1
|
Chen M, Yang J, Xue C, Tu T, Su Z, Feng H, Shi M, Zeng G, Zhang D, Qian X. Community composition of phytopathogenic fungi significantly influences ectomycorrhizal fungal communities during subtropical forest succession. Appl Microbiol Biotechnol 2024; 108:99. [PMID: 38204135 PMCID: PMC10781812 DOI: 10.1007/s00253-023-12992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Ectomycorrhizal fungi (EMF) can form symbiotic relationships with plants, aiding in plant growth by providing access to nutrients and defense against phytopathogenic fungi. In this context, factors such as plant assemblages and soil properties can impact the interaction between EMF and phytopathogenic fungi in forest soil. However, there is little understanding of how these fungal interactions evolve as forests move through succession stages. In this study, we used high-throughput sequencing to investigate fungal communities in young, intermediate, and old subtropical forests. At the genus level, EMF communities were dominated by Sebacina, Russula, and Lactarius, while Mycena was the most abundant genus in pathogenic fungal communities. The relative abundances of EMF and phytopathogenic fungi in different stages showed no significant difference with the regulation of different factors. We discovered that interactions between phytopathogenic fungi and EMF maintained a dynamic balance under the influence of the differences in soil quality attributed to each forest successional stage. The community composition of phytopathogenic fungi is one of the strong drivers in shaping EMF communities over successions. In addition, the EMF diversity was significantly related to plant diversity, and these relationships varied among successional stages. Despite the regulation of various factors, the positive relationship between the diversity of phytopathogenic fungi and EMF remained unchanged. However, there is no significant difference in the ratio of the abundance of EMF and phytopathogenic fungi over the course of successions. These results will advance our understanding of the biodiversity-ecosystem functioning during forest succession. KEY POINTS: •Community composition of both EMF and phytopathogenic fungi changed significantly over forest succession. •Phytopathogenic fungi is a key driver in shaping EMF community. •The effect of plant Shannon's diversity on EMF communities changed during the forest aging process.
Collapse
Affiliation(s)
- Meirong Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhi Yang
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China
| | - Chunquan Xue
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China.
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiyao Su
- South China Agriculture University, Guangzhou, China
| | - Hanhua Feng
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Gui Zeng
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Knecht RJ, Benner JS, Swain A, Azevedo-Schmidt L, Cleal CJ, Labandeira CC, Engel MS, Dunlop JA, Selden PA, Eble CF, Renczkowski MD, Wheeler DA, Funderburk MM, Emma SL, Knoll AH, Pierce NE. Early Pennsylvanian Lagerstätte reveals a diverse ecosystem on a subhumid, alluvial fan. Nat Commun 2024; 15:7876. [PMID: 39251605 PMCID: PMC11383953 DOI: 10.1038/s41467-024-52181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Much of what we know about terrestrial life during the Carboniferous Period comes from Middle Pennsylvanian (~315-307 Mya) Coal Measures deposited in low-lying wetland environments1-5. We know relatively little about terrestrial ecosystems from the Early Pennsylvanian, which was a critical interval for the diversification of insects, arachnids, tetrapods, and seed plants6-10. Here we report a diverse Early Pennsylvanian trace and body fossil Lagerstätte (~320-318 Mya) from the Wamsutta Formation of eastern North America, distinct from coal-bearing deposits, preserved in clastic substrates within basin margin conglomerates. The exceptionally preserved trace fossils and body fossils document a range of vertebrates, invertebrates and plant taxa (n = 131), with 83 distinct foliage morphotypes. Plant-insect interactions include what may be the earliest evidence of insect oviposition. This site expands our knowledge of early terrestrial ecosystems and organismal interactions and provides ground truth for future phylogenetic reconstructions of key plant, arthropod, and vertebrate groups.
Collapse
Affiliation(s)
- Richard J Knecht
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA.
| | - Jacob S Benner
- Department of Earth and Planetary Sciences, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Anshuman Swain
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
- Department of Paleobiology, National Museum of Natural History, Washington, DC, USA
| | - Lauren Azevedo-Schmidt
- Department of Entomology and Nematology, University of California, Davis, California, USA
| | - Christopher J Cleal
- School of Earth Science, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | - Conrad C Labandeira
- Department of Paleobiology, National Museum of Natural History, Washington, DC, USA
- Department of Entomology, University of Maryland, College Park, MD, USA
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, P. R. China
| | - Michael S Engel
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
- Departamento de Entomología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256 Jesús María, Lima 14, Perú
| | - Jason A Dunlop
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, Berlin, Germany
| | - Paul A Selden
- Department of Geology, University of Kansas, Lawrence, KS, USA
- Natural History Museum, London, United Kingdom
| | - Cortland F Eble
- Kentucky Geological Survey, University of Kentucky, Lexington, KY, USA
| | - Mark D Renczkowski
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Dillon A Wheeler
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Mataeus M Funderburk
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Wang Y, Chen P, Lin Q, Zuo L, Li L. Whole-Genome Sequencing of Two Potentially Allelopathic Strains of Bacillus from the Roots of C. equisetifolia and Identification of Genes Related to Synthesis of Secondary Metabolites. Microorganisms 2024; 12:1247. [PMID: 38930629 PMCID: PMC11205695 DOI: 10.3390/microorganisms12061247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The coastal Casuarina equisetifolia is the most common tree species in Hainan's coastal protection forests. Sequencing the genomes of its allelopathic endophytes can allow the protective effects of these bacteria to be effectively implemented in protected forests. The goal of this study was to sequence the whole genomes of the endophytes Bacillus amyloliquefaciens and Bacillus aryabhattai isolated from C. equisetifolia root tissues. The results showed that the genome sizes of B. amyloliquefaciens and B. aryabhattai were 3.854 Mb and 5.508 Mb, respectively. The two strains shared 2514 common gene families while having 1055 and 2406 distinct gene families, respectively. The two strains had 283 and 298 allelochemical synthesis-associated genes, respectively, 255 of which were shared by both strains and 28 and 43 of which were unique to each strain, respectively. The genes were putatively involved in 11 functional pathways, including secondary metabolite biosynthesis, terpene carbon skeleton biosynthesis, biosynthesis of ubiquinone and other terpene quinones, tropane/piperidine and piperidine alkaloids biosynthesis, and phenylpropanoid biosynthesis. NQO1 and entC are known to be involved in the biosynthesis of ubiquinone and other terpenoid quinones, and rfbC/rmlC, rfbA/rmlA/rffH, and rfbB/rmlB/rffG are involved in the biosynthesis of polyketide glycan units. Among the B. aryabhattai-specific allelochemical synthesis-related genes, STE24 is involved in terpene carbon skeleton production, atzF and gdhA in arginine biosynthesis, and TYR in isoquinoline alkaloid biosynthesis. B. amyloliquefaciens and B. aryabhattai share the genes aspB, yhdR, trpA, trpB, and GGPS, which are known to be involved in the synthesis of carotenoids, indole, momilactones, and other allelochemicals. Additionally, these bacteria are involved in allelochemical synthesis via routes such as polyketide sugar unit biosynthesis and isoquinoline alkaloid biosynthesis. This study sheds light on the genetic basis of allelopathy in Bacillus strains associated with C. equisetifolia, highlighting the possible use of these bacteria in sustainable agricultural strategies for weed management and crop protection.
Collapse
Affiliation(s)
| | | | | | | | - Lei Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
4
|
Merckx VSFT, Gomes SIF, Wang D, Verbeek C, Jacquemyn H, Zahn FE, Gebauer G, Bidartondo MI. Mycoheterotrophy in the wood-wide web. NATURE PLANTS 2024; 10:710-718. [PMID: 38641664 DOI: 10.1038/s41477-024-01677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
The prevalence and potential functions of common mycorrhizal networks, or the 'wood-wide web', resulting from the simultaneous interaction of mycorrhizal fungi and roots of different neighbouring plants have been increasingly capturing the interest of science and society, sometimes leading to hyperbole and misinterpretation. Several recent reviews conclude that popular claims regarding the widespread nature of these networks in forests and their role in the transfer of resources and information between plants lack evidence. Here we argue that mycoheterotrophic plants associated with ectomycorrhizal or arbuscular mycorrhizal fungi require resource transfer through common mycorrhizal networks and thus are natural evidence for the occurrence and function of these networks, offering a largely overlooked window into this methodologically challenging underground phenomenon. The wide evolutionary and geographic distribution of mycoheterotrophs and their interactions with a broad phylogenetic range of mycorrhizal fungi indicate that common mycorrhizal networks are prevalent, particularly in forests, and result in net carbon transfer among diverse plants through shared mycorrhizal fungi. On the basis of the available scientific evidence, we propose a continuum of carbon transfer options within common mycorrhizal networks, and we discuss how knowledge on the biology of mycoheterotrophic plants can be instrumental for the study of mycorrhizal-mediated transfers between plants.
Collapse
Affiliation(s)
- Vincent S F T Merckx
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, the Netherlands.
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Sofia I F Gomes
- Above-belowground Interactions, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Deyi Wang
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Cas Verbeek
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, the Netherlands
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans Jacquemyn
- Plant Population Biology and Conservation, Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Franziska E Zahn
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | | |
Collapse
|
5
|
Gille CE, Finnegan PM, Hayes PE, Ranathunge K, Burgess TI, de Tombeur F, Migliorini D, Dallongeville P, Glauser G, Lambers H. Facilitative and competitive interactions between mycorrhizal and nonmycorrhizal plants in an extremely phosphorus-impoverished environment: role of ectomycorrhizal fungi and native oomycete pathogens in shaping species coexistence. THE NEW PHYTOLOGIST 2024; 242:1630-1644. [PMID: 38105548 DOI: 10.1111/nph.19489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.
Collapse
Affiliation(s)
- Clément E Gille
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick E Hayes
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Kosala Ranathunge
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Treena I Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Félix de Tombeur
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- CEFE, CNRS, EPHE, IRD, University of Montpellier, 34000, Montpellier, France
| | - Duccio Migliorini
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- National Research Council, Institute for Sustainable Plant Protection, Sesto Fiorentino, Florence, 50019, Italy
| | - Paul Dallongeville
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
6
|
Bas TG, Sáez ML, Sáez N. Sustainable Development versus Extractivist Deforestation in Tropical, Subtropical, and Boreal Forest Ecosystems: Repercussions and Controversies about the Mother Tree and the Mycorrhizal Network Hypothesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1231. [PMID: 38732447 PMCID: PMC11085170 DOI: 10.3390/plants13091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
This research reviews the phenomenon of extractive deforestation as a possible trigger for cascade reactions that could affect part of the forest ecosystem and its biodiversity (surface, aerial, and underground) in tropical, subtropical, and boreal forests. The controversy and disparities in criteria generated in the international scientific community around the hypothesis of a possible link between "mother trees" and mycorrhizal networks in coopetition for nutrients, nitrogen, and carbon are analyzed. The objective is to promote awareness to generate more scientific knowledge about the eventual impacts of forest extraction. Public policies are emphasized as crucial mediators for balanced sustainable development. Currently, the effects of extractive deforestation on forest ecosystems are poorly understood, which requires caution and forest protection. Continued research to increase our knowledge in molecular biology is advocated to understand the adaptation of biological organisms to the new conditions of the ecosystem both in the face of extractive deforestation and reforestation. The environmental impacts of extractive deforestation, such as the loss of biodiversity, soil degradation, altered water cycles, and the contribution of climate change, remain largely unknown. Long-term and high-quality research is essential to ensure forest sustainability and the preservation of biodiversity for future generations.
Collapse
Affiliation(s)
- Tomas Gabriel Bas
- Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo 1780000, Chile;
| | - Mario Luis Sáez
- Facultad de Humanidades, La Serena University, Coquimbo 1700000, Chile;
| | - Nicolas Sáez
- Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo 1780000, Chile;
| |
Collapse
|
7
|
Ullah A, Gao D, Wu F. Common mycorrhizal network: the predominant socialist and capitalist responses of possible plant-plant and plant-microbe interactions for sustainable agriculture. Front Microbiol 2024; 15:1183024. [PMID: 38628862 PMCID: PMC11020090 DOI: 10.3389/fmicb.2024.1183024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/05/2024] [Indexed: 04/19/2024] Open
Abstract
Plants engage in a variety of interactions, including sharing nutrients through common mycorrhizal networks (CMNs), which are facilitated by arbuscular mycorrhizal fungi (AMF). These networks can promote the establishment, growth, and distribution of limited nutrients that are important for plant growth, which in turn benefits the entire network of plants. Interactions between plants and microbes in the rhizosphere are complex and can either be socialist or capitalist in nature, and the knowledge of these interactions is equally important for the progress of sustainable agricultural practice. In the socialist network, resources are distributed more evenly, providing benefits for all connected plants, such as symbiosis. For example, direct or indirect transfer of nutrients to plants, direct stimulation of growth through phytohormones, antagonism toward pathogenic microorganisms, and mitigation of stresses. For the capitalist network, AMF would be privately controlled for the profit of certain groups of plants, hence increasing competition between connected plants. Such plant interactions invading by microbes act as saprophytic and cause necrotrophy in the colonizing plants. In the first case, an excess of the nutritional resources may be donated to the receiver plants by direct transfer. In the second case, an unequal distribution of resources occurs, which certainly favor individual groups and increases competition between interactions. This largely depends on which of these responses is predominant ("socialist" or "capitalist") at the moment plants are connected. Therefore, some plant species might benefit from CMNs more than others, depending on the fungal species and plant species involved in the association. Nevertheless, benefits and disadvantages from the interactions between the connected plants are hard to distinguish in nature once most of the plants are colonized simultaneously by multiple fungal species, each with its own cost-benefits. Classifying plant-microbe interactions based on their habitat specificity, such as their presence on leaf surfaces (phyllospheric), within plant tissues (endophytic), on root surfaces (rhizospheric), or as surface-dwelling organisms (epiphytic), helps to highlight the dense and intricate connections between plants and microbes that occur both above and below ground. In these complex relationships, microbes often engage in mutualistic interactions where both parties derive mutual benefits, exemplifying the socialistic or capitalistic nature of these interactions. This review discusses the ubiquity, functioning, and management interventions of different types of plant-plant and plant-microbe interactions in CMNs, and how they promote plant growth and address environmental challenges for sustainable agriculture.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Danmei Gao
- Department of Horticulture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Chaudhury R, Chakraborty A, Rahaman F, Sarkar T, Dey S, Das M. Mycorrhization in trees: ecology, physiology, emerging technologies and beyond. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:145-156. [PMID: 38194349 DOI: 10.1111/plb.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Mycorrhization has been an integral part of plants since colonization by the early land plants. Over decades, substantial research has highlighted its potential role in improving nutritional efficiency and growth, development and survival of crop plants. However, the focus of this review is trees. Evidence have been provided to explain ecological and physiological significance of mycorrhization in trees. Advances in recent technologies (e.g., metagenomics, artificial intelligence, machine learning, agricultural drones) may open new windows to apply this knowledge in promoting tree growth in forest ecosystems. Dual mycorrhization relationships in trees and even triple relationships among trees, mycorrhizal fungi and bacteria offer an interesting physiological system to understand how plants interact with other organisms for better survival. Besides, studies indicate additional roles of mycorrhization in learning, memorizing and communication between host trees through a common mycorrhizal network (CMN). Recent observations in trees suggest that mycorrhization may even promote tolerance to multiple abiotic (e.g., drought, salt, heavy metal stress) and biotic (e.g. fungi) stresses. Due to the extent of physiological reliance, local adaptation of trees is heavily impacted by the mycorrhizal community. This knowledge opens the possibility of a non-GMO avenue to promote tree growth and development. Indeed, mycorrhization could impact growth of trees in nurserys and subsequent survival of the inoculated trees in field conditions. Future studies might integrate hyperspectral imaging and drone technologies to identify tree communities that are deficient in nitrogen and spray mycorrhizal spore formulations on them.
Collapse
Affiliation(s)
- R Chaudhury
- Department of Life Sciences, Presidency University, Kolkata, India
| | - A Chakraborty
- Department of Life Sciences, Presidency University, Kolkata, India
| | - F Rahaman
- Department of Life Sciences, Presidency University, Kolkata, India
| | - T Sarkar
- Department of Life Sciences, Presidency University, Kolkata, India
| | - S Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - M Das
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
9
|
Montgomery BL. Following the Principles of the Universe: Lessons from Plants on Individual and Communal Thriving. Integr Comp Biol 2023; 63:1391-1398. [PMID: 37604783 PMCID: PMC10755201 DOI: 10.1093/icb/icad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/06/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023] Open
Abstract
The means by which plants and other organisms exist in and respond to dynamic environments to support their thriving as individuals and in communities provide lessons for humans on sustainable and resilient thriving. First examined in my book, Lessons from Plants (Harvard University Press, 2021), I explore herein the following question: "How can plants teach us to be better humans?" I consider how insights gathered from plant physiology, phenotypic plasticity, and other plant growth phenomena can help us improve our lives and our society, with a focus on highlighting academic and scientific environments. Genetically identical plants can have very different appearances, metabolisms, and behaviors if the external environments in which they are growing differ in light or nutrient availability, among other environmental differences. Plants are even capable of transformative behaviors that enable them to maximize their chances of survival in dynamic and sometimes unfriendly environments, while also transforming the environment in which they exist in the process. Highlighting examples from research on, for instance, plants' responses to light and nutrient cues, I focus on insights for humans derived from lessons from plants. These lessons focus on how plants achieve their own purposes by following common principles of the universe on thriving and resilience as individuals and in communities.
Collapse
Affiliation(s)
- Beronda L Montgomery
- Department of Biology, Grinnell College, 1121 Park Street, Grinnell, IA 50112, USA
| |
Collapse
|
10
|
Libertini G. Phenoptosis and the Various Types of Natural Selection. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2007-2022. [PMID: 38462458 DOI: 10.1134/s0006297923120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 03/12/2024]
Abstract
In the first description of evolution, the fundamental mechanism is the natural selection favoring the individuals best suited for survival and reproduction (selection at the individual level or classical Darwinian selection). However, this is a very reductive description of natural selection that does not consider or explain a long series of known phenomena, including those in which an individual sacrifices or jeopardizes his life on the basis of genetically determined mechanisms (i.e., phenoptosis). In fact, in addition to (i) selection at the individual level, it is essential to consider other types of natural selection such as those concerning: (ii) kin selection and some related forms of group selection; (iii) the interactions between the innumerable species that constitute a holobiont; (iv) the origin of the eukaryotic cell from prokaryotic organisms; (v) the origin of multicellular eukaryotic organisms from unicellular organisms; (vi) eusociality (e.g., in many species of ants, bees, termites); (vii) selection at the level of single genes, or groups of genes; (viii) the interactions between individuals (or more precisely their holobionts) of the innumerable species that make up an ecosystem. These forms of natural selection, which are all effects and not violations of the classical Darwinian selection, also show how concepts as life, species, individual, and phenoptosis are somewhat not entirely defined and somehow arbitrary. Furthermore, the idea of organisms selected on the basis of their survival and reproduction capabilities is intertwined with that of organisms also selected on the basis of their ability to cooperate and interact, even by losing their lives or their distinct identities.
Collapse
Affiliation(s)
- Giacinto Libertini
- Italian Society for Evolutionary Biology (ISEB), Asti, 14100, Italy.
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| |
Collapse
|
11
|
Sirimorok N, Paweroi RM, Arsyad AA, Köppen M. Smart Farm Security by Combining IoT Sensor Network and Virtualized Mycelium Network. SENSORS (BASEL, SWITZERLAND) 2023; 23:8689. [PMID: 37960389 PMCID: PMC10648404 DOI: 10.3390/s23218689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
In today's world, merging sensor-based security systems with contemporary principles has become crucial. As we witness the ever-growing number of interconnected devices in the Internet of Things (IoT), it is imperative to have robust and trustworthy security measures in place. In this paper, we examine the idea of virtualizing the communication infrastructure for smart farming in the context of IoT. Our approach utilizes a metaverse-based framework that mimics natural processes such as mycelium network growth communication with a security-concept-based srtificial immune system (AIS) and transaction models of a multi-agent system (MAS). The mycelium, a bridge that transfers nutrients from one plant to another, is an underground network (IoT below ground) that can interconnect multiple plants. Our objective is to study and simulate the mycelium's behavior, which serves as an underground IoT, and we anticipate that the simulation results, supported by diverse aspects, can be a reference for future IoT network development. A proof of concept is presented, demonstrating the capabilities of such a virtualized network for dedicated sensor communication and easy reconfiguration for various needs.
Collapse
Affiliation(s)
- Nurdiansyah Sirimorok
- Department of Computer Science and Systems Engineering (CSSE), Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Fukuoka 820-8502, Japan; (R.M.P.); (A.A.A.); (M.K.)
| | | | | | | |
Collapse
|
12
|
Yang L, Xu R, Joardar A, Amponsah M, Sharifi N, Dong B, Qin Z. Design and build a green tent environment for growing and charactering mycelium growth in lab. LAB ON A CHIP 2023; 23:4044-4051. [PMID: 37606082 DOI: 10.1039/d3lc00336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Mycelium-based materials have seen a surge in popularity in the manufacturing industry in recent years. This study aims to build a lab-scale experimental facility to investigate mycelium growth under a well-controlled temperature and humidity environment and explore how substrates of very different chemical and mechanical properties can affect the microscopic morphology of the mycelium fibers during growth. Here, we design and build a customized green tent with good thermal and humidity insulation for controlling the temperature and humidity and monitor the environmental data with an Arduino chip. We develop our procedure to grow mycelium from spores to fibrous networks. It is shown that a hydrogel substrate with soluble nutrition is more favorite for mycelium growth than a hardwood board and leads to higher growing speed. We take many microscopic images of the mycelium fibers on the hardwood board and the hydrogel substrate and found no significant difference in diameter (∼3 μm). This research provides a foundation to explore the mechanism of mycelium growth and explore the environmentally friendly and time-efficient method of its growth.
Collapse
Affiliation(s)
- Libin Yang
- Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA.
- Department of Civil and Environmental Engineering, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA
| | - Ruohan Xu
- Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA.
- Department of Civil and Environmental Engineering, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA
- Department of Mechanical and Aerospace Engineering, Syracuse University, 263 Link Hall, Syracuse University, Syracuse, NY 13244, USA
| | - Anushka Joardar
- Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA.
- Jamesville DeWitt Highschool, 6845 Edinger Dr, Dewitt, NY 13214, USA
| | - Michael Amponsah
- Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA.
- Liverpool High School, 4338 Wetzel Rd, Liverpool, NY 13090, USA
| | - Nina Sharifi
- Syracuse University School of Architecture, Slocum Hall, Syracuse, NY 13244, USA
- Applied Sciences and Technology Research in Architecture Lab, Syracuse Center of Excellence, Syracuse, NY, USA
| | - Bing Dong
- Department of Mechanical and Aerospace Engineering, Syracuse University, 263 Link Hall, Syracuse University, Syracuse, NY 13244, USA
- Built Environment Science and Technology (BEST) Lab, Syracuse University, 403 SyracuseCoE, Syracuse, NY 13244, USA
| | - Zhao Qin
- Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA.
- Department of Civil and Environmental Engineering, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA
- The BioInspired Institute, Syracuse University, NY 13244, USA
| |
Collapse
|
13
|
Minasiewicz J, Zwolicki A, Figura T, Novotná A, Bocayuva MF, Jersáková J, Selosse MA. Stoichiometry of carbon, nitrogen and phosphorus is closely linked to trophic modes in orchids. BMC PLANT BIOLOGY 2023; 23:422. [PMID: 37700257 PMCID: PMC10496321 DOI: 10.1186/s12870-023-04436-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Mycorrhiza is a ubiquitous form of symbiosis based on the mutual, beneficial exchange of resources between roots of autotrophic (AT) plants and heterotrophic soil fungi throughout a complex network of fungal mycelium. Mycoheterotrophic (MH) and mixotrophic (MX) plants can parasitise this system, gaining all or some (respectively) required nutrients without known reciprocity to the fungus. We applied, for the first time, an ecological stoichiometry framework to test whether trophic mode of plants influences their elemental carbon (C), nitrogen (N), and phosphorus (P) composition and may provide clues about their biology and evolution within the framework of mycorrhizal network functioning. RESULTS We analysed C:N:P stoichiometry of 24 temperate orchid species and P concentration of 135 species from 45 plant families sampled throughout temperate and intertropical zones representing the three trophic modes (AT, MX and MH). Welch's one-way ANOVA and PERMANOVA were used to compare mean nutrient values and their proportions among trophic modes, phylogeny, and climate zones. Nutrient concentration and stoichiometry significantly differentiate trophic modes in orchids. Mean foliar C:N:P stoichiometry showed a gradual increase of N and P concentration and a decrease of C: nutrients ratio along the trophic gradient AT < MX < MH, with surprisingly high P requirements of MH orchids. Although P concentration in orchids showed the trophy-dependent pattern regardless of climatic zone, P concentration was not a universal indicator of trophic modes, as shown by ericaceous MH and MX plants. CONCLUSION The results imply that there are different evolutionary pathways of adaptation to mycoheterotrophic nutrient acquisition, and that the high nutrient requirements of MH orchids compared to MH plants from other families may represent a higher cost to the fungal partner and consequently lead to the high fungal specificity observed in MH orchids.
Collapse
Affiliation(s)
- Julita Minasiewicz
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland.
| | - Adrian Zwolicki
- Faculty of Biology, Department of Vertebrate Ecology and Zoology, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Tomáš Figura
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, 12844, Czech Republic
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, Paris, CP 39, F-75005, France
| | - Alžběta Novotná
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
- Institute of Microbiology ASCR, Vídeňská, Praha, 1083, 142 20, Czech Republic
| | - Melissa F Bocayuva
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Jana Jersáková
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, 1760, 37005, Czech Republic
| | - Marc-André Selosse
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, Paris, CP 39, F-75005, France
| |
Collapse
|
14
|
Mortier E, Mounier A, Kreplak J, Martin-Laurent F, Recorbet G, Lamotte O. Evidence that a common arbuscular mycorrhizal network alleviates phosphate shortage in interconnected walnut sapling and maize plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1206047. [PMID: 37636112 PMCID: PMC10448772 DOI: 10.3389/fpls.2023.1206047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Under agroforestry practices, inter-specific facilitation between tree rows and cultivated alleys occurs when plants increase the growth of their neighbors especially under nutrient limitation. Owing to a coarse root architecture limiting soil inorganic phosphate (Pi) uptake, walnut trees (Juglans spp.) exhibit dependency on soil-borne symbiotic arbuscular mycorrhizal fungi that extend extra-radical hyphae beyond the root Pi depletion zone. To investigate the benefits of mycorrhizal walnuts in alley cropping, we experimentally simulated an agroforestry system in which walnut rootstocks RX1 (J. regia x J. microcarpa) were connected or not by a common mycelial network (CMN) to maize plants grown under two contrasting Pi levels. Mycorrhizal colonization parameters showed that the inoculum reservoir formed by inoculated walnut donor saplings allowed the mycorrhization of maize recipient roots. Relative to non-mycorrhizal plants and whatever the Pi supply, CMN enabled walnut saplings to access maize Pi fertilization residues according to significant increases in biomass, stem diameter, and expression of JrPHT1;1 and JrPHT1;2, two mycorrhiza-inducible phosphate transporter candidates here identified by phylogenic inference of orthologs. In the lowest Pi supply, stem height, leaf Pi concentration, and biomass of RX1 were significantly higher than in non-mycorrhizal controls, showing that mycorrhizal connections between walnut and maize roots alleviated Pi deficiency in the mycorrhizal RX1 donor plant. Under Pi limitation, maize recipient plants also benefited from mycorrhization relative to controls, as inferred from larger stem diameter and height, biomass, leaf number, N content, and Pi concentration. Mycorrhization-induced Pi uptake generated a higher carbon cost for donor walnut plants than for maize plants by increasing walnut plant photosynthesis to provide the AM fungus with carbon assimilate. Here, we show that CMN alleviates Pi deficiency in co-cultivated walnut and maize plants, and may therefore contribute to limit the use of chemical P fertilizers in agroforestry systems.
Collapse
|
15
|
Del Dottore E, Mazzolai B. Perspectives on Computation in Plants. ARTIFICIAL LIFE 2023; 29:336-350. [PMID: 36787453 DOI: 10.1162/artl_a_00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plants thrive in virtually all natural and human-adapted environments and are becoming popular models for developing robotics systems because of their strategies of morphological and behavioral adaptation. Such adaptation and high plasticity offer new approaches for designing, modeling, and controlling artificial systems acting in unstructured scenarios. At the same time, the development of artifacts based on their working principles reveals how plants promote innovative approaches for preservation and management plans and opens new applications for engineering-driven plant science. Environmentally mediated growth patterns (e.g., tropisms) are clear examples of adaptive behaviors displayed through morphological phenotyping. Plants also create networks with other plants through subterranean roots-fungi symbiosis and use these networks to exchange resources or warning signals. This article discusses the functional behaviors of plants and shows the close similarities with a perceptron-like model that could act as a behavior-based control model in plants. We begin by analyzing communication rules and growth behaviors of plants; we then show how we translated plant behaviors into algorithmic solutions for bioinspired robot controllers; and finally, we discuss how those solutions can be extended to embrace original approaches to networking and robotics control architectures.
Collapse
Affiliation(s)
| | - Barbara Mazzolai
- Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia.
| |
Collapse
|
16
|
Falik O, Novoplansky A. Interspecific Drought Cuing in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1200. [PMID: 36904059 PMCID: PMC10007240 DOI: 10.3390/plants12051200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Plants readily communicate with their pollinators, herbivores, symbionts, and the predators and pathogens of their herbivores. We previously demonstrated that plants could exchange, relay, and adaptively utilize drought cues from their conspecific neighbors. Here, we studied the hypothesis that plants can exchange drought cues with their interspecific neighbors. Triplets of various combinations of split-root Stenotaphrum secundatum and Cynodon dactylon plants were planted in rows of four pots. One root of the first plant was subjected to drought while its other root shared its pot with one of the roots of an unstressed target neighbor, which, in turn, shared its other pot with an additional unstressed target neighbor. Drought cuing and relayed cuing were observed in all intra- and interspecific neighbor combinations, but its strength depended on plant identity and position. Although both species initiated similar stomatal closure in both immediate and relayed intraspecific neighbors, interspecific cuing between stressed plants and their immediate unstressed neighbors depended on neighbor identity. Combined with previous findings, the results suggest that stress cuing and relay cuing could affect the magnitude and fate of interspecific interactions, and the ability of whole communities to endure abiotic stresses. The findings call for further investigation into the mechanisms and ecological implications of interplant stress cuing at the population and community levels.
Collapse
Affiliation(s)
- Omer Falik
- Achva Academic College, Arugot 7980400, Israel
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Ariel Novoplansky
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| |
Collapse
|
17
|
Itani A, Masuo S, Yamamoto R, Serizawa T, Fukasawa Y, Takaya N, Toyota M, Betsuyaku S, Takeshita N. Local calcium signal transmission in mycelial network exhibits decentralized stress responses. PNAS NEXUS 2023; 2:pgad012. [PMID: 36896124 PMCID: PMC9991499 DOI: 10.1093/pnasnexus/pgad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 03/09/2023]
Abstract
Many fungi live as mycelia, which are networks of hyphae. Mycelial networks are suited for the widespread distribution of nutrients and water. The logistical capabilities are critical for the extension of fungal survival areas, nutrient cycling in ecosystems, mycorrhizal symbioses, and virulence. In addition, signal transduction in mycelial networks is predicted to be vital for mycelial function and robustness. A lot of cell biological studies have elucidated protein and membrane trafficking and signal transduction in fungal hyphae; however, there are no reports visualizing signal transduction in mycelia. This paper, by using the fluorescent Ca2+ biosensor, visualized for the first time how calcium signaling is conducted inside the mycelial network in response to localized stimuli in the model fungus Aspergillus nidulans. The wavy propagation of the calcium signal inside the mycelium or the signal blinking in the hyphae varies depending on the type of stress and proximity to the stress. The signals, however, only extended around 1,500 μm, suggesting that the mycelium has a localized response. The mycelium showed growth delay only in the stressed areas. Local stress caused arrest and resumption of mycelial growth through reorganization of the actin cytoskeleton and membrane trafficking. To elucidate the downstream of calcium signaling, calmodulin, and calmodulin-dependent protein kinases, the principal intracellular Ca2+ receptors were immunoprecipitated and their downstream targets were identified by mass spectrometry analyses. Our data provide evidence that the mycelial network, which lacks a brain or nervous system, exhibits decentralized response through locally activated calcium signaling in response to local stress.
Collapse
Affiliation(s)
- Ayaka Itani
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Shunsuke Masuo
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Riho Yamamoto
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Tomoko Serizawa
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Yu Fukasawa
- Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko, Osaki, Miyagi, 989-6711, Japan
| | - Naoki Takaya
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Kyoto, Japan
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Shigeyuki Betsuyaku
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194Japan
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| |
Collapse
|
18
|
Elton S. The relational agency of plants in produce supply chains during COVID-19: "Mother nature takes her course". JOURNAL OF RURAL STUDIES 2023; 98:59-67. [PMID: 36742987 PMCID: PMC9884627 DOI: 10.1016/j.jrurstud.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The Ontario Food Terminal is a central node in the North American food system, the third largest wholesale produce market on the continent. During the first 20 months of the COVID-19 pandemic, qualitative research was conducted with food system actors to understand the impact of the public health crisis on produce supply chains. This paper contributes to the study of nonhumans in agri-food networks and rural spaces, specifically human-plant relations. Employing a posthumanist lens to investigate why produce supply chains continued to flow during the pandemic, it is argued that plants helped to keep supply chains moving at the Terminal in the face of crisis. Plant agency in this case is found to be the product of relationships with humans as well as nonhuman systems. This agency is collective in nature and is rooted in the plants' relationships with humans as perishable foods and commodities as well as ecosystem relationships. Further, the paper demonstrates how plant agency, that had political effects during the pandemic, is normalizing. This underlines the importance of considering the nature of the relationship in the context of relational agency, and highlights that it cannot be assumed that plants are allies in food system change.
Collapse
Affiliation(s)
- Sarah Elton
- Department of Sociology, Toronto Metropolitan University, Canada
| |
Collapse
|
19
|
Carreon-Ortiz H, Valdez F, Melin P, Castillo O. Architecture Optimization of a Non-Linear Autoregressive Neural Networks for Mackey-Glass Time Series Prediction Using Discrete Mycorrhiza Optimization Algorithm. MICROMACHINES 2023; 14:149. [PMID: 36677210 PMCID: PMC9864806 DOI: 10.3390/mi14010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Recurrent Neural Networks (RNN) are basically used for applications with time series and sequential data and are currently being used in embedded devices. However, one of their drawbacks is that RNNs have a high computational cost and require the use of a significant amount of memory space. Therefore, computer equipment with a large processing capacity and memory is required. In this article, we experiment with Nonlinear Autoregressive Neural Networks (NARNN), which are a type of RNN, and we use the Discrete Mycorrhizal Optimization Algorithm (DMOA) in the optimization of the NARNN architecture. We used the Mackey-Glass chaotic time series (MG) to test the proposed approach, and very good results were obtained. In addition, some comparisons were made with other methods that used the MG and other types of Neural Networks such as Backpropagation and ANFIS, also obtaining good results. The proposed algorithm can be applied to robots, microsystems, sensors, devices, MEMS, microfluidics, piezoelectricity, motors, biosensors, 3D printing, etc.
Collapse
|
20
|
Bawa K, Pannell JR. Editorial: Kin selection and kin cooperation in plants. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1068096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
21
|
Faghihinia M, Jansa J. Mycorrhiza governs plant-plant interactions through preferential allocation of shared nutritional resources: A triple ( 13C, 15N and 33P) labeling study. FRONTIERS IN PLANT SCIENCE 2022; 13:1047270. [PMID: 36589136 PMCID: PMC9799978 DOI: 10.3389/fpls.2022.1047270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 05/13/2023]
Abstract
Plant-plant interactions and coexistence can be directly mediated by symbiotic arbuscular mycorrhizal (AM) fungi through asymmetric resource exchange between the plant and fungal partners. However, little is known about the effects of AM fungal presence on resource allocation in mixed plant stands. Here, we examined how phosphorus (P), nitrogen (N) and carbon (C) resources were distributed between coexisting con- and heterospecific plant individuals in the presence or absence of AM fungus, using radio- and stable isotopes. Congeneric plant species, Panicum bisulcatum and P. maximum, inoculated or not with Rhizophagus irregularis, were grown in two different culture systems, mono- and mixed-species stands. Pots were subjected to different shading regimes to manipulate C sink-source strengths. In monocultures, P. maximum gained more mycorrhizal phosphorus uptake benefits than P.bisulcatum. However, in the mixed culture, the AM fungus appeared to preferentially transfer nutrients (33P and 15N) to P.bisulcatum compared to P. maximum. Further, we observed higher 13C allocation to mycorrhiza by P.bisulcatum in mixed- compared to the mono-systems, which likely contributed to improved competitiveness in the mixed cultures of P.bisulcatum vs. P. maximum regardless of the shading regime. Our results suggest that the presence of mycorrhiza influenced competitiveness of the two Panicum species in mixed stands in favor of those with high quality partner, P. bisulcatum, which provided more C to the mycorrhizal networks. However, in mono-species systems where the AM fungus had no partner choice, even the lower quality partner (i.e., P.maximum) could also have benefitted from the symbiosis. Future research should separate the various contributors (roots vs. common mycorrhizal network) and mechanisms of resource exchange in such a multifaceted interaction.
Collapse
Affiliation(s)
- Maede Faghihinia
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Praha, Czechia
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Praha, Czechia
| |
Collapse
|
22
|
Razgulin SM. Mycorrhizal Complexes and Their Role in the Ecology of Boreal Forests (Review). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Guy P, Sibly R, Smart SM, Tibbett M, Pickles BJ. Mycorrhizal type of woody plants influences understory species richness in British broadleaved woodlands. THE NEW PHYTOLOGIST 2022; 235:2046-2053. [PMID: 35622460 PMCID: PMC9543792 DOI: 10.1111/nph.18274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Mature temperate woodlands are commonly dominated by ectomycorrhizal trees, whereas understory plants predominantly form arbuscular mycorrhizal associations. Due to differences in plant-fungus compatibility between canopy and ground layer vegetation the 'mycorrhizal mediation hypothesis' predicts that herbaceous plant establishment may be limited by a lack of suitable mycorrhizal fungal inoculum. We examined plant species data for 103 woodlands across Great Britain recorded in 1971 and in 2000 to test whether herbaceous plant species richness was related to the proportion of arbuscular mycorrhizal woody plants. We compared the effect of mycorrhizal type with other important drivers of woodland plant species richness. We found a positive effect of the relative abundance of arbuscular mycorrhizal woody plants on herbaceous plant species richness. The size of the observed effect was smaller than that of pH. Moreover, the effect persisted over time, despite many woodlands undergoing marked successional change and increased understorey shading. This work supports the mycorrhizal mediation hypothesis in British woodlands and suggests that increased abundance of arbuscular mycorrhizal woody plants is associated with greater understory plant species richness.
Collapse
Affiliation(s)
- Petra Guy
- School of Biological SciencesUniversity of Reading, Health and Life Sciences BuildingWhiteknightsReadingRG6 6EXUK
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsReadingRG6 6BZUK
| | - Richard Sibly
- School of Biological SciencesUniversity of Reading, Health and Life Sciences BuildingWhiteknightsReadingRG6 6EXUK
| | - Simon M. Smart
- UK Centre for Ecology & HydrologyLibrary Avenue, BailriggLancasterLA1 4APUK
| | - Mark Tibbett
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsReadingRG6 6BZUK
| | - Brian J. Pickles
- School of Biological SciencesUniversity of Reading, Health and Life Sciences BuildingWhiteknightsReadingRG6 6EXUK
| |
Collapse
|
24
|
Molecular Collective Response and Dynamical Symmetry Properties in Biopotentials of Superior Plants: Experimental Observations and Quantum Field Theory Modeling. Symmetry (Basel) 2022. [DOI: 10.3390/sym14091792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Trees employ impulses of electrical activity to coordinate actions of their bodies and long-distance communication. There are indications that the vascular system might act as a network of pathways for traveling electrical impulses. A question arises about the correlation and interplay between the molecular (microscopic) level and the macroscopic observable behavior of the system (the electrical impulses), for individual trees and as a component of the larger living ecosystem, the forest. Results from the “Cyberforest Experiment” in the Paneveggio forest (Valle di Fiemme, Trento, Italy) are presented. It is shown that: (i) biopotential features of xylem biomolecular activity can be correlated with the solar (and lunar) cycle, (ii) tree stubs show an electrical molecular activity that is correlated with that of neighboring trees, (iii) statistical features of spike-like peaks and entropy can be correlated with corresponding thermal entropy, and (iv) basic symmetries of the quantum field theory dynamics are responsible for the entanglement phenomenon in the molecular interactions resulting in the molecular collective behavior of the forest. Findings suggest implementing technology that goes in the direction of understanding the language of trees, eventually of fungi, which have created a universal living network perhaps using a common language.
Collapse
|
25
|
Fernández N, Knoblochová T, Kohout P, Janoušková M, Cajthaml T, Frouz J, Rydlová J. Asymmetric Interaction Between Two Mycorrhizal Fungal Guilds and Consequences for the Establishment of Their Host Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:873204. [PMID: 35755655 PMCID: PMC9218742 DOI: 10.3389/fpls.2022.873204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhiza (AM) and ectomycorrhiza (EcM) are the most abundant and widespread types of mycorrhizal symbiosis, but there is little and sometimes conflicting information regarding the interaction between AM fungi (AMF) and EcM fungi (EcMF) in soils. Their competition for resources can be particularly relevant in successional ecosystems, which usually present a transition from AM-forming herbaceous vegetation to EcM-forming woody species. The aims of this study were to describe the interaction between mycorrhizal fungal communities associated with AM and EcM hosts naturally coexisting during primary succession on spoil banks and to evaluate how this interaction affects growth and mycorrhizal colonization of seedlings of both species. We conducted a greenhouse microcosm experiment with Betula pendula and Hieracium caespitosum as EcM and AM hosts, respectively. They were cultivated in three-compartment rhizoboxes. Two lateral compartments contained different combinations of both host plants as sources of fungal mycelia colonizing the middle compartment, where fungal biomass, diversity, and community composition as well as the growth of each host plant species' seedlings were analyzed. The study's main finding was an asymmetric outcome of the interaction between the two plant species: while H. caespitosum and associated AMF reduced the abundance of EcMF in soil, modified the composition of EcMF communities, and also tended to decrease growth and mycorrhizal colonization of B. pendula seedlings, the EcM host did not have such effects on AM plants and associated AMF. In the context of primary succession, these findings suggest that ruderal AM hosts could hinder the development of EcM tree seedlings, thus slowing the transition from AM-dominated to EcM-dominated vegetation in early successional stages.
Collapse
Affiliation(s)
- Natalia Fernández
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue - IPATEC, Bariloche, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Tereza Knoblochová
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Petr Kohout
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Martina Janoušková
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Tomáš Cajthaml
- Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czechia
| | - Jan Frouz
- Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czechia
| | - Jana Rydlová
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| |
Collapse
|
26
|
Schreiner DC, Cazares C, Renteria R, Gremel CM. Information normally considered task-irrelevant drives decision-making and affects premotor circuit recruitment. Nat Commun 2022; 13:2134. [PMID: 35440120 PMCID: PMC9018678 DOI: 10.1038/s41467-022-29807-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/24/2022] [Indexed: 02/02/2023] Open
Abstract
Decision-making is a continuous and dynamic process with prior experience reflected in and used by the brain to guide adaptive behavior. However, most neurobiological studies constrain behavior and/or analyses to task-related variables, not accounting for the continuous internal and temporal space in which they occur. We show mice rely on information learned through recent and longer-term experience beyond just prior actions and reward - including checking behavior and the passage of time - to guide self-initiated, self-paced, and self-generated actions. These experiences are represented in secondary motor cortex (M2) activity and its projections into dorsal medial striatum (DMS). M2 integrates this information to bias strategy-level decision-making, and DMS projections reflect specific aspects of this recent experience to guide actions. This suggests diverse aspects of experience drive decision-making and its neural representation, and shows premotor corticostriatal circuits are crucial for using selective aspects of experiential information to guide adaptive behavior.
Collapse
Affiliation(s)
- Drew C Schreiner
- Department of Psychology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christian Cazares
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rafael Renteria
- Department of Psychology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christina M Gremel
- Department of Psychology, University of California San Diego, La Jolla, CA, 92093, USA.
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
27
|
|
28
|
Paganeli B, Toussaint A, Bueno CG, Fujinuma J, Reier Ü, Pärtel M. Dark diversity at home describes the success of cross‐continent tree invasions. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Bruno Paganeli
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Aurèle Toussaint
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Carlos Guillermo Bueno
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Junichi Fujinuma
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Ülle Reier
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Meelis Pärtel
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| |
Collapse
|
29
|
Mirra G, Holland A, Roudavski S, Wijnands JS, Pugnale A. An Artificial Intelligence Agent That Synthesises Visual Abstractions of Natural Forms to Support the Design of Human-Made Habitat Structures. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.806453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biodiversity is in a state of global collapse. Among the main drivers of this crisis is habitat degradation that destroys living spaces for animals, birds, and other species. Design and provision of human-made replacements for natural habitat structures can alleviate this situation. Can emerging knowledge in ecology, design, and artificial intelligence (AI) help? Current strategies to resolve this issue include designing objects that reproduce known features of natural forms. For instance, conservation practitioners seek to mimic the function of rapidly disappearing large old trees by augmenting utility poles with perch structures. Other approaches to restoring degraded ecosystems employ computational tools to capture information about natural forms and use such data to monitor remediation activities. At present, human-made replacements of habitat structures cannot reproduce significant features of complex natural forms while supporting efficient construction at large scales. We propose an AI agent that can synthesise simplified but ecologically meaningful representations of 3D forms that we define as visual abstractions. Previous research used AI to synthesise visual abstractions of 2D images. However, current applications of such techniques neither extend to 3D data nor engage with biological conservation or ecocentric design. This article investigates the potential of AI to support the design of artificial habitat structures and expand the scope of computation in this domain from data analysis to design synthesis. Our case study considers possible replacements of natural trees. The application implements a novel AI agent that designs by placing three-dimensional cubes – or voxels – in the digital space. The AI agent autonomously assesses the quality of the resulting visual abstractions by comparing them with three-dimensional representations of natural trees. We evaluate the forms produced by the AI agent by measuring relative complexity and features that are meaningful for arboreal wildlife. In conclusion, our study demonstrates that AI can generate design suggestions that are aligned with the preferences of arboreal wildlife and can support the development of artificial habitat structures. The bio-informed approach presented in this article can be useful in many situations where incomplete knowledge about complex natural forms can constrain the design and performance of human-made artefacts.
Collapse
|
30
|
Ding C, Zhao Y, Zhang Q, Lin Y, Xue R, Chen C, Zeng R, Chen D, Song Y. Cadmium transfer between maize and soybean plants via common mycorrhizal networks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113273. [PMID: 35123184 DOI: 10.1016/j.ecoenv.2022.113273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
More than 80% terrestrial plants establish mutualistic symbiosis with soil-borne arbuscular mycorrhizal fungi (AMF). These fungi not only significantly improve plant nutrient acquisition and stress resistance, but also mitigate heavy metal phytotoxicity, Furthermore, the extraradical mycorrhizal mycelia can form common mycorrhizal networks (CMNs) that link roots of multiple plants in a community. Here we show that the networks mediate migration of heavy metal cadmium (Cd) from maize (Zea mays L.) to soybean (Glycine max (Linn.) Merr.) plants. CMNs between maize and soybean plants were established after inoculation of maize plants with AMF Funneliformis mosseae. Application of CdCl2 in maize plants led to 64.4% increase in the shoots and 48.2% increase in the roots in Cd content in CMNs-connected soybean plants compared to the control without Cd treatment in maize. Meanwhile, although the CMNs-connected soybean plants did not directly receive Cd supply, they upregulated transcriptional levels of Cd transport-related genes HATPase and RSTK 2.13- and 5.96-fold, respectively, induced activities of POD by 44.8% in the leaves, and increased MDA by 146.2% in the roots. Furthermore, Cd addition inhibited maize growth but mycorrhizal colonization improved plant performance in presence of Cd stress. This finding demonstrates that mycorrhizal networks mediate the transfer of Cd between plants of different species, suggesting a potential to use CMNs as a conduit to transfer toxic heavy metals from main food crops to heavy metal hyperaccumulators via intercropping.
Collapse
Affiliation(s)
- Chaohui Ding
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Yi Zhao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Qianrong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Fujian Key Laboratory of Vegetable Genetics and Breeding, Vegetable Research Center, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yibin Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Rongrong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Chunyan Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Dongmei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| |
Collapse
|
31
|
|
32
|
Cowan JA, Gehring CA, Ilstedt U, Grady KC. Host identity and neighborhood trees affect belowground microbial communities in a tropical rainforest. Trop Ecol 2021. [DOI: 10.1007/s42965-021-00203-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Liao HL, Bonito G, Hameed K, Wu SH, Chen KH, Labbé J, Schadt CW, Tuskan GA, Martin F, Kuo A, Barry K, Grigoriev IV, Vilgalys R. Heterospecific Neighbor Plants Impact Root Microbiome Diversity and Molecular Function of Root Fungi. Front Microbiol 2021; 12:680267. [PMID: 34803937 PMCID: PMC8601753 DOI: 10.3389/fmicb.2021.680267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Within the forest community, competition and facilitation between adjacent-growing conspecific and heterospecific plants are mediated by interactions involving common mycorrhizal networks. The ability of plants to alter their neighbor's microbiome is well documented, but the molecular biology of plant-fungal interactions during competition and facilitation has not been previously examined. We used a common soil-plant bioassay experiment to study molecular plant-microbial interactions among rhizosphere communities associated with Pinus taeda (native host) and Populus trichocarpa (non-native host). Gene expression of interacting fungal and bacterial rhizosphere communities was compared among three plant-pairs: Populus growing with Populus, Populus with Pinus, and Pinus with Pinus. Our results demonstrate that heterospecific plant partners affect the assembly of root microbiomes, including the changes in the structure of host specific community. Comparative metatranscriptomics reveals that several species of ectomycorrhizal fungi (EMF) and saprotrophic fungi exhibit different patterns of functional and regulatory gene expression with these two plant hosts. Heterospecific plants affect the transcriptional expression pattern of EMF host-specialists (e.g., Pinus-associated Suillus spp.) on both plant species, mainly including the genes involved in the transportation of amino acids, carbohydrates, and inorganic ions. Alteration of root microbiome by neighboring plants may help regulate basic plant physiological processes via modulation of molecular functions in the root microbiome.
Collapse
Affiliation(s)
- Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
- Department of Biology, Duke University, Durham, NC, United States
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Khalid Hameed
- Department of Biology, Duke University, Durham, NC, United States
| | - Steven H. Wu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Ko-Hsuan Chen
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Invaio Sciences, Cambridge, MA, United States
| | | | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Francis Martin
- University of Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Champenoux, France
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
34
|
Figueiredo AF, Boy J, Guggenberger G. Common Mycorrhizae Network: A Review of the Theories and Mechanisms Behind Underground Interactions. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:735299. [PMID: 37744156 PMCID: PMC10512311 DOI: 10.3389/ffunb.2021.735299] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 09/26/2023]
Abstract
Most terrestrial plants establish symbiotic associations with mycorrhizal fungi for accessing essential plant nutrients. Mycorrhizal fungi have been frequently reported to interconnect plants via a common mycelial network (CMN), in which nutrients and signaling compounds can be exchanged between the connected plants. Several studies have been performed to demonstrate the potential effects of the CMN mediating resource transfer and its importance for plant fitness. Due to several contrasting results, different theories have been developed to predict benefits or disadvantages for host plants involved in the network and how it might affect plant communities. However, the importance of the mycelium connections for resources translocation compared to other indirect pathways, such as leakage of fungi hyphae and subsequent uptake by neighboring plant roots, is hard to distinguish and quantify. If resources can be translocated via mycelial connections in significant amounts that could affect plant fitness, it would represent an important tactic for plants co-existence and it could shape community composition and dynamics. Here, we report and critically discuss the most recent findings on studies aiming to evaluate and quantify resources translocation between plants sharing a CMN and predict the pattern that drives the movement of such resources into the CMN. We aim to point gaps and define open questions to guide upcoming studies in the area for a prospect better understanding of possible plant-to-plant interactions via CMN and its effect in shaping plants communities. We also propose new experiment set-ups and technologies that could be used to improve previous experiments. For example, the use of mutant lines plants with manipulation of genes involved in the symbiotic associations, coupled with labeling techniques to track resources translocation between connected plants, could provide a more accurate idea about resource allocation and plant physiological responses that are truly accountable to CMN.
Collapse
|
35
|
Affiliation(s)
- Jakub Szymkowiak
- Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz Univ. Poznań Poland
| | | |
Collapse
|
36
|
Segundo-Ortin M, Calvo P. Consciousness and cognition in plants. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 13:e1578. [PMID: 34558231 DOI: 10.1002/wcs.1578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Unlike animal behavior, behavior in plants is traditionally assumed to be completely determined either genetically or environmentally. Under this assumption, plants are usually considered to be noncognitive organisms. This view nonetheless clashes with a growing body of empirical research that shows that many sophisticated cognitive capabilities traditionally assumed to be exclusive to animals are exhibited by plants too. Yet, if plants can be considered cognitive, even in a minimal sense, can they also be considered conscious? Some authors defend that the quest for plant consciousness is worth pursuing, under the premise that sentience can play a role in facilitating plant's sophisticated behavior. The goal of this article is not to provide a positive argument for plant cognition and consciousness, but to invite a constructive, empirically informed debate about it. After reviewing the empirical literature concerning plant cognition, we introduce the reader to the emerging field of plant neurobiology. Research on plant electrical and chemical signaling can help shed light into the biological bases for plant sentience. To conclude, we shall present a series of approaches to scientifically investigate plant consciousness. In sum, we invite the reader to consider the idea that if consciousness boils down to some form of biological adaptation, we should not exclude a priori the possibility that plants have evolved their own phenomenal experience of the world. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Philosophy > Consciousness Neuroscience > Cognition.
Collapse
Affiliation(s)
- Miguel Segundo-Ortin
- Department of Philosophy and Religious Studies, Faculty of Humanities, Utrecht University, Utrecht, The Netherlands
| | - Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
37
|
Germain SJ, Lutz JA. Shared friends counterbalance shared enemies in old forests. Ecology 2021; 102:e03495. [PMID: 34309021 DOI: 10.1002/ecy.3495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022]
Abstract
Mycorrhizal mutualisms are nearly ubiquitous across plant communities. Yet, it is still unknown whether facilitation among plants arises primarily from these mycorrhizal networks or from physical and ecological attributes of plants themselves. Here, we tested the relative contributions of mycorrhizae and plants to both positive and negative biotic interactions to determine whether plant-soil feedbacks with mycorrhizae neutralize competition and enemies within multitrophic forest community networks. We used Bayesian hierarchical generalized linear modeling to examine mycorrhizal-guild-specific and mortality-cause-specific woody plant survival compiled from a spatially and temporally explicit data set comprising 101,096 woody plants from three mixed-conifer forests across western North America. We found positive plant-soil feedbacks for large-diameter trees: species-rich woody plant communities indirectly promoted large tree survival when connected via mycorrhizal networks. Shared mycorrhizae primarily counterbalanced apparent competition mediated by tree enemies (e.g., bark beetles, soil pathogens) rather than diffuse competition between plants. We did not find the same survival benefits for small trees or shrubs. Our findings suggest that lower large-diameter tree mortality susceptibility in species-rich temperate forests resulted from greater access to shared mycorrhizal networks. The interrelated importance of aboveground and belowground biodiversity to large tree survival may be critical for counteracting increasing pathogen, bark beetle, and density threats.
Collapse
Affiliation(s)
- Sara J Germain
- Department of Wildland Resources, Utah State University, Logan, Utah, 84322-5230, USA
| | - James A Lutz
- Department of Wildland Resources, Utah State University, Logan, Utah, 84322-5230, USA
| |
Collapse
|
38
|
Aleklett K, Boddy L. Fungal behaviour: a new frontier in behavioural ecology. Trends Ecol Evol 2021; 36:787-796. [PMID: 34172318 DOI: 10.1016/j.tree.2021.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
As human beings, behaviours make up our everyday lives. What we do from the moment we wake up to the moment we go back to sleep at night can all be classified and studied through the concepts of behavioural ecology. The same applies to all vertebrates and, to some extent, invertebrates. Fungi are, in most people's eyes perhaps, the eukaryotic multicellular organisms with which we humans share the least commonalities. However, they still express behaviours, and we argue that we could obtain a better understanding of their lives - although they are very different from ours - through the lens of behavioural ecology. Moreover, insights from fungal behaviour may drive a better understanding of behavioural ecology in general.
Collapse
Affiliation(s)
- Kristin Aleklett
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, SE-234 22 Lomma, Sweden.
| | - Lynne Boddy
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
39
|
Cazalis R, Cottam R. An approach to the plant body: Assessing concrete and abstract aspects. Biosystems 2021; 207:104461. [PMID: 34166731 DOI: 10.1016/j.biosystems.2021.104461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/29/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023]
Abstract
The paper aims at proposing a representation of plants as individuals. The first section selects the population of plants to which this study is addressed. The second section describes the effective architecture of plants as modular systems with fixed and mobile elements, in other words, plants and their extensions. The third section presents how plants integrate the fixed and mobile modules into functional units through three areas of particular relevance to plant growth and development: nutrition, defence and pollination. Based on the tangible elements introduced in the previous sections, the fourth section presents the main issue of the proposal which is not apparent at first glance, namely, the local-global relationship in plants' architecture that determines their individuality as organisms. Finally, in the conclusion, we issue the challenge of developing a collective presentation of plants which satisfies their complementary dimension.
Collapse
Affiliation(s)
- Roland Cazalis
- Dept. of 'Sciences, Philosophies, Societies', ESPHIN, NAXYS, University of Namur, Namur, Belgium
| | - Ron Cottam
- The Living Systems Project, Department of Electronics and Informatics, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
40
|
Jansson C, Faiola C, Wingler A, Zhu XG, Kravchenko A, de Graaff MA, Ogden AJ, Handakumbura PP, Werner C, Beckles DM. Crops for Carbon Farming. FRONTIERS IN PLANT SCIENCE 2021; 12:636709. [PMID: 34149744 PMCID: PMC8211891 DOI: 10.3389/fpls.2021.636709] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/26/2021] [Indexed: 05/03/2023]
Abstract
Agricultural cropping systems and pasture comprise one third of the world's arable land and have the potential to draw down a considerable amount of atmospheric CO2 for storage as soil organic carbon (SOC) and improving the soil carbon budget. An improved soil carbon budget serves the dual purpose of promoting soil health, which supports crop productivity, and constituting a pool from which carbon can be converted to recalcitrant forms for long-term storage as a mitigation measure for global warming. In this perspective, we propose the design of crop ideotypes with the dual functionality of being highly productive for the purposes of food, feed, and fuel, while at the same time being able to facilitate higher contribution to soil carbon and improve the below ground ecology. We advocate a holistic approach of the integrated plant-microbe-soil system and suggest that significant improvements in soil carbon storage can be achieved by a three-pronged approach: (1) design plants with an increased root strength to further allocation of carbon belowground; (2) balance the increase in belowground carbon allocation with increased source strength for enhanced photosynthesis and biomass accumulation; and (3) design soil microbial consortia for increased rhizosphere sink strength and plant growth-promoting (PGP) properties.
Collapse
Affiliation(s)
- Christer Jansson
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Celia Faiola
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Astrid Wingler
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alexandra Kravchenko
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Marie-Anne de Graaff
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Aaron J. Ogden
- Pacific Northwest National Laboratory, Richland, WA, United States
| | | | | | - Diane M. Beckles
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
41
|
Veselá P, Vašutová M, Edwards-Jonášová M, Holub F, Fleischer P, Cudlín P. Management After Windstorm Affects the Composition of Ectomycorrhizal Symbionts of Regenerating Trees but Not Their Mycorrhizal Networks. FRONTIERS IN PLANT SCIENCE 2021; 12:641232. [PMID: 34054889 PMCID: PMC8160286 DOI: 10.3389/fpls.2021.641232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Due to ongoing climate change, forests are expected to face significant disturbances more frequently than in the past. Appropriate management is intended to facilitate forest regeneration. Because European temperate forests mostly consist of trees associated with ectomycorrhizal (ECM) fungi, understanding their role in these disturbances is important to develop strategies to minimize their consequences and effectively restore forests. Our aim was to determine how traditional (EXT) and nonintervention (NEX) management in originally Norway spruce (Picea abies) forests with an admixture of European larch (Larix decidua) affect ECM fungal communities and the potential to interconnect different tree species via ECM networks 15 years after a windstorm. Ten plots in NEX and 10 plots in EXT with the co-occurrences of Norway spruce, European larch, and silver birch (Betula pendula) were selected, and a total of 57 ECM taxa were identified using ITS sequencing from ECM root tips. In both treatments, five ECM species associated with all the studied tree species dominated, with a total abundance of approximately 50% in the examined root samples. Because there were no significant differences between treatments in the number of ECM species associated with different tree species combinations in individual plots, we concluded that the management type did not have a significant effect on networking. However, management significantly affected the compositions of ECM symbionts of Norway spruce and European larch but not those of silver birch. Although this result is explained by the occurrence of seedlings and ECM propagules that were present in the original forest, the consequences are difficult to assess without knowledge of the ecology of different ECM symbionts.
Collapse
Affiliation(s)
- Petra Veselá
- Department of Carbon Storage in the Landscape, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Martina Vašutová
- Department of Carbon Storage in the Landscape, Global Change Research Institute of the Czech Academy of Sciences, České Budějovice, Czechia
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Magda Edwards-Jonášová
- Department of Carbon Storage in the Landscape, Global Change Research Institute of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Filip Holub
- Department of Carbon Storage in the Landscape, Global Change Research Institute of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Peter Fleischer
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Pavel Cudlín
- Department of Carbon Storage in the Landscape, Global Change Research Institute of the Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
42
|
Motaung TE, Peremore C, Wingfield B, Steenkamp E. Plant-associated fungal biofilms-knowns and unknowns. FEMS Microbiol Ecol 2021; 96:5956487. [PMID: 33150944 DOI: 10.1093/femsec/fiaa224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Nearly all microbes, including fungi, grow firmly attached to surfaces as a biofilm. Yet, attention toward fungal interactions with plants and the environment is dedicated to free-floating (planktonic) cells. Fungal biofilms are generally thought to configure interactions across and among plant populations. Despite this, plant fungal biofilm research lags far behind the research on biofilms of medically important fungi. The deficit in noticing and exploring this research avenue could limit disease management and plant improvement programs. Here, we provide the current state of knowledge of fungal biofilms and the different pivotal ecological roles they impart in the context of disease, through leveraging evidence across medically important fungi, secondary metabolite production, plant beneficial functions and climate change. We also provide views on several important information gaps potentially hampering plant fungal biofilm research, and propose a way forward to address these gaps.
Collapse
Affiliation(s)
- Thabiso E Motaung
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Chizné Peremore
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Brenda Wingfield
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Emma Steenkamp
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
43
|
Kadowaki K, Yamamoto S, Sato H, Tanabe AS, Toju H. Aboveground herbivores drive stronger plant species-specific feedback than belowground fungi to regulate tree community assembly. Oecologia 2021; 195:773-784. [PMID: 33598833 DOI: 10.1007/s00442-021-04868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/03/2021] [Indexed: 11/28/2022]
Abstract
Ectomycorrhizal (EcM) tree species often become more dominant than arbuscular mycorrhizal (AM) tree species in temperate forests, but they generally coexist. Theory predicts that ecological feedback mediated by aboveground herbivory and/or belowground microbes could explain these dominance/coexistence patterns. An experimental test of how aboveground/belowground organisms associated with AM/EcM trees mediate ecological feedbacks has been lacking at the community-level. By establishing AM and EcM tree sapling assemblages in mesocosms and then introducing seedlings of each type in a reciprocal planting experiment, we compared seedling performance under varying sapling species (conspecifics, heterospecifics within the same and different mycorrhizal types), using traits that reflect either aboveground herbivory-mediated feedback or belowground fungal-mediated feedback or both. When examining seedling traits that reflect aboveground herbivory-mediated feedbacks (i.e., foliar damage), AM plants tended to experience less foliar damage and EcM plants more damage under conspecific versus heterospecific saplings within the same mycorrhizal types, and aboveground herbivory-mediated feedback was species-specific rather than mycorrhizal type-specific. Conversely, when examining traits that reflect belowground fungal-mediated feedbacks, both AM and EcM plant species often exhibited mycorrhizal type-specific feedbacks (e.g., greater aboveground biomass under the same versus different mycorrhizal-type saplings) rather than species-specific feedbacks. Furthermore, tree species affected by herbivory-mediated feedback were less affected by belowground feedback, indicating that the relative importance of the feedbacks varied among plant species. Analysis of plant-associated organisms verified that the feedback outcomes corresponded with species accumulation of belowground fungi (but not of aboveground herbivores). Thus, aboveground herbivores drive stronger plant species-specific feedback than belowground fungi to regulate temperate tree diversity.
Collapse
Affiliation(s)
- Kohmei Kadowaki
- Field Science Education and Research Center, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan. .,The Hakubi Center for Advanced Research, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan.
| | - Satoshi Yamamoto
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan
| | - Hirotoshi Sato
- Graduate School of Human and Environmental Studies, Yoshida-nihonmatsu-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Akifumi S Tanabe
- Graduate School of Life Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Hirano 2 509-3, Otsu, 520-2113, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
44
|
Baluška F, Mancuso S. Individuality, self and sociality of vascular plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190760. [PMID: 33550947 DOI: 10.1098/rstb.2019.0760] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vascular plants are integrated into coherent bodies via plant-specific synaptic adhesion domains, action potentials (APs) and other means of long-distance signalling running throughout the plant bodies. Plant-specific synapses and APs are proposed to allow plants to generate their self identities having unique ways of sensing and acting as agents with their own goals guiding their future activities. Plants move their organs with a purpose and with obvious awareness of their surroundings and require APs to perform and control these movements. Self-identities allow vascular plants to act as individuals enjoying sociality via their self/non-self-recognition and kin recognition. Flowering plants emerge as cognitive and intelligent organisms when the major strategy is to attract and control their animal pollinators as well as seed dispersers by providing them with food enriched with nutritive and manipulative/addictive compounds. Their goal in interactions with animals is manipulation for reproduction, dispersal and defence. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
| | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences, University of Florence, Florence, Italy
| |
Collapse
|
45
|
Palanca-Castan N, Sánchez Tajadura B, Cofré R. Towards an interdisciplinary framework about intelligence. Heliyon 2021; 7:e06268. [PMID: 33665435 PMCID: PMC7902546 DOI: 10.1016/j.heliyon.2021.e06268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/21/2020] [Accepted: 02/09/2021] [Indexed: 01/25/2023] Open
Abstract
In recent years, advances in science, technology, and the way in which we view our world have led to an increasingly broad use of the term "intelligence". As we learn more about biological systems, we find more and more examples of complex and precise adaptive behavior in animals and plants. Similarly, as we build more complex computational systems, we recognize the emergence of highly sophisticated structures capable of solving increasingly complex problems. These behaviors show characteristics in common with the sort of complex behaviors and learning capabilities we find in humans, and therefore it is common to see them referred to as "intelligent". These analogies are problematic as the term intelligence is inextricably associated with human-like capabilities. While these issues have been discussed by leading researchers of AI and renowned psychologists and biologists highlighting the commonalities and differences between AI and biological intelligence, there have been few rigorous attempts to create an interdisciplinary approach to the modern problem of intelligence. This article proposes a comparative framework to discuss what we call "purposeful behavior", a characteristic shared by systems capable of gathering and processing information from their surroundings and modifying their actions in order to fulfill a series of implicit or explicit goals. Our aim is twofold: on the one hand, the term purposeful behavior allows us to describe the behavior of these systems without using the term "intelligence", avoiding the comparison with human capabilities. On the other hand, we hope that our framework encourages interdisciplinary discussion to help advance our understanding of the relationships among different systems and their capabilities.
Collapse
Affiliation(s)
- Nicolas Palanca-Castan
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Pje Harrington 287, 2360103 Valparaíso, Chile
| | | | - Rodrigo Cofré
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
46
|
Human Enhancements and Voting: Towards a Declaration of Rights and Responsibilities of Beings. PHILOSOPHIES 2021. [DOI: 10.3390/philosophies6010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The phenomenon and ethics of “voting” will be explored in the context of human enhancements. “Voting” will be examined for enhanced humans with moderate and extreme enhancements. Existing patterns of discrimination in voting around the globe could continue substantially “as is” for those with moderate enhancements. For extreme enhancements, voting rights could be challenged if the very humanity of the enhanced was in doubt. Humans who were not enhanced could also be disenfranchised if certain enhancements become prevalent. Voting will be examined using a theory of engagement articulated by Professor Sophie Loidolt that emphasizes the importance of legitimization and justification by “facing the appeal of the other” to determine what is “right” from a phenomenological first-person perspective. Seeking inspiration from the Universal Declaration of Human Rights (UDHR) of 1948, voting rights and responsibilities will be re-framed from a foundational working hypothesis that all enhanced and non-enhanced humans should have a right to vote directly. Representative voting will be considered as an admittedly imperfect alternative or additional option. The framework in which voting occurs, as well as the processes, temporal cadence, and role of voting, requires the participation from as diverse a group of humans as possible. Voting rights delivered by fiat to enhanced or non-enhanced humans who were excluded from participation in the design and ratification of the governance structure is not legitimate. Applying and extending Loidolt’s framework, we must recognize the urgency that demands the impossible, with openness to that universality in progress (or universality to come) that keeps being constituted from the outside.
Collapse
|
47
|
Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network. Fungal Genet Biol 2021; 147:103517. [PMID: 33434644 DOI: 10.1016/j.fgb.2021.103517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022]
Abstract
For many plants, their symbiosis with arbuscular mycorrhizal fungi plays a key role in the acquisition of mineral nutrients such as inorganic phosphate (Pi), in exchange for assimilated carbon. To study gene regulation and function in the symbiotic partners, we and others have used compartmented microcosms in which the extra-radical mycelium (ERM), responsible for mineral nutrient supply for the plants, was separated by fine nylon nets from the associated host roots and could be harvested and analysed in isolation. Here, we used such a model system to perform a quantitative comparative protein profiling of the ERM of Rhizophagus irregularis BEG75, forming a common mycorrhizal network (CMN) between poplar and sorghum roots under a long-term high- or low-Pi fertilization regime. Proteins were extracted from the ERM and analysed by liquid chromatography-tandem mass spectrometry. This workflow identified a total of 1301 proteins, among which 162 displayed a differential amount during Pi limitation, as monitored by spectral counting. Higher abundances were recorded for proteins involved in the mobilization of external Pi, such as secreted acid phosphatase, 3',5'-bisphosphate nucleotidase, and calcium-dependent phosphotriesterase. This was also the case for intracellular phospholipase and lysophospholipases that are involved in the initial degradation of phospholipids from membrane lipids to mobilize internal Pi. In Pi-deficient conditions. The CMN proteome was especially enriched in proteins assigned to beta-oxidation, glyoxylate shunt and gluconeogenesis, indicating that storage lipids rather than carbohydrates are fuelled in ERM as the carbon source to support hyphal growth and energy requirements. The contrasting pattern of expression of AM-specific fatty acid biosynthetic genes between the two plants suggests that in low Pi conditions, fatty acid provision to the fungal network is mediated by sorghum roots but not by poplar. Loss of enzymes involved in arginine synthesis coupled to the mobilization of proteins involved in the breakdown of nitrogen sources such as intercellular purines and amino acids, support the view that ammonium acquisition by host plants through the mycorrhizal pathway may be reduced under low-Pi conditions. This proteomic study highlights the functioning of a CMN in Pi limiting conditions, and provides new perspectives to study plant nutrient acquisition as mediated by arbuscular mycorrhizal fungi.
Collapse
|
48
|
Abstract
Infrastructure is all around us: under, above, even inside our built and natural landscapes. Sometimes hidden, sometimes visible. The flows that course through them make our cities, economies, and lives possible. Cities could not even exist without infrastructure. Life is endowed with more possibilities by infrastructure. The centrality of infrastructure is pervasive. Worldwide, cities embrace infrastructure for economic competitiveness, well-being, access, environmental protection and knowledge creation. As cities are crucibles that concentrate the human condition, infrastructures are conduits that enable that concentration and empower human achievement. As infrastructures shape almost every aspect of daily life, this article assays the various ways it currently makes places both less sustainable and resilient, as well as more so, and how we can minimise the former and optimise the latter.
Collapse
|
49
|
Abstract
Is there a difference between human beings and those based on artificial intelligence (AI) that would affect their ability to be subjects of (human-like) dignity? This paper first examines the philosophical notion of (human) dignity as Immanuel Kant derives it from the moral autonomy of the individual. It then asks whether animals and AI systems can claim Kantian dignity or whether there is a sharp divide between human beings, animals and AI systems regarding their ability to be subjects of dignity. How this question is answered depends crucially on one's understanding of what constitutes human dignity and autonomy, and what requirements one places upon systems in order for them to be seen as morally autonomous.
Collapse
Affiliation(s)
- Andreas Matthias
- Department of Philosophy, Lingnan University, 8 Castle Peak Road, Tuen Mun, Hong Kong.
| |
Collapse
|
50
|
Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12100370] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiotic associations with most terrestrial plants. These soil microorganisms enhance the plant’s nutrient uptake by extending the root absorbing area. In return, the symbiont receives plant carbohydrates for the completion of its life cycle. AMF also helps plants to cope with biotic and abiotic stresses such as salinity, drought, extreme temperature, heavy metal, diseases, and pathogens. For abiotic stresses, the mechanisms of adaptation of AMF to these stresses are generally linked to increased hydromineral nutrition, ion selectivity, gene regulation, production of osmolytes, and the synthesis of phytohormones and antioxidants. Regarding the biotic stresses, AMF are involved in pathogen resistance including competition for colonization sites and improvement of the plant’s defense system. Furthermore, AMF have a positive impact on ecosystems. They improve the quality of soil aggregation, drive the structure of plant and bacteria communities, and enhance ecosystem stability. Thus, a plant colonized by AMF will use more of these adaptation mechanisms compared to a plant without mycorrhizae. In this review, we present the contribution of AMF on plant growth and performance in stressed environments.
Collapse
|