1
|
Zhang M, Hui J, Chen Y, Gu X, Tian H. TaNAR2.1 and TaNAR2.2 differ in influencing nitrogen uptake and growth of wheat (Triticum aestivum L.). Int J Biol Macromol 2024; 281:136320. [PMID: 39370071 DOI: 10.1016/j.ijbiomac.2024.136320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
NAR2 (Nitrate assimilation related protein) is a protein chaperone involved in transporting nitrate across membranes. However, the expression pattern and function of NAR2 genes in wheat are still largely unknown. Here, we cloned two TaNAR2 genes (TaNAR2.1 and TaNAR2.2). To assess and compare the functional differences of TaNAR2.1 and TaNAR2.2, we analyzed the subcellular localization and expression pattern of the two genes in wheat under low nitrogen (LN) and high nitrogen (HN) conditions, as well as the nitrate influx and root system architecture of TaNAR2.1 and TaNAR2.2 overexpression wheat under LN and HN. Additionally, we investigated the effects of TaNAR2.1 and TaNAR2.2 overexpression on the growth phenotype, nitrogen uptake and yield of wheat throughout the growth period. There are significant differences in the expression patterns and functions of TaNAR2.1 and TaNAR2.2. TaNAR2.1 is located in the cytoplasm, nucleus and the plasma membrane, whereas TaNAR2.2 is a cytoplasm-specific protein. TaNAR2.1 appears to exhibit larger changes in expression levels and a higher capacity for nitrate influx than TaNAR2.2 under external nitrate supply. Overexpression of TaNAR2.1 significantly improves grain nitrogen use efficiency and increases grain yield, whereas overexpression of TaNAR2.2 enhances vegetative and reproductive growth of wheat roots. These findings indicate that TaNAR2.1 plays a crucial role in wheat nitrogen accumulation and yield, while TaNAR2.2 is pivotal for wheat root growth.
Collapse
Affiliation(s)
- Mingming Zhang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Hui
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yin Chen
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuli Gu
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Tian
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Ma Y, Zhang Y, Xu J, Zhao D, Guo L, Liu X, Zhang H. Recent advances in response to environmental signals during Arabidopsis root development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109037. [PMID: 39173364 DOI: 10.1016/j.plaphy.2024.109037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Plants grow by anchoring their roots in the soil, acquiring essential water and nutrients for growth, and interacting with other signaling factors in the soil. Root systems are crucial for both the basic growth and development of plants and their response to external environmental stimuli. Under different environmental conditions, the configuration of root systems in plants can undergo significant changes, with their strength determining the plant's ability to adapt to the environment. Therefore, understanding the mechanisms by which environmental factors regulate root development is essential for crop root architecture improvement and breeding for stress resistance. This paper summarizes the research progress in genetic regulation of root development of the model plant Arabidopsis thaliana (L.) Heynh. amidst diverse environmental stimuli over the past five years. Specifically, it focuses on the regulatory networks of environmental signals, encompassing light, energy, temperature, water, nutrients, and reactive oxygen species, on root development. Furthermore, it provides prospects for the application of root architecture improvement in crop breeding for stress resistance and nutrient efficiency.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ying Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, China
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dan Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China; College of Life Sciences, Hengshui University, Hengshui, 053010, China
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
3
|
Sennett LB, Roco CA, Lim NYN, Yavitt JB, Dörsch P, Bakken LR, Shapleigh JP, Frostegård Å. Determining how oxygen legacy affects trajectories of soil denitrifier community dynamics and N 2O emissions. Nat Commun 2024; 15:7298. [PMID: 39181870 PMCID: PMC11344836 DOI: 10.1038/s41467-024-51688-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Denitrification - a key process in the global nitrogen cycle and main source of the greenhouse gas N2O - is intricately controlled by O2. While the transition from aerobic respiration to denitrification is well-studied, our understanding of denitrifier communities' responses to cyclic oxic/anoxic shifts, prevalent in natural and engineered systems, is limited. Here, agricultural soil is exposed to repeated cycles of long or short anoxic spells (LA; SA) or constant oxic conditions (Ox). Surprisingly, denitrification and N2O reduction rates are three times greater in Ox than in LA and SA during a final anoxic incubation, despite comparable bacterial biomass and denitrification gene abundances. Metatranscriptomics indicate that LA favors canonical denitrifiers carrying nosZ clade I. Ox instead favors nosZ clade II-carrying partial- or non-denitrifiers, suggesting efficient partnering of the reduction steps among organisms. SA has the slowest denitrification progression and highest accumulation of intermediates, indicating less functional coordination. The findings demonstrate how adaptations of denitrifier communities to varying O2 conditions are tightly linked to the duration of anoxic episodes, emphasizing the importance of knowing an environment's O2 legacy for accurately predicting N2O emissions originating from denitrification.
Collapse
Affiliation(s)
- Louise B Sennett
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Constance A Roco
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences, Norwegian University of Life Sciences, Ås, Norway
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Natalie Y N Lim
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Joseph B Yavitt
- Department of Natural Resources, Cornell University, Ithaca, NY, USA
| | - Peter Dörsch
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
4
|
Khramov DE, Rostovtseva EI, Matalin DA, Konoshenkova AO, Nedelyaeva OI, Volkov VS, Balnokin YV, Popova LG. Novel Proteins of the High-Affinity Nitrate Transporter Family NRT2, SaNRT2.1 and SaNRT2.5, from the Euhalophyte Suaeda altissima: Molecular Cloning and Expression Analysis. Int J Mol Sci 2024; 25:5648. [PMID: 38891835 PMCID: PMC11171637 DOI: 10.3390/ijms25115648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Two genes of nitrate transporters SaNRT2.1 and SaNRT2.5, putative orthologs of high-affinity nitrate transporter genes AtNRT2.1 and AtNRT2.5 from Arabidopsis thaliana, were cloned from the euhalophyte Suaeda altissima. Phylogenetic bioinformatic analysis demonstrated that the proteins SaNRT2.1 and SaNRT2.5 exhibited higher levels of homology to the corresponding proteins from the plants of family Amaranthaceae; the similarity of amino acid sequences between proteins SaNRT2.1 and SaNRT2.5 was lower (54%). Both SaNRT2.1 and SaNRT2.5 are integral membrane proteins forming 12 transmembrane helices as predicted by topological modeling. An attempt to demonstrate nitrate transporting activity of SaNRT2.1 or SaNRT2.5 by heterologous expression of the genes in the yeast Hansenula (Ogataea) polymorpha mutant strain Δynt1 lacking the only yeast nitrate transporter was not successful. The expression patterns of SaNRT2.1 and SaNRT2.5 were studied in S. altissima plants that were grown in hydroponics under either low (0.5 mM) or high (15 mM) nitrate and salinity from 0 to 750 mM NaCl. The growth of the plants was strongly inhibited by low nitrogen supply while stimulated by NaCl; it peaked at 250 mM NaCl for high nitrate and at 500 mM NaCl for low nitrate. Under low nitrate supply, nitrate contents in S. altissima roots, leaves and stems were reduced but increased in leaves and stems as salinity in the medium increased. Potassium contents remained stable under salinity treatment from 250 to 750 mM NaCl. Quantitative real-time PCR demonstrated that without salinity, SaNRT2.1 was expressed in all organs, its expression was not influenced by nitrate supply, while SaNRT2.5 was expressed exclusively in roots-its expression rose about 10-fold under low nitrate. Salinity increased expression of both SaNRT2.1 and SaNRT2.5 under low nitrate. SaNRT2.1 peaked in roots at 500 mM NaCl with 15-fold increase; SaNRT2.5 peaked in roots at 500 mM NaCl with 150-fold increase. It is suggested that SaNRT2.5 ensures effective nitrate uptake by roots and functions as an essential high-affinity nitrate transporter to support growth of adult S. altissima plants under nitrogen deficiency.
Collapse
Affiliation(s)
| | | | | | | | | | - Vadim S. Volkov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (E.I.R.); (D.A.M.); (A.O.K.); (O.I.N.); (Y.V.B.)
| | | | - Larissa G. Popova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (E.I.R.); (D.A.M.); (A.O.K.); (O.I.N.); (Y.V.B.)
| |
Collapse
|
5
|
Zhang Y, Wang N, He C, Gao Z, Chen G. Comparative transcriptome analysis reveals major genes, transcription factors and biosynthetic pathways associated with leaf senescence in rice under different nitrogen application. BMC PLANT BIOLOGY 2024; 24:419. [PMID: 38760728 PMCID: PMC11102181 DOI: 10.1186/s12870-024-05129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the most important food crops in the world and the application of nitrogen fertilizer is an effective means of ensuring stable and high rice yields. However, excessive application of nitrogen fertilizer not only causes a decline in the quality of rice, but also leads to a series of environmental costs. Nitrogen reutilization is closely related to leaf senescence, and nitrogen deficiency will lead to early functional leaf senescence, whereas moderate nitrogen application will help to delay leaf senescence and promote the production of photosynthetic assimilation products in leaves to achieve yield increase. Therefore, it is important to explore the mechanism by which nitrogen affects rice senescence, to search for genes that are tolerant to low nitrogen, and to delay the premature senescence of rice functional leaves. RESULTS The present study was investigated the transcriptional changes in flag leaves between full heading and mature grain stages of rice (O. sativa) sp. japonica 'NanGeng 5718' under varying nitrogen (N) application: 0 kg/ha (no nitrogen; 0N), 240 kg/ha (moderate nitrogen; MN), and 300 kg/ha (high nitrogen; HN). Compared to MN condition, a total of 10427 and 8177 differentially expressed genes (DEGs) were detected in 0N and HN, respectively. We selected DEGs with opposite expression trends under 0N and HN conditions for GO and KEGG analyses to reveal the molecular mechanisms of nitrogen response involving DEGs. We confirmed that different N applications caused reprogramming of plant hormone signal transduction, glycolysis/gluconeogenesis, ascorbate and aldarate metabolism and photosynthesis pathways in regulating leaf senescence. Most DEGs of the jasmonic acid, ethylene, abscisic acid and salicylic acid metabolic pathways were up-regulated under 0N condition, whereas DEGs related to cytokinin and ascorbate metabolic pathways were induced in HN. Major transcription factors include ERF, WRKY, NAC and bZIP TF families have similar expression patterns which were induced under N starvation condition. CONCLUSION Our results revealed that different nitrogen levels regulate rice leaf senescence mainly by affecting hormone levels and ascorbic acid biosynthesis. Jasmonic acid, ethylene, abscisic acid and salicylic acid promote early leaf senescence under low nitrogen condition, ethylene and ascorbate delay senescence under high nitrogen condition. In addition, ERF, WRKY, NAC and bZIP TF families promote early leaf senescence. The relevant genes can be used as candidate genes for the regulation of senescence. The results will provide gene reference for further genomic studies and new insights into the gene functions, pathways and transcription factors of N level regulates leaf senescence in rice, thereby improving NUE and reducing the adverse effects of over-application of N.
Collapse
Affiliation(s)
- Yafang Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ning Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Chenggong He
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhiping Gao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Guoxiang Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
6
|
Śniegowska J, Biesiada A, Gasiński A. Influence of the Nitrogen Fertilization on the Yield, Biometric Characteristics and Chemical Composition of Stevia rebaudiana Bertoni Grown in Poland. Molecules 2024; 29:1865. [PMID: 38675686 PMCID: PMC11054086 DOI: 10.3390/molecules29081865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Stevia rebaudiana Bertoni is a plant native to South America that has gathered much interest in recent decades thanks to diterpene glycosides, called steviosides, which it produces. These compounds are characterised by their sweetness, which is 250-300 times higher than saccharose, and they contain almost no caloric value. Stevia is currently also grown outside the South American continent, in various countries characterised by warm weather. This research aimed to determine whether it is viable to grow Stevia rebaudiana plants in Poland, a country characterised by a cooler climate than the native regions for stevia plants. Additionally, the impact of adding various dosages and forms of nitrogen fertiliser was analysed. It was determined that Stevia rebaudiana grown in Poland is characterised by a rather low concentration of steviosides, although proper nitrogen fertilisation can improve various characteristics of the grown plants. The addition of 100 kg or 150 kg of nitrogen per hectare of the field in the form of urea or ammonium nitrate increased the yield of the stevia plants. The stevioside content can be increased by applying fertilisation using 100 kg or 150 kg of nitrogen per hectare in the form of ammonium sulfate. The total yield of the stevia plants grown in Poland was lower than the yield typically recorded in warmer countries, and the low concentration of steviosides in the plant suggests that more research about growing Stevia rebaudiana in Poland would be needed to develop profitable methods of stevia cultivation.
Collapse
Affiliation(s)
- Joanna Śniegowska
- Department of Horticulture, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Anita Biesiada
- Department of Horticulture, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Alan Gasiński
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| |
Collapse
|
7
|
Zhang X, Li X, Chen F, Cao X, Wang C, Jiao L, Yue L, Wang Z. Selenium Nanomaterials Enhance the Nutrients and Functional Components of Fuding Dabai Tea. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:681. [PMID: 38668175 PMCID: PMC11053761 DOI: 10.3390/nano14080681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Theanine, polyphenols, and caffeine not only affect the flavor of tea, but also play an important role in human health benefits. However, the specific regulatory mechanism of Se NMs on fat-reducing components is still unclear. In this study, the synthesis of fat-reducing components in Fuding Dabai (FDDB) tea was investigated. The results indicated that the 100-bud weight, theanine, EGCG, total catechin, and caffeine contents of tea buds were optimally promoted by 10 mg·L-1 Se NMs in the range of 24.3%, 36.2%, 53.9%, 67.1%, and 30.9%, respectively. Mechanically, Se NMs promoted photosynthesis in tea plants, increased the soluble sugar content in tea leaves (30.3%), and provided energy for the metabolic processes, including the TCA cycle, pyruvate metabolism, amino acid metabolism, and the glutamine/glutamic acid cycle, ultimately increasing the content of amino acids and antioxidant substances (catechins) in tea buds; the relative expressions of key genes for catechin synthesis, CsPAL, CsC4H, CsCHI, CsDFR, CsANS, CsANR, CsLAR, and UGGT, were significantly upregulated by 45.1-619.1%. The expressions of theanine synthesis genes CsTs, CsGs, and CsGOGAT were upregulated by 138.8-693.7%. Moreover, Se NMs promoted more sucrose transfer to the roots, with the upregulations of CsSUT1, CsSUT2, CsSUT3, and CsSWEET1a by 125.8-560.5%. Correspondingly, Se NMs enriched the beneficial rhizosphere microbiota (Roseiarcus, Acidothermus, Acidibacter, Conexicter, and Pedosphaeraceae), enhancing the absorption and utilization of ammonium nitrogen by tea plants, contributing to the accumulation of theanine. This study provides compelling evidence supporting the application of Se NMs in promoting the lipid-reducing components of tea by enhancing its nitrogen metabolism.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Liya Jiao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| |
Collapse
|
8
|
Erichsen DW, Pokharel P, Kyrø C, Schullehner J, Zhong L, Bondonno CP, Dalgaard F, Fjeldstad Hendriksen P, Sigsgaard T, Hodgson JM, Olsen A, Tjønneland A, Bondonno NP. Source-specific nitrate and nitrite intakes and associations with sociodemographic factors in the Danish Diet Cancer and Health cohort. Front Nutr 2024; 11:1326991. [PMID: 38476601 PMCID: PMC10927827 DOI: 10.3389/fnut.2024.1326991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Background The dietary source and intake levels of nitrate and nitrite may govern its deleterious versus beneficial effects on human health. Existing evidence on detailed source-specific intake is limited. The objectives of this study were to assess nitrate and nitrite intakes from different dietary sources (plant-based foods, animal-based foods, and water), characterize the background diets of participants with low and high intakes, and investigate how sociodemographic and lifestyle factors associate with intake levels. Methods In the Danish Diet, Cancer and Health Cohort, sociodemographic and lifestyle information was obtained from participants at enrolment (1993-1997). Source-dependent nitrate and nitrite intakes were calculated using comprehensive food composition databases, with tap water nitrate intakes estimated via the national drinking water quality monitoring database linked with participants' residential addresses from 1978 to 2016. Underlying dietary patterns were examined using radar plots comparing high to low consumers while sociodemographic predictors of source-dependent nitrate intakes were investigated using linear regression models. Results In a Danish cohort of 55,754 participants aged 50-65 at enrolment, the median [IQR] intakes of dietary nitrate and nitrite were 58.13 [44.27-74.90] mg/d and 1.79 [1.43-2.21] mg/d, respectively. Plant-based foods accounted for ~76% of nitrate intake, animal-based foods ~10%, and water ~5%. Nitrite intake was sourced roughly equally from plants and animals. Higher plant-sourced nitrate intake was associated with healthier lifestyles, better dietary patterns, more physical activity, higher education, lower age and lower BMI. Females and participants who had never smoked also had significantly higher plant-sourced nitrate intakes. Higher water-sourced nitrate intake was linked to sociodemographic risk factors (smoking, obesity, lower education). Patterns for animal-sourced nitrate were less clear. Conclusion Participants with higher plant-sourced nitrate intakes tend to be healthier while participants with higher water-sourced nitrate intakes tended to be unhealthier than their low consuming counterparts. Future research in this cohort should account for the sociodemographic and dietary predictors of source-specific nitrate intake we have identified.
Collapse
Affiliation(s)
| | - Pratik Pokharel
- Danish Cancer Institute, Copenhagen, Denmark
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | | | - Jörg Schullehner
- Department of Groundwater and Quaternary Geology Mapping, Geological Survey of Denmark and Greenland, Aarhus, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Liezhou Zhong
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Catherine P. Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | - Frederik Dalgaard
- Department of Cardiology, Herlev and Gentofte University Hospital, Copenhagen, Denmark
| | | | - Torben Sigsgaard
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus, Denmark
| | - Jonathan M. Hodgson
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | - Anja Olsen
- Danish Cancer Institute, Copenhagen, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Anne Tjønneland
- Danish Cancer Institute, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicola P. Bondonno
- Danish Cancer Institute, Copenhagen, Denmark
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| |
Collapse
|
9
|
Lei K, Hu H, Chang M, Sun C, Ullah A, Yu J, Dong C, Gao Q, Jiang D, Cao W, Tian Z, Dai T. A low red/far-red ratio restricts nitrogen assimilation by inhibiting nitrate reductase associated with downregulated TaNR1.2 and upregulated TaPIL5 in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:107850. [PMID: 38042099 DOI: 10.1016/j.plaphy.2023.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 12/04/2023]
Abstract
Understanding the physiological mechanism underlying nitrogen levels response to a low red/far-red ratio (R/FR) can provide new insights for optimizing wheat yield potential but has been not well documented. This study focused on the changes in nitrogen levels, nitrogen assimilation and nitrate uptake in wheat plants grown with and without additional far-red light. A low R/FR reduced wheat nitrogen accumulation and grain yield compared with the control. The levels of total nitrogen, free amino acid and ammonium were decreased in leaves but nitrate content was temporarily increased under a low R/FR. The nitrate reductase (NR) activity in leaves was more sensitive to a low R/FR than glutamine synthetase, glutamate synthase, glutamic oxalacetic transaminase and glutamic-pyruvic transaminase. Further analysis showed that a low R/FR had little effect on the NR activation state but reduced the level of NR protein and the expression of encoding gene TaNR1.2. Interestingly, a low R/FR rapidly induced TaPIL5 expression rather than TaHY5 and other members of TaPILs in wheat, suggesting that TaPIL5 was the key transcription factor response to a low R/FR in wheat and might be involved in the downregulation of TaNR1.2 expression. Besides, a low R/FR downregulated the expression of TaNR1.2 in leaves earlier than that of TaNRT1.1/1.2/1.5/1.8 in roots, which highlights the importance of NR and nitrogen assimilation in response to a low R/FR. Our results provide revelatory evidence that restricted nitrate reductase associated with downregulated TaNR1.2 and upregulated TaPIL5 mediate the suppression of nitrogen assimilation under a low R/FR in wheat.
Collapse
Affiliation(s)
- Kangqi Lei
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hang Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengjie Chang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chuanjiao Sun
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Attiq Ullah
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinhong Yu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chaofeng Dong
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiang Gao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dong Jiang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weixing Cao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Wang Y, Wang F, Ford R, Tang W, Zhou M, Ma B, Zhang M. The influences of graphene oxide and nitrification inhibitor on vegetable growths and soil and endophytic bacterial communities: Double-edge sword effects and nitrate risk controls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166337. [PMID: 37591394 DOI: 10.1016/j.scitotenv.2023.166337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Crop yield and quality are substantial indicators of evaluating agricultural nitrogen management practices, and the nitrate (NO3--N) is one of the predominant factors affecting crop quality. The NO3--N accumulation in vegetable crop affects plant growth and quality and human health. Therefore, it is necessary to stimulate vegetable yield but eliminate excessive NO3--N in soils and plants with feasible management strategies. Graphene oxide (GO) is a novel carbon nanomaterial that has attracted great attention, but rare research has been conducted to quantify the effects of GO on plant NO3--N accumulation and microbial communities. This study explored effects of the GO and nitrification inhibitors, dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate (DMPP), on vegetable yields and NO3--N contents and bacterial communities in soil-cabbage (Brassica rapa subsp. Chinensis) system. The soil NO3--N content was significantly reduced with the single GO application. The cabbage NO3--N content was increased by 60.4 % while the cabbage yield was significantly enhanced by 101.9 % with the single GO application. Meanwhile, the Invsimpson index of soil bacterial community and the ACE and Chao1 richness estimators of endophytic bacterial community were significantly decreased by the GO application. Cabbage NO3--N content was significantly and negatively correlated with the soil Myxococcota, endophytic bacterial community co-occurrence network edge, cabbage soluble sugar and cabbage proline. The GO application generated double-edged sword effects of positively promoting yield but causing risks of NO3--N accumulation and quality deterioration. However, these adverse effects could be mitigated by the extra nitrification inhibitor application. The potential ecological risks of GO application to the vegetable quality and endophytic community should be considered.
Collapse
Affiliation(s)
- Yan Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Fang Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rebecca Ford
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
| | - Wenhui Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Minzhe Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Bin Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Manyun Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China; Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia.
| |
Collapse
|
11
|
Svietlova N, Reichelt M, Zhyr L, Majumder A, Scholz SS, Grabe V, Krapp A, Oelmüller R, Mithöfer A. The Beneficial Fungus Mortierella hyalina Modulates Amino Acid Homeostasis in Arabidopsis under Nitrogen Starvation. Int J Mol Sci 2023; 24:16128. [PMID: 38003319 PMCID: PMC10671455 DOI: 10.3390/ijms242216128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Non-mycorrhizal but beneficial fungi often mitigate (a)biotic stress-related traits in host plants. The underlying molecular mechanisms are mostly still unknown, as in the interaction between the endophytic growth-promoting soil fungus Mortierella hyalina and Arabidopsis thaliana. Here, abiotic stress in the form of nitrogen (N) deficiency was used to investigate the effects of the fungus on colonized plants. In particular, the hypothesis was investigated that fungal infection could influence N deficiency via an interaction with the high-affinity nitrate transporter NRT2.4, which is induced by N deficiency. For this purpose, Arabidopsis wild-type nrt2.4 knock-out and NRT2.4 reporter lines were grown on media with different nitrate concentrations with or without M. hyalina colonization. We used chemical analysis methods to determine the amino acids and phytohormones. Experimental evidence suggests that the fungus does not modulate NRT2.4 expression under N starvation. Instead, M. hyalina alleviates N starvation in other ways: The fungus supplies nitrogen (15N) to the N-starved plant. The presence of the fungus restores the plants' amino acid homeostasis, which was out of balance due to N deficiency, and causes a strong accumulation of branched-chain amino acids. We conclude that the plant does not need to invest in defense and resources for growth are maintained, which in turn benefits the fungus, suggesting that this interaction should be considered a mutualistic symbiosis.
Collapse
Affiliation(s)
- Nataliia Svietlova
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (N.S.); (L.Z.); (A.M.)
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Liza Zhyr
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (N.S.); (L.Z.); (A.M.)
| | - Anindya Majumder
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (N.S.); (L.Z.); (A.M.)
| | - Sandra S. Scholz
- Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller-University, 07743 Jena, Germany; (S.S.S.); (R.O.)
| | - Veit Grabe
- Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Anne Krapp
- Institut Jean-Pierre Bourgin (IJPB), AgroParisTech, INRAE, Université Paris-Saclay, 78000 Versailles, France;
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller-University, 07743 Jena, Germany; (S.S.S.); (R.O.)
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (N.S.); (L.Z.); (A.M.)
| |
Collapse
|
12
|
Bescos R, Rollason ML, Davies TS, Casas‐Agustench P. Content of nitrate and nitrite in commercial and self-made beetroot juices and the effect of storage temperature. Food Sci Nutr 2023; 11:6376-6383. [PMID: 37823101 PMCID: PMC10563749 DOI: 10.1002/fsn3.3575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 10/13/2023] Open
Abstract
Popularity of beetroot juice (BJ) is growing due to its high inorganic nitrate content NO 3 - and its potential physiological benefits. However, the content of NO 3 - is not indicated in most commercial BJs and it can be affected by seasonal changes and storage conditions. This study analyzed the content of NO 3 - and nitrite NO 2 - in five and two commercial and self-made BJs, respectively, that were purchased in the summer and winter periods. The effect of storage temperature (20°C, 4°C, and -20°C) and pH was also analyzed. In nonconcentrated BJs, the NO 3 - content was 34 ± 20% (p = .075) in the winter than in the summer. NO 3 - was fully degraded in self-made BJ after 3 days at 20°C. This effect was attenuated by 78% and 82% when it was kept at 4°C and -20°C, respectively. The addition of lemon juice (5%) to self-made BJ was another useful approach to avoid NO 3 - degradation for 3 days when it was kept at 20°C. Regarding NO 2 - , self-made BJ had higher concentration (0.097 ± 0.01 mg/mL) compared to commercial BJs (<0.1 mg/mL; p = .001). The pH of self-made BJ was higher (6.3 ± 0.1) compared to commercial BJs (4.5 ± 0.3; p = .001). These results suggest that the content of NO 3 - in nonconcentrated BJs can substantially differ across the year and this is an important factor to take into account when recommending BJs to promote some of its potential physiological benefits.
Collapse
Affiliation(s)
- Raul Bescos
- Faculty of Health, School of Health ProfessionsUniversity of PlymouthPlymouthUK
| | - Mark L. Rollason
- Faculty of Health, School of Health ProfessionsUniversity of PlymouthPlymouthUK
| | - Tanisha S. Davies
- Faculty of Health, School of Health ProfessionsUniversity of PlymouthPlymouthUK
| | | |
Collapse
|
13
|
Sadoine M, De Michele R, Župunski M, Grossmann G, Castro-Rodríguez V. Monitoring nutrients in plants with genetically encoded sensors: achievements and perspectives. PLANT PHYSIOLOGY 2023; 193:195-216. [PMID: 37307576 PMCID: PMC10469547 DOI: 10.1093/plphys/kiad337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/14/2023]
Abstract
Understanding mechanisms of nutrient allocation in organisms requires precise knowledge of the spatiotemporal dynamics of small molecules in vivo. Genetically encoded sensors are powerful tools for studying nutrient distribution and dynamics, as they enable minimally invasive monitoring of nutrient steady-state levels in situ. Numerous types of genetically encoded sensors for nutrients have been designed and applied in mammalian cells and fungi. However, to date, their application for visualizing changing nutrient levels in planta remains limited. Systematic sensor-based approaches could provide the quantitative, kinetic information on tissue-specific, cellular, and subcellular distributions and dynamics of nutrients in situ that is needed for the development of theoretical nutrient flux models that form the basis for future crop engineering. Here, we review various approaches that can be used to measure nutrients in planta with an overview over conventional techniques, as well as genetically encoded sensors currently available for nutrient monitoring, and discuss their strengths and limitations. We provide a list of currently available sensors and summarize approaches for their application at the level of cellular compartments and organelles. When used in combination with bioassays on intact organisms and precise, yet destructive analytical methods, the spatiotemporal resolution of sensors offers the prospect of a holistic understanding of nutrient flux in plants.
Collapse
Affiliation(s)
- Mayuri Sadoine
- Institute of Cell and Interaction Biology, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Roberto De Michele
- Institute of Biosciences and Bioresources, National Research Council of Italy, Palermo 90129, Italy
| | - Milan Župunski
- Institute of Cell and Interaction Biology, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Vanessa Castro-Rodríguez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
14
|
Gao J, Ge S, Wang H, Fang Y, Sun L, He T, Cheng X, Wang D, Zhou X, Cai H, Li C, Liu Y, E Y, Meng J, Chen W. Biochar-extracted liquor stimulates nitrogen related gene expression on improving nitrogen utilization in rice seedling. FRONTIERS IN PLANT SCIENCE 2023; 14:1131937. [PMID: 37404536 PMCID: PMC10317180 DOI: 10.3389/fpls.2023.1131937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/04/2023] [Indexed: 07/06/2023]
Abstract
Introduction Biochar has been shown to be an effective soil amendment for promoting plant growth and improving nitrogen (N) utilization. However, the physiological and molecular mechanisms behind such stimulation remain unclear. Methods In this study, we investigated whether biochar-extracted liquor including 21 organic molecules enhance the nitrogen use efficiency (NUE) of rice plants using two N forms (NH4 +-N and NO3 --N). A hydroponic experiment was conducted, and biochar-extracted liquor (between 1 and 3% by weight) was applied to rice seedlings. Results The results showed that biochar-extracted liquor significantly improved phenotypic and physiological traits of rice seedlings. Biochar-extracted liquor dramatically upregulated the expression of rice N metabolism-related genes such as OsAMT1.1, OsGS1.1, and OsGS2. Rice seedlings preferentially absorbed NH4 +-N than NO3 --N (p < 0.05), and the uptake of NH4 +-N by rice seedlings was significantly increased by 33.60% under the treatment of biochar-extracted liquor. The results from molecular docking showed that OsAMT1.1protein can theoretically interact with 2-Acetyl-5-methylfuran, trans-2,4-Dimethylthiane, S, S-dioxide, 2,2-Diethylacetamide, and 1,2-Dimethylaziridine in the biochar-extracted liquor. These four organic compounds have similar biological function as the OsAMT1.1 protein ligand in driving NH4 +-N uptakes by rice plants. Discussion This study highlights the importance of biochar-extracted liquor in promoting plant growth and NUE. The use of low doses of biochar-extracted liquor could be an important way to reduce N input in order to achieve the purpose of reducing fertilizer use and increasing efficiency in agricultural production.
Collapse
Affiliation(s)
- Jian Gao
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Shaohua Ge
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Yunying Fang
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Luming Sun
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Tianyi He
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Xiaoyi Cheng
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Di Wang
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Xuanwei Zhou
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Heqing Cai
- Bijie Tobacco Company of Guizhou Province, Bijie, China
| | - Caibin Li
- Bijie Tobacco Company of Guizhou Province, Bijie, China
| | - Yanxiang Liu
- Bijie Tobacco Company of Guizhou Province, Bijie, China
| | - Yang E
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Jun Meng
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Wenfu Chen
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| |
Collapse
|
15
|
Rahmat Z, Sohail MN, Perrine-Walker F, Kaiser BN. Balancing nitrate acquisition strategies in symbiotic legumes. PLANTA 2023; 258:12. [PMID: 37296318 PMCID: PMC10256645 DOI: 10.1007/s00425-023-04175-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION Legumes manage both symbiotic (indirect) and non-symbiotic (direct) nitrogen acquisition pathways. Understanding and optimising the direct pathway for nitrate uptake will support greater legume growth and seed yields. Legumes have multiple pathways to acquire reduced nitrogen to grow and set seed. Apart from the symbiotic N2-fixation pathway involving soil-borne rhizobia bacteria, the acquisition of nitrate and ammonia from the soil can also be an important secondary nitrogen source to meet plant N demand. The balance in N delivery between symbiotic N (indirect) and inorganic N uptake (direct) remains less clear over the growing cycle and with the type of legume under cultivation. In fertile, pH balanced agricultural soils, NO3- is often the predominant form of reduced N available to crop plants and will be a major contributor to whole plant N supply if provided at sufficient levels. The transport processes for NO3- uptake into legume root cells and its transport between root and shoot tissues involves both high and low-affinity transport systems called HATS and LATS, respectively. These proteins are regulated by external NO3- availability and by the N status of the cell. Other proteins also play a role in NO3- transport, including the voltage dependent chloride/nitrate channel family (CLC) and the S-type anion channels of the SLAC/SLAH family. CLC's are linked to NO3- transport across the tonoplast of vacuoles and the SLAC/SLAH's with NO3- efflux across the plasma membrane and out of the cell. An important step in managing the N requirements of a plant are the mechanisms involved in root N uptake and the subsequent cellular distribution within the plant. In this review, we will present the current knowledge of these proteins and what is understood on how they function in key model legumes (Lotus japonicus, Medicago truncatula and Glycine sp.). The review will examine their regulation and role in N signalling, discuss how post-translational modification affects NO3- transport in roots and aerial tissues and its translocation to vegetative tissues and storage/remobilization in reproductive tissues. Lastly, we will present how NO3-influences the autoregulation of nodulation and nitrogen fixation and its role in mitigating salt and other abiotic stresses.
Collapse
Affiliation(s)
- Zainab Rahmat
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Muhammad N Sohail
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Francine Perrine-Walker
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia.
| | - Brent N Kaiser
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia.
| |
Collapse
|
16
|
Ninkuu V, Liu Z, Sun X. Genetic regulation of nitrogen use efficiency in Gossypium spp. PLANT, CELL & ENVIRONMENT 2023; 46:1749-1773. [PMID: 36942358 DOI: 10.1111/pce.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
Cotton (Gossypium spp.) is the most important fibre crop, with desirable characteristics preferred for textile production. Cotton fibre output relies heavily on nitrate as the most important source of inorganic nitrogen (N). However, nitrogen dynamics in extreme environments limit plant growth and lead to yield loss and pollution. Therefore, nitrogen use efficiency (NUE), which involves the utilisation of the 'right rate', 'right source', 'right time', and 'right place' (4Rs), is key for efficient N management. Recent omics techniques have genetically improved NUE in crops. We herein highlight the mechanisms of N uptake and assimilation in the vegetative and reproductive branches of the cotton plant while considering the known and unknown regulatory factors. The phylogenetic relationships among N transporters in four Gossypium spp. have been reviewed. Further, the N regulatory genes that participate in xylem transport and phloem loading are also discussed. In addition, the functions of microRNAs and transcription factors in modulating the expression of target N regulatory genes are highlighted. Overall, this review provides a detailed perspective on the complex N regulatory mechanism in cotton, which would accelerate the research toward improving NUE in crops.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
17
|
Akoijam N, Joshi SR. Bioprospecting acid- and arsenic-tolerant plant growth-promoting rhizobacteria for mitigation of arsenic toxicity in acidic agricultural soils. Arch Microbiol 2023; 205:229. [PMID: 37160492 DOI: 10.1007/s00203-023-03567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Widespread use of chemical fertilizers and falling productivity in traditional agricultural practices has led to the biodiversity hotspot of North-Eastern region of India to face imminent threat to soil nutrients and biodiversity. The present work aimed to isolate rhizobacteria from Oryza sativa L. to evaluate their plant growth-promoting traits like indole, ammonia, siderophore production, and phosphate solubilization followed by in vitro plant growth promotion and anti-fungal assessment against Curvularia oryzae. Moreover, presence of heavy metals such as arsenic in chemical fertilizers and in groundwater contributes to arsenic contamination of agricultural soil. Taking this into consideration for the present study, the background metal content of the bulk soil, roots and grains of rice was measured. Arsenic tolerance of the rhizobacterial isolates was assessed using different concentrations of arsenite- and arsenate-supplemented media. 16S rRNA gene sequencing and phylogenetic tree analysis identified the isolates as Bacillus paramycoides, B. albus, B. altitudinis, B. koreensis, B. megaterium, B. wiedmannii, B. paramycoides, Chryseobacterium gleum, Stenotrophomonas maltophilia and Pseudomonas shirazica. Considering the acidic nature of the paddy growing soil, the growth kinetics of the isolates were monitored in acid and arsenic-supplemented conditions for 48 h of growth. Few isolates showed potent anti-fungal activity against the late blight phytopathogen, Curvularia oryzae MTCC 2605, apart from being potential growth promoters. The findings open vistas for the mass production of the characterized PGP rhizobacteria for their application in rehabilitation of the degrading arsenic contaminated paddy fields.
Collapse
Affiliation(s)
- Nirmala Akoijam
- Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793 022, India
| | - Santa Ram Joshi
- Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793 022, India.
| |
Collapse
|
18
|
Ingargiola C, Jéhanno I, Forzani C, Marmagne A, Broutin J, Clément G, Leprince AS, Meyer C. The Arabidopsis Target of Rapamycin (TOR) kinase regulates ammonium assimilation and glutamine metabolism. PLANT PHYSIOLOGY 2023:kiad216. [PMID: 37042394 DOI: 10.1093/plphys/kiad216] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
In eukaryotes, Target of Rapamycin (TOR) is a well conserved kinase that controls cell metabolism and growth in response to nutrients and environmental factors. Nitrogen (N) is an essential element for plants, and TOR functions as a crucial N and amino acid sensor in animals and yeast. However, knowledge on the connections between TOR and the overall N metabolism and assimilation in plants is still limited. In this study, we investigated the regulation of TOR in Arabidopsis (Arabidopsis thaliana) by the N source as well as the impact of TOR deficiency on N metabolism. Inhibition of TOR globally decreased ammonium uptake while triggering a massive accumulation of amino acids, such as Gln, but also of polyamines. Consistently, TOR complex mutants were hypersensitive to Gln. We also showed that the glutamine synthetase inhibitor glufosinate abolishes Gln accumulation resulting from TOR inhibition and improves the growth of TOR complex mutants. These results suggest that a high level of Gln contributes to the reduction in plant growth resulting from TOR inhibition. Glutamine synthetase activity was reduced by TOR inhibition while the enzyme amount increased. In conclusion, our findings show that the TOR pathway is intimately connected to N metabolism and that a decrease in TOR activity results in glutamine synthetase-dependent Gln and amino acid accumulation.
Collapse
Affiliation(s)
- Camille Ingargiola
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Isabelle Jéhanno
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Céline Forzani
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Anne Marmagne
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Justine Broutin
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Anne-Sophie Leprince
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
- Faculté des Sciences et d'Ingénierie, Sorbonne Université, UFR 927, 4 Place Jussieu, 75252 Paris, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
19
|
Zhang X, Feng J, Zhao R, Cheng H, Ashraf J, Wang Q, Lv L, Zhang Y, Song G, Zuo D. Functional characterization of the GhNRT2.1e gene reveals its significant role in improving nitrogen use efficiency in Gossypium hirsutum. PeerJ 2023; 11:e15152. [PMID: 37009157 PMCID: PMC10064996 DOI: 10.7717/peerj.15152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Background
Nitrate is the primary type of nitrogen available to plants, which is absorbed and transported by nitrate transporter 2 (NRT2) at low nitrate conditions.
Methods
Genome-wide identification of NRT2 genes in G. hirsutum was performed. Gene expression patterns were revealed using RNA-seq and qRT-PCR. Gene functions were characterized using overexpression in A. thaliana and silencing in G. hirsutum. Protein interactions were verified by yeast two-hybrid and luciferase complementation imaging (LCI) assays.
Results
We identified 14, 14, seven, and seven NRT2 proteins in G. hirsutum, G. barbadense, G. raimondii, and G. arboreum. Most NRT2 proteins were predicted in the plasma membrane. The NRT2 genes were classified into four distinct groups through evolutionary relationships, with members of the same group similar in conserved motifs and gene structure. The promoter regions of NRT2 genes included many elements related to growth regulation, phytohormones, and abiotic stresses. Tissue expression pattern results revealed that most GhNRT2 genes were specifically expressed in roots. Under low nitrate conditions, GhNRT2 genes exhibited different expression levels, with GhNRT2.1e being the most up-regulated. Arabidopsis plants overexpressing GhNRT2.1e exhibited increased biomass, nitrogen and nitrate accumulation, nitrogen uptake and utilization efficiency, nitrogen-metabolizing enzyme activity, and amino acid content under low nitrate conditions. In addition, GhNRT2.1e-silenced plants exhibited suppressed nitrate uptake and accumulation, hampered plant growth, affected nitrogen metabolism processes, and reduced tolerance to low nitrate. The results showed that GhNRT2.1e could promote nitrate uptake and transport under low nitrate conditions, thus effectively increasing nitrogen use efficiency (NUE). We found that GhNRT2.1e interacts with GhNAR2.1 by yeast two-hybrid and LCI assays.
Discussion
Our research lays the foundation to increase NUE and cultivate new cotton varieties with efficient nitrogen use.
Collapse
Affiliation(s)
- Xinmiao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Jiajia Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Ruolin Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Javaria Ashraf
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
20
|
Bashir SS, Siddiqi TO, Kumar D, Ahmad A. Physio-biochemical, agronomical, and gene expression analysis reveals different responsive approach to low nitrogen in contrasting rice cultivars for nitrogen use efficiency. Mol Biol Rep 2023; 50:1575-1593. [PMID: 36520360 DOI: 10.1007/s11033-022-08160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nitrogen (N) is an essential macronutrient for plant growth and development as it is an essential constituent of biomolecules. Its availability directly impacts crop yield. Increased N application in crop fields has caused environmental and health problems, and decreasing nitrogen inputs are in demand to maintain crop production sustainability. Understanding the molecular mechanism of N utilization could play a crucial role in improving the nitrogen use efficiency (NUE) of crop plants. METHODS AND RESULTS In the present study, the effect of low N supply on plant growth, physio-biochemical, chlorophyll fluorescence attributes, yield components, and gene expression analysis were measured at six developmental stages in rice cultivars. Two rice cultivars were grown with a supply of optimium (120 kg ha-1) and low N (60 kg ha-1). Cultivar Vikramarya excelled Aditya at low N supply, and exhibits enhanced plant growth, physiological efficiency, agronomic efficiency, and improved NUE due to higher N uptake and utilization at low N treatment. Moreover, plant biomass, leaf area, and photosynthetic rate were significantly higher in cv. Vikramarya than cv. Aditya at different growth stages, under low N treatment. In addition, enzymatic activities in cultivar Vikramarya were higher than cultivar Aditya under low nitrogen, indicating its greater potential for N metabolism. Gene expression analysis was carried out for the most important nitrogen assimilatory enzymes, such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT). Expression levels of these genes at different growth stages were significantly higher in cv. Vikramarya compared to cv. Aditya at low N supply. Our findings suggest that improving NUE needs specific revision in N metabolism and physiological assimilation. CONCLUSION Overall differences in plant growth, physiological efficiency, biochemical activities, and expression levels of N metabolism genes in N-efficient and N-inefficient rice cultivars need a specific adaptation to N metabolism. Regulatory genes may separately or in conjunction, enhance the NUE. These results provide a platform for selecting crop cultivars for nitrogen utilization efficiency at low N treatment.
Collapse
Affiliation(s)
- Sheikh Shanawaz Bashir
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Tariq Omar Siddiqi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Dinesh Kumar
- Division of Agronomy, Indian Agricultural Research Institute, New Delhi, India
| | - Altaf Ahmad
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
21
|
Yang M, Dong C, Shi Y. Nano fertilizer synergist effects on nitrogen utilization and related gene expression in wheat. BMC PLANT BIOLOGY 2023; 23:26. [PMID: 36631773 PMCID: PMC9835382 DOI: 10.1186/s12870-023-04046-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The application of nano materials is one of the current hot spots in agricultural production. The aim of this work was to evaluate the effects of different nano fertilizer synergists on nitrogen (N) utilization and related gene expression in wheat. The experiments were carried out in pot and field conditions at the West-Coast Economic New Area experimental base and Greenhouse of Qingdao Agricultural University. Seven treatments were set up: CK (compound fertilizer), T1 (compound fertilizer + 0.3% nano carbon synergist), T2 (compound fertilizer + 0.3% nano calcium carbonate synergist), T3 (compound fertilizer + 0.3% composite nano synergist), T4 (70% compound fertilizer + 0.3% nano carbon synergist), T5 (70% compound fertilizer + 0.3% nano calcium carbonate synergist), T6 (70% compound fertilizer + 0.3% composite nano synergist). The results showed that compared with CK, the N accumulation of T1, T2, T3, T4, T5 and T6 increased by 40-50%, 30-40%, 55-65%, 20-30%, 15-20% and 30-40%, respectively; and the N use efficiency increased by 12-19%, 9-18%, 16-22%, 5-17%, 4-16% and 10-20% respectively. And the gene expression levels of TaNRT2.2, TaNRT2.3, TaGS1 and TaGS2 in the treatments with synergistic phosphate fertilizer were significantly higher than those in the CK. The application of nano fertilizer synergist can significantly improve N accumulation, N use efficiency, and promote the expression of genes related to N transport and metabolism.
Collapse
Affiliation(s)
- Min Yang
- Dryland-Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengwu Dong
- Dryland-Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yan Shi
- Dryland-Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
22
|
Marcianò D, Ricciardi V, Maddalena G, Massafra A, Marone Fassolo E, Masiero S, Bianco PA, Failla O, De Lorenzis G, Toffolatti SL. Influence of Nitrogen on Grapevine Susceptibility to Downy Mildew. PLANTS (BASEL, SWITZERLAND) 2023; 12:263. [PMID: 36678977 PMCID: PMC9867458 DOI: 10.3390/plants12020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Downy mildew, caused by the obligate parasite Plasmopara viticola, is one of the most important threats to viticulture. The exploitation of resistant and susceptibility traits of grapevine is one of the most promising ways to increase the sustainability of disease management. Nitrogen (N) fertilization is known for influencing disease severity in the open field, but no information is available on its effect on plant-pathogen interaction. A previous RNAseq study showed that several genes of N metabolism are differentially regulated in grapevine upon P. viticola inoculation, and could be involved in susceptibility or resistance to the pathogen. The aim of this study was to evaluate if N fertilization influences: (i) the foliar leaf content and photosynthetic activity of the plant, (ii) P. viticola infectivity, and (iii) the expression of the candidate susceptibility/resistance genes. Results showed that N level positively correlated with P. viticola infectivity, confirming that particular attention should be taken in vineyard to the fertilization, but did not influence the expression of the candidate genes. Therefore, these genes are manipulated by the pathogen and can be exploited for developing new, environmentally friendly disease management tools, such as dsRNAs, to silence the susceptibility genes or breeding for resistance.
Collapse
Affiliation(s)
- Demetrio Marcianò
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Valentina Ricciardi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Giuliana Maddalena
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
- Department of Biosciences, University of Milan, 20133 Milano, Italy
| | | | | | - Simona Masiero
- Department of Biosciences, University of Milan, 20133 Milano, Italy
| | - Piero Attilio Bianco
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Osvaldo Failla
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Silvia Laura Toffolatti
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| |
Collapse
|
23
|
Hodin J, Lind C, Marmagne A, Espagne C, Bianchi MW, De Angeli A, Abou-Choucha F, Bourge M, Chardon F, Thomine S, Filleur S. Proton exchange by the vacuolar nitrate transporter CLCa is required for plant growth and nitrogen use efficiency. THE PLANT CELL 2023; 35:318-335. [PMID: 36409008 PMCID: PMC9806559 DOI: 10.1093/plcell/koac325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Nitrate is a major nutrient and osmoticum for plants. To deal with fluctuating nitrate availability in soils, plants store this nutrient in their vacuoles. Chloride channel a (CLCa), a 2NO3-/1H+ exchanger localized to the vacuole in Arabidopsis (Arabidopsis thaliana), ensures this storage process. CLCa belongs to the CLC family, which includes anion/proton exchangers and anion channels. A mutation in a glutamate residue conserved across CLC exchangers is likely responsible for the conversion of exchangers to channels. Here, we show that CLCa with a mutation in glutamate 203 (E203) behaves as an anion channel in its native membrane. We introduced the CLCaE203A point mutation to investigate its physiological importance into the Arabidopsis clca knockout mutant. These CLCaE203A mutants displayed a growth deficit linked to the disruption of water homeostasis. Additionally, CLCaE203A expression failed to complement the defect in nitrate accumulation of clca and favored higher N-assimilation at the vegetative stage. Further analyses at the post-flowering stages indicated that CLCaE203A expression results in an increase in N uptake allocation to seeds, leading to a higher nitrogen use efficiency compared to the wild-type. Altogether, these results point to the critical function of the CLCa exchanger on the vacuole for plant metabolism and development.
Collapse
Affiliation(s)
- Julie Hodin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- UFR Sciences du Vivant, Université Paris Cité, F-75205 Paris Cedex 13, France
| | - Christof Lind
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Anne Marmagne
- AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, 78000 Versailles, France
| | - Christelle Espagne
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Michele Wolfe Bianchi
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- Université Paris-Est-Créteil-Val-de-Marne, 94010 Creteil Cedex, France
| | - Alexis De Angeli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Fadi Abou-Choucha
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Mickaël Bourge
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Fabien Chardon
- AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, 78000 Versailles, France
| | - Sebastien Thomine
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Sophie Filleur
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- UFR Sciences du Vivant, Université Paris Cité, F-75205 Paris Cedex 13, France
| |
Collapse
|
24
|
Zou L, Qi D, Li S, Zhai M, Li Z, Guo X, Ruan M, Yu X, Zhao P, Li W, Zhang P, Ma Q, Peng M, Liao W. The cassava (Manihot-esculenta Crantz)'s nitrate transporter NPF4.5, expressed in seedling roots, involved in nitrate flux and osmotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:122-133. [PMID: 36399913 DOI: 10.1016/j.plaphy.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
AtNPF4.5/AIT2, which was predicted to be a low-affinity transporter capable for nitrate uptake, was screened by ABA receptor complex in Arabidopsis ten years ago. However, the molecular and biochemical characterizations of AtNPF4.5 in plants remained largely unclear. In this study, the function of a plasma-membrane-localized and root-specifically-expressed gene MeNPF4.5 (Manihot-esculenta NITRATE TRANSPORTER 1 PTR FAMILY4.5), an ortholog of the Arabidopsis thaliana NPF4.5, was investigated in cassava roots as a nitrate efflux transporter on low nitrate medium and an influx transporter following exposure to high concentration of external nitrates. Moreover, RNA interference (RNAi) of MeNPF4.5 reduced the nitrate efflux capacity but the overexpressing cassava seedlings increased the ability of efflux from the elongation to the mature zone of root under low nitrate treatments. Besides, MeNPF4.5-RNAi expression reduced the nitrate influx capacity but enhanced nitrate absorption in parts of overexpressing plants from the meristem, elongation to mature zone of roots under high nitrate conditions. Furthermore, MeNPF4.5-RNAi seedlings survived owing to roots that could grow normally, but the MeNPF4.5-over-expressors showed adverse growth under 7% PEG6000 stress, suggesting that MeNPF4.5 negatively regulated the osmotic stress and was involved in nitrate flux through cassava seedlings.
Collapse
Affiliation(s)
- Liangping Zou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Dengfeng Qi
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Shuxia Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Min Zhai
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhuang Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xin Guo
- College of Plant Science & Technology of HuaZhongAgricultural University, Wuhan, Hubei, 430070, China
| | - Mengbin Ruan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Wenbin Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence and Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai, 200032, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence and Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai, 200032, China.
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China.
| | - Wenbin Liao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China.
| |
Collapse
|
25
|
Cheng J, Tan H, Shan M, Duan M, Ye L, Yang Y, He L, Shen H, Yang Z, Wang X. Genome-wide identification and characterization of the NPF genes provide new insight into low nitrogen tolerance in Setaria. FRONTIERS IN PLANT SCIENCE 2022; 13:1043832. [PMID: 36589108 PMCID: PMC9795848 DOI: 10.3389/fpls.2022.1043832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Introduction Nitrogen (N) is essential for plant growth and yield production and can be taken up from soil in the form of nitrate or peptides. The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) genes play important roles in the uptake and transportation of these two forms of N. Methods Bioinformatic analysis was used to identify and characterize the NPF genes in Setaria. RNA-seq was employed to analyze time-series low nitrate stress response of the SiNPF genes. Yeast and Arabidopsis mutant complementation were used to test the nitrate transport ability of SiNRT1.1B1 and SiNRT1.1B2. Results We identified 92 and 88 putative NPF genes from foxtail millet (Setaria italica L.) and its wild ancestor green foxtail (Setaria viridis L.), respectively. These NPF genes were divided into eight groups according to their sequence characteristics and phylogenetic relationship, with similar intron-exon structure and motifs in the same subfamily. Twenty-six tandem duplication and 13 segmental duplication events promoted the expansion of SiNPF gene family. Interestingly, we found that the tandem duplication of the SiNRT1.1B gene might contribute to low nitrogen tolerance of foxtail millet. The gene expression atlas showed that the SiNPFs were divided into two major clusters, which were mainly expressed in root and the above ground tissues, respectively. Time series transcriptomic analysis further revealed the response of these SiNPF genes to short- and long- time low nitrate stress. To provide natural variation of gene information, we carried out a haplotype analysis of these SiNPFs and identified 2,924 SNPs and 400 InDels based on the re-sequence data of 398 foxtail millet accessions. We also predicted the three-dimensional structure of the 92 SiNPFs and found that the conserved proline 492 residues were not in the substrate binding pocket. The interactions of SiNPF proteins withNO 3 - were analyzed using molecular docking and the pockets were then identified. We found that the SiNPFs-NO 3 - binding energy ranged from -3.8 to -2.7 kcal/mol. Discussion Taken together, our study provides a comprehensive understanding of the NPF gene family in Setaria and will contribute to function dissection of these genes for crop breeding aimed at improving high nitrogen use efficiency.
Collapse
Affiliation(s)
- Jinjin Cheng
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Helin Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Meng Shan
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Mengmeng Duan
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Ling Ye
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Yulu Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Lu He
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Huimin Shen
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Zhirong Yang
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, China
| | - Xingchun Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
26
|
Wu L, Jia C, Huang S, Yu K, Luo A, Peng Y. Nitrite oxidation in oxygen-deficient conditions during landfill leachate treatment. ENVIRONMENTAL RESEARCH 2022; 214:114090. [PMID: 35970379 DOI: 10.1016/j.envres.2022.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Until recently, all known nitrite oxidation occurred in oxygen-rich conditions but now the oxidation of nitrite into nitrate within a low oxygen or anoxic environment has been observed in the ocean. However, this phenomenon is rarely reported in wastewater treatments and its mechanism is unknown. In this study, the partial nitrification and nitrite oxidation were conducted in no enough oxygen in order to remove nitrogen from landfill leachate, save energy, and save money. The results show that the NH4+-N removal efficiency was 99.4%. During phase I of the anaerobic sequential batch reactor (ASBR), no change in Chemical Oxygen Demand (COD) and ammonium were detected. The nitrite concentration decreased from 107 ± 3 mg/L to 0.16 mg/L during 96 h of oxygen- deficiency, while NO3--N increased from 152.5 ± 3 mg/L to 253.65 ± 3 mg/L. The main microorganisms involved in this reaction in the ASBR were Nitrite-Oxidizing Bacteria (NOB), including Nitrospira and Nitrolancea, their relative abundances were 3.56% and 0.13%, respectively. The major NOB (Nitrospira) were confirmed by the further metagenomic binning analysis. This finding shows that nitrite oxidation can occur in oxygen-deficient conditions with specific NOB.
Collapse
Affiliation(s)
- Lina Wu
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Chunfang Jia
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, NJ 08544, USA
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Anteng Luo
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Centre of Beijing, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
27
|
Pankievicz VCS, Delaux PM, Infante V, Hirsch HH, Rajasekar S, Zamora P, Jayaraman D, Calderon CI, Bennett A, Ané JM. Nitrogen fixation and mucilage production on maize aerial roots is controlled by aerial root development and border cell functions. FRONTIERS IN PLANT SCIENCE 2022; 13:977056. [PMID: 36275546 PMCID: PMC9583020 DOI: 10.3389/fpls.2022.977056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Exploring natural diversity for biological nitrogen fixation in maize and its progenitors is a promising approach to reducing our dependence on synthetic fertilizer and enhancing the sustainability of our cropping systems. We have shown previously that maize accessions from the Sierra Mixe can support a nitrogen-fixing community in the mucilage produced by their abundant aerial roots and obtain a significant fraction of their nitrogen from the air through these associations. In this study, we demonstrate that mucilage production depends on root cap and border cells sensing water, as observed in underground roots. The diameter of aerial roots correlates with the volume of mucilage produced and the nitrogenase activity supported by each root. Young aerial roots produce more mucilage than older ones, probably due to their root cap's integrity and their ability to produce border cells. Transcriptome analysis on aerial roots at two different growth stages before and after mucilage production confirmed the expression of genes involved in polysaccharide synthesis and degradation. Genes related to nitrogen uptake and assimilation were up-regulated upon water exposure. Altogether, our findings suggest that in addition to the number of nodes with aerial roots reported previously, the diameter of aerial roots and abundance of border cells, polysaccharide synthesis and degradation, and nitrogen uptake are critical factors to ensure efficient nitrogen fixation in maize aerial roots.
Collapse
Affiliation(s)
| | - Pierre-Marc Delaux
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Valentina Infante
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Hayley H. Hirsch
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Shanmugam Rajasekar
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Pablo Zamora
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Dhileepkumar Jayaraman
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Alan Bennett
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Jean-Michel Ané
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
28
|
Bai J, Xie Y, Shi M, Yao S, Lu W, Xiao K. TaMPK2B, a member of the MAPK family in T. aestivum, enhances plant low-Pi stress tolerance through modulating physiological processes associated with phosphorus starvation defensiveness. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111375. [PMID: 35820548 DOI: 10.1016/j.plantsci.2022.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascades are present in plant species and modulate plant growth and stress responses. This study characterizes TaMPK2B, a MAPK family gene in T. aestivum that regulates plant adaptation to low-Pi stress. TaMPK2B harbors the conserved domains involving protein phosphorylation and protein-protein interaction. A yeast two-hybrid assay reveals an interaction between TaMPK2B and TaMPKK2 and between the latter and TaMPKKK;A, suggesting that all comprise a MAPK signaling cascade TaMPKKK;A-TaMPKK2-TaMPK2B. TaMPK2B expression levels were elevated in roots and leaves under a Pi starvation (PS) condition. Additionally, the induced TaMPK2B transcripts under PS in tissues were gradually restored following the Pi normal recovery condition. TaMPK2B overexpression conferred on plants improved PS adaptation; the tobacco lines with TaMPK2B overexpression enhanced the plant's dry mass production, Pi uptake capacity, root system architecture (RSA) establishment, and ROS homeostasis relative to wild type under PS treatment. Moreover, the transcripts of genes in phosphate transporter (PT), PIN-FORMED, and antioxidant enzyme (AE) families, including NtPT3 and NtPT4, NtPIN9, and NtMnSOD1 and NtPOD1;7, were elevated in Pi-deprived lines overexpressing TaMPK2B. Transgene analyses validated their functions in regulating Pi uptake, RSA establishment, and AE activities of plants treated by PS. These results suggest that TaMPK2B-mediated plant PS adaptation is correlated with the modified transcription of distinct PT, PIN, and AE genes. Our investigation suggests that TaMPK2B is one of the crucial regulators in plant low-Pi adaptation by improving Pi uptake, RSA formation, and ROS homeostasis via transcriptionally regulating genes associated with the above physiological processes.
Collapse
Affiliation(s)
- Jinghua Bai
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, PR China; College of Life Sciences, Hebei Agricultural University, Baoding 071001, PR China
| | - Yameng Xie
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, PR China; College of Life Sciences, Hebei Agricultural University, Baoding 071001, PR China
| | - Meihua Shi
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, PR China; College of Life Sciences, Hebei Agricultural University, Baoding 071001, PR China
| | - Sufei Yao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, PR China; College of Life Sciences, Hebei Agricultural University, Baoding 071001, PR China
| | - Wenjing Lu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, PR China; College of Life Sciences, Hebei Agricultural University, Baoding 071001, PR China.
| | - Kai Xiao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, PR China; College of Agronomy, Hebei Agricultural University, Baoding 071001, PR China.
| |
Collapse
|
29
|
LjAMT2;2 Promotes Ammonium Nitrogen Transport during Arbuscular Mycorrhizal Fungi Symbiosis in Lotus japonicus. Int J Mol Sci 2022; 23:ijms23179522. [PMID: 36076919 PMCID: PMC9455674 DOI: 10.3390/ijms23179522] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are important symbiotic microorganisms in soil that engage in symbiotic relationships with legumes, resulting in mycorrhizal symbiosis. Establishment of strong symbiotic relationships between AMF and legumes promotes the absorption of nitrogen by plants. Ammonium nitrogen can be directly utilised by plants following ammonium transport, but there are few reports on ammonium transporters (AMTs) promoting ammonium nitrogen transport during AM symbiosis. Lotus japonicus is a typical legume model plant that hosts AMF. In this study, we analysed the characteristics of the Lotus japonicus ammonium transporter LjAMT2;2, and found that it is a typical ammonium transporter with mycorrhizal-induced and ammonium nitrogen transport-related cis-acting elements in its promoter region. LjAMT2;2 facilitated ammonium transfer in yeast mutant supplement experiments. In the presence of different nitrogen concentrations, the LjAMT2;2 gene was significantly upregulated following inoculation with AMF, and induced by low nitrogen. Overexpression of LjAMT2;2 increased the absorption of ammonium nitrogen, resulting in doubling of nitrogen content in leaves and roots, thus alleviating nitrogen stress and promoting plant growth.
Collapse
|
30
|
Kinoshita SN, Kinoshita T. A win-win scenario for photosynthesis and the plasma membrane H + pump. FRONTIERS IN PLANT SCIENCE 2022; 13:982485. [PMID: 36035713 PMCID: PMC9412029 DOI: 10.3389/fpls.2022.982485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 05/27/2023]
Abstract
In plants, cytosolic and extracellular pH homeostasis are crucial for various physiological processes, including the uptake of macronutrients and micronutrients, cell elongation, cell expansion, and enzyme activity. Proton (H+) gradients and the membrane potential are generated by a H+ pump consisting of an active primary transporter. Plasma membrane (PM) H+-ATPase, a PM-localized H+ pump, plays a pivotal role in maintaining pH homeostasis in plant cells and extracellular regions. PM H+-ATPase activity is regulated by protein abundance and by post-translational modifications. Several stimuli have been found to activate the PM H+-ATPase through phosphorylation of the penultimate threonine (Thr) of the carboxy terminus. Light- and photosynthesis-induced phosphorylation of PM H+-ATPase are conserved phenomena among various plant species. In this work, we review recent findings related to PM H+-ATPase regulation in the photosynthetic tissues of plants, focusing on its mechanisms and physiological roles. The physiological roles of photosynthesis-dependent PM H+-ATPase activation are discussed in the context of nitrate uptake and cytoplasmic streaming in leaves.
Collapse
Affiliation(s)
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| |
Collapse
|
31
|
Yamamoto N, Tong W, Lv B, Peng Z, Yang Z. The Original Form of C 4-Photosynthetic Phospho enolpyruvate Carboxylase Is Retained in Pooids but Lost in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:905894. [PMID: 35958195 PMCID: PMC9358456 DOI: 10.3389/fpls.2022.905894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Poaceae is the most prominent monocot family that contains the primary cereal crops wheat, rice, and maize. These cereal species exhibit physiological diversity, such as different photosynthetic systems and environmental stress tolerance. Phosphoenolpyruvate carboxylase (PEPC) in Poaceae is encoded by a small multigene family and plays a central role in C4-photosynthesis and dicarboxylic acid metabolism. Here, to better understand the molecular basis of the cereal species diversity, we analyzed the PEPC gene family in wheat together with other grass species. We could designate seven plant-type and one bacterial-type grass PEPC groups, ppc1a, ppc1b, ppc2a, ppc2b, ppc3, ppc4, ppcC4, and ppc-b, respectively, among which ppc1b is an uncharacterized type of PEPC. Evolutionary inference revealed that these PEPCs were derived from five types of ancient PEPCs (ppc1, ppc2, ppc3, ppc4, and ppc-b) in three chromosomal blocks of the ancestral Poaceae genome. C4-photosynthetic PEPC (ppcC4 ) had evolved from ppc1b, which seemed to be arisen by a chromosomal duplication event. We observed that ppc1b was lost in many Oryza species but preserved in Pooideae after natural selection. In silico analysis of cereal RNA-Seq data highlighted the preferential expression of ppc1b in upper ground organs, selective up-regulation of ppc1b under osmotic stress conditions, and nitrogen response of ppc1b. Characterization of wheat ppc1b showed high levels of gene expression in young leaves, transcriptional responses under nitrogen and abiotic stress, and the presence of a Dof1 binding site, similar to ppcC4 in maize. Our results indicate the evolving status of Poaceae PEPCs and suggest the functional association of ppc1-derivatives with adaptation to environmental changes.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Wurina Tong
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
| | - Bingbing Lv
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Zhengsong Peng
- School of Agricultural Science, Xichang College, Xichang, China
| | - Zaijun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| |
Collapse
|
32
|
Lu YT, Liu DF, Wen TT, Fang ZJ, Chen SY, Li H, Gong JM. Vacuolar nitrate efflux requires multiple functional redundant nitrate transporter in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:926809. [PMID: 35937356 PMCID: PMC9355642 DOI: 10.3389/fpls.2022.926809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Nitrate in plants is preferentially stored in vacuoles; however, how vacuolar nitrate is reallocated and to which biological process(es) it might contribute remain largely elusive. In this study, we functionally characterized three nitrate transporters NPF5.10, NPF5.14, and NPF8.5 that are tonoplast-localized. Ectopic expression in Xenopus laevis oocytes revealed that they mediate low-affinity nitrate transport. Histochemical analysis showed that these transporters were expressed preferentially in pericycle and xylem parenchyma cells. NPF5.10, NPF5.14, and NPF8.5 overexpression significantly decreased vacuolar nitrate contents and nitrate accumulation in Arabidopsis shoots. Further analysis showed that the sextuple mutant (npf5.10 npf5.14 npf8.5 npf5.11 npf5.12 npf5.16) had a higher 15NO3-uptake rate than the wild-type Col-0, but no significant difference was observed for nitrate accumulation between them. The septuple mutant (npf5.11 npf5.12 npf5.16 npf5.10 npf5.14 npf8.5 clca) generated by using CRISPR/Cas9 showed essentially decreased nitrate reallocation compared to wild type when exposed to nitrate starvation, though no further decrease was observed when compared to clca. Notably, NPF5.10, NPF5.14, and NPF8.5 as well as NPF5.11, NPF5.12, and NPF5.16 were consistently induced by mannitol, and more nitrate was detected in the sextuple mutant than in the wild type after mannitol treatment. These observations suggest that vacuolar nitrate efflux is regulated by several functional redundant nitrate transporters, and the reallocation might contribute to osmotic stress response other than mineral nutrition.
Collapse
Affiliation(s)
- Yu-Ting Lu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - De-Fen Liu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting-Ting Wen
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Jun Fang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Si-Ying Chen
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Ming Gong
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Li D, Ding Y, Cheng L, Zhang X, Cheng S, Ye Y, Gao Y, Qin Y, Liu Z, Li C, Ma F, Gong X. Target of rapamycin (TOR) regulates the response to low nitrogen stress via autophagy and hormone pathways in Malus hupehensis. HORTICULTURE RESEARCH 2022; 9:uhac143. [PMID: 36072834 PMCID: PMC9437726 DOI: 10.1093/hr/uhac143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/20/2022] [Indexed: 05/28/2023]
Abstract
Target of rapamycin (TOR) is a highly conserved master regulator in eukaryotes; it regulates cell proliferation and growth by integrating different signals. However, little is known about the function of TOR in perennial woody plants. Different concentrations of AZD8055 (an inhibitor of TOR) were used in this study to investigate the role of TOR in the response to low nitrogen (N) stress in the wild apple species Malus hupehensis. Low N stress inhibited the growth of M. hupehensis plants, and 1 μM AZD alleviated this effect. Plants supplied with 1 μM AZD had higher photosynthetic capacity, which promoted the accumulation of biomass, as well as higher contents of N and anthocyanins and lower content of starch. Exogenous application of 1 μM AZD also promoted the development of the root system. Plants supplied with at least 5 μM AZD displayed early leaf senescence. RNA-seq analysis indicated that TOR altered the expression of genes related to the low N stress response, such as genes involved in photosystem, starch metabolism, autophagy, and hormone metabolism. Further analysis revealed altered autophagy in plants supplied with AZD under low N stress; the metabolism of plant hormones also changed following AZD supplementation. In sum, our findings revealed that appropriate inhibition of TOR activated autophagy and jasmonic acid signaling in M. hupehensis, which allowed plants to cope with low N stress. Severe TOR inhibition resulted in the excessive accumulation of salicylic acid, which probably led to programmed cell death in M. hupehensis.
Collapse
Affiliation(s)
| | | | | | - Xiaoli Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Siyuan Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongchen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | | |
Collapse
|
34
|
Tantray AY, Hazzazi Y, Ahmad A. Physiological, Agronomical, and Proteomic Studies Reveal Crucial Players in Rice Nitrogen Use Efficiency under Low Nitrogen Supply. Int J Mol Sci 2022; 23:6410. [PMID: 35742855 PMCID: PMC9224494 DOI: 10.3390/ijms23126410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
Excessive use of nitrogenous fertilizers to enhance rice productivity has become a significant source of nitrogen (N) pollution and reduced sustainable agriculture. However, little information about the physiology of different growth stages, agronomic traits, and associated genetic bases of N use efficiency (NUE) are available at low-N supply. Two rice (Oryza sativa L.) cultivars were grown with optimum N (120 kg ha-1) and low N (60 kg ha-1) supply. Six growth stages were analyzed to measure the growth and physiological traits, as well as the differential proteomic profiles, of the rice cultivars. Cultivar Panvel outclassed Nagina 22 at low-N supply and exhibited improved growth and physiology at most of the growth stages and agronomic efficiency due to higher N uptake and utilization at low-N supply. On average, photosynthetic rate, chlorophyll content, plant biomass, leaf N content, and grain yield were decreased in cultivar Nagina 22 than Panvel was 8%, 11%, 21%, 19%, and 22%, respectively, under low-N supply. Furthermore, proteome analyses revealed that many proteins were upregulated and downregulated at the different growth stages under low-N supply. These proteins are associated with N and carbon metabolism and other physiological processes. This supports the genotypic differences in photosynthesis, N assimilation, energy stabilization, and rice-protein yield. Our study suggests that enhancing NUE at low-N supply demands distinct modifications in N metabolism and physiological assimilation. The NUE may be regulated by key identified differentially expressed proteins. These proteins might be the targets for improving crop NUE at low-N supply.
Collapse
Affiliation(s)
- Aadil Yousuf Tantray
- Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India;
| | - Yehia Hazzazi
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK;
- Biology Department, Faculty of Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India;
| |
Collapse
|
35
|
Pachamuthu K, Hari Sundar V, Narjala A, Singh RR, Das S, Avik Pal HCY, Shivaprasad PV. Nitrate-dependent regulation of miR444-OsMADS27 signalling cascade controls root development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3511-3530. [PMID: 35243491 DOI: 10.1093/jxb/erac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Nitrate is an important nutrient and a key signalling molecule for plant development. A number of transcription factors involved in the response to nitrate and their regulatory mechanisms have been identified. However, little is known about the transcription factors involved in nitrate sensing and their regulatory mechanisms among crop plants. In this study, we identified functions of a nitrate-responsive miR444:MADS-box transcription factor OsMADS27 module and its downstream targets mediating rice root growth and stress responses. Transgenic rice plants expressing miR444 target mimic improved rice root growth. Although miR444 has the potential to target multiple genes, we identified OsMADS27 as the major miR444 target that regulates the expression of nitrate transporters, as well as several key genes including expansins, and those associated with auxin signalling, to promote root growth. In agreement with this, overexpression of miRNA-resistant OsMADS27 improved root development and tolerance to abiotic stresses, while its silencing suppressed root growth. OsMADS27 mediated robust stress tolerance in plants through its ability to bind to the promoters of specific stress regulators, as observed in ChIP-seq analysis. Our results provide evidence of a nitrate-dependent miR444-OsMADS27 signalling cascade involved in the regulation of rice root growth, as well as its surprising role in stress responses.
Collapse
Affiliation(s)
- Kannan Pachamuthu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris- Saclay, Versailles, France
| | - Vivek Hari Sundar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Anushree Narjala
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Rahul R Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Soumita Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Harshith C Y Avik Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| |
Collapse
|
36
|
Bovet L, Campanoni P, Lu J, Hilfiker A, Kleinhans S, Laparra H, Schwaar J, Lewis RS, Matsuba Y, Ma H, Dewey RE, Goepfert S. CLCNt2 Mediates Nitrate Content in Tobacco Leaf, Impacting the Production of Tobacco-Specific Nitrosamines in Cured Leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:741078. [PMID: 35251070 PMCID: PMC8888935 DOI: 10.3389/fpls.2022.741078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Nitrate accumulation in tobacco (Nicotiana tabacum L.) leaf, particularly in the burley (BU) type, is a reservoir for the generation of nitrosating agents responsible for the formation of tobacco-specific nitrosamines (TSNAs). TSNAs are mainly produced via the nitrosation of alkaloids occurring during the curing of tobacco leaves. Additional formation of TSNAs may also occur during tobacco storage, leaf processing and in some circumstances via pyrosynthesis during combustion. Two TSNA species, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN) are found in the tobacco products and have been documented to be animal carcinogens. A previous study showed that decreasing the accumulation of nitrate in tobacco leaf via the overexpression of a deregulated form of nitrate reductase is efficient to reduce the production of TSNAs. We pursue in finding another molecular genetic target to lower nitrate in BU tobacco. Suppressing expression or knocking-out CLCNt2 has a direct impact on leaf nitrate and TSNA reduction in cured leaves without altering biomass. This study provides now a straight path toward the development of new commercial tobacco varieties with reduced TSNA levels by breeding of variants deficient in active CLCNt2 copies.
Collapse
Affiliation(s)
- Lucien Bovet
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland
| | | | - Jian Lu
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Aurore Hilfiker
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland
| | | | - Hélène Laparra
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Joanne Schwaar
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Ramsey S. Lewis
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Yuki Matsuba
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Hong Ma
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Ralph E. Dewey
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Simon Goepfert
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland
| |
Collapse
|
37
|
Heredia MC, Kant J, Prodhan MA, Dixit S, Wissuwa M. Breeding rice for a changing climate by improving adaptations to water saving technologies. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:17-33. [PMID: 34218290 DOI: 10.1007/s00122-021-03899-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Climate change is expected to increasingly affect rice production through rising temperatures and decreasing water availability. Unlike other crops, rice is a main contributor to greenhouse gas emissions due to methane emissions from flooded paddy fields. Climate change can therefore be addressed in two ways in rice: through making the crop more climate resilient and through changes in management practices that reduce methane emissions and thereby slow global warming. In this review, we focus on two water saving technologies that reduce the periods lowland rice will be grown under fully flooded conditions, thereby improving water use efficiency and reducing methane emissions. Rice breeding over the past decades has mostly focused on developing high-yielding varieties adapted to continuously flooded conditions where seedlings were raised in a nursery and transplanted into a puddled flooded soil. Shifting cultivation to direct-seeded rice or to introducing non-flooded periods as in alternate wetting and drying gives rise to new challenges which need to be addressed in rice breeding. New adaptive traits such as rapid uniform germination even under anaerobic conditions, seedling vigor, weed competitiveness, root plasticity, and moderate drought tolerance need to be bred into the current elite germplasm and to what extent this is being addressed through trait discovery, marker-assisted selection and population improvement are reviewed.
Collapse
Affiliation(s)
| | | | - M Asaduzzaman Prodhan
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Shalabh Dixit
- International Rice Research Institute (IRRI), Los Baños, The Philippines
| | - Matthias Wissuwa
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan.
| |
Collapse
|
38
|
Schreiner T, Sauter D, Friz M, Heil J, Morlock GE. Is Our Natural Food Our Homeostasis? Array of a Thousand Effect-Directed Profiles of 68 Herbs and Spices. Front Pharmacol 2021; 12:755941. [PMID: 34955829 PMCID: PMC8696259 DOI: 10.3389/fphar.2021.755941] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
The beneficial effects of plant-rich diets and traditional medicines are increasingly recognized in the treatment of civilization diseases due to the abundance and diversity of bioactive substances therein. However, the important active portion of natural food or plant-based medicine is presently not under control. Hence, a paradigm shift from quality control based on marker compounds to effect-directed profiling is postulated. We investigated 68 powdered plant extracts (botanicals) which are added to food products in food industry. Among them are many plants that are used as traditional medicines, herbs and spices. A generic strategy was developed to evaluate the bioactivity profile of each botanical as completely as possible and to straightforwardly assign the most potent bioactive compounds. It is an 8-dimensional hyphenation of normal-phase high-performance thin-layer chromatography with multi-imaging by ultraviolet, visible and fluorescence light detection as well as effect-directed assay and heart-cut of the bioactive zone to orthogonal reversed-phase high-performance liquid chromato-graphy-photodiode array detection-heated electrospray ionization mass spectrometry. In the non-target, effect-directed screening via 16 different on-surface assays, we tentatively assigned more than 60 important bioactive compounds in the studied botanicals. These were antibacterials, estrogens, antiestrogens, androgens, and antiandrogens, as well as acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, β-glucosidase, β-glucuronidase, and tyrosinase inhibitors, which were on-surface heart-cut eluted from the bioautogram or enzyme inhibition autogram to the next dimension for further targeted characterization. This biological-physicochemical hyphenation is able to detect and control active mechanisms of traditional medicines or botanicals as well as the essentials of plant-based food. The array of 1,292 profiles (68 samples × 19 detections) showed the versatile bioactivity potential of natural food. It reveals how efficiently and powerful our natural food contributes to our homeostasis.
Collapse
Affiliation(s)
- Tamara Schreiner
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Dorena Sauter
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Maren Friz
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Julia Heil
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Gertrud Elisabeth Morlock
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
39
|
Zoghbi-Rodríguez NM, Gamboa-Tuz SD, Pereira-Santana A, Rodríguez-Zapata LC, Sánchez-Teyer LF, Echevarría-Machado I. Phylogenomic and Microsynteny Analysis Provides Evidence of Genome Arrangements of High-Affinity Nitrate Transporter Gene Families of Plants. Int J Mol Sci 2021; 22:13036. [PMID: 34884876 PMCID: PMC8658032 DOI: 10.3390/ijms222313036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Nitrate transporter 2 (NRT2) and NRT3 or nitrate-assimilation-related 2 (NAR2) proteins families form a two-component, high-affinity nitrate transport system, which is essential for the acquisition of nitrate from soils with low N availability. An extensive phylogenomic analysis across land plants for these families has not been performed. In this study, we performed a microsynteny and orthology analysis on the NRT2 and NRT3 genes families across 132 plants (Sensu lato) to decipher their evolutionary history. We identified significant differences in the number of sequences per taxonomic group and different genomic contexts within the NRT2 family that might have contributed to N acquisition by the plants. We hypothesized that the greater losses of NRT2 sequences correlate with specialized ecological adaptations, such as aquatic, epiphytic, and carnivory lifestyles. We also detected expansion on the NRT2 family in specific lineages that could be a source of key innovations for colonizing contrasting niches in N availability. Microsyntenic analysis on NRT3 family showed a deep conservation on land plants, suggesting a high evolutionary constraint to preserve their function. Our study provides novel information that could be used as guide for functional characterization of these gene families across plant lineages.
Collapse
Affiliation(s)
- Normig M. Zoghbi-Rodríguez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| | - Samuel David Gamboa-Tuz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Alejandro Pereira-Santana
- Conacyt-Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico;
| | - Luis C. Rodríguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Lorenzo Felipe Sánchez-Teyer
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| |
Collapse
|
40
|
Liang T, Duan B, Luo X, Ma Y, Yuan Z, Zhu R, Peng Y, Gong Y, Fang S, Wu X. Identification of High Nitrogen Use Efficiency Phenotype in Rice ( Oryza sativa L. ) Through Entire Growth Duration by Unmanned Aerial Vehicle Multispectral Imagery. FRONTIERS IN PLANT SCIENCE 2021; 12:740414. [PMID: 34925396 PMCID: PMC8678090 DOI: 10.3389/fpls.2021.740414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/28/2021] [Indexed: 06/12/2023]
Abstract
Identification of high Nitrogen Use Efficiency (NUE) phenotypes has been a long-standing challenge in breeding rice and sustainable agriculture to reduce the costs of nitrogen (N) fertilizers. There are two main challenges: (1) high NUE genetic sources are biologically scarce and (2) on the technical side, few easy, non-destructive, and reliable methodologies are available to evaluate plant N variations through the entire growth duration (GD). To overcome the challenges, we captured a unique higher NUE phenotype in rice as a dynamic time-series N variation curve through the entire GD analysis by canopy reflectance data collected by Unmanned Aerial Vehicle Remote Sensing Platform (UAV-RSP) for the first time. LY9348 was a high NUE rice variety with high Nitrogen Uptake Efficiency (NUpE) and high Nitrogen Utilization Efficiency (NUtE) shown in nitrogen dosage field analysis. Its canopy nitrogen content (CNC) was analyzed by the high-throughput UAV-RSP to screen two mixed categories (51 versus 42 varieties) selected from representative higher NUE indica rice collections. Five Vegetation Indices (VIs) were compared, and the Normalized Difference Red Edge Index (NDRE) showed the highest correlation with CNC (r = 0.80). Six key developmental stages of rice varieties were compared from transplantation to maturation, and the high NUE phenotype of LY9348 was shown as a dynamic N accumulation curve, where it was moderately high during the vegetative developmental stages but considerably higher in the reproductive developmental stages with a slower reduction rate. CNC curves of different rice varieties were analyzed to construct two non-linear regression models between N% or N% × leaf area index (LAI) with NDRE separately. Both models could determine the specific phenotype with the coefficient of determination (R 2) above 0.61 (Model I) and 0.86 (Model II). Parameters influencing the correlation accuracy between NDRE and N% were found to be better by removing the tillering stage data, separating the short and long GD varieties for the analysis and adding canopy structures, such as LAI, into consideration. The high NUE phenotype of LY9348 could be traced and reidentified across different years, locations, and genetic germplasm groups. Therefore, an effective and reliable high-throughput method was proposed for assisting the selection of the high NUE breeding phenotype.
Collapse
Affiliation(s)
- Ting Liang
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
- Lab of Remote Sensing for Crop Phenomics, Wuhan University, Wuhan, China
| | - Bo Duan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoyun Luo
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
- Lab of Remote Sensing for Crop Phenomics, Wuhan University, Wuhan, China
| | - Yi Ma
- Lab of Remote Sensing for Crop Phenomics, Wuhan University, Wuhan, China
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Zhengqing Yuan
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
- Lab of Remote Sensing for Crop Phenomics, Wuhan University, Wuhan, China
| | - Renshan Zhu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
- Lab of Remote Sensing for Crop Phenomics, Wuhan University, Wuhan, China
| | - Yi Peng
- Lab of Remote Sensing for Crop Phenomics, Wuhan University, Wuhan, China
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Yan Gong
- Lab of Remote Sensing for Crop Phenomics, Wuhan University, Wuhan, China
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Shenghui Fang
- Lab of Remote Sensing for Crop Phenomics, Wuhan University, Wuhan, China
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Xianting Wu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
- Lab of Remote Sensing for Crop Phenomics, Wuhan University, Wuhan, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
41
|
Camut L, Gallova B, Jilli L, Sirlin-Josserand M, Carrera E, Sakvarelidze-Achard L, Ruffel S, Krouk G, Thomas SG, Hedden P, Phillips AL, Davière JM, Achard P. Nitrate signaling promotes plant growth by upregulating gibberellin biosynthesis and destabilization of DELLA proteins. Curr Biol 2021; 31:4971-4982.e4. [PMID: 34614391 DOI: 10.1016/j.cub.2021.09.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Nitrate, one of the main nitrogen (N) sources for crops, acts as a nutrient and key signaling molecule coordinating gene expression, metabolism, and various growth processes throughout the plant life cycle. It is widely accepted that nitrate-triggered developmental programs cooperate with hormone synthesis and transport to finely adapt plant architecture to N availability. Here, we report that nitrate, acting through its signaling pathway, promotes growth in Arabidopsis and wheat, in part by modulating the accumulation of gibberellin (GA)-regulated DELLA growth repressors. We show that nitrate reduces the abundance of DELLAs by increasing GA contents through activation of GA metabolism gene expression. Consistently, the growth restraint conferred by nitrate deficiency is partially rescued in global-DELLA mutant that lacks all DELLAs. At the cellular level, we show that nitrate enhances both cell proliferation and elongation in a DELLA-dependent and -independent manner, respectively. Our findings establish a connection between nitrate and GA signaling pathways that allow plants to adapt their growth to nitrate availability.
Collapse
Affiliation(s)
- Lucie Camut
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Barbora Gallova
- Plant Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Lucas Jilli
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Mathilde Sirlin-Josserand
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, 46022 Valencia, Spain
| | - Lali Sakvarelidze-Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Sandrine Ruffel
- BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Gabriel Krouk
- BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Stephen G Thomas
- Plant Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Peter Hedden
- Plant Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK; Laboratory of Growth Regulators, Institute of Experimental Botany and Palacky University, 78371 Olomouc, Czech Republic
| | - Andrew L Phillips
- Plant Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
42
|
Zhang J, Han Z, Lu Y, Zhao Y, Wang Y, Zhang J, Ma H, Han YZ. Genome-wide identification, structural and gene expression analysis of the nitrate transporters (NRTs) family in potato (Solanum tuberosum L.). PLoS One 2021; 16:e0257383. [PMID: 34673820 PMCID: PMC8530285 DOI: 10.1371/journal.pone.0257383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Nitrogen (N2) is the most important source of mineral N for plant growth, which was mainly transported by nitrate transporters (NRTs). However, little is known about the NRT gene family in potato. In this study, StNRT gene family members were identified in potato. In addition, we performed StNRT subfamily classification, gene structure and distribution analysis, and conserved domain prediction using various bioinformatics tools. Totally, 39 StNRT gene members were identified in potato genome, including 33, 4 and 2 member belong to NRT1, NRT2, and NRT3, respectively. These 39 StNRT genes were randomly distributed on all chromosomes. The collinearity results show that StNRT members in potato are closely related to Solanum lycopersicum and Solanum melongena. For the expression, different members of StNRT play different roles in leaves and roots. Especially under sufficient nitrogen conditions, different members have a clear distribution in different tissues. These results provide valuable information for identifying the members of the StNRT family in potato and could provide functional characterization of StNRT genes in further research.
Collapse
Affiliation(s)
- Jingying Zhang
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Zhijun Han
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yue Lu
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yanfei Zhao
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yaping Wang
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Jiayue Zhang
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Haoran Ma
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yu Zhu Han
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
- * E-mail:
| |
Collapse
|
43
|
Liu R, Cui B, Lu X, Song J. The positive effect of salinity on nitrate uptake in Suaeda salsa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:958-963. [PMID: 34256249 DOI: 10.1016/j.plaphy.2021.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 05/11/2023]
Abstract
Nitrate plays both nutritional and osmotic roles in the salt tolerance of halophytes. However, how halophytes take up NO3- under saline conditions is still not well understood. Seedlings of Suaeda salsa L. were treated with 0, 200 and 500 mM NaCl under 0.5 mM NO3--N with or without Na3VO4 (the inhibitor of plasma membrane H+-ATPase) for 24 h. Salinity treatment of 200 mM NaCl up-regulated the gene expression of nitrate transporter 2.1 (SsNRT2.1) in the roots, increased the root net influx of H+ and NO3- and 15NO3- accumulation in the leaves and roots. The expression of SsNRT2.1 at 200 mM NaCl with Na3VO4 was much higher than that without supplying Na3VO4, and the opposite trend was found in 15NO3- accumulation in the leaves and roots. Supplying Na3VO4 had no significant effect on the net H+ flux, but induced a net NO3- efflux in the roots at 200 mM NaCl. Salinity may directly activate the expression of SsNRT2.1 and promote NO3- uptake via the increment of pumping H+ by PM H+-ATPase in S. salsa, which may explain why certain halophytes can absorb and accumulate high concentration of NO3- under low NO3- and high salinity conditions.
Collapse
Affiliation(s)
- Ranran Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Bing Cui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Xiangbin Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
44
|
Meng X, Wang X, Zhang Z, Xiong S, Wei Y, Guo J, Zhang J, Wang L, Ma X, Tegeder M. Transcriptomic, proteomic, and physiological studies reveal key players in wheat nitrogen use efficiency under both high and low nitrogen supply. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4435-4456. [PMID: 33829261 DOI: 10.1093/jxb/erab153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
The effective use of available nitrogen (N) to improve crop grain yields provides an important strategy to reduce environmental N pollution and promote sustainable agriculture. However, little is known about the common genetic basis of N use efficiency (NUE) at varying N availability. Two wheat (Triticum aestivum L.) cultivars were grown in the field with high, moderate, and low N supply. Cultivar Zhoumai 27 outperformed Aikang 58 independent of the N supply and showed improved growth, canopy leaf area index, flag leaf surface area, grain number, and yield, and enhanced NUE due to both higher N uptake and utilization efficiency. Further, transcriptome and proteome analyses were performed using flag leaves that provide assimilates for grain growth. The results showed that many genes or proteins that are up- or down-regulated under all N regimes are associated with N and carbon metabolism and transport. This was reinforced by cultivar differences in photosynthesis, assimilate phloem transport, and grain protein/starch yield. Overall, our study establishes that improving NUE at both high and low N supply requires distinct adjustments in leaf metabolism and assimilate partitioning. Identified key genes/proteins may individually or concurrently regulate NUE and are promising targets for maximizing crop NUE irrespective of the N supply.
Collapse
Affiliation(s)
- Xiaodan Meng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
- School of Biological Sciences, Washington State University, Pullman, WAUSA
| | - Xiaochun Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
| | - Zhiyong Zhang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Shuping Xiong
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Yihao Wei
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Jianbiao Guo
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Jie Zhang
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Lulu Wang
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WAUSA
| |
Collapse
|
45
|
Fiaz S, Wang X, Khan SA, Ahmar S, Noor MA, Riaz A, Ali K, Abbas F, Mora-Poblete F, Figueroa CR, Alharthi B. Novel plant breeding techniques to advance nitrogen use efficiency in rice: A review. GM CROPS & FOOD 2021; 12:627-646. [PMID: 34034628 PMCID: PMC9208628 DOI: 10.1080/21645698.2021.1921545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently, there has been a remarkable increase in rice production owing to genetic improvement and increase in application of synthetic fertilizers. For sustainable agriculture, there is dire need to maintain a balance between profitability and input cost. To meet the steady growing demands of the farming community, researchers are utilizing all available resources to identify nutrient use efficient germplasm, but with very little success. Therefore, it is essential to understand the underlying genetic mechanism controlling nutrients efficiency, with the nitrogen use efficiency (NUE) being the most important trait. Information regarding genetic factors controlling nitrogen (N) transporters, assimilators, and remobilizers can help to identify candidate germplasms via high-throughput technologies. Large-scale field trials have provided morphological, physiological, and biochemical trait data for the detection of genomic regions controlling NUE. The functional aspects of these attributes are time-consuming, costly, labor-intensive, and less accurate. Therefore, the application of novel plant breeding techniques (NPBTs) with context to genome engineering has opened new avenues of research for crop improvement programs. Most recently, genome editing technologies (GETs) have undergone enormous development with various versions from Cas9, Cpf1, base, and prime editing. These GETs have been vigorously adapted in plant sciences for novel trait development to insure food quantity and quality. Base editing has been successfully applied to improve NUE in rice, demonstrating the potential of GETs to develop germplasms with improved resource use efficiency. NPBTs continue to face regulatory setbacks in some countries due to genome editing being categorized in the same category as genetically modified (GM) crops. Therefore, it is essential to involve all stakeholders in a detailed discussion on NPBTs and to formulate uniform policies tackling biosafety, social, ethical, and environmental concerns. In the current review, we have discussed the genetic mechanism of NUE and NPBTs for crop improvement programs with proof of concepts, transgenic and GET application for the development of NUE germplasms, and regulatory aspects of genome edited crops with future directions considering NUE.
Collapse
Affiliation(s)
- Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur 22620, Khyber, Pakhtunkhwa, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Sher Aslam Khan
- Department of Plant Breeding and Genetics, The University of Haripur 22620, Khyber, Pakhtunkhwa, Pakistan
| | - Sunny Ahmar
- Institute of Biological Sciences, Campus Talca, Universidad deTalca, Talca, Chile
| | - Mehmood Ali Noor
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing, China
| | - Aamir Riaz
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Kazim Ali
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan
| | - Farhat Abbas
- Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, Campus Talca, Universidad deTalca, Talca, Chile
| | - Carlos R Figueroa
- Institute of Biological Sciences, Campus Talca, Universidad deTalca, Talca, Chile
| | - Badr Alharthi
- College of Khurma, Taif University, Taif, Saudi Arabia.,College of Science and Engineering, Flinders University, Adelaide, South Australia
| |
Collapse
|
46
|
Zhou X, Wang A, Hobbie EA, Zhu F, Qu Y, Dai L, Li D, Liu X, Zhu W, Koba K, Li Y, Fang Y. Mature conifers assimilate nitrate as efficiently as ammonium from soils in four forest plantations. THE NEW PHYTOLOGIST 2021; 229:3184-3194. [PMID: 33226653 DOI: 10.1111/nph.17110] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Conifers are considered to prefer to take up ammonium (NH4+ ) over nitrate (NO3- ). However, this conclusion is mainly based on hydroponic experiments that separate roots from soils. It remains unclear to what extent mature conifers can use nitrate compared to ammonium under field conditions where both roots and soil microbes compete for nitrogen (N). We conducted an in situ whole mature tree nitrogen-15 (15 N) labeling experiment (15 NH4+ vs 15 NO3- ) over 15 d to quantify ammonium and nitrate uptake and assimilation rates in four 40-yr-old monoculture coniferous plantations (Pinus koraiensis, Pinus sylvestris, Picea koraiensis and Larix olgensis, respectively). For the whole tree, 15 NO3- contributed 39% to 90% to total 15 N tracer uptake among four plantations during the study period. At day 3, the 15 NO3- accounted for 77%, 64%, 62% and 59% by Larix olgensis, Pinus koraiensis, Pinus sylvestris and Picea koraiensis, respectively. Our study indicates that mature coniferous trees assimilated nitrate as efficiently as ammonium from soils even at low soil nitrate concentration, in contrast to the results from hydroponic experiments showing that ammonium uptake dominated over nitrate. This implies that mature conifers can adapt to increasing availability of nitrate in soil, for example, under the context of globalization of N deposition and global warming.
Collapse
Affiliation(s)
- Xulun Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Stable Isotope Techniques and Applications, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Ang Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- Key Laboratory of Stable Isotope Techniques and Applications, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Erik A Hobbie
- Earth Systems Research Center, Morse Hall, University of New Hampshire, Durham, NH, 03824, USA
| | - Feifei Zhu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- Key Laboratory of Stable Isotope Techniques and Applications, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yuying Qu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- Key Laboratory of Stable Isotope Techniques and Applications, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Luming Dai
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Dejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xueyan Liu
- Insititute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Weixing Zhu
- Department of Biological Sciences, Binghamton University, The State University of New York, Binghamton, NY, 13902, USA
| | - Keisuke Koba
- Center for Ecological Research, Kyoto University, Otsu, 520-2113, Japan
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- Key Laboratory of Stable Isotope Techniques and Applications, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
47
|
The Diverse Assemblage of Fungal Endophytes from Orchids in Madagascar Linked to Abiotic Factors and Seasonality. DIVERSITY 2021. [DOI: 10.3390/d13020096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inselbergs of the Central Highlands of Madagascar are one of many ‘micro-hotspots’ of biodiversity on the island, particularly for Orchidaceae. In this region are several genera that have a large number of endemic species that are in serious decline or edging towards extinction. Studies relating to diversity of orchids and their fungal partners (both mycorrhizal and non-mycorrhizal root associates) deserve more attention, as climate change and human induced decline in resilience of species in the wild is at an all-time high. Identification of mycorrhizal fungi (MF) via conventional seed baited-protocorms has limitations for large scale studies and its application for time-bound conservation projects. The paper describes the value of understanding fungal diversity in the roots of orchids at different stages of maturity. The first part of the study was a preliminary investigation mainly to identify culturable Rhizoctonia endophytes, and the second part looked at all life forms of available taxa together with associated soil characteristics. We isolated and identified 19 putative MF from 18 of the 50 taxa spread over an area of 250 sq. km, covering three life forms, growth phases of the orchid taxa, and habitat types. In the rest of the taxa, we were unable to detect any putative MF, but had varying numbers of non-mycorrhizal endophytes. We also found that diversity of putative MF was higher in plants from soils with the lowest P levels recorded. Putative mycorrhizal OTUs were predominantly from the Tulasnella lineage, followed by Ceratobasidium and Serendipita. Within a small subset of samples, a difference in colonised endophytes depending on the collection season was observed. In vitro germination studies using 10 OTUs of mycorrhizal fungi in 14 orchid species showed mostly generalist associations. When orchid seed and fungal sources were studied irrespective of habitat, life form, and distance from each other (orchid seed and fungal source), compatibility for symbiotic seed germination was observed in most cases. Issues with the identification of compatible MF and symbiotic system of seed germination are discussed.
Collapse
|
48
|
Liu R, Cui B, Jia T, Song J. Role of Suaeda salsa SsNRT2.1 in nitrate uptake under low nitrate and high saline conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:171-178. [PMID: 33383384 DOI: 10.1016/j.plaphy.2020.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/21/2020] [Indexed: 05/27/2023]
Abstract
The global annual loss in agricultural production resulting from soil salinization is significant. Although nitrate (NO3-) is known to play both nutritional and osmotic roles in the salt tolerance of halophytes, it remains unclear how halophytes such as Suaeda salsa L. take up NO3- under saline conditions. In the present study, the gene of nitrate transporter 2.1 (SsNRT2.1) was cloned from S. salsa and its function was identified in both S. salsa and Arabidopsis thaliana under salinity and low NO3--N (0.5 mM NO3-) conditions. The results revealed that SsNRT2.1 expression and NO3- concentration in the roots of S. salsa were higher at 200 mM NaCl, compared with that at 0 and 500 mM NaCl after 24 h treatment. The Arabidopsis overexpression lines showed a higher NO3- content compared to the WT lines at 0 and 50 mM NaCl. A similar trend was observed in the root length. In conclusion, salinity promoted the SsNRT2.1 expression in S. salsa, suggesting that this gene may contribute to the efficient NO3- uptake in S. salsa under low NO3- and high salinity conditions. This trait may explain why S. salsa can tolerate high salinity and produce the highest biomass at about 200 mM NaCl.
Collapse
Affiliation(s)
- Ranran Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Cnan, 250014, PR China
| | - Bing Cui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Cnan, 250014, PR China
| | - Ting Jia
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Cnan, 250014, PR China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Cnan, 250014, PR China.
| |
Collapse
|
49
|
Rossdeutsch L, Schreiner RP, Skinkis PA, Deluc L. Nitrate Uptake and Transport Properties of Two Grapevine Rootstocks With Varying Vigor. FRONTIERS IN PLANT SCIENCE 2021; 11:608813. [PMID: 33537044 PMCID: PMC7847936 DOI: 10.3389/fpls.2020.608813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
In viticulture, rootstocks are essential to cope with edaphic constraints. They can also be used to modulate scion growth and development to help improve berry yield and quality. The rootstock contribution to scion growth is not fully understood. Since nitrogen (N) is a significant driver of grapevine growth, rootstock properties associated with N uptake and transport may play a key role in the growth potential of grafted grapevines. We evaluated N uptake and transport in a potted system using two grapevines rootstocks [Riparia Gloire (RG) and 1103 Paulsen (1103P)] grafted to Pinot noir (Pommard clone) scion. Combining results of nitrate induction and steady-state experiments at two N availability levels, we observed different responses in the uptake and utilization of N between the two rootstocks. The low vigor rootstock (RG) exhibited greater nitrate uptake capacity and nitrate assimilation in roots after nitrate resupply than the more vigorous 1103P rootstock. This behavior may be attributed to a greater root carbohydrate status observed in RG for both experiments. However, 1103P demonstrated a higher N translocation rate to shoots regardless of N availability. These distinct rootstock behaviors resulted in significant differences in biomass allocation between roots and shoots under N-limited conditions, although the overall vine biomass was not different. Under sufficient N supply, differences between rootstocks decreased but 1103P stored more N in roots, which may benefit growth in subsequent growing seasons. Overall, greater transpiration of vines grafted to 1103P rootstock causing higher N translocation to shoots could partially explain its known growth-promoting effect to scions under low and high N availability, whereas the low vigor typically conferred to scions by RG may result from the combination of lower N translocation to shoots and a greater allocation of biomass toward roots when N is low.
Collapse
Affiliation(s)
- Landry Rossdeutsch
- Department of Horticulture, Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
| | - R. Paul Schreiner
- USDA-ARS Horticulture Crops Research Unit, Corvallis, OR, United States
- Oregon Wine Research Institute, Corvallis, OR, United States
| | - Patricia A. Skinkis
- Department of Horticulture, Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
- Oregon Wine Research Institute, Corvallis, OR, United States
| | - Laurent Deluc
- Department of Horticulture, Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
- Oregon Wine Research Institute, Corvallis, OR, United States
| |
Collapse
|
50
|
Fakhet D, Morales F, Jauregui I, Erice G, Aparicio-Tejo PM, González-Murua C, Aroca R, Irigoyen JJ, Aranjuelo I. Short-Term Exposure to High Atmospheric Vapor Pressure Deficit (VPD) Severely Impacts Durum Wheat Carbon and Nitrogen Metabolism in the Absence of Edaphic Water Stress. PLANTS 2021; 10:plants10010120. [PMID: 33435620 PMCID: PMC7827516 DOI: 10.3390/plants10010120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
Low atmospheric relative humidity (RH) accompanied by elevated air temperature and decreased precipitation are environmental challenges that wheat production will face in future decades. These changes to the atmosphere are causing increases in air vapor pressure deficit (VPD) and low soil water availability during certain periods of the wheat-growing season. The main objective of this study was to analyze the physiological, metabolic, and transcriptional response of carbon (C) and nitrogen (N) metabolism of wheat (Triticum durum cv. Sula) to increases in VPD and soil water stress conditions, either alone or in combination. Plants were first grown in well-watered conditions and near-ambient temperature and RH in temperature-gradient greenhouses until anthesis, and they were then subjected to two different water regimes well-watered (WW) and water-stressed (WS), i.e., watered at 50% of the control for one week, followed by two VPD levels (low, 1.01/0.36 KPa and high, 2.27/0.62 KPa; day/night) for five additional days. Both VPD and soil water content had an important impact on water status and the plant physiological apparatus. While high VPD and water stress-induced stomatal closure affected photosynthetic rates, in the case of plants watered at 50%, high VPD also caused a direct impairment of the RuBisCO large subunit, RuBisCO activase and the electron transport rate. Regarding N metabolism, the gene expression, nitrite reductase (NIR) and transport levels detected in young leaves, as well as determinations of the δ15N and amino acid profiles (arginine, leucine, tryptophan, aspartic acid, and serine) indicated activation of N metabolism and final transport of nitrate to leaves and photosynthesizing cells. On the other hand, under low VPD conditions, a positive effect was only observed on gene expression related to the final step of nitrate supply to photosynthesizing cells, whereas the amount of 15N supplied to the roots that reached the leaves decreased. Such an effect would suggest an impaired N remobilization from other organs to young leaves under water stress conditions and low VPD.
Collapse
Affiliation(s)
- Dorra Fakhet
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Avenida Pamplona 123, 31192 Mutilva, Spain; (D.F.); (F.M.)
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Avenida Pamplona 123, 31192 Mutilva, Spain; (D.F.); (F.M.)
| | - Iván Jauregui
- Departamento Ciencias del Medio Natural, Campus de Arrosadía, Universidad Pública de Navarra, 31192 Pamplona, Spain; (I.J.); (P.M.A.-T.)
| | - Gorka Erice
- Atens, Agrotecnologías Naturales S.L., La Riera de Gaia, 43762 Tarragona, Spain;
| | - Pedro M. Aparicio-Tejo
- Departamento Ciencias del Medio Natural, Campus de Arrosadía, Universidad Pública de Navarra, 31192 Pamplona, Spain; (I.J.); (P.M.A.-T.)
| | - Carmen González-Murua
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa-Bizkaia, Spain;
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain;
| | - Juan J. Irigoyen
- Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza and ICVV, Logroño), Faculty of Sciences, Universidad de Navarra, Irunlarrea, 1, 31008 Pamplona, Spain;
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Avenida Pamplona 123, 31192 Mutilva, Spain; (D.F.); (F.M.)
- Correspondence:
| |
Collapse
|