1
|
Pasha MA, Hopp RJ, Habib N, Tang DD. Biomarkers in asthma, potential for therapeutic intervention. J Asthma 2024; 61:1376-1391. [PMID: 38805392 DOI: 10.1080/02770903.2024.2361783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 05/30/2024]
Abstract
Asthma is a heterogeneous disease characterized by multiple phenotypes with varying risk factors and therapeutic responses. This Commentary describes research on biomarkers for T2-"high" and T2-"low" inflammation, a hallmark of the disease. Patients with asthma who exhibit an increase in airway T2 inflammation are classified as having T2-high asthma. In this endotype, Type 2 cytokines interleukins (IL)-4, IL-5, and IL-13, plus other inflammatory mediators, lead to increased eosinophilic inflammation and elevated fractional exhaled nitric oxide (FeNO). In contrast, T2-low asthma has no clear definition. Biomarkers are considered valuable tools as they can help identify various phenotypes and endotypes, as well as treatment response to standard treatment or potential therapeutic targets, particularly for biologics. As our knowledge of phenotypes and endotypes expands, biologics are increasingly integrated into treatment strategies for severe asthma. These treatments block specific inflammatory pathways or single mediators. While single or composite biomarkers may help to identify subsets of patients who might benefit from these treatments, only a few inflammatory biomarkers have been validated for clinical application. One example is sputum eosinophilia, a particularly useful biomarker, as it may suggest corticosteroid responsiveness or reflect non-compliance to inhaled corticosteroids. As knowledge develops, a meaningful goal would be to provide individualized care to patients with asthma.
Collapse
Affiliation(s)
- M Asghar Pasha
- Department of Medicine, Division of Allergy and Immunology, Albany Medical College, Albany, NY, USA
| | - Russell J Hopp
- Department of Pediatrics, University of NE Medical Center and Children's Hospital and Medical Center, Omaha, NE, USA
| | - Nazia Habib
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
2
|
Lee JU, Hong J, Park E, Baek J, Choi YM, Chin SS, Jeon KJ, Kim WJ, Park SW, Jeong SH. Gene expression changes in mouse lung induced by subacute inhalation of PM 10-rich particulate matter. Inhal Toxicol 2024:1-11. [PMID: 39388309 DOI: 10.1080/08958378.2024.2410736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Particulate matter (PM) air pollution is associated with an increased incidence of lung diseases, but the underlying mechanisms have not been fully elucidated. In this study, a mouse model of subacute lung inflammation was employed to investigate the cellular responses and gene expression changes induced by exposure to natural ambient air pollution. METHODS C57BL/6J mice were exposed to road dust (primarily PM10) at 150 µg/m³ for 21 days (8 h/day) through a nose-only inhalation exposure system. Lung tissues were analyzed for the expression of proinflammatory signaling, oxidative stress, and fibrosis markers. RNA-sequencing analysis was conducted to identify differentially expressed genes (DEGs). A gene ontology over-representation analysis was performed to identify the altered genetic pathways. RESULTS Elevated levels of proinflammatory cytokines, including IL-1β, IL-6, and TNF-α, and an increase in phosphorylated MAPK were determined in the road dust exposure group compared to the control group. Histopathological examinations revealed more severe lung inflammation and damage in the exposed mice, including fibrosis and bronchiolar hyperplasia. Gene expression profiling identified 108 DEGs, with decreases in most except genes such as Krt15 and Reg3g. The protein-protein interaction network analysis together with text-mining identified 18 key hub genes, associated with fatty acid oxidation, lipid metabolism, and peroxisomes. CONCLUSION This study identified key genes, signaling pathways, and cellular responses in mouse lung affected by road dust exposure. These findings contribute to a deeper understanding of the transcriptional and cellular responses induced by subacute exposure to the PM in road dust.
Collapse
Affiliation(s)
- Jong-Uk Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Jisu Hong
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Eunji Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Junyeong Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Ye Min Choi
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Su Sie Chin
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi-Do, South Korea
| | - Ki-Joon Jeon
- Department of Environmental Engineering, Inha University, Incheon, South Korea
| | - Woo-Jin Kim
- Department of Internal Medicine Environmental Health Center, Kangwon National University, Chuncheon-si, Gangwon-do, South Korea
| | - Sung Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Sung Hwan Jeong
- Department of Allergy, Pulmonary and Critical Care Medicine, Gachon University, Gil Medical Center, Incheon, South Korea
| |
Collapse
|
3
|
Xie C, Yang J, Gul A, Li Y, Zhang R, Yalikun M, Lv X, Lin Y, Luo Q, Gao H. Immunologic aspects of asthma: from molecular mechanisms to disease pathophysiology and clinical translation. Front Immunol 2024; 15:1478624. [PMID: 39439788 PMCID: PMC11494396 DOI: 10.3389/fimmu.2024.1478624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
In the present review, we focused on recent translational and clinical discoveries in asthma immunology, facilitating phenotyping and stratified or personalized interventions for patients with this condition. The immune processes behind chronic inflammation in asthma exhibit marked heterogeneity, with diverse phenotypes defining discernible features and endotypes illuminating the underlying molecular mechanisms. In particular, two primary endotypes of asthma have been identified: "type 2-high," characterized by increased eosinophil levels in the airways and sputum of patients, and "type 2-low," distinguished by increased neutrophils or a pauci-granulocytic profile. Our review encompasses significant advances in both innate and adaptive immunities, with emphasis on the key cellular and molecular mediators, and delves into innovative biological and targeted therapies for all the asthma endotypes. Recognizing that the immunopathology of asthma is dynamic and continuous, exhibiting spatial and temporal variabilities, is the central theme of this review. This complexity is underscored through the innumerable interactions involved, rather than being driven by a single predominant factor. Integrated efforts to improve our understanding of the pathophysiological characteristics of asthma indicate a trend toward an approach based on disease biology, encompassing the combined examination of the clinical, cellular, and molecular dimensions of the disease to more accurately correlate clinical traits with specific disease mechanisms.
Collapse
Affiliation(s)
- Cong Xie
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Jingyan Yang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Aman Gul
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
- Department of Respiratory Medicine, Uyghur Medicines Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yifan Li
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Rui Zhang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Maimaititusun Yalikun
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiaotong Lv
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhan Lin
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Huijuan Gao
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Chen L, A Hoefel G, Pathinayake PS, Reid A, Pillar AL, Kelly C, Tan H, Ali A, Kim RY, Hansbro PM, Brody SL, Foster PS, Horvat JC, Riveros C, Awatade N, Wark PAB, Kaiko GE. Inflammation-induced loss of CFTR-expressing airway ionocytes in non-eosinophilic asthma. Respirology 2024. [PMID: 39358991 DOI: 10.1111/resp.14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Severe asthma is a heterogeneous disease with subtype classification according to dominant airway infiltrates, including eosinophilic (Type 2 high), or non-eosinophilic asthma. Non-eosinophilic asthma is further divided into paucigranulocytic or neutrophilic asthma characterized by elevated neutrophils, and mixed Type 1 and Type 17 cytokines in the airways. Severe non-eosinophilic asthma has few effective treatments and many patients do not qualify for biologic therapies. The cystic fibrosis transmembrane conductance regulator (CFTR) is dysregulated in multiple respiratory diseases including cystic fibrosis and chronic obstructive pulmonary disease and has proven a valuable therapeutic target. We hypothesized that the CFTR may also play a role in non-eosinophilic asthma. METHODS Patient-derived human bronchial epithelial cells (hBECs) were isolated and differentiated at the air-liquid interface. Single cell RNA-sequencing (scRNAseq) was used to identify epithelial cell subtypes and transcriptional activity. Ion transport was investigated with Ussing chambers and immunofluorescent quantification of ionocyte abundance in human airway epithelial cells and murine models of asthma. RESULTS We identified that hBECs from patients with non-eosinophilic asthma had reduced CFTR function, and did not differentiate into CFTR-expressing ionocytes compared to those from eosinophilic asthma or healthy donors. Similarly, ionocytes were also diminished in the airways of a murine model of neutrophilic-dominant but not eosinophilic asthma. Treatment of hBECs from healthy donors with a neutrophilic asthma-like inflammatory cytokine mixture led to a reduction in ionocytes. CONCLUSION Inflammation-induced loss of CFTR-expressing ionocytes in airway cells from non-eosinophilic asthma may represent a key feature of disease pathogenesis and a novel drug target.
Collapse
Affiliation(s)
- Ling Chen
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Gabriela A Hoefel
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Prabuddha S Pathinayake
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew Reid
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Amber L Pillar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Coady Kelly
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - HuiYing Tan
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ayesha Ali
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Richard Y Kim
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Paul S Foster
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Carlos Riveros
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nikhil Awatade
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton, New South Wales, Australia
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Gerard E Kaiko
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
5
|
Rupani H, Busse WW, Howarth PH, Bardin PG, Adcock IM, Konno S, Jackson DJ. Therapeutic relevance of eosinophilic inflammation and airway viral interactions in severe asthma. Allergy 2024; 79:2589-2604. [PMID: 39087443 DOI: 10.1111/all.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
The role of eosinophils in airway inflammation and asthma pathogenesis is well established, with raised eosinophil counts in blood and sputum associated with increased disease severity and risk of asthma exacerbation. Conversely, there is also preliminary evidence suggesting antiviral properties of eosinophils in the airways. These dual roles for eosinophils are particularly pertinent as respiratory virus infections contribute to asthma exacerbations. Biologic therapies targeting key molecules implicated in eosinophil-associated pathologies have been approved in patients with severe asthma and, therefore, the effects of depleting eosinophils in a clinical setting are of considerable interest. This review discusses the pathological and antiviral roles of eosinophils in asthma and exacerbations. We also highlight the significant reduction in asthma exacerbations seen with biologic therapies, even at the height of the respiratory virus season. Furthermore, we discuss the implications of these findings in relation to the role of eosinophils in inflammation and antiviral responses to respiratory virus infection in asthma.
Collapse
Affiliation(s)
- Hitasha Rupani
- Department of Respiratory Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - William W Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter H Howarth
- Global Medical, Global Specialty and Primary Care, GSK, Brentford, Middlesex, UK
| | - Philip G Bardin
- Monash Lung Sleep Allergy and Immunology, Monash University and Medical Centre and Hudson Institute, Melbourne, Victoria, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - David J Jackson
- Guy's Severe Asthma Centre, Guy's and St Thomas' Hospitals, London, UK
- School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
6
|
Teague WG, Griffiths CD, Boyd K, Kellams SC, Lawrence M, Offerle TL, Heymann P, Brand W, Greenwell A, Middleton J, Wavell K, Payne J, Spano M, Etter E, Wall B, Borish L. A novel syndrome of silent rhinovirus-associated bronchoalveolitis in children with recurrent wheeze. J Allergy Clin Immunol 2024; 154:571-579.e6. [PMID: 38761997 DOI: 10.1016/j.jaci.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/01/2024] [Accepted: 04/19/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Rhinovirus (RV) infections trigger wheeze episodes in children. Thus, understanding of the lung inflammatory response to RV in children with wheeze is important. OBJECTIVES This study sought to examine the associations of RV on bronchoalveolar lavage (BAL) granulocyte patterns and biomarkers of inflammation with age in children with treatment-refractory, recurrent wheeze (n = 616). METHODS Children underwent BAL to examine viral nucleic acid sequences, bacterial cultures, granulocyte counts, and phlebotomy for both general and type-2 inflammatory markers. RESULTS Despite the absence of cold symptoms, RV was the most common pathogen detected (30%), and when present, was accompanied by BAL granulocytosis in 75% of children. Compared to children with no BAL pathogens (n = 341), those with RV alone (n = 127) had greater (P < .05) isolated neutrophilia (43% vs 16%), mixed eosinophils and neutrophils (26% vs 11%), and less pauci-granulocytic (27% vs 61%) BAL. Children with RV alone furthermore had biomarkers of active infection with higher total blood neutrophils and serum C-reactive protein, but no differences in blood eosinophils or total IgE. With advancing age, the log odds of BAL RV alone were lower, 0.82 (5th-95th percentile CI: 0.76-0.88; P < .001), but higher, 1.58 (5th-95th percentile CI: 1.01-2.51; P = .04), with high-dose daily corticosteroid treatment. CONCLUSIONS Children with severe recurrent wheeze often (22%) have a silent syndrome of lung RV infection with granulocytic bronchoalveolitis and elevated systemic markers of inflammation. The syndrome is less prevalent by school age and is not informed by markers of type-2 inflammation. The investigators speculate that dysregulated mucosal innate antiviral immunity is a responsible mechanism.
Collapse
Affiliation(s)
- W Gerald Teague
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Va; Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Va; Division of Respiratory Medicine, Allergy, Immunology, and Sleep, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Va.
| | - Cameron D Griffiths
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Va
| | - Kelly Boyd
- Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Stella C Kellams
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Va
| | - Monica Lawrence
- Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Thomas L Offerle
- Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Peter Heymann
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Va; Division of Respiratory Medicine, Allergy, Immunology, and Sleep, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Va
| | - William Brand
- Pediatric Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Ariana Greenwell
- Pediatric Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Jeremy Middleton
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Va
| | - Kristin Wavell
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Va; Division of Respiratory Medicine, Allergy, Immunology, and Sleep, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Va
| | - Jacqueline Payne
- Division of Respiratory Medicine, Allergy, Immunology, and Sleep, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Va
| | - Marthajoy Spano
- Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Va; Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Elaine Etter
- Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Brittany Wall
- Division of Respiratory Medicine, Allergy, Immunology, and Sleep, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Va
| | - Larry Borish
- Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Va; Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va; Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Va
| |
Collapse
|
7
|
Ghanizada M, Jabarkhil A, Hansen S, Woehlk C, Dyhre-Petersen N, Sverrild A, Porsbjerg C, Lapperre T. Biomarker defined infective and inflammatory asthma exacerbation phenotypes in hospitalized adults: clinical impact and phenotype stability at recurrent exacerbation. J Asthma 2024:1-12. [PMID: 39169832 DOI: 10.1080/02770903.2024.2380510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE Acute exacerbations (AEs) of asthma are heterogeneous in terms of triggers, outcomes, and treatment response. This study investigated biomarker defined infective and inflammatory AE phenotypes in hospitalized adult asthma patients, and their impact on clinical outcomes and phenotype stability at AE recurrence. METHOD Patients with asthma admitted with an AE between January 2010 and December 2011 with a 3-year follow-up were retrospectively studied. AEs were categorized into infective (CRP >10 mg/L) vs non-infective, eosinophilic (blood eosinophils ≥ 0.2 × 109 cells/L) vs non-eosinophilic, and viral (CRP >10 to <40 mg/L) vs bacterial (CRP ≥40 mg/L) phenotypes. Clinical impact of the index AE, the risk and time to a second AE and AE phenotype stability were analyzed using Kaplan-Meier survival curves and McNamar's test. RESULT 294 asthma patients were included: 47% had infective AE with a longer length of stay than non-infective AE (2.0 vs. 1.0 days, p = 0.01). The proportion of patients with eosinophilic AEs was evenly distributed across infective and non-infective AE (40% vs. 46%), although more patients with viral had eosinophilia than bacterial AE (46% vs. 26%). During follow-up, 18% had recurrent AE; with a higher risk in viral AE than bacterial AE (25% vs. 8%, p = 0.02). Both inflammatory and infective AE phenotype were stable at recurrent AE. CONCLUSION AE phenotyping in hospitalized asthma patients, based on CRP and blood eosinophils, revealed prolonged hospital stay in infective AEs and a higher risk of recurrent AE requiring hospitalization in viral versus bacterial AEs. Moreover, infective, and inflammatory AE phenotypes were rather stable at recurrent AE. Our results suggest a role for biomarker guided phenotyping of AEs of asthma.
Collapse
Affiliation(s)
- Muzhda Ghanizada
- Respiratory Research Unit, Department of Respiratory and Infectious Disease, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Ajmal Jabarkhil
- Respiratory Research Unit, Department of Respiratory and Infectious Disease, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Susanne Hansen
- Respiratory Research Unit, Department of Respiratory and Infectious Disease, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Christian Woehlk
- Respiratory Research Unit, Department of Respiratory and Infectious Disease, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Nanna Dyhre-Petersen
- Respiratory Research Unit, Department of Respiratory and Infectious Disease, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Asger Sverrild
- Respiratory Research Unit, Department of Respiratory and Infectious Disease, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Celeste Porsbjerg
- Respiratory Research Unit, Department of Respiratory and Infectious Disease, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Therese Lapperre
- Respiratory Research Unit, Department of Respiratory and Infectious Disease, Bispebjerg University Hospital, Copenhagen, Denmark
- Department of Respiratory Medicine, Antwerp University Hospital, Edegem, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
8
|
Gay ACA, Banchero M, Carpaij O, Kole TM, Apperloo L, van Gosliga D, Fajar PA, Koppelman GH, Bont L, Hendriks RW, van den Berge M, Nawijn MC. Airway epithelial cell response to RSV is mostly impaired in goblet and multiciliated cells in asthma. Thorax 2024; 79:811-821. [PMID: 38373824 PMCID: PMC11347251 DOI: 10.1136/thorax-2023-220230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/27/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND In patients with asthma, respiratory syncytial virus (RSV) infections can cause disease exacerbation by infecting the epithelial layer of the airways, inducing subsequent immune response. The type I interferon antiviral response of epithelial cells upon RSV infection is found to be reduced in asthma in most-but not all-studies. Moreover, the molecular mechanisms causing the differences in the asthmatic bronchial epithelium in response to viral infection are poorly understood. METHODS Here, we investigated the transcriptional response to RSV infection of primary bronchial epithelial cells (pBECs) from patients with asthma (n=8) and healthy donors (n=8). The pBECs obtained from bronchial brushes were differentiated in air-liquid interface conditions and infected with RSV. After 3 days, cells were processed for single-cell RNA sequencing. RESULTS A strong antiviral response to RSV was observed for all cell types, for all samples (p<1e-48). Most (1045) differentially regulated genes following RSV infection were found in cells transitioning to secretory cells. Goblet cells from patients with asthma showed lower expression of genes involved in the interferon response (false discovery rate <0.05), including OASL, ICAM1 and TNFAIP3. In multiciliated cells, an impairment of the signalling pathways involved in the response to RSV in asthma was observed. CONCLUSION Our results highlight that the response to RSV infection of the bronchial epithelium in asthma and healthy airways was largely similar. However, in asthma, the response of goblet and multiciliated cells is impaired, highlighting the need for studying airway epithelial cells at high resolution in the context of asthma exacerbation.
Collapse
Affiliation(s)
- Aurore C A Gay
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- GRIAC research institute, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin Banchero
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- GRIAC research institute, University Medical Center Groningen, Groningen, the Netherlands
| | - Orestes Carpaij
- GRIAC research institute, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tessa M Kole
- GRIAC research institute, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Leonie Apperloo
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- GRIAC research institute, University Medical Center Groningen, Groningen, the Netherlands
| | - Djoke van Gosliga
- GRIAC research institute, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Putri Ayu Fajar
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- GRIAC research institute, University Medical Center Groningen, Groningen, the Netherlands
| | - Gerard H Koppelman
- GRIAC research institute, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Louis Bont
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
- Division of Infectious Diseases, Department of Pediatrics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maarten van den Berge
- GRIAC research institute, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- GRIAC research institute, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
9
|
Bloom C. The burden of zoster in asthma: what is left to learn? Eur Respir J 2024; 64:2401300. [PMID: 39117424 DOI: 10.1183/13993003.01300-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Affiliation(s)
- Chloe Bloom
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
10
|
Regis E, Fontanella S, Curtin JA, Pinot de Moira A, Edwards MR, Murray CS, Simpson A, Johnston SL, Custovic A. Association between polymorphisms on chromosome 17q12-q21 and rhinovirus-induced interferon responses. J Allergy Clin Immunol 2024; 154:308-315. [PMID: 38494094 DOI: 10.1016/j.jaci.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in genes on chromosome 17q12-q21 are associated with childhood-onset asthma and rhinovirus-induced wheeze. There are few mechanistic data linking chromosome 17q12-q21 to wheezing illness. OBJECTIVE We investigated whether 17q12-q21 risk alleles were associated with impaired interferon responses to rhinovirus. METHODS In a population-based birth cohort of European ancestry, we stimulated peripheral blood mononuclear cells with rhinovirus A1 (RV-A1) and rhinovirus A16 (RV-A16) and measured IFN and IFN-induced C-X-C motif chemokine ligand 10 (aka IP10) responses in supernatants. We investigated associations between virus-induced cytokines and 6 SNPs in 17q12-q21. Bayesian profile regression was applied to identify clusters of individuals with different immune response profiles and genetic variants. RESULTS Five SNPs (in high linkage disequilibrium, r2 ≥ 0.8) were significantly associated with RV-A1-induced IFN-β (rs9303277, P = .010; rs11557467, P = .012; rs2290400, P = .006; rs7216389, P = .008; rs8079416, P = .005). A reduction in RV-A1-induced IFN-β was observed among individuals with asthma risk alleles. There were no significant associations for RV-A1-induced IFN-α or CXCL10, or for any RV-A16-induced IFN/CXCL10. Bayesian profile regression analysis identified 3 clusters that differed in IFN-β induction to RV-A1 (low, medium, high). The typical genetic profile of the cluster associated with low RV-A1-induced IFN-β responses was characterized by a very high probability of being homozygous for the asthma risk allele for all SNPs. Children with persistent wheeze were almost 3 times more likely to be in clusters with reduced/average RV-A1-induced IFN-β responses than in the high immune response cluster. CONCLUSIONS Polymorphisms on chromosome 17q12-q21 are associated with rhinovirus-induced IFN-β, suggesting a novel mechanism-impaired IFN-β induction-links 17q12-q21 risk alleles with asthma/wheeze.
Collapse
Affiliation(s)
- Eteri Regis
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sara Fontanella
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - John A Curtin
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | | | - Michael R Edwards
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Clare S Murray
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Sebastian L Johnston
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
11
|
Liu T, Woodruff PG, Zhou X. Advances in non-type 2 severe asthma: from molecular insights to novel treatment strategies. Eur Respir J 2024; 64:2300826. [PMID: 38697650 PMCID: PMC11325267 DOI: 10.1183/13993003.00826-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Asthma is a prevalent pulmonary disease that affects more than 300 million people worldwide and imposes a substantial economic burden. While medication can effectively control symptoms in some patients, severe asthma attacks, driven by airway inflammation induced by environmental and infectious exposures, continue to be a major cause of asthma-related mortality. Heterogeneous phenotypes of asthma include type 2 (T2) and non-T2 asthma. Non-T2 asthma is often observed in patients with severe and/or steroid-resistant asthma. This review covers the molecular mechanisms, clinical phenotypes, causes and promising treatments of non-T2 severe asthma. Specifically, we discuss the signalling pathways for non-T2 asthma including the activation of inflammasomes, interferon responses and interleukin-17 pathways, and their contributions to the subtypes, progression and severity of non-T2 asthma. Understanding the molecular mechanisms and genetic determinants underlying non-T2 asthma could form the basis for precision medicine in severe asthma treatment.
Collapse
Affiliation(s)
- Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Evans DJ, Hillas JK, Iosifidis T, Simpson SJ, Kicic A, Agudelo-Romero P. Transcriptomic analysis of primary nasal epithelial cells reveals altered interferon signalling in preterm birth survivors at one year of age. Front Cell Dev Biol 2024; 12:1399005. [PMID: 39114569 PMCID: PMC11303191 DOI: 10.3389/fcell.2024.1399005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Many survivors of preterm birth (<37 weeks gestation) have lifelong respiratory deficits, the drivers of which remain unknown. Influencers of pathophysiological outcomes are often detectable at the gene level and pinpointing these differences can help guide targeted research and interventions. This study provides the first transcriptomic analysis of primary nasal airway epithelial cells in survivors of preterm birth at approximately 1 year of age. Methods: Nasal airway epithelial brushings were collected, and primary cell cultures established from term (>37 weeks gestation) and very preterm participants (≤32 weeks gestation). Ex vivo RNA was collected from brushings with sufficient cell numbers and in vitro RNA was extracted from cultured cells, with bulk RNA sequencing performed on both the sample types. Differential gene expression was assessed using the limma-trend pipeline and pathway enrichment identified using Reactome and GO analysis. To corroborate gene expression data, cytokine concentrations were measured in cell culture supernatant. Results: Transcriptomic analysis to compare term and preterm cells revealed 2,321 genes differentially expressed in ex vivo samples and 865 genes differentially expressed in cultured basal cell samples. Over one third of differentially expressed genes were related to host immunity, with interferon signalling pathways dominating the pathway enrichment analysis and IRF1 identified as a hub gene. Corroboration of disrupted interferon release showed that concentrations of IFN-α2 were below measurable limits in term samples but elevated in preterm samples [19.4 (76.7) pg/ml/µg protein, p = 0.03]. IFN-γ production was significantly higher in preterm samples [3.3 (1.5) vs. 9.4 (17.7) pg/ml/µg protein; p = 0.01] as was IFN-β [7.8 (2.5) vs. 13.6 (19.5) pg/ml/µg protein, p = 0.01]. Conclusion: Host immunity may be compromised in the preterm nasal airway epithelium in early life. Altered immune responses may lead to cycles of repeated infections, causing persistent inflammation and tissue damage which can have significant impacts on long-term respiratory function.
Collapse
Affiliation(s)
- Denby J. Evans
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute and The University of Western Australia, Crawley, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
| | - Jessica K. Hillas
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
| | - Thomas Iosifidis
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Shannon J. Simpson
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- School of Allied Health, Curtin University, Bentley, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Patricia Agudelo-Romero
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- School of Molecular Science, University of Western Australia, Nedlands, WA, Australia
- European Virus Bioinformatics Centre, Jena, Thuringia, Germany
| |
Collapse
|
13
|
Gao Y, Zhou J, Wang M, Liang Y, Zhang T, Mao Y, Ma J, Li L, Zhang T, Guo L. Characteristics of upper respiratory tract rhinovirus in children with allergic rhinitis and its role in disease severity. Microbiol Spectr 2024; 12:e0385323. [PMID: 38780281 PMCID: PMC11218526 DOI: 10.1128/spectrum.03853-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Allergic rhinitis (AR) is a global health challenge that particularly affects the quality of life of children. Human rhinovirus (HRV) infection usually causes common cold in the upper respiratory tract (URT) and can also affect airway allergy development, such as asthma exacerbation, but its relationship with AR is poorly understood. The study aimed to gain insight into the characteristics of HRV that is prevalent in AR children and its role in AR severity. A total of 362 children with symptomatic AR were enrolled from southwestern China during 2022-2023, and nasal lavage samples were collected for HRV molecular characterization and cytokine measurement. HRV was detected in 40% of the AR children, with peak detection in autumn. The positive rate was not correlated with whether the subjects were under allergen-specific immunotherapy (AIT). Among the detected HRVs, 42% were species A, 36% were species B, and 22% were species C, involving 21 A genotypes, 6 B genotypes, and 7 C genotypes. HRV positivity was significantly associated with symptom severity (visual analog scale [VAS] score) and elevated levels of local nasal IgE, interleukin-25 (IL-25), IL-4, and CXCL13 in AR children who did not receive antiallergic treatment. All three species of HRV strains (A1B, A21, B27, B70, and C17) had been isolated and were able to infect respiratory epithelial tissue in vitro. Complete genome sequencing showed that the antigenic epitopes of the isolated HRVs had certain variations. Our work reveals the etiological characteristics of URT-HRV in AR children and suggests a role of HRV infection in the pathogenesis of childhood AR. IMPORTANCE Our study revealed high human rhinovirus (HRV) detection rate in children with allergic rhinitis (AR), and HRV infection (A, B, or C species) is positively associated with the symptom severity in AR children. Elevated nasal IgE, interleukin-25 (IL-25), IL-4, and CXCL13 levels suggest a potential pathogenic mechanism by which HRV infection induces nasal type 2 immune/inflammation responses and local IgE production in AR patients. In addition, etiological analysis found that the main prevalent HRV species in AR children are A and B (~80%), which is different from acute respiratory infection and asthma exacerbation, where species A and C are dominant. The data reveal the distinct species prevalence characteristics of HRV infection in AR. Finally, we isolated all three species of HRV strains from nasal cavity of AR children with varying degrees of antigenic epitope mutations and in vitro infectivity, highlighting the importance of strengthening monitoring and intervention for respiratory HRV infection in AR children.
Collapse
Affiliation(s)
- Yingqin Gao
- Affiliated Children's Hospital of Kunming Medical University, Kunming, China
| | - Jienan Zhou
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Meilan Wang
- Affiliated Children's Hospital of Kunming Medical University, Kunming, China
| | - Yanqi Liang
- Affiliated Children's Hospital of Kunming Medical University, Kunming, China
| | | | - Yunxiang Mao
- Affiliated Children's Hospital of Kunming Medical University, Kunming, China
| | - Jing Ma
- Affiliated Children's Hospital of Kunming Medical University, Kunming, China
| | - Li Li
- Affiliated Children's Hospital of Kunming Medical University, Kunming, China
| | - Tiesong Zhang
- Affiliated Children's Hospital of Kunming Medical University, Kunming, China
| | - Lei Guo
- Affiliated Children's Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
14
|
Dong J, Su D, Zhao B, Han J, Tu M, Zhang K, Wang F, An Y. Potential Protective Factors for Allergic Rhinitis Patients Infected with COVID-19. Curr Issues Mol Biol 2024; 46:6633-6645. [PMID: 39057037 PMCID: PMC11275266 DOI: 10.3390/cimb46070395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
At the beginning of the 2019 coronavirus disease (COVID-19) pandemic, airway allergic diseases such as asthma and allergic rhinitis (AR) were considered as risk factors for COVID-19, as they would aggravate symptoms. With further research, more and more literature has shown that airway allergic disease may not be a high-risk factor, but may be a protective factor for COVID-19 infection, which is closely related to its low-level expression of the ACE2 receptor and the complex cytokines network as underlying molecular regulatory mechanisms. In addition, steroid hormones and age factors could not be ignored. In this review, we have summarized some current evidence on the relationship between COVID-19 and allergic rhinitis to highlight the underlying mechanisms of COVID-19 infection and provide novel insights for its prevention and treatment. The key findings show that allergic rhinitis and its related molecular mechanisms may have a protective effect against COVID-19 infection.
Collapse
Affiliation(s)
- Jiaoyue Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Dingyuan Su
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Kaifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Fengling Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| |
Collapse
|
15
|
Steffan BN, Townsend EA, Denlinger LC, Johansson MW. Eosinophil-Epithelial Cell Interactions in Asthma. Int Arch Allergy Immunol 2024; 185:1033-1047. [PMID: 38885626 PMCID: PMC11534548 DOI: 10.1159/000539309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Eosinophils have numerous roles in type 2 inflammation depending on their activation states in the blood and airway or after encounter with inflammatory mediators. Airway epithelial cells have a sentinel role in the lung and, by instructing eosinophils, likely have a foundational role in asthma pathogenesis. SUMMARY In this review, we discuss various topics related to eosinophil-epithelial cell interactions in asthma, including the influence of eosinophils and eosinophil products, e.g., granule proteins, on epithelial cell function, expression, secretion, and plasticity; the effects of epithelial released factors, including oxylipins, cytokines, and other mediators on eosinophils, e.g., on their activation, expression, and survival; possible mechanisms of eosinophil-epithelial cell adhesion; and the role of intra-epithelial eosinophils in asthma. KEY MESSAGES We suggest that eosinophils and their products can have both injurious and beneficial effects on airway epithelial cells in asthma and that there are bidirectional interactions and signaling between eosinophils and airway epithelial cells in asthma.
Collapse
Affiliation(s)
- Breanne N. Steffan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Elizabeth A. Townsend
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Loren C. Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Mats W. Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Smith-Voudouris J, Rubin LE, Grauer JN. Risk of Adverse Events Following Total Knee Arthroplasty in Asthma Patients. J Am Acad Orthop Surg 2024; 32:543-549. [PMID: 38657178 DOI: 10.5435/jaaos-d-23-01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/08/2024] [Indexed: 04/26/2024] Open
Abstract
INTRODUCTION Total knee arthroplasty (TKA) is a common procedure for which patient factors are known to affect perioperative outcomes. Asthma has not been specifically considered in this regard, although it is the most common inflammatory airway disease and predisposes to osteoarthritis. METHODS Adult patients undergoing TKA were identified from 2015 to 2021-Q3 M157 PearlDiver data sets. Asthma patients were matched to those without 1:1 based on age, sex, and Elixhauser Comorbidity Index (ECI). The incidence of 90-day adverse events and 5-year revisions were compared using multivariable logistic regression ( P < 0.0023). The matched asthma group was then stratified based on disease severity for analysis of 90-day aggregated (any, severe, and minor) adverse events. RESULTS Among 721,686 TKA patients, asthma was noted for 76,125 (10.5%). Multivariable analysis revealed that patients with asthma were at increased odds of multiple 90-day pulmonary, non-pulmonary, and aggregated adverse events, as well as emergency department visits. Furthermore, patients with asthma had 1.17 times greater odds of 5-year revisions ( P < 0.0001). Upon secondary analysis stratifying asthma by severity, patients with all severity levels of asthma showed elevated odds of adverse events after TKA. These associations increased in odds with increasing severity of asthma. DISCUSSION Over one-tenth of patients undergoing TKA were identified as having asthma, and these patients were at greater odds of numerous pulmonary and non-pulmonary adverse events (a trend that increased with asthma severity), as well as 5-year revisions. Clearly, patients with asthma need specific risk mitigation strategies when considering TKA. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Julian Smith-Voudouris
- From the Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT
| | | | | |
Collapse
|
17
|
Arjmand Shabestari A, Akbarzadeh F, Dorreh F, Yousefichaijan P, Almasi-Hashiani A. The Effect of Montelukast on Urinary Symptoms in Children With Bladder Pain Syndrome: A Randomized Clinical Trial. Clin Pediatr (Phila) 2024:99228241260119. [PMID: 38864166 DOI: 10.1177/00099228241260119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Montelukast by inhibiting leukotriene receptors in the bladder can prevent the activation of mast cells. We investigated the effectiveness of Montelukast in reducing the symptoms of children with bladder pain syndrome (BPS). In this randomized clinical trial, children were allocated into groups of intervention (Montelukast and oxybutynin) and the control (oxybutynin). At the beginning and after 14 days, questions from mothers of children about their urinary condition were asked about the frequency of nocturnal enuresis, frequent urination, urinary incontinence, urinary urgency, and their pain severity. There was no significant difference between two groups in terms of frequency of nocturnal enuresis, frequent urination, urinary incontinence, and urinary urgency. Regarding the frequency of pain distribution, the frequency of pain-free people in the Montelukast group was higher than control group (84.4% vs 56.3%, P = .023). The results showed that adding Montelukast to oxybutynin has a significant decrease in pain in children with BPS.
Collapse
Affiliation(s)
- Ali Arjmand Shabestari
- Department of Pediatrics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faeze Akbarzadeh
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Fatemeh Dorreh
- Department of Pediatrics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Infectious Disease Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Parsa Yousefichaijan
- Department of Pediatrics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
18
|
Li K, Bartlett JA, Wohlford-Lenane CL, Xue B, Thurman AL, Gallagher TM, Pezzulo AA, McCray PB. Interleukin 13-Induced Inflammation Increases DPP4 Abundance but Does Not Enhance Middle East Respiratory Syndrome Coronavirus Replication in Airway Epithelia. J Infect Dis 2024; 229:1419-1429. [PMID: 37698016 PMCID: PMC11095549 DOI: 10.1093/infdis/jiad383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Chronic pulmonary conditions such as asthma and chronic obstructive pulmonary disease increase the risk of morbidity and mortality during infection with the Middle East respiratory syndrome coronavirus (MERS-CoV). We hypothesized that individuals with such comorbidities are more susceptible to MERS-CoV infection due to increased expression of its receptor, dipeptidyl peptidase 4 (DPP4). METHODS We modeled chronic airway disease by treating primary human airway epithelia with the Th2 cytokine interleukin 13 (IL-13), examining how this affected DPP4 protein levels with MERS-CoV entry and replication. RESULTS IL-13 exposure for 3 days led to greater DPP4 protein abundance, while a 21-day treatment raised DPP4 levels and caused goblet cell metaplasia. Surprisingly, despite this increase in receptor availability, MERS-CoV entry and replication were not significantly affected by IL-13 treatment. CONCLUSIONS Our results suggest that greater DPP4 abundance is likely not the primary mechanism leading to increased MERS severity in the setting of Th2 inflammation. Transcriptional profiling analysis highlighted the complexity of IL-13-induced changes in airway epithelia, including altered expression of genes involved in innate immunity, antiviral responses, and maintenance of the extracellular mucus barrier. These data suggest that additional factors likely interact with DPP4 abundance to determine MERS-CoV infection outcomes.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Jennifer A Bartlett
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Christine L Wohlford-Lenane
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Biyun Xue
- Department of Internal Medicine, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Andrew L Thurman
- Department of Internal Medicine, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Thomas M Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL
| | - Alejandro A Pezzulo
- Department of Internal Medicine, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Paul B McCray
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
- Department of Microbiology, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
19
|
Ennadif B, Alaoui-Inboui FZ, Benmoussa AY, El Kettani A, Elmdaghri N, Slaoui B. Virological Profile of Asthma Exacerbation in Children: A Hospital-Based Retrospective Study. Cureus 2024; 16:e60261. [PMID: 38872674 PMCID: PMC11170309 DOI: 10.7759/cureus.60261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Viruses are the most common triggering factors for asthma exacerbation during the autumn and winter seasons. Viruses, such as influenza A and rhinovirus, play a major role in the occurrence of severe exacerbation of asthma. This association between viral infection and asthma exacerbation in children is a result of the antiviral response of the immune system and various anti-inflammatory phenomena. In this work, we aimed to identify the virological profile of asthma exacerbation in children and analyze the correlation between viral infection type and the severity of exacerbation. Materials and methods This retrospective study was conducted from January 2016 to January 2024. The study included children hospitalized for asthma exacerbation associated with signs of viral-like respiratory infection with positive virological testing by multiplex real-time polymerase chain reaction or rapid test in the case of influenza A or respiratory syncytial virus (RSV). Data analysis was performed with Microsoft Excel and SPSS software using a previously established data collection sheet Results Thirty cases were collected for the study period. The mean age of the patients was 4 years and 8 months, with a male-to-female ratio of 3.3. Eighteen patients were known to have asthma, of which nine had uncontrolled asthma, and exacerbation was inaugural in 12 patients. Viral shedding was found in 14 patients. A viral agent was found in all patients, with coinfection of two or more viruses in three patients. The viruses found were influenza A (18 cases), coupled rhinovirus/enterovirus (eight cases), RSV (eight cases), human metapneumovirus (three patients), and parainfluenza type IV in only one inaugural patient. Asthma exacerbation was severe in 20 patients, moderate in eight patients, and two patients had severe acute asthma requiring intensive care management. We noted a higher frequency of severe exacerbation among those with an influenza A viral infection. All patients with RSV infection exhibited moderate exacerbation. No other significant correlation between asthma severity and other types of viruses was found. Conclusions Our results demonstrate the major role played by viruses in triggering asthma exacerbation, primarily influenza virus, followed by enterovirus, rhinovirus, RSV, and metapneumovirus. Larger-scale studies should be carried out to establish a more complete virological profile and further investigate the viral factor in the management of asthma in children.
Collapse
Affiliation(s)
- Basma Ennadif
- Department of Pediatrics, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, MAR
- Pediatric Pneumo-Allergology Unit, Pediatric Department 2, Hôpital Mère-Enfants Abderrahim Harouchi, Centre Hospitalier Universitaire Ibn Rochd, Casablanca, MAR
| | - Fatima Zahra Alaoui-Inboui
- Department of Pediatrics, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, MAR
- Pediatric Pneumo-Allergology Unit, Pediatric Department 2, Hôpital Mère-Enfants Abderrahim Harouchi, Centre Hospitalier Universitaire Ibn Rochd, Casablanca, MAR
| | - AbdelHakim Youssef Benmoussa
- Department of Pediatrics, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, MAR
- Pediatric Pneumo-Allergology Unit, Pediatric Department 2, Hôpital Mère-Enfants Abderrahim Harouchi, Centre Hospitalier Universitaire Ibn Rochd, Casablanca, MAR
| | - Assiya El Kettani
- Department of Microbiology, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, MAR
- Department of Microbiology, Centre Hospitalier Universitaire Ibn Rochd, Casablanca, MAR
| | - Naima Elmdaghri
- Department of Microbiology, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, MAR
- Department of Microbiology, Centre Hospitalier Universitaire Ibn Rochd, Casablanca, MAR
| | - Bouchra Slaoui
- Department of Pediatrics, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, MAR
- Pediatric Pneumo-Allergology Unit, Pediatric Department 2, Hôpital Mère-Enfants Abderrahim Harouchi, Centre Hospitalier Universitaire Ibn Rochd, Casablanca, MAR
| |
Collapse
|
20
|
Nguyen M, Aulick S, Kennedy C. Effectiveness of Vitamin D and Alpha-Lipoic Acid in COVID-19 Infection: A Literature Review. Cureus 2024; 16:e59153. [PMID: 38803740 PMCID: PMC11129797 DOI: 10.7759/cureus.59153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2024] [Indexed: 05/29/2024] Open
Abstract
Over three years since the World Health Organization (WHO) declared COVID-19 a pandemic, it is still a global burden. Vaccines against COVID-19, caused by SARS-CoV-2, are available and effective for preventing disease. However, their protective effects are not 100%. Currently, the U.S. Food and Drug Administration (FDA) has only approved a limited number of inpatient treatments for COVID-19, such as remdesivir, baricitinib, and tocilizumab. These medications have indications and contraindications applicable to a select patient population. Finding additional effective therapies that are widely available with limited risk could be vital in optimizing treatment strategies for this viral illness. Some vitamins and supplements have been identified as potential options for managing COVID-19. Vitamin D (VD) deficiency has been associated with respiratory tract infections. Moreover, alpha-lipoic acid (ALA) is a powerful antioxidant and helps reduce inflammatory responses in many pathologic conditions. This review aims to analyze the current evidence regarding the effectiveness of VD and alpha-lipoic acid in COVID-19 infection in both outpatient and hospitalized patients. Relevant randomized controlled trials (RCTs) were identified via the PubMed database from January 1, 2021, to December 31, 2023. Inclusion criteria were as follows: the study design was a randomized controlled trial (RCT), the usage of a constant dose during the intervention period without any additional boluses, and a research ethics committee approved it. Exclusion criteria included a lack of an outcome or apparent intervention, additional boluses, or a single-dose regimen in all the interventional groups. There were 11 studies with a total sample size of 35,717 patients that met the criteria for this review. A total of 10 RCTs examined the efficacy of VD, and one RCT that reviewed the efficacy of ALA was identified. All of the articles investigated the use of VD or ALA during the treatment of COVID-19. The endpoints of each study varied, including length of stay in hospital, viral load, SARS-CoV-2 infection rate, mechanical ventilation, inflammatory markers, clinical symptoms, Sequential Organ Failure Assessment (SOFA) score, and mortality. In 8/10 VD supplementation trials, significant differences were identified between the interventional and placebo groups in the aforementioned parameters. In 2/10 VD supplementation trials, no significant differences were identified. The ALA supplementation RCT found no differences between the interventional and placebo groups in the SOFA score and 30-day all-cause mortality rate. The current literature suggests that VD can potentially reduce the SARS-CoV-2 infection rate, oxygen requirements, inflammatory markers, clinical symptoms, and mortality. Regarding ALA, although there was a suggestion of benefit, it was not statistically significant. Common limitations among the different studies included relatively small sample sizes, different geographical patient locations among studies, and differences in dosages. Trials investigating the effects of higher doses of VD supplementation on SARS-CoV-2 infection should be conducted. More research is needed to define best practices and optimal dosing protocols for the use of VD in COVID-19.
Collapse
Affiliation(s)
- Martin Nguyen
- Clinical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, USA
| | - Samuel Aulick
- Clinical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, USA
| | - Christopher Kennedy
- Clinical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, USA
| |
Collapse
|
21
|
Russell RJ, Boulet LP, Brightling CE, Pavord ID, Porsbjerg C, Dorscheid D, Sverrild A. The airway epithelium: an orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur Respir J 2024; 63:2301397. [PMID: 38453256 PMCID: PMC10991852 DOI: 10.1183/13993003.01397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Asthma is a disease of heterogeneous pathology, typically characterised by excessive inflammatory and bronchoconstrictor responses to the environment. The clinical expression of the disease is a consequence of the interaction between environmental factors and host factors over time, including genetic susceptibility, immune dysregulation and airway remodelling. As a critical interface between the host and the environment, the airway epithelium plays an important role in maintaining homeostasis in the face of environmental challenges. Disruption of epithelial integrity is a key factor contributing to multiple processes underlying asthma pathology. In this review, we first discuss the unmet need in asthma management and provide an overview of the structure and function of the airway epithelium. We then focus on key pathophysiological changes that occur in the airway epithelium, including epithelial barrier disruption, immune hyperreactivity, remodelling, mucus hypersecretion and mucus plugging, highlighting how these processes manifest clinically and how they might be targeted by current and novel therapeutics.
Collapse
Affiliation(s)
- Richard J Russell
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| | - Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Asger Sverrild
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
22
|
Brister DL, Omer H, Whetstone CE, Ranjbar M, Gauvreau GM. Multifactorial Causes and Consequences of TLSP Production, Function, and Release in the Asthmatic Airway. Biomolecules 2024; 14:401. [PMID: 38672419 PMCID: PMC11048646 DOI: 10.3390/biom14040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Disruption of the airway epithelium triggers a defensive immune response that begins with the production and release of alarmin cytokines. These epithelial-derived alarmin cytokines, including thymic stromal lymphopoietin (TSLP), are produced in response to aeroallergens, viruses, and toxic inhalants. An alarmin response disproportionate to the inhaled trigger can exacerbate airway diseases such as asthma. Allergens inhaled into previously sensitized airways are known to drive a T2 inflammatory response through the polarization of T cells by dendritic cells mediated by TSLP. Harmful compounds found within air pollution, microbes, and viruses are also triggers causing airway epithelial cell release of TSLP in asthmatic airways. The release of TSLP leads to the development of inflammation which, when unchecked, can result in asthma exacerbations. Genetic and inheritable factors can contribute to the variable expression of TSLP and the risk and severity of asthma. This paper will review the various triggers and consequences of TSLP release in asthmatic airways.
Collapse
Affiliation(s)
| | | | | | | | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (D.L.B.); (H.O.); (C.E.W.); (M.R.)
| |
Collapse
|
23
|
Abdulfattah O, Kohli A, White P, Michael C, Alnafoosi Z. Impact of the COVID-19 Pandemic on Hospital Admission Rate, Length of Stay, and Mortality Rate for Patients with Chronic Obstructive Pulmonary Disease Exacerbation: A Retrospective Study. J Community Hosp Intern Med Perspect 2024; 14:1-8. [PMID: 38966505 PMCID: PMC11221434 DOI: 10.55729/2000-9666.1311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 07/06/2024] Open
Abstract
Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is a common cause of hospital admissions. Coronavirus disease 2019 (COVID-19) has large impact on patients with pulmonary diseases. The purpose of the study is to evaluate the impact of COVID-19 on patients with AECOPD. Method Retrospective study with two cohorts, the first period included patients with AECOPD before COVID-19 pandemic; the second period included patients with AECOPD since the beginning of COVID-19 pandemic. The length of stay (LOS), number of patients requiring mechanical ventilation, and allcause mortality were calculated. Results There was a total of 55 (44.72%) patients in the pre-COVID period compared to 68 (55.28%) patients in the COVID period. In the pre-COVID period: 14 (19.44%) had hypertension, 26(36.11%) had diabetes, 27(37.50%) had ischemic heart disease, 3(4.17%) had myocardial infarction; in the COVID period: 20 (29.41%) had hypertension, 24(35.29%) had diabetes, 27(39.71%) had ischemic heart disease, 1(1.47) had myocardial infarction. The LOS was shorter in pre-COVID period compared to COVID period, 6.51(SD 5.02) days vs 8.91(SD7.88) days with P-value of 0.042 respectively. The total number of patients needing mechanical ventilation in pre-COVID period was similar to the COVID period with P-value of 0.555. All-cause mortality number was 2 (3.64%) in the pre-COVID period compared to 6 (8.82%) in COVID period with P-value of 0.217. Conclusion Study results revealed significant difference in length of stay for patients with AECOPD, patient in COVID period had increased LOS compared to pre-COVID period. There was no significant difference in the other parameters.
Collapse
Affiliation(s)
- Omar Abdulfattah
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Southern Illinois University,
USA
| | - Akshay Kohli
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Southern Illinois University,
USA
| | - Peter White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Southern Illinois University,
USA
| | - Cynthia Michael
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Southern Illinois University,
USA
| | - Zainab Alnafoosi
- Division of Infectious Disease, Department of Internal Medicine, Southern Illinois University,
USA
| |
Collapse
|
24
|
Sverrild A, Cerps S, Nieto-Fontarigo JJ, Ramu S, Hvidtfeldt M, Menzel M, Kearley J, Griffiths JM, Parnes JR, Porsbjerg C, Uller L. Tezepelumab decreases airway epithelial IL-33 and T2-inflammation in response to viral stimulation in patients with asthma. Allergy 2024; 79:656-666. [PMID: 37846599 DOI: 10.1111/all.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Respiratory virus infections are main triggers of asthma exacerbations. Tezepelumab, an anti-TSLP mAb, reduces exacerbations in patients with asthma, but the effect of blocking TSLP on host epithelial resistance and tolerance to virus infection is not known. AIM To examine effects of blocking TSLP in patients with asthma on host resistance (IFNβ, IFNλ, and viral load) and on the airway epithelial inflammatory response to viral challenge. METHODS Bronchoalveolar lavage fluid (BALF, n = 39) and bronchial epithelial cells (BECs) were obtained from patients with uncontrolled asthma before and after 12 weeks of tezepelumab treatment (n = 13) or placebo (n = 13). BECs were cultured in vitro and exposed to the viral infection mimic poly(I:C) or infected by rhinovirus (RV). Alarmins, T2- and pro-inflammatory cytokines, IFNβ IFNλ, and viral load were analyzed by RT-qPCR and multiplex ELISA before and after stimulation. RESULTS IL-33 expression in unstimulated BECs and IL-33 protein levels in BALF were reduced after 12 weeks of tezepelumab. Further, IL-33 gene and protein levels decreased in BECs challenged with poly(I:C) after tezepelumab whereas TSLP gene expression remained unaffected. Poly(I:C)-induced IL-4, IL-13, and IL-17A release from BECs was also reduced with tezepelumab whereas IFNβ and IFNλ expression and viral load were unchanged. CONCLUSION Blocking TSLP with tezepelumab in vivo in asthma reduced the airway epithelial inflammatory response including IL-33 and T2 cytokines to viral challenge without affecting anti-viral host resistance. Our results suggest that blocking TSLP stabilizes the bronchial epithelial immune response to respiratory viruses.
Collapse
Affiliation(s)
- A Sverrild
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - S Cerps
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - J J Nieto-Fontarigo
- Department of Experimental Medicine, Lund University, Lund, Sweden
- BioLympho Research group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - S Ramu
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - M Hvidtfeldt
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - M Menzel
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - J Kearley
- Bioscience, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - J M Griffiths
- Translational Science and Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - J R Parnes
- Translational Medicine, Amgen, Thousand Oaks, California, USA
| | - C Porsbjerg
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - L Uller
- Department of Experimental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Sena CRDS, Morten M, Collison AM, Shaar A, Andrade EDQ, Meredith J, Kepreotes E, Murphy VE, Sly PD, Whitehead B, Karmaus W, Gibson PG, Robinson PD, Mattes J. Bronchiolitis hospital admission in infancy is associated with later preschool ventilation inhomogeneity. Pediatr Pulmonol 2024; 59:632-641. [PMID: 38088225 DOI: 10.1002/ppul.26793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/08/2023] [Accepted: 11/25/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND Rhinovirus (RV) positive bronchiolitis episodes in infancy confer a higher risk to develop asthma in later childhood with associated lung function impairments. We aimed to investigate the association between the type of virus causing a bronchiolitis hospitalization episode and lung ventilation inhomogeneities at preschool age. METHODS Infants hospitalized with a clinical diagnosis of moderate (ward admission) or severe (pediatric intensive care ward admission) bronchiolitis were prospectively followed-up at preschool age to assess nitrogen (N2 ) multiple breath washout (MBW). Lung clearance index (LCI), functional residual capacity (FRC), and concentration normalized phase III slope analysis (SnIII ) indices were reported from ≥2 technically acceptable trials. Differences between groups were calculated using logistic and linear regression and adjusted for confounders (sex, age at bronchiolitis admission, height at visit, maternal asthma, and doctor-diagnosed asthma, including interaction terms between the latter three). An interaction term was included in a regression model to test for an interaction between RV bronchiolitis severity and MBW parameters at preschool age. RESULTS One hundred and thirty-nine subjects attended preschool follow-up, of which 84 out of 103 (82%) performing MBW had technically acceptable data. Children with a history of RV positive bronchiolitis (n = 39) had increased LCI (adjusted β-coefficient [aβ] = 0.33, 95% confidence interval [CI] 0.02-0.65, p = 0.040) and conductive airways ventilation inhomogeneity [Scond ] (aβ = 0.016, CI 0.004-0.028, p = 0.011) when compared with those with a RV negative bronchiolitis history (n = 45). In addition, we found a statistical interaction between RV bronchiolitis and bronchiolitis severity strengthening the association with LCI (aβ = 0.93, CI 0.20-1.58, p = 0.006). CONCLUSION Children with a history of hospital admission for RV positive bronchiolitis in infancy might be at a higher risk of lung ventilation inhomogeneities at preschool age, arising from the peripheral conducting airways.
Collapse
Affiliation(s)
- Carla Rebeca Da Silva Sena
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre GrowUpWell®, Newcastle, New South Wales, Australia
| | - Matthew Morten
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre GrowUpWell®, Newcastle, New South Wales, Australia
| | - Adam M Collison
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre GrowUpWell®, Newcastle, New South Wales, Australia
| | - Aida Shaar
- The Children's Hospital at Westmead, Department of Respiratory Medicine, Sydney, New South Wales, Australia
| | - Ediane de Queiroz Andrade
- University of Sydney, Discipline of Paediatrics and Child Health, Sydney, New South Wales, Australia
| | - Joseph Meredith
- John Hunter Children's Hospital, Department of Paediatric Respiratory & Sleep Medicine, Newcastle, New South Wales, Australia
| | - Elizabeth Kepreotes
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre GrowUpWell®, Newcastle, New South Wales, Australia
- Far West Local Health District, NSW Local Health District, Broken Hill, New South Wales, Australia
| | - Vanessa E Murphy
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre Healthy Lungs, Newcastle, New South Wales, Australia
| | - Peter D Sly
- The University of Queensland, Child Health Research Centre, Brisbane, Queensland, Australia
| | - Bruce Whitehead
- John Hunter Children's Hospital, Department of Paediatric Respiratory & Sleep Medicine, Newcastle, New South Wales, Australia
| | - Wilfried Karmaus
- University of Memphis, School of Public Health, Memphis, Tennessee, USA
| | - Peter G Gibson
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre Healthy Lungs, Newcastle, New South Wales, Australia
| | - Paul D Robinson
- The Children's Hospital at Westmead, Department of Respiratory Medicine, Sydney, New South Wales, Australia
- University of Sydney, Discipline of Paediatrics and Child Health, Sydney, New South Wales, Australia
- Woolcock Medical Research Institute, Airway Imaging and Physiology Group, Sydney, New South Wales, Australia
| | - Joerg Mattes
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre GrowUpWell®, Newcastle, New South Wales, Australia
- John Hunter Children's Hospital, Department of Paediatric Respiratory & Sleep Medicine, Newcastle, New South Wales, Australia
| |
Collapse
|
26
|
Papadopoulos NG, Apostolidou E, Miligkos M, Xepapadaki P. Bacteria and viruses and their role in the preschool wheeze to asthma transition. Pediatr Allergy Immunol 2024; 35:e14098. [PMID: 38445451 DOI: 10.1111/pai.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024]
Abstract
Wheezing is the cardinal symptom of asthma; its presence early in life, mostly caused by viral infections, is a major risk factor for the establishment of persistent or recurrent disease. Early-life wheezing and asthma exacerbations are triggered by common respiratory viruses, mainly rhinoviruses (RV), and to a lesser extent, respiratory syncytial virus, parainfluenza, human metapneumovirus, coronaviruses, adenoviruses, influenza, and bocavirus. The excess presence of bacteria, several of which are part of the microbiome, has also been identified in association with wheezing and acute asthma exacerbations, including haemophilus influenza, streptococcus pneumoniae, moraxella catarrhalis, mycoplasma pneumoniae, and chlamydophila pneumonia. While it is not clear when asthma starts, its characteristics develop over time. Airway remodeling already appears between the ages of 1 and 3 years of age even prior to the presence of atopic inflammation or an asthma diagnosis. The role of genetic defect or variations hampering the airway epithelium in response to environmental stimuli and severe disease morbidity are now considered as major determinants for early structural changes. Repeated viral infections can induce and perpetuate airway hyperresponsiveness. Allergic sensitization, that often precedes infection-induced wheezing, shifts inflammation toward type-2, while common respiratory infections themselves promote type-2 inflammation. Nevertheless, most children who wheeze with viral infections during infancy and during preschool years do not develop persistent asthma. Multiple factors, including illness severity, viral etiology, allergic sensitization, and the exposome, are associated with disease persistence. Here, we summarize current knowledge and developments in infection epidemiology of asthma in children, describing the known impact of each individual agent and mechanisms of transition from recurrent wheeze to asthma.
Collapse
Affiliation(s)
- Nikolaos G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | | | - Michael Miligkos
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
27
|
Panchal MH, Swindle EJ, Pell TJ, Rowan WC, Childs CE, Thompson J, Nicholas BL, Djukanovic R, Goss VM, Postle AD, Davies DE, Blume C. Membrane lipid composition of bronchial epithelial cells influences antiviral responses during rhinovirus infection. Tissue Barriers 2024:2300580. [PMID: 38179897 DOI: 10.1080/21688370.2023.2300580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
Lipids and their mediators have important regulatory functions in many cellular processes, including the innate antiviral response. The aim of this study was to compare the lipid membrane composition of in vitro differentiated primary bronchial epithelial cells (PBECs) with ex vivo bronchial brushings and to establish whether any changes in the lipid membrane composition affect antiviral defense of cells from donors without and with severe asthma. Using mass spectrometry, we showed that the lipid membrane of in vitro differentiated PBECs was deprived of polyunsaturated fatty acids (PUFAs) compared to ex vivo bronchial brushings. Supplementation of the culture medium with arachidonic acid (AA) increased the PUFA-content to more closely match the ex vivo membrane profile. Rhinovirus (RV16) infection of AA-supplemented cultures from healthy donors resulted in significantly reduced viral replication while release of inflammatory mediators and prostaglandin E2 (PGE2) was significantly increased. Indomethacin, an inhibitor of prostaglandin-endoperoxide synthases, suppressed RV16-induced PGE2 release and significantly reduced CXCL-8/IL-8 release from AA-supplemented cultures indicating a link between PGE2 and CXCL8/IL-8 release. In contrast, in AA-supplemented cultures from severe asthmatic donors, viral replication was enhanced whereas PTGS2 expression and PGE2 release were unchanged and CXCL8/IL-8 was significantly reduced in response to RV16 infection. While the PTGS2/COX-2 pathway is initially pro-inflammatory, its downstream products can promote symptom resolution. Thus, reduced PGE2 release during an RV-induced severe asthma exacerbation may lead to prolonged symptoms and slower recovery. Our data highlight the importance of reflecting the in vivo lipid profile in in vitro cell cultures for mechanistic studies.
Collapse
Affiliation(s)
- Madhuriben H Panchal
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Emily J Swindle
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | | | - Caroline E Childs
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton, UK
| | - James Thompson
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin L Nicholas
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Ratko Djukanovic
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Victoria M Goss
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Anthony D Postle
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Donna E Davies
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Cornelia Blume
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton, UK
| |
Collapse
|
28
|
Zhang H, Xue K, Li W, Yang X, Gou Y, Su X, Qian F, Sun L. Cullin5 drives experimental asthma exacerbations by modulating alveolar macrophage antiviral immunity. Nat Commun 2024; 15:252. [PMID: 38177117 PMCID: PMC10766641 DOI: 10.1038/s41467-023-44168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Asthma exacerbations caused by respiratory viral infections are a serious global health problem. Impaired antiviral immunity is thought to contribute to the pathogenesis, but the underlying mechanisms remain understudied. Here using mouse models we find that Cullin5 (CUL5), a key component of Cullin-RING E3 ubiquitin ligase 5, is upregulated and associated with increased neutrophil count and influenza-induced exacerbations of house dust mite-induced asthma. By contrast, CUL5 deficiency mitigates neutrophilic lung inflammation and asthma exacerbations by augmenting IFN-β production. Mechanistically, following thymic stromal lymphopoietin stimulation, CUL5 interacts with O-GlcNAc transferase (OGT) and induces Lys48-linked polyubiquitination of OGT, blocking the effect of OGT on mitochondrial antiviral-signaling protein O-GlcNAcylation and RIG-I signaling activation. Our results thus suggest that, in mouse models, pre-existing allergic injury induces CUL5 expression, impairing antiviral immunity and promoting neutrophilic inflammation for asthma exacerbations. Targeting of the CUL5/IFN-β signaling axis may thereby serve as a possible therapy for treating asthma exacerbations.
Collapse
Affiliation(s)
- Haibo Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Keke Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Wen Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xinyi Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Yusen Gou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 200031, Shanghai, P.R. China
| | - Feng Qian
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| | - Lei Sun
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| |
Collapse
|
29
|
Hoyer A, Chakraborty S, Lilienthal I, Konradsen JR, Katayama S, Söderhäll C. The functional role of CST1 and CCL26 in asthma development. Immun Inflamm Dis 2024; 12:e1162. [PMID: 38270326 PMCID: PMC10797655 DOI: 10.1002/iid3.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Asthma is the most common chronic disease in children with an increasing prevalence. Its development is caused by genetic and environmental factors and allergic sensitization is a known trigger. Dog allergens affect up to 30% of all children and dog dander-sensitized children show increased expression of cystatin-1 (CST1) and eotaxin-3 (CCL26) in nasal epithelium. The aim of our study was to investigate the functional mechanism of CST1 and CCL26 in the alveolar basal epithelial cell line A549. METHODS A549 cells were transfected with individual overexpression vectors for CST1 and CCL26 and RNA sequencing was performed to examine the transcriptomics. edgeR was used to identify differentially expressed genes (= DEG, |log2 FC | ≥ 2, FDR < 0.01). The protein expression levels of A549 cells overexpressing CST1 and CCL26 were analyzed using the Target 96 inflammation panel from OLINK (antibody-mediated proximity extension-based assay; OLINK Proteomics). Differentially expressed proteins were considered with a |log2 FC| ≥ 1, p < .05. RESULTS The overexpression of CST1 resulted in a total of 27 DEG (1 upregulated and 26 downregulated) and the overexpression of CCL26 in a total of 137 DEG (0 upregulated and 137 downregulated). The gene ontology enrichment analysis showed a significant downregulation of type I and III interferon signaling pathway genes as well as interferon-stimulated genes. At the protein level, overexpression of CST1 induced a significantly increased expression of CCL3, whereas CCL26 overexpression led to increased expression of HGF, and a decrease of CXCL11, CCL20, CCL3 and CXCL10. CONCLUSION Our results indicate that an overexpression of CST1 and CCL26 cause a downregulation of interferon related genes and inflammatory proteins. It might cause a higher disease susceptibility, mainly for allergic asthma, as CCL26 is an agonist for CCR-3-carrying cells, such as eosinophils and Th2 lymphocytes, mostly active in allergic asthma.
Collapse
Affiliation(s)
- Angela Hoyer
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Sandip Chakraborty
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Ingrid Lilienthal
- Childhood Cancer Research Unit, Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
| | - Jon R. Konradsen
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Shintaro Katayama
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Stem Cells and Metabolism Research ProgramUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Research CenterHelsinkiFinland
| | - Cilla Söderhäll
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| |
Collapse
|
30
|
Girkin JLN, Bryant NE, Loo SL, Hsu A, Kanwal A, Williams TC, Maltby S, Turville SG, Wark PAB, Bartlett NW. Upper Respiratory Tract OC43 Infection Model for Investigating Airway Immune-Modifying Therapies. Am J Respir Cell Mol Biol 2023; 69:614-622. [PMID: 37603788 DOI: 10.1165/rcmb.2023-0202ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023] Open
Abstract
Respiratory virus infections initiate and transmit from the upper respiratory tract (URT). Coronaviruses, including OC43, are a major cause of respiratory infection and disease. Failure to mount an effective antiviral immune response in the nasal mucosa increases the risk of severe disease and person-to-person transmission, highlighting the need for URT infection models to support the development of nasal treatments that improve coronavirus antiviral immunity. We aimed to determine if OC43 productively infected the mouse URT and would therefore be a suitable model to assess the efficacy and mechanism of action of nasal-targeting immune-modifying treatments. We administered OC43 via intranasal inoculation to wild-type Balb/c mice and assessed virus airway tropism (by comparing total respiratory tract vs. URT-only virus exposure) and characterized infection-induced immunity by quantifying specific antiviral cytokines and performing gene array assessment of immune genes. We then assessed the effect of immune-modulating therapies, including an immune-stimulating TLR2/6 agonist (INNA-X) and the immune-suppressing corticosteroid fluticasone propionate (FP). OC43 replicated in nasal respiratory epithelial cells, with peak viral RNA observed 2 days after infection. Prophylactic treatment with INNA-X accelerated expression of virus-induced IFN-λ and IFN-stimulated genes. In contrast, intranasal FP treatment increased nasal viral load by 2.4 fold and inhibited virus-induced IFN and IFN-stimulated gene expression. Prior INNA-X treatment reduced the immune-suppressive effect of FP. We demonstrate that the mouse nasal epithelium is permissive to OC43 infection and strengthen the evidence that TLR2 activation is a β-coronavirus innate immune determinant and therapeutic target.
Collapse
Affiliation(s)
- Jason L N Girkin
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Nathan E Bryant
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Su-Ling Loo
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Alan Hsu
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Amama Kanwal
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Teresa C Williams
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Steven Maltby
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Stuart G Turville
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter A B Wark
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia; and
| | - Nathan W Bartlett
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
31
|
Petrella F, Cassina EM, Libretti L, Pirondini E, Raveglia F, Tuoro A. Mesenchymal Stromal Cell Therapy for Thoracic Surgeons: An Update. J Pers Med 2023; 13:1632. [PMID: 38138859 PMCID: PMC10744666 DOI: 10.3390/jpm13121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Stem cells are undifferentiated cells presenting extensive self-renewal features and the ability to differentiate "in vitro" and "in vivo" into a range of lineage cells, like chondrogenic, osteogenic and adipogenic lineages when cultured in specific inducing media. Two major domains of clinical applications of stem cells in thoracic surgery have been investigated: regenerative medicine, which is a section of translational research in tissue engineering focusing on the replacement, renewal or regeneration of cells, tissues and organs to re-establish damaged physiologic functions; drug loading and delivery, representing a new branch proposing stem cells as carriers to provide selected districts with anti-cancer agents for targeted treatments.
Collapse
Affiliation(s)
- Francesco Petrella
- Department of Thoracic Surgery, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (E.M.C.); (L.L.); (E.P.); (F.R.); (A.T.)
| | | | | | | | | | | |
Collapse
|
32
|
Bossios A, Bacon AM, Eger K, Paróczai D, Schleich F, Hanon S, Sergejeva S, Zervas E, Katsoulis K, Aggelopoulou C, Kostikas K, Gaki E, Rovina N, Csoma Z, Grisle I, Bieksiené K, Palacionyte J, ten Brinke A, Hashimoto S, Mihălţan F, Nenasheva N, Zvezdin B, Čekerevac I, Hromiš S, Ćupurdija V, Lazic Z, Chaudhuri R, Smith SJ, Rupani H, Haitchi HM, Kurukulaaratchy R, Fulton O, Frankemölle B, Howarth P, Porsbjerg C, Bel EH, Djukanovic R, Hyland ME. COVID-19 vaccination acceptance, safety and side-effects in European patients with severe asthma. ERJ Open Res 2023; 9:00590-2023. [PMID: 38020570 PMCID: PMC10680029 DOI: 10.1183/23120541.00590-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Vaccination is vital for achieving population immunity to severe acute respiratory syndrome coronavirus 2, but vaccination hesitancy presents a threat to achieving widespread immunity. Vaccine acceptance in chronic potentially immunosuppressed patients is largely unclear, especially in patients with asthma. The aim of this study was to investigate the vaccination experience in people with severe asthma. Methods Questionnaires about vaccination beliefs (including the Vaccination Attitudes Examination (VAX) scale, a measure of vaccination hesitancy-related beliefs), vaccination side-effects, asthma control and overall safety perceptions following coronavirus disease 2019 (COVID-19) vaccination were sent to patients with severe asthma in 12 European countries between May and June 2021. Results 660 participants returned completed questionnaires (87.4% response rate). Of these, 88% stated that they had been, or intended to be, vaccinated, 9.5% were undecided/hesitant and 3% had refused vaccination. Patients who hesitated or refused vaccination had more negative beliefs towards vaccination. Most patients reported mild (48.2%) or no side-effects (43.8%). Patients reporting severe side-effects (5.7%) had more negative beliefs. Most patients (88.8%) reported no change in asthma symptoms after vaccination, while 2.4% reported an improvement, 5.3% a slight deterioration and 1.2% a considerable deterioration. Almost all vaccinated (98%) patients would recommend vaccination to other severe asthma patients. Conclusions Uptake of vaccination in patients with severe asthma in Europe was high, with a small minority refusing vaccination. Beliefs predicted vaccination behaviour and side-effects. Vaccination had little impact on asthma control. Our findings in people with severe asthma support the broad message that COVID-19 vaccination is safe and well tolerated.
Collapse
Affiliation(s)
- Apostolos Bossios
- Karolinska Severe Asthma Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Huddinge, Sweden
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Katrien Eger
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dóra Paróczai
- Csongrad County Hospital and Department of Pulmonology, University of Szeged, Szeged, Hungary
| | | | - Shane Hanon
- The North Estonian Medical Centre, Tallinn, Estonia
| | | | | | | | - Christina Aggelopoulou
- 1st Department of Pulmonary Medicine, “Sotiria” Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Eleni Gaki
- Respiratory Medicine Department, University Hospital of Ioannina, Ioannina, Greece
| | | | | | - Ineta Grisle
- Lithuanian University of Health Science, Kaunas, Lithuania
| | | | | | | | - Simone Hashimoto
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Florin Mihălţan
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - Natalia Nenasheva
- Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Biljana Zvezdin
- Clinic for Pulmonology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Ivan Čekerevac
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Sanja Hromiš
- Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica, Serbia
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Vojislav Ćupurdija
- Clinic for Pulmonology, University Clinical Center Kragujevac, Kragujevac, Serbia
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Zorica Lazic
- Clinic for Pulmonology, University Clinical Center Kragujevac, Kragujevac, Serbia
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | | | | | | | | | - Olivia Fulton
- European Lung Foundation, Patient Advisory Group, Edinburgh, UK
| | - Betty Frankemölle
- European Lung Foundation, Patient Advisory Group, Heemskerk, The Netherlands
| | | | | | - Elisabeth H. Bel
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
33
|
Assaf S, Stenberg H, Jesenak M, Tarasevych SP, Hanania NA, Diamant Z. Asthma in the era of COVID-19. Respir Med 2023; 218:107373. [PMID: 37567514 DOI: 10.1016/j.rmed.2023.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Since its global invasion in 2019, COVID-19 has affected several aspects of patients' lives and posed a significant impact on the health care system. Several patient populations were identified to be at high risk of contracting SARS-CoV-2 infection and/or developing severe COVID-19-related sequelae. Conversely, anyone who has contracted SARS-CoV-2 is at risk to experience symptoms and signs consistent with post-COVID manifestations. Patients with asthma were initially thought to be at increased risk and severity for SARS-CoV-2 infection. However, accumulating evidence demonstrates that asthma endotypes/phenotypes and comorbidities influence the risk stratification in this population. Furthermore, initial concerns about the potentially increased risk of poor outcomes with asthma treatments such as inhaled corticosteroids and biologics have not been substantiated. In this review, we provide an update on COVID-19 and asthma, including risk of susceptibility, clinical manifestations and course in this population as well as discuss recommendations for management.
Collapse
Affiliation(s)
- Sara Assaf
- Section of Pulmonary and Critical Care Medicine, University of New Mexico, Albuquerque, NM, USA.
| | - Henning Stenberg
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Milos Jesenak
- Departments of Pulmonology and Phthisiology and Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic
| | | | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Zuzana Diamant
- Dept of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Belgium; Dept of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden; Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic; Dept Clin Pharm & Pharmacol, Univ Groningen, Univ Med Ctr Groningen, Groningen, Netherlands.
| |
Collapse
|
34
|
Lameire S, Hammad H. Lung epithelial cells: Upstream targets in type 2-high asthma. Eur J Immunol 2023; 53:e2250106. [PMID: 36781404 DOI: 10.1002/eji.202250106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Over the last years, technological advances in the field of asthma have led to the identification of two disease endotypes, namely, type 2-high and type 2-low asthma, characterized by different pathophysiologic mechanisms at a cellular and molecular level. Although specific immune cells are important contributors to each of the recognized asthma endotype, the lung epithelium is now regarded as a crucial player able to orchestrate responses to inhaled environmental triggers such as allergens and microbes. The impact of the epithelium goes beyond its physical barrier. It is nowadays considered as a part of the innate immune system that can actively respond to insults. Activated epithelial cells, by producing a specific set of cytokines, trigger innate and adaptive immune cells to cause pathology. Here, we review how the epithelium contributes to the development of Th2 sensitization to allergens and asthma with a "type 2-high" signature, in both murine models and human studies of this asthma endotype. We also discuss epithelial responses to respiratory viruses, such as rhinovirus, respiratory syncytial virus, and SARS-CoV-2, and how these triggers influence not only asthma development but also asthma exacerbation. Finally, we also summarize the results of promising clinical trials using biologicals targeting epithelial-derived cytokines in asthmatic patients.
Collapse
Affiliation(s)
- Sahine Lameire
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Almond M, Farne HA, Jackson MM, Jha A, Katsoulis O, Pitts O, Tunstall T, Regis E, Dunning J, Byrne AJ, Mallia P, Kon OM, Saunders KA, Simpson KD, Snelgrove RJ, Openshaw PJM, Edwards MR, Barclay WS, Heaney LM, Johnston SL, Singanayagam A. Obesity dysregulates the pulmonary antiviral immune response. Nat Commun 2023; 14:6607. [PMID: 37857661 PMCID: PMC10587167 DOI: 10.1038/s41467-023-42432-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Obesity is a well-recognized risk factor for severe influenza infections but the mechanisms underlying susceptibility are poorly understood. Here, we identify that obese individuals have deficient pulmonary antiviral immune responses in bronchoalveolar lavage cells but not in bronchial epithelial cells or peripheral blood dendritic cells. We show that the obese human airway metabolome is perturbed with associated increases in the airway concentrations of the adipokine leptin which correlated negatively with the magnitude of ex vivo antiviral responses. Exogenous pulmonary leptin administration in mice directly impaired antiviral type I interferon responses in vivo and ex vivo in cultured airway macrophages. Obese individuals hospitalised with influenza showed dysregulated upper airway immune responses. These studies provide insight into mechanisms driving propensity to severe influenza infections in obesity and raise the potential for development of leptin manipulation or interferon administration as novel strategies for conferring protection from severe infections in obese higher risk individuals.
Collapse
Affiliation(s)
- Mark Almond
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hugo A Farne
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Millie M Jackson
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK
| | - Akhilesh Jha
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Orestis Katsoulis
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK
| | - Oliver Pitts
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK
| | | | - Eteri Regis
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jake Dunning
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Adam J Byrne
- National Heart and Lung Institute, Imperial College London, London, UK
- School of Medicine and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, 4, Ireland
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Onn Min Kon
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | | | - Michael R Edwards
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Wendy S Barclay
- Section of Virology, Department of Infectious Disease, Imperial College London, London, UK
| | - Liam M Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | - Aran Singanayagam
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
36
|
Bakakos A, Sotiropoulou Z, Vontetsianos A, Zaneli S, Papaioannou AI, Bakakos P. Epidemiology and Immunopathogenesis of Virus Associated Asthma Exacerbations. J Asthma Allergy 2023; 16:1025-1040. [PMID: 37791040 PMCID: PMC10543746 DOI: 10.2147/jaa.s277455] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023] Open
Abstract
Asthma is a common airway disease, affecting millions of people worldwide. Although most asthma patients experience mild symptoms, it is characterized by variable airflow limitation, which can occasionally become life threatening in the case of a severe exacerbation. The commonest triggers of asthma exacerbations in both children and adults are viral infections. In this review article, we will try to investigate the most common viruses triggering asthma exacerbations and their role in asthma immunopathogenesis, since viral infections in young adults are thought to trigger the development of asthma either right away after the infection or at a later stage of their life. The commonest viral pathogens associated with asthma include the respiratory syncytial virus, rhinoviruses, influenza and parainfluenza virus, metapneumovirus and coronaviruses. All these viruses exploit different molecular pathways to infiltrate the host. Asthmatics are more prone to severe viral infections due to their unique inflammatory response, which is mostly characterized by T2 cytokines. Unlike the normal T1 high response to viral infection, asthmatics with T2 high inflammation are less potent in containing a viral infection. Inhaled and/or systematic corticosteroids and bronchodilators remain the cornerstone of asthma exacerbation treatment, and although many targeted therapies which block molecules that viruses use to infect the host have been used in a laboratory level, none has been yet approved for clinical use. Nevertheless, further understanding of the unique pathway that each virus follows to infect an individual may be crucial in the development of targeted therapies for the commonest viral pathogens to effectively prevent asthma exacerbations. Finally, biologic therapies resulted in a complete change of scenery in the treatment of severe asthma, especially with a T2 high phenotype. All available data suggest that monoclonal antibodies are safe and able to drastically reduce the rate of viral asthma exacerbations.
Collapse
Affiliation(s)
- Agamemnon Bakakos
- 1st University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Zoi Sotiropoulou
- 1st University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Angelos Vontetsianos
- 1st University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Stavroula Zaneli
- 1st University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Andriana I Papaioannou
- 1st University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Petros Bakakos
- 1st University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| |
Collapse
|
37
|
Dounce-Cuevas CA, Flores-Flores A, Bazán MS, Portales-Rivera V, Morelos-Ulíbarri AA, Bazán-Perkins B. Asthma and COVID-19: a controversial relationship. Virol J 2023; 20:207. [PMID: 37679779 PMCID: PMC10485988 DOI: 10.1186/s12985-023-02174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection induces a spectrum of clinical manifestations that depend on the immune response of the patient, i.e., from an asymptomatic form to an inflammatory response with multiorgan deterioration. In some cases, severe cases of SARS-CoV-2 are characterized by an excessive, persistent release of inflammatory mediators known as a cytokine storm. This phenomenon arises from an ineffective T helper (Th)-1 response, which is unable to control the infection and leads to a reinforcement of innate immunity, causing tissue damage. The evolution of the disease produced by SARS-CoV2, known as COVID-19, has been of interest in several research fields. Asthma patients have been reported to present highly variable outcomes due to the heterogeneity of the disease. For example, the Th2 response in patients with allergic asthma is capable of decreasing Th1 activation in COVID-19, preventing the onset of a cytokine storm; additionally, IL-33 released by damaged epithelium in the context of COVID-19 potentiates either Th1 or T2-high responses, a process that contributes to poor outcomes. IL-13, a T2-high inflammatory cytokine, decreases the expression of angiotensin converting enzyme-2 (ACE2) receptor, hindering SARS-CoV-2 entry; finally, poor outcomes have been observed in COVID-19 patients with severe neutrophilic asthma. In other contexts, the COVID-19 lockdown has had interesting effects on asthma epidemiology. The incidence of asthma in the most populated states in Mexico, including Tamaulipas, which has the highest asthma incidence in the country, showed similar tendencies independent of how strict the lockdown measures were in each state. As described worldwide for various diseases, a decrease in asthma cases was observed during the COVID-19 lockdown. This decrease was associated with a drop in acute respiratory infection cases. The drop in cases of various diseases, such as diabetes, hypertension or depression, observed in 2020 was restored in 2022, but not for asthma and acute respiratory infections. There were slight increases in asthma cases when in-person classes resumed. In conclusion, although many factors were involved in asthma outcomes during the pandemic, it seems that acute respiratory infection is intimately linked to asthma cases. Social distancing during remote learning, particularly school lockdown, appears to be an important cause of the decrease in cases.
Collapse
Affiliation(s)
- Carlos A Dounce-Cuevas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 14380, Mexico City, Mexico
| | - Angélica Flores-Flores
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 14380, Mexico City, Mexico
- Laboratorio de Inmunofarmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 14080, Mexico City, Mexico
| | - Mariana S Bazán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 14380, Mexico City, Mexico
| | - Victor Portales-Rivera
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 14380, Mexico City, Mexico
| | | | - Blanca Bazán-Perkins
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 14380, Mexico City, Mexico.
- Laboratorio de Inmunofarmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 14080, Mexico City, Mexico.
| |
Collapse
|
38
|
Chatziparasidis G, Bush A, Chatziparasidi MR, Kantar A. Airway epithelial development and function: A key player in asthma pathogenesis? Paediatr Respir Rev 2023; 47:51-61. [PMID: 37330410 DOI: 10.1016/j.prrv.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
Though asthma is a common and relatively easy to diagnose disease, attempts at primary or secondary prevention, and cure, have been disappointing. The widespread use of inhaled steroids has dramatically improved asthma control but has offered nothing in terms of altering long-term outcomes or reversing airway remodeling and impairment in lung function. The inability to cure asthma is unsurprising given our limited understanding of the factors that contribute to disease initiation and persistence. New data have focused on the airway epithelium as a potentially key factor orchestrating the different stages of asthma. In this review we summarize for the clinician the current evidence on the central role of the airway epithelium in asthma pathogenesis and the factors that may alter epithelial integrity and functionality.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Paediatric Respiratory Unit, IASO Hospital, Larissa, Thessaly, Greece; Faculty of Nursing, Thessaly University, Greece.
| | - Andrew Bush
- National Heart and Lung Institute, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | | | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamaschi, University and Research Hospitals, Bergamo, Italy
| |
Collapse
|
39
|
Arjmand Shabestari A, Bakhtiari H, Dorreh F, Yousefichaijan P, Almasi-Hashiani A. The effect of adding Montelukast to oxybutynin on daily urination in children with pollakiuria: a randomized clinical trial. Int Urol Nephrol 2023; 55:2139-2144. [PMID: 37314647 DOI: 10.1007/s11255-023-03673-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/11/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE Pollakiuria is defined as a change in the pattern of daily urination. Students have mentioned wetting their pants at school as the third tragic event after the death of a parent or going blind. In this study, the effect of adding Montelukast to oxybutynin on the improvement of urinary symptoms of patients with pollakiuria was studied. MATERIALS AND METHODS This study was a pilot clinical trial in which children with pollakiuria aged 3-18 years old were included. These children were randomly divided into two groups of intervention (Montelukast plus oxybutynin) and the control group (only oxybutynin). At the beginning and the end of the study (after 14 days), mothers were asked about the frequency of daily urination. Finally, the gathered data were compared between two groups. RESULTS In the present study, 64 patients were examined in two intervention and control groups (32 in each group). The results revealed that although significant changes were observed in both groups before and after intervention, the average changes in the intervention group were significantly higher (p = 0.014). CONCLUSION The results of this study showed that adding montelukast to oxybutynin has a significant decrease in frequency of daily urination in patients with pollakiuria, although further studies are recommended in this area.
Collapse
Affiliation(s)
- Ali Arjmand Shabestari
- Department of Pediatrics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| | - Hamide Bakhtiari
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| | - Fatemeh Dorreh
- Department of Pediatrics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Infectious Disease Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| | - Parsa Yousefichaijan
- Department of Pediatrics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| | - Amir Almasi-Hashiani
- Infectious Disease Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran.
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Basij Square, Arak, Iran.
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
40
|
Veerati PC, Reid AT, Nichol KS, Wark PAB, Knight DA, Bartlett NW, Grainge CL. Mechanical forces suppress antiviral innate immune responses from asthmatic airway epithelial cells following rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 2023; 325:L206-L214. [PMID: 37280545 PMCID: PMC10396277 DOI: 10.1152/ajplung.00074.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Bronchoconstriction is the main physiological event in asthma, which leads to worsened clinical symptoms and generates mechanical stress within the airways. Virus infection is the primary cause of exacerbations in people with asthma, however, the impact that bronchoconstriction itself on host antiviral responses and viral replication is currently not well understood. Here we demonstrate how mechanical forces generated during bronchoconstriction may suppress antiviral responses at the airway epithelium without any difference in viral replication. Primary bronchial epithelial cells from donors with asthma were differentiated at the air-liquid interface. Differentiated cells were apically compressed (30 cmH2O) for 10 min every hour for 4 days to mimic bronchoconstriction. Two asthma disease models were developed with the application of compression, either before ("poor asthma control model," n = 7) or following ("exacerbation model," n = 4) rhinovirus (RV) infection. Samples were collected at 0, 24, 48, 72, and 96 h postinfection (hpi). Viral RNA, interferon (IFN)-β, IFN-λ, and host defense antiviral peptide gene expressions were measured along with IFN-β, IFN-λ, TGF-β2, interleukin-6 (IL-6), and IL-8 protein expression. Apical compression significantly suppressed RV-induced IFN-β protein from 48 hpi and IFN-λ from 72 hpi in the poor asthma control model. There was a nonsignificant reduction of both IFN-β and IFN-λ proteins from 48 hpi in the exacerbation model. Despite reductions in antiviral proteins, there was no significant change in viral replication in either model. Compressive stress mimicking bronchoconstriction inhibits antiviral innate immune responses from asthmatic airway epithelial cells when applied before RV infection.NEW & NOTEWORTHY Bronchoconstriction is the main physiological event in asthma, which leads to worsened clinical symptoms and generates mechanical stress within the airways. Virus infection is the primary cause of exacerbations in people with asthma, however, the impact of bronchoconstriction on host antiviral responses and viral replication is unknown. We developed two disease models, in vitro, and found suppressed IFN response from cells following the application of compression and RV-A1 infection. This explains why people with asthma have deficient IFN response.
Collapse
Affiliation(s)
- Punnam Chander Veerati
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Asthma and Breathing Research Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Andrew T Reid
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Asthma and Breathing Research Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Kristy S Nichol
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Peter A B Wark
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Research and Academic Affairs, Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| | - Nathan W Bartlett
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Christopher L Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Asthma and Breathing Research Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
41
|
Wang C, Du Z, Li R, Luo Y, Zhu C, Ding N, Lei A. Interferons as negative regulators of ILC2s in allergic lung inflammation and respiratory viral infections. J Mol Med (Berl) 2023; 101:947-959. [PMID: 37414870 DOI: 10.1007/s00109-023-02345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s), characterized by a lack of antigen receptors, have been regarded as an important component of type 2 pulmonary immunity. Analogous to Th2 cells, ILC2s are capable of releasing type 2 cytokines and amphiregulin, thus playing an essential role in a variety of diseases, such as allergic diseases and virus-induced respiratory diseases. Interferons (IFNs), an important family of cytokines with potent antiviral effects, can be triggered by microbial products, microbial exposure, and pathogen infections. Interestingly, the past few years have witnessed encouraging progress in revealing the important role of IFNs and IFN-producing cells in modulating ILC2 responses in allergic lung inflammation and respiratory viral infections. This review underscores recent progress in understanding the role of IFNs and IFN-producing cells in shaping ILC2 responses and discusses disease phenotypes, mechanisms, and therapeutic targets in the context of allergic lung inflammation and infections with viruses, including influenza virus, rhinovirus (RV), respiratory syncytial virus (RSV), and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Cui Wang
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Zhaoxiang Du
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Ranhui Li
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Ying Luo
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Nan Ding
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Aihua Lei
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
42
|
Hackler Y, Siebenhaar F, Maurer M, Muñoz M. Virus-infected mast cells activate virus-specific CD8 + T cells. Scand J Immunol 2023; 98:e13272. [PMID: 38441354 DOI: 10.1111/sji.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 03/07/2024]
Abstract
Efficient anti-viral responses of CD8+ T cells require signals that promote their effector cell differentiation, that are mainly provided by dendritic cells (DCs). Mast cells (MCs) are key drivers of DC maturation, but also influence their migration and antigen presenting properties and therefore indirectly mediate CD8+ T cell activation. MCs initiate innate immune responses at pathogen entry sites, promote the development of adaptive immune responses after infection, and release mediators including chemokines that recruit and activate immune cells including T cells during viral infections. However, whether MCs can directly activate virus-specific CD8+ T cells remains largely unknown. Here, we used an in vitro viral infection model with lymphocytic choriomeningitis virus (LCMV)-infected MCs or DCs co-cultured with either LCMV-specific CD8+ T cells or with WT (unspecific) CD8+ T cells. Similar to LCMV-infected DCs, LCMV-infected MCs clustered with virus-specific CD8+ T cells and induced their activation and production of antiviral cytokines. In addition, the co-stimulatory molecules CD86 and OX40L, but not CD80, were upregulated on MCs and an increased production of IL-6 and type I interferons after LCMV infection was shown. Our findings suggest that MCs can promote CD8+ T cell activation during viral infections. MC-mediated CD8+ T cell activation might be especially important within infected tissues where direct cellular interaction can take place. A better understanding of anti-viral functions of MCs may help developing new strategies to better treat viral infections.
Collapse
Affiliation(s)
- Yana Hackler
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Melba Muñoz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| |
Collapse
|
43
|
Jones AC, Leffler J, Laing IA, Bizzintino J, Khoo SK, LeSouef PN, Sly PD, Holt PG, Strickland DH, Bosco A. LPS binding protein and activation signatures are upregulated during asthma exacerbations in children. Respir Res 2023; 24:184. [PMID: 37438758 DOI: 10.1186/s12931-023-02478-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/14/2023] [Indexed: 07/14/2023] Open
Abstract
Asthma exacerbations in children are associated with respiratory viral infection and atopy, resulting in systemic immune activation and infiltration of immune cells into the airways. The gene networks driving the immune activation and subsequent migration of immune cells into the airways remains incompletely understood. Cellular and molecular profiling of PBMC was employed on paired samples obtained from atopic asthmatic children (n = 19) during acute virus-associated exacerbations and later during convalescence. Systems level analyses were employed to identify coexpression networks and infer the drivers of these networks, and validation was subsequently obtained via independent samples from asthmatic children. During exacerbations, PBMC exhibited significant changes in immune cell abundance and upregulation of complex interlinked networks of coexpressed genes. These were associated with priming of innate immunity, inflammatory and remodelling functions. We identified activation signatures downstream of bacterial LPS, glucocorticoids and TGFB1. We also confirmed that LPS binding protein was upregulated at the protein-level in plasma. Multiple gene networks known to be involved positively or negatively in asthma pathogenesis, are upregulated in circulating PBMC during acute exacerbations, supporting the hypothesis that systemic pre-programming of potentially pathogenic as well as protective functions of circulating immune cells preceeds migration into the airways. Enhanced sensitivity to LPS is likely to modulate the severity of acute asthma exacerbations through exposure to environmental LPS.
Collapse
Affiliation(s)
- Anya C Jones
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Jonatan Leffler
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Ingrid A Laing
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Joelene Bizzintino
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Siew-Kim Khoo
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Peter N LeSouef
- UWA Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Patrick G Holt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Deborah H Strickland
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Anthony Bosco
- Asthma & Airway Disease Research Center, The BIO5 Institute, The University of Arizona, Rm. 329, 1657 E. Helen Street, Tucson, AZ, 85721, USA.
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
44
|
Awatade NT, Reid AT, Nichol KS, Budden KF, Veerati PC, Pathinayake PS, Grainge CL, Hansbro PM, Wark PAB. Comparison of commercially available differentiation media on cell morphology, function, and anti-viral responses in conditionally reprogrammed human bronchial epithelial cells. Sci Rep 2023; 13:11200. [PMID: 37433796 DOI: 10.1038/s41598-023-37828-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Primary air liquid interface (ALI) cultures of bronchial epithelial cells are used extensively to model airway responses. A recent advance is the development of conditional reprogramming that enhances proliferative capability. Several different media and protocols are utilized, yet even subtle differences may influence cellular responses. We compared the morphology and functional responses, including innate immune responses to rhinovirus infection in conditionally reprogrammed primary bronchial epithelial cells (pBECs) differentiated using two commonly used culture media. pBECs collected from healthy donors (n = 5) were CR using g-irradiated 3T3 fibroblasts and Rho Kinase inhibitor. CRpBECs were differentiated at ALI in either PneumaCult (PN-ALI) or bronchial epithelial growth medium (BEGM)-based differentiation media (BEBM:DMEM, 50:50, Lonza)-(AB-ALI) for 28 days. Transepithelial electrical resistance (TEER), immunofluorescence, histology, cilia activity, ion channel function, and expression of cell markers were analyzed. Viral RNA was assessed by RT-qPCR and anti-viral proteins quantified by LEGENDplex following Rhinovirus-A1b infection. CRpBECs differentiated in PneumaCult were smaller and had a lower TEER and cilia beat frequency compared to BEGM media. PneumaCult media cultures exhibited increased FOXJ1 expression, more ciliated cells with a larger active area, increased intracellular mucins, and increased calcium-activated chloride channel current. However, there were no significant changes in viral RNA or host antiviral responses. There are distinct structural and functional differences in pBECs cultured in the two commonly used ALI differentiation media. Such factors need to be taken into consideration when designing CRpBECs ALI experiments for specific research questions.
Collapse
Affiliation(s)
- Nikhil T Awatade
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia.
| | - Andrew T Reid
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Asthma and Breathing Research Program, Hunter Medical Research Institute University of Newcastle, New Lambton Heights, NSW, Australia
| | - Kristy S Nichol
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Kurtis F Budden
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Punnam Chander Veerati
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Asthma and Breathing Research Program, Hunter Medical Research Institute University of Newcastle, New Lambton Heights, NSW, Australia
| | - Prabuddha S Pathinayake
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Christopher L Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Asthma and Breathing Research Program, Hunter Medical Research Institute University of Newcastle, New Lambton Heights, NSW, Australia
- Dept of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Philip M Hansbro
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Peter A B Wark
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia.
- Asthma and Breathing Research Program, Hunter Medical Research Institute University of Newcastle, New Lambton Heights, NSW, Australia.
- Dept of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia.
| |
Collapse
|
45
|
Macchia I, La Sorsa V, Urbani F, Moretti S, Antonucci C, Afferni C, Schiavoni G. Eosinophils as potential biomarkers in respiratory viral infections. Front Immunol 2023; 14:1170035. [PMID: 37483591 PMCID: PMC10358847 DOI: 10.3389/fimmu.2023.1170035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Eosinophils are bone marrow-derived granulocytes that, under homeostatic conditions, account for as much as 1-3% of peripheral blood leukocytes. During inflammation, eosinophils can rapidly expand and infiltrate inflamed tissues, guided by cytokines and alarmins (such as IL-33), adhesion molecules and chemokines. Eosinophils play a prominent role in allergic asthma and parasitic infections. Nonetheless, they participate in the immune response against respiratory viruses such as respiratory syncytial virus and influenza. Notably, respiratory viruses are associated with asthma exacerbation. Eosinophils release several molecules endowed with antiviral activity, including cationic proteins, RNases and reactive oxygen and nitrogen species. On the other hand, eosinophils release several cytokines involved in homeostasis maintenance and Th2-related inflammation. In the context of SARS-CoV-2 infection, emerging evidence indicates that eosinophils can represent possible blood-based biomarkers for diagnosis, prognosis, and severity prediction of disease. In particular, eosinopenia seems to be an indicator of severity among patients with COVID-19, whereas an increased eosinophil count is associated with a better prognosis, including a lower incidence of complications and mortality. In the present review, we provide an overview of the role and plasticity of eosinophils focusing on various respiratory viral infections and in the context of viral and allergic disease comorbidities. We will discuss the potential utility of eosinophils as prognostic/predictive immune biomarkers in emerging respiratory viral diseases, particularly COVID-19. Finally, we will revisit some of the relevant methods and tools that have contributed to the advances in the dissection of various eosinophil subsets in different pathological settings for future biomarker definition.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina La Sorsa
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Caterina Antonucci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
46
|
Bloom CI. Covid-19 pandemic and asthma: What did we learn? Respirology 2023; 28:603-614. [PMID: 37154075 DOI: 10.1111/resp.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 05/10/2023]
Abstract
This review addresses some of the major lessons we have learnt regarding asthma and the covid-19 pandemic, including susceptibility to SARS-CoV-2 infection and severe covid-19, potentially protective factors, comparison to other respiratory infections, changes in healthcare behaviour from the perspective of patients and clinicians, medications to treat or prevent covid-19, and post-covid syndrome.
Collapse
Affiliation(s)
- Chloe I Bloom
- Imperial College London, National Heart and Lung Institute, London, UK
| |
Collapse
|
47
|
Liu L, Zhou L, Wang LL, Zheng PD, Zhang FQ, Mao ZY, Zhang HJ, Liu HG. Programmed Cell Death in Asthma: Apoptosis, Autophagy, Pyroptosis, Ferroptosis, and Necroptosis. J Inflamm Res 2023; 16:2727-2754. [PMID: 37415620 PMCID: PMC10321329 DOI: 10.2147/jir.s417801] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Bronchial asthma is a complex heterogeneous airway disease, which has emerged as a global health issue. A comprehensive understanding of the different molecular mechanisms of bronchial asthma may be an efficient means to improve its clinical efficacy in the future. Increasing research evidence indicates that some types of programmed cell death (PCD), including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis, contributed to asthma pathogenesis, and may become new targets for future asthma treatment. This review briefly discusses the molecular mechanism and signaling pathway of these forms of PCD focuses on summarizing their roles in the pathogenesis and treatment strategies of asthma and offers some efficient means to improve clinical efficacy of therapeutics for asthma in the near future.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling-Ling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Peng-Dou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Feng-Qin Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhen-Yu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huo-Jun Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Hui-Guo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
48
|
Boboltz A, Kumar S, Duncan GA. Inhaled drug delivery for the targeted treatment of asthma. Adv Drug Deliv Rev 2023; 198:114858. [PMID: 37178928 PMCID: PMC10330872 DOI: 10.1016/j.addr.2023.114858] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Asthma is a chronic lung disease affecting millions worldwide. While classically acknowledged to result from allergen-driven type 2 inflammatory responses leading to IgE and cytokine production and the influx of immune cells such as mast cells and eosinophils, the wide range in asthmatic pathobiological subtypes lead to highly variable responses to anti-inflammatory therapies. Thus, there is a need to develop patient-specific therapies capable of addressing the full spectrum of asthmatic lung disease. Moreover, delivery of targeted treatments for asthma directly to the lung may help to maximize therapeutic benefit, but challenges remain in design of effective formulations for the inhaled route. In this review, we discuss the current understanding of asthmatic disease progression as well as genetic and epigenetic disease modifiers associated with asthma severity and exacerbation of disease. We also overview the limitations of clinically available treatments for asthma and discuss pre-clinical models of asthma used to evaluate new therapies. Based on the shortcomings of existing treatments, we highlight recent advances and new approaches to treat asthma via inhalation for monoclonal antibody delivery, mucolytic therapy to target airway mucus hypersecretion and gene therapies to address underlying drivers of disease. Finally, we conclude with discussion on the prospects for an inhaled vaccine to prevent asthma.
Collapse
Affiliation(s)
- Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Sahana Kumar
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
49
|
Urbani F, Cometa M, Martelli C, Santoli F, Rana R, Ursitti A, Bonato M, Baraldo S, Contoli M, Papi A. Update on virus-induced asthma exacerbations. Expert Rev Clin Immunol 2023; 19:1259-1272. [PMID: 37470413 DOI: 10.1080/1744666x.2023.2239504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Viral infections are common triggers for asthma exacerbation. Subjects with asthma are more susceptible to viral infections and develop more severe or long-lasting lower respiratory tract symptoms than healthy individuals owing to impaired immune responses. Of the many viruses associated with asthma exacerbation, rhinovirus (RV) is the most frequently identified virus in both adults and children. AREAS COVERED We reviewed epidemiological and clinical links and mechanistic studies on virus-associated asthma exacerbations. We included sections on severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), the latest evidence of coronavirus disease 2019 (COVID-19) in asthma patients, and past and future searches for therapeutic and prevention targets. EXPERT OPINION Early treatment or prevention of viral infections might significantly reduce the rate of asthma exacerbation, which is one of the key points of disease management. Although it is hypothetically possible nowadays to interfere with every step of the infectious cycle of respiratory tract viruses, vaccination development has provided some of the most encouraging results. Future research should proceed toward the development of a wider spectrum of vaccines to achieve a better quality of life for patients with asthma and to reduce the economic burden on the healthcare system.
Collapse
Affiliation(s)
- Francesca Urbani
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| | - Marianna Cometa
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| | - Chiara Martelli
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| | - Federica Santoli
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| | - Roberto Rana
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| | - Antonio Ursitti
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| | - Matteo Bonato
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Simonetta Baraldo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Marco Contoli
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| | - Alberto Papi
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| |
Collapse
|
50
|
Endaryanto A, Darma A, Sundjaya T, Masita BM, Basrowi RW. The Notorious Triumvirate in Pediatric Health: Air Pollution, Respiratory Allergy, and Infection. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1067. [PMID: 37371298 DOI: 10.3390/children10061067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
A plausible association is suspected among air pollution, respiratory allergic disorder, and infection. These three factors could cause uncontrollable chronic inflammation in the airway tract, creating a negative impact on the physiology of the respiratory system. This review aims to understand the underlying pathophysiology in explaining the association among air pollution, respiratory allergy, and infection in the pediatric population and to capture the public's attention regarding the interaction among these three factors, as they synergistically reduce the health status of children living in polluted countries globally, including Indonesia.
Collapse
Affiliation(s)
- Anang Endaryanto
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Andy Darma
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Tonny Sundjaya
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12940, Indonesia
| | - Bertri Maulidya Masita
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12940, Indonesia
| | - Ray Wagiu Basrowi
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12940, Indonesia
| |
Collapse
|