1
|
Adair A, Tan LL, Feng J, Girkin J, Bryant N, Wang M, Mordant F, Chan LJ, Bartlett NW, Subbarao K, Pymm P, Tham WH. Human coronavirus OC43 nanobody neutralizes virus and protects mice from infection. J Virol 2024; 98:e0053124. [PMID: 38709106 PMCID: PMC11237593 DOI: 10.1128/jvi.00531-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
Human coronavirus (hCoV) OC43 is endemic to global populations and usually causes asymptomatic or mild upper respiratory tract illness. Here, we demonstrate the neutralization efficacy of isolated nanobodies from alpacas immunized with the S1B and S1C domain of the hCoV-OC43 spike glycoprotein. A total of 40 nanobodies bound to recombinant OC43 protein with affinities ranging from 1 to 149 nM. Two nanobodies WNb 293 and WNb 294 neutralized virus at 0.21 and 1.79 nM, respectively. Intranasal and intraperitoneal delivery of WNb 293 fused to an Fc domain significantly reduced nasal viral load in a mouse model of hCoV-OC43 infection. Using X-ray crystallography, we observed that WNb 293 bound to an epitope on the OC43 S1B domain, distal from the sialoglycan-binding site involved in host cell entry. This result suggests that neutralization mechanism of this nanobody does not involve disruption of glycan binding. Our work provides characterization of nanobodies against hCoV-OC43 that blocks virus entry and reduces viral loads in vivo and may contribute to future nanobody-based therapies for hCoV-OC43 infections. IMPORTANCE The pandemic potential presented by coronaviruses has been demonstrated by the ongoing COVID-19 pandemic and previous epidemics caused by severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus. Outside of these major pathogenic coronaviruses, there are four endemic coronaviruses that infect humans: hCoV-OC43, hCoV-229E, hCoV-HKU1, and hCoV-NL63. We identified a collection of nanobodies against human coronavirus OC43 (hCoV-OC43) and found that two high-affinity nanobodies potently neutralized hCoV-OC43 at low nanomolar concentrations. Prophylactic administration of one neutralizing nanobody reduced viral loads in mice infected with hCoV-OC43, showing the potential for nanobody-based therapies for hCoV-OC43 infections.
Collapse
Affiliation(s)
- Amy Adair
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Li Lynn Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jackson Feng
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason Girkin
- />College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Infection Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nathan Bryant
- />College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Infection Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mingyang Wang
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Francesca Mordant
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Li-Jin Chan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nathan W. Bartlett
- />College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Infection Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Phillip Pymm
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Failayev H, Ganoth A, Tsfadia Y. Molecular insights on the coronavirus MERS-CoV interaction with the CD26 receptor. Virus Res 2024; 342:199330. [PMID: 38272241 PMCID: PMC10862065 DOI: 10.1016/j.virusres.2024.199330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The Middle East respiratory syndrome (MERS) is a severe respiratory disease with high fatality rates, caused by the Middle East respiratory syndrome coronavirus (MERS-CoV). The virus initiates infection by binding to the CD26 receptor (also known as dipeptidyl peptidase 4 or DPP4) via its spike protein. Although the receptor-binding domain (RBD) of the viral spike protein and the complex between RBD and the extracellular domain of CD26 have been studied using X-ray crystallography, conflicting studies exist regarding the importance of certain amino acids outside the resolved RBD-CD26 complex interaction interface. To gain atomic-level knowledge of the RBD-CD26 complex, we employed computational simulations to study the complex's dynamic behavior as it evolves from its crystal structure to a conformation stable in solution. Our study revealed previously unidentified interaction regions and interacting amino acids within the complex, determined a novel comprehensive RBD-binding domain of CD26, and by that expanded the current understanding of its structure. Additionally, we examined the impact of a single amino acid substitution, E513A, on the complex's stability. We discovered that this substitution disrupts the complex through an allosteric domino-like mechanism that affects other residues. Since MERS-CoV is a zoonotic virus, we evaluated its potential risk of human infection via animals, and suggest a low likelihood for possible infection by cats or dogs. The molecular structural information gleaned from our insights into the RBD-CD26 complex pre-dissociative states may be proved useful not only from a mechanistic view but also in assessing inter-species transmission and in developing anti-MERS-CoV antiviral therapeutics.
Collapse
Affiliation(s)
- Hila Failayev
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Assaf Ganoth
- Department of Physical Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; The Interdisciplinary Center (IDC), P.O. Box 167, Herzliya 4610101, Israel
| | - Yossi Tsfadia
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
3
|
Kandeel M. An overview of the recent progress in Middle East Respiratory Syndrome Coronavirus (MERS-CoV) drug discovery. Expert Opin Drug Discov 2023; 18:385-400. [PMID: 36971501 DOI: 10.1080/17460441.2023.2192921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
INTRODUCTION The Middle East respiratory syndrome coronavirus (MERS-CoV) has remained a public health concern since it first emerged in 2012. Although many potential treatments for MERS-CoV have been developed and tested, none have had complete success in stopping the spread of this deadly disease. MERS-CoV replication comprises attachment, entry, fusion and replication steps. Targeting these events may lead to the creation of medications that effectively treat MERS-CoV infection. AREAS COVERED This review updates the research on the development of inhibitors of MERS-CoV. The main topics are MERS-CoV‒related proteins and host cell proteins that are involved in viral protein activation and infection. EXPERT OPINION Research on discovering drugs that can inhibit MERS-CoV started at a slow pace, and although efforts have steadily increased, clinical trials for new drugs specifically targeting MERS-CoV have not been extensive enough. The explosion in efforts to find new medications for the SARS-CoV-2 virus indirectly enhanced the volume of data on MERS-CoV inhibition by including MERS-CoV in drug assays. The appearance of COVID-19 completely transformed the data available on MERS-CoV inhibition. Despite the fact that new infected cases are constantly being diagnosed, there are currently no approved vaccines for or inhibitors of MERS-CoV.
Collapse
|
4
|
Jasim SA, Mahdi RS, Bokov DO, Najm MAA, Sobirova GN, Bafoyeva ZO, Taifi A, Alkadir OKA, Mustafa YF, Mirzaei R, Karampoor S. The deciphering of the immune cells and marker signature in COVID-19 pathogenesis: An update. J Med Virol 2022; 94:5128-5148. [PMID: 35835586 PMCID: PMC9350195 DOI: 10.1002/jmv.28000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
The precise interaction between the immune system and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in deciphering the pathogenesis of coronavirus disease 2019 (COVID-19) and is also vital for developing novel therapeutic tools, including monoclonal antibodies, antivirals drugs, and vaccines. Viral infections need innate and adaptive immune reactions since the various immune components, such as neutrophils, macrophages, CD4+ T, CD8+ T, and B lymphocytes, play different roles in various infections. Consequently, the characterization of innate and adaptive immune reactions toward SARS-CoV-2 is crucial for defining the pathogenicity of COVID-19. In this study, we explain what is currently understood concerning the conventional immune reactions to SARS-CoV-2 infection to shed light on the protective and pathogenic role of immune response in this case. Also, in particular, we investigate the in-depth roles of other immune mediators, including neutrophil elastase, serum amyloid A, and syndecan, in the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
| | - Roaa Salih Mahdi
- Department of Pathology, College of MedicineUniversity of BabylonHillaIraq
| | - Dmitry Olegovich Bokov
- Institute of PharmacySechenov First Moscow State Medical UniversityMoscowRussian Federation,Laboratory of Food ChemistryFederal Research Center of Nutrition, Biotechnology and Food SafetyMoscowRussian Federation
| | - Mazin A. A. Najm
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐QarIraq
| | - Guzal N. Sobirova
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | - Zarnigor O. Bafoyeva
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of PharmacyUniversity of MosulMosulIraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Zhang S, Jia W, Zeng J, Li M, Wang Z, Zhou H, Zhang L, Wang X. Cryoelectron microscopy structures of a human neutralizing antibody bound to MERS-CoV spike glycoprotein. Front Microbiol 2022; 13:988298. [PMID: 36246239 PMCID: PMC9554411 DOI: 10.3389/fmicb.2022.988298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Neutralizing monoclonal antibodies (mAbs) against highly pathogenic coronaviruses represent promising candidates for clinical intervention. Here, we isolated a potent neutralizing monoclonal antibody, MERS-S41, from a yeast displayed scFv library using the S protein as a bait. To uncover the neutralization mechanism, we determined structures of MERS-S41 Fab in complex with the trimeric spike glycoprotein by cryoelectron microscopy (cryo-EM). We observed four distinct classes of the complex structure, which showed that the MERS-S41 Fab bound to the “up” receptor binding domain (RBD) with full saturation and also bound to an accessible partially lifted “down” RBD, providing a structural basis for understanding how mAbs bind to trimeric spike glycoproteins. Structure analysis of the epitope and cell surface staining assays demonstrated that virus entry is blocked predominantly by direct competition with the host receptor, dipeptidyl peptidase-4 (DPP4).
Collapse
Affiliation(s)
- Shuyuan Zhang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenxv Jia
- Comprehensive AIDS Research Center and Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
- NexVac Research Center, Tsinghua University, Beijing, China
| | - Jianwei Zeng
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Mingxi Li
- Comprehensive AIDS Research Center and Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
- NexVac Research Center, Tsinghua University, Beijing, China
| | - Ziyi Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haixia Zhou
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Haixia Zhou,
| | - Linqi Zhang
- Comprehensive AIDS Research Center and Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
- NexVac Research Center, Tsinghua University, Beijing, China
- Linqi Zhang,
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Xinquan Wang,
| |
Collapse
|
6
|
SARS-CoV-2 infection: Pathogenesis, Immune Responses, Diagnosis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
COVID-19 has emerged as the most alarming infection of the present time instigated by the virus SARS-CoV-2. In spite of advanced research technologies, the exact pathophysiology and treatment of the condition still need to be explored. However, SARS-CoV-2 has several structural and functional similarities that resemble SARS-CoV and MERS-CoV which may be beneficial in exploring the possible treatment and diagnostic strategies for SARS-CoV-2. This review discusses the pathogen phenotype, genotype, replication, pathophysiology, elicited immune response and emerging variants of SARS-CoV-2 and their similarities with other similar viruses. SARS-CoV-2 infection is detected by a number of diagnostics techniques, their advantages and limitations are also discussed in detail. The review also focuses on nanotechnology-based easy and fast detection of SARS-CoV-2 infection. Various pathways which might play a vital role during SARS-CoV-2 infection have been elaborately discussed since immune response plays a major role during viral infections.
Collapse
|
7
|
Mohammed RN, Tamjidifar R, Rahman HS, Adili A, Ghoreishizadeh S, Saeedi H, Thangavelu L, Shomali N, Aslaminabad R, Marofi F, Tahavvori M, Danishna S, Akbari M, Ercan G. A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID-19). Cell Commun Signal 2022; 20:79. [PMID: 35655192 PMCID: PMC9162381 DOI: 10.1186/s12964-022-00856-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease (COVID-19) is a viral infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The infection was reported in Wuhan, China, in late December 2019 and has become a major global concern due to severe respiratory infections and high transmission rates. Evidence suggests that the strong interaction between SARS-CoV-2 and patients' immune systems leads to various clinical symptoms of COVID-19. Although the adaptive immune responses are essential for eliminating SARS-CoV-2, the innate immune system may, in some cases, cause the infection to progress. The cytotoxic CD8+ T cells in adaptive immune responses demonstrated functional exhaustion through upregulation of exhaustion markers. In this regard, humoral immune responses play an essential role in combat SARS-CoV-2 because SARS-CoV-2 restricts antigen presentation through downregulation of MHC class I and II molecules that lead to the inhibition of T cell-mediated immune response responses. This review summarizes the exact pathogenesis of SARS-CoV-2 and the alteration of the immune response during SARS-CoV-2 infection. In addition, we've explained the exhaustion of the immune system during SARS-CoV-2 and the potential immunomodulation approach to overcome this phenomenon. Video Abstract.
Collapse
Affiliation(s)
- Rebar N. Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihlan University of Sulaimaniya, Kurdistan Region, Iraq
- College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | - Rozita Tamjidifar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sarchinar District, Sulaimaniyah, Iraq
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Aslaminabad
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Tahavvori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gülinnaz Ercan
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Ege University, Izmir, Turkey
| |
Collapse
|
8
|
Hurlburt NK, Homad LJ, Sinha I, Jennewein MF, MacCamy AJ, Wan YH, Boonyaratanakornkit J, Sholukh AM, Jackson AM, Zhou P, Burton DR, Andrabi R, Ozorowski G, Ward AB, Stamatatos L, Pancera M, McGuire AT. Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Commun Biol 2022; 5:342. [PMID: 35411021 PMCID: PMC9001700 DOI: 10.1038/s42003-022-03262-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022] Open
Abstract
Three betacoronaviruses have crossed the species barrier and established human-to-human transmission causing significant morbidity and mortality in the past 20 years. The most current and widespread of these is SARS-CoV-2. The identification of CoVs with zoonotic potential in animal reservoirs suggests that additional outbreaks could occur. Monoclonal antibodies targeting conserved neutralizing epitopes on diverse CoVs can form the basis for prophylaxis and therapeutic treatments and enable the design of vaccines aimed at providing pan-CoV protection. We previously identified a neutralizing monoclonal antibody, CV3-25 that binds to the SARS-CoV-2 spike, neutralizes the SARS-CoV-2 Beta variant comparably to the ancestral Wuhan Hu-1 strain, cross neutralizes SARS-CoV-1 and binds to recombinant proteins derived from the spike-ectodomains of HCoV-OC43 and HCoV-HKU1. Here, we show that the neutralizing activity of CV3-25 is maintained against the Alpha, Delta, Gamma and Omicron variants of concern as well as a SARS-CoV-like bat coronavirus with zoonotic potential by binding to a conserved linear peptide in the stem-helix region. Negative stain electron microscopy and a 1.74 Å crystal structure of a CV3-25/peptide complex demonstrates that CV3-25 binds to the base of the stem helix at the HR2 boundary to an epitope that is distinct from other stem-helix directed neutralizing mAbs.
Collapse
Affiliation(s)
- Nicholas K Hurlburt
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Leah J Homad
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Irika Sinha
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Madeleine F Jennewein
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Anna J MacCamy
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Jim Boonyaratanakornkit
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Anton M Sholukh
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Abigail M Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
- Vaccine Research Center, NAID, NIH, Bethesda, MD, USA.
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Xiang R, Wang Y, Wang L, Deng X, Huo S, Jiang S, Yu F. Neutralizing monoclonal antibodies against highly pathogenic coronaviruses. Curr Opin Virol 2022; 53:101199. [PMID: 35038651 PMCID: PMC8716168 DOI: 10.1016/j.coviro.2021.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
The pandemic of Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2) is a continuing worldwide threat to human health and social economy. Historically, SARS-CoV-2 follows SARS and MERS as the third coronavirus spreading across borders and continents, but far more dangerous with long-lasting symptomatic consequences. The current situation is strong evidence that coronaviruses will continue to be pathogens of consequence in the future, thus calling for the development of neutralizing antibody-based prophylactics and therapeutics for prevention and treatment of COVID-19 and other human coronavirus diseases. This review summarized the progresses of developing neutralizing monoclonal antibodies against infection of SARS-CoV-2, SARS-CoV, and MERS-CoV, and discussed their potential applications in prevention and treatment of COVID-19 and other human coronavirus diseases.
Collapse
Affiliation(s)
- Rong Xiang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yang Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Xiaoqian Deng
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China.
| |
Collapse
|
10
|
Zhou P, Song G, He WT, Beutler N, Tse LV, Martinez DR, Schäfer A, Anzanello F, Yong P, Peng L, Dueker K, Musharrafieh R, Callaghan S, Capozzola T, Yuan M, Liu H, Limbo O, Parren M, Garcia E, Rawlings SA, Smith DM, Nemazee D, Jardine JG, Wilson IA, Safonova Y, Rogers TF, Baric RS, Gralinski LE, Burton DR, Andrabi R. Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause severe disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.04.479488. [PMID: 35291291 PMCID: PMC8923106 DOI: 10.1101/2022.03.04.479488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against coronaviruses that cause severe disease, for anticipating novel pandemic-causing viruses, and to respond more effectively to SARS-CoV-2 variants. The emergence of the Omicron variant of SARS-CoV-2 has illustrated the limitations of solely targeting the receptor binding domain (RBD) of the envelope Spike (S)-protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors that target a conserved S2 region in the fusion machinery on betacoronavirus spikes. Select bnAbs show broad in vivo protection against all three pathogenic betacoronaviruses, SARS-CoV-1, SARS-CoV-2 and MERS-CoV, that have spilled over into humans in the past 20 years to cause severe disease. The bnAbs provide new opportunities for antibody-based interventions and key insights for developing pan-betacoronavirus vaccines.
Collapse
Affiliation(s)
- Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Longping V. Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R. Martinez
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oliver Limbo
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M. Smith
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph G. Jardine
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ralph S. Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Departments of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lisa E. Gralinski
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Atanasov P, Ivanova S, Kobakova Y, Moneva-Sakelarieva M, Obreshkova D, Petkova V, Laleva-Jordanova P. Immunogenesis in patients with medium and severe coronavirus infection – dynamics in different age groups. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e81063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The results of a one-year prospective study, during which the process of immunogenesis in patients over 18 years of age with moderate and severe coronavirus infection was monitored and analyzed in clinical and paraclinical (clinical laboratory) aspects, are summarized and presented.
The study included 2683 patients, all treated in the Clinic of Internal Diseases at the University Multiprofile Hospital for Active Treatment and Emergency Medicine “N. I. Pirogov” EAD, Sofia for the period from April 2020 to December 2020. Patients were followed for one year after recovering from moderate to severe coronavirus infection. Patients are grouped into four age categories as follows: 18–45 years; 46–65 years; 66–80 years and over 80 years.
The results of our study show that during the study period in 97% of patients the level of anti-SARS-CoV2, rose and in the remaining three percent it was flat or followed by subsequent waning (in less than 1% of patients), but does not reach critically low levels (i. e. below the positivity conditional threshold). The level of IgG reached a peak and then waned, but on the other hand, as mentioned above, the amount of Ig-Total tested shows a significant increase. This trend is observed in all age groups, with a difference in the level of IgG and Ig-Total depending on age.
The results of the additional screening in the target period in terms of virulence and virus segregation, categorically rule out the suspicion of the presence of “silent spreader”. During the follow-up period, no patients were re-hospitalized due to recurrence of Coronavirus infection (re-infection and illness).
Collapse
|
12
|
The structure of a novel antibody against the spike protein inhibits Middle East respiratory syndrome coronavirus infections. Sci Rep 2022; 12:1260. [PMID: 35075213 PMCID: PMC8786824 DOI: 10.1038/s41598-022-05318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/07/2022] [Indexed: 11/08/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus, responsible for outbreaks of a severe respiratory illness in humans with a fatality rate of 30%. Currently, there are no vaccines or United States food and drug administration (FDA)-approved therapeutics for humans. The spike protein displayed on the surface of MERS-CoV functions in the attachment and fusion of virions to host cellular membranes and is the target of the host antibody response. Here, we provide a molecular method for neutralizing MERS-CoV through potent antibody-mediated targeting of the receptor-binding subdomain (RBD) of the spike protein. The structural characterization of the neutralizing antibody (KNIH90-F1) complexed with RBD using X-ray crystallography revealed three critical epitopes (D509, R511, and E513) in the RBD region of the spike protein. Further investigation of MERS-CoV mutants that escaped neutralization by the antibody supported the identification of these epitopes in the RBD region. The neutralizing activity of this antibody is solely provided by these specific molecular structures. This work should contribute to the development of vaccines or therapeutic antibodies for MERS-CoV.
Collapse
|
13
|
Asrani P, Tiwari K, Eapen MS, McAlinden KD, Haug G, Johansen MD, Hansbro PM, Flanagan KL, Hassan MI, Sohal SS. Clinical features and mechanistic insights into drug repurposing for combating COVID-19. Int J Biochem Cell Biol 2022; 142:106114. [PMID: 34748991 PMCID: PMC8570392 DOI: 10.1016/j.biocel.2021.106114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged from Wuhan in China before it spread to the entire globe. It causes coronavirus disease of 2019 (COVID-19) where mostly individuals present mild symptoms, some remain asymptomatic and some show severe lung inflammation and pneumonia in the host through the induction of a marked inflammatory 'cytokine storm'. New and efficacious vaccines have been developed and put into clinical practice in record time, however, there is a still a need for effective treatments for those who are not vaccinated or remain susceptible to emerging SARS-CoV-2 variant strains. Despite this, effective therapeutic interventions against COVID-19 remain elusive. Here, we have reviewed potential drugs for COVID-19 classified on the basis of their mode of action. The mechanisms of action of each are discussed in detail to highlight the therapeutic targets that may help in reducing the global pandemic. The review was done up to July 2021 and the data was assessed through the official websites of WHO and CDC for collecting the information on the clinical trials. Moreover, the recent research papers were also assessed for the relevant data. The search was mainly based on keywords like Coronavirus, SARS-CoV-2, drugs (specific name of the drugs), COVID-19, clinical efficiency, safety profile, side-effects etc.This review outlines potential areas for future research into COVID-19 treatment strategies.
Collapse
Affiliation(s)
- Purva Asrani
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | - Keshav Tiwari
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Kielan Darcy McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia; Department of Respiratory Medicine, Launceston General Hospital, Launceston 7250, Australia
| | - Matt D Johansen
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; University of Technology Sydney, Faculty of Science, School of Life Sciences, Ultimo, NSW 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; University of Technology Sydney, Faculty of Science, School of Life Sciences, Ultimo, NSW 2007, Australia
| | - Katie L Flanagan
- Clinical School, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia; School of Health and Biomedical Science, RMIT University, Melbourne, Victoria, Australia; Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia; Tasmania Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, Tasmania 7250, Australia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia.
| |
Collapse
|
14
|
Deravi N, Ahsan E, Fathi M, Hosseini P, Yaghoobpoor S, Lotfi R, Pourbagheri-Sigaroodi A, Bashash D. Complement inhibition: A possible therapeutic approach in the fight against Covid-19. Rev Med Virol 2021; 32:e2316. [PMID: 34873779 DOI: 10.1002/rmv.2316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 01/08/2023]
Abstract
The complement system, as a vital part of innate immunity, has an important role in the clearance of pathogens; however, unregulated activation of this system probably has a key role in the pathogenesis of acute lung injury, which is induced by highly pathogenic viruses (i.e. influenza A viruses and severe acute respiratory syndrome [SARS] coronavirus). The novel coronavirus SARS-CoV-2, which is the causal agent for the ongoing global pandemic of the coronavirus disease 2019 (Covid-19), has recently been spread to almost all countries around the world. Although most people are immunocompetent to SARS-CoV-2, a small group develops hyper-inflammation that leads to complications like acute respiratory distress syndrome, disseminated intravascular coagulation, and multi-organ failure. Emerging evidence demonstrates that the complement system exerts a crucial role in this inflammatory reaction. Additionally, patients with the severe form of Covid-19 show over-activation of the complement in their skin, sera, and lungs. This study aims to summarise current knowledge concerning the interaction of SARS-CoV-2 with the complement system and to critically appraise complement inhibition as a potential new approach for Covid-19 treatment.
Collapse
Affiliation(s)
- Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Ahsan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Ayipo YO, Yahaya SN, Alananzeh WA, Babamale HF, Mordi MN. Pathomechanisms, therapeutic targets and potent inhibitors of some beta-coronaviruses from bench-to-bedside. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104944. [PMID: 34052418 PMCID: PMC8159710 DOI: 10.1016/j.meegid.2021.104944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023]
Abstract
Since the emergence of their primitive strains, the complexity surrounding their pathogenesis, constant genetic mutation and translation are contributing factors to the scarcity of a successful vaccine for coronaviruses till moment. Although, the recent announcement of vaccine breakthrough for COVID-19 renews the hope, however, there remains a major challenge of accessibility to urgently match the rapid global therapeutic demand for curtailing the pandemic, thereby creating an impetus for further search. The reassessment of results from a stream of experiments is of enormous importance in identifying bona fide lead-like candidates to fulfil this quest. This review comprehensively highlights the common pathomechanisms and pharmacological targets of HCoV-OC43, SARS-CoV-1, MERS-CoV and SARS-CoV-2, and potent therapeutic potentials from basic and clinical experimental investigations. The implicated targets for the prevention and treatment include the viral proteases (Mpro, PLpro, 3CLpro), viral structural proteins (S- and N-proteins), non-structural proteins (nsp 3, 8, 10, 14, 16), accessory protein (ns12.9), viroporins (3a, E, 8a), enzymes (RdRp, TMPRSS2, ADP-ribosyltransferase, MTase, 2'-O-MTase, TATase, furin, cathepsin, deamidated human triosephosphate isomerase), kinases (MAPK, ERK, PI3K, mTOR, AKT, Abl2), interleukin-6 receptor (IL-6R) and the human host receptor, ACE2. Notably among the 109 overviewed inhibitors include quercetin, eriodictyol, baicalin, luteolin, melatonin, resveratrol and berberine from natural products, GC373, NP164 and HR2P-M2 from peptides, 5F9, m336 and MERS-GD27 from specific human antibodies, imatinib, remdesivir, ivermectin, chloroquine, hydroxychloroquine, nafamostat, interferon-β and HCQ from repurposing libraries, some iron chelators and traditional medicines. This review represents a model for further translational studies for effective anti-CoV therapeutic designs.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia,Department of Chemistry, Kwara State University, P. M. B. 1530, Malete, Ilorin, Nigeria
| | - Sani Najib Yahaya
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia
| | - Waleed A. Alananzeh
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia
| | | | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia,Corresponding author
| |
Collapse
|
16
|
Mohamed A, Alawna M. Enhancing oxygenation of patients with coronavirus disease 2019: Effects on immunity and other health-related conditions. World J Clin Cases 2021; 9:4939-4958. [PMID: 34307545 PMCID: PMC8283603 DOI: 10.12998/wjcc.v9.i19.4939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) distresses the pulmonary system causing acute respiratory distress syndrome, which might lead to death. There is no cure for COVID-19 infection. COVID-19 is a self-limited infection, and the methods that can enhance immunity are strongly required. Enhancing oxygenation is one safe and effective intervention to enhance immunity and pulmonary functions. This review deliberates the probable influences of enhancing oxygenation on immunity and other health-connected conditions in patients with COVID-19. An extensive search was conducted through Web of Science, Scopus, Medline databases, and EBSCO for the influence of enhancing oxygenation on immunity, pulmonary functions, psycho-immune hormones, and COVID-19 risk factors. This search included clinical trials and literature and systematic reviews. This search revealed that enhancing oxygenation has a strong effect on improving immunity and pulmonary functions and psycho-immune hormones. Also, enhancing oxygenation has a self-protective role counter to COVID-19 risk factors. Lastly, this search revealed the recommended safe and effective exercise protocol to enhance oxygenation in patients with COVID-19. Enhancing oxygenation should be involved in managing patients with COVID-19 because of its significant effects on immunity, pulmonary functions, and COVID-19 risk factors. A mild to moderate cycling or walking with 60%-80% Vo2max for 20-60 min performed 2-3 times per week could be a safe and effective aerobic exercise program in patients with COVID-19 to enhance their immunity and pulmonary functions.
Collapse
Affiliation(s)
- Ayman Mohamed
- Department of Physiotherapy and Rehabilitation, Istanbul Gelisim University, Istanbul 34522, Turkey
- Department of Basic Science and Biomechanics, Faculty of Physical Therapy, Beni Suef University, Beni Suef 62521, Egypt
| | - Motaz Alawna
- Department of Physiotherapy and Rehabilitation, Istanbul Gelisim University, Istanbul 34522, Turkey
- Department of Physiotherapy and Rehabilitation, Faculty of Allied Medical Sciences, Arab American University, Jenin 24013, Palestine
| |
Collapse
|
17
|
Magrone T, Magrone M, Jirillo E. Focus on Receptors for Coronaviruses with Special Reference to Angiotensin- Converting Enzyme 2 as a Potential Drug Target - A Perspective. Endocr Metab Immune Disord Drug Targets 2021; 20:807-811. [PMID: 32338224 DOI: 10.2174/1871530320666200427112902] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
18
|
Zhu X, Yu F, Wu Y, Ying T. Potent germline-like monoclonal antibodies: rapid identification of promising candidates for antibody-based antiviral therapy. Antib Ther 2021; 4:89-98. [PMID: 34104872 PMCID: PMC8178282 DOI: 10.1093/abt/tbab008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 11/20/2022] Open
Abstract
In recent years, fully human monoclonal antibodies (mAbs) are making up an increasing share of the pharmaceutical market. However, to improve affinity and efficacy of antibodies, many somatic hypermutations could be introduced during affinity maturation, which cause several issues including safety and efficacy and limit their application in clinic. Here, we propose a special class of human mAbs with limited level of somatic mutations, referred to as germline-like mAbs. Remarkably, germline-like mAbs could have high affinity and potent neutralizing activity in vitro and in various animal models, despite lacking of extensive affinity maturation. Furthermore, the germline nature of these mAbs implies that they exhibit lower immunogenicity and can be elicited relatively fast in vivo compared with highly somatically mutated antibodies. In this review, we summarize germline-like mAbs with strong therapeutic and protection activity against various viruses that caused large-scale outbreaks in the last decade, including influenza virus H7N9, Zika virus, Dengue virus, Middle East respiratory syndrome coronavirus and severe acute respiratory syndrome coronavirus 2. We also illustrate underlying molecular mechanisms of these germline-like antibodies against viral infections from the structural and genetic perspective, thus providing insight into further development as therapeutic agents for the treatment of infectious diseases and implication for rational design of effective vaccines.
Collapse
Affiliation(s)
- Xiaoyi Zhu
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Yanling Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tianlei Ying
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
19
|
Smail SW, Saeed M, Twana Alkasalias, Khudhur ZO, Younus DA, Rajab MF, Abdulahad WH, Hussain HI, Niaz K, Safdar M. Inflammation, immunity and potential target therapy of SARS-COV-2: A total scale analysis review. Food Chem Toxicol 2021; 150:112087. [PMID: 33640537 PMCID: PMC7905385 DOI: 10.1016/j.fct.2021.112087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Coronavirus disease-19 (COVID-19) is a complex disease that causes illness ranging from mild to severe respiratory problems. It is caused by a novel coronavirus SARS-CoV-2 (Severe acute respiratory syndrome coronavirus-2) that is an enveloped positive-sense single-stranded RNA (+ssRNA) virus belongs to coronavirus CoV family. It has a fast-spreading potential worldwide, which leads to high mortality regardless of lows death rates. Now some vaccines or a specific drug are approved but not available for every country for disease prevention and/or treatment. Therefore, it is a high demand to identify the known drugs and test them as a possible therapeutic approach. In this critical situation, one or more of these drugs may represent the only option to treat or reduce the severity of the disease, until some specific drugs or vaccines will be developed and/or approved for everyone in this pandemic. In this updated review, the available repurpose immunotherapeutic treatment strategies are highlighted, elucidating the crosstalk between the immune system and SARS-CoV-2. Despite the reasonable data availability, the effectiveness and safety of these drugs against SARS-CoV-2 needs further studies and validations aiming for a better clinical outcome.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq; Department of Biology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan
| | - Twana Alkasalias
- Department of Pathological Analysis, College of Science, Knowledge University, Erbil, Kurdistan Region, Iraq; General Directorate for Scientific Research Center, Salahaddin University- Erbil, Erbil, Kurdistan Region, Iraq; Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Science, Tishk International University - Erbil, Kurdistan Region, Iraq
| | - Delan Ameen Younus
- General Directorate for Scientific Research Center, Salahaddin University- Erbil, Erbil, Kurdistan Region, Iraq
| | - Mustafa Fahmi Rajab
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq
| | - Wayel Habib Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands; Department of Pathology and Medical Biology, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Hafiz Iftikhar Hussain
- Department of Pathology, Faculty of Veterinary Sciences, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan
| | - Kamal Niaz
- Department of Pharmacology & Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan
| | - Muhammad Safdar
- Department of Breeding and Genetics, Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan.
| |
Collapse
|
20
|
Mohamed Khosroshahi L, Rokni M, Mokhtari T, Noorbakhsh F. Immunology, immunopathogenesis and immunotherapeutics of COVID-19; an overview. Int Immunopharmacol 2021; 93:107364. [PMID: 33486333 PMCID: PMC7784533 DOI: 10.1016/j.intimp.2020.107364] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) infection which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to a "public health emergency of international concern" (PHEIC). The infection is highly contagious, has a high mortality rate, and its pathophysiology remains poorly understood. Pulmonary inflammation with substantial lung damage together with generalized immune dysregulation are major components of COVID-19 pathogenesis. The former component, lung damage, seems to be at least in part a consequence of immune dysregulation. Indeed, studies have revealed that immune alteration is not merely an association, as it might occur in systemic infections, but, very likely, the core pathogenic element of COVID-19. In addition, precise management of immune response in COVID-19, i.e. enhancing anti-viral immunity while inhibiting systemic inflammation, may be key to successful treatment. Herein, we have reviewed current evidence related to different aspects of COVID-19 immunology, including innate and adaptive immune responses against the virus and mechanisms of virus-induced immune dysregulation. Considering that current antiviral therapies are chiefly experimental, strategies to do immunotherapy for the management of disease have also been reviewed. Understanding immunology of COVID-19 is important in developing effective therapies as well as diagnostic, and prophylactic strategies for this disease.
Collapse
Affiliation(s)
| | - Mohsen Rokni
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
21
|
Song LG, Xie QX, Lao HL, Lv ZY. Human coronaviruses and therapeutic drug discovery. Infect Dis Poverty 2021; 10:28. [PMID: 33726861 PMCID: PMC7962087 DOI: 10.1186/s40249-021-00812-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Background Coronaviruses (CoVs) are distributed worldwide and have various susceptible hosts; CoVs infecting humans are called human coronaviruses (HCoVs). Although HCoV-specific drugs are still lacking, many potent targets for drug discovery are being explored, and many vigorously designed clinical trials are being carried out in an orderly manner. The aim of this review was to gain a comprehensive understanding of the current status of drug development against HCoVs, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Main text A scoping review was conducted by electronically searching research studies, reviews, and clinical trials in PubMed and the CNKI. Studies on HCoVs and therapeutic drug discovery published between January 2000 and October 2020 and in English or Chinese were included, and the information was summarized. Of the 3248 studies identified, 159 publication were finally included. Advances in drug development against HCoV, especially SARS-CoV-2, are summarized under three categories: antiviral drugs aimed at inhibiting the HCoV proliferation process, drugs acting on the host's immune system, and drugs derived from plants with potent activity. Furthermore, clinical trials of drugs targeting SARS-CoV-2 are summarized. Conclusions During the spread of COVID-19 outbreak, great efforts have been made in therapeutic drug discovery against the virus, although the pharmacological effects and adverse reactions of some drugs under study are still unclear. However, well-designed high-quality studies are needed to further study the effectiveness and safety of these potential drugs so as to provide valid recommendations for better control of the COVID-19 pandemic. ![]()
Collapse
Affiliation(s)
- Lan-Gui Song
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Qing-Xing Xie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hui-Lin Lao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi-Yue Lv
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China. .,NHC Key Laboratory of Control of Tropical Diseases, the First Affiliated Hospital, Hainan Medical University, Haikou, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
22
|
Khorramdelazad H, Kazemi MH, Najafi A, Keykhaee M, Zolfaghari Emameh R, Falak R. Immunopathological similarities between COVID-19 and influenza: Investigating the consequences of Co-infection. Microb Pathog 2021; 152:104554. [PMID: 33157216 PMCID: PMC7607235 DOI: 10.1016/j.micpath.2020.104554] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a global public health emergency since December 2019, and so far, more than 980,000 people (until September 24, 2020) around the world have died. SARS-CoV-2 mimics the influenza virus regarding methods and modes of transmission, clinical features, related immune responses, and seasonal coincidence. Accordingly, co-infection by these viruses is imaginable because some studies have reported several cases with SARS-CoV-2 and influenza virus co-infection. Given the importance of the mentioned co-infection and the coming influenza season, it is essential to recognize the similarities and differences between the symptoms, immunopathogenesis and treatment of SARS-CoV-2 and influenza virus. Therefore, we reviewed the virology, clinical features, and immunopathogenesis of both influenza virus and SARS-CoV-2 and evaluated outcomes in cases with SARS-CoV-2 and influenza virus co-infection.
Collapse
Affiliation(s)
- Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Keykhaee
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Fouladirad S, Bach H. Development of Coronavirus Treatments Using Neutralizing Antibodies. Microorganisms 2021; 9:microorganisms9010165. [PMID: 33451069 PMCID: PMC7828509 DOI: 10.3390/microorganisms9010165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-2, was first reported in December 2019 in Wuhan, Hubei province, China. This virus has led to 61.8 million cases worldwide being reported as of December 1st, 2020. Currently, there are no definite approved therapies endorsed by the World Health Organization for COVID-19, focusing only on supportive care. Treatment centers around symptom management, including oxygen therapy or invasive mechanical ventilation. Immunotherapy has the potential to play a role in the treatment of SARS-CoV-2. Monoclonal antibodies (mAbs), in particular, is a relatively new approach in the world of infectious diseases and has the benefit of overcoming challenges with serum therapy and intravenous immunoglobulins preparations. Here, we reviewed the articles published in PubMed with the purpose of summarizing the currently available evidence for the use of neutralizing antibodies as a potential treatment for coronaviruses. Studies reporting in vivo results were summarized and analyzed. Despite promising data from some studies, none of them progressed to clinical trials. It is expected that neutralizing antibodies might offer an alternative for COVID-19 treatment. Thus, there is a need for randomized trials to understand the potential use of this treatment.
Collapse
Affiliation(s)
- Saman Fouladirad
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z, Canada;
| | - Horacio Bach
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z, Canada;
- Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6T 1Z, Canada
- Correspondence: ; Tel.: +1-604-727-9719; Fax: +1-604-875-4013
| |
Collapse
|
24
|
Kirtipal N, Bharadwaj S, Kang SG. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104502. [PMID: 32798769 PMCID: PMC7425554 DOI: 10.1016/j.meegid.2020.104502] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023]
Abstract
Human Coronaviruses (HCoV), periodically emerging across the world, are potential threat to humans such as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) - diseases termed as COVID-19. Current SARS-CoV-2 outbreak have fueled ongoing efforts to exploit various viral target proteins for therapy, but strategies aimed at blocking the viral proteins as in drug and vaccine development have largely failed. In fact, evidence has now shown that coronaviruses undergoes rapid recombination to generate new strains of altered virulence; additionally, escaped the host antiviral defense system and target humoral immune system which further results in severe deterioration of the body such as by cytokine storm. This demands the understanding of phenotypic and genotypic classification, and pathogenesis of SARS-CoV-2 for the production of potential therapy. In lack of clear clinical evidences for the pathogenesis of COVID-19, comparative analysis of previous pandemic HCoVs associated immunological responses can provide insights into COVID-19 pathogenesis. In this review, we summarize the possible origin and transmission mode of CoVs and the current understanding on the viral genome integrity of known pandemic virus against SARS-CoV-2. We also consider the host immune response and viral evasion based on available clinical evidences which would be helpful to remodel COVID-19 pathogenesis; and hence, development of therapeutics against broad spectrum of coronaviruses.
Collapse
Affiliation(s)
- Nikhil Kirtipal
- Department of Science, Modern Institute of Technology, Dhalwala, Rishikesh, Uttarakhand, India
| | - Shiv Bharadwaj
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
25
|
Buonsenso D, Sali M, Pata D, De Rose C, Sanguinetti M, Valentini P, Delogu G. Children and COVID-19: Microbiological and immunological insights. Pediatr Pulmonol 2020; 55:2547-2555. [PMID: 32710652 DOI: 10.1002/ppul.24978] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Since its first description in China, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide being declared a pandemic by the World Health Organization. More than 10.3 million people have been infected and more than 506 000 people died. However, SARS-CoV-2 had a lower impact on the pediatric population. Only about 1% to 2% of infected people are children and few deaths under the age of 14 are described so far. In this article, we discuss microbiological and immunological characteristics of SARS-CoV-2 infection in children highlighting the main differences from adult SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Danilo Buonsenso
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento Scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Michela Sali
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Davide Pata
- Istituto di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristina De Rose
- Istituto di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Piero Valentini
- Dipartimento Scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Istituto di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Delogu
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Mater Olbia Hospital, Olbia, Italy
| |
Collapse
|
26
|
Lotfi M, Rezaei N. SARS-CoV-2: A comprehensive review from pathogenicity of the virus to clinical consequences. J Med Virol 2020; 92:1864-1874. [PMID: 32492197 PMCID: PMC7300719 DOI: 10.1002/jmv.26123] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023]
Abstract
Nowadays, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused novel coronavirus disease (COVID-19) pandemic, is the worldwide challenge. The virus is highly contagious, and clinical consequences were very divers. It is estimated that if no effective action is taken, COVID-19 could plague 90% of the world's population and kill over 40 million people. So, it is essential to understand the virus pathogenicity and follow the preventive methods to control the high morbidity and mortality rates. Meanwhile our current knowledge of COVID-19 is still limited, despite hard efforts of scientists and clinicians during last few months. In this review article, we have collected the latest data about characteristics, pathogenesis, clinical manifestations, and diagnostic methods of SARS-CoV-2.
Collapse
Affiliation(s)
- Melika Lotfi
- Department of ImmunologySchool of Medicine, Zanjan University of Medical SciencesZanjanIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN)ZanjanIran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of Medicine, Tehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN)TehranIran
| |
Collapse
|
27
|
Falcão LF, da Silva Pontes L, Afonso da Silva BG, Vieira da Silva Franco KM, Costa LA, Barbosa Rocha RS, Simões Quaresma JA. The complexity of respiratory disease associated with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection: From immunopathogenesis to respiratory therapy. Rev Med Virol 2020. [DOI: 10.1002/rmv.2167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Luiz Fábio Falcão
- Center for Biological and Health Sciences State University of Pará Belém Pará Brazil
| | | | | | | | - Luiz Adriano Costa
- Center for Biological and Health Sciences State University of Pará Belém Pará Brazil
| | | | - Juarez Antônio Simões Quaresma
- Center for Biological and Health Sciences State University of Pará Belém Pará Brazil
- Evandro Chagas Institute Ministry of Health Ananindeua Pará Brazil
| |
Collapse
|
28
|
Zost SJ, Gilchuk P, Chen RE, Case JB, Reidy JX, Trivette A, Nargi RS, Sutton RE, Suryadevara N, Chen EC, Binshtein E, Shrihari S, Ostrowski M, Chu HY, Didier JE, MacRenaris KW, Jones T, Day S, Myers L, Eun-Hyung Lee F, Nguyen DC, Sanz I, Martinez DR, Rothlauf PW, Bloyet LM, Whelan SPJ, Baric RS, Thackray LB, Diamond MS, Carnahan RH, Crowe JE. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nat Med 2020; 26:1422-1427. [PMID: 32651581 PMCID: PMC8194108 DOI: 10.1038/s41591-020-0998-x] [Citation(s) in RCA: 367] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022]
Abstract
Antibodies are a principal determinant of immunity for most RNA viruses and have promise to reduce infection or disease during major epidemics. The novel coronavirus SARS-CoV-2 has caused a global pandemic with millions of infections and hundreds of thousands of deaths to date1,2. In response, we used a rapid antibody discovery platform to isolate hundreds of human monoclonal antibodies (mAbs) against the SARS-CoV-2 spike (S) protein. We stratify these mAbs into five major classes on the basis of their reactivity to subdomains of S protein as well as their cross-reactivity to SARS-CoV. Many of these mAbs inhibit infection of authentic SARS-CoV-2 virus, with most neutralizing mAbs recognizing the receptor-binding domain (RBD) of S. This work defines sites of vulnerability on SARS-CoV-2 S and demonstrates the speed and robustness of advanced antibody discovery platforms.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- Coronavirus Infections/drug therapy
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Humans
- Pandemics
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/immunology
- Pneumonia, Viral/virology
- Protein Binding
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/antagonists & inhibitors
- Spike Glycoprotein, Coronavirus/immunology
Collapse
Affiliation(s)
- Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rita E Chen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph X Reidy
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew Trivette
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel S Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Elaine C Chen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Swathi Shrihari
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Ostrowski
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | | | | | - Taylor Jones
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Day
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luke Myers
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Doan C Nguyen
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul W Rothlauf
- Program in Virology, Harvard Medical School, Boston, MA, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sean P J Whelan
- Program in Virology, Harvard Medical School, Boston, MA, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
29
|
Mortaz E, Tabarsi P, Varahram M, Folkerts G, Adcock IM. The Immune Response and Immunopathology of COVID-19. Front Immunol 2020; 11:2037. [PMID: 32983152 PMCID: PMC7479965 DOI: 10.3389/fimmu.2020.02037] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/27/2020] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses were first discovered in the 1960s and are named due to their crown-like shape. Sometimes, but not often, a coronavirus can infect both animals and humans. An acute respiratory disease, caused by a novel coronavirus (severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 previously known as 2019-nCoV) was identified as the cause of coronavirus disease 2019 (COVID-19) as it spread throughout China and subsequently across the globe. As of 14th July 2020, a total of 13.1 million confirmed cases globally and 572,426 deaths had been reported by the World Health Organization (WHO). SARS-CoV-2 belongs to the β-coronavirus family and shares extensive genomic identity with bat coronavirus suggesting that bats are the natural host. SARS-CoV-2 uses the same receptor, angiotensin-converting enzyme 2 (ACE2), as that for SARS-CoV, the coronavirus associated with the SARS outbreak in 2003. It mainly spreads through the respiratory tract with lymphopenia and cytokine storms occuring in the blood of subjects with severe disease. This suggests the existence of immunological dysregulation as an accompanying event during severe illness caused by this virus. The early recognition of this immunological phenotype could assist prompt recognition of patients who will progress to severe disease. Here we review the data of the immune response during COVID-19 infection. The current review summarizes our understanding of how immune dysregulation and altered cytokine networks contribute to the pathophysiology of COVID-19 patients.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ian M. Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
30
|
Saha RP, Sharma AR, Singh MK, Samanta S, Bhakta S, Mandal S, Bhattacharya M, Lee SS, Chakraborty C. Repurposing Drugs, Ongoing Vaccine, and New Therapeutic Development Initiatives Against COVID-19. Front Pharmacol 2020; 11:1258. [PMID: 32973505 PMCID: PMC7466451 DOI: 10.3389/fphar.2020.01258] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
As the COVID-19 is still growing throughout the globe, a thorough investigation into the specific immunopathology of SARS-CoV-2, its interaction with the host immune system and pathogen evasion mechanism may provide a clear picture of how the pathogen can breach the host immune defenses in elderly patients and patients with comorbid conditions. Such studies will also reveal the underlying mechanism of how children and young patients can withstand the disease better. The study of the immune defense mechanisms and the prolonged immune memory from patients population with convalescent plasma may help in designing a suitable vaccine candidate not only for the current outbreak but also for similar outbreaks in the future. The vital drug candidates, which are being tested as potential vaccines or therapeutics against COVID-19, include live attenuated vaccine, inactivated or killed vaccine, subunit vaccine, antibodies, interferon treatment, repurposing existing drugs, and nucleic acid-based vaccines. Several organizations around the world have fast-tracked the development of a COVID-19 vaccine, and some drugs already went to phase III of clinical trials. Hence, here, we have tried to take a quick glimpse of the development stages of vaccines or therapeutic approaches to treat this deadly disease.
Collapse
Affiliation(s)
- Rudra P. Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Manoj K. Singh
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Swarnav Bhakta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Snehasish Mandal
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|
31
|
Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Nkolola JP, Schäfer A, Reidy JX, Trivette A, Nargi RS, Sutton RE, Suryadevara N, Martinez DR, Williamson LE, Chen EC, Jones T, Day S, Myers L, Hassan AO, Kafai NM, Winkler ES, Fox JM, Shrihari S, Mueller BK, Meiler J, Chandrashekar A, Mercado NB, Steinhardt JJ, Ren K, Loo YM, Kallewaard NL, McCune BT, Keeler SP, Holtzman MJ, Barouch DH, Gralinski LE, Baric RS, Thackray LB, Diamond MS, Carnahan RH, Crowe JE. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 2020; 584:443-449. [PMID: 32668443 PMCID: PMC7584396 DOI: 10.1038/s41586-020-2548-6] [Citation(s) in RCA: 825] [Impact Index Per Article: 206.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health1 and the medical countermeasures available so far are limited2,3. Moreover, we currently lack a thorough understanding of the mechanisms of humoral immunity to SARS-CoV-24. Here we analyse a large panel of human monoclonal antibodies that target the spike (S) glycoprotein5, and identify several that exhibit potent neutralizing activity and fully block the receptor-binding domain of the S protein (SRBD) from interacting with human angiotensin-converting enzyme 2 (ACE2). Using competition-binding, structural and functional studies, we show that the monoclonal antibodies can be clustered into classes that recognize distinct epitopes on the SRBD, as well as distinct conformational states of the S trimer. Two potently neutralizing monoclonal antibodies, COV2-2196 and COV2-2130, which recognize non-overlapping sites, bound simultaneously to the S protein and neutralized wild-type SARS-CoV-2 virus in a synergistic manner. In two mouse models of SARS-CoV-2 infection, passive transfer of COV2-2196, COV2-2130 or a combination of both of these antibodies protected mice from weight loss and reduced the viral burden and levels of inflammation in the lungs. In addition, passive transfer of either of two of the most potent ACE2-blocking monoclonal antibodies (COV2-2196 or COV2-2381) as monotherapy protected rhesus macaques from SARS-CoV-2 infection. These results identify protective epitopes on the SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic agents.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Betacoronavirus/chemistry
- Betacoronavirus/immunology
- Binding, Competitive
- COVID-19
- Cell Line
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Cross Reactions
- Disease Models, Animal
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Female
- Humans
- Macaca mulatta
- Male
- Mice
- Middle Aged
- Neutralization Tests
- Pandemics/prevention & control
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pre-Exposure Prophylaxis
- Severe acute respiratory syndrome-related coronavirus/chemistry
- Severe acute respiratory syndrome-related coronavirus/immunology
- SARS-CoV-2
- Severe Acute Respiratory Syndrome/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rita E Chen
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Joseph P Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph X Reidy
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew Trivette
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel S Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren E Williamson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elaine C Chen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taylor Jones
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Day
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luke Myers
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Natasha M Kafai
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Julie M Fox
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Swathi Shrihari
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Leipzig University Medical School, Institute for Drug Discovery, Leipzig, Germany
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Noe B Mercado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - James J Steinhardt
- Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Kuishu Ren
- Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yueh-Ming Loo
- Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Nicole L Kallewaard
- Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Broc T McCune
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Shamus P Keeler
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Michael J Holtzman
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
32
|
Chen R, Sang L, Jiang M, Yang Z, Jia N, Fu W, Xie J, Guan W, Liang W, Ni Z, Hu Y, Liu L, Shan H, Lei C, Peng Y, Wei L, Liu Y, Hu Y, Peng P, Wang J, Liu J, Chen Z, Li G, Zheng Z, Qiu S, Luo J, Ye C, Zhu S, Zheng J, Zhang N, Li Y, He J, Li J, Li S, Zhong N. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol 2020; 146:89-100. [PMID: 32407836 PMCID: PMC7212968 DOI: 10.1016/j.jaci.2020.05.003] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Crucial roles of hematologic and immunologic responses in progression of coronavirus disease 2019 (COVID-19) remain largely unclear. OBJECTIVE We sought to address the dynamic changes in hematologic and immunologic biomarkers and their associations with severity and outcomes of COVID-19. METHODS A retrospective study including 548 patients with COVID-19 with clarified outcome (discharged or deceased) from a national cohort in China was performed. Cross-sectional and longitudinal variations were compared and the associations with different severity and outcomes were analyzed. RESULTS On admission, the counts of lymphocytes, T-cell subsets, eosinophils, and platelets decreased markedly, especially in severe/critical and fatal patients. Increased neutrophil count and neutrophils-to-lymphocytes ratio were predominant in severe/critical cases or nonsurvivors. During hospitalization, eosinophils, lymphocytes, and platelets showed an increasing trend in survivors, but maintained lower levels or dropped significantly afterwards in nonsurvivors. Nonsurvivors kept a high level or showed an upward trend for neutrophils, IL-6, procalcitonin, D-dimer, amyloid A protein, and C-reactive protein, which were kept stable or showed a downward trend in survivors. Positive correlation between CD8+ T-cell and lymphocytes count was found in survivors but not in nonsurvivors. A multivariate Cox regression model suggested that restored levels of lymphocytes, eosinophils, and platelets could serve as predictors for recovery, whereas progressive increases in neutrophils, basophils, and IL-6 were associated with fatal outcome. CONCLUSIONS Hematologic and immunologic impairment showed a significantly different profile between survivors and nonsurvivors in patients with COVID-19 with different severity. The longitudinal variations in these biomarkers could serve to predict recovery or fatal outcome.
Collapse
Affiliation(s)
- Ruchong Chen
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling Sang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mei Jiang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhaowei Yang
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nan Jia
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wanyi Fu
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaxing Xie
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weijie Guan
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenhua Liang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhengyi Ni
- Wuhan Jin-yin tan Hospital, Wuhan, Hubei, China
| | - Yu Hu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Liu
- Shenzhen Third People's Hospital, Shenzhen, China
| | - Hong Shan
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Chunliang Lei
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yixiang Peng
- The Central Hospital of Wuhan, Wuhan, Hubei, China
| | - Li Wei
- Wuhan No.1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, Hubei, China
| | - Yong Liu
- Chengdu Public Health Clinical Medical Center, Chengdu, Sichuan, China
| | - Yahua Hu
- Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Peng Peng
- Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Jianming Wang
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jiyang Liu
- The First Hospital of Changsha, Changsha, Hunan, China
| | - Zhong Chen
- The Third People's Hospital of Hainan Province, Sanya, Hainan, China
| | - Gang Li
- Huanggang Central Hospital, Huanggang, Hubei, China
| | - Zhijian Zheng
- Wenling First People's Hospital, Wenling, Zhejiang, China
| | - Shaoqin Qiu
- The Third People's Hospital of Yichang, Yichang, Hubei
| | - Jie Luo
- Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, Hubei, China
| | | | - Shaoyong Zhu
- The People's Hospital of Huangpi District, Wuhan, China
| | - Jinping Zheng
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nuofu Zhang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yimin Li
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianxing He
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shiyue Li
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Nanshan Zhong
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
33
|
Mohamed AA, Alawna M. Role of increasing the aerobic capacity on improving the function of immune and respiratory systems in patients with coronavirus (COVID-19): A review. Diabetes Metab Syndr 2020; 14:489-496. [PMID: 32388326 PMCID: PMC7186129 DOI: 10.1016/j.dsx.2020.04.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS COVID-19 is a public world crisis, however, it is a self-limited infection. In COVID-19, the strength of immune and respiratory systems is a critical element. Thus, this review was conducted to demonstrate the short and long term effects of increasing the aerobic capacity on increasing the function and strength of immune and respiratory systems, particularly those essential for overcoming COVID-19 infections and associated disorders. METHODS This review was carried out by searching in Web of Science, Scopus, EBSCO, Medline databases. The search was conducted over clinical trials and literature and systematic reviews on the effects of increasing the aerobic capacity on the function and strength of specific immune and respiratory elements essential for overcoming COVID-19 infections. RESULTS This review found that increasing the aerobic capacity could produce short-term safe improvements in the function of immune and respiratory systems, particularly those specific for COVID-19 infections. This could be mainly produced through three mechanisms. Firstly, it could improve immunity by increasing the level and function of immune cells and immunoglobulins, regulating CRP levels, and decreasing anxiety and depression. Secondly, it could improve respiratory system functions by acting as an antibiotic, antioxidant, and antimycotic, restoring normal lung tissue elasticity and strength. Lastly, it could act as a protective barrier to decrease COVID-19 risk factors, which helps to decrease the incidence and progression of COVID-19. CONCLUSION This review summarizes that increasing the aerobic capacity is recommended because it has potential of improving immune and respiratory functions which would help counter COVID-19.
Collapse
Affiliation(s)
- Ayman A Mohamed
- Department of Physiotherapy and Rehabilitation, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey.
| | - Motaz Alawna
- Department of Physiotherapy and Rehabilitation, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey.
| |
Collapse
|
34
|
Seydoux E, Homad LJ, MacCamy AJ, Parks KR, Hurlburt NK, Jennewein MF, Akins NR, Stuart AB, Wan YH, Feng J, Whaley RE, Singh S, Boeckh M, Cohen KW, McElrath MJ, Englund JA, Chu HY, Pancera M, McGuire AT, Stamatatos L. Analysis of a SARS-CoV-2-Infected Individual Reveals Development of Potent Neutralizing Antibodies with Limited Somatic Mutation. Immunity 2020; 53:98-105.e5. [PMID: 32561270 PMCID: PMC7276322 DOI: 10.1016/j.immuni.2020.06.001] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Antibody responses develop following SARS-CoV-2 infection, but little is known about their epitope specificities, clonality, binding affinities, epitopes, and neutralizing activity. We isolated B cells specific for the SARS-CoV-2 envelope glycoprotein spike (S) from a COVID-19-infected subject 21 days after the onset of clinical disease. 45 S-specific monoclonal antibodies were generated. They had undergone minimal somatic mutation with limited clonal expansion, and three bound the receptor-binding domain (RBD). Two antibodies neutralized SARS-CoV-2. The most potent antibody bound the RBD and prevented binding to the ACE2 receptor, while the other bound outside the RBD. Thus, most anti-S antibodies that were generated in this patient during the first weeks of COVID-19 infection were non-neutralizing and target epitopes outside the RBD. Antibodies that disrupt the SARS-CoV-2 S-ACE2 interaction can potently neutralize the virus without undergoing extensive maturation. Such antibodies have potential preventive and/or therapeutic potential and can serve as templates for vaccine design. Early B cell responses to SARS-CoV-2 spike protein are analyzed from a COVID-19 patient Most antibodies target non-neutralizing epitopes outside the RBD A potent neutralizing mAb blocks the interaction of the S protein with ACE2 Neutralizing antibodies are minimally mutated
Collapse
Affiliation(s)
- Emilie Seydoux
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA
| | - Leah J Homad
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA
| | - Anna J MacCamy
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA
| | - K Rachael Parks
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA; University of Washington, Department of Global Health, Seattle, WA, USA
| | - Nicholas K Hurlburt
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA
| | - Madeleine F Jennewein
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA
| | - Nicholas R Akins
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA
| | - Andrew B Stuart
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA
| | - Rachael E Whaley
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA
| | - Suruchi Singh
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA
| | - Michael Boeckh
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA; Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kristen W Cohen
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA
| | - M Juliana McElrath
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA; University of Washington, Department of Global Health, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Janet A Englund
- Department of Pediatrics, University of Washington and Seattle Children's Research, Seattle, WA, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA; Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA.
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA; University of Washington, Department of Global Health, Seattle, WA, USA.
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA, USA; University of Washington, Department of Global Health, Seattle, WA, USA.
| |
Collapse
|
35
|
Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 2020; 584:115-119. [PMID: 32454513 DOI: 10.1038/s41586-020-2380-z] [Citation(s) in RCA: 1236] [Impact Index Per Article: 309.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a global health emergency that is in urgent need of intervention1-3. The entry of SARS-CoV-2 into its target cells depends on binding between the receptor-binding domain (RBD) of the viral spike protein and its cellular receptor, angiotensin-converting enzyme 2 (ACE2)2,4-6. Here we report the isolation and characterization of 206 RBD-specific monoclonal antibodies derived from single B cells from 8 individuals infected with SARS-CoV-2. We identified antibodies that potently neutralize SARS-CoV-2; this activity correlates with competition with ACE2 for binding to RBD. Unexpectedly, the anti-SARS-CoV-2 antibodies and the infected plasma did not cross-react with the RBDs of SARS-CoV or Middle East respiratory syndrome-related coronavirus (MERS-CoV), although there was substantial plasma cross-reactivity to their trimeric spike proteins. Analysis of the crystal structure of RBD-bound antibody revealed that steric hindrance inhibits viral engagement with ACE2, thereby blocking viral entry. These findings suggest that anti-RBD antibodies are largely viral-species-specific inhibitors. The antibodies identified here may be candidates for development of clinical interventions against SARS-CoV-2.
Collapse
|
36
|
Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Reidy JX, Trivette A, Nargi RS, Sutton RE, Suryadevara N, Williamson LE, Chen EC, Jones T, Day S, Myers L, Hassan AO, Kafai NM, Winkler ES, Fox JM, Steinhardt JJ, Ren K, Loo YM, Kallewaard NL, Martinez DR, Schäfer A, Gralinski LE, Baric RS, Thackray LB, Diamond MS, Carnahan RH, Crowe JE. Potently neutralizing human antibodies that block SARS-CoV-2 receptor binding and protect animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511409 DOI: 10.1101/2020.05.22.111005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The COVID-19 pandemic is a major threat to global health for which there are only limited medical countermeasures, and we lack a thorough understanding of mechanisms of humoral immunity 1,2 . From a panel of monoclonal antibodies (mAbs) targeting the spike (S) glycoprotein isolated from the B cells of infected subjects, we identified several mAbs that exhibited potent neutralizing activity with IC 50 values as low as 0.9 or 15 ng/mL in pseudovirus or wild-type ( wt ) SARS-CoV-2 neutralization tests, respectively. The most potent mAbs fully block the receptor-binding domain of S (S RBD ) from interacting with human ACE2. Competition-binding, structural, and functional studies allowed clustering of the mAbs into defined classes recognizing distinct epitopes within major antigenic sites on the S RBD . Electron microscopy studies revealed that these mAbs recognize distinct conformational states of trimeric S protein. Potent neutralizing mAbs recognizing unique sites, COV2-2196 and COV2-2130, bound simultaneously to S and synergistically neutralized authentic SARS-CoV-2 virus. In two murine models of SARS-CoV-2 infection, passive transfer of either COV2-2916 or COV2-2130 alone or a combination of both mAbs protected mice from severe weight loss and reduced viral burden and inflammation in the lung. These results identify protective epitopes on the S RBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic cocktails.
Collapse
|
37
|
Zost SJ, Gilchuk P, Chen RE, Case JB, Reidy JX, Trivette A, Nargi RS, Sutton RE, Suryadevara N, Chen EC, Binshtein E, Shrihari S, Ostrowski M, Chu HY, Didier JE, MacRenaris KW, Jones T, Day S, Myers L, Lee FEH, Nguyen DC, Sanz I, Martinez DR, Baric RS, Thackray LB, Diamond MS, Carnahan RH, Crowe JE. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511414 DOI: 10.1101/2020.05.12.091462] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibodies are a principal determinant of immunity for most RNA viruses and have promise to reduce infection or disease during major epidemics. The novel coronavirus SARS-CoV-2 has caused a global pandemic with millions of infections and hundreds of thousands of deaths to date 1,2 . In response, we used a rapid antibody discovery platform to isolate hundreds of human monoclonal antibodies (mAbs) against the SARS-CoV-2 spike (S) protein. We stratify these mAbs into five major classes based on their reactivity to subdomains of S protein as well as their cross-reactivity to SARS-CoV. Many of these mAbs inhibit infection of authentic SARS-CoV-2 virus, with most neutralizing mAbs recognizing the receptor-binding domain (RBD) of S. This work defines sites of vulnerability on SARS-CoV-2 S and demonstrates the speed and robustness of new antibody discovery methodologies.
Collapse
|
38
|
Seydoux E, Homad LJ, MacCamy AJ, Parks KR, Hurlburt NK, Jennewein MF, Akins NR, Stuart AB, Wan YH, Feng J, Nelson RE, Singh S, Cohen KW, McElrath MJ, Englund JA, Chu HY, Pancera M, McGuire AT, Stamatatos L. Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511342 PMCID: PMC7241105 DOI: 10.1101/2020.05.12.091298] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
B cells specific for the SARS-CoV-2 S envelope glycoprotein spike were isolated from a COVID-19-infected subject using a stabilized spike-derived ectodomain (S2P) twenty-one days post-infection. Forty-four S2P-specific monoclonal antibodies were generated, three of which bound to the receptor binding domain (RBD). The antibodies were minimally mutated from germline and were derived from different B cell lineages. Only two antibodies displayed neutralizing activity against SARS-CoV-2 pseudo-virus. The most potent antibody bound the RBD in a manner that prevented binding to the ACE2 receptor, while the other bound outside the RBD. Our study indicates that the majority of antibodies against the viral envelope spike that were generated during the first weeks of COVID-19 infection are non-neutralizing and target epitopes outside the RBD. Antibodies that disrupt the SARS-CoV-2 spike-ACE2 interaction can potently neutralize the virus without undergoing extensive maturation. Such antibodies have potential preventive/therapeutic potential and can serve as templates for vaccine-design.
Collapse
Affiliation(s)
- Emilie Seydoux
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Leah J Homad
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Anna J MacCamy
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - K Rachael Parks
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA.,University of Washington, Department of Global Health, Seattle, WA, USA
| | - Nicholas K Hurlburt
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Madeleine F Jennewein
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Nicholas R Akins
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Andrew B Stuart
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Rachael E Nelson
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Suruchi Singh
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Kristen W Cohen
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - M Juliana McElrath
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA.,University of Washington, Department of Global Health, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Janet A Englund
- Department of Pediatrics, University of Washington and Seattle Children's Research, Seattle, WA, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA.,Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA.,University of Washington, Department of Global Health, Seattle, WA, USA
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA.,University of Washington, Department of Global Health, Seattle, WA, USA
| |
Collapse
|
39
|
Choi JH, Woo HM, Lee TY, Lee SY, Shim SM, Park WJ, Yang JS, Kim JA, Yun MR, Kim DW, Kim SS, Zhang Y, Shi W, Wang L, Graham BS, Mascola JR, Wang N, McLellan JS, Lee JY, Lee H. Characterization of a human monoclonal antibody generated from a B-cell specific for a prefusion-stabilized spike protein of Middle East respiratory syndrome coronavirus. PLoS One 2020; 15:e0232757. [PMID: 32384116 PMCID: PMC7209324 DOI: 10.1371/journal.pone.0232757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory infection and continues to infect humans, thereby contributing to a high mortality rate (34.3% in 2019). In the absence of an available licensed vaccine and antiviral agent, therapeutic human antibodies have been suggested as candidates for treatment. In this study, human monoclonal antibodies were isolated by sorting B cells from patient's PBMC cells with prefusion stabilized spike (S) probes and a direct immunoglobulin cloning strategy. We identified six receptor-binding domain (RBD)-specific and five S1 (non-RBD)-specific antibodies, among which, only the RBD-specific antibodies showed high neutralizing potency (IC50 0.006-1.787 μg/ml) as well as high affinity to RBD. Notably, passive immunization using a highly potent antibody (KNIH90-F1) at a relatively low dose (2 mg/kg) completely protected transgenic mice expressing human DPP4 against MERS-CoV lethal challenge. These results suggested that human monoclonal antibodies isolated by using the rationally designed prefusion MERS-CoV S probe could be considered potential candidates for the development of therapeutic and/or prophylactic antiviral agents for MERS-CoV human infection.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Antibodies, Viral/immunology
- Antibodies, Viral/pharmacology
- Antiviral Agents/pharmacology
- Cell Line
- Chlorocebus aethiops
- Coronavirus Infections/drug therapy
- Dipeptidyl Peptidase 4/genetics
- Humans
- Leukocytes, Mononuclear/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Middle East Respiratory Syndrome Coronavirus/immunology
- Republic of Korea
- Spike Glycoprotein, Coronavirus/immunology
- Vero Cells
Collapse
Affiliation(s)
- Jang-Hoon Choi
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, Republic of Korea
| | - Hye-Min Woo
- Division of Emerging Infectious Disease and Vector Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, Republic of Korea
| | - Tae-young Lee
- Division of Emerging Infectious Disease and Vector Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, Republic of Korea
| | - So-young Lee
- Division of Emerging Infectious Disease and Vector Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, Republic of Korea
| | - Sang-Mu Shim
- Division of Emerging Infectious Disease and Vector Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, Republic of Korea
| | - Woo-Jung Park
- Division of Emerging Infectious Disease and Vector Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, Republic of Korea
| | - Jeong-Sun Yang
- Division of Emerging Infectious Disease and Vector Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, Republic of Korea
| | - Joo Ae Kim
- Division of Vaccine Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, Republic of Korea
| | - Mi-Ran Yun
- Division of Vaccine Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, Republic of Korea
| | - Dae-Won Kim
- Division of Vaccine Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, Republic of Korea
| | - Sung Soon Kim
- Division of Bacterial Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, Republic of Korea
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Nanshuang Wang
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas, Austin, TX, United States of America
| | - Jason S. McLellan
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas, Austin, TX, United States of America
| | - Joo-Yeon Lee
- Division of Emerging Infectious Disease and Vector Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, Republic of Korea
| | - Hansaem Lee
- Division of Emerging Infectious Disease and Vector Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, Republic of Korea
- * E-mail:
| |
Collapse
|
40
|
Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X, Zhang Q, Wu J. Coronavirus infections and immune responses. J Med Virol 2020. [PMID: 31981224 DOI: 10.1002/jmv.2568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Coronaviruses (CoVs) are by far the largest group of known positive-sense RNA viruses having an extensive range of natural hosts. In the past few decades, newly evolved Coronaviruses have posed a global threat to public health. The immune response is essential to control and eliminate CoV infections, however, maladjusted immune responses may result in immunopathology and impaired pulmonary gas exchange. Gaining a deeper understanding of the interaction between Coronaviruses and the innate immune systems of the hosts may shed light on the development and persistence of inflammation in the lungs and hopefully can reduce the risk of lung inflammation caused by CoVs. In this review, we provide an update on CoV infections and relevant diseases, particularly the host defense against CoV-induced inflammation of lung tissue, as well as the role of the innate immune system in the pathogenesis and clinical treatment.
Collapse
Affiliation(s)
- Geng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaohua Fan
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanni Lai
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tiantian Han
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zonghui Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiwen Zhou
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbiao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- School of Pubic Health, Southern Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X, Zhang Q, Wu J. Coronavirus infections and immune responses. J Med Virol 2020. [PMID: 31981224 DOI: 10.1002/jmv.v92.410.1002/jmv.25685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Coronaviruses (CoVs) are by far the largest group of known positive-sense RNA viruses having an extensive range of natural hosts. In the past few decades, newly evolved Coronaviruses have posed a global threat to public health. The immune response is essential to control and eliminate CoV infections, however, maladjusted immune responses may result in immunopathology and impaired pulmonary gas exchange. Gaining a deeper understanding of the interaction between Coronaviruses and the innate immune systems of the hosts may shed light on the development and persistence of inflammation in the lungs and hopefully can reduce the risk of lung inflammation caused by CoVs. In this review, we provide an update on CoV infections and relevant diseases, particularly the host defense against CoV-induced inflammation of lung tissue, as well as the role of the innate immune system in the pathogenesis and clinical treatment.
Collapse
Affiliation(s)
- Geng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaohua Fan
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanni Lai
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tiantian Han
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zonghui Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiwen Zhou
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbiao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- School of Pubic Health, Southern Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
42
|
Yi Y, Lagniton PNP, Ye S, Li E, Xu RH. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci 2020. [PMID: 32226295 DOI: 10.7150/ijbs.45134;select dbms_pipe.receive_message(chr(100)||chr(88)||chr(73)||chr(114),32) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The outbreak of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has thus far killed over 3,000 people and infected over 80,000 in China and elsewhere in the world, resulting in catastrophe for humans. Similar to its homologous virus, SARS-CoV, which caused SARS in thousands of people in 2003, SARS-CoV-2 might also be transmitted from the bats and causes similar symptoms through a similar mechanism. However, COVID-19 has lower severity and mortality than SARS but is much more transmissive and affects more elderly individuals than youth and more men than women. In response to the rapidly increasing number of publications on the emerging disease, this article attempts to provide a timely and comprehensive review of the swiftly developing research subject. We will cover the basics about the epidemiology, etiology, virology, diagnosis, treatment, prognosis, and prevention of the disease. Although many questions still require answers, we hope that this review helps in the understanding and eradication of the threatening disease.
Collapse
Affiliation(s)
- Ye Yi
- Institute of Translational Medicine, and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Philip N P Lagniton
- Institute of Translational Medicine, and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Sen Ye
- Institute of Translational Medicine, and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Enqin Li
- Institute of Translational Medicine, and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ren-He Xu
- Institute of Translational Medicine, and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
43
|
Yi Y, Lagniton PN, Ye S, Li E, Xu RH. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci 2020; 16:1753-1766. [PMID: 32226295 PMCID: PMC7098028 DOI: 10.7150/ijbs.45134] [Citation(s) in RCA: 402] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
The outbreak of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has thus far killed over 3,000 people and infected over 80,000 in China and elsewhere in the world, resulting in catastrophe for humans. Similar to its homologous virus, SARS-CoV, which caused SARS in thousands of people in 2003, SARS-CoV-2 might also be transmitted from the bats and causes similar symptoms through a similar mechanism. However, COVID-19 has lower severity and mortality than SARS but is much more transmissive and affects more elderly individuals than youth and more men than women. In response to the rapidly increasing number of publications on the emerging disease, this article attempts to provide a timely and comprehensive review of the swiftly developing research subject. We will cover the basics about the epidemiology, etiology, virology, diagnosis, treatment, prognosis, and prevention of the disease. Although many questions still require answers, we hope that this review helps in the understanding and eradication of the threatening disease.
Collapse
Affiliation(s)
| | | | | | | | - Ren-He Xu
- Institute of Translational Medicine, and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
44
|
Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X, Zhang Q, Wu J. Coronavirus infections and immune responses. J Med Virol 2020; 92:424-432. [PMID: 31981224 PMCID: PMC7166547 DOI: 10.1002/jmv.25685] [Citation(s) in RCA: 1125] [Impact Index Per Article: 281.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Coronaviruses (CoVs) are by far the largest group of known positive-sense RNA viruses having an extensive range of natural hosts. In the past few decades, newly evolved Coronaviruses have posed a global threat to public health. The immune response is essential to control and eliminate CoV infections, however, maladjusted immune responses may result in immunopathology and impaired pulmonary gas exchange. Gaining a deeper understanding of the interaction between Coronaviruses and the innate immune systems of the hosts may shed light on the development and persistence of inflammation in the lungs and hopefully can reduce the risk of lung inflammation caused by CoVs. In this review, we provide an update on CoV infections and relevant diseases, particularly the host defense against CoV-induced inflammation of lung tissue, as well as the role of the innate immune system in the pathogenesis and clinical treatment.
Collapse
Affiliation(s)
- Geng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaohua Fan
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanni Lai
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tiantian Han
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zonghui Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiwen Zhou
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbiao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,School of Pubic Health, Southern Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Niu X, Yan Q, Yao Z, Zhang F, Qu L, Wang C, Wang C, Lei H, Chen C, Liang R, Luo J, Wang Q, Zhao L, Zhang Y, Luo K, Wang L, Wu H, Liu T, Li P, Zheng Z, Tan YJ, Feng L, Zhang Z, Han J, Zhang F, Chen L. Longitudinal analysis of the antibody repertoire of a Zika virus-infected patient revealed dynamic changes in antibody response. Emerg Microbes Infect 2020; 9:111-123. [PMID: 31906823 PMCID: PMC6968589 DOI: 10.1080/22221751.2019.1701953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Zika virus (ZIKV) is a mosquito-borne flavivirus that causes neonatal abnormalities and other disorders. Antibodies to the ZIKV envelope (E) protein can block infection. In this study, next-generation sequencing (NGS) of immunoglobulin heavy chain (IgH) mRNA transcripts was combined with single-cell PCR cloning of E-binding monoclonal antibodies for analysing antibody response in a patient from the early stages of infection to more than one year after the clearance of the virus. The patient's IgH repertoire 14 and 64 days after symptom onset showed dramatic dominant clonal expansion but low clonal diversity. IgH repertoire 6 months after disease-free status had few dominant clones but increased diversity. E-binding antibodies appeared abundantly in the repertoire during the early stages of infection but quickly declined after clearance of the virus. Certain VH genes such as VH5-10-1 and VH4-39 appeared to be preferentially enlisted for a rapid antibody response to ZIKV infection. Most of these antibodies require relatively few somatic hypermutations to acquire the ability to bind to the E protein, pointing to a possible mechanism for rapid defence against ZIKV infection. This study provides a unique and holistic view of the dynamic changes and characteristics of the antibody response to ZIKV infection.
Collapse
Affiliation(s)
- Xuefeng Niu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qihong Yan
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Zhipeng Yao
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Fan Zhang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Linbing Qu
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Chunlin Wang
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Chengrui Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hui Lei
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chaoming Chen
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Renshan Liang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jia Luo
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Qian Wang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Lingzhai Zhao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yudi Zhang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Kun Luo
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Longyu Wang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Tingting Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Pingchao Li
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Zhiqiang Zheng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
| | - Yee Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
| | - Liqiang Feng
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Zhenhai Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Han
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
46
|
Li YH, Hu CY, Wu NP, Yao HP, Li LJ. Molecular Characteristics, Functions, and Related Pathogenicity of MERS-CoV Proteins. ENGINEERING (BEIJING, CHINA) 2019; 5:940-947. [PMID: 32288963 PMCID: PMC7104727 DOI: 10.1016/j.eng.2018.11.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 05/02/2023]
Abstract
Middle East respiratory syndrome (MERS) is a viral respiratory disease caused by a de novo coronavirus-MERS-CoV-that is associated with high mortality. However, the mechanism by which MERS-CoV infects humans remains unclear. To date, there is no effective vaccine or antibody for human immunity and treatment, other than the safety and tolerability of the fully human polyclonal Immunoglobulin G (IgG) antibody (SAB-301) as a putative therapeutic agent specific for MERS. Although rapid diagnostic and public health measures are currently being implemented, new cases of MERS-CoV infection are still being reported. Therefore, various effective measures should be taken to prevent the serious impact of similar epidemics in the future. Further investigation of the epidemiology and pathogenesis of the virus, as well as the development of effective therapeutic and prophylactic anti-MERS-CoV infections, is necessary. For this purpose, detailed information on MERS-CoV proteins is needed. In this review, we describe the major structural and nonstructural proteins of MERS-CoV and summarize different potential strategies for limiting the outbreak of MERS-CoV. The combination of computational biology and virology can accelerate the advanced design and development of effective peptide therapeutics against MERS-CoV. In summary, this review provides important information about the progress of the elimination of MERS, from prevention to treatment.
Collapse
Affiliation(s)
- Yan-Hua Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 31003, China
| | - Chen-Yu Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 31003, China
| | - Nan-Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 31003, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 31003, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 31003, China
| |
Collapse
|
47
|
Xu J, Jia W, Wang P, Zhang S, Shi X, Wang X, Zhang L. Antibodies and vaccines against Middle East respiratory syndrome coronavirus. Emerg Microbes Infect 2019; 8:841-856. [PMID: 31169078 PMCID: PMC6567157 DOI: 10.1080/22221751.2019.1624482] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) has spread through 27 countries and infected more than 2,200 people since its first outbreak in Saudi Arabia in 2012. The high fatality rate (35.4%) of this novel coronavirus and its persistent wide spread infectiousness in animal reservoirs have generated tremendous global public health concern. However, no licensed therapeutic agents or vaccines against MERS-CoV are currently available and only a limited few have entered clinical trials. Among all the potential targets of MERS-CoV, the spike glycoprotein (S) has been the most well-studied due to its critical role in mediating viral entry and in inducing a protective antibody response in infected individuals. The most notable studies include the recent discoveries of monoclonal antibodies and development of candidate vaccines against the S glycoprotein. Structural characterization of MERS-CoV S protein bound with these monoclonal antibodies has provided insights into the mechanisms of humoral immune responses against MERS-CoV infection. The current review aims to highlight these developments and discuss possible hurdles and strategies to translate these discoveries into ultimate medical interventions against MERS-CoV infection.
Collapse
Affiliation(s)
- Jiuyang Xu
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| | - Wenxu Jia
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| | - Pengfei Wang
- b Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy , Tsinghua University School of Life Sciences , Beijing , People's Republic of China
| | - Senyan Zhang
- b Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy , Tsinghua University School of Life Sciences , Beijing , People's Republic of China
| | - Xuanling Shi
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| | - Xinquan Wang
- b Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy , Tsinghua University School of Life Sciences , Beijing , People's Republic of China
| | - Linqi Zhang
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| |
Collapse
|
48
|
Zhou H, Chen Y, Zhang S, Niu P, Qin K, Jia W, Huang B, Zhang S, Lan J, Zhang L, Tan W, Wang X. Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein. Nat Commun 2019; 10:3068. [PMID: 31296843 PMCID: PMC6624210 DOI: 10.1038/s41467-019-10897-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/05/2019] [Indexed: 02/05/2023] Open
Abstract
Most neutralizing antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV) target the receptor-binding domain (RBD) of the spike glycoprotein and block its binding to the cellular receptor dipeptidyl peptidase 4 (DPP4). The epitopes and mechanisms of mAbs targeting non-RBD regions have not been well characterized yet. Here we report the monoclonal antibody 7D10 that binds to the N-terminal domain (NTD) of the spike glycoprotein and inhibits the cell entry of MERS-CoV with high potency. Structure determination and mutagenesis experiments reveal the epitope and critical residues on the NTD for 7D10 binding and neutralization. Further experiments indicate that the neutralization by 7D10 is not solely dependent on the inhibition of DPP4 binding, but also acts after viral cell attachment, inhibiting the pre-fusion to post-fusion conformational change of the spike. These properties give 7D10 a wide neutralization breadth and help explain its synergistic effects with several RBD-targeting antibodies. Antibodies that target the N-terminal domain (NTD) of the MERS-CoV spike remain poorly characterized. Here, Zhou et al. report the structural and functional analysis of the NTD-targeting mAb 7D10 and show that it synergizes with antibodies targeting the receptor-binding domain against different MERS-CoV strains.
Collapse
Affiliation(s)
- Haixia Zhou
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yingzhu Chen
- Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, 102206, Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Shuyuan Zhang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Peihua Niu
- Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, 102206, Beijing, China
| | - Kun Qin
- Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, 102206, Beijing, China
| | - Wenxu Jia
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Baoying Huang
- Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, 102206, Beijing, China
| | - Senyan Zhang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Jun Lan
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Wenjie Tan
- Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, 102206, Beijing, China.
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, 100084, Beijing, China. .,Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, 610065, Chengdu, China.
| |
Collapse
|
49
|
High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors of Coronaviruses. J Virol 2019; 93:JVI.00023-19. [PMID: 30918074 PMCID: PMC6613765 DOI: 10.1128/jvi.00023-19] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/17/2019] [Indexed: 12/28/2022] Open
Abstract
Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs in vitro. Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future. Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the severe public health threat of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome CoV (MERS-CoV), there are currently no drugs available for their treatment; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are urgently needed. To search for effective inhibitory agents, we performed high-throughput screening (HTS) of a 2,000-compound library of approved drugs and pharmacologically active compounds using the established genetically engineered human CoV OC43 (HCoV-OC43) strain expressing Renilla luciferase (rOC43-ns2Del-Rluc) and validated the inhibitors using multiple genetically distinct CoVs in vitro. We screened 56 hits from the HTS data and validated 36 compounds in vitro using wild-type HCoV-OC43. Furthermore, we identified seven compounds (lycorine, emetine, monensin sodium, mycophenolate mofetil, mycophenolic acid, phenazopyridine, and pyrvinium pamoate) as broad-spectrum inhibitors according to their strong inhibition of replication by four CoVs in vitro at low-micromolar concentrations. Additionally, we found that emetine blocked MERS-CoV entry according to pseudovirus entry assays and that lycorine protected BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This represents the first demonstration of in vivo real-time bioluminescence imaging to monitor the effect of lycorine on the spread and distribution of HCoV-OC43 in a mouse model. These results offer critical information supporting the development of an effective therapeutic strategy against CoV infection. IMPORTANCE Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs in vitro. Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future.
Collapse
|
50
|
Rosen O, Chan LLY, Abiona OM, Gough P, Wang L, Shi W, Zhang Y, Wang N, Kong WP, McLellan JS, Graham BS, Corbett KS. A high-throughput inhibition assay to study MERS-CoV antibody interactions using image cytometry. J Virol Methods 2019; 265:77-83. [PMID: 30468747 PMCID: PMC6357230 DOI: 10.1016/j.jviromet.2018.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 11/29/2022]
Abstract
The emergence of new pathogens, such as Middle East respiratory syndrome coronavirus (MERS-CoV), poses serious challenges to global public health and highlights the urgent need for methods to rapidly identify and characterize potential therapeutic or prevention options, such as neutralizing antibodies. Spike (S) proteins are present on the surface of MERS-CoV virions and mediate viral entry. S is the primary target for MERS-CoV vaccine and antibody development, and it has become increasingly important to understand MERS-CoV antibody binding specificity and function. Commonly used serological methods like ELISA, biolayer interferometry, and flow cytometry are informative, but limited. Here, we demonstrate a high-throughput protein binding inhibition assay using image cytometry. The image cytometry-based high-throughput screening method was developed by selecting a cell type with high DPP4 expression and defining optimal seeding density and protein binding conditions. The ability of monoclonal antibodies to inhibit MERS-CoV S binding was then tested. Binding inhibition results were comparable with those described in previous literature for MERS-CoV spike monomer and showed similar patterns as neutralization results. The coefficient of variation (CV) of our cell-based assay was <10%. The proposed image cytometry method provides an efficient approach for characterizing potential therapeutic antibodies for combating MERS-CoV that compares favorably with current methods. The ability to rapidly determine direct antibody binding to host cells in a high-throughput manner can be applied to study other pathogen-antibody interactions and thus can impact future research on viral pathogens.
Collapse
Affiliation(s)
- Osnat Rosen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Leo Li-Ying Chan
- Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA 01843, United States
| | - Olubukola M Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Portia Gough
- Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA 01843, United States
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Nianshuang Wang
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 03755, United States
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jason S McLellan
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 03755, United States
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|