1
|
Li Z, Chen L, Qu L, Yu W, Liu T, Ning F, Li J, Guo X, Sun F, Sun B, Luo L. Potential implications of natural compounds on aging and metabolic regulation. Ageing Res Rev 2024; 101:102475. [PMID: 39222665 DOI: 10.1016/j.arr.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aging is generally accompanied by a progressive loss of metabolic homeostasis. Targeting metabolic processes is an attractive strategy for healthy-aging. Numerous natural compounds have demonstrated strong anti-aging effects. This review summarizes recent findings on metabolic pathways involved in aging and explores the anti-aging effects of natural compounds by modulating these pathways. The potential anti-aging effects of natural extracts rich in biologically active compounds are also discussed. Regulating the metabolism of carbohydrates, proteins, lipids, and nicotinamide adenine dinucleotide is an important strategy for delaying aging. Furthermore, phenolic compounds, terpenoids, alkaloids, and nucleotide compounds have shown particularly promising effects on aging, especially with respect to metabolism regulation. Moreover, metabolomics is a valuable tool for uncovering potential targets against aging. Future research should focus on identifying novel natural compounds that regulate human metabolism and should delve deeper into the mechanisms of metabolic regulation using metabolomics methods, aiming to delay aging and extend lifespan.
Collapse
Affiliation(s)
- Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liangliang Qu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tao Liu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fangjian Ning
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinwang Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiali Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
Shokhirev MN, Kramer DJ, Corley J, Cox SR, Cuellar TL, Johnson AA. CheekAge, a next-generation epigenetic buccal clock, is predictive of mortality in human blood. FRONTIERS IN AGING 2024; 5:1460360. [PMID: 39411517 PMCID: PMC11473594 DOI: 10.3389/fragi.2024.1460360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024]
Abstract
While earlier first-generation epigenetic aging clocks were trained to estimate chronological age as accurately as possible, more recent next-generation clocks incorporate DNA methylation information more pertinent to health, lifestyle, and/or outcomes. Recently, we produced a non-invasive next-generation epigenetic clock trained using Infinium MethylationEPIC data from more than 8,000 diverse adult buccal samples. While this clock correlated with various health, lifestyle, and disease factors, we did not assess its ability to capture mortality. To address this gap, we applied CheekAge to the longitudinal Lothian Birth Cohorts of 1921 and 1936. Despite missing nearly half of its CpG inputs, CheekAge was significantly associated with mortality in this longitudinal blood dataset. Specifically, a change in one standard deviation corresponded to a hazard ratio (HR) of 1.21 (FDR q = 1.66e-6). CheekAge performed better than all first-generation clocks tested and displayed a comparable HR to the next-generation, blood-trained DNAm PhenoAge clock (HR = 1.23, q = 2.45e-9). To better understand the relative importance of each CheekAge input in blood, we iteratively removed each clock CpG and re-calculated the overall mortality association. The most significant effect came from omitting the CpG cg14386193, which is annotated to the gene ALPK2. Excluding this DNA methylation site increased the FDR value by nearly threefold (to 4.92e-06). We additionally performed enrichment analyses of the top annotated CpGs that impact mortality to better understand their associated biology. Taken together, we provide important validation for CheekAge and highlight novel CpGs that underlie a newly identified mortality association.
Collapse
Affiliation(s)
| | | | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon R. Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
3
|
Vicenzi S, Gao F, Côté P, Hartman JD, Avsharian LC, Vora AA, Rowe RG, Li H, Skowronska-Krawczyk D, Crews LA. Systemic deficits in lipid homeostasis promote aging-associated impairments in B cell progenitor development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.614999. [PMID: 39386685 PMCID: PMC11463619 DOI: 10.1101/2024.09.26.614999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Organismal aging has been associated with diverse metabolic and functional changes across tissues. Within the immune system, key features of physiological hematopoietic cell aging include increased fat deposition in the bone marrow, impaired hematopoietic stem and progenitor cell (HSPC) function, and a propensity towards myeloid differentiation. This shift in lineage bias can lead to pre-malignant bone marrow conditions such as clonal hematopoiesis of indeterminate potential (CHIP) or clonal cytopenias of undetermined significance (CCUS), frequently setting the stage for subsequent development of age-related cancers in myeloid or lymphoid lineages. At the systemic as well as sub-cellular level, human aging has also been associated with diverse lipid alterations, such as decreased phospholipid membrane fluidity that arises as a result of increased saturated fatty acid (FA) accumulation and a decay in n-3 polyunsaturated fatty acid (PUFA) species by the age of 80 years, however the extent to which impaired FA metabolism contributes to hematopoietic aging is less clear. Here, we performed comprehensive multi-omics analyses and uncovered a role for a key PUFA biosynthesis gene, ELOVL2 , in mouse and human immune cell aging. Whole transcriptome RNA-sequencing studies of bone marrow from aged Elovl2 mutant (enzyme-deficient) mice compared with age-matched controls revealed global down-regulation in lymphoid cell markers and expression of genes involved specifically in B cell development. Flow cytometric analyses of immune cell markers confirmed an aging-associated loss of B cell markers that was exacerbated in the bone marrow of Elovl2 mutant mice and unveiled CD79B, a vital molecular regulator of lymphoid progenitor development from the pro-B to pre-B cell stage, as a putative surface biomarker of accelerated immune aging. Complementary lipidomic studies extended these findings to reveal select alterations in lipid species in aged and Elovl2 mutant mouse bone marrow samples, suggesting significant changes in the biophysical properties of cellular membranes. Furthermore, single cell RNA-seq analysis of human HSPCs across the spectrum of human development and aging uncovered a rare subpopulation (<7%) of CD34 + HSPCs that expresses ELOVL2 in healthy adult bone marrow. This HSPC subset, along with CD79B -expressing lymphoid-committed cells, were almost completely absent in CD34 + cells isolated from elderly (>60 years old) bone marrow samples. Together, these findings uncover new roles for lipid metabolism enzymes in the molecular regulation of cellular aging and immune cell function in mouse and human hematopoiesis. In addition, because systemic loss of ELOVL2 enzymatic activity resulted in down-regulation of B cell genes that are also associated with lymphoproliferative neoplasms, this study sheds light on an intriguing metabolic pathway that could be leveraged in future studies as a novel therapeutic modality to target blood cancers or other age-related conditions involving the B cell lineage.
Collapse
|
4
|
Lee-Okada HC, Xue C, Yokomizo T. Recent advances on the physiological and pathophysiological roles of polyunsaturated fatty acids and their biosynthetic pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1870:159564. [PMID: 39326727 DOI: 10.1016/j.bbalip.2024.159564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Polyunsaturated fatty acids (PUFAs)-fatty acids containing multiple double bonds within their carbon chain-are an indispensable component of the cell membrane. PUFAs, including the omega-6 PUFA arachidonic acid (ARA; C20:4n-6) and the omega-3 PUFAs eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3), have been implicated in various (patho)physiological events. These PUFAs are either obtained from the diet or biosynthesized from the essential fatty acids linoleic acid (LA; C18:2n-6) and α-linolenic acid (ALA; C18:3n-3) via enzymatic reactions that are catalyzed by fatty acid elongases (ELOVL2 and ELOVL5) and fatty acid desaturases (FADS1 and FADS2). In this review, we summarize the recent literature studying the role of PUFAs, placing a special emphasis on the newly discovered functions of PUFAs and their biosynthetic pathway as revealed by studies using animal models targeting the PUFA biosynthetic pathway and genetic approaches including genome-wide association studies.
Collapse
Affiliation(s)
- Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Chengxuan Xue
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Marinello D, Favero C, Albetti B, Barbuto D, Vigna L, Pesatori AC, Bollati V, Ferrari L. Investigating the Relationship between Epigenetic Age and Cardiovascular Risk in a Population with Overweight/Obesity. Biomedicines 2024; 12:1631. [PMID: 39200095 PMCID: PMC11351200 DOI: 10.3390/biomedicines12081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 09/01/2024] Open
Abstract
Introduction: Cardiovascular diseases stand as the leading global cause of mortality. Major modifiable risk factors encompass overweight/obese conditions, high blood pressure, elevated LDL cholesterol, diabetes, smoking, secondhand smoke exposure, unhealthy diet, and physical inactivity. In the present study, we explored the relationship between cardiovascular risk factors and epigenetic age (DNAm age), an estimate reflecting an individual's actual physiological functionality and overall health. Additionally, we assessed the association between DNAm age acceleration and cardiovascular risk, as evaluated through the Framingham risk score (FRS). Methods: The study includes 190 subjects with overweight/obese conditions. We calculated their DNAm age using Zbieć-Piekarska et al.'s DNAm age estimator on five sets of CpGs analyzed in the peripheral leucocytes. Linear regression models were employed to test the associations. Results: Various parameters contributing to increased cardiovascular risk were associated with DNAm age acceleration, such as systolic blood pressure (β = 0.045; SE = 0.019; p = 0.019), heart rate (β = 0.096; SE = 0.032; p = 0.003), blood glucose (β = 0.025; SE = 0.012; p = 0.030), glycated hemoglobin (β = 0.105; SE = 0.042; p = 0.013), diabetes (β = 2.247; SE = 0.841; p = 0.008), and menopausal conditions (β = 2.942; SE = 1.207; p = 0.016), as well as neutrophil (β = 0.100; SE = 0.042; p = 0.018) and granulocyte (β = 0.095; SE = 0.044; p = 0.033) counts. Moreover, DNAm age acceleration raised the FRS (∆% 5.3%, 95% CI 0.8; 9.9, p = 0.019). Conclusion: For the first time, we report that cardiovascular risk factors accelerated DNAm age in a selected population of hypersusceptible individuals with overweight or obesity. Our results highlight the potential of DNAm age acceleration as a biomarker of cumulative effects in cardiovascular risk assessment.
Collapse
Affiliation(s)
- Davide Marinello
- EPIGET LAB, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2024–2027, University of Milan, 20122 Milan, Italy
| | - Chiara Favero
- EPIGET LAB, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2024–2027, University of Milan, 20122 Milan, Italy
| | - Benedetta Albetti
- EPIGET LAB, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2024–2027, University of Milan, 20122 Milan, Italy
| | - Davide Barbuto
- EPIGET LAB, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2024–2027, University of Milan, 20122 Milan, Italy
| | - Luisella Vigna
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Angela Cecilia Pesatori
- EPIGET LAB, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2024–2027, University of Milan, 20122 Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2024–2027, University of Milan, 20122 Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Luca Ferrari
- EPIGET LAB, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2024–2027, University of Milan, 20122 Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
6
|
Gao F, Tom E, Rydz C, Cho W, Kolesnikov AV, Sha Y, Papadam A, Jafari S, Joseph A, Ahanchi A, Saraei NBS, Lyon D, Foik A, Nie Q, Grassmann F, Kefalov VJ, Skowronska-Krawczyk D. Polyunsaturated Fatty Acid - mediated Cellular Rejuvenation for Reversing Age-related Vision Decline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601592. [PMID: 39005302 PMCID: PMC11244954 DOI: 10.1101/2024.07.01.601592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The retina is uniquely enriched in polyunsaturated fatty acids (PUFAs), which are primarily localized in cell membranes, where they govern membrane biophysical properties such as diffusion, permeability, domain formation, and curvature generation. During aging, alterations in lipid metabolism lead to reduced content of very long-chain PUFAs (VLC-PUFAs) in the retina, and this decline is associated with normal age-related visual decline and pathological age-related macular degeneration (AMD). ELOVL2 (Elongation of very-long-chain fatty acids-like 2) encodes a transmembrane protein that produces precursors to docosahexaenoic acid (DHA) and VLC-PUFAs, and methylation level of its promoter is currently the best predictor of chronological age. Here, we show that mice lacking ELOVL2-specific enzymatic activity (Elovl2 C234W ) have impaired contrast sensitivity and slower rod response recovery following bright light exposure. Intravitreal supplementation with the direct product of ELOVL2, 24:5n-3, in aged animals significantly improved visual function and reduced accumulation of ApoE, HTRA1 and complement proteins in sub-RPE deposits. At the molecular level, the gene expression pattern observed in retinas supplemented with 24:5n-3 exhibited a partial rejuvenation profile, including decreased expression of aging-related genes and a transcriptomic signature of younger retina. Finally, we present the first human genetic data showing significant association of several variants in the human ELOVL2 locus with the onset of intermediate AMD, underlying the translational significance of our findings. In sum, our study identifies novel therapeutic opportunities and defines ELOVL2 as a promising target for interventions aimed at preventing age-related vision loss.
Collapse
Affiliation(s)
- Fangyuan Gao
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
| | - Emily Tom
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, CA
| | - Cezary Rydz
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, CA
| | - William Cho
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, CA
| | - Alexander V. Kolesnikov
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
| | - Yutong Sha
- Department of Mathematics, University of California Irvine, CA
| | | | - Samantha Jafari
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
| | - Andrew Joseph
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
| | - Ava Ahanchi
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
| | - Nika Balalaei Someh Saraei
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
| | - David Lyon
- Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, CA
| | - Andrzej Foik
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Qing Nie
- Department of Mathematics, University of California Irvine, CA
| | - Felix Grassmann
- Institute for Clinical Research and System Medicine, Health and Medical University, Potsdam, Germany
| | - Vladimir J. Kefalov
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, CA
| | - Dorota Skowronska-Krawczyk
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, CA
| |
Collapse
|
7
|
Zheng Q, Liu L, Guo X, Zhu F, Huang Y, Qin Q, Huang X. Fish ELOVL7a is involved in virus replication via lipid metabolic reprogramming. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109530. [PMID: 38570120 DOI: 10.1016/j.fsi.2024.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.
Collapse
Affiliation(s)
- Qi Zheng
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lin Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xixi Guo
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Fengyi Zhu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China.
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
8
|
Pollalis D, Georgescu C, Wren JD, Tombulyan G, Leung JM, Lo PA, Bloemhof CM, Lee RH, Bae E, Bailey JK, Pennington BO, Khan AI, Kelly KR, Yeh AK, Sundaram KS, Humayun M, Louie S, Clegg DO, Lee SY. Rescuing Photoreceptors in RPE Dysfunction-Driven Retinal Degeneration: The Role of Small Extracellular Vesicles Secreted from Retinal Pigment Epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588773. [PMID: 38645051 PMCID: PMC11030310 DOI: 10.1101/2024.04.09.588773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Dysfunction of the retinal pigment epithelium (RPE) is a common shared pathology in major degenerative retinal diseases despite variations in the primary etiologies of each disease. Due to their demanding and indispensable functional roles throughout the lifetime, RPE cells are vulnerable to genetic predisposition, external stress, and aging processes. Building upon recent advancements in stem cell technology for differentiating healthy RPE cells and recognizing the significant roles of small extracellular vesicles (sEV) in cellular paracrine and autocrine actions, we investigated the hypothesis that the RPE-secreted sEV alone can restore essential RPE functions and rescue photoreceptors in RPE dysfunction-driven retinal degeneration. Our findings support the rationale for developing intravitreal treatment of sEV. We demonstrate that intravitreally delivered sEV effectively penetrate the full thickness of the retina. Xenogenic intraocular administration of human-derived EVs did not induce acute immune reactions in rodents. sEV derived from human embryonic stem cell (hESC)-derived fully differentiated RPE cells, but not sEV-depleted conditioned cell culture media (CCM minus sEV), rescued photoreceptors and their function in a Royal College of Surgeons (RCS) rat model. This model is characterized by photoreceptor death and retinal degeneration resulting from a mutation in the MerTK gene in RPE cells. From the bulk RNA sequencing study, we identified 447 differently expressed genes in the retina after hESC-RPE-sEV treatment compared with the untreated control. Furthermore, 394 out of 447 genes (88%) showed a reversal in expression toward the healthy state in Long-Evans (LE) rats after treatment compared to the diseased state. Particularly, detrimental alterations in gene expression in RCS rats, including essential RPE functions such as phototransduction, vitamin A metabolism, and lipid metabolism were partially reversed. Defective photoreceptor outer segment engulfment due to intrinsic MerTK mutation was partially ameliorated. These findings suggest that RPE-secreted sEV may play a functional role similar to that of RPE cells. Our study justifies further exploration to fully unlock future therapeutic interventions with sEV in a broad array of degenerative retinal diseases.
Collapse
|
9
|
Brito M, Sorbier C, Mignet N, Boudy V, Borchard G, Vacher G. Understanding the Impact of Polyunsaturated Fatty Acids on Age-Related Macular Degeneration: A Review. Int J Mol Sci 2024; 25:4099. [PMID: 38612907 PMCID: PMC11012607 DOI: 10.3390/ijms25074099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Age-related Macular Degeneration (AMD) is a multifactorial ocular pathology that destroys the photoreceptors of the macula. Two forms are distinguished, dry and wet AMD, with different pathophysiological mechanisms. Although treatments were shown to be effective in wet AMD, they remain a heavy burden for patients and caregivers, resulting in a lack of patient compliance. For dry AMD, no real effective treatment is available in Europe. It is, therefore, essential to look for new approaches. Recently, the use of long-chain and very long-chain polyunsaturated fatty acids was identified as an interesting new therapeutic alternative. Indeed, the levels of these fatty acids, core components of photoreceptors, are significantly decreased in AMD patients. To better understand this pathology and to evaluate the efficacy of various molecules, in vitro and in vivo models reproducing the mechanisms of both types of AMD were developed. This article reviews the anatomy and the physiological aging of the retina and summarizes the clinical aspects, pathophysiological mechanisms of AMD and potential treatment strategies. In vitro and in vivo models of AMD are also presented. Finally, this manuscript focuses on the application of omega-3 fatty acids for the prevention and treatment of both types of AMD.
Collapse
Affiliation(s)
- Maëlis Brito
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Capucine Sorbier
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
| | - Nathalie Mignet
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
| | - Vincent Boudy
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Gaëlle Vacher
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| |
Collapse
|
10
|
Zhang J, Ruiz M, Bergh PO, Henricsson M, Stojanović N, Devkota R, Henn M, Bohlooly-Y M, Hernández-Hernández A, Alsheimer M, Borén J, Pilon M, Shibuya H. Regulation of meiotic telomere dynamics through membrane fluidity promoted by AdipoR2-ELOVL2. Nat Commun 2024; 15:2315. [PMID: 38485951 PMCID: PMC10940294 DOI: 10.1038/s41467-024-46718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The cellular membrane in male meiotic germ cells contains a unique class of phospholipids and sphingolipids that is required for male reproduction. Here, we show that a conserved membrane fluidity sensor, AdipoR2, regulates the meiosis-specific lipidome in mouse testes by promoting the synthesis of sphingolipids containing very-long-chain polyunsaturated fatty acids (VLC-PUFAs). AdipoR2 upregulates the expression of a fatty acid elongase, ELOVL2, both transcriptionally and post-transcriptionally, to synthesize VLC-PUFA. The depletion of VLC-PUFAs and subsequent accumulation of palmitic acid in AdipoR2 knockout testes stiffens the cellular membrane and causes the invagination of the nuclear envelope. This condition impairs the nuclear peripheral distribution of meiotic telomeres, leading to errors in homologous synapsis and recombination. Further, the stiffened membrane impairs the formation of intercellular bridges and the germ cell syncytium, which disrupts the orderly arrangement of cell types within the seminiferous tubules. According to our findings we propose a framework in which the highly-fluid membrane microenvironment shaped by AdipoR2-ELOVL2 underpins meiosis-specific chromosome dynamics in testes.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Nena Stojanović
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Marius Henn
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | | | - Abrahan Hernández-Hernández
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- National Genomics Infrastructure, Science for Life Laboratory, Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
11
|
Nwagbo U, Parvez S, Maschek JA, Bernstein PS. Elovl4b knockout zebrafish as a model for ocular very-long-chain PUFA deficiency. J Lipid Res 2024; 65:100518. [PMID: 38342437 PMCID: PMC10940177 DOI: 10.1016/j.jlr.2024.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
Very-long-chain PUFAs (VLC-PUFAs) are a group of lipids with chain lengths >24 carbons, and the ELOVL4 (elongation of very-long-chain FA-4) enzyme is responsible for vertebrate VLC-PUFA biosynthesis. Studies on the role of VLC-PUFAs in vision have been hindered because of the need for adequate animal models to capture the global loss of VLC-PUFAs. Since homozygous Elovl4 ablation is lethal in neonatal mice because of catastrophic drying from the loss of their protective skin barrier, we established a zebrafish (Danio rerio) model of Elovl4 ablation. We generated Elovl4b KO zebrafish by creating a 56-bp deletion mutation in exon 2 of the Elovl4b gene using CRISPR-Cas9. We used GC-MS and LC-MS/MS to analyze the VLC-PUFA and lipid profiles from wild-type and Elovl4b KO fish eyes. We also performed histology and visual-behavioral tests. We found that heterozygous and homozygous Elovl4b KO zebrafish eyes had altered lipid profiles and a significantly lower C30 to C36 VLC-PUFA abundance than wild-type fish. Moreover, Elovl4b+/- and Elovl4b-/- KO larvae had significantly lower motor activity in response to light-dark cycles than their age-matched controls. Elovl4b-/- adult fish showed no obvious differences in gross retinal morphology and lamination compared with wild type, except for the presence of lipid droplets within the retinal pigment epithelial cell layer of Elovl4b-/- fish. Our data indicate that the loss of Elovl4b in zebrafish changes ocular lipid profiles and leads to visual abnormalities and subtle retinal changes. These findings highlight the use of zebrafish as a model for VLC-PUFA depletion and ELOVL4-related dysfunction.
Collapse
Affiliation(s)
- Uzoamaka Nwagbo
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Saba Parvez
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - J Alan Maschek
- Metabolomics Core, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
12
|
Landowski M, Gogoi P, Ikeda S, Ikeda A. Roles of transmembrane protein 135 in mitochondrial and peroxisomal functions - implications for age-related retinal disease. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1355379. [PMID: 38576540 PMCID: PMC10993500 DOI: 10.3389/fopht.2024.1355379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Aging is the most significant risk factor for age-related diseases in general, which is true for age-related diseases in the eye including age-related macular degeneration (AMD). Therefore, in order to identify potential therapeutic targets for these diseases, it is crucial to understand the normal aging process and how its mis-regulation could cause age-related diseases at the molecular level. Recently, abnormal lipid metabolism has emerged as one major aspect of age-related symptoms in the retina. Animal models provide excellent means to identify and study factors that regulate lipid metabolism in relation to age-related symptoms. Central to this review is the role of transmembrane protein 135 (TMEM135) in the retina. TMEM135 was identified through the characterization of a mutant mouse strain exhibiting accelerated retinal aging and positional cloning of the responsible mutation within the gene, indicating the crucial role of TMEM135 in regulating the normal aging process in the retina. Over the past decade, the molecular functions of TMEM135 have been explored in various models and tissues, providing insights into the regulation of metabolism, particularly lipid metabolism, through its action in multiple organelles. Studies indicated that TMEM135 is a significant regulator of peroxisomes, mitochondria, and their interaction. Here, we provide an overview of the molecular functions of TMEM135 which is crucial for regulating mitochondria, peroxisomes, and lipids. The review also discusses the age-dependent phenotypes in mice with TMEM135 perturbations, emphasizing the importance of a balanced TMEM135 function for the health of the retina and other tissues including the heart, liver, and adipose tissue. Finally, we explore the potential roles of TMEM135 in human age-related retinal diseases, connecting its functions to the pathobiology of AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Purnima Gogoi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
13
|
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. DNA methylation regulates pancreatic gene expression and links maternal high-fat diet to the offspring glucose metabolism. J Nutr Biochem 2024; 123:109490. [PMID: 37865384 DOI: 10.1016/j.jnutbio.2023.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Maternal high-fat diet (HFD) is related to an increased risk of glucose metabolism disorders throughout the whole life of offspring. The pancreas is a glucose homeostasis regulator. Accumulating evidence has revealed that maternal HFD affects offspring pancreas structure and function. However, the potential mechanism remains unclear. In this study, the mouse dam was fed with HFD or control diet (CD) during prepregnancy, pregnancy and lactation. The pancreatic insulin secretion function and islet genome methylome of offspring were analyzed. Pancreatic islet specific gene methylation was detected by using MeDIP qPCR. The results showed that body weight, blood glucose after oral glucose loads, fasting serum insulin, and HOMA-IR index values were significantly higher in male 12-week-old offspring from HFD dams than in the offspring from CD dams. Maternal HFD induced insulin secretion defects in male offspring. Compared with that in maternal CD group, methylation of the Abcc8 and Kcnj11 genes was increased in maternal HFD group in male offspring pancreatic islets. Furthermore, the expression levels of Abcc8 and Kcnj11 were downregulated by intrauterine exposure to a maternal HFD. In summary, maternal HFD results in a long-term functional disorder of the pancreas that is involved in insulin secretion-related gene DNA hypermethylation.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jia Zheng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Yang ZH, Gorusupudi A, Lydic TA, Mondal AK, Sato S, Yamazaki I, Yamaguchi H, Tang J, Rojulpote KV, Lin AB, Decot H, Koch H, Brock DC, Arunkumar R, Shi ZD, Yu ZX, Pryor M, Kun JF, Swenson RE, Swaroop A, Bernstein PS, Remaley AT. Dietary fish oil enriched in very-long-chain polyunsaturated fatty acid reduces cardiometabolic risk factors and improves retinal function. iScience 2023; 26:108411. [PMID: 38047069 PMCID: PMC10692724 DOI: 10.1016/j.isci.2023.108411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/31/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Very-long-chain polyunsaturated fatty acids (VLCPUFAs; C24-38) constitute a unique class of PUFA that have important biological roles, but the lack of a suitable dietary source has limited research in this field. We produced an n-3 C24-28-rich VLCPUFA-oil concentrated from fish oil to study its bioavailability and physiological functions in C57BL/6J mice. The serum and retinal C24:5 levels increased significantly compared to control after a single-dose gavage, and VLCPUFAs were incorporated into the liver, brain, and eyes after 8-week supplementation. Dietary VLCPUFAs resulted in favorable cardiometabolic changes, and improved electroretinography responses and visual performance. VLCPUFA supplementation changed the expression of genes involved in PPAR signaling pathways. Further in vitro studies demonstrated that the VLCPUFA-oil and chemically synthesized C24:5 are potent agonists for PPARs. The multiple potential beneficial effects of fish oil-derived VLCPUFAs on cardiometabolic risk and eye health in mice support future efforts to develop VLCPUFA-oil into a supplemental therapy.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Salt Lake City, UT 84132, USA
| | - Todd A. Lydic
- Department of Physiology, Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Anupam K. Mondal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Seizo Sato
- Central Research Laboratory, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Isao Yamazaki
- Central Research Laboratory, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Hideaki Yamaguchi
- Central Research Laboratory, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Jingrong Tang
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Krishna Vamsi Rojulpote
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anna B. Lin
- Department of Physiology, Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah Decot
- Department of Physiology, Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah Koch
- Department of Physiology, Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel C. Brock
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Ranganathan Arunkumar
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Salt Lake City, UT 84132, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- Pathology Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Milton Pryor
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Julia F. Kun
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Paul S. Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Salt Lake City, UT 84132, USA
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Horvath S, Haghani A, Zoller JA, Lu AT, Ernst J, Pellegrini M, Jasinska AJ, Mattison JA, Salmon AB, Raj K, Horvath M, Paul KC, Ritz BR, Robeck TR, Spriggs M, Ehmke EE, Jenkins S, Li C, Nathanielsz PW. Pan-primate studies of age and sex. GeroScience 2023; 45:3187-3209. [PMID: 37493860 PMCID: PMC10643767 DOI: 10.1007/s11357-023-00878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/16/2023] [Indexed: 07/27/2023] Open
Abstract
Age and sex have a profound effect on cytosine methylation levels in humans and many other species. Here we analyzed DNA methylation profiles of 2400 tissues derived from 37 primate species including 11 haplorhine species (baboons, marmosets, vervets, rhesus macaque, chimpanzees, gorillas, orangutan, humans) and 26 strepsirrhine species (suborders Lemuriformes and Lorisiformes). From these we present here, pan-primate epigenetic clocks which are highly accurate for all primates including humans (age correlation R = 0.98). We also carried out in-depth analysis of baboon DNA methylation profiles and generated five epigenetic clocks for baboons (Olive-yellow baboon hybrid), one of which, the pan-tissue epigenetic clock, was trained on seven tissue types (fetal cerebral cortex, adult cerebral cortex, cerebellum, adipose, heart, liver, and skeletal muscle) with ages ranging from late fetal life to 22.8 years of age. Using the primate data, we characterize the effect of age and sex on individual cytosines in highly conserved regions. We identify 11 sex-related CpGs on autosomes near genes (POU3F2, CDYL, MYCL, FBXL4, ZC3H10, ZXDC, RRAS, FAM217A, RBM39, GRIA2, UHRF2). Low overlap can be observed between age- and sex-related CpGs. Overall, this study advances our understanding of conserved age- and sex-related epigenetic changes in primates, and provides biomarkers of aging for all primates.
Collapse
Affiliation(s)
- Steve Horvath
- Altos Labs, San Diego, CA, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
| | | | - Joseph A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Jason Ernst
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and BiobehavioralSciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute On Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, and Department of Molecular Medicine, UT Health San Antonio, and the Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | | | | | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Beate R Ritz
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Todd R Robeck
- Corporate Zoological Operations, SeaWorld Parks, Orlando, FL, USA
| | - Maria Spriggs
- Busch Gardens Tampa, SeaWorld Parks, Tampa, FL, 33612, USA
| | | | - Susan Jenkins
- Texas Pregnancy & Life-Course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources Department, Laramie, WY, USA
| | - Cun Li
- Texas Pregnancy & Life-Course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources Department, Laramie, WY, USA
| | - Peter W Nathanielsz
- Texas Pregnancy & Life-Course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources Department, Laramie, WY, USA
| |
Collapse
|
16
|
Obeid R, Rickens P, Heine GH, Emrich IE, Fliser D, Zawada AM, Bodis M, Geisel J. ELOVL2-methylation and renal and cardiovascular event in patients with chronic kidney disease. Eur J Clin Invest 2023; 53:e14068. [PMID: 37493252 DOI: 10.1111/eci.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Methylation of the Elongation Of Very Long Chain Fatty Acids-Like 2 (ELOVL2) gene promoter may predict premature ageing and cardiovascular risk. METHODS We studied the cross-sectional associations between blood ELOVL2-methylation and cardiovascular risk factors in 350 patients with chronic kidney disease (CKD) stage G2-G4 aged between 22 and 90 years. In a follow-up study for a mean of 3.9 years, we investigated the association between baseline ELOVL2-methylation and renal or cardiovascular events including death. RESULTS ELOVL2-methylation at seven CpG cites increased with age (the correlation coefficients between 0.67 and 0.87, p < 0.001). The ELOVL2-CpGs methylation was lower in patients with CKD stage G2 versus those in stage G3a, G3b and G4, but the differences were explained by age. ELOVL2-CpGs methylation showed no correlations with cardiovascular risk factors after adjusting for age. During the follow-up, 64 patients showed deterioration in renal function or died and 77 showed cardiovascular events or died. The hazard ratio and 95% confidence intervals for renal or cardiovascular events according to baseline ELOVL2-CpGs methylation were not significant after adjustment for covariates. CONCLUSIONS ELOVL2-hypermethylation showed a strong association with age, but was not independently associated with cardiovascular risk factors or with future renal or cardiovascular events in patients with CKD. ELOVL2 gene methylation is not likely to be itself a cause for ageing or illnesses, but it could be rather influenced by other upstream processes that deserve investigation.
Collapse
Affiliation(s)
- Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg, Germany
| | - Patricia Rickens
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg, Germany
| | - Gunnar Henrik Heine
- Agaplesion Markus Hospital, Medical Clinic II, Frankfurt am Main, Germany
- Department of Internal Medicine IV-Nephrology and Hypertension, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
| | - Insa E Emrich
- Saarland University Medical Center, Internal Medicine III - Cardiology, Angiology and Intensive Care Medicine, Homburg, Germany
| | - Danilo Fliser
- Department of Internal Medicine IV-Nephrology and Hypertension, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
| | - Adam M Zawada
- Department of Internal Medicine IV-Nephrology and Hypertension, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
| | - Marion Bodis
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg, Germany
| | - Jürgen Geisel
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg, Germany
| |
Collapse
|
17
|
Malhan D, Schoenrock B, Yalçin M, Blottner D, Relόgio A. Circadian regulation in aging: Implications for spaceflight and life on earth. Aging Cell 2023; 22:e13935. [PMID: 37493006 PMCID: PMC10497835 DOI: 10.1111/acel.13935] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Alterations in the circadian system are characteristic of aging on Earth. With the decline in physiological processes due to aging, several health concerns including vision loss, cardiovascular disorders, cognitive impairments, and muscle mass loss arise in elderly populations. Similar health risks are reported as "red flag" risks among astronauts during and after a long-term Space exploration journey. However, little is known about the common molecular alterations underlying terrestrial aging and space-related aging in astronauts, and controversial conclusions have been recently reported. In light of the regulatory role of the circadian clock in the maintenance of human health, we review here the overlapping role of the circadian clock both on aging on Earth and spaceflight with a focus on the four most affected systems: visual, cardiovascular, central nervous, and musculoskeletal systems. In this review, we briefly introduce the regulatory role of the circadian clock in specific cellular processes followed by alterations in those processes due to aging. We next summarize the known molecular alterations associated with spaceflight, highlighting involved clock-regulated genes in space flown Drosophila, nematodes, small mammals, and astronauts. Finally, we discuss common genes that are altered in terms of their expression due to aging on Earth and spaceflight. Altogether, the data elaborated in this review strengthen our hypothesis regarding the timely need to include circadian dysregulation as an emerging hallmark of aging on Earth and beyond.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
| | - Britt Schoenrock
- Institute of Integrative NeuroanatomyCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Müge Yalçin
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
- Institute for Theoretical Biology (ITB)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dieter Blottner
- Institute of Integrative NeuroanatomyCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Neuromuscular System and Neuromuscular SignalingBerlin Center of Space Medicine & Extreme EnvironmentsBerlinGermany
| | - Angela Relόgio
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
- Institute for Theoretical Biology (ITB)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
18
|
Sukumaran S, Sebastian W, Gopalakrishnan A, Mathew OK, Vysakh VG, Rohit P, Jena JK. The sequence and de novo assembly of the genome of the Indian oil sardine, Sardinella longiceps. Sci Data 2023; 10:565. [PMID: 37626109 PMCID: PMC10457283 DOI: 10.1038/s41597-023-02481-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The Indian oil sardine, Sardinella longiceps, is a widely distributed and commercially important small pelagic fish of the Northern Indian Ocean. The genome of the Indian oil sardine has been characterized using Illumina and Nanopore platforms. The assembly is 1.077 Gb (31.86 Mb Scaffold N50) in size with a repeat content of 23.24%. The BUSCO (Benchmarking Universal Single Copy Orthologues) completeness of the assembly is 93.5% when compared with Actinopterygii (ray finned fishes) data set. A total of 46316 protein coding genes were predicted. Sardinella longiceps is nutritionally rich with high levels of omega-3 polyunsaturated fatty acids (PUFA). The core genes for omega-3 PUFA biosynthesis, such as Elovl 1a and 1b,Elovl 2, Elovl 4a and 4b,Elovl 8a and 8b,and Fads 2, were observed in Sardinella longiceps. The presence of these genes may indicate the PUFA biosynthetic capability of Indian oil sardine, which needs to be confirmed functionally.
Collapse
Affiliation(s)
- Sandhya Sukumaran
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India.
| | - Wilson Sebastian
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - A Gopalakrishnan
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Oommen K Mathew
- Agrigenome Labs Pvt. Ltd., Kakkanad, Kochi, Kerala, 682042, India
| | - V G Vysakh
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Prathibha Rohit
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - J K Jena
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| |
Collapse
|
19
|
Nwagbo U, Bernstein PS. Understanding the Roles of Very-Long-Chain Polyunsaturated Fatty Acids (VLC-PUFAs) in Eye Health. Nutrients 2023; 15:3096. [PMID: 37513514 PMCID: PMC10383069 DOI: 10.3390/nu15143096] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Lipids serve many roles in the neural system, from synaptic stabilization and signaling to DNA regulation and neuroprotection. They also regulate inflammatory responses, maintain cellular membrane structure, and regulate the homeostatic balance of ions and signaling molecules. An imbalance of lipid subgroups is implicated in the progression of many retinal diseases, such as age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, and diet can play a key role in influencing these diseases' onset, progression, and severity. A special class of lipids termed very-long-chain polyunsaturated fatty acids (VLC-PUFAs) is found exclusively in mammalian vertebrate retinas and a few other tissues. They comprise <2% of fatty acids in the retina and are depleted in the retinas of patients with diseases like diabetic retinopathy and AMD. However, the implications of the reduction in VLC-PUFA levels are poorly understood. Dietary supplementation studies and ELOVL4 transgene studies have had positive outcomes. However, much remains to be understood about their role in retinal health and the potential for targeted therapies against retinal disease.
Collapse
Affiliation(s)
- Uzoamaka Nwagbo
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84132, USA;
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Paul S. Bernstein
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84132, USA;
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
20
|
Wang Z, Tao P, Fan P, Wang J, Rong T, Hou Y, Zhou Y, Lu W, Hong L, Ma L, Zhang Y, Tong H. Insight of a lipid metabolism prognostic model to identify immune landscape and potential target for retroperitoneal liposarcoma. Front Immunol 2023; 14:1209396. [PMID: 37483592 PMCID: PMC10359070 DOI: 10.3389/fimmu.2023.1209396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The exploration of lipid metabolism dysregulation may provide novel perspectives for retroperitoneal liposarcoma (RPLS). In our study, we aimed to investigate potential targets and facilitate further understanding of immune landscape in RPLS, through lipid metabolism-associated genes (LMAGs) based prognostic model. Methods Gene expression profiles and corresponding clinical information of 234 cases were enrolled from two public databases and the largest retroperitoneal tumor research center of East China, including cohort-TCGA (n=58), cohort-GSE30929 (n=92), cohort-FD (n=50), cohort-scRNA-seq (n=4) and cohort-validation (n=30). Consensus clustering analysis was performed to identify lipid metabolism-associated molecular subtypes (LMSs). A prognostic risk model containing 13 LMAGs was established using LASSO algorithm and multivariate Cox analysis in cohort-TCGA. ESTIMATE, CIBERSORT, XCELL and MCP analyses were performed to visualize the immune landscape. WGCNA was used to identify three hub genes among the 13 model LMAGs, and preliminarily validated in both cohort-GSE30929 and cohort-FD. Moreover, TIMER was used to visualize the correlation between antigen-presenting cells and potential targets. Finally, single-cell RNA-sequencing (scRNA-seq) analysis of four RPLS and multiplexed immunohistochemistry (mIHC) were performed in cohort-validation to validate the discoveries of bioinformatics analysis. Results LMS1 and LMS2 were characterized as immune-infiltrated and -excluded tumors, with significant differences in molecular features and clinical prognosis, respectively. Elongation of very long chain fatty acids protein 2 (ELOVL2), the enzyme that catalyzed the elongation of long chain fatty acids, involved in the maintenance of lipid metabolism and cellular homeostasis in normal cells, was identified and negatively correlated with antigen-presenting cells and identified as a potential target in RPLS. Furthermore, ELOVL2 was enriched in LMS2 with significantly lower immunoscore and unfavorable prognosis. Finally, a high-resolution dissection through scRNA-seq was performed in four RPLS, revealing the entire tumor ecosystem and validated previous findings. Discussion The LMS subgroups and risk model based on LMAGs proposed in our study were both promising prognostic classifications for RPLS. ELOVL2 is a potential target linking lipid metabolism to immune regulations against RPLS, specifically for patients with LMS2 tumors.
Collapse
Affiliation(s)
- Zhenyu Wang
- First Affiliated Hospital, Anhui University of Science and Technology, Huainan, China
| | - Ping Tao
- Department of Laboratory Medicine, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peidang Fan
- First Affiliated Hospital, Anhui University of Science and Technology, Huainan, China
| | - Jiongyuan Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Rong
- First Affiliated Hospital, Anhui University of Science and Technology, Huainan, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Hong
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Lijie Ma
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanxing Tong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Swinkels D, Baes M. The essential role of docosahexaenoic acid and its derivatives for retinal integrity. Pharmacol Ther 2023; 247:108440. [PMID: 37201739 DOI: 10.1016/j.pharmthera.2023.108440] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The fatty acid composition of photoreceptor outer segment (POS) phospholipids diverges from other membranes, being highly enriched in polyunsaturated fatty acids (PUFAs). The most abundant PUFA is docosahexaenoic acid (DHA, C22:6n-3), an omega-3 PUFA that amounts to over 50% of the POS phospholipid fatty acid side chains. Interestingly, DHA is the precursor of other bioactive lipids such as elongated PUFAs and oxygenated derivatives. In this review, we present the current view on metabolism, trafficking and function of DHA and very long chain polyunsaturated fatty acids (VLC-PUFAs) in the retina. New insights on pathological features generated from PUFA deficient mouse models with enzyme or transporter defects and corresponding patients are discussed. Not only the neural retina, but also abnormalities in the retinal pigment epithelium are considered. Furthermore, the potential involvement of PUFAs in more common retinal degeneration diseases such as diabetic retinopathy, retinitis pigmentosa and age-related macular degeneration are evaluated. Supplementation treatment strategies and their outcome are summarized.
Collapse
Affiliation(s)
- Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
22
|
Melo-Silva CR, Knudson CJ, Tang L, Kafle S, Springer LE, Choi J, Snyder CM, Wang Y, Kim SV, Sigal LJ. Multiple and Consecutive Genome Editing Using i-GONAD and Breeding Enrichment Facilitates the Production of Genetically Modified Mice. Cells 2023; 12:1343. [PMID: 37174743 PMCID: PMC10177031 DOI: 10.3390/cells12091343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Genetically modified (GM) mice are essential tools in biomedical research. Traditional methods for generating GM mice are expensive and require specialized personnel and equipment. The use of clustered regularly interspaced short palindromic repeats (CRISPR) coupled with improved-Genome editing via Oviductal Nucleic Acids Delivery (i-GONAD) has highly increased the feasibility of producing GM mice in research laboratories. However, genetic modification in inbred mouse strains of interest such as C57BL/6 (B6) is still challenging because of their low fertility and embryo fragility. We have successfully generated multiple novel GM mouse strains in the B6 background while attempting to optimize i-GONAD. We found that i-GONAD reduced the litter size in superovulated pregnant females but did not impact pregnancy rates. Natural mating or low-hormone dose did not increase the low fertility rate observed in superovulated B6 females. However, diet enrichment had a positive effect on pregnancy success. We also optimized breeding conditions to increase the survival of small litters by co-housing i-GONAD-treated pregnant B6 females with synchronized pregnant FVB/NJ companion mothers. Thus, GM mice generation was increased by an enriched diet and shared pup rearing with highly fertile females such as FVB/NJ. In the present study, we generated 16 GM mice using a CRISPR/Cas system to target individual and multiple loci simultaneously or consecutively. We also compared homology-directed repair efficiency using different methods for LoxP insertion for conditional knockout mouse production. We found that a two-step serial LoxP insertion, in which each LoxP sequence was inserted individually in different i-GONAD procedures, was a low-risk high-efficiency method for generating floxed mice.
Collapse
Affiliation(s)
- Carolina R. Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cory J. Knudson
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lingjuan Tang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Samita Kafle
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lauren E. Springer
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jihae Choi
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher M. Snyder
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sangwon V. Kim
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Luis J. Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
23
|
Siddiqui AJ, Jahan S, Chaturvedi S, Siddiqui MA, Alshahrani MM, Abdelgadir A, Hamadou WS, Saxena J, Sundararaj BK, Snoussi M, Badraoui R, Adnan M. Therapeutic Role of ELOVL in Neurological Diseases. ACS OMEGA 2023; 8:9764-9774. [PMID: 36969404 PMCID: PMC10034982 DOI: 10.1021/acsomega.3c00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Fatty acids play an important role in controlling the energy balance of mammals. De novo lipogenesis also generates a significant amount of lipids that are endogenously produced in addition to their ingestion. Fatty acid elongation beyond 16 carbons (palmitic acid), which can lead to the production of very long chain fatty acids (VLCFA), can be caused by the rate-limiting condensation process. Seven elongases, ELOVL1-7, have been identified in mammals and each has a unique substrate specificity. Researchers have recently developed a keen interest in the elongation of very long chain fatty acids protein 1 (ELOVL1) enzyme as a potential treatment for a variety of diseases. A number of neurological disorders directly or indirectly related to ELOVL1 involve the elongation of monounsaturated (C20:1 and C22:1) and saturated (C18:0-C26:0) acyl-CoAs. VLCFAs and ELOVL1 have a direct impact on the neurological disease. Other neurological symptoms such as ichthyotic keratoderma, spasticity, and hypomyelination have also been linked to the major enzyme (ELOVL1). Recently, ELOVL1 has also been heavily used to treat a number of diseases. The current review focuses on in-depth unique insights regarding the role of ELOVL1 as a therapeutic target and associated neurological disorders.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Sadaf Jahan
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Swati Chaturvedi
- Department
of Pharmaceutics and Pharmacokinetics, Pre-Clinical North, Lab-106, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Maqsood Ahmed Siddiqui
- Department
of Zoology, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department
of Clinical Laboratory Sciences, Faculty of Applied Medial Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Abdelmushin Abdelgadir
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Walid Sabri Hamadou
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Juhi Saxena
- Department
of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, NH-95, Chandigarh State Hwy, Ludhiana, Punjab 140413, India
| | - Bharath K. Sundararaj
- School
of Dental Medicine, Department of Cellular and Molecular Biology, Boston University, Medical Campus Boston, Boston, Massachusetts 02215, United States
| | - Mejdi Snoussi
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Riadh Badraoui
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| |
Collapse
|
24
|
Polyunsaturated Lipids in the Light-Exposed and Prooxidant Retinal Environment. Antioxidants (Basel) 2023; 12:antiox12030617. [PMID: 36978865 PMCID: PMC10044808 DOI: 10.3390/antiox12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The retina is an oxidative stress-prone tissue due to high content of polyunsaturated lipids, exposure to visible light stimuli in the 400–480 nm range, and high oxygen availability provided by choroidal capillaries to support oxidative metabolism. Indeed, lipids’ peroxidation and their conversion into reactive species promoting inflammation have been reported and connected to retinal degenerations. Here, we review recent evidence showing how retinal polyunsaturated lipids, in addition to oxidative stress and damage, may counteract the inflammatory response triggered by blue light-activated carotenoid derivatives, enabling long-term retina operation despite its prooxidant environment. These two aspects of retinal polyunsaturated lipids require tight control over their synthesis to avoid overcoming their protective actions by an increase in lipid peroxidation due to oxidative stress. We review emerging evidence on different transcriptional control mechanisms operating in retinal cells to modulate polyunsaturated lipid synthesis over the life span, from the immature to the ageing retina. Finally, we discuss the antioxidant role of food nutrients such as xanthophylls and carotenoids that have been shown to empower retinal cells’ antioxidant responses and counteract the adverse impact of prooxidant stimuli on sight.
Collapse
|
25
|
Ji Y, Zhao M, Qiao X, Peng GH. Decitabine improves MMS-induced retinal photoreceptor cell damage by targeting DNMT3A and DNMT3B. Front Mol Neurosci 2023; 15:1057365. [PMID: 36704326 PMCID: PMC9872157 DOI: 10.3389/fnmol.2022.1057365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Retinitis pigmentosa (RP) is a group of neurodegenerative retinopathies causing blindness due to progressive and irreversible photoreceptor cell death. The alkylating agent methyl methanesulfonate (MMS) can induce selective photoreceptor cell death, which is used to establish RP animal models. MMS induces DNA base damage by adding alkyl groups to DNA, and epigenetic modifications influence DNA damage response. Here, we aimed to explore the relationship between DNA methylation and DNA damage response in dying photoreceptors of RP. Methods The mouse RP model was established by a single intraperitoneal injection of MMS. The retinal structure and function were assessed by H&E, OCT, TUNEL, and ERG at several time points. The expression of DNA methylation regulators was assessed by qPCR and Western blot. DNMT inhibitor 5-aza-dC was applied to inhibit the activity of DNA methyltransferases and improve the retinal photoreceptor damage. Results The outer nuclear layer (ONL) and IS/OS layer were significantly thinner and the retinal function was impaired after MMS treatment. The cell death was mainly located in the ONL. The retinal damage induced by MMS was accompanied by hyperexpression of DNMT3A/3B. The application of DNMT inhibitor 5-aza-dC could suppress the expression level of DNMT3A/3B, resulting in the remission of MMS-induced photoreceptor cell damage. The ONL and IS/OS layers were thicker than that of the control group, and the retinal function was partially restored. This protective effect of 5-aza-dC was associated with the down-regulated expression of DNMT3A/3B. Conclusion These findings identified a functional role of DNMT3A/3B in MMS-induced photoreceptor cell damage and provided novel evidence to support DNMTs as potential therapeutic targets in retinal degenerative diseases.Graphical Abstract.
Collapse
Affiliation(s)
- Yanli Ji
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China,Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Meng Zhao
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China,Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Xiaomeng Qiao
- Department of Forensic Medicine, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Guang-Hua Peng
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China,Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China,*Correspondence: Guang-Hua Peng, ✉
| |
Collapse
|
26
|
Skowronska-Krawczyk D. Hallmarks of Aging: Causes and Consequences. AGING BIOLOGY 2023; 1:20230011. [PMID: 38274125 PMCID: PMC10809922 DOI: 10.59368/agingbio.20230011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In a recent review article published in Cell, López-Otín and colleagues conducted an exhaustive literature review and described 12 hallmarks of aging. The updated model of aging comprehensively captures the key characteristics of the aging phenotype and incorporates new pathways that play a crucial role in age-related processes. Although the updated hallmarks of aging provide a useful framework for describing the phenotype of aging, aging itself is a result of mechanistically complex and interrelated processes that happen during the lifespan of the organism. Here, I propose to shift the focus from a systematic description and categorization of the hallmarks of aging to a model that separates the early, molecular origins of changes from cellular and tissue responses and represents the sequential and causative character of changes in aging. The proposed model aims to prompt discussion among the aging research community, guide future efforts in the field, and provide new ideas for investigation.
Collapse
Affiliation(s)
- Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
27
|
Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010077. [PMID: 36676026 PMCID: PMC9863869 DOI: 10.3390/life13010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.
Collapse
|
28
|
Li C, Wu Y, Li H, Wang H, Liu JX. Lipid-related metabolism during zebrafish embryogenesis under unbalanced copper homeostasis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1571-1586. [PMID: 36161547 DOI: 10.1007/s10695-022-01127-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/17/2022] [Indexed: 05/13/2023]
Abstract
Copper (Cu) is an essential trace element, playing an important role in lipid metabolism, and its transporters ATP7A and ATP7B, as Cu-transporting P-type ATPases, are involved in maintaining the Cu homeostasis in cells. Numerous studies in mammals have shown that Cu homeostasis and lipid metabolism are closely related, but studies on the link between the effects of excess Cu, ATP7A, and ATP7B on lipid metabolism during vertebrate embryogenesis are scarce. In this study, zebrafish disease models with Cu overload and ATP7A and ATP7B inactivation, respectively, were used to study the lipid metabolism-related differentially expressed genes (DEGs) which were enriched in the models. The dynamic and spatiotemporal expressions of the DEGs in WTs, atp7a-/-, and atp7b-/- mutants with or without Cu stress were unveiled in this study and they mostly distributed in brain at 24 hpf then in liver and intestine at 96 hpf, suggesting their potential roles in lipid and glycogen metabolism to apply energy for normal development in zebrafish. Meanwhile, the correlation analysis for the DEGs among the three groups unveiled that most of the DEGs were involved in the glyceride metabolism pathway. This is the first report to establish the relationship between atp7a and atp7b with Cu-stimulated intestinal and liver lipid metabolism during fish embryogenesis, and this study will provide a theoretical basis for fish embryonic development and lipid metabolism disorders under unbalanced copper homeostasis.
Collapse
Affiliation(s)
- ChangShun Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - You Wu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - HaoTian Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hai Wang
- Wuhan Zhihuiyuan Environmental Protection Technology, Co., Ltd, Wuhan, 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
29
|
Li A, Koch Z, Ideker T. Epigenetic aging: Biological age prediction and informing a mechanistic theory of aging. J Intern Med 2022; 292:733-744. [PMID: 35726002 DOI: 10.1111/joim.13533] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Numerous studies have shown that epigenetic age-an individual's degree of aging based on patterns of DNA methylation-can be computed and is associated with an array of factors including diet, lifestyle, genetics, and disease. One can expect that still further associations will emerge with additional aging research, but to what end? Prediction of age was an important first step, but-in our view-the focus must shift from chasing increasingly accurate age computations to understanding the links between the epigenome and the mechanisms and physiological changes of aging. Here, we outline emerging areas of epigenetic aging research that prioritize biological understanding and clinical application. First, we survey recent progress in epigenetic clocks, which are beginning to predict not only chronological age but aging outcomes such as all-cause mortality and onset of disease, or which integrate aging signals across multiple biological processes. Second, we discuss research that exemplifies how investigation of the epigenome is building a mechanistic theory of aging and informing clinical practice. Such examples include identifying methylation sites and the genes most strongly predictive of aging-a subset of which have shown strong potential as biomarkers of neurodegenerative disease and cancer; relating epigenetic clock predictions to hallmarks of aging; and using longitudinal studies of DNA methylation to characterize human disease, resulting in the discovery of epigenetic indications of type 1 diabetes and the propensity for psychotic experiences.
Collapse
Affiliation(s)
- Adam Li
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Zane Koch
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
30
|
Chen X, Wang Y, Wang JN, Cao QC, Sun RX, Zhu HJ, Zhang YR, Ji JD, Liu QH. m6A modification of circSPECC1 suppresses RPE oxidative damage and maintains retinal homeostasis. Cell Rep 2022; 41:111671. [DOI: 10.1016/j.celrep.2022.111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/11/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
|
31
|
A set of common buccal CpGs that predict epigenetic age and associate with lifespan-regulating genes. iScience 2022; 25:105304. [PMID: 36304118 PMCID: PMC9593711 DOI: 10.1016/j.isci.2022.105304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 10/02/2022] [Indexed: 11/23/2022] Open
Abstract
Epigenetic aging clocks are computational models that use DNA methylation sites to predict age. Since cheek swabs are non-invasive and painless, collecting DNA from buccal tissue is highly desirable. Here, we review 11 existing clocks that have been applied to buccal tissue. Two of these were exclusively trained on adults and, while moderately accurate, have not been used to capture health-relevant differences in epigenetic age. Using 130 common CpGs utilized by two or more existing buccal clocks, we generate a proof-of-concept predictor in an adult methylomic dataset. In addition to accurately estimating age (r = 0.95 and mean absolute error = 3.88 years), this clock predicted that Down syndrome subjects were significantly older relative to controls. A literature and database review of CpG-associated genes identified numerous genes (e.g., CLOCK, ELOVL2, and VGF) and molecules (e.g., alpha-linolenic acid, glycine, and spermidine) reported to influence lifespan and/or age-related disease in model organisms. 130 CpGs have been used by two or more aging clocks applied to human buccal tissue Common CpG genes are linked to the adaptive immune system and telomere maintenance Common CpGs can be used to build a novel, proof-of-concept epigenetic aging clock Several compounds associated with common CpG genes regulate lifespan in animals
Collapse
|
32
|
James G, Bohannan W, Adewunmi E, Schmidt K, Park HG, Shchepinov MS, Agbaga MP, Brenna JT. Pharmacokinetics and metabolism in mouse retina of bis-allylic deuterated docosahexaenoic acid (D-DHA), a new dry AMD drug candidate. Exp Eye Res 2022; 222:109193. [PMID: 35870486 PMCID: PMC11238729 DOI: 10.1016/j.exer.2022.109193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022]
Abstract
Docosahexaenoic acid (DHA; 22:6n-3) rich photoreceptors function in a highly oxidizing microenvironment. Lipid peroxidation and inflammation contribute to initiation and progression of eye diseases including age-related macular degeneration (AMD). Deuteration of DHA at the bis-allylic positions (D-DHA) increases its resilience to oxidative damage in vitro. We studied the pharmacokinetics of dietary D-DHA as a therapy for replacing natural retinal DHA in vivo. Mice were fed 0.5% D-DHA for 77 days then switched to natural DHA (H-DHA) for 74 days. Tissue were harvested for analyses at various time points. D-DHA substitution levels were 75%-80% in the CNS and above 90% in all other tissues by day 77. D-DHA accretion was rapid in plasma and liver (t1/2a ∼2.8 d), followed by heart and red blood cells (t1/2a ∼8.5 d), then ocular tissues (choroid-RPE, neural retina, and optic nerve with t1/2a of 10.1, 23.4, and 26.3 days, respectively), while CNS accretion was slowest (t1/2a of 29.0-44.3 days). D-DHA elimination rates were comparable to, or slower than, accretion rates except for optic nerve. Retina had very long chain D-PUFA (D-VLC-PUFA) with 5 and 6 double bonds up to C36, as well as D-EPA and D-DPA derived metabolically from D-DHA. The neural retina and optic nerve reached the therapeutic target window (20%-50%) in 2-4 weeks. Biosynthesis of D-VLC-PUFA is consistent with normal metabolism. D-DHA crosses the blood-retina-barrier, enters visually active tissues, and is metabolized as its natural DHA parent where, as shown previously (Liu et al., 2022), it protects against lipid peroxidation.
Collapse
Affiliation(s)
- Genevieve James
- Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA.
| | - Whitney Bohannan
- Departments of Cell Biology, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA; Departments of Ophthalmology and Dean McGee Eye Institute, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA; University of Oklahoma Health Sciences Center, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA.
| | - Eniola Adewunmi
- Departments of Cell Biology, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA; Departments of Ophthalmology and Dean McGee Eye Institute, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA; University of Oklahoma Health Sciences Center, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA.
| | - Karsten Schmidt
- Retrotope, Inc., 4300 El Camino Real, Suite 201, Los Altos, CA, 94022, USA.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA.
| | | | - Martin-Paul Agbaga
- Departments of Cell Biology, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA; Departments of Ophthalmology and Dean McGee Eye Institute, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA; University of Oklahoma Health Sciences Center, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
33
|
Li A, Mueller A, English B, Arena A, Vera D, Kane AE, Sinclair DA. Novel feature selection methods for construction of accurate epigenetic clocks. PLoS Comput Biol 2022; 18:e1009938. [PMID: 35984867 PMCID: PMC9432708 DOI: 10.1371/journal.pcbi.1009938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/31/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
Epigenetic clocks allow us to accurately predict the age and future health of individuals based on the methylation status of specific CpG sites in the genome and are a powerful tool to measure the effectiveness of longevity interventions. There is a growing need for methods to efficiently construct epigenetic clocks. The most common approach is to create clocks using elastic net regression modelling of all measured CpG sites, without first identifying specific features or CpGs of interest. The addition of feature selection approaches provides the opportunity to optimise the identification of predictive CpG sites. Here, we apply novel feature selection methods and combinatorial approaches including newly adapted neural networks, genetic algorithms, and 'chained' combinations. Human whole blood methylation data of ~470,000 CpGs was used to develop clocks that predict age with R2 correlation scores of greater than 0.73, the most predictive of which uses 35 CpG sites for a R2 correlation score of 0.87. The five most frequent sites across all clocks were modelled to build a clock with a R2 correlation score of 0.83. These two clocks are validated on two external datasets where they maintain excellent predictive accuracy. When compared with three published epigenetic clocks (Hannum, Horvath, Weidner) also applied to these validation datasets, our clocks outperformed all three models. We identified gene regulatory regions associated with selected CpGs as possible targets for future aging studies. Thus, our feature selection algorithms build accurate, generalizable clocks with a low number of CpG sites, providing important tools for the field.
Collapse
Affiliation(s)
- Adam Li
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amber Mueller
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brad English
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anthony Arena
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel Vera
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alice E. Kane
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, Massachusetts, United States of America
| | - David A. Sinclair
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
34
|
Johnson AA, English BW, Shokhirev MN, Sinclair DA, Cuellar TL. Human age reversal: Fact or fiction? Aging Cell 2022; 21:e13664. [PMID: 35778957 PMCID: PMC9381899 DOI: 10.1111/acel.13664] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022] Open
Abstract
Although chronological age correlates with various age-related diseases and conditions, it does not adequately reflect an individual's functional capacity, well-being, or mortality risk. In contrast, biological age provides information about overall health and indicates how rapidly or slowly a person is aging. Estimates of biological age are thought to be provided by aging clocks, which are computational models (e.g., elastic net) that use a set of inputs (e.g., DNA methylation sites) to make a prediction. In the past decade, aging clock studies have shown that several age-related diseases, social variables, and mental health conditions associate with an increase in predicted biological age relative to chronological age. This phenomenon of age acceleration is linked to a higher risk of premature mortality. More recent research has demonstrated that predicted biological age is sensitive to specific interventions. Human trials have reported that caloric restriction, a plant-based diet, lifestyle changes involving exercise, a drug regime including metformin, and vitamin D3 supplementation are all capable of slowing down or reversing an aging clock. Non-interventional studies have connected high-quality sleep, physical activity, a healthy diet, and other factors to age deceleration. Specific molecules have been associated with the reduction or reversal of predicted biological age, such as the antihypertensive drug doxazosin or the metabolite alpha-ketoglutarate. Although rigorous clinical trials are needed to validate these initial findings, existing data suggest that aging clocks are malleable in humans. Additional research is warranted to better understand these computational models and the clinical significance of lowering or reversing their outputs.
Collapse
Affiliation(s)
- Adiv A. Johnson
- Longevity Sciences, Inc. (dba Tally Health)GreenwichConnecticutUSA
| | - Bradley W. English
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging ResearchHarvard Medical SchoolBostonMassachusettsUSA
| | | | - David A. Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging ResearchHarvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
35
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
36
|
Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging. Signal Transduct Target Ther 2022; 7:162. [PMID: 35610223 PMCID: PMC9130224 DOI: 10.1038/s41392-022-00964-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alterations and metabolic dysfunction are two hallmarks of aging. However, the mechanism of how their interaction regulates aging, particularly in mammals, remains largely unknown. Here we show ELOVL fatty acid elongase 2 (Elovl2), a gene whose epigenetic alterations are most highly correlated with age prediction, contributes to aging by regulating lipid metabolism. We applied artificial intelligence to predict the protein structure of ELOVL2 and the interaction with its substrate. Impaired Elovl2 function disturbs lipid synthesis with increased endoplasmic reticulum stress and mitochondrial dysfunction, leading to key aging phenotypes at both cellular and physiological level. Furthermore, restoration of mitochondrial activity can rescue age-related macular degeneration (AMD) phenotypes induced by Elovl2 deficiency in human retinal pigmental epithelial (RPE) cells; this indicates a conservative mechanism in both human and mouse. Taken together, we revealed an epigenetic-metabolism axis contributing to aging and illustrate the power of an AI-based approach in structure-function studies.
Collapse
|
37
|
Canisius J, Wagner A, Bunk EC, Spille DC, Stögbauer L, Grauer O, Hess K, Thomas C, Paulus W, Stummer W, Senner V, Brokinkel B. Expression of decitabine-targeted oncogenes in meningiomas in vivo. Neurosurg Rev 2022; 45:2767-2775. [PMID: 35445910 PMCID: PMC9349086 DOI: 10.1007/s10143-022-01789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Treatment of meningiomas refractory to surgery and irradiation is challenging and effective chemotherapies are still lacking. Recently, in vitro analyses revealed decitabine (DCT, 5-aza-2’–deoxycytidine) to be effective in high-grade meningiomas and, moreover, to induce hypomethylation of distinct oncogenes only sparsely described in meningiomas in vivo yet. Expression of the corresponding onco- and tumor suppressor genes TRIM58, FAM84B, ELOVL2, MAL2, LMO3, and DIO3 were analyzed and scored by immunohistochemical staining and RT-PCR in samples of 111 meningioma patients. Correlations with clinical and histological variables and prognosis were analyzed in uni- and multivariate analyses. All analyzed oncogenes were highly expressed in meningiomas. Expression scores of TRIM58 tended to be higher in benign than in high-grade tumors 20 vs 16 (p = .002) and all 9 samples lacking TRIM58 expression displayed WHO grade II/III histology. In contrast, median expression scores for both FAM84B (6 vs 4, p ≤ .001) and ELOVL2 (9 vs 6, p < .001) were increased in high-grade as compared to benign meningiomas. DIO3 expression was distinctly higher in all analyzed samples as compared to the reference decitabine-resistant Ben-Men 1 cell line. Increased ELOVL2 expression (score ≥ 8) correlated with tumor relapse in both uni- (HR: 2.42, 95%CI 1.18–4.94; p = .015) and multivariate (HR: 2.09, 95%CI 1.01–4.44; p = .046) analyses. All oncogenes involved in DCT efficacy in vitro are also widely expressed in vivo, and expression is partially associated with histology and prognosis. These results strongly encourage further analyses of DCT efficiency in meningiomas in vitro and in situ.
Collapse
Affiliation(s)
- Julian Canisius
- Department of Neurosurgery, University Hospital Münster, North Rhine Westphalia, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine Westphalia, Germany
| | - Andrea Wagner
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine Westphalia, Germany
| | - Eva Christina Bunk
- Department of Neurosurgery, University Hospital Münster, North Rhine Westphalia, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Dorothee Cäcilia Spille
- Department of Neurosurgery, University Hospital Münster, North Rhine Westphalia, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Louise Stögbauer
- Department of Neurosurgery, University Hospital Münster, North Rhine Westphalia, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Oliver Grauer
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, North Rhine-Westphalia, Münster, Germany
| | - Katharina Hess
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine Westphalia, Germany
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine Westphalia, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine Westphalia, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, North Rhine Westphalia, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Volker Senner
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine Westphalia, Germany
| | - Benjamin Brokinkel
- Department of Neurosurgery, University Hospital Münster, North Rhine Westphalia, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| |
Collapse
|
38
|
Gao F, Tom E, Skowronska-Krawczyk D. Dynamic Progress in Technological Advances to Study Lipids in Aging: Challenges and Future Directions. FRONTIERS IN AGING 2022; 3:851073. [PMID: 35821837 PMCID: PMC9261449 DOI: 10.3389/fragi.2022.851073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Lipids participate in all cellular processes. Diverse methods have been developed to investigate lipid composition and distribution in biological samples to understand the effect of lipids across an organism’s lifespan. Here, we summarize the advanced techniques for studying lipids, including mass spectrometry-based lipidomics, lipid imaging, chemical-based lipid analysis and lipid engineering and their advantages. We further discuss the limitation of the current methods to gain an in-depth knowledge of the role of lipids in aging, and the possibility of lipid-based therapy in aging-related diseases.
Collapse
Affiliation(s)
- Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Emily Tom
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- *Correspondence: Dorota Skowronska-Krawczyk,
| |
Collapse
|
39
|
Elovl2-Ablation Leads to Mitochondrial Membrane Fatty Acid Remodeling and Reduced Efficiency in Mouse Liver Mitochondria. Nutrients 2022; 14:nu14030559. [PMID: 35276915 PMCID: PMC8838343 DOI: 10.3390/nu14030559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/02/2023] Open
Abstract
The fatty acid elongase elongation of very long-chain fatty acids protein 2 (ELOVL2) controls the elongation of polyunsaturated fatty acids (PUFA) producing precursors for omega-3, docosahexaenoic acid (DHA), and omega-6, docosapentaenoic acid (DPAn-6) in vivo. Expectedly, Elovl2-ablation drastically reduced the DHA and DPAn-6 in liver mitochondrial membranes. Unexpectedly, however, total PUFAs levels decreased further than could be explained by Elovl2 ablation. The lipid peroxidation process was not involved in PUFAs reduction since malondialdehyde-lysine (MDAL) and other oxidative stress biomarkers were not enhanced. The content of mitochondrial respiratory chain proteins remained unchanged. Still, membrane remodeling was associated with the high voltage-dependent anion channel (VDAC) and adenine nucleotide translocase 2 (ANT2), a possible reflection of the increased demand on phospholipid transport to the mitochondria. Mitochondrial function was impaired despite preserved content of the respiratory chain proteins and the absence of oxidative damage. Oligomycin-insensitive oxygen consumption increased, and coefficients of respiratory control were reduced by 50%. The mitochondria became very sensitive to fatty acid-induced uncoupling and permeabilization, where ANT2 is involved. Mitochondrial volume and number of peroxisomes increased as revealed by transmission electron microscopy. In conclusion, the results imply that endogenous DHA production is vital for the normal function of mouse liver mitochondria and could be relevant not only for mice but also for human metabolism.
Collapse
|
40
|
Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing. Cells 2022; 11:359. [PMID: 35159168 PMCID: PMC8834134 DOI: 10.3390/cells11030359] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
Acute inflammation is a physiological response to injury or infection, with a cascade of steps that ultimately lead to the recruitment of immune cells to clear invading pathogens and heal wounds. However, chronic inflammation arising from the continued presence of the initial trigger, or the dysfunction of signalling and/or effector pathways, is harmful to health. While successful ageing in older adults, including centenarians, is associated with low levels of inflammation, elevated inflammation increases the risk of poor health and death. Hence inflammation has been described as one of seven pillars of ageing. Age-associated sterile, chronic, and low-grade inflammation is commonly termed inflammageing-it is not simply a consequence of increasing chronological age, but is also a marker of biological ageing, multimorbidity, and mortality risk. While inflammageing was initially thought to be caused by "continuous antigenic load and stress", reports from the last two decades describe a much more complex phenomenon also involving cellular senescence and the ageing of the immune system. In this review, we explore some of the main sources and consequences of inflammageing in the context of immunosenescence and highlight potential interventions. In particular, we assess the contribution of cellular senescence to age-associated inflammation, identify patterns of pro- and anti-inflammatory markers characteristic of inflammageing, describe alterations in the ageing immune system that lead to elevated inflammation, and finally assess the ways that diet, exercise, and pharmacological interventions can reduce inflammageing and thus, improve later life health.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France;
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| |
Collapse
|
41
|
Epigenetic Age Acceleration Is Not Associated with Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms222413457. [PMID: 34948253 PMCID: PMC8705580 DOI: 10.3390/ijms222413457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023] Open
Abstract
DNA methylation age (DNAm age) estimation is a powerful biomarker of human ageing. To date, epigenetic clocks have not been evaluated in age-related macular degeneration (AMD). Here, we perform genome-wide DNA methylation analyses in blood of AMD patients with a documented smoking history (14 AMD, 16 Normal), identifying loci of differential methylation (DML) with a relaxed p-value criterion (p ≤ 10−4). We conduct DNAm age analyses using the Horvath-multi tissue, Hannum and Skin & Blood epigenetic clocks in both blood and retinal pigment epithelium (RPE). We perform Ingenuity Pathway Analysis Causal Network Analysis (IPA CNA) on the topmost significantly differentially methylated CpG probes in blood and RPE. Results show poor performance of epigenetic clocks in RPE. Epigenetic age acceleration (EAA) was not observed in AMD. However, we observe positive EAA in blood of smokers, and in smokers with AMD. DML analysis revealed hypomethylation at cg04953735 within RPTOR (p = 6.51 × 10−5; Δβ = −11.95%). IPA CNA in the RPE also identified RPTOR as the putative master regulator, predicted to be inhibited in AMD. In conclusion, this is the first study evaluating an association of epigenetic ageing in AMD. We posit a role for RPTOR as a common master regulator of methylation changes in the RPE in AMD.
Collapse
|
42
|
Kobayashi Y, Watanabe S, Ong ALC, Shirai M, Yamashiro C, Ogata T, Higashijima F, Yoshimoto T, Hayano T, Asai Y, Sasai N, Kimura K. Early manifestations and differential gene expression associated with photoreceptor degeneration in Prom1-deficient retina. Dis Model Mech 2021; 14:272527. [PMID: 34664634 PMCID: PMC8628633 DOI: 10.1242/dmm.048962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) and macular dystrophy (MD) are characterized by gradual photoreceptor death in the retina and are often associated with genetic mutations, including those in the prominin-1 (Prom1) gene. Prom1-knockout (KO) mice recapitulate key features of these diseases including light-dependent retinal degeneration and constriction of retinal blood vessels. The mechanisms underlying such degeneration have remained unclear, however. We here analysed early events associated with retinal degeneration in Prom1-KO mice. We found that photoreceptor cell death and glial cell activation occur between 2 and 3 weeks after birth. Whereas gene expression was not affected at 2 weeks, the expression of several genes was altered at 3 weeks in the Prom1-KO retina, with the expression of that for endothelin-2 (Edn2) being markedly upregulated. Expression of Edn2 was also induced by light stimulation in Prom1-KO mice reared in the dark. Treatment with endothelin receptor antagonists attenuated photoreceptor cell death, gliosis and retinal vessel stenosis in Prom1-KO mice. Our findings thus reveal early manifestations of retinal degeneration in a model of RP/MD and suggest potential therapeutic agents for these diseases. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yuka Kobayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Shizuka Watanabe
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Agnes Lee Chen Ong
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Manabu Shirai
- Omics Research Center (ORC), National Cerebral and Cardiovascular Center, 6-1 Kishibe Shinmachi, Suita, Osaka 564-8565, Japan
| | - Chiemi Yamashiro
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Tadahiko Ogata
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Fumiaki Higashijima
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Takuya Yoshimoto
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Takahide Hayano
- Department of Systems Bioinformatics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Yoshiyuki Asai
- Department of Systems Bioinformatics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| |
Collapse
|
43
|
Campello L, Singh N, Advani J, Mondal AK, Corso-Díaz X, Swaroop A. Aging of the Retina: Molecular and Metabolic Turbulences and Potential Interventions. Annu Rev Vis Sci 2021; 7:633-664. [PMID: 34061570 PMCID: PMC11375453 DOI: 10.1146/annurev-vision-100419-114940] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multifaceted and divergent manifestations across tissues and cell types have curtailed advances in deciphering the cellular events that accompany advanced age and contribute to morbidities and mortalities. Increase in human lifespan during the past century has heightened awareness of the need to prevent age-associated frailty of neuronal and sensory systems to allow a healthy and productive life. In this review, we discuss molecular and physiological attributes of aging of the retina, with a goal of understanding age-related impairment of visual function. We highlight the epigenome-metabolism nexus and proteostasis as key contributors to retinal aging and discuss lifestyle changes as potential modulators of retinal function. Finally, we deliberate promising intervention strategies for promoting healthy aging of the retina for improved vision.
Collapse
Affiliation(s)
- Laura Campello
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Nivedita Singh
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Anupam K Mondal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Ximena Corso-Díaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
44
|
Simpson DJ, Chandra T. Epigenetic age prediction. Aging Cell 2021; 20:e13452. [PMID: 34415665 PMCID: PMC8441394 DOI: 10.1111/acel.13452] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries.
Collapse
Affiliation(s)
- Daniel J. Simpson
- MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tamir Chandra
- MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|
45
|
Sander CL, Sears AE, Pinto AF, Choi EH, Kahremany S, Gao F, Salom D, Jin H, Pardon E, Suh S, Dong Z, Steyaert J, Saghatelian A, Skowronska-Krawczyk D, Kiser PD, Palczewski K. Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. J Cell Biol 2021; 220:e202101063. [PMID: 34132745 PMCID: PMC8240855 DOI: 10.1083/jcb.202101063] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Photoreceptors rely on distinct membrane compartments to support their specialized function. Unlike protein localization, identification of critical differences in membrane content has not yet been expanded to lipids, due to the difficulty of isolating domain-specific samples. We have overcome this by using SMA to coimmunopurify membrane proteins and their native lipids from two regions of photoreceptor ROS disks. Each sample's copurified lipids were subjected to untargeted lipidomic and fatty acid analysis. Extensive differences between center (rhodopsin) and rim (ABCA4 and PRPH2/ROM1) samples included a lower PC to PE ratio and increased LC- and VLC-PUFAs in the center relative to the rim region, which was enriched in shorter, saturated FAs. The comparatively few differences between the two rim samples likely reflect specific protein-lipid interactions. High-resolution profiling of the ROS disk lipid composition gives new insights into how intricate membrane structure and protein activity are balanced within the ROS, and provides a model for future studies of other complex cellular structures.
Collapse
Affiliation(s)
- Christopher L. Sander
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Avery E. Sears
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Antonio F.M. Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA
| | - Elliot H. Choi
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Shirin Kahremany
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Fangyuan Gao
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Hui Jin
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Els Pardon
- Vlaams Instituut voor Biotechnologie–Vrije Universiteit Brussel Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Susie Suh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Zhiqian Dong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Jan Steyaert
- Vlaams Instituut voor Biotechnologie–Vrije Universiteit Brussel Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
| | - Philip D. Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
- Research Service, VA Long Beach Healthcare System, Long Beach, CA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
- Department of Chemistry, University of California, Irvine, Irvine, CA
| |
Collapse
|
46
|
Higgins-Chen AT, Thrush KL, Levine ME. Aging biomarkers and the brain. Semin Cell Dev Biol 2021; 116:180-193. [PMID: 33509689 PMCID: PMC8292153 DOI: 10.1016/j.semcdb.2021.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Quantifying biological aging is critical for understanding why aging is the primary driver of morbidity and mortality and for assessing novel therapies to counter pathological aging. In the past decade, many biomarkers relevant to brain aging have been developed using various data types and modeling techniques. Aging involves numerous interconnected processes, and thus many complementary biomarkers are needed, each capturing a different slice of aging biology. Here we present a hierarchical framework highlighting how these biomarkers are related to each other and the underlying biological processes. We review those measures most studied in the context of brain aging: epigenetic clocks, proteomic clocks, and neuroimaging age predictors. Many studies have linked these biomarkers to cognition, mental health, brain structure, and pathology during aging. We also delve into the challenges and complexities in interpreting these biomarkers and suggest areas for further innovation. Ultimately, a robust mechanistic understanding of these biomarkers will be needed to effectively intervene in the aging process to prevent and treat age-related disease.
Collapse
Affiliation(s)
- Albert T Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, 300 George St, Suite 901, New Haven, CT 06511, USA.
| | - Kyra L Thrush
- Program in Computational Biology and Bioinformatics, Yale University, 300 George St, Suite 501, New Haven, CT 06511, USA.
| | - Morgan E Levine
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, Suite LH 315A, New Haven, CT 06520, USA.
| |
Collapse
|
47
|
DNA methylation and histone variants in aging and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging-related diseases such as cancer can be traced to the accumulation of molecular disorder including increased DNA mutations and epigenetic drift. We provide a comprehensive review of recent results in mice and humans on modifications of DNA methylation and histone variants during aging and in cancer. Accumulated errors in DNA methylation maintenance lead to global decreases in DNA methylation with relaxed repression of repeated DNA and focal hypermethylation blocking the expression of tumor suppressor genes. Epigenetic clocks based on quantifying levels of DNA methylation at specific genomic sites is proving to be a valuable metric for estimating the biological age of individuals. Histone variants have specialized functions in transcriptional regulation and genome stability. Their concentration tends to increase in aged post-mitotic chromatin, but their effects in cancer are mainly determined by their specialized functions. Our increased understanding of epigenetic regulation and their modifications during aging has motivated interventions to delay or reverse epigenetic modifications using the epigenetic clocks as a rapid readout for efficacity. Similarly, the knowledge of epigenetic modifications in cancer is suggesting new approaches to target these modifications for cancer therapy.
Collapse
|
48
|
Retinal bioavailability and functional effects of a synthetic very-long-chain polyunsaturated fatty acid in mice. Proc Natl Acad Sci U S A 2021; 118:2017739118. [PMID: 33526677 DOI: 10.1073/pnas.2017739118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rare, nondietary very-long-chain polyunsaturated fatty acids (VLC-PUFAs) are uniquely found in the retina and a few other vertebrate tissues. These special fatty acids play a clinically significant role in retinal degeneration and development, but their physiological and interventional research has been hampered because pure VLC-PUFAs are scarce. We hypothesize that if Stargardt-3 or age-related macular degeneration patients were to consume an adequate amount of VLC-PUFAs that could be directly used in the retina, it may be possible to bypass the steps of lipid elongation mediated by the retina's ELOVL4 enzyme and to delay or prevent degeneration. We report the synthesis of a VLC-PUFA (32:6 n-3) in sufficient quantity to study its bioavailability and functional benefits in the mouse retina. We acutely and chronically gavage fed wild-type mice and Elovl4 rod-cone conditional knockout mice this synthetic VLC-PUFA to understand its bioavailability and its role in visual function. VLC-PUFA-fed wild-type and Elovl4 conditional knockout mice show a significant increase in retinal VLC-PUFA levels in comparison to controls. The VLC-PUFA-fed mice also had improvement in the animals' visual acuity and electroretinography measurements. Further studies with synthetic VLC-PUFAs will continue to expand our understanding of the physiological roles of these unique retinal lipids, particularly with respect to their potential utility for the treatment and prevention of retinal degenerative diseases.
Collapse
|
49
|
ADIPOR1 deficiency-induced suppression of retinal ELOVL2 and docosahexaenoic acid levels during photoreceptor degeneration and visual loss. Cell Death Dis 2021; 12:458. [PMID: 33963174 PMCID: PMC8105316 DOI: 10.1038/s41419-021-03741-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/03/2023]
Abstract
Lipid metabolism-related gene mutations can cause retinitis pigmentosa, a currently untreatable blinding disease resulting from progressive neurodegeneration of the retina. Here, we demonstrated the influence of adiponectin receptor 1 (ADIPOR1) deficiency in retinal neurodegeneration using Adipor1 knockout (KO) mice. Adipor1 mRNA was observed to be expressed in photoreceptors, predominately within the photoreceptor inner segment (PIS), and increased after birth during the development of the photoreceptor outer segments (POSs) where photons are received by the visual pigment, rhodopsin. At 3 weeks of age, visual function impairment, specifically photoreceptor dysfunction, as recorded by electroretinography (ERG), was evident in homozygous, but not heterozygous, Adipor1 KO mice. However, although photoreceptor loss was evident at 3 weeks of age and progressed until 10 weeks, the level of visual dysfunction was already substantial by 3 weeks, after which it was retained until 10 weeks of age. The rhodopsin mRNA levels had already decreased at 3 weeks, suggesting that reduced rhodopsin may have contributed to early visual loss. Moreover, inflammation and oxidative stress were induced in homozygous KO retinas. Prior to observation of photoreceptor loss via optical microscopy, electron microscopy revealed that POSs were present; however, they were misaligned and their lipid composition, including docosahexaenoic acid (DHA), which is critical in forming POSs, was impaired in the retina. Importantly, the expression of Elovl2, an elongase of very long chain fatty acids expressed in the PIS, was significantly reduced, and lipogenic genes, which are induced under conditions of reduced endogenous DHA synthesis, were increased in homozygous KO mice. The causal relationship between ADIPOR1 deficiency and Elovl2 repression, together with upregulation of lipogenic genes, was confirmed in vitro. Therefore, ADIPOR1 in the retina appears to be indispensable for ELOVL2 induction, which is likely required to supply sufficient DHA for appropriate photoreceptor function and survival.
Collapse
|
50
|
Pellegrini C, Pirazzini C, Sala C, Sambati L, Yusipov I, Kalyakulina A, Ravaioli F, Kwiatkowska KM, Durso DF, Ivanchenko M, Monti D, Lodi R, Franceschi C, Cortelli P, Garagnani P, Bacalini MG. A Meta-Analysis of Brain DNA Methylation Across Sex, Age, and Alzheimer's Disease Points for Accelerated Epigenetic Aging in Neurodegeneration. Front Aging Neurosci 2021; 13:639428. [PMID: 33790779 PMCID: PMC8006465 DOI: 10.3389/fnagi.2021.639428] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by specific alterations of brain DNA methylation (DNAm) patterns. Age and sex, two major risk factors for AD, are also known to largely affect the epigenetic profiles in brain, but their contribution to AD-associated DNAm changes has been poorly investigated. In this study we considered publicly available DNAm datasets of four brain regions (temporal, frontal, entorhinal cortex, and cerebellum) from healthy adult subjects and AD patients, and performed a meta-analysis to identify sex-, age-, and AD-associated epigenetic profiles. In one of these datasets it was also possible to distinguish 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) profiles. We showed that DNAm differences between males and females tend to be shared between the four brain regions, while aging differently affects cortical regions compared to cerebellum. We found that the proportion of sex-dependent probes whose methylation is modified also during aging is higher than expected, but that differences between males and females tend to be maintained, with only a few probes showing age-by-sex interaction. We did not find significant overlaps between AD- and sex-associated probes, nor disease-by-sex interaction effects. On the contrary, we found that AD-related epigenetic modifications are significantly enriched in probes whose DNAm varies with age and that there is a high concordance between the direction of changes (hyper or hypo-methylation) in aging and AD, supporting accelerated epigenetic aging in the disease. In summary, our results suggest that age-associated DNAm patterns concur to the epigenetic deregulation observed in AD, providing new insights on how advanced age enables neurodegeneration.
Collapse
Affiliation(s)
- Camilla Pellegrini
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Luisa Sambati
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Igor Yusipov
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Alena Kalyakulina
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Francesco Ravaioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Katarzyna M. Kwiatkowska
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Danielle F. Durso
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mikhail Ivanchenko
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Raffaele Lodi
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Pietro Cortelli
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Department of Laboratory Medicine, Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Applied Biomedical Research Center, Policlinico S.Orsola-Malpighi Polyclinic, Bologna, Italy
- National Research Council of Italy Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza,” Unit of Bologna, Bologna, Italy
| | - Maria Giulia Bacalini
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|