosed by flow cytometry. The results showed that sTNFR1 and sTNFR2 are associated with disease severity, being higher in group C when compared to group A. As for the levels of receptors and their relationship with the degree of lung involvement, we found higher values of sTNFR1 in patients in group 1 (pulmonary involvement < 25%), suggesting that inflammatory processes related to TNF are not necessarily associated with the primary site of infection. When we analysed the patients who passed away compared to those who recovered, both receptors significantly increased the mortality numbers. These findings suggest a relevant influence of soluble receptors in the inflammatory processes involved in the pathogenesis of COVID-19. Wherefore, we suggest using these receptors as biomarkers of severity and mortality of the disease.
Collapse
Affiliation(s)
- Melayne Rocha Aciole
- Department of Immunology, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Pernambuco, Brazil; Federal University of Pernambuco - Postgraduate in Tropical Medicine, Recife, Pernambuco, Brazil; Ser Educational Group - Recife, Pernambuco, Brazil
| | - Juliana Prado Gonçales
- Department of Immunology, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Pernambuco, Brazil; Ser Educational Group - Recife, Pernambuco, Brazil
| | - Patrícia Areias Feitosa Neves
- Department of Immunology, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Pernambuco, Brazil; Federal University of Pernambuco - Postgraduate in Tropical Medicine, Recife, Pernambuco, Brazil
| | | | - Marta Iglis de Oliveira
- Federal University of Pernambuco - Postgraduate in Tropical Medicine, Recife, Pernambuco, Brazil
| | | | | | | | | | | |
Collapse
|
37
|
Qiu F, Liu Y, Liu Y, Zhao Z, Zhou L, Chen P, Du Y, Wang Y, Sun H, Zeng C, Wang X, Liu Y, Pan H, Ke C. CD137L Inhibition Ameliorates Hippocampal Neuroinflammation and Behavioral Deficits in a Mouse Model of Sepsis-Associated Encephalopathy. Neuromolecular Med 2023; 25:616-631. [PMID: 37796401 PMCID: PMC10721669 DOI: 10.1007/s12017-023-08764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Anxiety manifestations and cognitive dysfunction are common sequelae in patients with sepsis-associated encephalopathy (SAE). Microglia-mediated inflammatory signaling is involved in anxiety, depression, and cognitive dysfunction during acute infection with bacterial lipopolysaccharide (LPS). However, the molecular mechanisms underlying microglia activation and behavioral and cognitive deficits in sepsis have not been in fully elucidated. Based on previous research, we speculated that the CD137 receptor/ligand system modulates microglia function during sepsis to mediate classical neurological SAE symptoms. A murine model of SAE was established by injecting male C57BL/6 mice with LPS, and cultured mouse BV2 microglia were used for in vitro assays. RT-qPCR, immunofluorescence staining, flow cytometry, and ELISA were used to assess microglial activation and the expression of CD137L and inflammation-related cytokines in the mouse hippocampus and in cultured BV2 cells. In addition, behavioral tests were conducted in assess cognitive performance and behavioral distress. Immunofluorescence and RT-qPCR analyses showed that hippocampal expression of CD137L was upregulated in activated microglia following LPS treatment. Pre-treatment with the CD137L neutralizing antibody TKS-1 significantly reduced CD137L levels, attenuated the expression of M1 polarization markers in microglia, and inhibited the production of TNF-α, IL-1β, and IL-6 in both LPS-treated mice and BV2 cells. Conversely, stimulation of CD137L signaling by recombinant CD137-Fc fusion protein activated the synthesis and release of pro-inflammatory cytokines in cultures BV2 microglia. Importantly, open field, elevated plus maze, and Y-maze spontaneous alternation test results indicated that TKS-1 administration alleviated anxiety-like behavior and spatial memory decline in mice with LPS-induced SAE. These findings suggest that CD137L upregulation in activated microglia critically contributes to neuroinflammation, anxiety-like behavior, and cognitive dysfunction in the mouse model of LPS-induced sepsis. Therefore, therapeutic modulation of the CD137L/CD137 signaling pathway may represent an effective way to minimize brain damage and prevent cognitive and emotional deficits associated with SAE.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yueming Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
| | - Yang Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
| | - Zhuyun Zhao
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
| | - Lile Zhou
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
| | - Pengfei Chen
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yunbo Du
- Department of Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yanmei Wang
- Department of Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, Guangdong, China.
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China.
| |
Collapse
|
38
|
Singh P, Bajpai P, Maheshwari D, Chawla YM, Saini K, Reddy ES, Gottimukkala K, Nayak K, Gunisetty S, Aggarwal C, Jain S, Verma C, Singla P, Soneja M, Wig N, Murali-Krishna K, Chandele A. Functional and transcriptional heterogeneity within the massively expanding HLADR +CD38 + CD8 T cell population in acute febrile dengue patients. J Virol 2023; 97:e0074623. [PMID: 37855600 PMCID: PMC10688317 DOI: 10.1128/jvi.00746-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/17/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE CD8 T cells play a crucial role in protecting against intracellular pathogens such as viruses by eliminating infected cells and releasing anti-viral cytokines such as interferon gamma (IFNγ). Consequently, there is significant interest in comprehensively characterizing CD8 T cell responses in acute dengue febrile patients. Previous studies, including our own, have demonstrated that a discrete population of CD8 T cells with HLADR+ CD38+ phenotype undergoes massive expansion during the acute febrile phase of natural dengue virus infection. Although about a third of these massively expanding HLADR+ CD38+ CD8 T cells were also CD69high when examined ex vivo, only a small fraction of them produced IFNγ upon in vitro peptide stimulation. Therefore, to better understand such functional diversity of CD8 T cells responding to dengue virus infection, it is important to know the cytokines/chemokines expressed by these peptide-stimulated HLADR+CD38+ CD8 T cells and the transcriptional profiles that distinguish the CD69+IFNγ+, CD69+IFNγ-, and CD69-IFNγ- subsets.
Collapse
Affiliation(s)
- Prabhat Singh
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Deepti Maheshwari
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sivaram Gunisetty
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Charu Aggarwal
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shweta Jain
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Chaitanya Verma
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Paras Singla
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Soneja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
39
|
Qu P, Wang H, Wang W, Hu Q, Du S, Peng Z, Tang X. Clinical efficacy evaluation and potential mechanism prediction on Guizhi-Shaoyao-Zhimu decoction in the treatment of gouty arthritis based on meta-analysis, network pharmacology analysis, and molecular docking. Medicine (Baltimore) 2023; 102:e35973. [PMID: 38013344 PMCID: PMC10681393 DOI: 10.1097/md.0000000000035973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Guizhi-Shaoyao-Zhimu decoction (GSZD) is a Chinese herb formula. Previous studies have reported that the clinical symptoms and laboratory indicators of gouty arthritis patients could be improved by GSZD. However, no previous study has evaluated and analyzed its efficacy, safety, underlying mechanisms, and the relationship between related ingredients of herbs and targets of gouty arthritis. METHODS Randomized controlled trials of GSZD for gouty arthritis were retrieved from various databases. Meta-analysis was performed by Stata 17 software. Galbraith plot was used to find studies with possible heterogeneity. Publication bias was assessed by Egger test and funnel plot. The related ingredients of herbs and the targets of herbs and gouty arthritis were obtained from several databases, such as TCMSP, HERB, and DrugBank. The protein-protein interaction network was conducted by the STRING platform. DAVID database was used to perform GO and KEGG analysis. Molecular docking and visualization of docking results were carried out by AutoDock and PyMOL software. RESULTS Twenty studies with 1633 patients were included. Meta-analysis indicated that GSZD could better improve the clinical efficiency and visual analogue scale score, and reduce the level of blood uric acid and inflammatory biomarkers (including C-reactive protein, erythrocyte sedimentation rate, interleukin 6, interleukin 8, and tumor necrosis factor-α) than conventional treatment. In addition, we retrieved 157 active compounds, 517 herb target genes, 3082 disease targets, and 295 intersection targets of herb and disease. The results of network pharmacology analysis showed that the core related ingredients included quercetin, kaempferol, sitosterol, luteolin, catechin, etc. The core intersection targets contained AKT1, TNF-α, TP53, IL6, etc. And the critical signaling pathways included IL-17, HIF-1, TNF, PI3K-Akt, etc. Among the 56 molecular docking results, only 8 results had binding energy values greater than -5.0 kcal/mol. CONCLUSION GSZD could be a satisfactory complementary and alternative therapy for treating gouty arthritis. However, it should be verified by further studies. Future research on gouty arthritis could be conducted from the active components including beta-sitosterol and sitosterol, the targets including TNF-1, IL1B, and ESR1, and the signaling pathways including IL-17 and HIF-1.
Collapse
Affiliation(s)
- Pengda Qu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Haiyang Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Wei Wang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Qian Hu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Shiyu Du
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaorong Peng
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaohu Tang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
- Department of Rheumatology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
40
|
Rao D, Meade-White K, Leventhal S, Mihalakakos E, Carmody A, Feldmann H, Hawman DW. CD8 + T-cells target the Crimean-Congo haemorrhagic fever virus Gc protein to control the infection in wild-type mice. EBioMedicine 2023; 97:104839. [PMID: 37866114 PMCID: PMC10623175 DOI: 10.1016/j.ebiom.2023.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Crimean-Congo haemorrhagic fever (CCHF) is a serious viral hemorrhagic fever caused by the CCHF virus (CCHFV). Spread by the bites of infected ticks or handling of viremic livestock, human disease is characterized by a non-specific febrile illness that can rapidly progress to fatal hemorrhagic disease. No vaccines or antivirals are available. Case fatality rates can vary but can be higher than 30%, although sub-clinical infections are often unrecognized and unreported. Yet, while most humans infected with CCHFV will survive the infection, often with little-to-no symptoms, the host responses that control the infection are unknown. METHODS Here we investigated the role of cellular immunity in control of CCHFV infection in an immunocompetent mouse model. FINDINGS We found that CD8+ T-cells are crucial for efficient control of the acute infection and rapidly acquired CCHFV-specific antiviral effector functions such as production of antiviral cytokines and degranulating in response to CCHFV peptides. We further identified the minimal CD8+ T-cell epitopes in the viral Gc proteins and that infection of mice lacking IFNγ resulted in worsened disease and higher viral loads. INTERPRETATION Together our data suggest that CD8+ T-cells are important for control of acute CCHFV infection likely through production of antiviral cytokines. FUNDING This work was supported by the Intramural Research Program of the NIH.
Collapse
Affiliation(s)
- Deepashri Rao
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Shanna Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Evan Mihalakakos
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Aaron Carmody
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA.
| |
Collapse
|
41
|
Chen Y, Xue W, Zhang Y, Gao Y, Wang Y. A novel disulfidptosis-related immune checkpoint genes signature: forecasting the prognosis of hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:12843-12854. [PMID: 37462769 PMCID: PMC10587022 DOI: 10.1007/s00432-023-05076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/29/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND HCC is an extremely malignant tumor with a very poor prognosis. In 2023, a brand-new kind of cell death known as disulfidptosis was identified. Although, the prognosis as well as expression of immune checkpoints that are closely connected with it in HCC remain unknown. METHODS In this work, we identified 49 genes with abnormal expression in liver cancer and normal liver tissue, with 23 of them being differentially expressed genes. To create a signature, we classified all HCC cases into three subtypes and used the TCGA database to evaluate each relevant gene's prognostic value for survival. RESULTS Five gene signatures were identified using the LASSO Cox regression approach, while those diagnosed with HCC were split into either low- or high-risk groups. Patients having low-risk HCC showed a much greater likelihood of surviving than those with high risk (p < 0.05). Through immune cell infiltration analysis, it was found that immune-related genes were abundant in high-risk groups and had reduced immune status. CONCLUSION In conclusion, immune checkpoint genes highly associated with disulfidptosis contribute to tumor immunity and can be used to evaluate HCC prognosis. When it comes to predicting overall survival (OS) time in HCC, risk score has been set to be a separate predictor. Through immune cell infiltration analysis, it was found that immune-related genes were abundant in high-risk groups and had reduced immune status. It is possible to measure the prognosis of HCC based on immune checkpoints genes strongly linked to disulfidptosis.
Collapse
Affiliation(s)
- Yuxin Chen
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Wanying Xue
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuting Zhang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Yu Gao
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuanyuan Wang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
42
|
Long S, Wang B, Cui Y, Shao J, Zhao Y, Xu Y, Li H, Qiu H, Zhao H, Zeng J, Chen D, Li X, Gu Y. The upregulation of immune checkpoints after photodynamic therapy reducing immune effect for treating breast cancer. Lasers Med Sci 2023; 38:243. [PMID: 37882915 DOI: 10.1007/s10103-023-03894-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023]
Abstract
The immune effect induced by photodynamic therapy (PDT) has a limited effect on breast tumor. This study hypothesized that suppressive immune checkpoints on T cells might upregulate after PDT, which may reduce the antitumor effect of PDT for treating breast tumor. This study explored the alteration of immune checkpoint for the first time. A bilateral subcutaneous transplanted breast tumor mice model was established, and right tumors imitated primary tumors, and left tumors imitated distant tumors. Primary tumors were treated with PDT mediated by hematoporphyrin derivatives (HpD-PDT). Costimulatory molecules (ICOS, OX40, and 4-1BB) and immune checkpoints (PD1, LAG-3, CTLA-4, TIM-3, TIGIT) on tumor infiltrating T cells after HpD-PDT were analyzed by flow cytometry. Antitumor and immune effects were also assessed after HpD-PDT combined with anti-PD1 and LAG-3 antibodies. Primary tumors were suppressed, but distant tumors could not be inhibited after HpD-PDT. The number of T cells was increased, but function did not enhance after HpD-PDT. Additionally, costimulatory molecules (ICOS, OX40, and 4-1BB) were not elevated, but the suppressive immune checkpoints on tumor infiltrating T cells were upregulated after HpD-PDT. Notably, PD1+ LAG-3+ CD4+ T and PD1+ LAG-3+ CD8+ T cells were significantly increased. When PD1 and LAG-3 blockade combined with HpD-PDT, both primary and distant tumors were significantly suppressed, and antitumor immune effects were significantly enhanced. HpD-PDT could upregulate the PD1+ LAG-3+ CD4+ T and PD1+ LAG-3+ CD8+ T cells. Dual blockade of PD1 and LAG-3 immune checkpoints can enhance the antitumor effect of HpD-PDT.
Collapse
Affiliation(s)
- Shan Long
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- School of Medicine, Nankai University, Tianjin, 300072, China
- Department of Laser Medicine, The First Medical Center of Chinese, PLA General Hospital, Haidian District, 28 Fuxing Road, Beijing, 100853, China
| | - Bo Wang
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yingshu Cui
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jiakang Shao
- Department of Laser Medicine, The First Medical Center of Chinese, PLA General Hospital, Haidian District, 28 Fuxing Road, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yibing Zhao
- Department of Oncology, The Seventh Medical Center of Chinese, Dongcheng District, PLA General Hospital, 5 Nanmencang Hutong, DongshitiaoBeijing, 100039, China
| | - Yuanyuan Xu
- Department of Laser Medicine, The First Medical Center of Chinese, PLA General Hospital, Haidian District, 28 Fuxing Road, Beijing, 100853, China
| | - Hui Li
- Department of Laser Medicine, The First Medical Center of Chinese, PLA General Hospital, Haidian District, 28 Fuxing Road, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Haixia Qiu
- Department of Laser Medicine, The First Medical Center of Chinese, PLA General Hospital, Haidian District, 28 Fuxing Road, Beijing, 100853, China
| | - Hongyou Zhao
- College of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Jing Zeng
- Department of Laser Medicine, The First Medical Center of Chinese, PLA General Hospital, Haidian District, 28 Fuxing Road, Beijing, 100853, China
| | - Defu Chen
- College of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaosong Li
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
- Department of Oncology, The Seventh Medical Center of Chinese, Dongcheng District, PLA General Hospital, 5 Nanmencang Hutong, DongshitiaoBeijing, 100039, China.
| | - Ying Gu
- School of Medicine, Nankai University, Tianjin, 300072, China.
- Department of Laser Medicine, The First Medical Center of Chinese, PLA General Hospital, Haidian District, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
43
|
Khan AUH, Ali AK, Marr B, Jo D, Ahmadvand S, Fong-McMaster C, Almutairi SM, Wang L, Sad S, Harper ME, Lee SH. The TNFα/TNFR2 axis mediates natural killer cell proliferation by promoting aerobic glycolysis. Cell Mol Immunol 2023; 20:1140-1155. [PMID: 37553427 PMCID: PMC10541863 DOI: 10.1038/s41423-023-01071-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Natural killer (NK) cells are predominant innate lymphocytes that initiate the early immune response during infection. NK cells undergo a metabolic switch to fuel augmented proliferation and activation following infection. Tumor necrosis factor-alpha (TNFα) is a well-known inflammatory cytokine that enhances NK cell function; however, the mechanism underlying NK cell proliferation in response to TNFα is not well established. Here, we demonstrated that upon infection/inflammation, NK cells upregulate the expression of TNF receptor 2 (TNFR2), which is associated with increased proliferation, metabolic activity, and effector function. Notably, IL-18 can induce TNFR2 expression in NK cells, augmenting their sensitivity toward TNFα. Mechanistically, TNFα-TNFR2 signaling upregulates the expression of CD25 (IL-2Rα) and nutrient transporters in NK cells, leading to a metabolic switch toward aerobic glycolysis. Transcriptomic analysis revealed significantly reduced expression levels of genes involved in cellular metabolism and proliferation in NK cells from TNFR2 KO mice. Accordingly, our data affirmed that genetic ablation of TNFR2 curtails CD25 upregulation and TNFα-induced glycolysis, leading to impaired NK cell proliferation and antiviral function during MCMV infection in vivo. Collectively, our results delineate the crucial role of the TNFα-TNFR2 axis in NK cell proliferation, glycolysis, and effector function.
Collapse
Affiliation(s)
- Abrar Ul Haq Khan
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The University of Ottawa Centre for Infection, Immunity, and Inflammation, Ottawa, ON, Canada
| | - Alaa Kassim Ali
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bryan Marr
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Donghyeon Jo
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Simin Ahmadvand
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Claire Fong-McMaster
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Saeedah Musaed Almutairi
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lisheng Wang
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The University of Ottawa Centre for Infection, Immunity, and Inflammation, Ottawa, ON, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The University of Ottawa Centre for Infection, Immunity, and Inflammation, Ottawa, ON, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The University of Ottawa Centre for Infection, Immunity, and Inflammation, Ottawa, ON, Canada
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- The University of Ottawa Centre for Infection, Immunity, and Inflammation, Ottawa, ON, Canada.
| |
Collapse
|
44
|
Vafaeipour Z, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effect of saffron, black seed, and their main constituents on inflammatory cytokine response (mainly TNF-α) and oxidative stress status: an aspect on pharmacological insights. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2241-2259. [PMID: 37103518 DOI: 10.1007/s00210-023-02501-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Tumor necrosis factor-α (TNF-α), an inflammatory cytokine, is produced by monocytes and macrophages. It is known as a 'double-edged sword' because it is responsible for advantageous and disadvantageous events in the body system. The unfavorable incident includes inflammation, which induces some diseases such as rheumatoid arthritis, obesity, cancer, and diabetes. Many medicinal plants have been found to prevent inflammation, such as saffron (Crocus sativus L.) and black seed (Nigella sativa). Therefore, the purpose of this review was to assess the pharmacological effects of saffron and black seed on TNF-α and diseases related to its imbalance. Different databases without time limitations were investigated up to 2022, including PubMed, Scopus, Medline, and Web of Science. All the original articles (in vitro, in vivo, and clinical studies) were collected on the effects of black seed and saffron on TNF-α. Black seed and saffron have therapeutic effects against many disorders, such as hepatotoxicity, cancer, ischemia, and non-alcoholic fatty liver, by decreasing TNF-α levels based on their anti-inflammatory, anticancer, and antioxidant properties. Saffron and black seed can treat a variety of diseases by suppressing TNF-α and exhibiting a variety of activities such as neuroprotective, gastroprotective, immunomodulatory, antimicrobial, analgesic, antitussive, bronchodilator, antidiabetic activity, anticancer, and antioxidant effects. To uncover the beneficial underlying mechanisms of black seed and saffron, more clinical trials and phytochemical research are required. Also, these two plants affect other inflammatory cytokines, hormones, and enzymes, implying that they could be used to treat a variety of diseases.
Collapse
Affiliation(s)
- Zeinab Vafaeipour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Wu L, Jin Y, Zhao X, Tang K, Zhao Y, Tong L, Yu X, Xiong K, Luo C, Zhu J, Wang F, Zeng Z, Pan D. Tumor aerobic glycolysis confers immune evasion through modulating sensitivity to T cell-mediated bystander killing via TNF-α. Cell Metab 2023; 35:1580-1596.e9. [PMID: 37506695 DOI: 10.1016/j.cmet.2023.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/09/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023]
Abstract
Metabolic reprogramming toward glycolysis is a hallmark of cancer malignancy. The molecular mechanisms by which the tumor glycolysis pathway promotes immune evasion remain to be elucidated. Here, by performing genome-wide CRISPR screens in murine tumor cells co-cultured with cytotoxic T cells (CTLs), we identified that deficiency of two important glycolysis enzymes, Glut1 (glucose transporter 1) and Gpi1 (glucose-6-phosphate isomerase 1), resulted in enhanced killing of tumor cells by CTLs. Mechanistically, Glut1 inactivation causes metabolic rewiring toward oxidative phosphorylation, which generates an excessive amount of reactive oxygen species (ROS). Accumulated ROS potentiate tumor cell death mediated by tumor necrosis factor alpha (TNF-α) in a caspase-8- and Fadd-dependent manner. Genetic and pharmacological inactivation of Glut1 sensitizes tumors to anti-tumor immunity and synergizes with anti-PD-1 therapy through the TNF-α pathway. The mechanistic interplay between tumor-intrinsic glycolysis and TNF-α-induced killing provides new therapeutic strategies to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Lijian Wu
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yiteng Jin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Xi Zhao
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Kaiyang Tang
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yaoning Zhao
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Linjie Tong
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xuerong Yu
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ke Xiong
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ce Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Jiajun Zhu
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science (CLS), Beijing 100084, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zexian Zeng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Tsinghua-Peking Center for Life Science (CLS), Beijing 100084, China.
| | - Deng Pan
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science (CLS), Beijing 100084, China.
| |
Collapse
|
46
|
Yang N, Wang Y, Liu S, Tariq SB, Luna JM, Mazo G, Tan A, Zhang T, Wang J, Yan W, Choi J, Rossi A, Xiang JZ, Rice CM, Merghoub T, Wolchok JD, Deng L. OX40L-expressing recombinant modified vaccinia virus Ankara induces potent antitumor immunity via reprogramming Tregs. J Exp Med 2023; 220:e20221166. [PMID: 37145142 PMCID: PMC10165539 DOI: 10.1084/jem.20221166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/05/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
Effective depletion of immune suppressive regulatory T cells (Tregs) in the tumor microenvironment without triggering systemic autoimmunity is an important strategy for cancer immunotherapy. Modified vaccinia virus Ankara (MVA) is a highly attenuated, non-replicative vaccinia virus with a long history of human use. Here, we report rational engineering of an immune-activating recombinant MVA (rMVA, MVA∆E5R-Flt3L-OX40L) with deletion of the vaccinia E5R gene (encoding an inhibitor of the DNA sensor cyclic GMP-AMP synthase, cGAS) and expression of two membrane-anchored transgenes, Flt3L and OX40L. Intratumoral (IT) delivery of rMVA (MVA∆E5R-Flt3L-OX40L) generates potent antitumor immunity, dependent on CD8+ T cells, the cGAS/STING-mediated cytosolic DNA-sensing pathway, and type I IFN signaling. Remarkably, IT rMVA (MVA∆E5R-Flt3L-OX40L) depletes OX40hi regulatory T cells via OX40L/OX40 interaction and IFNAR signaling. Single-cell RNA-seq analyses of tumors treated with rMVA showed the depletion of OX40hiCCR8hi Tregs and expansion of IFN-responsive Tregs. Taken together, our study provides a proof-of-concept for depleting and reprogramming intratumoral Tregs via an immune-activating rMVA.
Collapse
Affiliation(s)
- Ning Yang
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Wang
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shuaitong Liu
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shanza Baseer Tariq
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph M. Luna
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Gregory Mazo
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrian Tan
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, USA
| | - Tuo Zhang
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, USA
| | | | - Wei Yan
- IMVAQ Therapeutics, Sammamish, WA, USA
| | - John Choi
- IMVAQ Therapeutics, Sammamish, WA, USA
| | - Anthony Rossi
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jenny Zhaoying Xiang
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, USA
| | - Charles M. Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Taha Merghoub
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jedd D. Wolchok
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Liang Deng
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Dermatology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
47
|
Liu X, Bao X, Li Z, Zhang Q. Investigation of Gene Networks in Three Components of Immune System Provides Novel Insights into Immune Response Mechanisms against Edwardsiella tarda Infection in Paralichthys olivaceus. Animals (Basel) 2023; 13:2542. [PMID: 37570350 PMCID: PMC10417057 DOI: 10.3390/ani13152542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
As a quintessential marine teleost, Paralichthys olivaceus demonstrates vulnerability to a range of pathogens. Long-term infection with Edwardsiella tarda significantly inhibits fish growth and even induces death. Gills, blood, and kidneys, pivotal components of the immune system in teleosts, elicit vital regulatory roles in immune response processes including immune cell differentiation, diseased cell clearance, and other immunity-related mechanisms. This study entailed infecting P. olivaceus with E. tarda for 48 h and examining transcriptome data from the three components at 0, 8, and 48 h post-infection employing weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis. Network analyses revealed a series of immune response processes after infection and identified multiple key modules and key, core, and hub genes including xpo1, src, tlr13, stat1, and mefv. By innovatively amalgamating WGCNA and PPI network methodologies, our investigation facilitated an in-depth examination of immune response mechanisms within three significant P. olivaceus components post-E. tarda infection. Our results provided valuable genetic resources for understanding immunity in P. olivaceus immune-related components and assisted us in further exploring the molecular mechanisms of E. tarda infection in teleosts.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Quanqi Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
48
|
Hipp AV, Bengsch B, Globig AM. Friend or Foe - Tc17 cell generation and current evidence for their importance in human disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad010. [PMID: 38567057 PMCID: PMC10917240 DOI: 10.1093/discim/kyad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 04/04/2024]
Abstract
The term Tc17 cells refers to interleukin 17 (IL-17)-producing CD8+ T cells. While IL-17 is an important mediator of mucosal defense, it is also centrally involved in driving the inflammatory response in immune-mediated diseases, such as psoriasis, multiple sclerosis, and inflammatory bowel disease. In this review, we aim to gather the current knowledge on the phenotypic and transcriptional profile, the in vitro and in vivo generation of Tc17 cells, and the evidence pointing towards a relevant role of Tc17 cells in human diseases such as infectious diseases, cancer, and immune-mediated diseases.
Collapse
Affiliation(s)
- Anna Veronika Hipp
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna-Maria Globig
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
49
|
Pichler R, Diem G, Hackl H, Koutník J, Mertens LS, D`Andrea D, Pradere B, Soria F, Mari A, Laukhtina E, Krajewski W, Teoh JYC, Del Guidice F, Moschini M, Thurnher M, Posch W. Intravesical BCG in bladder cancer induces innate immune responses against SARS-CoV-2. Front Immunol 2023; 14:1202157. [PMID: 37520557 PMCID: PMC10374029 DOI: 10.3389/fimmu.2023.1202157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
BCG is the most efficient adjuvant therapy for high-risk, non-muscle-invasive bladder cancer (NMIBC). Both innate and adaptive immune responses have been implicated in BCG-mediated effects. BCG vaccination can boost innate immune responses via trained immunity (TI), resulting in an increased resistance to respiratory viral infections. Here we evaluated for the first time whether intravesical application of BCG triggers increased immunity against SARS-CoV-2 in patients with high-risk NMIBC. Serum and peripheral blood mononuclear cells (PBMCs) from heparinized whole blood samples of 11 unvaccinated SARS-CoV-2-naïve high-risk NMIBC patients were collected at baseline and during BCG treatment in a pre-COVID-19 era. To examine B-cell or T cell-dependent adaptive immunity against SARS-CoV-2, sera were tested for the presence of SARS-CoV-2 neutralizing antibodies. Using a SARS-CoV-2 peptide pool, virus-specific T cells were quantified via IFNγ ELISpot assays. To analyze innate immune responses, mRNA and protein expression levels of pro- and anti-inflammatory cytokines were measured after a 24-hour stimulation of PBMCs with either BCG or SARS-CoV-2 wildtype. ATAC- sequencing was performed to identify a potential epigenetic reprogramming in immune cells. We neither identified SARS-CoV-2 neutralizing antibodies nor SARS-CoV-2- reactive T cells, indicating that intravesical BCG did not induce adaptive immunity against SARS-CoV-2. However, a significant increase in mRNA as well as protein expression of IL-1β, IL-6 and TNFα, which are key cytokines of trained immunity, could be observed after at least four intravesical BCG instillations. Genomic regions in the proximity of TI genes (TLR2, IGF1R, AKT1, MTOR, MAPK14, HSP90AA1) were more accessible during BCG compared to baseline. Although intravesical BCG did not induce adaptive immune responses, repetitive intravesical instillations of BCG induced circulating innate immune cells that produce TI cytokines also in response to SARS-CoV-2.
Collapse
Affiliation(s)
- Renate Pichler
- Department of Urology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriel Diem
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Jiří Koutník
- Institute of Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Laura S. Mertens
- Department of Urology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | - David D`Andrea
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Pradere
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Croix Du Sud Hospital, Quint-Fonsegrives, France
| | - Francesco Soria
- Department of Urology, Molinette Hospital, University of Turin, Turin, Italy
| | - Andrea Mari
- Department of Experimental and Clinical Medicine, University of Florence - Unit of Oncologic Minimally-Invasive Urology and Andrology, Careggi Hospital, Florence, Italy
| | - Ekaterina Laukhtina
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Wojciech Krajewski
- Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, Wroclaw, Poland
| | - Jeremy Yuen-Chun Teoh
- Department of Surgery, S.H. Ho Urology Centre, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Francesco Del Guidice
- Department of Maternal Infant and Urologic Sciences, ‘Sapienza’ University of Rome, Policlinico Umberto I Hospital, Rome, Italy
| | - Marco Moschini
- Department of Urology, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
50
|
Picone V, Vallone Y, Patruno C, Napolitano M. An overview of new and emerging antibody therapies for moderate-severe atopic dermatitis in adults. Expert Rev Clin Pharmacol 2023; 16:1239-1248. [PMID: 38054328 DOI: 10.1080/17512433.2023.2292615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION A comprehensive review of the English-language medical literature was performed searching for ongoing and closed clinical trials concerning new and emerging monoclonal antibody therapies for moderate-to-severe atopic dermatitis in adults. AREAS COVERED Atopic dermatitis is a chronic inflammatory cutaneous disease with a complex pathogenesis. In the last years, numerous advances in understanding the atopic dermatitis pathogenesis allowed to obtain several therapeutic options, such as numerous monoclonal antibodies. Some monoclonal antibodies, such as dupilumab (anti-IL-4 Rα) and tralokinumab (anti-IL13) are already approved for the treatment of moderate-to-severe atopic dermatitis, and numerous articles in the literature have demonstrated their efficacy and safety. As there are numerous drugs under investigation, this review focuses on emerging monoclonal antibody therapies. EXPERT OPINION There are numerous monoclonal antibodies under investigation that may be approved in the near future for the treatment of atopic dermatitis. Data from phase 2b and phase III clinical trials in moderate-to-severe atopic dermatitis in adults indicate that these drugs have a promising efficacy and safety profile. Monoclonal antibodies currently under investigation will be available in the coming years to enrich the therapeutic choice of new alternatives that are valid both in terms of efficacy and safety.
Collapse
Affiliation(s)
- Vincenzo Picone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ylenia Vallone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Cataldo Patruno
- Department of Health Sciences, University Magna Grӕcia of Catanzaro, Catanzaro, Italy
| | - Maddelena Napolitano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|