1
|
Li B, Xiao Q, Zhao H, Zhang J, Yang C, Zou Y, Zhang B, Liu J, Sun H, Liu H. Schisanhenol ameliorates non-alcoholic fatty liver disease via inhibiting miR-802 activation of AMPK-mediated modulation of hepatic lipid metabolism. Acta Pharm Sin B 2024; 14:3949-3963. [PMID: 39309511 PMCID: PMC11413670 DOI: 10.1016/j.apsb.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 09/25/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis, is a common metabolic liver disease worldwide. Currently, satisfactory drugs for NAFLD treatment remain lacking. Obesity and diabetes are the leading causes of NAFLD, and compounds with anti-obesity and anti-diabetic activities are considered suitable candidates for treating NAFLD. In this study, biochemical and histological assays revealed that a natural lignan schisanhenol (SAL) effectively decreased lipid accumulation and improved hepatic steatosis in free fatty acid (FFA)-treated HepG2 cells and high-fat diet (HFD)-induced NAFLD mice. Further, molecular analyses, microRNA (miRNA)-seq, and bioinformatics analyses revealed that SAL may improve NAFLD by targeting the miR-802/adenosine monophosphate-activated protein kinase (AMPK) pathway. Liver-specific overexpression of miR-802 in NAFLD mice significantly impaired SAL-mediated liver protection and decreased the protein levels of phosphorylated (p)-AMPK and PRKAB1. Dual-luciferase assay analysis further confirmed that miR-802 inhibits hepatic AMPK expression by binding to the 3' untranslated region of mouse Prkab1 or human PRKAA1. Additionally, genetic silencing of PRKAA1 blocked SAL-induced AMPK pathway activation in FFA-treated HepG2 cells. The results demonstrate that SAL is an effective drug candidate for treating NAFLD through regulating miR-802/AMPK-mediated lipid metabolism.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Qi Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Hongmei Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Jianuo Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Chunyan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yucen Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Bengang Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jiushi Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Haitao Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Haitao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
2
|
Yang L, Jiang Z, Yang L, Zheng W, Chen Y, Qu F, Crabbe MJC, Zhang Y, Andersen ME, Zheng Y, Qu W. Disinfection Byproducts of Haloacetaldehydes Disrupt Hepatic Lipid Metabolism and Induce Lipotoxicity in High-Fat Culture Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12356-12367. [PMID: 38953388 DOI: 10.1021/acs.est.3c11009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Unhealthy lifestyles, obesity, and environmental pollutants are strongly correlated with the development of nonalcoholic fatty liver disease (NAFLD). Haloacetaldehyde-associated disinfection byproducts (HAL-DBPs) at various multiples of concentrations found in finished drinking water together with high-fat (HF) were examined to gauge their mixed effects on hepatic lipid metabolism. Using new alternative methods (NAMs), studying effects in human cells in vitro for risk assessment, we investigated the combined effects of HF and HAL-DBPs on hepatic lipid metabolism and lipotoxicity in immortalized LO-2 human hepatocytes. Coexposure of HAL-DBPs at various multiples of environmental exposure levels with HF increased the levels of triglycerides, interfered with de novo lipogenesis, enhanced fatty acid oxidation, and inhibited the secretion of very low-density lipoproteins. Lipid accumulation caused by the coexposure of HAL-DBPs and HF also resulted in more severe lipotoxicity in these cells. Our results using an in vitro NAM-based method provide novel insights into metabolic reprogramming in hepatocytes due to coexposure of HF and HAL-DBPs and strongly suggest that the risk of NAFLD in sensitive populations due to HAL-DBPs and poor lifestyle deserves further investigation both with laboratory and epidemiological tools. We also discuss how results from our studies could be used in health risk assessments for HAL-DBPs.
Collapse
Affiliation(s)
- Lili Yang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Lan Yang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Weiwei Zheng
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yu Chen
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Fei Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, United Kingdom
- Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, U.K
| | - Yubin Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Melvin E Andersen
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Research Triangle Park, North Carolina 27713, United States
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Xu JM, Gao WR, Liang P, Cai GH, Yang HL, Lin JB, Sun YZ. Pleurotus eryngii root waste and soybean meal co-fermented protein improved the growth, immunity, liver and intestinal health of largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109551. [PMID: 38599363 DOI: 10.1016/j.fsi.2024.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
The present study aimed to evaluate the effect of king oyster mushroom (Pleurotus eryngii) root waste and soybean meal co-fermented protein (CFP) on growth performance, feed utilization, immune status, hepatic and intestinal health of largemouth bass (Micropterus salmoides). Largemouth bass (12.33 ± 0.18 g) were divided into five groups, fed with diets containing 0 %, 5 %, 10 %, 15 % and 20 % CFP respectively for 7 weeks. The growth performance and dietary utilization were slightly improved by the supplementation of CFP. In addition, improved immunoglobulin M (IgM) content and lysozyme activity in treatments confirm the enhancement of immunity in fish by the addition of CFP, especially in fish fed 20 % CFP (P < 0.05). Furthermore, CFP significantly improved liver GSH (glutathione) content in groups D10 and D15 (P < 0.05), and slightly improved total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity while slightly reduced malondialdehyde (MDA) content. Simultaneously, the upregulation of lipolysis-related genes (PPARα, CPT1 and ACO) expression and downregulation of lipid synthesis-related genes (ACC and DGAT1) expression was recorded in the group D20 compared with the control (P < 0.05), which were consistent with the decreased liver lipid contents, suggests that lipid metabolism was improved by CFP. In terms of intestinal structural integrity, ameliorated intestinal morphology in treatments were consistent with the upregulated Occludin, Claudin-1 and ZO-1 genes expression. The intestinal pro-inflammatory cytokines (TNF-α and IL-8) expression were suppressed while the anti-inflammatory cytokines (IL-10 and TGF-β) were activated in treatments. The expression of antimicrobial peptides (Hepcidin-1, Piscidin-2 and Piscidin-3) and intestinal immune effectors (IgM and LYZ) were slightly up-regulated in treatments. Additionally, the relative abundance of intestinal beneficial bacteria (Firmicutes) increased while the relative abundance of potential pathogenic bacteria (Fusobacterium and Proteobacteria) decreased, which indicated that the intestinal microbial community was well-reorganized by CFP. In conclusion, dietary CFP improves growth, immunity, hepatic and intestinal health of largemouth bass, these data provided a theoretical basis for the application of this novel functional protein ingredient in fish.
Collapse
Affiliation(s)
- Jian-Ming Xu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Wen-Rong Gao
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ping Liang
- Freshwater Fisheries Research Institute of Fujian, Fuzhou, 350000, China
| | - Guo-He Cai
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Hong-Ling Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Jian-Bin Lin
- Freshwater Fisheries Research Institute of Fujian, Fuzhou, 350000, China.
| | - Yun-Zhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
4
|
Arnold PK, Finley LWS. Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem 2023; 299:102838. [PMID: 36581208 PMCID: PMC9871338 DOI: 10.1016/j.jbc.2022.102838] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022] Open
Abstract
The tricarboxylic acid (TCA) cycle, otherwise known as the Krebs cycle, is a central metabolic pathway that performs the essential function of oxidizing nutrients to support cellular bioenergetics. More recently, it has become evident that TCA cycle behavior is dynamic, and products of the TCA cycle can be co-opted in cancer and other pathologic states. In this review, we revisit the TCA cycle, including its potential origins and the history of its discovery. We provide a detailed accounting of the requirements for sustained TCA cycle function and the critical regulatory nodes that can stimulate or constrain TCA cycle activity. We also discuss recent advances in our understanding of the flexibility of TCA cycle wiring and the increasingly appreciated heterogeneity in TCA cycle activity exhibited by mammalian cells. Deeper insight into how the TCA cycle can be differentially regulated and, consequently, configured in different contexts will shed light on how this pathway is primed to meet the requirements of distinct mammalian cell states.
Collapse
Affiliation(s)
- Paige K Arnold
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lydia W S Finley
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
5
|
He W, Gao M, Yang R, Zhao Z, Mi J, Sun H, Xiao H, Fang X. The effect of CPT1B gene on lipid metabolism and its polymorphism analysis in Chinese Simmental cattle. Anim Biotechnol 2022; 33:1428-1440. [PMID: 33827354 DOI: 10.1080/10495398.2021.1904966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Carnitine palmitoyltransferase 1B (CPT1B) is a candidate gene that regulates livestock animal lipid metabolism and encodes the rate-limiting enzyme in fatty acid β-oxidation. To explore the effect of this gene on lipid metabolism in cattle, this study examined CPT1B gene polymorphism in Chinese Simmental cattle and the effect of CPT1B on lipid metabolism. The results showed that the triglyceride content increased significantly with increasing CPT1B gene expression in bovine fetal fibroblasts (BFFs) (p < 0.05), while CPT1B knockout led to decreased CPT1B expression and a downward trend in triglyceride levels. Correlation analysis showed a significant association between the g.119896238 G > C locus and Chinese Simmental cattle backfat thickness (p < 0.05). Backfat thickness was significantly greater in individuals with the GC genotype (0.93 ± 0.67 cm) than in those with the CC genotype (0.84 ± 0.60 cm). The g.119889302 T > C locus was significantly correlated with arachidonic acid content in Chinese Simmental cattle (p < 0.05). The arachidonic acid content in the longissimus muscle was significantly higher in CC genotype beef cattle (0.054 g/100 g) than in those with the other two genotypes (0.046 g/100 g, 0.049 g/100 g). These molecular markers can be effectively used for marker-assisted selection in cattle breeding.
Collapse
Affiliation(s)
- Wei He
- College of Animal Sciences, Jilin University, Changchun, China
| | - Ming Gao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Runjun Yang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jiaqi Mi
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Sun
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hang Xiao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xibi Fang
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Cyclosorus terminans Extract Ameliorates Insulin Resistance and Non-Alcoholic Fatty Liver Disease (NAFLD) in High-Fat Diet (HFD)-Induced Obese Rats. Nutrients 2022; 14:nu14224895. [PMID: 36432581 PMCID: PMC9693870 DOI: 10.3390/nu14224895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Interruptins A and B exhibited anti-diabetic, anti-inflammatory, and anti-oxidative effects. This study aimed to investigate the therapeutic ability of extract enriched by interruptins A and B (EEI) from an edible fern Cyclosorus terminans on insulin resistance and non-alcoholic fatty liver disease (NAFLD) in a high-fat diet (HFD)-induced obese rats and elucidate their possible mechanisms. HFD-induced obese rats were treated with EEI for 2 weeks. Real-time polymerase chain reaction (PCR) was used to examine the molecular basis. We found that EEI supplementation significantly attenuated body and liver weight gain, glucose intolerance, and insulin resistance. Concurrently, EEI increased liver and soleus muscle glycogen storage and serum high-density lipoprotein (HDL) levels. EEI also attenuated NAFLD, as indicated by improving liver function. These effects were associated with enhanced expression of insulin signaling genes (Slc2a2, Slc2a4, Irs1 and Irs2) along with diminished expression of inflammatory genes (Il6 and Tnf). Furthermore, EEI led to the suppression of lipogenesis genes, Srebf1 and Fasn, together with an increase in fatty acid oxidation genes, Ppara and Cpt2, in the liver. These findings suggest that EEI could ameliorate HFD-induced insulin resistance and NAFLD via improving insulin signaling pathways, inflammatory response, lipogenesis, and fatty acid oxidation.
Collapse
|
7
|
Persad KL, Lopaschuk GD. Energy Metabolism on Mitochondrial Maturation and Its Effects on Cardiomyocyte Cell Fate. Front Cell Dev Biol 2022; 10:886393. [PMID: 35865630 PMCID: PMC9294643 DOI: 10.3389/fcell.2022.886393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Alterations in energy metabolism play a major role in the lineage of cardiomyocytes, such as the dramatic changes that occur in the transition from neonate to newborn. As cardiomyocytes mature, they shift from a primarily glycolytic state to a mitochondrial oxidative metabolic state. Metabolic intermediates and metabolites may have epigenetic and transcriptional roles in controlling cell fate by increasing mitochondrial biogenesis. In the maturing cardiomyocyte, such as in the postnatal heart, fatty acid oxidation increases in conjunction with increased mitochondrial biogenesis driven by the transcriptional coregulator PGC1-α. PGC1-α is necessary for mitochondrial biogenesis in the heart at birth, with deficiencies leading to postnatal cardiomyopathy. While stem cell therapy as a treatment for heart failure requires further investigation, studies suggest that adult stem cells may secrete cardioprotective factors which may regulate cardiomyocyte differentiation and survival. This review will discuss how metabolism influences mitochondrial biogenesis and how mitochondrial biogenesis influences cell fate, particularly in the context of the developing cardiomyocyte. The implications of energy metabolism on stem cell differentiation into cardiomyocytes and how this may be utilized as a therapy against heart failure and cardiovascular disease will also be discussed.
Collapse
|
8
|
Wang QS, Li M, Li X, Zhang NW, Hu HY, Zhang LL, Ren JN, Fan G, Pan SY. Protective effect of orange essential oil on the formation of non-alcoholic fatty liver disease caused by high-fat diet. Food Funct 2022; 13:933-943. [PMID: 35005749 DOI: 10.1039/d1fo03793e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to investigate the protective effect of sniffing orange essential oil (OEO) on the formation of non-alcoholic fatty liver disease (NAFLD) caused by a high-fat diet. The results confirmed that sniffing OEO could reduce obesity caused by a high-fat diet (HFD) by reducing the levels of triglycerides (TGs), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). In addition, the observation of liver tissue sections showed that sniffing OEO could reduce lipid accumulation in liver cells. Further analysis by western blot analysis showed that OEO treatment made the expression levels of acetyl-CoA carboxylase (ACC) and Cytochrome P450 2E1 (CYP2E1) down-regulated and the expression levels of peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyltransferase-1 (CPT-1) up-regulated. These results indicate that the treatment of sniffing OEO could enhance the antioxidant capacity of mice and reduce liver damage caused by a high-fat diet. Furthermore, sniffing OEO could inhibit lipid synthesis and oxidative stress stimulated by a high-fat diet. Overall, OEO treatment had a certain protective effect on NAFLD-related diseases caused by a high-fat diet. Therefore, aromatherapy may be introduced as a treatment of long-term chronic diseases.
Collapse
Affiliation(s)
- Qing-Shan Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Min Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Na-Wei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui-Yan Hu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Roles of IκB kinases and TANK-binding kinase 1 in hepatic lipid metabolism and nonalcoholic fatty liver disease. Exp Mol Med 2021; 53:1697-1705. [PMID: 34848839 PMCID: PMC8639992 DOI: 10.1038/s12276-021-00712-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and is strongly associated with obesity-related ectopic fat accumulation in the liver. Hepatic lipid accumulation encompasses a histological spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), which can progress to cirrhosis and hepatocellular carcinoma. Given that dysregulated hepatic lipid metabolism may be an onset factor in NAFLD, understanding how hepatic lipid metabolism is modulated in healthy subjects and which steps are dysregulated in NAFLD subjects is crucial to identify effective therapeutic targets. Additionally, hepatic inflammation is involved in chronic hepatocyte damage during NAFLD progression. As a key immune signaling hub that mediates NF-κB activation, the IκB kinase (IKK) complex, including IKKα, IKKβ, and IKKγ (NEMO), has been studied as a crucial regulator of the hepatic inflammatory response and hepatocyte survival. Notably, TANK-binding kinase 1 (TBK1), an IKK-related kinase, has recently been revealed as a potential link between hepatic inflammation and energy metabolism. Here, we review (1) the biochemical steps of hepatic lipid metabolism; (2) dysregulated lipid metabolism in obesity and NAFLD; and (3) the roles of IKKs and TBK1 in obesity and NAFLD.
Collapse
|
10
|
Miyachi H. Structural Biology-Based Exploration of Subtype-Selective Agonists for Peroxisome Proliferator-Activated Receptors. Int J Mol Sci 2021; 22:ijms22179223. [PMID: 34502131 PMCID: PMC8430769 DOI: 10.3390/ijms22179223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
Progress in understanding peroxisome proliferator-activated receptor (PPAR) subtypes as nuclear receptors that have pleiotropic effects on biological responses has enabled the exploration of new subtype-selective PPAR ligands. Such ligands are useful chemical biology/pharmacological tools to investigate the functions of PPARs and are also candidate drugs for the treatment of PPAR-mediated diseases, such as metabolic syndrome, inflammation and cancer. This review summarizes our medicinal chemistry research of more than 20 years on the design, synthesis, and pharmacological evaluation of subtype-selective PPAR agonists, which has been based on two working hypotheses, the ligand superfamily concept and the helix 12 (H12) holding induction concept. X-ray crystallographic analyses of our agonists complexed with each PPAR subtype validate our working hypotheses.
Collapse
Affiliation(s)
- Hiroyuki Miyachi
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Yu K, Huang K, Tang Z, Huang X, Sun L, Pang L, Mo C. Metabolism and antioxidation regulation of total flavanones from Sedum sarmentosum Bunge against high-fat diet-induced fatty liver disease in Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1149-1164. [PMID: 34142329 DOI: 10.1007/s10695-021-00964-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Diet-induced fatty liver is a considerable threaten to fish aquaculture due to the popularity of the high-fat diet (HFD) feeding. Our study aims to investigate the effects of flavanones from Sedum sarmentosum Bunge (FSSB) on the liver function to identify a potential treatment for HFD-induced fatty liver disease. Physiological and pathological indicators were tested in the liver of Nile tilapia (Oreochromis niloticus) and results showed parameters including lipid metabolites, redox parameters, and inflammatory factors could be adequately restored to normal level by addition of 150 mg/kg FSSB to HFD. Proteomics analysis was performed in liver tissues from tilapia with normal diet (ND), HFD, and HFD+FSSB. Totally, 51 upregulated proteins and 77 downregulated proteins were identified in HFD groups and 67 proteins of them were restored after treated with FSSB. Bioinformatics analysis showed that differentially expressed proteins (DEPs) in HFD+FSSB150 group compared with HFD group are mainly enriched in acety-CoA metabolic process, adenosine-triphosphate (ATP) biosynthetic process, lipid metabolic process, and phospholipid metabolic process. The dysregulated proteins were involved in peroxidosome proliferators-activated receptor (PPAR) signaling pathway, fat digestion and absorption, and immune system. The quantitative real-time PCR (qRT-PCR) assay further revealed that the expression of GST, PPARα, PPARγ, and multiple-inflammatory cytokines could be also reversed in HFD group under the treatment of 150 mg/kg FSSB. Our findings demonstrated FSSB is efficient for the treatment of fatty liver disease through regulation of lipid metabolism and antioxidation in Nile tilapia, providing a new treatment of non-alcoholic fatty liver disease (NAFLD) in fish aquaculture.
Collapse
Affiliation(s)
- Kai Yu
- College of Animal Science and Technology, Guangxi University, No. 100 East Daxue Road, Nanning, 530004, China
| | - Kai Huang
- College of Animal Science and Technology, Guangxi University, No. 100 East Daxue Road, Nanning, 530004, China.
| | - Zhanyang Tang
- College of Animal Science and Technology, Guangxi University, No. 100 East Daxue Road, Nanning, 530004, China.
- Guangxi Academy of Fishery Science, Nanning, 530021, China.
| | - Xiuyun Huang
- College of Animal Science and Technology, Guangxi University, No. 100 East Daxue Road, Nanning, 530004, China
| | - Linlin Sun
- College of Animal Science and Technology, Guangxi University, No. 100 East Daxue Road, Nanning, 530004, China
| | - Linxing Pang
- College of Animal Science and Technology, Guangxi University, No. 100 East Daxue Road, Nanning, 530004, China
| | - Cuiqin Mo
- College of Animal Science and Technology, Guangxi University, No. 100 East Daxue Road, Nanning, 530004, China
| |
Collapse
|
12
|
Joo HK, Lee YR, Lee EO, Kim S, Jin H, Kim S, Lim YP, An CG, Jeon BH. Protective Role of Dietary Capsanthin in a Mouse Model of Nonalcoholic Fatty Liver Disease. J Med Food 2021; 24:635-644. [PMID: 34161164 DOI: 10.1089/jmf.2020.4866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Capsanthin is the main carotenoid compound in red paprika (Capsicum annuum L.). However, little is known about the beneficial effects of capsanthin in nonalcoholic fatty liver disease (NAFLD). In this study, the hepatoprotective activity of capsanthin was investigated in a mouse model of NAFLD. Apolipoprotein-E knockout mice were fed with normal diet, Western-type diet (WD, NAFLD model), WD with capsanthin (0.5 mg/kg of body weight/day, CAP), WD with capsanthin-rich extract (25 mg/kg of body weight/day; CRE), or WD with red paprika powder (25 mg/kg of body weight/day, RPP) for 12 weeks. The carotenoid content in CRE or RPP was analyzed using ultraperformance liquid chromatography. The capsanthin concentration in CRE was 2067 mg/100 g of dry weight, which was 63% of total carotenoids. The oral administration of CRE or capsanthin significantly reduced the WD-induced increase in body weight and lipid accumulation in the liver (vs. the RPP group). In addition, CRE or capsanthin significantly inhibited the WD-induced increase in cholesterol and low-density lipoprotein levels. Furthermore, CRE or capsanthin showed reduced levels of plasma alanine and aspartate aminotransferase (ALT and AST, respectively), suggesting a steatohepatitis protective effect. Capsanthin regulated mRNA levels of peroxisome proliferator-activated receptor alpha (Pparα), carnitine palmitoyltransferase 1A (Cpt1a), acyl-CoA oxidase 1 (Acox1), and sterol regulatory element binding protein-1c (Srebp1c), which are associated with hepatic fatty acid metabolism. Overall, our results suggest that the capsanthin of red paprika plays a protective role against hepatic steatosis/steatohepatitis in NAFLD.
Collapse
Affiliation(s)
- Hee Kyoung Joo
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea.,Department of Physiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Yu Ran Lee
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea.,Department of Physiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Eun-Ok Lee
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea.,Department of Physiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Sungmin Kim
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea.,Department of Physiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Hao Jin
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea.,Department of Physiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Suna Kim
- Division of Food and Nutrition in Human Ecology, College of National Science, Korea National Open University, Seoul, Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, Korea
| | - Chul Geon An
- Gyeongnam Agricultural Research and Extension Services, Jinju, Korea
| | - Byeong Hwa Jeon
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea.,Department of Physiology, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
13
|
Mana MD, Hussey AM, Tzouanas CN, Imada S, Barrera Millan Y, Bahceci D, Saiz DR, Webb AT, Lewis CA, Carmeliet P, Mihaylova MM, Shalek AK, Yilmaz ÖH. High-fat diet-activated fatty acid oxidation mediates intestinal stemness and tumorigenicity. Cell Rep 2021; 35:109212. [PMID: 34107251 PMCID: PMC8258630 DOI: 10.1016/j.celrep.2021.109212] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is an established risk factor for cancer in many tissues. In the mammalian intestine, a pro-obesity high-fat diet (HFD) promotes regeneration and tumorigenesis by enhancing intestinal stem cell (ISC) numbers, proliferation, and function. Although PPAR (peroxisome proliferator-activated receptor) nuclear receptor activity has been proposed to facilitate these effects, their exact role is unclear. Here we find that, in loss-of-function in vivo models, PPARα and PPARδ contribute to the HFD response in ISCs. Mechanistically, both PPARs do so by robustly inducing a downstream fatty acid oxidation (FAO) metabolic program. Pharmacologic and genetic disruption of CPT1A (the rate-controlling enzyme of mitochondrial FAO) blunts the HFD phenotype in ISCs. Furthermore, inhibition of CPT1A dampens the pro-tumorigenic consequences of a HFD on early tumor incidence and progression. These findings demonstrate that inhibition of a HFD-activated FAO program creates a therapeutic opportunity to counter the effects of a HFD on ISCs and intestinal tumorigenesis.
Collapse
Affiliation(s)
- Miyeko D Mana
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Amanda M Hussey
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Constantine N Tzouanas
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA; Program in Health Sciences & Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Shinya Imada
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Dorukhan Bahceci
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dominic R Saiz
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Anna T Webb
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, and Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China; Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA; Program in Health Sciences & Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Yamazaki T, Li D, Ikaga R. Fish Oil Increases Diet-Induced Thermogenesis in Mice. Mar Drugs 2021; 19:278. [PMID: 34067796 PMCID: PMC8156710 DOI: 10.3390/md19050278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing energy expenditure (EE) is beneficial for preventing obesity. Diet-induced thermogenesis (DIT) is one of the components of total EE. Therefore, increasing DIT is effective against obesity. We examined how much fish oil (FO) increased DIT by measuring absolute values of DIT in mice. C57BL/6J male mice were given diets of 30 energy% fat consisting of FO or safflower oil plus butter as control oil (Con). After administration for 9 days, respiration in mice was monitored, and then the data were used to calculate DIT and EE. DIT increased significantly by 1.2-fold in the FO-fed mice compared with the Con-fed mice. Body weight gain was significantly lower in the FO-fed mice. FO increased the levels of uncoupling protein 1 (Ucp1) mRNA and UCP1 protein in brown adipose tissue (BAT) by 1.5- and 1.2-fold, respectively. In subcutaneous white adipose tissue (subWAT), the levels of Ucp1 mRNA and UCP1 protein were increased by 6.3- and 2.7-fold, respectively, by FO administration. FO also significantly increased the expression of markers of browning in subWAT such as fibroblast growth factor 21 and cell death-inducing DNA fragmentation factor α-like effector a. Thus, dietary FO seems to increase DIT in mice via the increased expressions of Ucp1 in BAT and induced browning of subWAT. FO might be a promising dietary fat in the prevention of obesity by upregulation of energy metabolism.
Collapse
Affiliation(s)
- Tomomi Yamazaki
- Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan; (D.L.); (R.I.)
| | - Dongyang Li
- Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan; (D.L.); (R.I.)
- The Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Reina Ikaga
- Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan; (D.L.); (R.I.)
| |
Collapse
|
15
|
Ercolano G, Gomez-Cadena A, Dumauthioz N, Vanoni G, Kreutzfeldt M, Wyss T, Michalik L, Loyon R, Ianaro A, Ho PC, Borg C, Kopf M, Merkler D, Krebs P, Romero P, Trabanelli S, Jandus C. PPARɣ drives IL-33-dependent ILC2 pro-tumoral functions. Nat Commun 2021; 12:2538. [PMID: 33953160 PMCID: PMC8100153 DOI: 10.1038/s41467-021-22764-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/25/2021] [Indexed: 01/27/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) play a critical role in protection against helminths and in diverse inflammatory diseases by responding to soluble factors such as the alarmin IL-33, that is often overexpressed in cancer. Nonetheless, regulatory factors that dictate ILC2 functions remain poorly studied. Here, we show that peroxisome proliferator-activated receptor gamma (PPARγ) is selectively expressed in ILC2s in humans and in mice, acting as a central functional regulator. Pharmacologic inhibition or genetic deletion of PPARγ in ILC2s significantly impair IL-33-induced Type-2 cytokine production and mitochondrial fitness. Further, PPARγ blockade in ILC2s disrupts their pro-tumoral effect induced by IL-33-secreting cancer cells. Lastly, genetic ablation of PPARγ in ILC2s significantly suppresses tumor growth in vivo. Our findings highlight a crucial role for PPARγ in supporting the IL-33 dependent pro-tumorigenic role of ILC2s and suggest that PPARγ can be considered as a druggable pathway in ILC2s to inhibit their effector functions. Hence, PPARγ targeting might be exploited in cancer immunotherapy and in other ILC2-driven mediated disorders, such as asthma and allergy.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Alejandra Gomez-Cadena
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Nina Dumauthioz
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Giulia Vanoni
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Tania Wyss
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Liliane Michalik
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Romain Loyon
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ping-Chih Ho
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Christophe Borg
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Pedro Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Sara Trabanelli
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland. .,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| |
Collapse
|
16
|
Sasaki R, Takami T, Fujisawa K, Matsumoto T, Ishikawa T, Yamamoto N, Sakaida I. Trans-portal hepatic infusion of cultured bone marrow-derived mesenchymal stem cells in a steatohepatitis murine model. J Clin Biochem Nutr 2020; 67:274-282. [PMID: 33293768 PMCID: PMC7705078 DOI: 10.3164/jcbn.20-88] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/13/2020] [Indexed: 12/23/2022] Open
Abstract
The incidence of nonalcoholic steatohepatitis-related liver cirrhosis is increasing. We used a steatohepatitis murine model fed a choline-deficient, l-amino acid-defined (CDAA) diet with a single injection of carbon tetrachloride (CCl4) to evaluate the efficacy of trans-portal hepatic infusion of bone marrow-derived mesenchymal stem cells (BMSCs) for liver fibrosis, liver steatosis, and oxidative stress. Mice were fed a CDAA diet and injected with a single intraperitoneal dose of CCl4 (0.5 ml/kg) after 4 weeks of CDAA diet. After 12 weeks of CDAA diet, 1 × 106 luciferase-positive syngeneic BMSCs (Luc-BMSCs) were infused into the animal spleen. An in vivo imaging system was used to confirm Luc-BMSC accumulation in the liver via the portal vein, and at 4 weeks after infusion, we compared liver fibrosis, liver steatosis, and oxidative stress. After the BMSC-infusion, serum albumin and serum total bilirubin were significantly improved. Liver fibrosis assessed by Sirius red staining, α-smooth muscle actin protein, and collagen 1A1 mRNA expression was significantly suppressed. Furthermore, liver steatosis area was significantly lower, the 8-hydroxy-2'-deoxyguanosine-positive cells were significantly fewer, and superoxide dismutase 2 protein expression of the liver was significantly increased. In conclusion, our data confirmed the efficacy of trans-portal hepatic infusion of BMSCs in a steatohepatitis murine model.
Collapse
Affiliation(s)
- Ryo Sasaki
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 1-1-1 Minami Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 1-1-1 Minami Kogushi, Ube, Yamaguchi 755-8505, Japan.,Center for Regenerative and Cell Therapy, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 1-1-1 Minami Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Koichi Fujisawa
- Department of Liver Regenerative Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 1-1-1 Minami Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Toshihiko Matsumoto
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 1-1-1 Minami Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Tsuyoshi Ishikawa
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 1-1-1 Minami Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Naoki Yamamoto
- Yamaguchi University Health Administration Center, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0046, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 1-1-1 Minami Kogushi, Ube, Yamaguchi 755-8505, Japan.,Center for Regenerative and Cell Therapy, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 1-1-1 Minami Kogushi, Ube, Yamaguchi 755-8505, Japan.,Department of Liver Regenerative Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 1-1-1 Minami Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
17
|
Xiang K, Qin Z, Zhang H, Liu X. Energy Metabolism in Exercise-Induced Physiologic Cardiac Hypertrophy. Front Pharmacol 2020; 11:1133. [PMID: 32848751 PMCID: PMC7403221 DOI: 10.3389/fphar.2020.01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Physiologic hypertrophy of the heart preserves or enhances systolic function without interstitial fibrosis or cell death. As a unique form of physiological stress, regular exercise training can trigger the adaptation of cardiac muscle to cause physiological hypertrophy, partly due to its ability to improve cardiac metabolism. In heart failure (HF), cardiac dysfunction is closely associated with early initiation of maladaptive metabolic remodeling. A large amount of clinical and experimental evidence shows that metabolic homeostasis plays an important role in exercise training, which is conducive to the treatment and recovery of cardiovascular diseases. Potential mechanistic targets for modulation of cardiac metabolism have become a hot topic at present. Thus, exploring the energy metabolism mechanism in exercise-induced physiologic cardiac hypertrophy may produce new therapeutic targets, which will be helpful to design novel effective strategies. In this review, we summarize the changes of myocardial metabolism (fatty acid metabolism, carbohydrate metabolism, and mitochondrial adaptation), metabolically-related signaling molecules, and probable regulatory mechanism of energy metabolism during exercise-induced physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Kefa Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Qin
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Huimin Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
18
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
19
|
Gwon SY, Ahn J, Jung CH, Moon B, Ha TY. Shikonin Attenuates Hepatic Steatosis by Enhancing Beta Oxidation and Energy Expenditure via AMPK Activation. Nutrients 2020; 12:nu12041133. [PMID: 32316687 PMCID: PMC7230385 DOI: 10.3390/nu12041133] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Shikonin, a natural plant pigment, is known to have anti-obesity activity and to improve insulin sensitivity. This study aimed to examine the effect of shikonin on hepatic steatosis, focusing on the AMP-activated protein kinase (AMPK) and energy expenditure in Hepa 1-6 cells and in high-fat fed mice. Shikonin increased AMPK phosphorylation in a dose- and time-dependent manner, and inhibition of AMPK with compound C inhibited this activation. In an oleic acid-induced steatosis model in hepatocytes, shikonin suppressed oleic acid-induced lipid accumulation, increased AMPK phosphorylation, suppressed the expression of lipogenic genes, and stimulated fatty acid oxidation-related genes. Shikonin administration for four weeks decreased body weight gain and the accumulation of lipid droplets in the liver of high-fat fed mice. Furthermore, shikonin promoted energy expenditure by activating fatty acid oxidation. In addition, shikonin increased the expression of PPARγ coactivator-1α (PGC-1α), carnitine palmitoyltransferase-1 (CPT1) and other mitochondrial function-related genes. These results suggest that shikonin attenuated a high fat diet-induced nonalcoholic fatty liver disease by stimulating fatty acid oxidation and energy expenditure via AMPK activation.
Collapse
Affiliation(s)
- So Young Gwon
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea; (S.Y.G.); (J.A.); (C.H.J.)
- Department of Law Policy Research, National Food Safety Information Service, Seoul 110-750, Korea
| | - Jiyun Ahn
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea; (S.Y.G.); (J.A.); (C.H.J.)
- Division of Food Biotechnology, University of Science & Technology, Daejeon 305-350, Korea
| | - Chang Hwa Jung
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea; (S.Y.G.); (J.A.); (C.H.J.)
- Division of Food Biotechnology, University of Science & Technology, Daejeon 305-350, Korea
| | - BoKyung Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 456-756, Korea;
| | - Tae-Youl Ha
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea; (S.Y.G.); (J.A.); (C.H.J.)
- Division of Food Biotechnology, University of Science & Technology, Daejeon 305-350, Korea
- Correspondence: ; Tel.: +82-632299054; Fax: +82-632299225
| |
Collapse
|
20
|
Sun Y, Zhou S, Guo H, Zhang J, Ma T, Zheng Y, Zhang Z, Cai L. Protective effects of sulforaphane on type 2 diabetes-induced cardiomyopathy via AMPK-mediated activation of lipid metabolic pathways and NRF2 function. Metabolism 2020; 102:154002. [PMID: 31706979 DOI: 10.1016/j.metabol.2019.154002] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. It was reported that sulforaphane (SFN) prevented type 2 diabetes (T2D)-induced cardiomyopathy accompanied by the activation of AMPK; In this study, AMPK's pivotal role in SFN-mediated prevention against T2D-induced cardiomyopathy was tested using global deletion of AMPKα2 gene (AMPKα2-KO) mice. METHODS AND RESULTS T2D was established by feeding 3-month high-fat diet (HFD) to induce insulin resistance, followed by an intraperitoneal injection of streptozotocin (STZ) to induce mild hyperglycemia in both AMPKα2-KO and wild-type (WT) mice. Then both T2D and control mice were subsequently treated with or without SFN for 3 months while continually feeding HFD or normal diet. Upon completion of the 3-month treatment, five mice from each group were sacrificed as a 3-month time-point (3 M). The rest continued normal diet or HFD until terminating study at the sixth month (6 M) of diabetes. Cardiac function was examined with echocardiography before sacrifice at both 3 M and 6 M. SFN prevented T2D-induced progression of cardiac dysfunction, remodeling (hypertrophy and fibrosis), inflammation, and oxidative damage in wild-type diabetic mice, but not in AMPKα2-KO mice. Mechanistically, SFN prevented T2D-induced cardiomyopathy not only by improving AMPK-mediated lipid metabolic pathways, but also enhancing NRF2 activation via AMPK/AKT/GSK3β pathway. However, these improving effects of SFN were abolished in AMPKα2-KO diabetic mice. CONCLUSIONS AMPK is indispensable for the SFN-induced prevention of cardiomyopathy in T2D, and the activation of NRF2 by SFN is mediated by AMPK/AKT/GSK3β signaling pathways.
Collapse
Affiliation(s)
- Yike Sun
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA
| | - Shanshan Zhou
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China
| | - Hua Guo
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China; Department of Immunology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Jian Zhang
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA
| | - Tianjiao Ma
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA; Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Yang Zheng
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China.
| | - Zhiguo Zhang
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China.
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA; Departments of Radiation Oncology and Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
21
|
Luo Y, Zhang YN, Zhang H, Lv HB, Zhang ML, Chen LQ, Du ZY. PPARα activation enhances the ability of nile tilapia (Oreochromis niloticus) to resist Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2019; 94:675-684. [PMID: 31563556 DOI: 10.1016/j.fsi.2019.09.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) plays critical physiological roles in energy metabolism, antioxidation and immunity of mammals, however, these functions have not been fully understood in fish. In the present study, Nile tilapia (Oreochromis niloticus) were fed with fenofibrate, an agonist of PPARα, for six weeks, and subsequently challenged with Aeromonas hydrophila. The results showed that PPARα was efficiently activated by fenofibrate through increasing mRNA and protein expressions and protein dephosphorylation. PPARα activation increased significantly mitochondrial fatty acid β-oxidation efficiency, the copy number of mitochondrial DNA and expression of monoamine oxidase (MAO), a marker gene of mitochondria. Meanwhile, PPARα activation also increased significantly the expression of NADH dehydrogenase [ubiquinone] 1α subcomplex subunit 9 (NDUFA9, complex I) and mitochondrial cytochrome c oxidase 1 (MTCO1, complex IV). The fenofibrate-fed fish had higher survival rate when exposed to A. hydrophila. Moreover, the fenofibrate-fed fish also had higher activities of immune and antioxidative enzymes, and gene expressions of anti-inflammatory cytokines, while had lower expressions of pro-inflammatory cytokine genes. Taken together, PPARα activation improved the ability of Nile tilapia to resist A. hydrophila, mainly through enhancing mitochondrial fatty acids β-oxidation, immune and antioxidant capacities, as well as inhibiting inflammation. This is the first study showing the regulatory effects of PPARα activation on immune functions through increasing mitochondria-mediated energy supply in fish.
Collapse
Affiliation(s)
- Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yun-Ni Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Han Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Hong-Bo Lv
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China.
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
22
|
Shaw E, Leung GKW, Jong J, Coates AM, Davis R, Blair M, Huggins CE, Dorrian J, Banks S, Kellow NJ, Bonham MP. The Impact of Time of Day on Energy Expenditure: Implications for Long-Term Energy Balance. Nutrients 2019; 11:E2383. [PMID: 31590425 PMCID: PMC6835928 DOI: 10.3390/nu11102383] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022] Open
Abstract
There is evidence to indicate that the central biological clock (i.e., our endogenous circadian system) plays a role in physiological processes in the body that impact energy regulation and metabolism. Cross-sectional data suggest that energy consumption later in the day and during the night is associated with weight gain. These findings have led to speculation that when, as well as what, we eat may be important for maintaining energy balance. Emerging literature suggests that prioritising energy intake to earlier during the day may help with body weight maintenance. Evidence from tightly controlled acute experimental studies indicates a disparity in the body's ability to utilise (expend) energy equally across the day and night. Energy expenditure both at rest (resting metabolic rate) and after eating (thermic effect of food) is typically more efficient earlier during the day. In this review, we discuss the key evidence for a circadian pattern in energy utilisation and balance, which depends on meal timing. Whilst there is limited evidence that simply prioritising energy intake to earlier in the day is an effective strategy for weight loss, we highlight the potential benefits of considering the role of meal timing for improving metabolic health and energy balance. This review demonstrates that to advance our understanding of the contribution of the endogenous circadian system toward energy balance, targeted studies that utilise appropriate methodologies are required that focus on meal timing and frequency.
Collapse
Affiliation(s)
- Emma Shaw
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| | - Gloria K W Leung
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| | - Jessica Jong
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| | - Alison M Coates
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
- Behaviour-Brain-Body Research Centre, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA 5072, Australia.
| | - Rochelle Davis
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| | - Merran Blair
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| | - Catherine E Huggins
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| | - Jillian Dorrian
- Behaviour-Brain-Body Research Centre, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA 5072, Australia.
| | - Siobhan Banks
- Behaviour-Brain-Body Research Centre, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA 5072, Australia.
| | - Nicole J Kellow
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| | - Maxine P Bonham
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| |
Collapse
|
23
|
Muthuramu I, Mishra M, Aboumsallem JP, Postnov A, Gheysens O, De Geest B. Cholesterol lowering attenuates pressure overload-induced heart failure in mice with mild hypercholesterolemia. Aging (Albany NY) 2019; 11:6872-6891. [PMID: 31484164 PMCID: PMC6756886 DOI: 10.18632/aging.102218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/13/2019] [Indexed: 01/19/2023]
Abstract
Epidemiological studies support a strong association between non-high-density lipoprotein cholesterol levels and heart failure incidence. The objective of the current study was to evaluate the effect of selective cholesterol lowering adeno-associated viral serotype 8 (AAV8)-mediated low-density lipoprotein receptor (LDLr) gene transfer on cardiac remodelling and myocardial oxidative stress following transverse aortic constriction (TAC) in female C57BL/6 LDLr-/- mice with mild hypercholesterolemia. Cholesterol lowering gene transfer resulted in a 65.9% (p<0.0001) reduction of plasma cholesterol levels (51.2 ± 2.2 mg/dl) compared to controls (150 ± 7 mg/dl). Left ventricular wall area was 11.2% (p<0.05) lower in AAV8-LDLr TAC mice than in control TAC mice. In agreement, pro-hypertrophic myocardial proteins were potently decreased in AAV8-LDLr TAC mice. The degree of interstitial fibrosis and perivascular fibrosis was 31.0% (p<0.001) and 29.8% (p<0.001) lower, respectively, in AAV8-LDLr TAC mice compared to control TAC mice. These structural differences were associated with improved systolic and diastolic function and decreased lung congestion in AAV8-LDLr TAC mice compared to control TAC mice. Cholesterol lowering gene therapy counteracted myocardial oxidative stress and preserved the potential for myocardial fatty acid oxidation in TAC mice. In conclusion, cholesterol lowering gene therapy attenuates pressure overload-induced heart failure in mice with mild hypercholesterolemia.
Collapse
Affiliation(s)
- Ilayaraja Muthuramu
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven 3000, Belgium
| | - Mudit Mishra
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven 3000, Belgium
| | - Joseph Pierre Aboumsallem
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven 3000, Belgium
| | - Andrey Postnov
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Catholic University of Leuven, Leuven 3000, Belgium
| | - Olivier Gheysens
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Catholic University of Leuven, Leuven 3000, Belgium
| | - Bart De Geest
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
24
|
Mechanism of continuous high temperature affecting growth performance, meat quality, and muscle biochemical properties of finishing pigs. GENES AND NUTRITION 2019; 14:23. [PMID: 31367261 PMCID: PMC6657146 DOI: 10.1186/s12263-019-0643-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/14/2019] [Indexed: 01/09/2023]
Abstract
Background The mechanism of high ambient temperature affecting meat quality is not clear till now. This study investigated the effect of high ambient temperature on meat quality and nutrition metabolism in finishing pigs. Methods All pigs received the same corn-soybean meal diet. A total of 24 Landrace × Large White pigs (60 kg BW, all were female) were assigned to three groups: 22AL (fed ad libitum at 22 °C), 35AL (ad libitum fed at 35 °C), and 22PF (at 22 °C, but fed the amount consumed by pigs raised at 35 °C) and the experiment lasted for 30 days. Results Feed intake, weight gain, and intramuscular fat (IMF) content of pigs were reduced, both directly by high temperature and indirectly through reduced feed intake. Transcriptome analysis of longissimus dorsi (LM) showed that downregulated genes caused by feed restriction were mainly involved in muscle development and energy metabolism; and upregulated genes were mainly involved in response to nutrient metabolism or extracellular stimulus. Apart from the direct effects of feed restriction, high temperature negatively affected the muscle structure and development, energy, or catabolic metabolism, and upregulated genes were mainly involved in DNA or protein damage or recombination, cell cycle process or biogenesis, stress response, or immune response. Conclusion Both high temperature and reduced feed intake affected growth performance and meat quality. Apart from the effects of reducing feed intake, high temperature per se negatively downregulated cell cycle and upregulated heat stress response. High temperature also decreased the energy or catabolic metabolism level through PPAR signaling pathway. Electronic supplementary material The online version of this article (10.1186/s12263-019-0643-9) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Nogueira-Recalde U, Lorenzo-Gómez I, Blanco FJ, Loza MI, Grassi D, Shirinsky V, Shirinsky I, Lotz M, Robbins PD, Domínguez E, Caramés B. Fibrates as drugs with senolytic and autophagic activity for osteoarthritis therapy. EBioMedicine 2019; 45:588-605. [PMID: 31285188 PMCID: PMC6642320 DOI: 10.1016/j.ebiom.2019.06.049] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Background Ageing-related failure of homeostasis mechanisms contributes to articular cartilage degeneration and osteoarthritis (OA), for which disease-modifying treatments are not available. Our objective was to identify molecules to prevent OA by regulating chondrocyte senescence and autophagy. Methods Human chondrocytes with IL-6 induced senescence and autophagy suppression and SA-β-gal as a reporter of senescence and LC3 as reporter of autophagic flux were used to screen the Prestwick Chemical Library of approved drugs. Preclinical cellular, tissue and blood from OA and blood from OA and ageing models were used to test the efficacy and relevance of activating PPARα related to cartilage degeneration. Findings Senotherapeutic molecules with pro-autophagic activity were identified. Fenofibrate (FN), a PPARα agonist used for dyslipidaemias in humans, reduced the number of senescent cells via apoptosis, increased autophagic flux, and protected against cartilage degradation. FN reduced both senescence and inflammation and increased autophagy in both ageing human and OA chondrocytes whereas PPARα knockdown conferred the opposite effect. Moreover, PPARα expression was reduced through both ageing and OA in mice and also in blood and cartilage from knees of OA patients. Remarkably, in a retrospective study, fibrate treatment improved OA clinical conditions in human patients from the Osteoarthritis Initiative (OAI) Cohort. Interpretation These results demonstrate that FDA-approved fibrate drugs targeting lipid metabolism protect against cartilage degeneration seen with ageing and OA. Thus, these drugs could have immediate clinically utility for age-related cartilage degeneration and OA treatment. Fund This study was supported by Instituto de Salud Carlos III- Ministerio de Ciencia, Innovación y Universidades, Spain, Plan Estatal 2013–2016 and Fondo Europeo de Desarrollo Regional (FEDER), “Una manera de hacer Europa”, PI14/01324 and PI17/02059, by Innopharma Pharmacogenomics platform applied to the validation of targets and discovery of drugs candidates to preclinical phases, Ministerio de Economía y Competitividad, by grants of the National Instiutes of Health to PDR (P01 AG043376 and U19 AG056278). We thank FOREUM Foundation for Research in Rheumatology for their support.
Collapse
Affiliation(s)
- Uxía Nogueira-Recalde
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| | - Irene Lorenzo-Gómez
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| | - Francisco J Blanco
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| | - María I Loza
- Eduardo Domínguez: Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Spain
| | - Diego Grassi
- Institute for Interdisciplinary Neuroscience (IINS), Bordeaux, Nouvelle-Aquitaine, France
| | - Valery Shirinsky
- Scientific Research Institute of Clinical immunology, Novosibirsk, Russia
| | - Ivan Shirinsky
- Scientific Research Institute of Clinical immunology, Novosibirsk, Russia
| | - Martin Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Eduardo Domínguez
- Eduardo Domínguez: Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Spain.
| | - Beatriz Caramés
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain.
| |
Collapse
|
26
|
Kumar S, Rani R, Karns R, Gandhi CR. Augmenter of liver regeneration protein deficiency promotes hepatic steatosis by inducing oxidative stress and microRNA-540 expression. FASEB J 2019; 33:3825-3840. [PMID: 30540918 PMCID: PMC6404588 DOI: 10.1096/fj.201802015r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022]
Abstract
Levels of augmenter of liver regeneration (ALR), a multifunctional protein, are reduced in steatohepatitis. ALR depletion from ALR flox/flox/Alb-Cre [ALR-L-knockout (KO)] mouse causes robust steatosis and apoptosis of hepatocytes, and pericellular fibrosis between 1 and 2 wk postbirth. Steatosis regresses by 4 wk upon reappearance of ALR-expressing hepatocytes. We investigated mechanisms of ALR depletion-induced steatosis. ALR-L-KO mice (1-, 2-, and 4 wk old) and Adeno-Cre-transfected ALR flox/flox hepatocytes were used for in vivo and in vitro studies. ALR depletion from hepatocytes in vivo downregulated peroxisome proliferator-activated receptor (PPAR)-α, carnitine palmitoyl transferase I (CPT1)a, peroxisomal membrane protein 70 (PMP70) (modest down-regulation), and acyl-CoA oxidase 1 (ACOX1). The markedly up-regulated (20X) novel microRNA-540 (miR-540) was identified to target PPARα, PMP70, ACOX1, and CPT1a. ALR depletion from primary hepatocytes increased oxidative stress, miR-540 expression, and steatosis and down-regulated PPARα, ACOX1, PMP70, and CPT1a expression. Anti-miR-540 mitigated ALR depletion-induced steatosis and prevented loss of PPARα, ACOX1, PMP70, and CPT1a expression. Antioxidant N-acetylcysteine and recombinant ALR (rALR) both inhibited ALR depletion-induced miR-540 expression and lipid accumulation in hepatocytes. Finally, treatment of ALR-L-KO mice with rALR between 1 and 2 wk prevented miR-540 expression, and arrested steatosis and fibrosis. We conclude that ALR deficiency-mediated oxidative stress induces generation of miR-540, which promotes steatosis by dysregulating peroxisomal and mitochondrial lipid homeostasis.-Kumar, S., Rani, R., Karns, R., Gandhi, C. R. Augmenter of liver regeneration protein deficiency promotes hepatic steatosis by inducing oxidative stress and microRNA-540 expression.
Collapse
Affiliation(s)
- Sudhir Kumar
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Richa Rani
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Rebekah Karns
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Chandrashekhar R. Gandhi
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
27
|
D'Aniello E, Fellous T, Iannotti FA, Gentile A, Allarà M, Balestrieri F, Gray R, Amodeo P, Vitale RM, Di Marzo V. Identification and characterization of phytocannabinoids as novel dual PPARα/γ agonists by a computational and in vitro experimental approach. Biochim Biophys Acta Gen Subj 2019; 1863:586-597. [PMID: 30611848 DOI: 10.1016/j.bbagen.2019.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/07/2018] [Accepted: 01/02/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND The nuclear Peroxisome Proliferator Activated Receptors (PPARs) are ligand-activated transcription factors playing a fundamental role in energy homeostasis and metabolism. Consequently, functional impairment or dysregulation of these receptors lead to a variety of metabolic diseases. While some phytocannabinoids (pCBs) are known to activate PPARγ, no data have been reported so far on their possible activity at PPARα. METHODS The putative binding modes of pCBs into PPARα/γ Ligand Binding Domains were found and assessed by molecular docking and molecular dynamics. Luciferase assays validated in silico predictions whereas the biological effects of such PPARα/γ ligands were assessed in HepG2 and 3T3L1 cell cultures. RESULTS The in silico study identified cannabigerolic acid (CBGA), cannabidiolic acid (CBDA) and cannabigerol (CBG) from C. sativa as PPARα/γ dual agonists, suggesting their binding modes toward PPARα/γ isoforms and predicting their activity as full or partial agonists. These predictions were confirmed by luciferase functional assays. The resulting effects on downstream gene transcription in adipocytes and hepatocytes were also observed, establishing their actions as functional dual agonists. CONCLUSIONS Our work broadens the activity spectrum of CBDA, CBGA and CBG by providing evidence that these pCBs act as dual PPARα/γ agonists with the ability to modulate the lipid metabolism. GENERAL SIGNIFICANCE Dual PPARα/γ agonists have emerged as an attractive alternative to selective PPAR agonists to treat metabolic disorders. We identified some pCBs as dual PPARα/γ agonists, potentially useful for the treatment of dyslipidemia and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Enrico D'Aniello
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica "Anton Dohrn", 80121 Naples, Italy
| | - Tariq Fellous
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy; Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Alessandra Gentile
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marco Allarà
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; Epitech Group SpA, Saccolongo, Padova, Italy
| | - Francesca Balestrieri
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Roy Gray
- GW Pharmaceuticals, Sovereign House, Vision Park, Histon, Cambridge CB24 9BZ, UK
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy; Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, Canada.
| |
Collapse
|
28
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 442] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
29
|
The Involvement of PPARs in the Peculiar Energetic Metabolism of Tumor Cells. Int J Mol Sci 2018; 19:ijms19071907. [PMID: 29966227 PMCID: PMC6073339 DOI: 10.3390/ijms19071907] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/10/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Energy homeostasis is crucial for cell fate, since all cellular activities are strongly dependent on the balance between catabolic and anabolic pathways. In particular, the modulation of metabolic and energetic pathways in cancer cells has been discussed in some reports, but subsequently has been neglected for a long time. Meanwhile, over the past 20 years, a recovery of the study regarding cancer metabolism has led to an increasing consideration of metabolic alterations in tumors. Cancer cells must adapt their metabolism to meet their energetic and biosynthetic demands, which are associated with the rapid growth of the primary tumor and colonization of distinct metastatic sites. Cancer cells are largely dependent on aerobic glycolysis for their energy production, but are also associated with increased fatty acid synthesis and increased rates of glutamine consumption. In fact, emerging evidence has shown that therapeutic resistance to cancer treatment may arise from the deregulation of glucose metabolism, fatty acid synthesis, and glutamine consumption. Cancer cells exhibit a series of metabolic alterations induced by mutations that lead to a gain-of-function of oncogenes, and a loss-of-function of tumor suppressor genes, including increased glucose consumption, reduced mitochondrial respiration, an increase of reactive oxygen species, and cell death resistance; all of these are responsible for cancer progression. Cholesterol metabolism is also altered in cancer cells and supports uncontrolled cell growth. In this context, we discuss the roles of peroxisome proliferator-activated receptors (PPARs), which are master regulators of cellular energetic metabolism in the deregulation of the energetic homeostasis, which is observed in cancer. We highlight the different roles of PPAR isotypes and the differential control of their transcription in various cancer cells.
Collapse
|
30
|
Shim K, Jacobi S, Odle J, Lin X. Pharmacologic activation of peroxisome proliferator-activating receptor-α accelerates hepatic fatty acid oxidation in neonatal pigs. Oncotarget 2018; 9:23900-23914. [PMID: 29844861 PMCID: PMC5963623 DOI: 10.18632/oncotarget.25199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 04/02/2018] [Indexed: 01/22/2023] Open
Abstract
Up-regulation of peroxisome proliferator-activating receptor-α (PPARα) and increasing fatty acid oxidation are important for reducing pre-weaning mortality of pigs. We examined the time-dependent regulatory effects of PPARα activation via oral postnatal clofibrate administration (75 mg/(kg-BW·d) for up to 7 days) on mitochondrial and peroxisomal fatty acid oxidation in pigs, a species with limited hepatic fatty acid oxidative capacity due to low ketogenesis. Hepatic oxidation was increased by 44-147% (depending on fatty acid chain-length) and was attained after only 4 days of clofibrate treatment. Acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase I (CPTI) activities accelerated in parallel. The increase in CPTI activity was accompanied by a rapid reduction in the sensitivity of CPTI to malonyl-CoA inhibition. The mRNA abundance of CPTI and ACO, as well as peroxisomal keto-acyl-CoA thiolase (KetoACoA) and mitochondrial malonyl-CoA decarboxylase (MCD), also were augmented greatly. However, the increase in ACO activity and MCD expression were different from CPTI, and significant interactions were observed between postnatal age and clofibrate administration. Furthermore, the expression of acetyl-CoA carboxylase β (ACCβ) decreased with postnatal age and clofibrate had no effect on its expression. Collectively these results demonstrate that the expression of PPARα target genes and the increase in fatty acid oxidation induced by clofibrate are time- and age-dependent in the liver of neonatal pigs. Although the induction patterns of CPTI, MCD, ACO, KetoACoA, and ACCβ are different during the early postnatal period, 4 days of exposure to clofibrate were sufficient to robustly accelerate fatty acid oxidation.
Collapse
Affiliation(s)
- Kwanseob Shim
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA.,Current/Present address: Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756 Republic of Korea
| | - Sheila Jacobi
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA.,Current/Present address: Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Xi Lin
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
31
|
Ren G, Rimando AM, Mathews ST. AMPK activation by pterostilbene contributes to suppression of hepatic gluconeogenic gene expression and glucose production in H4IIE cells. Biochem Biophys Res Commun 2018. [PMID: 29524400 DOI: 10.1016/j.bbrc.2018.03.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pterostilbene, a bioactive component of blueberries and grapes, shows structural similarity to resveratrol, and exhibits antioxidant, anti-inflammatory, anti-cancer, hypoglycemic, and cholesterol lowering effects. Recent evidence indicates that pterostilbene is an agonist of the nuclear receptor, peroxisome proliferator-activated receptor-alpha (PPAR-α). Since PPAR-α agonists induce peroxisomal proliferation and fatty acid oxidation, we examined gene expression of acyl CoA oxidase (ACO) and carnitine palmitoyl transferase-1 (CPT-1). Pterostilbene treatment, at concentrations that demonstrated over 75% cell viability (20 μM, 50 μM), significantly increased gene expression of ACO, CPT-1, and PPAR-α. Pterostilbene treatment (50 μM) also demonstrated potent activation of AMP-activated kinase (AMPK), compared to AICAR (0.5 mM) or metformin (2 mM), consistent with upregulation in fatty acid oxidation gene expression. Since AMPK activators mimic the actions of insulin by repressing hepatic gluconeogenesis, we examined pterostilbene's effects on hepatic gluconeogenic gene expression. Pterostilbene treatment significantly repressed dexamethasone-induced phosphoenol pyruvate carboxykinase (PEPCK) and glucose6-phosphatase (G6Pase) gene expression, and decreased glucose production in H4IIE cells. Taken together, our studies demonstrate that pterostilbene, a natural compound and PPAR-α agonist, modulate several AMPK-dependent metabolic functions. The results of the present study suggest that pterostilbene may have beneficial effects in the prevention and management of type 2 diabetes and related disorders. In this study, we found that pterostilbene activated AMP-activated kinase (AMPK) and increased the expression of fatty acid oxidation genes, including acyl CoA oxidase and carnitine palmitoyl transferase-1.
Collapse
Affiliation(s)
- Guang Ren
- Department of Nutrition and Dietetics, Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, AL 36849, USA
| | - Agnes M Rimando
- U.S. Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, P.O. Box 8048, University, MS 38677, USA
| | - Suresh T Mathews
- Department of Nutrition and Dietetics, Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, AL 36849, USA.
| |
Collapse
|
32
|
Structure and Functional Analysis of Promoters from Two Liver Isoforms of CPT I in Grass Carp Ctenopharyngodon idella. Int J Mol Sci 2017; 18:ijms18112405. [PMID: 29137181 PMCID: PMC5713373 DOI: 10.3390/ijms18112405] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/01/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022] Open
Abstract
Carnitine palmitoyltransferase I (CPT I) is a key enzyme involved in the regulation of lipid metabolism and fatty acid β-oxidation. To understand the transcriptional mechanism of CPT Iα1b and CPT Iα2a genes, we cloned the 2695-bp and 2631-bp regions of CPT Iα1b and CPT Iα2a promoters of grass carp (Ctenopharyngodon idella), respectively, and explored the structure and functional characteristics of these promoters. CPT Iα1b had two transcription start sites (TSSs), while CPT Iα2a had only one TSS. DNase I foot printing showed that the CPT Iα1b promoter was AT-rich and TATA-less, and mediated basal transcription through an initiator (INR)-independent mechanism. Bioinformatics analysis indicated that specificity protein 1 (Sp1) and nuclear factor Y (NF-Y) played potential important roles in driving basal expression of CPT Iα2a gene. In HepG2 and HEK293 cells, progressive deletion analysis indicated that several regions contained cis-elements controlling the transcription of the CPT Iα1b and CPT Iα2a genes. Moreover, some transcription factors, such as thyroid hormone receptor (TR), hepatocyte nuclear factor 4 (HNF4) and peroxisome proliferator-activated receptor (PPAR) family, were all identified on the CPT Iα1b and CPT Iα2a promoters. The TRα binding sites were only identified on CPT Iα1b promoter, while TRβ binding sites were only identified on CPT Iα2a promoter, suggesting that the transcription of CPT Iα1b and CPT Iα2a was regulated by a different mechanism. Site-mutation and electrophoretic mobility-shift assay (EMSA) revealed that fenofibrate-induced PPARα activation did not bind with predicted PPARα binding sites of CPT I promoters. Additionally, PPARα was not the only member of PPAR family regulating CPT I expression, and PPARγ also regulated the CPT I expression. All of these results provided new insights into the mechanisms for transcriptional regulation of CPT I genes in fish.
Collapse
|
33
|
Muthuramu I, Amin R, Postnov A, Mishra M, Aboumsallem JP, Dresselaers T, Himmelreich U, Van Veldhoven PP, Gheysens O, Jacobs F, De Geest B. Cholesterol-Lowering Gene Therapy Counteracts the Development of Non-ischemic Cardiomyopathy in Mice. Mol Ther 2017; 25:2513-2525. [PMID: 28822689 DOI: 10.1016/j.ymthe.2017.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 02/02/2023] Open
Abstract
A causal role of hypercholesterolemia in non-ischemic heart failure has never been demonstrated. Adeno-associated viral serotype 8 (AAV8)-low-density lipoprotein receptor (AAV8-LDLr) gene transfer was performed in LDLr-deficient mice without and with pressure overload induced by transverse aortic constriction (TAC). AAV8-LDLr gene therapy resulted in an 82.8% (p < 0.0001) reduction of plasma cholesterol compared with controls. Mortality rate was lower (p < 0.05) in AAV8-LDLr TAC mice compared with control TAC mice (hazard ratio for mortality 0.457, 95% confidence interval [CI] 0.237-0.882) during 8 weeks of follow-up. AAV8-LDLr gene therapy attenuated cardiac hypertrophy, reduced interstitial and perivascular fibrosis, and decreased lung congestion in TAC mice. Cardiac function, quantified by invasive hemodynamic measurements and magnetic resonance imaging, was significantly improved 8 weeks after sham operation or after TAC in AAV8-LDLr mice compared with respective control groups. Myocardial protein levels of mammalian target of rapamycin and of acetyl-coenzyme A carboxylase were strikingly decreased following cholesterol lowering in mice without and with pressure overload. AAV8-LDLr therapy potently reduced cardiac glucose uptake and counteracted metabolic remodeling following pressure overload. Furthermore, oxidative stress and myocardial apoptosis were decreased following AAV8-LDLr therapy in mice with pressure overload. In conclusion, cholesterol-lowering gene therapy potently counteracts structural and metabolic remodeling, and enhances cardiac function.
Collapse
Affiliation(s)
- Ilayaraja Muthuramu
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Ruhul Amin
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Andrey Postnov
- Nuclear Medicine & Molecular Imaging, Department of Imaging & Pathology, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Mudit Mishra
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Joseph Pierre Aboumsallem
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Tom Dresselaers
- Biomedical MRI, Department of Imaging & Pathology, Catholic University of Leuven, 3000 Leuven, Belgium; Department of Radiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging & Pathology, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Paul P Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Olivier Gheysens
- Nuclear Medicine & Molecular Imaging, Department of Imaging & Pathology, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Frank Jacobs
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Bart De Geest
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
34
|
Qiu F, Xie L, Ma JE, Luo W, Zhang L, Chao Z, Chen S, Nie Q, Lin Z, Zhang X. Lower Expression of SLC27A1 Enhances Intramuscular Fat Deposition in Chicken via Down-Regulated Fatty Acid Oxidation Mediated by CPT1A. Front Physiol 2017; 8:449. [PMID: 28706492 PMCID: PMC5489693 DOI: 10.3389/fphys.2017.00449] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/14/2017] [Indexed: 01/11/2023] Open
Abstract
Intramuscular fat (IMF) is recognized as the predominant factor affecting meat quality due to its positive correlation with tenderness, juiciness, and flavor. Chicken IMF deposition depends on the balance among lipid synthesis, transport, uptake, and subsequent metabolism, involving a lot of genes and pathways, however, its precise molecular mechanisms remain poorly understood. In the present study, the breast muscle tissue of female Wenchang chickens (WC) (higher IMF content, 1.24 in D120 and 1.62 in D180) and female White Recessive Rock chickens (WRR; lower IMF content, 0.53 in D120 and 0.90 in D180) were subjected to RNA-sequencing (RNA-seq) analysis. Results showed that many genes related to lipid catabolism, such as SLC27A1, LPL, ABCA1, and CPT1A were down-regulated in WC chickens, and these genes were involved in the PPAR signaling pathway and formed an IPA® network related to lipid metabolism. Furthermore, SLC27A1 was more down-regulated in WRR.D180.B than in WRR.D120.B. Decreased cellular triglyceride (TG) and up-regulated CPT1A were observed in the SLC27A1 overexpression QM-7 cells, and increased cellular triglyceride (TG) and down-regulated CPT1A were observed in the SLC27A1 knockdown QM-7 cells. These results suggest that lower lipid catabolism exists in WC chickens but not in WRR chickens, and lower expression of SLC27A1 facilitate IMF deposition in chicken via down-regulated fatty acid oxidation mediated by CPT1A. These findings indicate that reduced lipid catabolism, rather than increased lipid anabolism, contributes to chicken IMF deposition.
Collapse
Affiliation(s)
- Fengfang Qiu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,School of Chemistry, Biology and Material Science, East China University of TechnologyNanchang, China
| | - Liang Xie
- Department of Poultry Science, Institute of Animal Science and Veterinary, Hainan Academy of Agricultural SciencesHaikou, China
| | - Jing-E Ma
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| | - Wen Luo
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| | - Li Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| | - Zhe Chao
- Department of Poultry Science, Institute of Animal Science and Veterinary, Hainan Academy of Agricultural SciencesHaikou, China
| | - Shaohao Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| | - Qinghua Nie
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| | - Zhemin Lin
- Department of Poultry Science, Institute of Animal Science and Veterinary, Hainan Academy of Agricultural SciencesHaikou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
35
|
Chen Y, Wang Y, Huang Y, Zeng H, Hu B, Guan L, Zhang H, Yu AM, Johnson CH, Gonzalez FJ, Huang M, Bi H. PPARα regulates tumor cell proliferation and senescence via a novel target gene carnitine palmitoyltransferase 1C. Carcinogenesis 2017; 38:474-483. [PMID: 28334197 DOI: 10.1093/carcin/bgx023] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/01/2017] [Indexed: 12/16/2022] Open
Abstract
Carnitine palmitoyltransferase 1C (CPT1C), an enzyme located in the outer mitochondria membrane, has a crucial role in fatty acid transport and oxidation. It is also involved in cell proliferation and is a potential driver for cancer cell senescence. However, its upstream regulatory mechanism is unknown. Peroxisome proliferator activated receptor α (PPARα) is a ligand-activated transcription factor that regulates lipid metabolism and tumor progression. The current study aimed to elucidate whether and how PPARα regulates CPT1C and then affects cancer cell proliferation and senescence. Here, for the first time we report that PPARα directly activated CPT1C transcription and CPT1C was a novel target gene of PPARα, as revealed by dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Moreover, regulation of CPT1C by PPARα was p53-independent. We further confirmed that depletion of PPARα resulted in low CPT1C expression and then inhibited proliferation and induced senescence of MDA-MB-231 and PANC-1 tumor cell lines in a CPT1C-dependent manner, while forced PPARα overexpression promoted cell proliferation and reversed cellular senescence. Taken together, these results indicate that CPT1C is a novel PPARα target gene that regulates cancer cell proliferation and senescence. The PPARα-CPT1C axis may be a new target for the intervention of cancer cellular proliferation and senescence.
Collapse
Affiliation(s)
- Yixin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yongtao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yaoyao Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Hang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Bingfang Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lihuan Guan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Huizhen Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06520, USA and
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
36
|
Skeletal Muscle Nucleo-Mitochondrial Crosstalk in Obesity and Type 2 Diabetes. Int J Mol Sci 2017; 18:ijms18040831. [PMID: 28420087 PMCID: PMC5412415 DOI: 10.3390/ijms18040831] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/01/2017] [Accepted: 04/08/2017] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle mitochondrial dysfunction, evidenced by incomplete beta oxidation and accumulation of fatty acid intermediates in the form of long and medium chain acylcarnitines, may contribute to ectopic lipid deposition and insulin resistance during high fat diet (HFD)-induced obesity. The present review discusses the roles of anterograde and retrograde communication in nucleo-mitochondrial crosstalk that determines skeletal muscle mitochondrial adaptations, specifically alterations in mitochondrial number and function in relation to obesity and insulin resistance. Special emphasis is placed on the effects of high fat diet (HFD) feeding on expression of nuclear-encoded mitochondrial genes (NEMGs) nuclear receptor factor 1 (NRF-1) and 2 (NRF-2) and peroxisome proliferator receptor gamma coactivator 1 alpha (PGC-1α) in the onset and progression of insulin resistance during obesity and how HFD-induced alterations in NEMG expression affect skeletal muscle mitochondrial adaptations in relation to beta oxidation of fatty acids. Finally, the potential ability of acylcarnitines or fatty acid intermediates resulting from mitochondrial beta oxidation to act as retrograde signals in nucleo-mitochondrial crosstalk is reviewed and discussed.
Collapse
|
37
|
Vega RB, Kelly DP. Cardiac nuclear receptors: architects of mitochondrial structure and function. J Clin Invest 2017; 127:1155-1164. [PMID: 28192373 DOI: 10.1172/jci88888] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The adult heart is uniquely designed and equipped to provide a continuous supply of energy in the form of ATP to support persistent contractile function. This high-capacity energy transduction system is the result of a remarkable surge in mitochondrial biogenesis and maturation during the fetal-to-adult transition in cardiac development. Substantial evidence indicates that nuclear receptor signaling is integral to dynamic changes in the cardiac mitochondrial phenotype in response to developmental cues, in response to diverse postnatal physiologic conditions, and in disease states such as heart failure. A subset of cardiac-enriched nuclear receptors serve to match mitochondrial fuel preferences and capacity for ATP production with changing energy demands of the heart. In this Review, we describe the role of specific nuclear receptors and their coregulators in the dynamic control of mitochondrial biogenesis and energy metabolism in the normal and diseased heart.
Collapse
|
38
|
Downing LE, Edgar D, Ellison PA, Ricketts ML. Mechanistic insight into nuclear receptor-mediated regulation of bile acid metabolism and lipid homeostasis by grape seed procyanidin extract (GSPE). Cell Biochem Funct 2017; 35:12-32. [DOI: 10.1002/cbf.3247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Laura E. Downing
- Department of Agriculture, Nutrition and Veterinary Sciences; University of Nevada Reno; Reno Nevada USA
| | - Daniel Edgar
- Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno Nevada USA
| | - Patricia A. Ellison
- Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno Nevada USA
| | - Marie-Louise Ricketts
- Department of Agriculture, Nutrition and Veterinary Sciences; University of Nevada Reno; Reno Nevada USA
| |
Collapse
|
39
|
Waitzberg DL, Torrinhas RS, Jacintho TM. New Parenteral Lipid Emulsions for Clinical Use. JPEN J Parenter Enteral Nutr 2017; 30:351-67. [PMID: 16804134 DOI: 10.1177/0148607106030004351] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Routine use of parenteral lipid emulsions (LE) in clinical practice began in 1961, with the development of soybean oil (SO) - based LE. Although clinically safe, experimental reports indicated that SO-based LE could exert a negative influence on immunological functions. Those findings were related to its absolute and relative excess of omega-6 polyunsaturated fatty acids (PUFA) and the low amount of omega-3 PUFA and also to its high PUFA content with an increased peroxidation risk. This motivated the development of new LE basically designed along the reduction of omega-6 PUFA and the omega-3 PUFA addition in order to obtain balanced levels of the omega-6/omega-3 ratio. The new LE for clinical use (available in Europe and South America) are differentiated by their content in polyunsaturated (omega-6 and omega-3), monounsaturated, and saturated fatty acids (FA), as well as FA source of their origin, including soy, coconut, olive, and fish oil. This article presents the new LE nutrition and energy functions but also its biochemical, metabolic, and immunomodulating aspects, according to their FA content. LE at 20% when infused from 1.0 to 2.0 g/kg body weight/day rates, either alone or in association with amino acids and glucose, are safe and well tolerated in routine clinical practice. LE combining SO with medium-chain triglycerides and/or olive oil have less omega-6 PUFA and are better metabolized, with less inflammatory and immunosuppressive effects than in relation to pure SO-based LE. The omega-3 PUFA used alone or as component of a new and complex LE (soy, MCT, olive and fish oil) has demonstrated anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
- Dan L Waitzberg
- Laboratório de Fisiologia e Distúrbios Esfincterianos of University of São Paulo, School of Medicine, Department of Gastroenterology, Surgical Division, São Paulo, Brazil.
| | | | | |
Collapse
|
40
|
Haj Ahmed S, Kharroubi W, Zarrouk A, Brahmi F, Nury T, Lizard G, Hammami M. Protective effects of bezafibrate against elaidic acid-induced accumulation of lipid droplets in monocytic cells. Curr Res Transl Med 2016; 65:20-30. [PMID: 28340693 DOI: 10.1016/j.retram.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/24/2016] [Accepted: 08/05/2016] [Indexed: 01/15/2023]
Abstract
Some factors related to diet, such as trans fatty acids (TFA), are known to be involved in the progression of atherosclerosis in humans. Thus, the aim of our study was (i) to evaluate the effects of three dietary free fatty acids (FFA) (elaidic (EA), oleic (OA) and palmitic acid (PA)) on U937 human monocytes, and (ii) to study the eventual benefits of bezafibrate (BZF), a pan-agonist for PPAR isoforms (α, γ and δ) in U937 cells treated with FFA. Morphologic and functional changes were investigated by microscopic and flow cytometric methods. Cellular lipid content, lipid droplets and FA composition were identified and studied. All analyses were also realized in association with or without BZF. Contrary to OA and PA, EA slightly induced both propidium iodide-positive cells and mitochondrial depolarization. In addition, in contrast to OA and PA, EA induced only a slight increase in superoxide anion production. However, EA and OA promoted cytoplasmic lipid droplets accumulation. Only EA and OA significantly increased CD36 expression. It is noteworthy that BZF had a more or less pronounced protective effect against EA-, OA- and PA-induced side effects: BZF attenuated the impaired cell viability and inflammatory response, decreased superoxide anion production and prevented the accumulation of neutral and polar lipids. The effects were less pronounced with OA and PA than with EA. Altogether, our data revealed a benefit of BZF on the side effects induced especially with EA. It may thus be of interest in preventing the early stages of atherosclerotic plaque formation.
Collapse
Affiliation(s)
- S Haj Ahmed
- Laboratoire 'nutrition, aliments fonctionnels et santé vasculaire', UR12ES05 faculté de médecine, université de Monastir, Monastir, Tunisia.
| | - W Kharroubi
- Laboratoire 'nutrition, aliments fonctionnels et santé vasculaire', UR12ES05 faculté de médecine, université de Monastir, Monastir, Tunisia
| | - A Zarrouk
- Laboratoire 'nutrition, aliments fonctionnels et santé vasculaire', UR12ES05 faculté de médecine, université de Monastir, Monastir, Tunisia; Équipe 'biochimie du peroxysome, inflammation et métabolisme lipidique' EA7270/université de Bourgogne Franche Comté/Inserm, 21000 Dijon, France
| | - F Brahmi
- Laboratoire de biophysique, biochimie, biomathématique et scientométrie (3BS), département des sciences alimentaires, faculté des Sciences de la Nature et de la Vie, université Abderrahmane Mira, Béjaia, Algeria
| | - T Nury
- Équipe 'biochimie du peroxysome, inflammation et métabolisme lipidique' EA7270/université de Bourgogne Franche Comté/Inserm, 21000 Dijon, France
| | - G Lizard
- Équipe 'biochimie du peroxysome, inflammation et métabolisme lipidique' EA7270/université de Bourgogne Franche Comté/Inserm, 21000 Dijon, France
| | - M Hammami
- Laboratoire 'nutrition, aliments fonctionnels et santé vasculaire', UR12ES05 faculté de médecine, université de Monastir, Monastir, Tunisia
| |
Collapse
|
41
|
Okada M, Inoue Y, Ube M, Sano F, Ikeda I, Sugimoto J, Takagi S. Skeletal Muscle Susceptibility to Clofibrate Induction of Lesions in Rats. Toxicol Pathol 2016; 35:517-20. [PMID: 17562484 DOI: 10.1080/01926230701338925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Morphological changes induced by clofibrate in type-1 predominant soleus, type-2 predominant tensor fasciae latae, and type-1 and -2 mixed biceps femoris muscles and diaphragm in rats were investigated. Administration of the agent at 500 or 750 mg/kg/day by oral gavage for 14 or 28 days caused lesions in the soleus muscle and diaphragm, bur no changes in the tensor fasciae latae and biceps femoris muscles. In soleus muscle, vacuolation of muscle fibers was observed in all animals treated with clofibrate, and degeneration of muscle fibers and infiltration of leukocytes were noted at 750 mg/kg/day. In diaphragm, vacuolation of muscle fibers was also observed in all animals treated with clofibrate, and these lesions were located in type-1 skeletal muscles densely stained with NADH-TR. The vacuoles seen in soleus muscle and diaphragm were positive for oil red O staining. In addition, increase of lipid droplets and mitochondrial hypertrophy was seen in soleus muscle, ultrastructurally. These data suggest that sensitivity to clofibrate-induced muscle toxicity differs among muscles, with type-1 fibers being susceptible.
Collapse
Affiliation(s)
- Miyoko Okada
- Toxicology Laboratory, Mitsubishi Pharma Corporation, Kisarazu, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Collier ZA, Gust KA, Gonzalez-Morales B, Gong P, Wilbanks MS, Linkov I, Perkins EJ. A weight of evidence assessment approach for adverse outcome pathways. Regul Toxicol Pharmacol 2016; 75:46-57. [DOI: 10.1016/j.yrtph.2015.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023]
|
43
|
Sun Y, Yu K, Zhou L, Fang L, Su Y, Zhu W. Metabolomic and transcriptomic responses induced in the livers of pigs by the long-term intake of resistant starch1. J Anim Sci 2016; 94:1083-94. [DOI: 10.2527/jas.2015-9715] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
44
|
Abstract
In this review, Dorn et al. describe the regulatory circuitry and downstream events involved in mitochondrial biogenesis and its coordination with mitochondrial dynamics in developing and diseased hearts. The mitochondrion is a complex organelle that serves essential roles in energy transduction, ATP production, and a myriad of cellular signaling events. A finely tuned regulatory network orchestrates the biogenesis, maintenance, and turnover of mitochondria. The high-capacity mitochondrial system in the heart is regulated in a dynamic way to generate and consume enormous amounts of ATP in order to support the constant pumping function in the context of changing energy demands. This review describes the regulatory circuitry and downstream events involved in mitochondrial biogenesis and its coordination with mitochondrial dynamics in developing and diseased hearts.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Rick B Vega
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, USA
| | - Daniel P Kelly
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, USA
| |
Collapse
|
45
|
Effects of inhibiting PI3K-Akt-mTOR pathway on lipid metabolism homeostasis in goose primary hepatocytes. Animal 2016; 10:1319-27. [DOI: 10.1017/s1751731116000380] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
46
|
El Kebbaj R, Andreoletti P, El Hajj HI, El Kharrassi Y, Vamecq J, Mandard S, Saih FE, Latruffe N, El Kebbaj MS, Lizard G, Nasser B, Cherkaoui-Malki M. Argan oil prevents down-regulation induced by endotoxin on liver fatty acid oxidation and gluconeogenesis and on peroxisome proliferator-activated receptor gamma coactivator-1α, (PGC-1α), peroxisome proliferator-activated receptor α (PPARα) and estrogen related receptor α (ERRα). BIOCHIMIE OPEN 2015; 1:51-59. [PMID: 29632829 PMCID: PMC5889474 DOI: 10.1016/j.biopen.2015.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/20/2015] [Indexed: 01/04/2023]
Abstract
In patients with sepsis, liver metabolism and its capacity to provide other organs with energetic substrates are impaired. This and many other pathophysiological changes seen in human patients are reproduced in mice injected with purified endotoxin (lipopolysaccharide, LPS). In the present study, down-regulation of genes involved in hepatic fatty acid oxidation (FAOx) and gluconeogenesis in mice exposed to LPS was challenged by nutritional intervention with Argan oil. Mice given a standard chow supplemented or not with either 6% (w/w) Argan oil (AO) or 6% (w/w) olive oil (OO) prior to exposure to LPS were explored for liver gene expressions assessed by mRNA transcript levels and/or enzyme activities. AO (or OO) food supplementation reveals that, in LPS-treated mice, hepatic expression of genes involved in FAOx and gluconeogenesis was preserved. This preventive protection might be related to the recovery of the gene expressions of nuclear receptors peroxisome proliferator-activated receptor α (PPARα) and estrogen related receptor α (ERRα) and their coactivator peroxisome proliferator-activated receptor gamma coactivator-1α, (PGC-1α). These preventive mechanisms conveyed by AO against LPS-induced metabolic dysregulation might add new therapeutic potentialities in the management of human sepsis. Argan oil prevents LPS-treated mice from liver dysregulation of FAOx and gluconeogenesis. Argan oil improves hepatic expression of PPARα and ERRα, and their coactivators PGC-1α and Lipin-1. New preventive mechanisms conveyed by Argan oil against LPS-induced metabolic dysregulation.
Collapse
Key Words
- ACADL, acyl CoA dehydrogenase long-chain
- ACADM, acyl CoA dehydrogenase medium-chain
- ACADS, acyl CoA dehydrogenase short-chain
- ACOX1, acyl-CoA oxidase 1
- AO, Argan oil
- Argan oil
- Beta-oxidation
- Coactivator
- ERRα, estrogen related receptor α
- G6PH, glucose-6-phosphatase
- Gluconeogenesis
- Glut2, glucose transporter 2
- Glut4, glucose transporter 4
- HNF-4α, hepatic nuclear factor-4α
- LPS, lipopolysaccharide
- Nuclear receptor
- OO, olive oil
- PEPCK, phospoenolpyruvate carboxykinase
- PGC-1α, peroxisome proliferator-activated receptor γ coactivator-1α
- PPARα, peroxisome proliferator-activated receptor α
Collapse
Affiliation(s)
- Riad El Kebbaj
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France.,Laboratoir de Biochimie et Neurosciences, Faculté des Sciences et Techniques, Université Hassan I, BP 577, 26 000 Settat, Morocco.,Laboratoire des Sciences et Technologies de la Santé, Institut supérieur des sciences de la santé Université Hassan I, Route de Casablanca. 14 BP 539, 26 000 Settat, Morocco
| | - Pierre Andreoletti
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France
| | - Hammam I El Hajj
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France
| | - Youssef El Kharrassi
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France.,Laboratoir de Biochimie et Neurosciences, Faculté des Sciences et Techniques, Université Hassan I, BP 577, 26 000 Settat, Morocco
| | - Joseph Vamecq
- INSERM and HMNO, CBP, CHRU Lille, 59037 Lille and RADEME EA 7364, Faculté de Médecine, Université de Lille 2, 59045 Lille, France
| | - Stéphane Mandard
- Lipness Team, INSERM, Research Center UMR866 and LabEx LipSTIC, Université de Bourgogne-Franche Comté, Dijon, France
| | - Fatima-Ezzahra Saih
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France.,Laboratoir de Biochimie et Neurosciences, Faculté des Sciences et Techniques, Université Hassan I, BP 577, 26 000 Settat, Morocco
| | - Norbert Latruffe
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France
| | - M'Hammed Saïd El Kebbaj
- Laboratoire de recherche sur les lipoprotéines et l'Athérosclérose, Faculté des Sciences Ben M'sik, Avenue Cdt Driss El Harti, BP 7955, Université Hassan II-Mohammedia-Casablanca, Morocco
| | - Gérard Lizard
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France
| | - Boubker Nasser
- Laboratoir de Biochimie et Neurosciences, Faculté des Sciences et Techniques, Université Hassan I, BP 577, 26 000 Settat, Morocco
| | - Mustapha Cherkaoui-Malki
- Univ. Bourgogne-Franche Comté, Laboratoire BioPeroxIL (Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique), EA 7270, 21000 Dijon, France
| |
Collapse
|
47
|
Abstract
The ultrastructure of the cardiac myocyte is remarkable for the high density of mitochondria tightly packed between sarcomeres. This structural organization is designed to provide energy in the form of ATP to fuel normal pump function of the heart. A complex system comprised of regulatory factors and energy metabolic machinery, encoded by both mitochondrial and nuclear genomes, is required for the coordinate control of cardiac mitochondrial biogenesis, maturation, and high-capacity function. This process involves the action of a transcriptional regulatory network that builds and maintains the mitochondrial genome and drives the expression of the energy transduction machinery. This finely tuned system is responsive to developmental and physiological cues, as well as changes in fuel substrate availability. Deficiency of components critical for mitochondrial energy production frequently manifests as a cardiomyopathic phenotype, underscoring the requirement to maintain high respiration rates in the heart. Although a precise causative role is not clear, there is increasing evidence that perturbations in this regulatory system occur in the hypertrophied and failing heart. This review summarizes current knowledge and highlights recent advances in our understanding of the transcriptional regulatory factors and signaling networks that serve to regulate mitochondrial biogenesis and function in the mammalian heart.
Collapse
Affiliation(s)
- Rick B Vega
- From the Diabetes and Obesity Research Center, Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL
| | - Julie L Horton
- From the Diabetes and Obesity Research Center, Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL
| | - Daniel P Kelly
- From the Diabetes and Obesity Research Center, Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL.
| |
Collapse
|
48
|
Svidnicki PV, Leite NC, Vicari MR, Almeida MCD, Artoni RF, Favero GM, Grassiolli S, Nogaroto V. Swim training and the genetic expression of adipokines in monosodium glutamate-treated obese rats. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2015; 59:210-4. [PMID: 26154087 DOI: 10.1590/2359-3997000000039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/14/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the genetic expression of adipokines in the adipocytes of monosodium glutamate (MSG)-treated obese rats submitted to physical activity. MATERIALS AND METHODS Obesity was induced by neonatal MSG administration. Exercised rats (MSG and control) were subjected to swim training for 30 min for 10 weeks, whereas their respective controls remained sedentary. Total RNA was obtained from sections of the mesenteric adipose tissue of the rats. mRNA levels of adiponectin (Adipoq), tumor necrosis factor alpha (Tnf), peroxisome proliferator-activated receptor alpha (Ppara), and peroxisome proliferator-activated receptor gamma (Pparg) adipokines were quantified by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). RESULTS In the exercise-trained control group, the expression of Adipoq increased compared to the sedentary control, which was not observed in the MSG-obese rats. Increased levels of Tnf in MSG-obese rats were not reversed by the swim training. The expression of Ppara was higher in sedentary MSG-obese rats compared to the sedentary control. Swimming increased this adipokine expression in the exercise-trained control rats compared to the sedentary ones. mRNA levels of Pparg were higher in the sedentary MSG-rats compared to the sedentary control; however, the exercise did not influenced its expression in the groups analyzed. CONCLUSIONS In conclusion, regular physical activity was not capable to correct the expression of proinflammatory adipokines in MSG-obese rat adipocytes.
Collapse
Affiliation(s)
- Paulo Vinicius Svidnicki
- Department of Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | | | - Marcelo Ricardo Vicari
- Department of Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Mara Cristina de Almeida
- Department of Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Roberto Ferreira Artoni
- Department of Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | | | | | - Viviane Nogaroto
- Department of Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| |
Collapse
|
49
|
Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 2015; 62:720-33. [PMID: 25450203 DOI: 10.1016/j.jhep.2014.10.039] [Citation(s) in RCA: 992] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/22/2014] [Accepted: 10/26/2014] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor belonging, together with PPARγ and PPARβ/δ, to the NR1C nuclear receptor subfamily. Many PPARα target genes are involved in fatty acid metabolism in tissues with high oxidative rates such as muscle, heart and liver. PPARα activation, in combination with PPARβ/δ agonism, improves steatosis, inflammation and fibrosis in pre-clinical models of non-alcoholic fatty liver disease, identifying a new potential therapeutic area. In this review, we discuss the transcriptional activation and repression mechanisms by PPARα, the spectrum of target genes and chromatin-binding maps from recent genome-wide studies, paying particular attention to PPARα-regulation of hepatic fatty acid and plasma lipoprotein metabolism during nutritional transition, and of the inflammatory response. The role of PPARα, together with other PPARs, in non-alcoholic steatohepatitis will be discussed in light of available pre-clinical and clinical data.
Collapse
Affiliation(s)
- Michal Pawlak
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Université Lille 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Université Lille 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Université Lille 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France.
| |
Collapse
|
50
|
Yoon L, Liu YN, Park H, Kim HS. Olive Leaf Extract Elevates Hepatic PPAR α mRNA Expression and Improves Serum Lipid Profiles in Ovariectomized Rats. J Med Food 2015; 18:738-44. [PMID: 25714618 DOI: 10.1089/jmf.2014.3287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We hypothesized that olive leaf extract might alleviate dyslipidemia resulting from estrogen deficiency. Serum lipid profile and mRNA expression of the related genes in the liver and adipose tissue were analyzed after providing olive leaf extract (200 or 400 mg/kg body weight; n=7 for each group) to ovariectomized rats for 10 weeks. After 10 weeks' administration, the rats in the olive leaf extract-administered groups showed significantly lower levels of serum triglyceride and very-low-density lipoprotein (VLDL)-cholesterol compared with the rats in the control group, whereas the administration of olive leaf extract did not significantly change the elevated low-density lipoprotein cholesterol levels. In addition, administration of high dose of olive leaf extract significantly decreased the liver triglyceride and increased serum estradiol levels. mRNA expressions of peroxisome proliferator-activated receptor alpha (PPAR α) and acyl-CoA oxidase (ACO) were not affected by ovariectomy, however, administration of olive leaf extract significantly increased both PPAR α and ACO mRNA expression. Expression of adiponectin mRNA in adipose tissue was significantly decreased in the ovariectomized control group. Rats administered low-dose olive leaf extract showed significantly elevated adiponectin mRNA expression compared with rats in the ovariectomized control group. Even though dose-dependent effects were not observed in most of the measurements, these results suggest that genes involved in lipid metabolism may be regulated by olive leaf extract administration in ovariectomized rats.
Collapse
Affiliation(s)
- Leena Yoon
- 1 Division of Life Systems, College of Science, Sookmyung Women's University , Seoul, Korea
| | - Ya-Nan Liu
- 2 Major in Food and Nutrition, College of Human Ecology, Sookmyung Women's University , Seoul, Korea
| | - Hyunjin Park
- 2 Major in Food and Nutrition, College of Human Ecology, Sookmyung Women's University , Seoul, Korea.,3 ICAN Nutrition Education and Research , Seoul, Korea
| | - Hyun-Sook Kim
- 1 Division of Life Systems, College of Science, Sookmyung Women's University , Seoul, Korea.,2 Major in Food and Nutrition, College of Human Ecology, Sookmyung Women's University , Seoul, Korea
| |
Collapse
|