1
|
Wu CJ, Liu H, Tu LJ, Hu JY. Peroxisome proliferator-activated receptor gamma mutation in familial partial lipodystrophy type three: A case report and review of literature. World J Diabetes 2024; 15:2360-2369. [DOI: 10.4239/wjd.v15.i12.2360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/22/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Familial partial lipodystrophy disease (FPLD) is a collection of rare genetic diseases featuring partial loss of adipose tissue. However, metabolic difficulties, such as severe insulin resistance, diabetes, hypertriglyceridemia, and hypertension frequently occur alongside adipose tissue loss, making it susceptible to misdiagnosis and delaying effective treatment. Numerous genes are implicated in the occurrence of FPLD, and genetic testing has been for conditions linked to single gene mutation related to FPLD. Reviewing recent reports, treatment of the disease is limited to preventing and improving complications in patients.
CASE SUMMARY In 2017, a 31-year-old woman with diabetes, hypertension and hypertriglyceridemia was hospitalized. We identified a mutation in her peroxisome proliferator-activated receptor gamma (PPARG) gene, Y151C (p.Tyr151Cys), which results in a nucleotide substitution residue 452 in the DNA-binding domain (DBD) of PPARG. The unaffected family member did not carry this mutation. Pioglitazone, a PPARG agonist, improved the patient’s responsiveness to hypoglycemic and antihypertensive therapy. After one year of treatment in our hospital, the fasting blood glucose and glycosylated hemoglobin of the patient were close to normal.
CONCLUSION We report a rare PPARG mutation, Y151C, which is located in the DBD of PPARG and leads to FPLD, and the preferred agent is PPARG agonists. We then summarized clinical phenotypic characteristics of FPLD3 caused by PPARG gene mutations, and clarified the relationship between different mutations of PPARG gene and the clinical manifestations of this type of FPLD. Additionally, current treatments for FPLD caused by PPARG mutations are reviewed.
Collapse
Affiliation(s)
- Chao-Jun Wu
- Basic Medical College, Army Medical University, Chongqing 400038, China
| | - Hao Liu
- Basic Medical College, Army Medical University, Chongqing 400038, China
| | - Li-Juan Tu
- Department of Endocrinology, Rare Disease Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Jiong-Yu Hu
- Department of Endocrinology, Rare Disease Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| |
Collapse
|
2
|
Albrecht FB, Schick AK, Klatt A, Schmidt FF, Nellinger S, Kluger PJ. Exploring Morphological and Molecular Properties of Different Adipose Cell Models: Monolayer, Spheroids, Gellan Gum-Based Hydrogels, and Explants. Macromol Biosci 2024:e2400320. [PMID: 39450850 DOI: 10.1002/mabi.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Indexed: 10/26/2024]
Abstract
White adipose tissue (WAT) plays a crucial role in energy homeostasis and secretes numerous adipokines with far-reaching effects. WAT is linked to diseases such as diabetes, cardiovascular disease, and cancer. There is a high demand for suitable in vitro models to study diseases and tissue metabolism. Most of these models are covered by 2D-monolayer cultures. This study aims to evaluate the performance of different WAT models to better derive potential applications. The stability of adipocyte characteristics in spheroids and two 3D gellan gum hydrogels with ex situ lobules and 2D-monolayer culture is analyzed. First, the differentiation to achieve adipocyte-like characteristics is determined. Second, to evaluate the maintenance of differentiated ASC-based models, an adipocyte-based model, and explants over 3 weeks, viability, intracellular lipid content, perilipin A expression, adipokine, and gene expression are analyzed. Several advantages are supported using each of the models. Including, but not limited to, the strong differentiation in 2D-monolayers, the self-assembling within spheroids, the long-term stability of the stem cell-containing hydrogels, and the mature phenotype within adipocyte-containing hydrogels and the lobules. This study highlights the advantages of 3D models due to their more in vivo-like behavior and provides an overview of the different adipose cell models.
Collapse
Affiliation(s)
- Franziska B Albrecht
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
- Faculty of Natural Science, University of Hohenheim, Schloss Hohenheim 1, 70599, Stuttgart, Germany
| | - Ann-Kathrin Schick
- Faculty of Science, Energy and Building Services, Esslingen University, Kanalstraße 33, 73728, Esslingen, Germany
| | - Annemarie Klatt
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| | - Freia F Schmidt
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| | - Svenja Nellinger
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| | - Petra J Kluger
- School of Life Sciences, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| |
Collapse
|
3
|
Wang L, Chen H, Deng L, Hu M, Wang Z, Zhang K, Lian C, Wang X, Zhang J. Roburic acid inhibits lung cancer metastasis and triggers autophagy as verified by network pharmacology, molecular docking techniques and experiments. Front Oncol 2024; 14:1449143. [PMID: 39450260 PMCID: PMC11499198 DOI: 10.3389/fonc.2024.1449143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Background Roburic acid (ROB) is a newly discovered tetracyclic triterpene acid extracted from oak galls, which has anti-inflammatory effects, but the mechanism of its anticancer effect is not clear. Our study focuses on exploring the potential mechanism of action of ROB in the treatment of lung cancer using a combination of network pharmacological prediction, molecular docking technique and experimental validation. Methods A network pharmacology approach was used to screen the protein targets of ROB and lung cancer, and PPI network analysis and enrichment analysis were performed on the intersecting genes. The tissue and organ distribution of the targets was also evaluated based on the BioGPS database. To ensure the reliability of the network pharmacology prediction results, we proceeded to use molecular docking technique to determine the relationship between drugs and targets. Finally, in vitro experiments with cell lines were performed to further reveal the potential mechanism of ROB for the treatment of lung cancer. Results A total of 83 potential targets of ROB in lung cancer were collected and further screened by using Cytoscape software, and 7 targets of PTGS2, CYP19A1, PTGS1, AR, CYP17A1, PTGES and SRD5A1 were obtained as hub genes and 7 hub targets had good binding energy with ROB. GO and KEGG analysis showed that ROB treatment of lung cancer mainly involves Arachidonic acid metabolism, Notch signaling pathway, cancer pathway and PPAR signaling pathway. The results of in vitro experiments indicated that ROB may inhibit the proliferation and metastasis of lung cancer cells and activate the PPARγ signaling pathway, as well as induce cellular autophagy. Conclusions The results of this study comprehensively elucidated the potential targets and molecular mechanisms of ROB for the treatment of lung cancer, providing new ideas for further lung cancer therapy.
Collapse
Affiliation(s)
- Luyao Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Huili Chen
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Lili Deng
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Mengling Hu
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Kai Zhang
- Research Center of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Chaoqun Lian
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Joint Research Center for Regional Diseases of Institute of Healthcare Management (IHM), The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| |
Collapse
|
4
|
Amin MN, Abdelmohsen UR, Samra YA. Turkish coffee has an antitumor effect on breast cancer cells in vitro and in vivo. Nutr Metab (Lond) 2024; 21:73. [PMID: 39272080 PMCID: PMC11396339 DOI: 10.1186/s12986-024-00846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Breast cancer is the most diagnosed cancer in women. Its pathogenesis includes several pathways in cancer proliferation, apoptosis, and metastasis. Some clinical data have indicated the association between coffee consumption and decreased cancer risk. However, little data is available on the effect of coffee on breast cancer cells in vitro and in vivo. METHODS In our study, we assessed the effect of Turkish coffee and Fridamycin-H on different pathways in breast cancer, including apoptosis, proliferation, and oxidative stress. A human breast cancer cell line (MCF-7) was treated for 48 h with either coffee extract (5% or 10 v/v) or Fridamycin-H (10 ng/ml). Ehrlich solid tumors were induced in mice for in vivo modeling of breast cancer. Mice with Ehrlich solid tumors were treated orally with coffee extract in drinking water at a final concentration (v/v) of either 3%, 5%, or 10% daily for 21 days. Protein expression levels of Caspase-8 were determined in both in vitro and in vivo models using ELISA assay. Moreover, P-glycoprotein and peroxisome proliferator-activated receptor gamma (PPAR-γ) protein expression levels were analyzed in the in vitro model. β-catenin protein expression was analyzed in tumor sections using immunohistochemical analysis. In addition, malondialdehyde (MDA) serum levels were analyzed using colorimetry. RESULTS Both coffee extract and Fridamycin-H significantly increased Caspase-8, P-glycoprotein, and PPAR-γ protein levels in MCF-7 cells. Consistently, all doses of in vivo coffee treatment induced a significant increase in Caspase-8 and necrotic zones and a significant decrease in β- catenin, MDA, tumor volume, tumor weight, and viable tumor cell density. CONCLUSION These findings suggest that coffee extract and Fridamycin-H warrant further exploration as potential therapies for breast cancer.
Collapse
Affiliation(s)
- Mohamed N Amin
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, 61111, Egypt
| | - Yara A Samra
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Basic Medical Sciences, Faculty of Oral and Dental Medicine, Ahram Canadian University, Giza, 12566, Egypt
| |
Collapse
|
5
|
Greco G, Di Lorenzo R, Ricci L, Di Serio T, Vardaro E, Laneri S. Clinical Studies Using Topical Melatonin. Int J Mol Sci 2024; 25:5167. [PMID: 38791203 PMCID: PMC11121188 DOI: 10.3390/ijms25105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Melatonin is ubiquitously present in all animals and plants, where it exerts a variety of physiological activities thanks to its antioxidant properties and its key role as the first messenger of extracellular signaling functions. Most of the clinical studies on melatonin refer to its widespread oral use as a dietary supplement to improve sleep. A far smaller number of articles describe the clinical applications of topical melatonin to treat or prevent skin disorders by exploiting its antioxidant and anti-inflammatory activities. This review focuses on the clinical studies in which melatonin was applied on the skin as a photoprotective, anti-aging, or hair growth-promoting agent. The methodologies and results of such studies are discussed to provide an overall picture of the state of the art in this intriguing field of research. The clinical studies in which melatonin was applied on the skin before exposure to radiation (UV, sunlight, and high-energy beams) were all characterized by an appropriate design (randomized, double-blind, and placebo-controlled) and strongly support its clinical efficacy in preventing or reducing skin damage such as dermatitis, erythema, and sunburn. Most of the studies examined in this review do not provide a clear demonstration of the efficacy of topical melatonin as a skin anti-aging or as a hair growth-promoting agent owing to limitations in their design and/or to the use of melatonin combined with extra active ingredients, except for one trial that suggests a possible beneficial role of melatonin in treating some forms of alopecia in women. Further research efforts are required to reach definitive conclusions concerning the actual benefits of topical melatonin to counteract skin aging and hair loss.
Collapse
Affiliation(s)
| | | | | | | | | | - Sonia Laneri
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (G.G.); (R.D.L.); (L.R.); (T.D.S.); (E.V.)
| |
Collapse
|
6
|
Guimarães GC, Coelho JBC, Silva JGO, de Sant'Ana ACC, de Sá CAC, Moreno JM, Reis LM, de Oliveira Guimarães CS. Obesity, diabetes and risk of bone fragility: How BMAT behavior is affected by metabolic disturbances and its influence on bone health. Osteoporos Int 2024; 35:575-588. [PMID: 38055051 DOI: 10.1007/s00198-023-06991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Osteoporosis is a metabolic bone disease characterized by decreased bone strength and mass, which predisposes patients to fractures and is associated with high morbidity and mortality. Like osteoporosis, obesity and diabetes are systemic metabolic diseases associated with modifiable risk factors and lifestyle, and their prevalence is increasing. They are related to decreased quality of life, functional loss and increased mortality, generating high costs for health systems and representing a worldwide public health problem. Growing evidence reinforces the role of bone marrow adipose tissue (BMAT) as an influential factor in the bone microenvironment and systemic metabolism. Given the impact of obesity and diabetes on metabolism and their possible effect on the bone microenvironment, changes in BMAT behavior may explain the risk of developing osteoporosis in the presence of these comorbidities. METHODS This study reviewed the scientific literature on the behavior of BMAT in pathological metabolic conditions, such as obesity and diabetes, and its potential involvement in the pathogenesis of bone fragility. RESULTS Published data strongly suggest a relationship between increased BMAT adiposity and the risk of bone fragility in the context of obesity and diabetes. CONCLUSION By secreting a broad range of factors, BMAT modulates the bone microenvironment and metabolism, ultimately affecting skeletal health. A better understanding of the relationship between BMAT expansion and metabolic disturbances observed in diabetic and obese patients will help to identify regulatory pathways and new targets for the treatment of bone-related diseases, with BMAT as a potential therapeutic target.
Collapse
Affiliation(s)
| | - João Bosco Costa Coelho
- Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | | | | | | | - Júlia Marques Moreno
- Department of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Lívia Marçal Reis
- Department of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Camila Souza de Oliveira Guimarães
- Department of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil.
- Departamento de Medicina, Universidade Federal de Lavras, Câmpus Universitário, Caixa Postal 3037, CEP 37200-900, Lavras, Minas Gerais, Brasil.
| |
Collapse
|
7
|
Robinson JW, Martin R, Ozawa M, Elwenspoek MMC, Redaniel MT, Kurian K, Ben-Shlomo Y. Use of drugs for hyperlipidaemia and diabetes and risk of primary and secondary brain tumours: nested case-control studies using the UK Clinical Practice Research Datalink (CPRD). BMJ Open 2024; 14:e072026. [PMID: 38336454 PMCID: PMC10860117 DOI: 10.1136/bmjopen-2023-072026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVES Previous studies have suggested that fibrates and glitazones may have a role in brain tumour prevention. We examined if there is support for these observations using primary care records from the UK Clinical Practice Research Datalink (CPRD). DESIGN We conducted two nested case-control studies using primary and secondary brain tumours identified within CPRD between 2000 and 2016. We selected cases and controls among the population of individuals who had been treated with any anti-diabetic or anti-hyperlipidaemic medication to reduce confounding by indication. SETTING Adults older than 18 years registered with a general practitioner in the UK contributing data to CPRD. RESULTS We identified 7496 individuals with any brain tumour (4471 primary; 3025 secondary) in total. After restricting cases and controls to those prescribed any anti-diabetic or anti-hyperlipidaemic medication, there were 1950 cases and 7791 controls in the fibrate and 480 cases with 1920 controls in the glitazone analyses. Longer use of glitazones compared with all other anti-diabetic medications was associated with a reduced risk of primary (adjusted OR (aOR) 0.89 per year, 95% CI 0.80 to 0.98), secondary (aOR 0.87 per year, 95% CI 0.77 to 0.99) or combined brain tumours (aOR 0.88 per year, 95% CI 0.81 to 0.95). There was little evidence that fibrate exposure was associated with risk of either primary or secondary brain tumours. CONCLUSIONS Longer exposure to glitazones was associated with reduced primary and secondary brain tumour risk. Further basic science and population-based research should explore this finding in greater detail, in terms of replication and mechanistic studies.
Collapse
Affiliation(s)
- Jamie W Robinson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Richard Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Mio Ozawa
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Martha Maria Christine Elwenspoek
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Univeristy of Bristol, Bristol, UK
| | - Maria Theresa Redaniel
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Univeristy of Bristol, Bristol, UK
| | - Kathreena Kurian
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Brain Tumour Research Centre, University of Bristol, Bristol, UK
| | - Yoav Ben-Shlomo
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Univeristy of Bristol, Bristol, UK
| |
Collapse
|
8
|
Dalamaga M, Kounatidis D, Tsilingiris D, Vallianou NG, Karampela I, Psallida S, Papavassiliou AG. The Role of Endocrine Disruptors Bisphenols and Phthalates in Obesity: Current Evidence, Perspectives and Controversies. Int J Mol Sci 2024; 25:675. [PMID: 38203845 PMCID: PMC10779569 DOI: 10.3390/ijms25010675] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Excess body weight constitutes one of the major health challenges for societies and healthcare systems worldwide. Besides the type of diet, calorie intake and the lack of physical exercise, recent data have highlighted a possible association between endocrine-disrupting chemicals (EDCs), such as bisphenol A, phthalates and their analogs, and obesity. EDCs represent a heterogeneous group of chemicals that may influence the hormonal regulation of body mass and adipose tissue morphology. Based on the available data from mechanistic, animal and epidemiological studies including meta-analyses, the weight of evidence points towards the contribution of EDCs to the development of obesity, associated disorders and obesity-related adipose tissue dysfunction by (1) impacting adipogenesis; (2) modulating epigenetic pathways during development, enhancing susceptibility to obesity; (3) influencing neuroendocrine signals responsible for appetite and satiety; (4) promoting a proinflammatory milieu in adipose tissue and inducing a state of chronic subclinical inflammation; (5) dysregulating gut microbiome and immune homeostasis; and (6) inducing dysfunction in thermogenic adipose tissue. Critical periods of exposure to obesogenic EDCs are the prenatal, neonatal, pubertal and reproductive periods. Interestingly, EDCs even at low doses may promote epigenetic transgenerational inheritance of adult obesity in subsequent generations. The aim of this review is to summarize the available evidence on the role of obesogenic EDCs, specifically BPA and phthalate plasticizers, in the development of obesity, taking into account in vitro, animal and epidemiologic studies; discuss mechanisms linking EDCs to obesity; analyze the effects of EDCs on obesity in critical chronic periods of exposure; and present interesting perspectives, challenges and preventive measures in this research area.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Kounatidis
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Irene Karampela
- Second Department of Critical Care, ‘Attikon’ General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Sotiria Psallida
- Department of Microbiology, ‘KAT’ General Hospital of Attica, 14561 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
9
|
Luna-Ramirez RI, Kelly AC, Anderson MJ, Bidwell CA, Goyal R, Limesand SW. Elevated Norepinephrine Stimulates Adipocyte Hyperplasia in Ovine Fetuses With Placental Insufficiency and IUGR. Endocrinology 2023; 165:bqad177. [PMID: 38035825 PMCID: PMC10726312 DOI: 10.1210/endocr/bqad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/01/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Prevailing hypoxemia and hypoglycemia in near-term fetuses with placental insufficiency-induced intrauterine growth restriction (IUGR) chronically increases norepinephrine concentrations, which lower adrenergic sensitivity and lipid mobilization postnatally, indicating a predisposition for adiposity. To determine adrenergic-induced responses, we examined the perirenal adipose tissue transcriptome from IUGR fetuses with or without hypercatecholaminemia. IUGR was induced in sheep with maternal hyperthermia, and hypercatecholaminemia in IUGR was prevented with bilateral adrenal demedullation. Adipose tissue was collected from sham-operated control (CON) and IUGR fetuses and adrenal-demedullated control (CAD) and IUGR (IAD) fetuses. Norepinephrine concentrations were lower in IAD fetuses than in IUGR fetuses despite both being hypoxemic and hypoglycemic. In IUGR fetuses, perirenal adipose tissue mass relative to body mass was greater compared with the CON, adrenal-demedullated control, and IAD groups. Transcriptomic analysis identified 581 differentially expressed genes (DEGs) in CON vs IUGR adipose tissue and 193 DEGs in IUGR vs IAD adipose tissue. Integrated functional analysis of these 2 comparisons showed enrichment for proliferator-activated receptor signaling and metabolic pathways and identified adrenergic responsive genes. Within the adrenergic-regulated DEGs, we identified transcripts that regulate adipocyte proliferation and differentiation: adipogenesis regulatory factor, C/CCAAT/enhancer binding protein α, and sterol carrier protein 2. DEGs associated with the metabolic pathway included pyruvate dehydrogenase kinase 4, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4, IGF-binding proteins (IGFBP-5 and IGFBP-7). Sex-specific expression differences were also found for adipogenesis regulatory factor, pyruvate dehydrogenase kinase 4, IGFBP5, and IGFBP7. These findings indicate that sustained adrenergic stimulation during IUGR leads to adipocyte hyperplasia with alterations in metabolism, proliferation, and preadipocyte differentiation pathways.
Collapse
Affiliation(s)
- Rosa I Luna-Ramirez
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85719, USA
| | - Amy C Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85719, USA
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85719, USA
| | | | - Ravi Goyal
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85719, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
10
|
Zhao YK, Zhu XD, Liu R, Yang X, Liang YL, Wang Y. The Role of PPARγ Gene Polymorphisms, Gut Microbiota in Type 2 Diabetes: Current Progress and Future Prospects. Diabetes Metab Syndr Obes 2023; 16:3557-3566. [PMID: 37954888 PMCID: PMC10638901 DOI: 10.2147/dmso.s429825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Over the past decade, there has been a significant increase in studies investigating the relationship between the polymorphisms of the Peroxisome Proliferator-Activated Receptor gamma (PPARγ) gene and Type 2 Diabetes (T2D). PPARγ, a critical transcription factor, plays a central role in lipid metabolism, insulin resistance, and inflammatory response. Concurrently, the influence of gut microbiota on the development of T2D has gained increasing attention, especially their role in affecting host metabolism, such as lipid metabolism and the PPARγ signaling pathway. This review provides a comprehensive analysis of recent studies on PPARγ gene polymorphisms and their association with T2D, with a specific emphasis on the implications of gut microbiota and their interaction with PPARγ pathways. We also discuss the potential of manipulating gut microbiota and targeting PPARγ gene polymorphisms in T2D management. By deepening our understanding of these relationships, we aim to pave the way for novel preventative and therapeutic strategies for T2D.
Collapse
Affiliation(s)
- Yi-Kun Zhao
- Department of Basic Medical College, Gansu University of Chinese Medicine, Lanzhou City, People’s Republic of China
| | - Xiang-Dong Zhu
- Department of Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan city, People’s Republic of China
| | - Rong Liu
- Department of Basic Medical College, Gansu University of Chinese Medicine, Lanzhou City, People’s Republic of China
| | - Xia Yang
- Department of Basic Medical College, Gansu University of Chinese Medicine, Lanzhou City, People’s Republic of China
| | - Yong-Lin Liang
- Department of Basic Medical College, Gansu University of Chinese Medicine, Lanzhou City, People’s Republic of China
| | - Yan Wang
- Department of Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan city, People’s Republic of China
| |
Collapse
|
11
|
Wong AR, Yang AWH, Gill H, Lenon GB, Hung A. Mechanisms of Nelumbinis folium targeting PPARγ for weight management: A molecular docking and molecular dynamics simulations study. Comput Biol Med 2023; 166:107495. [PMID: 37742414 DOI: 10.1016/j.compbiomed.2023.107495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
The lotus leaf, Nelumbinis folium (NF), has frequently appeared in obesity clinical trials as an intervention to promote weight loss and improve metabolic profiles. However, the molecular mechanisms by which it interacts with important obesity targets and pathways, such as the peroxisome proliferator-activated receptor gamma (PPARγ) within the PPAR signalling pathway, were not well understood. This study aims to screen for candidate compounds from NF with desirable pharmacokinetic properties and examine their binding feasibility at the PPARγ ligand-binding domain (LBD). Ligand- and structure-based screening of NF compounds were performed, and a consensus approach has been applied to identify druggable candidates. By examining the pharmacokinetic profiles, a large proportion of NF compounds exhibited favourable drug-likeness and oral bioavailability properties. Furthermore, the binding affinity scores and poses provided new insights on the distinctive binding behaviours of NF compounds at the LBD of PPARγ in its inactive form. Several NF compounds could bind strongly to PPARγ at sub-pockets where partial agonists and antagonists were found to bind and may induce conformational changes that influence co-repressor binding, trans-repression, and gene expression inhibition. Subsequent molecular dynamics simulations of a candidate compound (NF129 narcissin) bound to PPARγ revealed conformational stability, residue fluctuation, and binding behaviours comparable to that of the known inhibitor, SR1664. Therefore, it can be proposed that narcissin exhibits characteristics of a PPARγ antagonist. Further experimental validation to support the development of NF129 as a future anti-obesity agent is warranted.
Collapse
Affiliation(s)
- Ann Rann Wong
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Angela Wei Hong Yang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - George Binh Lenon
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Andrew Hung
- School of Science, RMIT University, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
Tang T, Jiang G, Shao J, Wang M, Zhang X, Xia S, Sun W, Jia X, Wang J, Lai S. lncRNA MSTRG4710 Promotes the Proliferation and Differentiation of Preadipocytes through miR-29b-3p/IGF1 Axis. Int J Mol Sci 2023; 24:15715. [PMID: 37958699 PMCID: PMC10649235 DOI: 10.3390/ijms242115715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Obesity, a major global health issue, is increasingly associated with the integral role of long non-coding RNA (lncRNA) in adipogenesis. Recently, we found that lncRNA-MSTRG4710 was highly expressed in the liver of rabbits fed a high-fat diet, but whether it is involved in lipid metabolism remains unclear. A series of experiments involving CCK-8, EDU, qPCR, and Oil Red O staining demonstrated that the overexpression of MSTRG4710 stimulated the proliferation and differentiation of preadipocytes while its knockdown inhibited these processes. Bioinformatics analysis showed that miR-29b-3p was a potential target gene of MSTRG4710, and IGF1 was a downstream target gene of miR-29b-3p. Luciferase reporter gene analysis and qPCR analysis confirmed that miR-29b-3p was a potential target gene of MSTRG4710, and miR-29b-3p directly targeted the 3'UTR of IGF1. The overexpression of miR-29b-3p was observed to regulate IGF1 protein and mRNA levels negatively. Additionally, a total of 414 known differentially expressed genes between the miR-29b-3p mimic, miR-29b-3p negative control (NC), siMSTRG4710, and siMSTRG4710-NC group were screened via transcriptome sequencing technology. The GO- and KEGG-enriched pathways were found to be related to lipid metabolism. The study also established that miR-29b-3p targets IGF1 to inhibit preadipocyte proliferation and differentiation. Notably, IGF1 knockdown significantly reduced preadipocyte proliferation and differentiation. Furthermore, co-transfection of pcDNA3.1(+)-MSTRG4710 and mimics into rabbit preadipocytes revealed that the mimics reversed the promotional effect of pcDNA3.1(+)-MSTRG4710. In conclusion, these results uncover that MSTRG4710 positively regulated cell proliferation and adipogenesis by the miR-29b-3p/IGF1 axis. Our findings might provide a new target for studying adipogenesis in rabbit preadipocytes and obesity.
Collapse
Affiliation(s)
- Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Genglong Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Meigui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxiao Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siqi Xia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenqiang Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China (J.W.)
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China (J.W.)
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China (J.W.)
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China (J.W.)
| |
Collapse
|
13
|
Song H, Zhang X, Wang J, Wu Y, Xiong T, Shen J, Lin R, Xiao T, Lin W. The regulatory role of adipocyte mitochondrial homeostasis in metabolism-related diseases. Front Physiol 2023; 14:1261204. [PMID: 37920803 PMCID: PMC10619862 DOI: 10.3389/fphys.2023.1261204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Adipose tissue is the most important energy storage organ in the body, maintaining its normal energy metabolism function and playing a vital role in keeping the energy balance of the body to avoid the harm caused by obesity and a series of related diseases resulting from abnormal energy metabolism. The dysfunction of adipose tissue is closely related to the occurrence of diseases related to obesity metabolism. Among various organelles, mitochondria are the main site of energy metabolism, and mitochondria maintain their quality through autophagy, biogenesis, transfer, and dynamics, which play an important role in maintaining metabolic homeostasis of adipocytes. On the other hand, mitochondria have mitochondrial genomes which are vulnerable to damage due to the lack of protective structures and their proximity to sites of reactive oxygen species generation, thus affecting mitochondrial function. Notably, mitochondria are closely related to other organelles in adipocytes, such as lipid droplets and the endoplasmic reticulum, which enhances the function of mitochondria and other organelles and regulates energy metabolism processes, thus reducing the occurrence of obesity-related diseases. This article introduces the structure and quality control of mitochondria in adipocytes and their interactions with other organelles in adipocytes, aiming to provide a new perspective on the regulation of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases, and to provide theoretical reference for further revealing the molecular mechanism of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases.
Collapse
Affiliation(s)
- Hongbing Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanling Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taimin Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jieqiong Shen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weimin Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
14
|
Zhang W, Hu S, Ke H, Bao Z, Liu H, Hu Z. Study of pathological processes of meibomian gland dysfunction by in vitro culture airlifting conditions. J Histotechnol 2023; 46:101-113. [PMID: 37216482 DOI: 10.1080/01478885.2023.2199370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/31/2023] [Indexed: 05/24/2023]
Abstract
Meibomian gland dysfunction (MGD) is a group of disorders linked by functional abnormalities of the meibomian glands. Current studies on MGD pathogenesis focus on meibomian gland cells, providing information on a single cell's response to experimental manipulation, and do not maintain the architecture of an intact meibomian gland acinus and the acinar epithelial cells' secretion state in vivo. In this study, rat meibomian gland explants were cultured by a Transwell chamber-assisted method under an air-liquid interface (airlift) in vitro for 96 h. Analyses for tissue viability, histology, biomarker expression, and lipid accumulation were performed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and TUNEL assays, hematoxylin and eosin (H&E) staining, immunofluorescence, Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), transmission electron microscopy (TEM), and western blotting (WB). MTT, TUNEL, and H&E staining indicated better tissue viability and morphology than the submerged conditions used in previous studies. Levels of MGD biomarkers, including keratin 1 (KRT1) and 14 (KRT14) and peroxisome proliferator-activated receptor-gamma (PPAR-γ), along with oxidative stress markers, including reactive oxygen species, malondialdehyde, and 4-hydroxy-2-nonenal, gradually increased over culture time. The MGD pathophysiological changes and biomarker expression of meibomian gland explants cultured under airlift conditions were similar to those reported by previous studies, indicating that abnormal acinar cell differentiation and glandular epithelial cell hyperkeratosis may contribute to obstructive MGD occurrence.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Ophthalmology, Kunming Medical University, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Shuxian Hu
- Department of Ophthalmology, Kunming Medical University, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Hongqin Ke
- Department of Ophthalmology, Kunming Medical University, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Zhengyilin Bao
- Department of Ophthalmology, Kunming Medical University, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Hai Liu
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Zhulin Hu
- Department of Ophthalmology, Kunming Medical University, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
15
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton. Nat Commun 2023; 14:4587. [PMID: 37524694 PMCID: PMC10390564 DOI: 10.1038/s41467-023-40393-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we apply mass cytometry by time-of-flight using carefully validated antibodies to analyze senescent cells at single-cell resolution. We use multiple criteria to identify senescent mesenchymal cells that are growth-arrested and resistant to apoptosis. These p16 + Ki67-BCL-2+ cells are highly enriched for senescence-associated secretory phenotype and DNA damage markers, are strongly associated with age, and their percentages are increased in late osteoblasts/osteocytes and CD24high osteolineage cells. Moreover, both late osteoblasts/osteocytes and CD24high osteolineage cells are robustly cleared by genetic and pharmacologic senolytic therapies in aged mice. Following isolation, CD24+ skeletal cells exhibit growth arrest, senescence-associated β-galactosidase positivity, and impaired osteogenesis in vitro. These studies thus provide an approach using multiplexed protein profiling to define senescent mesenchymal cells in vivo and identify specific skeletal cell populations cleared by senolytics.
Collapse
Affiliation(s)
- Madison L Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jennifer L Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Stephanie J Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - David G Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
16
|
Shui F, Qiu G, Pan S, Wang X, Jiang T, Geng Z, Jin S. Impact of divergence of residual feed intake on triglyceride metabolism-related gene expression in meat-type ducks. PLoS One 2023; 18:e0286051. [PMID: 37216344 DOI: 10.1371/journal.pone.0286051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Triglyceride (TG) metabolism is a key factor that affects residual feed intake (RFI); however, few studies have been conducted on the related gene expression in poultry. The aim of the present study was to investigate the expression of genes and their associations with RFI in meat-type ducks. Weight gain and feed intake (FI) at an age 21-42 days were measured and the RFI was calculated. Quantitative PCR was used to test the expression of the six identified genes, namely peroxisome proliferator activated receptor γ (PPARγ), glycerol kinase 2 (GK2), glycerol-3-phosphate dehydrogenase 1 (GPD1), glycerol kinase (GYK), lipase E (LIPE), and lipoprotein lipase (LPL) in the duodenum in the high RFI (HRFI) and low RFI (LRFI) groups. The results demonstrated that daily feed intake, feed conversion ratio (FCR), and RFI were markedly higher in HRFI ducks than those in LRFI ducks. Moreover, the levels of expression of PPARγ, GK2, and LIPE were significantly higher in the LRFI group than those in the HRFI group. Correlation analysis showed that PPARγ, GK2, and LIPE were significantly negatively associated with FCR and RFI. Furthermore, gene expression levels were negatively associated with the measured phenotype. The association of GK2 with PPARγ, GPD1, LPL, and LIPE was positive. The relationship between the TG related gene and RFI was further verified to potentially develop pedigree poultry breeding programs. The results of this study suggested that the expression of genes correlated with TG metabolism and transport is up-regulated in the duodenum of ducks with high feed efficiency. PPARγ, GK2, and LIPE are important genes that affect RFI. The results of the present study provide information that could facilitate further explorations of the mechanism of RFI and potential markers at the molecular and cellular levels.
Collapse
Affiliation(s)
- Fei Shui
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei, China
| | - Guiru Qiu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shenqiang Pan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei, China
| | - Xin Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei, China
| | - Tingting Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei, China
| | - Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei, China
| |
Collapse
|
17
|
Fang L, Fang C, Di S, Yu Y, Wang C, Wang X, Jin Y. Oral exposure to tire rubber-derived contaminant 6PPD and 6PPD-quinone induce hepatotoxicity in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161836. [PMID: 36716866 DOI: 10.1016/j.scitotenv.2023.161836] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is a widely used additive for protecting various rubber products, and its product of oxidation N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPDQ) has attracted extensive attention in aquatic toxicity. However, the toxicity of 6PPD and 6PPDQ in mammals has not been reported yet. In this study, the effects of 6PPD and 6PPDQ on the liver of C57BL/6 mice were assessed by orally administering different doses of 6PPD and 6PPDQ (10, 30, and 100 mg/kg) in mice for 6 weeks. 6PPD and 6PPDQ were found to bioaccumulate in the liver in a dose-dependent manner. Moreover, a high dose of 6PPD and 6PPDQ exposure increased not only the liver weights but also liver triglyceride levels, indicating that 6PPD and 6PPDQ exposure induced hepatotoxicity in mice. Furthermore, transcriptomic analysis revealed that 6PPD and 6PPDQ induced differential expression of genes mainly enriched in glycolipid metabolism, immune-related, and glutathione metabolism pathways. Therefore, 6PPD and 6PPDQ altered hepatic metabolism in mice. Furthermore, 6PPDQ could induce an immune response by upregulating the transcription of immune-related genes and promoting macrophage infiltration in the liver. In conclusion, our study revealed the toxic effects of 6PPD and 6PPDQ exposure on multi-endpoints in the liver of mice and improve our understanding of the health risks of 6PPD and 6PPDQ to mammals. The findings of our study may help formulate better safety regulations for the use and disposal of rubber products.
Collapse
Affiliation(s)
- Liya Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chanlin Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yundong Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
18
|
Up-regulation of PPAR-γ involved in the therapeutic effect of icariin on cigarette smoke-induced inflammation. Pulm Pharmacol Ther 2023; 79:102197. [PMID: 36690317 DOI: 10.1016/j.pupt.2023.102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Icariin (ICA) might be a potential anti-inflammatory medication in a variety of diseases including COPD, and previous studies showed that ICA could attenuate cigarette smoke (CS)-induced inflammation by inhibiting nuclear factor (NF)-κB. Peroxisome proliferator-activated receptor (PPAR) γ, a nuclear hormone receptor, has been reported to play a critical role in the inflammatory process in COPD. Whether PPAR-γ is involved in the anti-inflammatory effect of icariin on COPD has scarcely been explored. This study aimed at investigating the role of ICA in PPAR-γ expression in the CS-induced model, and then elucidating the therapeutic effects of ICA on COPD based on the PPARγ-NF-κB signaling pathway. The Beas-2B cells and H292 cells were induced with cigarette smoke extract (CSE) for 8 h after treatment with ICA for 16 h. The PPARγ expression and NF-κB pathway-related indicators were detected by western blotting, cellular immunofluorescence, and Real-time PCR. The PPARγ knock down or T0070907-treated Beas-2B cells were constructed to further investigate the relationship between the inhibition of NF-κB by ICA and PPARγ. A COPD model was established by CS exposure for 6 months, and ICA (40 mg/kg) was administrated by gastric perfusion. Then, the pulmonary function, lung histology, inflammatory cytokine levels, and protein expressions were detected. We found ICA up-regulated PPARγ protein expression in both Beas-2B cells and H292 cells, and it improved CSE-induced PPARγ down regulation and NF-κB activation. Furthermore, the inhibition of NF-κB pathway by ICA was partially dependent on PPARγ in the PPARγ knock down or T0070907-treated Beas-2B cells, suggesting that ICA attenuated CSE-induced inflammatory responses were associated with modulating the PPARγ-NF-κB pathway. Moreover, ICA showed similar effects on PPARγ and NF-κB expressions in the COPD model, and it effectively ameliorated the pulmonary function and lung inflammatory infiltration in the COPD rat model. Conclusively, the therapeutic effect of ICA on COPD was indirectly achieved by reducing airway inflammation, which was partially associated with modulating the PPARγ-NF-κB signaling pathway.
Collapse
|
19
|
Hartley A, Ahmad I. The role of PPARγ in prostate cancer development and progression. Br J Cancer 2023; 128:940-945. [PMID: 36510001 PMCID: PMC10006070 DOI: 10.1038/s41416-022-02096-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Advanced and metastatic prostate cancer is often incurable, but its dependency on certain molecular alterations may provide the basis for targeted therapies. A growing body of research has demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) is amplified as prostate cancer progresses. PPARγ has been shown to support prostate cancer growth through its roles in fatty acid synthesis, mitochondrial biogenesis, and co-operating with androgen receptor signalling. Interestingly, splice variants of PPARγ may have differing and contrasting roles. PPARγ itself is a highly druggable target, with agonists having been used for the past two decades in treating diabetes. However, side effects associated with these compounds have currently limited clinical use of these drugs in prostate cancer. Further understanding of PPARγ and novel techniques to target it, may provide therapies for advanced prostate cancer.
Collapse
Affiliation(s)
- Andrew Hartley
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Imran Ahmad
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
20
|
Faheem SA, Hazem RM, Elsayed NM, Ahmed YM, Saeed NM. Niclosamide modulates cyclosporin A-induced hepatotoxicity in a mouse model: PPAR-γ and Wnt/β-catenin crosstalk. Int Immunopharmacol 2023; 117:109941. [PMID: 37012891 DOI: 10.1016/j.intimp.2023.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate whether: 1) Wnt/β-catenin signaling is involved in cyclosporin A (CsA)-induced hepatotoxicity, and 2) knockdown of this pathway by niclosamide (NCL) attenuate CsA-induced hepatotoxicity. METHODS The experiment was accomplished in 21 days. Adult male mice were randomly distributed into five groups: control group, CsA (25 mg/kg/day) group, CsA + NCL (2.5 mg/kg/day) group, CsA + NCL (5 mg/kg/day) group, and NCL (5 mg/kg/day) group. RESULTS NCL showed marked hepatoprotection by significantly decreasing liver enzymes activities and ameliorating the histopathological alterations induced by CsA. Besides, NCL alleviated oxidative stress and inflammation. NCL-treated groups (2.5 and 5 mg/kg) displayed rise in the expression of hepatic peroxisome proliferator-activated receptor-γ (PPAR-γ) by 2.1- and 2.5-fold, respectively. Notably, NCL (2.5 and 5 mg/kg) significantly inhibited Wnt/β-catenin signaling, evidenced by a marked decrease in the hepatic expression of Wnt3a by 54 % and 50 %, frizzled-7 receptor by 50 % and 50 %, β-catenin by 22 % and 49 %, and c-myc by 50 % and 50 %, respectively. CONCLUSIONS NCL can be regarded as a potential agent to mitigate CsA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Safaa A Faheem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Reem M Hazem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Norhan M Elsayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Yasser M Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
| | - Noha M Saeed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt.
| |
Collapse
|
21
|
Schneider-Matyka D, Cybulska AM, Szkup M, Pilarczyk B, Panczyk M, Lubkowska A, Sadowska N, Grochans E. Selenium as a Factor Moderating Depression and Obesity in Middle-Aged Women. Nutrients 2023; 15:nu15071594. [PMID: 37049434 PMCID: PMC10096999 DOI: 10.3390/nu15071594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023] Open
Abstract
The aim of this study was to evaluate the effect of serum selenium on PPAR-γ and the selected proinflammatory cytokines (IL-1β, IL-6, TNF-α) in relation to depressive symptoms and obesity in middle-aged women. The research procedure was as follows: a survey was performed using the authors’ questionnaire and the BDI, anthropometric measurements, and the analysis of blood for the levels of selenium, cytokines, and genetic analysis of the PPAR-γ polymorphism (n = 443). It was found that the BMI increased along with the concentration of IL-6. No moderating effect of selenium was observed, although the cut-off values for “p” were established for IL-β*Se (p = 0.068) and IL-6*Se (p = 0.068), so there was a potential association with these two markers. At high selenium levels, the effect of higher IL-β levels on a decrease in BMI was stronger, as was the effect of an increase in IL-6 levels on an increase in BMI. No effect of selenium on PPAR-γ was found in relation to depressive symptoms and obesity. Higher selenium levels may have a beneficial effect on BMI even at high IL-β concentrations, however, at high IL-6 concentrations, this effect was not observed. Selenium levels had no impact on depressive symptoms.
Collapse
Affiliation(s)
- Daria Schneider-Matyka
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska Str. 48, 71-210 Szczecin, Poland
- Correspondence: ; Tel.: +48-914-800-910
| | - Anna Maria Cybulska
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska Str. 48, 71-210 Szczecin, Poland
| | - Małgorzata Szkup
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska Str. 48, 71-210 Szczecin, Poland
| | - Bogumiła Pilarczyk
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology, Klemensa Janickiego Str. 29, 71-217 Szczecin, Poland
| | - Mariusz Panczyk
- Department of Education and Research in Health Sciences, Faculty of Health Sciences, Medical University of Warsaw, Litewska Str. 14/16, 00-581 Warsaw, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska Str. 54, 71-210 Szczecin, Poland
| | - Nikola Sadowska
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology, Klemensa Janickiego Str. 29, 71-217 Szczecin, Poland
| | - Elżbieta Grochans
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska Str. 48, 71-210 Szczecin, Poland
| |
Collapse
|
22
|
Schneider-Matyka D, Cybulska AM, Szkup M, Pilarczyk B, Panczyk M, Tomza-Marciniak A, Grochans E. Selenium as a predictor of metabolic syndrome in middle age women. Aging (Albany NY) 2023; 15:1734-1747. [PMID: 36947700 PMCID: PMC10085601 DOI: 10.18632/aging.204590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/04/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Selenium plays an important role in metabolic homeostasis. It has been suggested that it may also affect the expression and activity of PPAR-γ. The aim of study was to analyze the relationships between these variables in the context of the health of women, for whom the risk of MetS increases with age. MATERIAL AND METHODS The study involved 390 women in middle age. The stages of study: a survey-based part; anthropometric measurements; analysis of biological material (blood) in terms of glycemia, triglyceride, HDL, and selenium levels, as well as genetic analysis of the PPAR-γ polymorphisms. RESULTS It was found that selenium may moderate the effect of the G allele of the PPAR-γ gene on the occurrence of elevated waist circumference (OR=1.030, 95%CI 1.005-1.057, p=0.020); and the effect of the C (OR=1.077, 95%CI 1.009-1.149, p=0.026) and the G alleles (OR=1.052, 95%CI 1.025-1.080, p<0.000) on the odds of elevated blood pressure. Women in whom HDL levels were not significantly reduced, had higher selenium levels (p=0.007). CONCLUSIONS 1. The effect of selenium on MetS and its components has not been demonstrated. 2. The effect of individual alleles of the PPAR-γ gene on MetS and its components was not demonstrated. 3. The concentration of selenium may affect waist circumference in carriers of the G allele, and arterial hypertension in carriers of the C and G alleles by affecting the expression of PPAR-γ. 4. Higher selenium concentrations increased the odds of higher HDL levels in the group of subjects meeting the MetS criteria.
Collapse
Affiliation(s)
- Daria Schneider-Matyka
- Department of Nursing, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland
| | - Anna Maria Cybulska
- Department of Nursing, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland
| | - Małgorzata Szkup
- Department of Nursing, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland
| | - Bogumiła Pilarczyk
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology, Szczecin 71-217, Poland
| | - Mariusz Panczyk
- Department of Education and Research in Health Sciences, Faculty of Health Sciences, Medical University of Warsaw, Warsaw 00-581, Poland
| | - Agnieszka Tomza-Marciniak
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology, Szczecin 71-217, Poland
| | - Elżbieta Grochans
- Department of Nursing, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland
| |
Collapse
|
23
|
Simvastatin Improves Benign Prostatic Hyperplasia: Role of Peroxisome-Proliferator-Activated Receptor-γ and Classic WNT/β-Catenin Pathway. Int J Mol Sci 2023; 24:ijms24054911. [PMID: 36902342 PMCID: PMC10003121 DOI: 10.3390/ijms24054911] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men with an uncertain etiology and mechanistic basis. Metabolic syndrome (MetS) is also a very common illness and is closely related to BPH. Simvastatin (SV) is one of the widely used statins for MetS. Peroxisome-proliferator-activated receptor gamma (PPARγ), crosstalking with the WNT/β-catenin pathway, plays important roles in MetS. Our current study aimed to examine SV-PPARγ-WNT/β-catenin signaling in the development of BPH. Human prostate tissues and cell lines plus a BPH rat model were utilized. Immunohistochemical, immunofluorescence, hematoxylin and eosin (H&E) and Masson's trichrome staining, construction of a tissue microarray (TMA), ELISA, CCK-8 assay, qRT-PCR, flow cytometry, and Western blotting were also performed. PPARγ was expressed in both prostate stroma and epithelial compartments and downregulated in BPH tissues. Furthermore, SV dose-dependently triggered cell apoptosis and cell cycle arrest at the G0/G1 phase and attenuated tissue fibrosis and the epithelial-mesenchymal transition (EMT) process both in vitro and in vivo. SV also upregulated the PPARγ pathway, whose antagonist could reverse SV produced in the aforementioned biological process. Additionally, crosstalk between PPARγ and WNT/β-catenin signaling was demonstrated. Finally, correlation analysis with our TMA containing 104 BPH specimens showed that PPARγ was negatively related with prostate volume (PV) and free prostate-specific antigen (fPSA) and positively correlated with maximum urinary flow rate (Qmax). WNT-1 and β-catenin were positively related with International Prostate Symptom Score (IPSS) and nocturia, respectively. Our novel data demonstrate that SV could modulate cell proliferation, apoptosis, tissue fibrosis, and the EMT process in the prostate through crosstalk between PPARγ and WNT/β-catenin pathways.
Collapse
|
24
|
Ciavarella C, Motta I, Vasuri F, Palumbo T, Lisi AP, Costa A, Astolfi A, Valente S, Versura P, Fornasiero EF, Mauro R, Gargiulo M, Pasquinelli G. The PPAR-γ Agonist Pioglitazone Modulates Proliferation and Migration in HUVEC, HAOSMC and Human Arteriovenous Fistula-Derived Cells. Int J Mol Sci 2023; 24:4424. [PMID: 36901853 PMCID: PMC10003103 DOI: 10.3390/ijms24054424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The failure of arteriovenous fistulas (AVFs) following intimal hyperplasia (IH) increases morbidity and mortality rates in patients undergoing hemodialysis for chronic kidney disease. The peroxisome-proliferator associated receptor (PPAR-γ) may be a therapeutic target in IH regulation. In the present study, we investigated PPAR-γ expression and tested the effect of pioglitazone, a PPAR-γ agonist, in different cell types involved in IH. As cell models, we used Human Endothelial Umbilical Vein Cells (HUVEC), Human Aortic Smooth Muscle Cells (HAOSMC), and AVF cells (AVFCs) isolated from (i) normal veins collected at the first AVF establishment (T0), and (ii) failed AVF with IH (T1). PPAR-γ was downregulated in AVF T1 tissues and cells, in comparison to T0 group. HUVEC, HAOSMC, and AVFC (T0 and T1) proliferation and migration were analyzed after pioglitazone administration, alone or in combination with the PPAR-γ inhibitor, GW9662. Pioglitazone negatively regulated HUVEC and HAOSMC proliferation and migration. The effect was antagonized by GW9662. These data were confirmed in AVFCs T1, where pioglitazone induced PPAR-γ expression and downregulated the invasive genes SLUG, MMP-9, and VIMENTIN. In summary, PPAR-γ modulation may represent a promising strategy to reduce the AVF failure risk by modulating cell proliferation and migration.
Collapse
Affiliation(s)
- Carmen Ciavarella
- DIMEC—Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Ilenia Motta
- DIMEC—Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Francesco Vasuri
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Teresa Palumbo
- Alma Mater Institute on Healthy Planet, University of Bologna, 40138 Bologna, Italy
| | - Anthony Paul Lisi
- DIMEC—Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | - Alice Costa
- DIMEC—Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Annalisa Astolfi
- DIMEC—Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Sabrina Valente
- DIMEC—Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Piera Versura
- DIMEC—Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Ophtalmology Unit, IRCSS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Eugenio F. Fornasiero
- Department of Neuro-Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Raffaella Mauro
- Vascular Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Mauro Gargiulo
- DIMEC—Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Vascular Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Gianandrea Pasquinelli
- DIMEC—Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
25
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals CD24 osteolineage cells as targets of senolytic therapy in the aged murine skeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523760. [PMID: 36711531 PMCID: PMC9882155 DOI: 10.1101/2023.01.12.523760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we applied mass cytometry by time-of-flight (CyTOF) using carefully validated antibodies to analyze senescent cells at single-cell resolution. We used multiple criteria to identify senescent mesenchymal cells that were growth arrested and resistant to apoptosis (p16+/Ki67-/BCL-2+; "p16KB" cells). These cells were highly enriched for senescence-associated secretory phenotype (SASP) and DNA damage markers and were strongly associated with age. p16KB cell percentages were also increased in CD24+ osteolineage cells, which exhibited an inflammatory SASP in aged mice and were robustly cleared by both genetic and pharmacologic senolytic therapies. Following isolation, CD24+ skeletal cells exhibited growth arrest, SA-βgal positivity, and impaired osteogenesis in vitro . These studies thus provide a new approach using multiplexed protein profiling by CyTOF to define senescent mesenchymal cells in vivo and identify a highly inflammatory, senescent CD24+ osteolineage population cleared by senolytics.
Collapse
Affiliation(s)
- Madison L. Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer L. Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie J. Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N. Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - David G. Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
26
|
Shi CY, Xu JJ, Li C, Yu JL, Wu YT, Huang HF. A PPARG Splice Variant in Granulosa Cells Is Associated with Polycystic Ovary Syndrome. J Clin Med 2022; 11:jcm11247285. [PMID: 36555903 PMCID: PMC9786670 DOI: 10.3390/jcm11247285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We explored whether there are splice variants (SVs) of peroxisome proliferator-activated receptor-gamma (PPARG) in polycystic ovary syndrome (PCOS) patients and its relationship with clinical features and KGN cell functions. METHODS We performed a study involving 153 women with PCOS and 153 age-matched controls. One type of PPARG SV was detected by SMARTer RACE. The correlations between PPARG SV expression levels, clinical features, and KGN cell functions were analyzed. The effect of the PPARG SV on the expression of important genes in metabolism-related pathways was explored by PCR array. RESULTS The expression of the PPARG SV in PCOS patients was significantly higher than that in the controls. Clinical features were more significant in the PCOS group with the SV. Compared with overexpression of PPARG, the overexpression of the PPARG SV inhibited the proliferation, migration, and apoptosis of KGN cells in vitro. The genes related to the PPARG SV were mainly involved in lipid metabolism. CONCLUSION While granulosa cells contribute greatly to the development of follicles, our results suggest that the identified PPARG SV may regulate cell proliferation, migration, and apoptosis in granulosa cells, which could partially explain the mechanisms of ovulation dysfunction in PCOS. Further investigation of the utility of this PPARG SV as a biomarker for PCOS is warranted.
Collapse
Affiliation(s)
- Chao-Yi Shi
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Ningbo Women and Children’s Hospital, Ningbo 315012, China
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jing-Jing Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Jia-Le Yu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
- Correspondence: (Y.-T.W.); (H.-F.H.)
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
- Correspondence: (Y.-T.W.); (H.-F.H.)
| |
Collapse
|
27
|
Molecular Modeling of Allosteric Site of Isoform-Specific Inhibition of the Peroxisome Proliferator-Activated Receptor PPARγ. Biomolecules 2022; 12:biom12111614. [DOI: 10.3390/biom12111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor and controls a number of gene expressions. The ligand binding domain (LBD) of PPARγ is large and involves two binding sites: orthosteric and allosteric binding sites. Increased evidence has shown that PPARγ is an oncogene and thus the PPARγ antagonists have potential as anticancer agents. In this paper, we use Glide Dock approach to determine which binding site, orthosteric or allosteric, would be a preferred pocket for PPARγ antagonist binding, though antidiabetic drugs such as thiazolidinediones (TZDs) bind to the orthosteric site. The Glide Dock results show that the binding of PPARγ antagonists at the allosteric site yielded results that were much closer to the experimental data than at the orthosteric site. The PPARγ antagonists seem to selectively bind to residues Lys265, Ser342 and Arg288 at the allosteric binding site, whereas PPARγ agonists would selectively bind to residues Leu228, Phe363, and His449, though Phe282 and Lys367 may also play a role for agonist binding at the orthosteric binding pocket. This finding will provide new perspectives in the design and optimization of selective and potent PPARγ antagonists or agonists.
Collapse
|
28
|
Femtosecond laser attenuates oxidative stress, inflammation, and liver fibrosis in rats: Possible role of PPARγ and Nrf2/HO-1 signaling. Life Sci 2022; 307:120877. [PMID: 35963297 DOI: 10.1016/j.lfs.2022.120877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) proteins that occurs in chronic liver injury. Inflammation and oxidative stress play a key role in fibrogenesis which can develop into cirrhosis and carcinoma. Low-level laser therapy (LLLT) has promising therapeutic effects against fibrogenesis; however, the specific underlying mechanism is not fully elucidated. We investigated the potential of LLLT to attenuate carbon tetrachloride (CCl4)-induced liver fibrosis in rats, focusing on oxidative injury, inflammatory response, and the possible role of PPARγ and Nrf2/HO-1 signaling. Rats were given CCl4 and exposed to LLLT twice/week for 6 weeks and blood and liver samples were collected for analysis. CCl4 caused liver injury and fibrosis manifested by hepatocyte injury, steatosis, inflammatory cell infiltration, and accumulation of collagen, elevated serum transaminases and bilirubin, and decreased albumin. ROS, MDA, NO, NF-κB p65, TNF-α, iNOS, TGF-β1, and IL-6 were increased in the liver of CCl4-administered rats. Exposure to LLLT ameliorated histopathological alterations, collagen deposition, and liver function markers, and downregulated hepatic α-SMA, collagen 1A1, and collagen 3A1. In Addition, LLLT decreased ROS, MDA, NO, NF-κB p65, TGF-β1, and pro-inflammatory mediators, and enhanced antioxidant defenses. These effects were associated with upregulated PPARγ, Nrf2, and HO-1, both gene and protein expression. In conclusion, LLLT attenuated liver fibrosis by suppressing ECM production and deposition, oxidative injury and inflammation, and upregulating PPARγ and Nrf2/HO-1 signaling.
Collapse
|
29
|
Ballav S, Biswas B, Sahu VK, Ranjan A, Basu S. PPAR-γ Partial Agonists in Disease-Fate Decision with Special Reference to Cancer. Cells 2022; 11:3215. [PMID: 36291082 PMCID: PMC9601205 DOI: 10.3390/cells11203215] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has emerged as one of the most extensively studied transcription factors since its discovery in 1990, highlighting its importance in the etiology and treatment of numerous diseases involving various types of cancer, type 2 diabetes mellitus, autoimmune, dermatological and cardiovascular disorders. Ligands are regarded as the key determinant for the tissue-specific activation of PPAR-γ. However, the mechanism governing this process is merely a contradictory debate which is yet to be systematically researched. Either these receptors get weakly activated by endogenous or natural ligands or leads to a direct over-activation process by synthetic ligands, serving as complete full agonists. Therefore, fine-tuning on the action of PPAR-γ and more subtle modulation can be a rewarding approach which might open new avenues for the treatment of several diseases. In the recent era, researchers have sought to develop safer partial PPAR-γ agonists in order to dodge the toxicity induced by full agonists, akin to a balanced activation. With a particular reference to cancer, this review concentrates on the therapeutic role of partial agonists, especially in cancer treatment. Additionally, a timely examination of their efficacy on various other disease-fate decisions has been also discussed.
Collapse
Affiliation(s)
- Sangeeta Ballav
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Bini Biswas
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Vishal Kumar Sahu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Amit Ranjan
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| |
Collapse
|
30
|
Meher A. Role of Transcription Factors in the Management of Preterm Birth: Impact on Future Treatment Strategies. Reprod Sci 2022; 30:1408-1420. [PMID: 36131222 DOI: 10.1007/s43032-022-01087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
Preterm birth is defined as the birth of a neonate before 37 weeks of gestation and is considered as a leading cause of the under five deaths of neonates. Neonates born preterm are known to have higher perinatal mortality and morbidity with associated risks of low birth weight, respiratory distress syndrome, gastrointestinal, immunologic, central nervous system, hearing, and vision problems, cerebral palsy, and delayed development. India leads the list of countries with the greatest number of preterm births. The studies focusing on the molecular mechanisms related to the etiology of preterm birth have described the role of different transcription factors. With respect to this, transcription factors like peroxisome proliferator activated receptors (PPAR), nuclear factor kappa β (NF-kβ), nuclear erythroid 2-related factor 2 (Nrf2), and progesterone receptor (PR) are known to be associated with preterm labor. All these transcription factors are linked together with a common cascade involving inflammatory processes. Thus, the current review describes the possible cross-talk between these transcription factors and their therapeutic potential to prevent or manage preterm labor.
Collapse
Affiliation(s)
- Akshaya Meher
- Central Research Laboratory, Dr. Vasantrao Pawar Medical College, Hospital and Research Centre, Nashik, Maharashtra, India, 422003.
| |
Collapse
|
31
|
Fan S, Hu Y, You Y, Xue W, Chai R, Zhang X, Shou X, Shi J. Role of resveratrol in inhibiting pathological cardiac remodeling. Front Pharmacol 2022; 13:924473. [PMID: 36120366 PMCID: PMC9475218 DOI: 10.3389/fphar.2022.924473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
Cardiovascular disease is a group of diseases with high mortality in clinic, including hypertension, coronary heart disease, cardiomyopathy, heart valve disease, heart failure, to name a few. In the development of cardiovascular diseases, pathological cardiac remodeling is the most common cardiac pathological change, which often becomes a domino to accelerate the deterioration of the disease. Therefore, inhibiting pathological cardiac remodeling may delay the occurrence and development of cardiovascular diseases and provide patients with greater long-term benefits. Resveratrol is a non-flavonoid polyphenol compound. It mainly exists in grapes, berries, peanuts and red wine, and has cardiovascular protective effects, such as anti-oxidation, inhibiting inflammatory reaction, antithrombotic, dilating blood vessels, inhibiting apoptosis and delaying atherosclerosis. At present, the research of resveratrol has made rich progress. This review aims to summarize the possible mechanism of resveratrol against pathological cardiac remodeling, in order to provide some help for the in-depth exploration of the mechanism of inhibiting pathological cardiac remodeling and the development and research of drug targets.
Collapse
Affiliation(s)
- Shaowei Fan
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Yuanhui Hu
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- *Correspondence: Yuanhui Hu,
| | - Yaping You
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Wenjing Xue
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Ruoning Chai
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xuesong Zhang
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xintian Shou
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Shi
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
32
|
Huang HB, Cheng PK, Siao CY, Lo YTC, Chou WC, Huang PC. Mediation effects of thyroid function in the associations between phthalate exposure and lipid metabolism in adults. Environ Health 2022; 21:61. [PMID: 35778735 PMCID: PMC9248169 DOI: 10.1186/s12940-022-00873-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are a group of industrial chemicals widely used in everyday products including cosmetics, food packaging and containers, plastics, and building materials. Previous studies have indicated that urinary phthalate metabolites are associated with metabolic effects including those on lipid metabolism, but the results are mixed. Furthermore, whether thyroid function mediates the association between phthalate exposure and lipid metabolism remains unclear. In the present study, we explored whether changes in thyroid function markers mediate the associations between phthalate exposure and lipid metabolism indicators in Taiwanese adults. The cross-sectional data were obtained from the Taiwan Environmental Survey for Toxicants conducted in 2013. Levels of 11 urinary phthalate metabolites, levels of 5 thyroid hormones, and 8 indicators of lipid metabolism were assessed in 222 Taiwanese adults. The relationships of urinary phthalate metabolite levels with serum thyroid hormone levels and lipid metabolism indicators were explored using multiple regression models. Mediation analysis was conducted to evaluate the role of thyroid function in the association between phthalate exposure and lipid metabolism. The metabolite of di(- 2-ethylhexyl) phthalate (∑DEHPm) exhibited a significant positive association with the lipid metabolite indicator of high-density lipoprotein cholesterol (HDL-C; β = 0.059, 95% confidence interval [CI] = 0.009, 0.109) in adults, and the thyroid function indicator thyroxine (T4) had a significant negative association with the metabolite ∑DEHPm (β = - 0.059, 95% CI = - 0.101, - 0.016) and a significant negative association with HDL-C (β = - 0.284, 95% CI = - 0.440, - 0.128). The T4 indirect effect was 0.015 (95% CI = - 0.0087, 0.05), and the mediation effect was 32.2%. Our results support the assumption that exposure to phthalates influences the homeostasis of lipid metabolism by interfering with thyroid function.
Collapse
Affiliation(s)
- Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Po-Keng Cheng
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Chi-Ying Siao
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Ting C Lo
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chun Chou
- Department of Environmental and Global Health, University of Florida, Gainesville, USA
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
33
|
Zou Z, Wang H, Zhang B, Zhang Z, Chen R, Yang L. Inhibition of Gli1 suppressed hyperglycemia-induced meibomian gland dysfunction by promoting pparγ expression. Biomed Pharmacother 2022; 151:113109. [PMID: 35594713 DOI: 10.1016/j.biopha.2022.113109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Diabetes is one of the risk factors for meibomian gland dysfunction (MGD); however, the underlying molecular mechanism remains unknown. The current study aims to examine the effects of glioma-associated oncogene homolog 1 (Gli1), a transcription factor of the sonic hedgehog (Shh) pathway, in the modulation of diabetic-related MGD. Here, using RNA sequencing and qRT-PCR, we examined the mRNA changes of Shh pathway involving genes. mRNA sequencing analysis showed that the Shh pathway involving genes Shh and Gli1 were markedly upregulated in diabetic MG, and qRT-PCR detection of Shh pathway-associated genes found that Gli1 expression increased most significantly. Contrary to the elevation of Gli1 level, the expression of pparγ was downregulated in diabetic MG and in high glucose treated organotypic cultured mouse MG. GANT61, an inhibitor of Gli1, effectively inhibited the reduction of pparγ expression and lipid accumulation induced by high glucose, which was suppressed by pparγ inhibitor T0070907. We further demonstrated that advanced glycation end products (AGEs) treatment also promoted the expression of Gli1 and pparγ in organotypic cultured mouse MG. AGEs inhibitor Aminoguanidine suppressed high glucose caused Gli1 upregulation in organotypic cultured mouse MG. These results suggest that suppression of Gli1 may be a potentially useful therapeutic option for diabetic-related MGD.
Collapse
Affiliation(s)
- Zongzheng Zou
- School of Medicine and Life Sciences, Shandong First Medical University, Jinan, China
| | - Huifeng Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Bin Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Zhenzhen Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Rong Chen
- School of Medicine and Life Sciences, Shandong First Medical University, Jinan, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
34
|
Marmentini C, Guimarães DSPSF, de Lima TI, Teófilo FBS, da Silva NS, Soares GM, Boschero AC, Kurauti MA. Rosiglitazone protects INS-1E cells from human islet amyloid polypeptide toxicity. Eur J Pharmacol 2022; 928:175122. [PMID: 35764131 DOI: 10.1016/j.ejphar.2022.175122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Human islet amyloid polypeptide (hIAPP or amylin) is a hormone co-secreted with insulin by pancreatic β-cells, and is the main component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes and may be involved in β-cell dysfunction and death, observed in this disease. Thus, counteracting islet amyloid toxicity represents a therapeutic approach to preserve β-cell mass and function. In this sense, thiazolidinediones (TZDs), as rosiglitazone, have shown protective effects against other harmful insults to β-cells. For this reason, we investigated whether rosiglitazone could protect β-cells from hIAPP-induced cell death and the underlying mechanisms mediating such effect. Here, we show that rosiglitazone improved the viability of hIAPP-exposed INS-1E cells. This benefit is not dependent on the insulin-degrading enzyme (IDE) since rosiglitazone did not modulate IDE protein content and activity. However, rosiglitazone inhibited hIAPP fibrillation and decreased hIAPP-induced expression of C/EBP homologous protein (CHOP) (CTL 100.0 ± 8.4; hIAPP 182.7 ± 19.1; hIAPP + RGZ 102.8 ± 9.5), activating transcription factor-4 (ATF4) (CTL 100.0 ± 3.1; hIAPP 234.9 ± 19.3; hIAPP + RGZ 129.6 ± 3.0) and phospho-eukaryotic initiation factor 2-alpha (p-eIF2α) (CTL 100.0 ± 31.1; hIAPP 234.1 ± 36.2; hIAPP + RGZ 150.4 ± 18.0). These findings suggest that TZDs treatment may be a promising approach to preserve β-cell mass and function by inhibiting islet amyloid formation and decreasing endoplasmic reticulum stress hIAPP-induced.
Collapse
Affiliation(s)
- Carine Marmentini
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Dimitrius Santiago P S F Guimarães
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Tanes I de Lima
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Francisco Breno S Teófilo
- Electron Microscopy Laboratory, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Natália S da Silva
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Gabriela M Soares
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Antonio C Boschero
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Mirian A Kurauti
- Department of Physiological Sciences, Biological Sciences Center, State University of Maringa (UEM), Maringa, Parana, Brazil.
| |
Collapse
|
35
|
Fryklund C, Morén B, Neuhaus M, Periwal V, Stenkula KG. Rosiglitazone treatment enhances intracellular actin dynamics and glucose transport in hypertrophic adipocytes. Life Sci 2022; 299:120537. [PMID: 35398016 DOI: 10.1016/j.lfs.2022.120537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
AIMS To accommodate surplus energy, adipose tissue expands by increasing both adipose cell size (hypertrophy) and cell number (hyperplasia). Enlarged, hypertrophic adipocytes are known to have reduced insulin response and impaired glucose transport, which negatively influence whole-body glucose homeostasis. Rosiglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, known to stimulate hyperplasia and to efficiently improve insulin sensitivity. Still, a limited amount of research has investigated the effects of rosiglitazone in mature, hypertrophic adipocytes. Therefore, the objective of this study was to examine rosiglitazone's effect on insulin-stimulated glucose uptake in hypertrophic adipocytes. MAIN METHODS C57BL/6J male mice were subjected to 2 weeks of high-fat diet (HFD) followed by 1 week of HFD combined with daily administration of rosiglitazone (10 mg/kg). Adipose cell-size distribution and gene expression were analysed in intact adipose tissue, and glucose uptake, insulin response, and protein expression were examined using primary adipocytes isolated from epididymal and inguinal adipose tissue. KEY FINDINGS HFD-feeding induced an accumulation of hypertrophic adipocytes, which was not affected by rosiglitazone-treatment. Still, rosiglitazone efficiently improved insulin-stimulated glucose transport without restoring insulin signaling or GLUT4 expression in similar-sized adipocytes. This improvement occurred concurrently with extracellular matrix remodelling and restored intracellular levels of targets involved in actin turnover. SIGNIFICANCE These results demonstrate that rosiglitazone improves glucose transport in hypertrophic adipocytes, and highlights the importance of the cytoskeleton and extracellular matrix as potential therapeutic targets.
Collapse
Affiliation(s)
- Claes Fryklund
- Department of Experimental Medical Science, Lund University, Sweden.
| | - Björn Morén
- Department of Experimental Medical Science, Lund University, Sweden
| | | | - Vipul Periwal
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, USA
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, Sweden
| |
Collapse
|
36
|
Bapat SP, Whitty C, Mowery CT, Liang Y, Yoo A, Jiang Z, Peters MC, Zhang LJ, Vogel I, Zhou C, Nguyen VQ, Li Z, Chang C, Zhu WS, Hastie AT, He H, Ren X, Qiu W, Gayer SG, Liu C, Choi EJ, Fassett M, Cohen JN, Sturgill JL, Crotty Alexander LE, Suh JM, Liddle C, Atkins AR, Yu RT, Downes M, Liu S, Nikolajczyk BS, Lee IK, Guttman-Yassky E, Ansel KM, Woodruff PG, Fahy JV, Sheppard D, Gallo RL, Ye CJ, Evans RM, Zheng Y, Marson A. Obesity alters pathology and treatment response in inflammatory disease. Nature 2022; 604:337-342. [PMID: 35355021 PMCID: PMC9165753 DOI: 10.1038/s41586-022-04536-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 02/08/2022] [Indexed: 12/17/2022]
Abstract
Decades of work have elucidated cytokine signalling and transcriptional pathways that control T cell differentiation and have led the way to targeted biologic therapies that are effective in a range of autoimmune, allergic and inflammatory diseases. Recent evidence indicates that obesity and metabolic disease can also influence the immune system1-7, although the mechanisms and effects on immunotherapy outcomes remain largely unknown. Here, using two models of atopic dermatitis, we show that lean and obese mice mount markedly different immune responses. Obesity converted the classical type 2 T helper (TH2)-predominant disease associated with atopic dermatitis to a more severe disease with prominent TH17 inflammation. We also observed divergent responses to biologic therapies targeting TH2 cytokines, which robustly protected lean mice but exacerbated disease in obese mice. Single-cell RNA sequencing coupled with genome-wide binding analyses revealed decreased activity of nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) in TH2 cells from obese mice relative to lean mice. Conditional ablation of PPARγ in T cells revealed that PPARγ is required to focus the in vivo TH response towards a TH2-predominant state and prevent aberrant non-TH2 inflammation. Treatment of obese mice with a small-molecule PPARγ agonist limited development of TH17 pathology and unlocked therapeutic responsiveness to targeted anti-TH2 biologic therapies. These studies reveal the effects of obesity on immunological disease and suggest a precision medicine approach to target the immune dysregulation caused by obesity.
Collapse
Affiliation(s)
- Sagar P Bapat
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA.
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Caroline Whitty
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Cody T Mowery
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - Yuqiong Liang
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Arum Yoo
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Zewen Jiang
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael C Peters
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ling-Juan Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Ian Vogel
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Carmen Zhou
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Vinh Q Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Zhongmei Li
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Christina Chang
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Wandi S Zhu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Annette T Hastie
- School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Helen He
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xin Ren
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Wenli Qiu
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah G Gayer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Chang Liu
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Eun Jung Choi
- Department of Biomedical Science, Graduate School, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Marlys Fassett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Jarish N Cohen
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Jamie L Sturgill
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY, USA
| | - Laura E Crotty Alexander
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, CA, USA
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| | - Annette R Atkins
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ruth T Yu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sihao Liu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY, USA
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K Mark Ansel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Prescott G Woodruff
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - John V Fahy
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - Dean Sheppard
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Richard L Gallo
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Chun Jimmie Ye
- Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, USA
- Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ronald M Evans
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Ye Zheng
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
| |
Collapse
|
37
|
Murru E, Manca C, Carta G, Banni S. Impact of Dietary Palmitic Acid on Lipid Metabolism. Front Nutr 2022; 9:861664. [PMID: 35399673 PMCID: PMC8983927 DOI: 10.3389/fnut.2022.861664] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Palmitic acid (PA) is ubiquitously present in dietary fat guaranteeing an average intake of about 20 g/d. The relative high requirement and relative content in the human body, which accounts for 20–30% of total fatty acids (FAs), is justified by its relevant nutritional role. In particular physiological conditions, such as in the fetal stage or in the developing brain, the respectively inefficient placental and brain blood–barrier transfer of PA strongly induces its endogenous biosynthesis from glucose via de novo lipogenesis (DNL) to secure a tight homeostatic control of PA tissue concentration required to exert its multiple physiological activities. However, pathophysiological conditions (insulin resistance) are characterized by a sustained DNL in the liver and aimed at preventing the excess accumulation of glucose, which result in increased tissue content of PA and disrupted homeostatic control of its tissue concentration. This leads to an overaccumulation of tissue PA, which results in dyslipidemia, increased ectopic fat accumulation, and inflammatory tone via toll-like receptor 4. Any change in dietary saturated FAs (SFAs) usually reflects a complementary change in polyunsaturated FA (PUFA) intake. Since PUFA particularly n-3 highly PUFA, suppress lipogenic gene expression, their reduction in intake rather than excess of dietary SFA may promote endogenous PA production via DNL. Thereby, the increase in tissue PA and its deleterious consequences from dysregulated DNL can be mistakenly attributed to dietary intake of PA.
Collapse
|
38
|
Welch RD, Billon C, Losby M, Bedia-Diaz G, Fang Y, Avdagic A, Elgendy B, Burris TP, Griffett K. Emerging Role of Nuclear Receptors for the Treatment of NAFLD and NASH. Metabolites 2022; 12:238. [PMID: 35323681 PMCID: PMC8953348 DOI: 10.3390/metabo12030238] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver (NAFLD) over the past years has become a metabolic pandemic linked to a collection of metabolic diseases. The nuclear receptors ERRs, REV-ERBs, RORs, FXR, PPARs, and LXR are master regulators of metabolism and liver physiology. The characterization of these nuclear receptors and their biology has promoted the development of synthetic ligands. The possibility of targeting these receptors to treat NAFLD is promising, as several compounds including Cilofexor, thiazolidinediones, and Saroglitazar are currently undergoing clinical trials. This review focuses on the latest development of the pharmacology of these metabolic nuclear receptors and how they may be utilized to treat NAFLD and subsequent comorbidities.
Collapse
Affiliation(s)
- Ryan D. Welch
- Biology and Chemistry Department, Blackburn College, Carlinville, IL 62626, USA;
| | - Cyrielle Billon
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University in St. Louis, St. Louis, MO 63110, USA; (C.B.); (G.B.-D.); (Y.F.); (A.A.); (B.E.)
| | - McKenna Losby
- Biochemistry, Biophysics and Structural Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Gonzalo Bedia-Diaz
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University in St. Louis, St. Louis, MO 63110, USA; (C.B.); (G.B.-D.); (Y.F.); (A.A.); (B.E.)
| | - Yuanying Fang
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University in St. Louis, St. Louis, MO 63110, USA; (C.B.); (G.B.-D.); (Y.F.); (A.A.); (B.E.)
| | - Amer Avdagic
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University in St. Louis, St. Louis, MO 63110, USA; (C.B.); (G.B.-D.); (Y.F.); (A.A.); (B.E.)
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University in St. Louis, St. Louis, MO 63110, USA; (C.B.); (G.B.-D.); (Y.F.); (A.A.); (B.E.)
- Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Thomas P. Burris
- UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA;
| | - Kristine Griffett
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
39
|
Malgwi IH, Halas V, Grünvald P, Schiavon S, Jócsák I. Genes Related to Fat Metabolism in Pigs and Intramuscular Fat Content of Pork: A Focus on Nutrigenetics and Nutrigenomics. Animals (Basel) 2022; 12:ani12020150. [PMID: 35049772 PMCID: PMC8772548 DOI: 10.3390/ani12020150] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The intramuscular fat (IMF) or marbling is an essential pork sensory quality that influences the preference of the consumers and premiums for pork. IMF is the streak of visible fat intermixed with the lean within a muscle fibre and determines sensorial qualities of pork such as flavour, tenderness and juiciness. Fat metabolism and IMF development are controlled by dietary nutrients, genes, and their metabolic pathways in the pig. Nutrigenetics explains how the genetic make-up of an individual pig influences the pig’s response to dietary nutrient intake. Differently, nutrigenomics is the analysis of how the entire genome of an individual pig is affected by dietary nutrient intake. The knowledge of nutrigenetics and nutrigenomics, when harmonized, is a powerful tool in estimating nutrient requirements for swine and programming dietary nutrient supply according to an individual pig’s genetic make-up. The current paper aimed to highlight the roles of nutrigenetics and nutrigenomics in elucidating the underlying mechanisms of fat metabolism and IMF deposition in pigs. This knowledge is essential in redefining nutritional intervention for swine production and the improvement of some economically important traits such as growth performance, backfat thickness, IMF accretion, disease resistance etc., in animals. Abstract Fat metabolism and intramuscular fat (IMF) are qualitative traits in pigs whose development are influenced by several genes and metabolic pathways. Nutrigenetics and nutrigenomics offer prospects in estimating nutrients required by a pig. Application of these emerging fields in nutritional science provides an opportunity for matching nutrients based on the genetic make-up of the pig for trait improvements. Today, integration of high throughput “omics” technologies into nutritional genomic research has revealed many quantitative trait loci (QTLs) and single nucleotide polymorphisms (SNPs) for the mutation(s) of key genes directly or indirectly involved in fat metabolism and IMF deposition in pigs. Nutrient–gene interaction and the underlying molecular mechanisms involved in fatty acid synthesis and marbling in pigs is difficult to unravel. While existing knowledge on QTLs and SNPs of genes related to fat metabolism and IMF development is yet to be harmonized, the scientific explanations behind the nature of the existing correlation between the nutrients, the genes and the environment remain unclear, being inconclusive or lacking precision. This paper aimed to: (1) discuss nutrigenetics, nutrigenomics and epigenetic mechanisms controlling fat metabolism and IMF accretion in pigs; (2) highlight the potentials of these concepts in pig nutritional programming and research.
Collapse
Affiliation(s)
- Isaac Hyeladi Malgwi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’ Università 16, 35020 Padova, Italy;
- Correspondence: ; Tel.: +39-33-17566768
| | - Veronika Halas
- Department of Farm Animal Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary; (V.H.); (P.G.)
| | - Petra Grünvald
- Department of Farm Animal Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary; (V.H.); (P.G.)
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’ Università 16, 35020 Padova, Italy;
| | - Ildikó Jócsák
- Institute of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary;
| |
Collapse
|
40
|
Ziemanski JF, Wilson L, Barnes S, Nichols KK. Prostaglandin E2 and F2α Alter Expression of Select Cholesteryl Esters and Triacylglycerols Produced by Human Meibomian Gland Epithelial Cells. Cornea 2022; 41:95-105. [PMID: 34483274 PMCID: PMC8648972 DOI: 10.1097/ico.0000000000002835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE PGF2α analogs are commonly used to treat glaucoma and are associated with higher rates of meibomian gland dysfunction (MGD). The purpose of this study was to evaluate the physiological effects of PGF2α and PGE2 on immortalized human meibomian gland epithelial cells (HMGECs). METHODS HMGECs were immunostained for the 4 PGE2 receptors (EP1, EP2, EP3, and EP4) and 1 PGF2α receptor (FP) and imaged. Rosiglitazone-differentiated HMGECs were exposed to PGF2α and PGE2 (10-9 to 10-6 M) for 3 hours. Cell viability was assessed by an adenosine triphosphate-based luminescent assay, and lipid extracts were analyzed for cholesteryl esters (CEs), wax esters (WEs), and triacylglycerols (TAGs) by ESI-MSMSALL in positive ion mode by a Triple TOF 5600 Mass Spectrometer using SCIEX LipidView 1.3. RESULTS HMGECs expressed 3 PGE2 receptors (EP1, EP2, and EP4) and the 1 PGF2α receptor (FP). Neither PGE2 nor PGF2α showed signs of cytotoxicity at any of the concentrations tested. WEs were not detected from any of the samples, but both CEs and TAGs exhibited a diverse and dynamic profile. PGE2 suppressed select CEs (CE 22:1, CE 26:0, CE 28:1, and CE 30:1). PGF2α dose dependently increased several CEs (CE 20:2, CE 20:1, CE 22:1, and CE 24:0) yet decreased others. Both prostaglandins led to nonspecific TAG remodeling. CONCLUSIONS PGE2 and PGF2α showed minimal effect on HMGEC viability. PGF2α influences lipid expression greater than PGE2 and may do so by interfering with meibocyte differentiation. This work may provide insight into the mechanism of MGD development in patients with glaucoma treated with PGF2α analogs.
Collapse
Affiliation(s)
- Jillian F. Ziemanski
- University of Alabama at Birmingham, School of Optometry, Department of Optometry Vision Science, Birmingham, AL, USA
| | - Landon Wilson
- University of Alabama at Birmingham, School of Medicine, Department of Pharmacology Toxicology, Birmingham, AL, USA
| | - Stephen Barnes
- University of Alabama at Birmingham, School of Medicine, Department of Pharmacology Toxicology, Birmingham, AL, USA
| | - Kelly K. Nichols
- University of Alabama at Birmingham, School of Optometry, Department of Optometry Vision Science, Birmingham, AL, USA
| |
Collapse
|
41
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
42
|
Khan MI, Khan MZ, Shin JH, Shin TS, Lee YB, Kim MY, Kim JD. Pharmacological Approaches to Attenuate Inflammation and Obesity with Natural Products Formulations by Regulating the Associated Promoting Molecular Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2521273. [PMID: 34812408 PMCID: PMC8605410 DOI: 10.1155/2021/2521273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023]
Abstract
Obesity is a public health problem characterized by increased body weight due to abnormal adipose tissue expansion. Bioactive compound consumption from the diet or intake of dietary supplements is one of the possible ways to control obesity. Natural products with adipogenesis-regulating potential act as obesity treatments. We evaluated the synergistic antiangiogenesis, antiadipogenic and antilipogenic efficacy of standardized rebaudioside A, sativoside, and theasaponin E1 formulations (RASE1) in vitro in human umbilical vein endothelial cells (HUVECs), 3T3-L1 preadipocytes respectively, and in vivo using a high-fat and carbohydrate diet-induced obesity mouse model. Orlistat was used as a positive control, while untreated cells and animals were normal controls (NCs). Adipose tissue, liver, and blood were analyzed after dissection. Extracted stevia compounds and green tea seed saponin E1 exhibited pronounced antiobesity effects when combined. RASE1 inhibited HUVEC proliferation and tube formation by suppressing VEGFR2, NF-κB, PIK3, and-catenin beta-1 expression levels. RASE1 inhibited 3T3-L1 adipocyte differentiation and lipid accumulation by downregulating adipogenesis- and lipogenesis-promoting genes. RASE1 oral administration reduced mouse body and body fat pad weight and blood cholesterol, TG, ALT, AST, glucose, insulin, and adipokine levels. RASE1 suppressed adipogenic and lipid metabolism gene expression in mouse adipose and liver tissues and enhanced AMP-activated protein kinase levels in liver and adipose tissues and in serum adiponectin. RASE1 suppressed the NF-κB pathway and proinflammatory cytokines IL-10, IL-6, and TNF-α levels in mice which involve inflammation and progression of obesity. The overall results indicate RASE1 is a potential therapeutic formulation and functional food for treating or preventing obesity and inflammation.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Biotechnology, Chonnam Notational University, San96-1, Dun-Duk Dong, Yeosu, Chonnam, (59626), Republic of Korea
| | - Muhammad Zubair Khan
- Department of Biotechnology, Chonnam Notational University, San96-1, Dun-Duk Dong, Yeosu, Chonnam, (59626), Republic of Korea
| | - Jin Hyuk Shin
- Department of Biotechnology, Chonnam Notational University, San96-1, Dun-Duk Dong, Yeosu, Chonnam, (59626), Republic of Korea
| | - Tia Sun Shin
- Department of Food Science and Nutrition, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju (61186), Republic of Korea
- Research Center on Anti-Obesity and Health Care, Chonnam National University, San96-1, Dun-Duk Dong, Yeosu, Chonnam, (59626), Republic of Korea
| | - Young Bok Lee
- Department of Refrigeration Engineering, Chonnam National University, San 96-1, Dun-Duk Dong, Yeosu, Chonnam (59626), Republic of Korea
| | - Min Yung Kim
- Research Center on Anti-Obesity and Health Care, Chonnam National University, San96-1, Dun-Duk Dong, Yeosu, Chonnam, (59626), Republic of Korea
- Department of Refrigeration Engineering, Chonnam National University, San 96-1, Dun-Duk Dong, Yeosu, Chonnam (59626), Republic of Korea
| | - Jong Deog Kim
- Department of Biotechnology, Chonnam Notational University, San96-1, Dun-Duk Dong, Yeosu, Chonnam, (59626), Republic of Korea
- Research Center on Anti-Obesity and Health Care, Chonnam National University, San96-1, Dun-Duk Dong, Yeosu, Chonnam, (59626), Republic of Korea
| |
Collapse
|
43
|
Mirzaei-Alamouti H, Elhami S, Abdollahi A, Vazirigohar M, Harakinejad T, Nielson MO, Aschenbach JR, Mansouryar M. Short communication: effect of dietary supplementation with a mixture of fish and sunflower oils on the expression of key lipogenic and cholesterologenic genes in adipose tissues with different metabolic functions. Trop Anim Health Prod 2021; 53:522. [PMID: 34697645 DOI: 10.1007/s11250-021-02972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
The present study investigated the effects of dietary fish and sunflower oils as sources of n-3, n-6 polyunsaturated fatty acids (PUFA) on the expression of key lipogenic and cholesterologenic genes in subcutaneous adipose tissue (SAT) and tail adipose tissue (TAT) of fat-tailed sheep. Twenty-six male Afshari lambs were divided into 4 groups. Three groups were fed a high concentrate basal diet plus 100 g/lamb/day oil supplement (OS; 60 g sunflower oil and 40 g fish oil) beyond a 21-day adaptation period for 10, 20, and 30 days (groups OS10, OS20, and OS30; n = 6, each) until slaughter. A control group was slaughtered at the last day of adaptation (OS0; n = 4). Expression of PPARγ, SREBP-1c, and SREBP-2 were determined in TAT and SAT. All transcription factors had lower expression in SAT than TAT. Feeding OS induced a similar pattern of SREBP-1c expression in both TAT and SAT with highest values in OS20. SREBP-2 mRNA decreased by > 50% in TAT of OS30 compared to OS0, whereas the expression of SREBP-2 mRNA did not change in SAT in the same period. PPARγ expression was not affected over time either in SAT or TAT. Plasma concentrations of cholesterol and blood urea nitrogen increased in OS20. The comparison of gene expression responses to OS in TAT vs. SAT suggest that PUFA-mediated effects on lipid metabolism differ between SAT and TAT, which may be linked to the specific role of TAT in energy and water balance under arid conditions.
Collapse
Affiliation(s)
- H Mirzaei-Alamouti
- Department of Animal Sciences, Faculty of Agriculture, University of Zanjan, 45371-38791, Zanjan, Iran.
| | - S Elhami
- Department of Animal Sciences, Faculty of Agriculture, University of Zanjan, 45371-38791, Zanjan, Iran
| | - A Abdollahi
- Department of Animal Science, Faculty of Agriculture, Shiraz University, 71441-65186, Shiraz, Iran
| | - M Vazirigohar
- Zist Dam Group, University of Zanjan Incubator Center, 45371-38791, Zanjan, Iran
| | - T Harakinejad
- Department of Animal Sciences, Faculty of Agriculture, University of Zanjan, 45371-38791, Zanjan, Iran
| | - M O Nielson
- Department of Animal Science, Faculty of Science and Technology, Aarhus University, Blichers Allé, 20, 8830, Tjele, Denmark
| | - J R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - M Mansouryar
- Zist Dam Group, University of Zanjan Incubator Center, 45371-38791, Zanjan, Iran.
| |
Collapse
|
44
|
Sadegzadeh-Sadat M, Anassori E, Khalilvandi-Behroozyar H, Asri-Rezaei S. The effects of Zinc-Methionine on glucose metabolism and insulin resistance during late pregnancy in ewes. Domest Anim Endocrinol 2021; 77:106647. [PMID: 34311283 DOI: 10.1016/j.domaniend.2021.106647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of dietary supplements of Zinc-Methionine (Zn-Met) on the zinc concentration of the blood and indices such as insulin resistance and glucose tolerance in late-pregnancy ewes to provide a practical solution to prevent metabolic diseases associated with energy status. In this research, 18 Makouei pregnant ewes were selected and randomized into 3 experimental groups: Group 1: Basal diet containing 10.3 mg Zn/kgDM and no zinc supplementation = CTR (Control); Group 2: Basal diet supplemented with low-dose zinc equivalent to the pregnancy requirements (30 mg Zn/kgDM) = LZN; Group 3: Basal diet supplemented with high-dose zinc (300 mg Zn/kgDM) = HZN. Blood samples for insulin resistance and glucose tolerance indices were collected according to standard methods. The results of this study indicated that supplementation of high-dose Zn-Met decreased (P < 0.05) blood glucose and tended (P < 0.1) to reduce the beta-hydroxybutyrate (BHB) concentrations. After intravenous injection of glucose and insulin, none of the glucose tolerance and insulin resistance indices were significant among groups (P > 0.05). However, the intravenous glucose tolerance test (IGTT) showed that the area under the curve (AUC) of serum glucose in the HZN group was numerically lower than that of the LZN and CTR groups. Furthermore, the numerically higher clearance rate (CR) of glucose and more negative glucose AUC following intravenous administration of insulin in Zinc-supplemented groups suggested that the ewes had greater insulin response than control group. The results showed a decrease in blood glucose concentration due to higher zinc intake after insulin injection and supported the evidence for improving insulin sensitivity. In addition, our results showed that ewes receiving zinc supplementation experienced a more favorable state of BHB or NEFA values. In conclusion, Zn-Met supplementation was found to have promising effects in improving energy metabolism in late pregnant ewes. However, further studies are needed to understand the mechanisms involved in regulating lipolysis and energy metabolism.
Collapse
Affiliation(s)
- M Sadegzadeh-Sadat
- Graduate Student of Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - E Anassori
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | | | - S Asri-Rezaei
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
45
|
Virtual screening and biological evaluation of PPARγ antagonists as potential anti-prostate cancer agents. Bioorg Med Chem 2021; 46:116368. [PMID: 34433102 DOI: 10.1016/j.bmc.2021.116368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ) was identified as an oncogene and it plays a key role in prostate cancer (PC) development and progression. PPARγ antagonists have been shown to inhibit PC cell growth. Herein, we describe a virtual screening-based approach that led to the discovery of novel PPARγ antagonist chemotypes that bind at the allosteric pocket. Arg288, Lys367, and His449 appear to be important for PPARγ antagonist binding.
Collapse
|
46
|
Zhao X, Sun Z, Xu H, Song N, Gao T. Transcriptome and co-expression network analyses reveal the regulatory pathways and key genes associated with temperature adaptability in the yellow drum (Nibea albiflora). J Therm Biol 2021; 100:103071. [PMID: 34503808 DOI: 10.1016/j.jtherbio.2021.103071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022]
Abstract
The yellow drum (Nibea albiflora) is an important marine economy fish, that is widely distributed in the coastal waters of the Northwest Pacific. To understand the molecular regulatory mechanism of the yellow drum under temperature stress, transcriptome analysis was performed under five temperature conditions (10 °C, 15 °C, 20 °C, 24 °C, 28 °C) in the present study. Compared with 20 °C, 163, 401, 276, and 372 differentially expressed genes (DEGs) were obtained at 10 °C, 15 °C, 24 °C and 28 °C, respectively. Gene Ontology (GO) analysis indicated that the DEGs were mainly involved in cellular processes, metabolic processes, catalytic activity, membrane and binding. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the temperature adaptive regulation of the yellow drum was mainly involved in signal transduction, metabolism, genetic information and protein processing. Weighted gene co-expression network analysis (WGCNA) showed that HMGB1, STAT4, Noct, C1q and CRT may be the key hub genes in the response of the yellow drum to temperature stress. In addition, 20 genes that may be associated with temperature stress were identified based on comparative analysis between the KEGG enrichment and the WGCNA results. Ten DEGs were selected for further validation using quantitative real-time PCR (qRT-PCR), and the results were consistent with the RNA-seq data. This study explored the transcriptional patterns of the yellow drum under temperature stress and provided fundamental information on the temperature adaptability of this species.
Collapse
Affiliation(s)
- Xiang Zhao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, 266003, China
| | - Zhicheng Sun
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, 266003, China
| | - Hao Xu
- Qingdao Marine Hazard Mitigation Service, Qingdao, Shandong, 266003, China
| | - Na Song
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, 266003, China.
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| |
Collapse
|
47
|
Biemann R, Blüher M, Isermann B. Exposure to endocrine-disrupting compounds such as phthalates and bisphenol A is associated with an increased risk for obesity. Best Pract Res Clin Endocrinol Metab 2021; 35:101546. [PMID: 33966978 DOI: 10.1016/j.beem.2021.101546] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Increasing evidence from epidemiological, animal and in vitro studies suggests that the increased production of synthetic chemicals that interfere with the proper functioning of the hormonal system, so-called endocrine-disrupting compounds (EDCs), might be involved in the development and rapid spread of obesity, coined the obesity epidemic. Recent findings have demonstrated that EDCs may interfere with hormonal receptors that regulate adipogenesis and metabolic pathways. Furthermore, prenatal exposure to EDCs has been shown to influence the metabolism of the developing embryo through epigenetic mechanisms and to promote obesity in subsequent generations. In this Review, we discuss the potential impact of bisphenol A (BPA) and phthalate-based plasticizers on obesity and obesity-related metabolic disorders. Special emphasis is given to the obesogenic effects of prenatal exposure and strategies for identifying, regulating, and replacing EDCs.
Collapse
Affiliation(s)
- Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Str. 13/15, 04103, Leipzig, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Liebigstr. 21, 04103, Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Liebigstr. 21, 04103, Leipzig, Germany.
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Str. 13/15, 04103, Leipzig, Germany.
| |
Collapse
|
48
|
Pant R, Alam A, Choksi A, Shah VK, Firmal P, Chattopadhyay S. Chromatin remodeling protein SMAR1 regulates adipogenesis by modulating the expression of PPARγ. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159045. [PMID: 34450266 DOI: 10.1016/j.bbalip.2021.159045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/15/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022]
Abstract
Adipogenesis is described as the process of conversion of pre-adipocytes into differentiated lipid-laden adipocytes. Adipogenesis is known to be regulated by a myriad of transcription factors and co-regulators. However, there is a dearth of information regarding the mechanisms that regulate these transcription factors and hence control adipogenesis. PPARγ is the master transcriptional regulator of adipogenesis and its expression is essential for adipocyte differentiation. Herein, we identified that scaffold/matrix attachment region-binding protein 1 (SMAR1) negatively regulates adipogenesis. We observed that SMAR1 gets downregulated during adipocyte differentiation and knockdown of SMAR1 promotes lipid accumulation and adipocyte differentiation. Mechanistically, we have shown that SMAR1 suppresses PPARγ through recruitment of the HDAC1/mSin3a repressor complex to the PPARγ promoter. We further identified cell division cycle 20 (cdc20) mediated proteasomal degradation of SMAR1 during adipogenesis. Moreover, knockdown of cdc20 resulted in stabilization of SMAR1 and a reduction in adipocyte differentiation. Taken together, our observations suggest that SMAR1 functions as a negative regulator of adipogenesis by inhibiting PPARγ expression in differentiating adipocytes.
Collapse
Affiliation(s)
- Richa Pant
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India.
| | - Aftab Alam
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India; Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, United States of America
| | - Arpankumar Choksi
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Vibhuti Kumar Shah
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Priyanka Firmal
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India; Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, NH 17B, Zuarinagar, Goa 403726, India; Indian Institute of Chemical Biology; 4, Raja S C Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
49
|
Liu D, Zhang W. Pioglitazone Attenuates Lupus Nephritis Symptoms in Mice by Modulating miR-21-5p/TIMP3 Axis: the Key Role of the Activation of Peroxisome Proliferator-Activated Receptor-γ. Inflammation 2021; 44:1416-1425. [PMID: 33604775 DOI: 10.1007/s10753-021-01426-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 01/16/2023]
Abstract
Lupus nephritis (LN) is a severe symptom of systemic lupus erythematosus and miR-21-5p is upregulated during LN. In the current study, the effects of pioglitazone (Pg), a peroxisome proliferator-activated receptor-γ (PPARγ) agonist, on LN development were assessed and explained by focusing miR-21-5p/TIMP3 axis. The expressions of miR-21-5p and PPARγ in LN mice were detected and then the mice were treated with pioglitazone to evaluate the anti-LN effects of agent. The miR-21-5p level was induced in MRL/lpr mice to confirm the central role of miR-21-5p inhibition in the protective effects of Pg against LN. The level of miR-21-5p was upregulated, while the level of PPARγ was downregulated in MRL/lpr mice. Pg inhibited miR-21-5p in renal tissues, which induced the expression of TIMP3. The changes in miR-21-5p/TIMP3 axis led to the improvements in renal structure and function, and inhibited autoimmune response. The induction of miR-21-5p impaired the effects of Pg, along with the suppression of TIMP3. The expression of miR-21-5p was associated with the progression of LN, contributing to the suppression of TIMP3 and development of LN. The inhibition of the miR-21-5p by Pg would restore the structure and function of kidneys in LN mice via the activation of PPARγ.
Collapse
Affiliation(s)
- Ding Liu
- Department of Nephrology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, China
| | - Wanzhe Zhang
- Department of Nephrology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, China.
| |
Collapse
|
50
|
Wang Y, Guo S, Jia Y, Yu X, Mou R, Li X. Hispidulin inhibits proliferation, migration, and invasion by promoting autophagy via regulation of PPARγ activation in prostate cancer cells and xenograft models. Biosci Biotechnol Biochem 2021; 85:786-797. [PMID: 33590833 DOI: 10.1093/bbb/zbaa108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
Prostate cancer (PCa) is one of the important factors of cancer deaths especially in the western countries. Hispidulin (4',5,7-trihydroxy-6-methoxyflavone) is a phenolic flavonoid compound proved to possess anticancer properties, but its effects on PCa are left to be released. The aims of this study were to investigate the effects and the relative mechanisms of Hispidulin on PCa development. Hispidulin administration inhibited proliferation, invasion, and migration, while accelerated apoptosis in Du145 and VCaP cells, which was accompanied by PPARγ activation and autophagy enhancement. The beneficial effects of Hispidulin could be diminished by PPARγ inhibition. Besides, Hispidulin administration suppressed PCa tumorigenicity in Xenograft models, indicating the anticancer properties in vivo. Therefore, our work revealed that the anticancer properties of Hispidulin might be conferred by its activation on PPARγ and autophagy.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanqi Guo
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoyu Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiyu Mou
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|