1
|
Zhang SX, Kim A, Madara JC, Zhu PK, Christenson LF, Lutas A, Kalugin PN, Sunkavalli PS, Jin Y, Pal A, Tian L, Lowell BB, Andermann ML. Stochastic neuropeptide signals compete to calibrate the rate of satiation. Nature 2024:10.1038/s41586-024-08164-8. [PMID: 39506113 DOI: 10.1038/s41586-024-08164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Neuropeptides have important roles in neural plasticity, spiking and behaviour1. Yet, many fundamental questions remain regarding their spatiotemporal transmission, integration and functions in the awake brain. Here we examined how MC4R-expressing neurons in the paraventricular nucleus of the hypothalamus (PVHMC4R) integrate neuropeptide signals to modulate feeding-related fast synaptic transmission and titrate the transition to satiety2-6. We show that hunger-promoting AgRP axons release the neuropeptide NPY to decrease the second messenger cAMP in PVHMC4R neurons, while satiety-promoting POMC axons release the neuropeptide αMSH to increase cAMP. Each release event is all-or-none, stochastic and can impact multiple neurons within an approximately 100-µm-diameter region. After release, NPY and αMSH peptides compete to control cAMP-the amplitude and persistence of NPY signalling is blunted by high αMSH in the fed state, while αMSH signalling is blunted by high NPY in the fasted state. Feeding resolves this competition by simultaneously elevating αMSH release and suppressing NPY release7,8, thereby sustaining elevated cAMP in PVHMC4R neurons throughout a meal. In turn, elevated cAMP facilitates potentiation of feeding-related excitatory inputs with each bite to gradually promote satiation across many minutes. Our findings highlight biochemical modes of peptide signal integration and information accumulation to guide behavioural state transitions.
Collapse
Affiliation(s)
- Stephen X Zhang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Angela Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Paula K Zhu
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lauren F Christenson
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrew Lutas
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter N Kalugin
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Praneel S Sunkavalli
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yihan Jin
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Neuroscience Graduate Group, Center for Neuroscience, University of California, Davis, Sacramento, CA, USA
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL, USA
| | - Akash Pal
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Benjamin-Zukerman T, Shimon G, Gaine ME, Dakwar A, Peled N, Aboraya M, Masri-Ismail A, Safadi-Safa R, Solomon M, Lev-Ram V, Rissman RA, Mayrhofer JE, Raffeiner A, Mol MO, Argue BMR, McCool S, Doan B, van Swieten J, Stefan E, Abel T, Ilouz R. A mutation in the PRKAR1B gene drives pathological mechanisms of neurodegeneration across species. Brain 2024; 147:3890-3905. [PMID: 38743596 PMCID: PMC11531844 DOI: 10.1093/brain/awae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Protein kinase A (PKA) neuronal function is controlled by the interaction of a regulatory (R) subunit dimer with two catalytic subunits. Recently, the L50R variant in the gene encoding the RIβ subunit was identified in individuals with a novel neurodegenerative disease. However, the mechanisms driving the disease phenotype remained unknown. In this study, we generated a mouse model carrying the RIβ-L50R mutation to replicate the human disease phenotype and study its progression with age. We examined post-mortem brains of affected individuals as well as live cell cultures. Employing biochemical assays, immunohistochemistry and behavioural assessments, we investigated the impact of the mutation on PKA complex assembly, protein aggregation and neuronal degeneration. We reveal that RIβ is an aggregation-prone protein that progressively accumulates in wildtype and Alzheimer's mouse models with age, while aggregation is accelerated in the RIβ-L50R mouse model. We define RIβ-L50R as a causal mutation driving an age-dependent behavioural and disease phenotype in human and mouse models. Mechanistically, this mutation disrupts RIβ dimerization, leading to aggregation of its monomers. Intriguingly, interaction with the catalytic subunit protects the RIβ-L50R from self-aggregating, in a dose-dependent manner. Furthermore, cAMP signaling induces RIβ-L50R aggregation. The pathophysiological mechanism elucidated here for a newly recognized neurodegenerative disease, in which protein aggregation is the result of disrupted homodimerization, sheds light on a remarkably under-appreciated but potentially common mechanism across several neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Gilat Shimon
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Marie E Gaine
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Anwar Dakwar
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Netta Peled
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Mohammad Aboraya
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Ashar Masri-Ismail
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Rania Safadi-Safa
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Meir Solomon
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Varda Lev-Ram
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert A Rissman
- Department of Physiology and Neurosciences, Alzheimer’s Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA 92121, USA
| | - Johanna E Mayrhofer
- Institute of Molecular Biology, Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Tyrol 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol 6020, Austria
| | - Andrea Raffeiner
- Institute of Molecular Biology, Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Tyrol 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol 6020, Austria
| | - Merel O Mol
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Benney M R Argue
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Shaylah McCool
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Binh Doan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - John van Swieten
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Eduard Stefan
- Institute of Molecular Biology, Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Tyrol 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol 6020, Austria
| | - Ted Abel
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ronit Ilouz
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| |
Collapse
|
3
|
Asif M, Xie X, Zhao Z. Virulence regulation in plant-pathogenic bacteria by host-secreted signals. Microbiol Res 2024; 288:127883. [PMID: 39208525 DOI: 10.1016/j.micres.2024.127883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Bacterial pathogens manipulate host signaling pathways and evade host defenses using effector molecules, coordinating their deployment to ensure successful infection. However, host-derived metabolites as signals, and their critical role in regulating bacterial virulence requires further insights. Effective regulation of virulence, which is essential for pathogenic bacteria, involves controlling factors that enable colonization, defense evasion, and tissue damage. This regulation is dynamic, influenced by environmental cues including signals from host plants like exudates. Plant exudates, comprising of diverse compounds released by roots and tissues, serve as rich chemical signals affecting the behavior and virulence of associated bacteria. Plant nutrients act as signaling molecules that are sensed through membrane-localized receptors and intracellular response mechanisms in bacteria. This review explains how different bacteria detect and answer to secreted chemical signals, regulating virulence gene expression. Our main emphasis is exploring the recognition process of host-originated signaling molecules through molecular sensors on cellular membranes and intracellular signaling pathways. This review encompasses insights into how bacterial strains individually coordinate their virulence in response to various distinct host-derived signals that can positively or negatively regulate their virulence. Furthermore, we explained the interruption of plant defense with the perception of host metabolites to dampen pathogen virulence. The intricate interplay between pathogens and plant signals, particularly in how pathogens recognize host metabolic signals to regulate virulence genes, portrays a crucial initial interaction leading to profound influences on infection outcomes. This work will greatly aid researchers in developing new strategies for preventing and treating infections.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xin Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Zhibo Zhao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Qiao L, Getz M, Gross B, Tenner B, Zhang J, Rangamani P. Spatiotemporal orchestration of calcium-cAMP oscillations on AKAP/AC nanodomains is governed by an incoherent feedforward loop. PLoS Comput Biol 2024; 20:e1012564. [PMID: 39480900 DOI: 10.1371/journal.pcbi.1012564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
The nanoscale organization of enzymes associated with the dynamics of second messengers is critical for ensuring compartmentation and localization of signaling molecules in cells. Specifically, the spatiotemporal orchestration of cAMP and Ca2+ oscillations is critical for many cellular functions. Previous experimental studies have shown that the formation of nanodomains of A-kinase anchoring protein 79/150 (AKAP150) and adenylyl cyclase 8 (AC8) on the surface of pancreatic MIN6 β cells modulates the phase of Ca2+-cAMP oscillations from out-of-phase to in-phase. In this work, we develop computational models of the Ca2+/cAMP pathway and AKAP/AC nanodomain formation that give rise to the two important predictions: instead of an arbitrary phase difference, the out-of-phase Ca2+/cAMP oscillation reaches Ca2+ trough and cAMP peak simultaneously, which is defined as inversely out-of-phase; the in-phase and inversely out-of-phase oscillations associated with Ca2+-cAMP dynamics on and away from the nanodomains can be explained by an incoherent feedforward loop. Factors such as cellular surface-to-volume ratio, compartment size, and distance between nanodomains do not affect the existence of in-phase or inversely out-of-phase Ca2+/cAMP oscillation, but cellular surface-to-volume ratio and compartment size can affect the time delay for the inversely out-of-phase Ca2+/cAMP oscillation while the distance between two nanodomains does not. Finally, we predict that both the Turing pattern-generated nanodomains and experimentally measured nanodomains demonstrate the existence of in-phase and inversely out-of-phase Ca2+/cAMP oscillation when the AC8 is at a low level, consistent with the behavior of an incoherent feedforward loop. These findings unveil the key circuit motif that governs cAMP and Ca2+ oscillations and advance our understanding of how nanodomains can lead to spatial compartmentation of second messengers.
Collapse
Affiliation(s)
- Lingxia Qiao
- Department of Pharmacology, University of California San Diego, San Diego, California, United States of America
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, United States of America
| | - Michael Getz
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Ben Gross
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, United States of America
| | - Brian Tenner
- SomaLogic, San Diego, California, United States of America
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, San Diego, California, United States of America
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, United States of America
| | - Padmini Rangamani
- Department of Pharmacology, University of California San Diego, San Diego, California, United States of America
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
5
|
Ahammed MS, Wang X. Promoting proteostasis by cAMP/PKA and cGMP/PKG. Trends Mol Med 2024:S1471-4914(24)00273-9. [PMID: 39477759 DOI: 10.1016/j.molmed.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024]
Abstract
Proteasome functional insufficiency (PFI) is implicated in neurodegeneration and heart failure, where aberrant protein aggregation is common and impairs the ubiquitin (Ub)-proteasome system (UPS), exacerbating increased proteotoxic stress (IPTS) and creating a vicious circle. Breaking this circle represents a key to treating these diseases. Protein kinase (PK)-A and PKG can activate the proteasome and promote proteasomal degradation of misfolded proteins. PKA does so by phosphorylating Ser14-RPN6/PSMD11, but how PKG activates the proteasome remains unknown. Emerging evidence supports a strategy to treat diseases with IPTS by augmenting cAMP/PKA and cGMP/PKG. Conceivably, targeted activation of PKA and PKG at proteasome nanodomains would minimize the undesired effects from their actions on other targets. In this review, we discuss PKA and PKG regulation of proteostasis via the UPS.
Collapse
Affiliation(s)
- Md Salim Ahammed
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA.
| |
Collapse
|
6
|
Della Sala A, Tasca L, Butnarasu C, Sala V, Prono G, Murabito A, Garbero OV, Millo E, Terranova L, Blasi F, Gramegna A, Aliberti S, Massarotti A, Visentin S, Hirsch E, Ghigo A. A Non-natural Peptide Targeting the A-kinase Anchoring Function of PI3Kγ for Therapeutic cAMP Modulation in Pulmonary Cells. J Biol Chem 2024:107873. [PMID: 39393573 DOI: 10.1016/j.jbc.2024.107873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
A-kinase anchoring proteins (AKAPs) are key orchestrators of cyclic AMP (cAMP) signaling that act by recruiting protein kinase A (PKA) in proximity of its substrates and regulators to specific subcellular compartments. Modulation of AKAPs function offers the opportunity to achieve compartment-restricted modulation of the cAMP/PKA axis, paving the way to new targeted treatments. For instance, blocking the AKAP activity of PI3Kγ improves lung function by inducing cAMP-mediated bronchorelaxation, ion transport and anti-inflammatory responses. Here, we report the generation of a non-natural peptide, DRI-Pep #20, optimized to disrupt the AKAP function of PI3Kγ. DRI-Pep #20 mimicked the native interaction between the N-terminal domain of PI3Kγ and PKA, demonstrating nanomolar affinity for PKA, high resistance to protease degradation and high permeability to the pulmonary mucus barrier. DRI-Pep #20 triggered cAMP elevation both in vivo in the airway tract of mice upon intratracheal administration, and in vitro in bronchial epithelial cells of cystic fibrosis (CF) patients. In CF cells, DRI-Pep #20 rescued the defective function of the cAMP-operated channel cystic fibrosis conductance regulator (CFTR), by boosting the efficacy of approved CFTR modulators. Overall, this study unveils DRI-Pep #20 as a potent PI3Kγ/PKA disruptor for achieving therapeutic cAMP elevation in chronic respiratory disorders.
Collapse
Affiliation(s)
- Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy
| | - Laura Tasca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy; Kither Biotech Srl, 10126, Torino, Italy
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy
| | - Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy; Kither Biotech Srl, 10126, Torino, Italy
| | - Giulia Prono
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy
| | - Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy
| | - Olga Valentina Garbero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, 16132, Genova, Italy
| | - Leonardo Terranova
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy; Microbiology and Virology Specialization School, University of Pavia, Pavia, Italy
| | - Francesco Blasi
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Andrea Gramegna
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Stefano Aliberti
- Humanitas University, IRCCS Humanitas Research Hospital, Respiratory Unit, 20089, Milan, Italy
| | - Alberto Massarotti
- Department of Pharmaceutical Science, University of Piemonte Orientale, 28100, Novara, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy; Kither Biotech Srl, 10126, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy; Kither Biotech Srl, 10126, Torino, Italy.
| |
Collapse
|
7
|
Niu R, Lan J, Liang D, Xiang L, Wu J, Zhang X, Li Z, Chen H, Geng L, Xu W, Gong S, Yang M. GZMA suppressed GPX4-mediated ferroptosis to improve intestinal mucosal barrier function in inflammatory bowel disease. Cell Commun Signal 2024; 22:474. [PMID: 39367435 PMCID: PMC11451002 DOI: 10.1186/s12964-024-01836-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Our previous study has demonstrated a decreased colonic CD8+CD39+ T cells, enrichment of granzyme A (GZMA), was found in pediatric-onset colitis and inflammatory bowel disease (IBD) characterized by impaired intestinal barrier function. However, the influence of GZMA on intestinal barrier function remains unknown. METHODS Western blotting(WB), real-time PCR (qPCR), immunofluorescence (IF) and in vitro permeability assay combined with intestinal organoid culture were used to detect the effect of GZMA on intestinal epithelial barrier function in vivo and in vitro. Luciferase, immunoprecipitation (IP) and subcellular fractionation isolation were performed to identify the mechanism through which GZMA modulated intestinal epithelial barrier function. RESULTS Herein, we, for the first time, demonstrated that CD8+CD39+ T cells promoted intestinal epithelial barrier function through GZMA, leading to induce Occludin(OCLN) and Zonula Occludens-1(ZO-1) expression, which was attributed to enhanced CDX2-mediated cell differentiation caused by increased glutathione peroxidase 4(GPX4)-induced ferroptosis inhibition in vivo and in vitro. Mechanically, GZMA inhibited intestinal epithelial cellular PDE4B activation to trigger cAMP/PKA/CREB cascade signaling to increase CREB nuclear translocation, initiating GPX4 transactivity. In addition, endogenous PKA interacted with CREB, and this interaction was enhanced in response to GZMA. Most importantly, administration of GZMA could alleviate DSS-induced colitis in vivo. CONCLUSION These findings extended the novel insight of GZMA contributed to intestinal epithelial cell differentiation to improve barrier function, and enhacement of GZMA could be a promising strategy to patients with IBD.
Collapse
Affiliation(s)
- Rongwei Niu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jiaoli Lan
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Danxia Liang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Li Xiang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jiaxin Wu
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Xiaoyan Zhang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Zhiling Li
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Sitang Gong
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Min Yang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Xi X, Zhang R, Chi Y, Zhu Z, Sun R, Gong W. TXNIP Regulates NLRP3 Inflammasome-Induced Pyroptosis Related to Aging via cAMP/PKA and PI3K/Akt Signaling Pathways. Mol Neurobiol 2024; 61:8051-8068. [PMID: 38460079 DOI: 10.1007/s12035-024-04089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
Aging is an inevitable natural process with time-dependent dysfunction and the occurrence of various diseases, which impose heavy burdens on individuals, families, and society. It has been reported that NLRP3 inflammasome-induced pyroptosis contributes significantly to age-related diseases and aging, while TXNIP is suggested to be involved in regulating pyroptosis mediated by NLRP3. However, the mechanism between TXNIP and NLRP3 inflammasome is still unclear. In this study, we used HT-22 cells to explore the effect of TXNIP on pyroptosis and its potential association with the aging. Also, we delved into the underlying mechanisms. Our findings revealed that TXNIP significantly augmented pyroptosis in HT-22 cells, primarily by enhancing the activation of the NLRP3 inflammasome and promoting the release of proinflammatory cytokines. Remarkably, as TXNIP levels increased, we observed a corresponding rise in the number of p16-positive cells, which is indicative of aging. Furthermore, we conducted experiments to modulate the improvement of TXNIP on NLRP3 inflammasome-induced pyroptosis, that is, the PI3K activator 740 Y-P and the PKA activator DC2797 inhibited the effect, while the PI3K inhibitor LY294002 and the PKA inhibitor H89 enhanced the effect. In conclusion, our study demonstrated that TXNIP regulates NLRP3 inflammasome-induced pyroptosis in HT-22 cells related to aging via the PI3K/Akt and cAMP/PKA pathways.
Collapse
Affiliation(s)
- Xiaoshuang Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Rong Zhang
- The Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yijia Chi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Ziman Zhu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Ruifeng Sun
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Ripoll L, Li Y, Dessauer CW, von Zastrow M. Spatial organization of adenylyl cyclase and its impact on dopamine signaling in neurons. Nat Commun 2024; 15:8297. [PMID: 39333071 PMCID: PMC11436756 DOI: 10.1038/s41467-024-52575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
The cAMP cascade is increasingly recognized to transduce physiological effects locally through spatially limited cAMP gradients. However, little is known about how adenylyl cyclase enzymes that initiate cAMP gradients are localized. Here we address this question in physiologically relevant striatal neurons and investigate how AC localization impacts downstream signaling function. We show that the major striatal AC isoforms are differentially sorted between ciliary and extraciliary domains of the plasma membrane, and that one isoform, AC9, is uniquely concentrated in endosomes. We identify key sorting determinants in the N-terminal cytoplasmic domain responsible for isoform-specific localization. We further show that AC9-containing endosomes accumulate activated dopamine receptors and form an elaborately intertwined network with juxtanuclear PKA stores bound to Golgi membranes. Finally, we provide evidence that endosomal localization enables AC9 to selectively elevate PKA activity in the nucleus relative to the cytoplasm. Together, these results reveal a precise spatial landscape of the cAMP cascade in neurons and a key role of AC localization in directing downstream PKA signaling to the nucleus.
Collapse
Affiliation(s)
- Léa Ripoll
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Yong Li
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Mark von Zastrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Yang E, Jing S, Wang F, Wang H, Fu S, Yang L, Tian J, Golijanin DJ, El-Deiry WS, Cheng L, Wang Z. Mesenchymal stem cells in tumor microenvironment: drivers of bladder cancer progression through mitochondrial dynamics and energy production. Cell Death Dis 2024; 15:688. [PMID: 39304650 DOI: 10.1038/s41419-024-07068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Mesenchymal stem cells (MSCs) in tumor microenvironment (TME) are crucial for the initiation, development, and metastasis of cancer. The impact and mechanism of MSCs on bladder cancer are uncertain. Here we analyzed 205 patient samples to explore the relationships between tumor-stroma ratio and clinicopathological features. A co-culture model and nude mouse transplantation were used to explore the biological roles and molecular mechanisms of MSCs on bladder cancer cells. We found that a high tumor-stroma ratio was significantly associated with a larger tumor size and higher T stage, pathological grade, number of vascular invasions, and poor overall survival. MSCs in TME promoted the ability of bladder cancer cells to proliferate, migrate, and invade in vitro and in vivo. Next, we demonstrated that MSCs enhance mitochondrial autophagy and mitochondrial biogenesis of bladder cancer cells, and increase energy production, thereby promoting bladder cancer cell progression. Kynurenine (Kyn) produced by MSCs could enhance mitochondrial function by activating the AMPK pathway. IDO1 inhibitor could reverse the tumor‑promoting effects of MSCs in vitro and in vivo. Our results demonstrated that tryptophan metabolites Kyn of MSCs in TME could enhance mitochondrial function by activating the AMPK pathway, thereby promoting bladder cancer cell progression.
Collapse
Affiliation(s)
- Enguang Yang
- Institute of Urology, Lanzhou University Second Hospital; Key Laboratory of Gansu Province for Urological Diseases; Gansu Urological Clinical Center, Lanzhou, China
| | - Suoshi Jing
- Institute of Urology, Lanzhou University Second Hospital; Key Laboratory of Gansu Province for Urological Diseases; Gansu Urological Clinical Center, Lanzhou, China
| | - Fang Wang
- Medical experiment center, Lanzhou University, Lanzhou, China
| | - Hanzhang Wang
- The Legorreta Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, The Warren Albert Medical School of Brown University, Brown University Health, Providence, RI, USA
| | - Shengjun Fu
- Institute of Urology, Lanzhou University Second Hospital; Key Laboratory of Gansu Province for Urological Diseases; Gansu Urological Clinical Center, Lanzhou, China
| | - Li Yang
- Institute of Urology, Lanzhou University Second Hospital; Key Laboratory of Gansu Province for Urological Diseases; Gansu Urological Clinical Center, Lanzhou, China
| | - Junqiang Tian
- Institute of Urology, Lanzhou University Second Hospital; Key Laboratory of Gansu Province for Urological Diseases; Gansu Urological Clinical Center, Lanzhou, China
| | - Dragan J Golijanin
- Division of Urology, Department of Surgery, The Warren Albert Medical School of Brown University, The Miriam Hospital, Providence, RI, USA
| | - Wafik S El-Deiry
- The Legorreta Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, The Warren Albert Medical School of Brown University, Brown University Health, Providence, RI, USA
| | - Liang Cheng
- The Legorreta Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, The Warren Albert Medical School of Brown University, Brown University Health, Providence, RI, USA.
- Division of Urology, Department of Surgery, The Warren Albert Medical School of Brown University, The Miriam Hospital, Providence, RI, USA.
| | - Zhiping Wang
- Institute of Urology, Lanzhou University Second Hospital; Key Laboratory of Gansu Province for Urological Diseases; Gansu Urological Clinical Center, Lanzhou, China.
| |
Collapse
|
11
|
Joshi R, Paracha TU, Mostafa MM, Thorne AJ, Jayasinghe V, Yan D, Hamed O, Newton R, Giembycz MA. Comparison of the Genomic Activity of an EP 4-Receptor and β 2-Adrenoceptor Agonist in BEAS-2B Human Bronchial Epithelial Cells: In Search of Compartmentalized, cAMP-Dependent Gene Expression. J Pharmacol Exp Ther 2024; 391:64-81. [PMID: 39060164 DOI: 10.1124/jpet.124.002226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
It has been proposed that inhaled E-prostanoid 4 (EP4)-receptor agonists could represent a new class of bronchodilators for the treatment of asthma that are as effective as β 2-adrenoceptor agonists. However, the genomic impact of such drugs is unknown despite being potentially deleterious to respiratory health. Herein, we used mRNA-seq to compare the transcriptomic responses produced by 2-[3-[(1R,2S,3R)-3-hydroxy-2-[(E,3S)-3-hydroxy-5-[2-(methoxymethyl)phenyl]pent-1-enyl]-5-oxo-cyclopentyl]sulphanylpropylsulphanyl] acetic acid (ONO-AE1-329; an EP4-receptor agonist) and vilanterol (a β 2-adrenoceptor agonist) in BEAS-2B human airway epithelial cells. We also determined if an increase in cAMP mediated by different G protein-coupled receptors (GPCRs) promoted distinct transcriptional signatures by expanding this inquiry to include the adenosine A2B- and I-prostanoid receptor agonists, 2-[[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]-2-pyridinyl]thio]-acetamide (Bay60-6583) and taprostene, respectively. Maximally-effective concentrations of ONO-AE1-329 and vilanterol significantly regulated (q ≤ 0.05; ≥1.5-/≤0.67-fold) 232 and 320 genes, respectively of which 217 were shared. Spearman analysis showed these gene expression changes to be highly rank order correlated, indicating that the functional overlap between the two interventions should be considerable. Unexpectedly, the genomic effects of ONO-AE1-329, vilanterol, Bay 60-6583, and taprostene were also highly rank order correlated. This finding suggests that cAMP generated by any GPCR would initiate the same transcriptional program. Nevertheless, relative to vilanterol, ONO-AE1-329 typically behaved as a partial agonist that varied across transcripts. These data indicate that each ONO-AE1-329-regulated gene differs in sensitivity to cAMP and is defined by a unique receptor occupancy-response relationship. Moreover, if this relatively modest genomic response in BEAS-2B cells is retained in vivo, then inhaled EP4-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators. SIGNIFICANCE STATEMENT: The genomic consequences of β 2-adrenoceptor agonists in asthma are often overlooked despite being potentially harmful to lung health. We determined that ONO-AE1-329, an EP4-receptor agonist and effective bronchodilator, produced gene expression changes in BEAS-2B cells that were typically modest relative to the β 2-adrenoceptor agonist vilanterol. Furthermore, ONO-AE1-329 behaved as a partial agonist that varied across transcripts. If this genomic activity is reproduced in vivo, then EP4-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators.
Collapse
Affiliation(s)
- Radhika Joshi
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tamkeen U Paracha
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thorne
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Varuna Jayasinghe
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dong Yan
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Omar Hamed
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Cheng H, Yang Y, Hu J, Chen L, Yuan M, Du H, Xu Z, Qiu Z. Cyclic adenosine 3', 5'-monophosphate (cAMP) signaling is a crucial therapeutic target for ulcerative colitis. Life Sci 2024; 353:122901. [PMID: 38997063 DOI: 10.1016/j.lfs.2024.122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
The pathogenesis of ulcerative colitis (UC), a chronic intestine inflammatory disease primarily affecting adolescents, remains uncertain. Contemporary studies suggest that a confluence of elements, including genetic predispositions, environmental catalysts, dysregulated immune responses, and disturbances in the gut microbiome, are instrumental in the initiation and advancement of UC. Among them, inflammatory activation and mucosal barrier damage caused by abnormal immune regulation are essential links in the development of UC. The impairment of the mucosal barrier is intricately linked to the interplay of various cellular mechanisms, including oxidative stress, autophagy, and programmed cell death. An extensive corpus of research has elucidated that level of cyclic adenosine 3',5'-monophosphate (cAMP) undergo modifications in the midst of inflammation and participate in a diverse array of cellular operations that mitigate inflammation and the impairment of the mucosal barrier. Consequently, a plethora of pharmacological agents are currently under development, with some advancing through clinical trials, and are anticipated to garner approval as novel therapeutics. In summary, cAMP exerts a crucial influence on the onset and progression of UC, with fluctuations in its activity being intimately associated with the severity of the disease's manifestation. Significantly, this review unveils the paramount role of cAMP in the advancement of UC, offering a tactical approach for the clinical management of individuals afflicted with UC.
Collapse
Affiliation(s)
- Haixiang Cheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Yuan Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, People's Republic of China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Liang Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Ming Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Hubei Shizhen Laboratory, Wuhan, 430061, People's Republic of China.
| | - Ziqiang Xu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Hubei Shizhen Laboratory, Wuhan, 430061, People's Republic of China; Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China.
| |
Collapse
|
13
|
Khalifeh DM, Czeglédi L, Gulyas G. Investigating the potential role of the pituitary adenylate cyclase-activating polypeptide (PACAP) in regulating the ubiquitin signaling pathway in poultry. Gen Comp Endocrinol 2024; 356:114577. [PMID: 38914296 DOI: 10.1016/j.ygcen.2024.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
The physiological processes in animal production are regulated through biologically active molecules like peptides, proteins, and hormones identified through the development of the fundamental sciences and their application. One of the main polypeptides that plays an essential role in regulating physiological responses is the pituitary adenylate cyclase-activating polypeptide (PACAP). PACAP belongs to the glucagon/growth hormone-releasing hormone (GHRH)/vasoactive intestinal proteins (VIP) family and regulates feed intake, stress, and immune response in birds. Most of these regulations occur after PACAP stimulates the cAMP signaling pathway, which can regulate the expression of genes like MuRF1, FOXO1, Atrogin 1, and other ligases that are essential members of the ubiquitin system. On the other hand, PACAP stimulates the secretion of CRH in response to stress, activating the ubiquitin signaling pathway that plays a vital role in protein degradation and regulates oxidative stress and immune responses. Many studies conducted on rodents, mammals, and other models confirm the regulatory effects of PACAP, cAMP, and the ubiquitin pathway; however, there are no studies testing whether PACAP-induced cAMP signaling in poultry regulates the ubiquitin pathway. Besides, it would be interesting to investigate if PACAP can regulate ubiquitin signaling during stress response via CRH altered by HPA axis stimulation. Therefore, this review highlights a summary of research studies that indicate the potential interaction of the PACAP and ubiquitin signaling pathways on different molecular and physiological parameters in poultry species through the cAMP and stress signaling pathways.
Collapse
Affiliation(s)
- Doha Mohamad Khalifeh
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, Debrecen 4032 Hungary; Doctoral School of Animal Science, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary.
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, Debrecen 4032 Hungary
| | - Gabriella Gulyas
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, Debrecen 4032 Hungary
| |
Collapse
|
14
|
Brands J, Bravo S, Jürgenliemke L, Grätz L, Schihada H, Frechen F, Alenfelder J, Pfeil C, Ohse PG, Hiratsuka S, Kawakami K, Schmacke LC, Heycke N, Inoue A, König G, Pfeifer A, Wachten D, Schulte G, Steinmetzer T, Watts VJ, Gomeza J, Simon K, Kostenis E. A molecular mechanism to diversify Ca 2+ signaling downstream of Gs protein-coupled receptors. Nat Commun 2024; 15:7684. [PMID: 39227390 PMCID: PMC11372221 DOI: 10.1038/s41467-024-51991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
A long-held tenet in inositol-lipid signaling is that cleavage of membrane phosphoinositides by phospholipase Cβ (PLCβ) isozymes to increase cytosolic Ca2+ in living cells is exclusive to Gq- and Gi-sensitive G protein-coupled receptors (GPCRs). Here we extend this central tenet and show that Gs-GPCRs also partake in inositol-lipid signaling and thereby increase cytosolic Ca2+. By combining CRISPR/Cas9 genome editing to delete Gαs, the adenylyl cyclase isoforms 3 and 6, or the PLCβ1-4 isozymes, with pharmacological and genetic inhibition of Gq and G11, we pin down Gs-derived Gβγ as driver of a PLCβ2/3-mediated cytosolic Ca2+ release module. This module does not require but crosstalks with Gαs-dependent cAMP, demands Gαq to release PLCβ3 autoinhibition, but becomes Gq-independent with mutational disruption of the PLCβ3 autoinhibited state. Our findings uncover the key steps of a previously unappreciated mechanism utilized by mammalian cells to finetune their calcium signaling regulation through Gs-GPCRs.
Collapse
Affiliation(s)
- Julian Brands
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Sergi Bravo
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Lars Jürgenliemke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Research Training Group 2873, University of Bonn, Bonn, Germany
| | - Lukas Grätz
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Fabian Frechen
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Cy Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Research Training Group 1873, University of Bonn, Bonn, Germany
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Paul Georg Ohse
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Suzune Hiratsuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
| | - Luna C Schmacke
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nina Heycke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Gabriele König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Torsten Steinmetzer
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Jesús Gomeza
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padova, Italy
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
15
|
Mao G, Tang J, Xu M, Okeke ES, Dong F, Chen Y, Gao J, Feng W, Zhao T, Wu X, Yang L. Role of autonomic nervous system in BDE-209 maternal exposure induced immunotoxicity in female offspring. ENVIRONMENTAL TOXICOLOGY 2024; 39:4397-4416. [PMID: 38808594 DOI: 10.1002/tox.24353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Decabrominated diphenyl ether (BDE-209) is a typical persistent organic pollutant that can cross the placental barrier, increasing the exposure risk for offspring. Norepinephrine (NE) from nerve terminals and acetylcholine (Ach) can bind to specific receptors on immune cells, inhibit the immune function of the body then cause immunotoxicity. However, whether maternal exposure to BDE-209 could lead to immunotoxicity in the offspring by acting on the sympathetic and parasympathetic nervous systems remains unclear. In view of this, the pregnancy and lactation rat BDE-209 exposure model was established and the results demonstrated that pregnancy and lactation BDE-209 exposure could induce immunotoxicity to female offspring via affecting immunopathology (hematological and biochemical parameters, organ indices, and spleen histopathological), decreasing humoral immunity (serum hemolysin, immunoglobulins, and cytokine productions), damaging cellular immunity (splenic lymphocytes and spleen cytokine productions), and restraining nonspecific immunity. Moreover, a dramatically significant correlation was observed between spleen nerve indices and immunity indices. Additionally, the mechanism revealed that maternal BDE-209 exposure caused offspring immunotoxicity through (1) activating MHC/PKCθ/NF-κB pathway; (2) promoting sympathetic nervous pathway, by upregulating the expression of β2AR protein, which in turn elevating cAMP, following activate PKA and phosphorylate CREB, ultimately leading to immunotoxicity;(3) activating parasympathetic nerve pathway by reducing the binding with Ach and α7nAchR, upregulating the expression of JAK2 and phosphorylating STAT3, induced immunotoxicity of female offspring.
Collapse
Affiliation(s)
- Guanghua Mao
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Junjie Tang
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Muge Xu
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Emmanuel Sunday Okeke
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Enugu, Nigeria
| | - Fangyuan Dong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yao Chen
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jinlin Gao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Weiwei Feng
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Xiangyang Wu
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Delrue C, Speeckaert R, Moresco RN, Speeckaert MM. Cyclic Adenosine Monophosphate Signaling in Chronic Kidney Disease: Molecular Targets and Therapeutic Potentials. Int J Mol Sci 2024; 25:9441. [PMID: 39273390 PMCID: PMC11395066 DOI: 10.3390/ijms25179441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by a steady decline in kidney function and affects roughly 10% of the world's population. This review focuses on the critical function of cyclic adenosine monophosphate (cAMP) signaling in CKD, specifically how it influences both protective and pathogenic processes in the kidney. cAMP, a critical secondary messenger, controls a variety of cellular functions, including transcription, metabolism, mitochondrial homeostasis, cell proliferation, and apoptosis. Its compartmentalization inside cellular microdomains ensures accurate signaling. In kidney physiology, cAMP is required for hormone-regulated activities, particularly in the collecting duct, where it promotes water reabsorption through vasopressin signaling. Several illnesses, including Fabry disease, renal cell carcinoma, nephrogenic diabetes insipidus, Bartter syndrome, Liddle syndrome, diabetic nephropathy, autosomal dominant polycystic kidney disease, and renal tubular acidosis, have been linked to dysfunction in the cAMP system. Both cAMP analogs and phosphodiesterase inhibitors have the potential to improve kidney function and reduce kidney damage. Future research should focus on developing targeted PDE inhibitors for the treatment of CKD.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Rafael Noal Moresco
- Graduate Program in Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
17
|
Berisha F, Blankenberg S, Nikolaev VO. Live Cell Monitoring of Phosphodiesterase Inhibition by Sulfonylurea Drugs. Biomolecules 2024; 14:985. [PMID: 39199373 PMCID: PMC11352370 DOI: 10.3390/biom14080985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Sulfonylureas (SUs) are a class of antidiabetic drugs widely used in the management of diabetes mellitus type 2. They promote insulin secretion by inhibiting the ATP-sensitive potassium channel in pancreatic β-cells. Recently, the exchange protein directly activated by cAMP (Epac) was identified as a new class of target proteins of SUs that might contribute to their antidiabetic effect, through the activation of the Ras-like guanosine triphosphatase Rap1, which has been controversially discussed. We used human embryonic kidney (HEK) 293 cells expressing genetic constructs of various Förster resonance energy transfer (FRET)-based biosensors containing different versions of Epac1 and Epac2 isoforms, alone or fused to different phosphodiesterases (PDEs), to monitor SU-induced conformational changes in Epac or direct PDE inhibition in real time. We show that SUs can both induce conformational changes in the Epac2 protein but not in Epac1, and directly inhibit the PDE3 and PDE4 families, thereby increasing cAMP levels in the direct vicinity of these PDEs. Furthermore, we demonstrate that the binding site of SUs in Epac2 is distinct from that of cAMP and is located between the amino acids E443 and E460. Using biochemical assays, we could also show that tolbutamide can inhibit PDE activity through an allosteric mechanism. Therefore, the cAMP-elevating capacity due to allosteric PDE inhibition in addition to direct Epac activation may contribute to the therapeutic effects of SU drugs.
Collapse
Affiliation(s)
- Filip Berisha
- Department of General and Interventional Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.B.)
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.B.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
18
|
Donders Z, Skorupska IJ, Willems E, Mussen F, Broeckhoven JV, Carlier A, Schepers M, Vanmierlo T. Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system. Biomed Pharmacother 2024; 177:117009. [PMID: 38908196 DOI: 10.1016/j.biopha.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.
Collapse
Affiliation(s)
- Zoë Donders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Iga Joanna Skorupska
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Emily Willems
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Femke Mussen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium.
| |
Collapse
|
19
|
Mukherjee S, Klarenbeek J, El Oualid F, van den Broek B, Jalink K. "Radical" differences between two FLIM microscopes affect interpretation of cell signaling dynamics. iScience 2024; 27:110268. [PMID: 39036041 PMCID: PMC11257777 DOI: 10.1016/j.isci.2024.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/12/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024] Open
Abstract
The outcome of cell signaling depends not only on signal strength but also on temporal progression. We use Fluorescence Lifetime Imaging of Resonance Energy Transfer (FLIM/FRET) biosensors to investigate intracellular signaling dynamics. We examined the β1 receptor-Gαs-cAMP signaling axis using both widefield frequency domain FLIM (fdFLIM) and fast confocal time-correlated single photon counting (TCSPC) setups. Unexpectedly, we observed that fdFLIM revealed transient cAMP responses in HeLa and Cos7 cells, contrasting with sustained responses as detected with TCSPC. Investigation revealed no light-induced effects on cAMP generation or breakdown. Rather, folic acid present in the imaging medium appeared to be the culprit, as its excitation with blue light sensitized degradation of β1 agonists. Our findings highlight the impact of subtle phototoxicity on experimental outcomes, advocating confocal TCSPC for reliable analysis of response kinetics and stressing the need for full disclosure of chemical formulations by scientific vendors.
Collapse
Affiliation(s)
- Sravasti Mukherjee
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
- Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
| | - Jeffrey Klarenbeek
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Farid El Oualid
- UbiQ Bio B.V., Science Park 301, Amsterdam 1098 XH, the Netherlands
| | - Bram van den Broek
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
- BioImaging Facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Kees Jalink
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
- Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
| |
Collapse
|
20
|
Sokrat B, Nguyen AH, Thomsen ARB, Huang LY, Kobayashi H, Kahsai AW, Kim J, Ho BX, Ma S, Little J, Ehrhart C, Pyne I, Hammond E, Bouvier M. Role of the V2R-βarrestin-Gβγ complex in promoting G protein translocation to endosomes. Commun Biol 2024; 7:826. [PMID: 38972875 PMCID: PMC11228049 DOI: 10.1038/s42003-024-06512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/27/2024] [Indexed: 07/09/2024] Open
Abstract
Classically, G protein-coupled receptors (GPCRs) promote signaling at the plasma membrane through activation of heterotrimeric Gαβγ proteins, followed by the recruitment of GPCR kinases and βarrestin (βarr) to initiate receptor desensitization and internalization. However, studies demonstrated that some GPCRs continue to signal from internalized compartments, with distinct cellular responses. Both βarr and Gβγ contribute to such non-canonical endosomal G protein signaling, but their specific roles and contributions remain poorly understood. Here, we demonstrate that the vasopressin V2 receptor (V2R)-βarr complex scaffolds Gβγ at the plasma membrane through a direct interaction with βarr, enabling its transport to endosomes. Gβγ subsequently potentiates Gαs endosomal translocation, presumably to regenerate an endosomal pool of heterotrimeric Gs. This work shines light on the mechanism underlying G protein subunits translocation from the plasma membrane to the endosomes and provides a basis for understanding the role of βarr in mediating sustained G protein signaling.
Collapse
Affiliation(s)
- Badr Sokrat
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Department of Molecular Pathobiology, New York University School of Dentistry, New York, NY, 10010, USA
| | - Anthony H Nguyen
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alex R B Thomsen
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Molecular Pathobiology, New York University School of Dentistry, New York, NY, 10010, USA
| | - Li-Yin Huang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hiroyuki Kobayashi
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Alem W Kahsai
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jihee Kim
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Bing X Ho
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Symon Ma
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - John Little
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Catherine Ehrhart
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ian Pyne
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Emmery Hammond
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada.
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
21
|
Patel K, Smith NJ. Primary cilia, A-kinase anchoring proteins and constitutive activity at the orphan G protein-coupled receptor GPR161: A tale about a tail. Br J Pharmacol 2024; 181:2182-2196. [PMID: 36772847 DOI: 10.1111/bph.16053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/22/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Primary cilia are non-motile antennae-like structures responsible for sensing environmental changes in most mammalian cells. Ciliary signalling is largely mediated by the Sonic Hedgehog (Shh) pathway, which acts as a master regulator of ciliary protein transit and is essential for normal embryonic development. One particularly important player in primary cilia is the orphan G protein-coupled receptor, GPR161. In this review, we introduce GPR161 in the context of Shh signalling and describe the unique features on its C-terminus such as PKA phosphorylation sites and an A-kinase anchoring protein motif, which may influence the function of the receptor, cAMP compartmentalisation and/or trafficking within primary cilia. We discuss the recent putative pairing of GPR161 and spexin-1, highlighting the additional steps needed before GPR161 could be considered 'deorphanised'. Finally, we speculate that the marked constitutive activity and unconventional regulation of GPR161 may indicate that the receptor may not require an endogenous ligand. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Kinjal Patel
- Orphan Receptor Laboratory, School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Nicola J Smith
- Orphan Receptor Laboratory, School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
22
|
Xu B, Bahriz S, Salemme VR, Wang Y, Zhu C, Zhao M, Xiang YK. Differential Downregulation of β 1-Adrenergic Receptor Signaling in the Heart. J Am Heart Assoc 2024; 13:e033733. [PMID: 38860414 PMCID: PMC11255761 DOI: 10.1161/jaha.123.033733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Chronic sympathetic stimulation drives desensitization and downregulation of β1 adrenergic receptor (β1AR) in heart failure. We aim to explore the differential downregulation subcellular pools of β1AR signaling in the heart. METHODS AND RESULTS We applied chronic infusion of isoproterenol to induced cardiomyopathy in male C57BL/6J mice. We applied confocal and proximity ligation assay to examine β1AR association with L-type calcium channel, ryanodine receptor 2, and SERCA2a ((Sarco)endoplasmic reticulum calcium ATPase 2a) and Förster resonance energy transfer-based biosensors to probe subcellular β1AR-PKA (protein kinase A) signaling in ventricular myocytes. Chronic infusion of isoproterenol led to reduced β1AR protein levels, receptor association with L-type calcium channel and ryanodine receptor 2 measured by proximity ligation (puncta/cell, 29.65 saline versus 14.17 isoproterenol, P<0.05), and receptor-induced PKA signaling at the plasma membrane (Förster resonance energy transfer, 28.9% saline versus 1.9% isoproterenol, P<0.05) and ryanodine receptor 2 complex (Förster resonance energy transfer, 30.2% saline versus 10.6% isoproterenol, P<0.05). However, the β1AR association with SERCA2a was enhanced (puncta/cell, 51.4 saline versus 87.5 isoproterenol, P<0.05), and the receptor signal was minimally affected. The isoproterenol-infused hearts displayed decreased PDE4D (phosphodiesterase 4D) and PDE3A and increased PDE2A, PDE4A, and PDE4B protein levels. We observed a reduced role of PDE4 and enhanced roles of PDE2 and PDE3 on the β1AR-PKA activity at the ryanodine receptor 2 complexes and myocyte shortening. Despite the enhanced β1AR association with SERCA2a, the endogenous norepinephrine-induced signaling was reduced at the SERCA2a complexes. Inhibiting monoamine oxidase A rescued the norepinephrine-induced PKA signaling at the SERCA2a and myocyte shortening. CONCLUSIONS This study reveals distinct mechanisms for the downregulation of subcellular β1AR signaling in the heart under chronic adrenergic stimulation.
Collapse
Affiliation(s)
- Bing Xu
- VA Northern California Health Care SystemMatherCAUSA
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
| | - Sherif Bahriz
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
- Department of Clinical Pathology, Faculty of MedicineMansoura UniversityMansouraEgypt
| | | | - Ying Wang
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
- Department of Pharmacology, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Chaoqun Zhu
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
| | - Meimi Zhao
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
- Department of Pharmaceutical ToxicologyChina Medical UniversityShenyangChina
| | - Yang K. Xiang
- VA Northern California Health Care SystemMatherCAUSA
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
| |
Collapse
|
23
|
Ednacot EMQ, Nabhani A, Dinh DM, Morehouse BR. Pharmacological potential of cyclic nucleotide signaling in immunity. Pharmacol Ther 2024; 258:108653. [PMID: 38679204 DOI: 10.1016/j.pharmthera.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Cyclic nucleotides are important signaling molecules that play many critical physiological roles including controlling cell fate and development, regulation of metabolic processes, and responding to changes in the environment. Cyclic nucleotides are also pivotal regulators in immune signaling, orchestrating intricate processes that maintain homeostasis and defend against pathogenic threats. This review provides a comprehensive examination of the pharmacological potential of cyclic nucleotide signaling pathways within the realm of immunity. Beginning with an overview of the fundamental roles of cAMP and cGMP as ubiquitous second messengers, this review delves into the complexities of their involvement in immune responses. Special attention is given to the challenges associated with modulating these signaling pathways for therapeutic purposes, emphasizing the necessity for achieving cell-type specificity to avert unintended consequences. A major focus of the review is on the recent paradigm-shifting discoveries regarding specialized cyclic nucleotide signals in the innate immune system, notably the cGAS-STING pathway. The significance of cyclic dinucleotides, exemplified by 2'3'-cGAMP, in controlling immune responses against pathogens and cancer, is explored. The evolutionarily conserved nature of cyclic dinucleotides as antiviral agents, spanning across diverse organisms, underscores their potential as targets for innovative immunotherapies. Findings from the last several years have revealed a striking diversity of novel bacterial cyclic nucleotide second messengers which are involved in antiviral responses. Knowledge of the existence and precise identity of these molecules coupled with accurate descriptions of their associated immune defense pathways will be essential to the future development of novel antibacterial therapeutic strategies. The insights presented herein may help researchers navigate the evolving landscape of immunopharmacology as it pertains to cyclic nucleotides and point toward new avenues or lines of thinking about development of therapeutics against the pathways they regulate.
Collapse
Affiliation(s)
- Eirene Marie Q Ednacot
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Ali Nabhani
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - David M Dinh
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Benjamin R Morehouse
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
24
|
Lymperopoulos A, Borges JI, Stoicovy RA. Cyclic Adenosine Monophosphate in Cardiac and Sympathoadrenal GLP-1 Receptor Signaling: Focus on Anti-Inflammatory Effects. Pharmaceutics 2024; 16:693. [PMID: 38931817 PMCID: PMC11206770 DOI: 10.3390/pharmaceutics16060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a multifunctional incretin hormone with various physiological effects beyond its well-characterized effect of stimulating glucose-dependent insulin secretion in the pancreas. An emerging role for GLP-1 and its receptor, GLP-1R, in brain neuroprotection and in the suppression of inflammation, has been documented in recent years. GLP-1R is a G protein-coupled receptor (GPCR) that couples to Gs proteins that stimulate the production of the second messenger cyclic 3',5'-adenosine monophosphate (cAMP). cAMP, acting through its two main effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), exerts several anti-inflammatory (and some pro-inflammatory) effects in cells, depending on the cell type. The present review discusses the cAMP-dependent molecular signaling pathways elicited by the GLP-1R in cardiomyocytes, cardiac fibroblasts, central neurons, and even in adrenal chromaffin cells, with a particular focus on those that lead to anti-inflammatory effects by the GLP-1R. Fully elucidating the role cAMP plays in GLP-1R's anti-inflammatory properties can lead to new and more precise targets for drug development and/or provide the foundation for novel therapeutic combinations of the GLP-1R agonist medications currently on the market with other classes of drugs for additive anti-inflammatory effect.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA; (J.I.B.); (R.A.S.)
| | | | | |
Collapse
|
25
|
Tang Y, Gao Y, Nie K, Wang H, Chen S, Su H, Huang W, Dong H. Jiao-tai-wan and its effective component-berberine improve diabetes and depressive disorder through the cAMP/PKA/CREB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117829. [PMID: 38296172 DOI: 10.1016/j.jep.2024.117829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiao-tai-wan (JTW), a classic herbal formula of traditional Chinese medicine recorded in Han Shi Yi Tong, has been used to alleviate sleep disorders since ancient times. In modern pharmacological research, JTW has been adopted for treating diabetes mellitus and even exerts antidepressant effects. However, the potential mechanisms deserve further elucidation. AIM OF THE STUDY The prevalence of diabetes mellitus combined with depressive disorder (DD) is continuing to increase, yet it is currently under-recognized and its treatment remains inadequate. The present study aims to explore the underlying therapeutics and mechanisms of JTW on DD. MATERIALS AND METHODS Chronic restraint stress was used on db/db mice to construct a mouse model of DD. The therapeutic effects of JTW were assessed by glucolipid metabolic indexes, behavioral tests, and depression-related neurotransmitter levels. The inflammatory status and cell apoptosis of different mice were investigated and the changes in the cAMP/PKA/CREB pathway were detected. Combining the results of fingerprinting with molecular docking, the active components of JTW were screened. A cellular model was constructed by intervention of glucose combined with corticosterone (CORT). The levels of apoptosis and depression-related neurotransmitters in HT-22 cells were examined, and the changes in the cAMP/PKA/CREB pathway were tested. Finally, the activator and inhibitor of the PKA protein were used for reverse validation experiments. RESULTS JTW could improve the impaired glucose tolerance, lipid metabolism disorders, and depression-like symptoms in DD mice. Meanwhile, JTW could alleviate the inflammatory status, suppress the microglia activation, and improve hippocampal neuron apoptosis in DD mice. The dual effects of JTW might be associated with the activation of the cAMP/PKA/CREB pathway. Berberine (Ber) was identified for the in vitro experiment, it could reverse the apoptosis of HT-22 cells and up-regulate the depression-related neurotransmitter levels, and the effects of Ber were related to the activation of the cAMP/PKA/CREB pathway as well. CONCLUSION JTW could exert both hypoglycemic and antidepressant effects through activating the cAMP/PKA/CREB signaling pathway, its active component, Ber, could improve the damage to HT-22 cells induced by glucose combined with CORT via the activation of the cAMP/PKA/CREB pathway. Ber may be one of the effective components of the dual effects of JTW.
Collapse
Affiliation(s)
- Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Hao Su
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wenya Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
26
|
Wenzl SJ, de Oliveira Mann CC. How enzyme-centered approaches are advancing research on cyclic oligo-nucleotides. FEBS Lett 2024; 598:839-863. [PMID: 38453162 DOI: 10.1002/1873-3468.14838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
Cyclic nucleotides are the most diversified category of second messengers and are found in all organisms modulating diverse pathways. While cAMP and cGMP have been studied over 50 years, cyclic di-nucleotide signaling in eukaryotes emerged only recently with the anti-viral molecule 2´3´cGAMP. Recent breakthrough discoveries have revealed not only the astonishing chemical diversity of cyclic nucleotides but also surprisingly deep-rooted evolutionary origins of cyclic oligo-nucleotide signaling pathways and structural conservation of the proteins involved in their synthesis and signaling. Here we discuss how enzyme-centered approaches have paved the way for the identification of several cyclic nucleotide signals, focusing on the advantages and challenges associated with deciphering the activation mechanisms of such enzymes.
Collapse
Affiliation(s)
- Simon J Wenzl
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Carina C de Oliveira Mann
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| |
Collapse
|
27
|
Plank M, Carmiol N, Mitri B, Lipinski AA, Langlais PR, Capaldi AP. Systems level analysis of time and stimuli specific signaling through PKA. Mol Biol Cell 2024; 35:ar60. [PMID: 38446618 PMCID: PMC11064662 DOI: 10.1091/mbc.e23-02-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
It is well known that eukaryotic cells create gradients of cAMP across space and time to regulate the cAMP dependent protein kinase (PKA) and, in turn, growth and metabolism. However, it is unclear how PKA responds to different concentrations of cAMP. Here, to address this question, we examine PKA signaling in Saccharomyces cerevisiae in different conditions, timepoints, and concentrations of the chemical inhibitor 1-NM-PP1, using phosphoproteomics. These experiments show that there are numerous proteins that are only phosphorylated when cAMP and PKA activity are at/near their maximum level, while other proteins are phosphorylated even when cAMP levels and PKA activity are low. The data also show that PKA drives cells into distinct growth states by acting on proteins with different thresholds for phosphorylation in different conditions. Analysis of the sequences surrounding the 118 PKA-dependent phosphosites suggests that the phosphorylation thresholds are set, at least in part, by the affinity of PKA for each site.
Collapse
Affiliation(s)
- Michael Plank
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- The Bio5 Institute, University of Arizona, Tucson, AZ 85721
| | - Nicole Carmiol
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Bassam Mitri
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | | | - Paul R. Langlais
- The Department of Medicine, University of Arizona, Tucson, AZ 85721
| | - Andrew P. Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- The Bio5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
28
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
29
|
Bock A, Irannejad R, Scott JD. cAMP signaling: a remarkably regional affair. Trends Biochem Sci 2024; 49:305-317. [PMID: 38310024 PMCID: PMC11175624 DOI: 10.1016/j.tibs.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Louis Pasteur once famously said 'in the fields of observation chance favors only the prepared mind'. Much of chance is being in the right place at the right time. This is particularly true in the crowded molecular environment of the cell where being in the right place is often more important than timing. Although Brownian motion argues that enzymes will eventually bump into substrates, this probability is greatly enhanced if both molecules reside in the same subcellular compartment. However, activation of cell signaling enzymes often requires the transmission of chemical signals from extracellular stimuli to intracellular sites of action. This review highlights new developments in our understanding of cAMP generation and the 3D utilization of this second messenger inside cells.
Collapse
Affiliation(s)
- Andreas Bock
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany.
| | - Roshanak Irannejad
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - John D Scott
- Department of Pharmacology, University of Washington Medical Center, Seattle, WA 98195, USA.
| |
Collapse
|
30
|
Song P, Wang S, Han R, Wang H, Hu B, Luan J, Zhang H, Wang Z, Ma C, Wang J. Insights into the selective mechanism of PDE2/9a inhibitors from silico aspects. J Biomol Struct Dyn 2024:1-18. [PMID: 38525932 DOI: 10.1080/07391102.2024.2331098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024]
Abstract
The selective design of competitive enzyme inhibitors is an extremely difficult task but necessary work for certain types of systems, such as the phosphodiesterase (PDE) system addressed in this article. In the PDE family, PDE2A and PDE9 respectively target the central nervous system and heart failure, and share many conserved amino acids at their binding sites. Therefore, gaining a deep understanding of the selective mechanisms of PDE2A/9A is crucial for designing highly selective drugs. In this study, various computer-aided drug design (CADD) methods, including molecular docking, molecular dynamics simulations (MD), and binding free energy calculations, are employed to explore the selective mechanisms of PDE2A/9A. Overall, our research results indicate a selective design strategy for PDE2A, which involves incorporating hydrophobic or aromatic moieties into the molecular structure to better accommodate the hydrophobic pocket of PDE2A. Additionally, it is recommended to introduce functional groups capable of forming connections with selective residues, such as Phe830 and Gln812 for PDE2A, or Ala452 and Tyr424 for PDE9A, to enhance the selectivity of inhibitors targeting PDE2A/9A. This achievement is anticipated to pave the way for the development of innovative and selective small molecules targeting PDE2A/9A.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pengfei Song
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Shizhun Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Ruiheng Han
- Pharmaceutical department, Avanc Pharmaceutical Co., Ltd., China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jiasi Luan
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Haoyu Zhang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Zhijian Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
31
|
Ober VT, Githure GB, Volpato Santos Y, Becker S, Moya Munoz G, Basquin J, Schwede F, Lorentzen E, Boshart M. Purine nucleosides replace cAMP in allosteric regulation of PKA in trypanosomatid pathogens. eLife 2024; 12:RP91040. [PMID: 38517938 PMCID: PMC10959531 DOI: 10.7554/elife.91040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Cyclic nucleotide binding domains (CNB) confer allosteric regulation by cAMP or cGMP to many signaling proteins, including PKA and PKG. PKA of phylogenetically distant Trypanosoma is the first exception as it is cyclic nucleotide-independent and responsive to nucleoside analogues (Bachmaier et al., 2019). Here, we show that natural nucleosides inosine, guanosine and adenosine are nanomolar affinity CNB ligands and activators of PKA orthologs of the important tropical pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. The sequence and structural determinants of binding affinity, -specificity and kinase activation of PKAR were established by structure-activity relationship (SAR) analysis, co-crystal structures and mutagenesis. Substitution of two to three amino acids in the binding sites is sufficient for conversion of CNB domains from nucleoside to cyclic nucleotide specificity. In addition, a trypanosomatid-specific C-terminal helix (αD) is required for high affinity binding to CNB-B. The αD helix functions as a lid of the binding site that shields ligands from solvent. Selectivity of guanosine for CNB-B and of adenosine for CNB-A results in synergistic kinase activation at low nanomolar concentration. PKA pulldown from rapid lysis establishes guanosine as the predominant ligand in vivo in T. brucei bloodstream forms, whereas guanosine and adenosine seem to synergize in the procyclic developmental stage in the insect vector. We discuss the versatile use of CNB domains in evolution and recruitment of PKA for novel nucleoside-mediated signaling.
Collapse
Affiliation(s)
- Veronica Teresa Ober
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | | | - Yuri Volpato Santos
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | - Sidney Becker
- Max Planck Institute of Molecular PhysiologyDortmundGermany
- TU Dortmund, Department of Chemistry and Chemical BiologyDortmundGermany
| | - Gabriel Moya Munoz
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | | | - Frank Schwede
- BIOLOG Life Science Institute GmbH & Co KGBremenGermany
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Michael Boshart
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| |
Collapse
|
32
|
Kraft AE, Bork NI, Subramanian H, Pavlaki N, Failla AV, Zobiak B, Conti M, Nikolaev VO. Phosphodiesterases 4B and 4D Differentially Regulate cAMP Signaling in Calcium Handling Microdomains of Mouse Hearts. Cells 2024; 13:476. [PMID: 38534320 DOI: 10.3390/cells13060476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The ubiquitous second messenger 3',5'-cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling (ECC) by signaling in discrete subcellular microdomains. Phosphodiesterase subfamilies 4B and 4D are critically involved in the regulation of cAMP signaling in mammalian cardiomyocytes. Alterations of PDE4 activity in human hearts has been shown to result in arrhythmias and heart failure. Here, we sought to systematically investigate specific roles of PDE4B and PDE4D in the regulation of cAMP dynamics in three distinct subcellular microdomains, one of them located at the caveolin-rich plasma membrane which harbors the L-type calcium channels (LTCCs), as well as at two sarco/endoplasmic reticulum (SR) microdomains centered around SR Ca2+-ATPase (SERCA2a) and cardiac ryanodine receptor type 2 (RyR2). Transgenic mice expressing Förster Resonance Energy Transfer (FRET)-based cAMP-specific biosensors targeted to caveolin-rich plasma membrane, SERCA2a and RyR2 microdomains were crossed to PDE4B-KO and PDE4D-KO mice. Direct analysis of the specific effects of both PDE4 subfamilies on local cAMP dynamics was performed using FRET imaging. Our data demonstrate that all three microdomains are differentially regulated by these PDE4 subfamilies. Whereas both are involved in cAMP regulation at the caveolin-rich plasma membrane, there are clearly two distinct cAMP microdomains at the SR formed around RyR2 and SERCA2a, which are preferentially controlled by PDE4B and PDE4D, respectively. This correlates with local cAMP-dependent protein kinase (PKA) substrate phosphorylation and arrhythmia susceptibility. Immunoprecipitation assays confirmed that PDE4B is associated with RyR2 along with PDE4D. Stimulated Emission Depletion (STED) microscopy of immunostained cardiomyocytes suggested possible co-localization of PDE4B with both sarcolemmal and RyR2 microdomains. In conclusion, our functional approach could show that both PDE4B and PDE4D can differentially regulate cardiac cAMP microdomains associated with calcium homeostasis. PDE4B controls cAMP dynamics in both caveolin-rich plasma membrane and RyR2 vicinity. Interestingly, PDE4B is the major regulator of the RyR2 microdomain, as opposed to SERCA2a vicinity, which is predominantly under PDE4D control, suggesting a more complex regulatory pattern than previously thought, with multiple PDEs acting at the same location.
Collapse
Affiliation(s)
- Axel E Kraft
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Nadja I Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Nikoleta Pavlaki
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Antonio V Failla
- UKE Microscopy Imaging Facility (UMIF), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bernd Zobiak
- UKE Microscopy Imaging Facility (UMIF), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marco Conti
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
33
|
Falcón D, Calderón-Sánchez EM, Mayoral-González I, Martín-Bórnez M, Dominguez-Rodriguez A, Gutiérrez-Carretero E, Ordóñez-Fernández A, Rosado JA, Smani T. Inhibition of adenylyl cyclase 8 prevents the upregulation of Orai1 channel, which improves cardiac function after myocardial infarction. Mol Ther 2024; 32:646-662. [PMID: 38291755 PMCID: PMC10928147 DOI: 10.1016/j.ymthe.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
The upregulation of Orai1 and subsequent store-operated Ca2+ entry (SOCE) has been associated with adverse cardiac remodeling and heart failure (HF). However, the mechanism underlying Orai1 upregulation and its role in myocardial infarction remains unclear. Our study investigated the role of Orai1 in activating adenylyl cyclase 8 (AC8) and cyclic AMP (cAMP) response element-binding protein (CREB), as well as its contribution to cardiac dysfunction induced by ischemia and reperfusion (I/R). We found that I/R evoked an increase in the expression of Orai1 and AC8 in rats' hearts, resulting in a substantial rise in diastolic Ca2+ concentration ([Ca2+]i), and reduced ventricular contractions. The expression of Orai1 and AC8 was also increased in ventricular biopsies of post-ischemic HF patients. Mechanistically, we demonstrate that I/R activation of Orai1 stimulated AC8, which produced cAMP and phosphorylated CREB. Subsequently, p-CREB activated the ORAI1 promoter, resulting in Orai1 upregulation and SOCE exacerbation. Intramyocardial administration of AAV9 carrying AC8 short hairpin RNA decreased the expression of AC8, Orai1 and CREB, which restored diastolic [Ca2+]i and improved cardiac contraction. Therefore, our data suggests that the axis composed by Orai1/AC8/CREB plays a critical role in I/R-induced cardiac dysfunction, representing a potential new therapeutic target to limit the progression of the disease toward HF.
Collapse
Affiliation(s)
- Débora Falcón
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain; Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain.
| | - Eva M Calderón-Sánchez
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain; Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Isabel Mayoral-González
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain
| | - Marta Martín-Bórnez
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain; Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Alejandro Dominguez-Rodriguez
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain
| | - Encarnación Gutiérrez-Carretero
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain; Department of Surgery, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Antonio Ordóñez-Fernández
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain
| | - Juan Antonio Rosado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Tarik Smani
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain; Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain.
| |
Collapse
|
34
|
Porro A, Saponaro A, Castelli R, Introini B, Hafez Alkotob A, Ranjbari G, Enke U, Kusch J, Benndorf K, Santoro B, DiFrancesco D, Thiel G, Moroni A. A high affinity switch for cAMP in the HCN pacemaker channels. Nat Commun 2024; 15:843. [PMID: 38287019 PMCID: PMC10825183 DOI: 10.1038/s41467-024-45136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Binding of cAMP to Hyperpolarization activated cyclic nucleotide gated (HCN) channels facilitates pore opening. It is unclear why the isolated cyclic nucleotide binding domain (CNBD) displays in vitro lower affinity for cAMP than the full-length channel in patch experiments. Here we show that HCN are endowed with an affinity switch for cAMP. Alpha helices D and E, downstream of the cyclic nucleotide binding domain (CNBD), bind to and stabilize the holo CNBD in a high affinity state. These helices increase by 30-fold cAMP efficacy and affinity measured in patch clamp and ITC, respectively. We further show that helices D and E regulate affinity by interacting with helix C of the CNBD, similarly to the regulatory protein TRIP8b. Our results uncover an intramolecular mechanism whereby changes in binding affinity, rather than changes in cAMP concentration, can modulate HCN channels, adding another layer to the complex regulation of their activity.
Collapse
Affiliation(s)
| | - Andrea Saponaro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy
| | | | - Bianca Introini
- Department of Biosciences, University of Milan, Milano, Italy
| | | | - Golnaz Ranjbari
- Department of Biosciences, University of Milan, Milano, Italy
| | - Uta Enke
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Bina Santoro
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA
| | | | - Gerhard Thiel
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milano, Italy.
- Institute of Biophysics Milan, Consiglio Nazionale delle Ricerche, Milano, Italy.
| |
Collapse
|
35
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
36
|
Demby A, Zaccolo M. Investigating G-protein coupled receptor signalling with light-emitting biosensors. Front Physiol 2024; 14:1310197. [PMID: 38260094 PMCID: PMC10801095 DOI: 10.3389/fphys.2023.1310197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the most frequent target of currently approved drugs and play a central role in both physiological and pathophysiological processes. Beyond the canonical understanding of GPCR signal transduction, the importance of receptor conformation, beta-arrestin (β-arr) biased signalling, and signalling from intracellular locations other than the plasma membrane is becoming more apparent, along with the tight spatiotemporal compartmentalisation of downstream signals. Fluorescent and bioluminescent biosensors have played a pivotal role in elucidating GPCR signalling events in live cells. To understand the mechanisms of action of the GPCR-targeted drugs currently available, and to develop new and better GPCR-targeted therapeutics, understanding these novel aspects of GPCR signalling is critical. In this review, we present some of the tools available to interrogate each of these features of GPCR signalling, we illustrate some of the key findings which have been made possible by these tools and we discuss their limitations and possible developments.
Collapse
Affiliation(s)
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Bizerra PFV, Gilglioni EH, Li HL, Go S, Oude Elferink RPJ, Verhoeven AJ, Chang JC. Opposite regulation of glycogen metabolism by cAMP produced in the cytosol and at the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119585. [PMID: 37714306 DOI: 10.1016/j.bbamcr.2023.119585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Cyclic AMP is produced in cells by two different types of adenylyl cyclases: at the plasma membrane by the transmembrane adenylyl cyclases (tmACs, ADCY1~ADCY9) and in the cytosol by the evolutionarily more conserved soluble adenylyl cyclase (sAC, ADCY10). By employing high-resolution extracellular flux analysis in HepG2 cells to study glycogen breakdown in real time, we showed that cAMP regulates glycogen metabolism in opposite directions depending on its location of synthesis within cells and the downstream cAMP effectors. While the canonical tmAC-cAMP-PKA signaling promotes glycogenolysis, we demonstrate here that the non-canonical sAC-cAMP-Epac1 signaling suppresses glycogenolysis. Mechanistically, suppression of sAC-cAMP-Epac1 leads to Ser-15 phosphorylation and thereby activation of the liver-form glycogen phosphorylase to promote glycogenolysis. Our findings highlight the importance of cAMP microdomain organization for distinct metabolic regulation and establish sAC as a novel regulator of glycogen metabolism.
Collapse
Affiliation(s)
- Paulo F V Bizerra
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; State University of Maringá, Paraná, Brazil
| | - Eduardo H Gilglioni
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Signal Transduction and Metabolism Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Hang Lam Li
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Simei Go
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Arthur J Verhoeven
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jung-Chin Chang
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
38
|
Chen Y, Chen Y, Yu XQ, Feng Q, Wang X, Liu L. Expression profiles of lncRNAs, miRNAs, and mRNAs and interaction analysis indicate their potential involvement during testicular fusion in Spodoptera litura. Genomics 2024; 116:110758. [PMID: 38065236 DOI: 10.1016/j.ygeno.2023.110758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024]
Abstract
Testicular fusion of Spodoptera litura occures during metamorphosis, which benefits sperms development. Previous research identified involvement of ECM-integrin interaction pathways, MMPs in testicular fusion, but the regulatory mechanism remains unclear. RNA-seq was performed to analyze long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in testes, aiming to uncover potential regulatory mechanisms of testicular fusion. 2150 lncRNAs, 2742 targeted mRNAs, and 347 miRNAs were identified in testes at three different developmental stages. Up-regulated DElncRNAs and DEmRNAs, as well as down-regulated DEmiRNAs, were observed during testicular fusion, while the opposite expression pattern was observed after fusion. Enrichment analysis of DEmRNAs revealed that cAMP signal pathway, ECM remodeling enzymes, ECM-integrin interaction pathways, and cell adhesion molecules were potentially associated with testicular fusion. The identified DElncRNA-DEmiRNA-DEmRNA regulatory network related to cAMP signal pathway, ECM remodeling enzymes suggests their roles during testicular fusion. Our research will provide new targets for studying the mechanism of testicular fusion.
Collapse
Affiliation(s)
- Yaqing Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yu Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
39
|
Lin TY, Mai QN, Zhang H, Wilson E, Chien HC, Yee SW, Giacomini KM, Olgin JE, Irannejad R. Cardiac contraction and relaxation are regulated by distinct subcellular cAMP pools. Nat Chem Biol 2024; 20:62-73. [PMID: 37474759 PMCID: PMC10746541 DOI: 10.1038/s41589-023-01381-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
Cells interpret a variety of signals through G-protein-coupled receptors (GPCRs) and stimulate the generation of second messengers such as cyclic adenosine monophosphate (cAMP). A long-standing puzzle is deciphering how GPCRs elicit different physiological responses despite generating similar levels of cAMP. We previously showed that some GPCRs generate cAMP from both the plasma membrane and the Golgi apparatus. Here we demonstrate that cardiomyocytes distinguish between subcellular cAMP inputs to elicit different physiological outputs. We show that generating cAMP from the Golgi leads to the regulation of a specific protein kinase A (PKA) target that increases the rate of cardiomyocyte relaxation. In contrast, cAMP generation from the plasma membrane activates a different PKA target that increases contractile force. We further validated the physiological consequences of these observations in intact zebrafish and mice. Thus, we demonstrate that the same GPCR acting through the same second messenger regulates cardiac contraction and relaxation dependent on its subcellular location.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Quynh N Mai
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Hao Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Emily Wilson
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, CA, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, CA, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey E Olgin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Roshanak Irannejad
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA.
| |
Collapse
|
40
|
Ripoll L, von Zastrow M. Spatial organization of adenylyl cyclase and its impact on dopamine signaling in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570478. [PMID: 38106018 PMCID: PMC10723477 DOI: 10.1101/2023.12.06.570478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The cAMP cascade is widely recognized to transduce its physiological effects locally through spatially limited cAMP gradients. However, little is known about how the adenylyl cyclase enzymes, which initiate cAMP gradients, are localized. Here we answer this question in physiologically relevant striatal neurons and delineate how AC localization impacts downstream signaling functions. We show that the major striatal AC isoforms are differentially sorted between ciliary and extraciliary domains of the plasma membrane, and that AC9 is uniquely targeted to endosomes. We identify key sorting determinants in the N-terminal cytoplasmic domain responsible for isoform-specific localization. We also show that AC9-containing endosomes accumulate activated dopamine receptors and form an elaborately intertwined network with juxtanuclear PKA stores bound to Golgi membranes. Finally, we show that endosomal localization is critical for AC9 to selectively elevate PKA activity in the nucleus relative to the cytoplasm. These results reveal a precise spatial landscape of the cAMP cascade in neurons and a key role of AC localization in directing downstream signal transduction to the nucleus.
Collapse
|
41
|
Yammine L, Picatoste B, Abdullah N, Leahey RA, Johnson EF, Gómez-Banoy N, Rosselot C, Wen J, Hossain T, Goncalves MD, Lo JC, Garcia-Ocaña A, McGraw TE. Spatiotemporal regulation of GIPR signaling impacts glucose homeostasis as revealed in studies of a common GIPR variant. Mol Metab 2023; 78:101831. [PMID: 37925022 PMCID: PMC10665708 DOI: 10.1016/j.molmet.2023.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
OBJECTIVE Glucose-dependent insulinotropic polypeptide (GIP) has a role in controlling postprandial metabolic tone. In humans, a GIP receptor (GIPR) variant (Q354, rs1800437) is associated with a lower body mass index (BMI) and increased risk for Type 2 Diabetes. To better understand the impacts of GIPR-Q354 on metabolism, it is necessary to study it in an isogeneic background to the predominant GIPR isoform, E354. To accomplish this objective, we used CRISPR-CAS9 editing to generate mouse models of GIPR-Q354 and GIPR-E354. Here we characterize the metabolic effects of GIPR-Q354 variant in a mouse model (GIPR-Q350). METHODS We generated the GIPR-Q350 mice for in vivo studies of metabolic impact of the variant. We isolated pancreatic islets from GIPR-Q350 mice to study insulin secretion ex vivo. We used a β-cell cell line to understand the impact of the GIPR-Q354 variant on the receptor traffic. RESULTS We found that female GIPR-Q350 mice are leaner than littermate controls, and male GIPR-Q350 mice are resistant to diet-induced obesity, in line with the association of the variant with reduced BMI in humans. GIPR-Q350 mice of both sexes are more glucose tolerant and exhibit an increased sensitivity to GIP. Postprandial GIP levels are reduced in GIPR-Q350 mice, revealing feedback regulation that balances the increased sensitivity of GIP target tissues to secretion of GIP from intestinal endocrine cells. The increased GIP sensitivity is recapitulated ex vivo during glucose stimulated insulin secretion assays in islets. Generation of cAMP in islets downstream of GIPR activation is not affected by the Q354 substitution. However, post-activation traffic of GIPR-Q354 variant in β-cells is altered, characterized by enhanced intracellular dwell time and increased localization to the Trans-Golgi Network (TGN). CONCLUSIONS Our data link altered intracellular traffic of the GIPR-Q354 variant with GIP control of metabolism. We propose that this change in spatiotemporal signaling underlies the physiologic effects of GIPR-Q350/4 and GIPR-E350/4 in mice and humans. These findings contribute to a more complete understanding of the impact of GIPR-Q354 variant on glucose homeostasis that could perhaps be leveraged to enhance pharmacologic targeting of GIPR for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Lucie Yammine
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Belén Picatoste
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Nazish Abdullah
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Rosemary A Leahey
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Emma F Johnson
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Nicolás Gómez-Banoy
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Carolina Rosselot
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jennifer Wen
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Tahmina Hossain
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | | | - James C Lo
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Adolfo Garcia-Ocaña
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA; Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
42
|
Li H, Zou Q, Wang X. Bisdemethoxycurcumin alleviates LPS-induced acute lung injury via activating AMPKα pathway. BMC Pharmacol Toxicol 2023; 24:63. [PMID: 37986186 PMCID: PMC10662695 DOI: 10.1186/s40360-023-00698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
OBJECTIVE Inflammation and oxidative stress contribute to the pathogenesis of acute lung injury (ALI), and subsequently result in rapid deterioration in health. Considering the indispensable role of bisdemethoxycurcumin (BDMC) in inflammation and oxidative stress, the present study aims to examine the effect of BDMC on sepsis-related ALI. METHODS C57BL/6 mice were administered with BDMC (100 mg/kg) or an equal volume of vehicle, and then injected with lipopolysaccharides (LPS) to induce ALI. We assessed the parameters of lung injury, inflammatory response and oxidative stress in lung tissues. Consistently, the macrophages with or without BDMC treatment were exposed to LPS to verify the effect of BDMC in vitro. RESULTS BDMC suppressed LPS-induced lung injury, inflammation and oxidative stress in vivo and in vitro. Mechanistically, BDMC increased the phosphorylation of AMPKα in response to LPS stimulation, and AMPK inhibition with Compound C almost completely blunted the protective effect of BDMC in LPS-treated mice and macrophages. Moreover, we demonstrated that BDMC activated AMPKα via the cAMP/Epac pathway. CONCLUSION Our study identifies the protective effect of BDMC against LPS-induced ALI, and the underlying mechanism may be related to the activation of cAMP/Epac/AMPKα signaling pathway.
Collapse
Affiliation(s)
- Huifang Li
- Department of respiration medicine, Huangzhou District People's Hospital, Huanggang, 438000, Hubei, China
| | - Qi Zou
- Department of respiration medicine, Huangzhou District People's Hospital, Huanggang, 438000, Hubei, China
| | - Xueming Wang
- Department of intensive care unit, Huangzhou District People's Hospital, Zhonghuan Road 31, Huanggang, 438000, Hubei, China.
| |
Collapse
|
43
|
Chen YY, Li BP, Wang JF, Wang Y, Luo SS, Lin RJ, Liao XW, Chen JQ. Investigating the prognostic and predictive value of the type II cystatin genes in gastric cancer. BMC Cancer 2023; 23:1122. [PMID: 37978366 PMCID: PMC10657128 DOI: 10.1186/s12885-023-11550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that type II cystatin (CST) genes play a pivotal role in several tumor pathological processes, thereby affecting all stages of tumorigenesis and tumor development. However, the prognostic and predictive value of type II CST genes in GC has not yet been investigated. METHODS The present study evaluated the expression and prognostic value of type II CST genes in GC by using The Cancer Genome Atlas (TCGA) database and the Kaplan-Meier plotter (KM plotter) online database. The type II CST genes related to the prognosis of GC were then screened out. We then validated the expression and prognostic value of these genes by immunohistochemistry. We also used Database for Annotation, Visualization, and Integrated Discovery (DAVID), Gene Multiple Association Network Integration Algorithm (GeneMANIA), Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), nomogram, genome-wide co-expression analysis, and other bioinformatics tools to analyze the value of type II CST genes in GC and the underlying mechanism. RESULTS The data from the TCGA database and the KM plotter online database showed that high expression of CST2 and CST4 was associated with the overall survival (OS) of patients with GC. The immunohistochemical expression analysis showed that patients with high expression of CST4 in GC tissues have a shorter OS than those with low expression of CST4 (HR = 1.85,95%CI: 1.13-3.03, P = 0.015). Multivariate Cox regression analysis confirmed that the high expression level of CST4 was an independent prognostic risk factor for OS. CONCLUSIONS Our findings suggest that CST4 could serve as a tumor marker that affects the prognosis of GC and could be considered as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Ye-Yang Chen
- Department of General Surgery, The First People's Hospital of Yulin, Yulin, China
| | - Bo-Pei Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Fu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shan-Shan Luo
- Department of Colorectal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Ru-Jing Lin
- Department of General Surgery, The People's Hospital of Binyang, Nanning, China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
44
|
Lezoualc'h F, Nikolaev VO. Receptor-Specific Inside-Out cAMP Signaling Regulates Cardiomyocyte Fate. Circ Res 2023; 133:924-926. [PMID: 37943945 DOI: 10.1161/circresaha.123.323754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Affiliation(s)
- Frank Lezoualc'h
- Institute of Metabolic and Cardiovascular Disease, INSERM, Université de Toulouse III-Paul Sabatier, UMR-1297, Toulouse, France (F.L.)
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.)
| |
Collapse
|
45
|
Elnagdy M, Wang Y, Rodriguez W, Zhang J, Bauer P, Wilkey DW, Merchant M, Pan J, Farooqui Z, Cannon R, Rai S, Maldonado C, Barve S, McClain CJ, Gobejishvili L. Increased expression of phosphodiesterase 4 in activated hepatic stellate cells promotes cytoskeleton remodeling and cell migration. J Pathol 2023; 261:361-371. [PMID: 37735782 PMCID: PMC10653049 DOI: 10.1002/path.6194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/24/2023] [Accepted: 07/30/2023] [Indexed: 09/23/2023]
Abstract
Activation and transdifferentiation of hepatic stellate cells (HSC) into migratory myofibroblasts is a key process in liver fibrogenesis. Cell migration requires an active remodeling of the cytoskeleton, which is a tightly regulated process coordinated by Rho-specific guanine nucleotide exchange factors (GEFs) and the Rho family of small GTPases. Rho-associated kinase (ROCK) promotes assembly of focal adhesions and actin stress fibers by regulating cytoskeleton organization. GEF exchange protein directly activated by cAMP 1 (EPAC1) has been implicated in modulating TGFβ1 and Rho signaling; however, its role in HSC migration has never been examined. The aim of this study was to evaluate the role of cAMP-degrading phosphodiesterase 4 (PDE4) enzymes in regulating EPAC1 signaling, HSC migration, and fibrogenesis. We show that PDE4 protein expression is increased in activated HSCs expressing alpha smooth muscle actin and active myosin light chain (MLC) in fibrotic tissues of human nonalcoholic steatohepatitis cirrhosis livers and mouse livers exposed to carbon tetrachloride. In human livers, TGFβ1 levels were highly correlated with PDE4 expression. TGFβ1 treatment of LX2 HSCs decreased levels of cAMP and EPAC1 and increased PDE4D expression. PDE4 specific inhibitor, rolipram, and an EPAC-specific agonist decreased TGFβ1-mediated cell migration in vitro. In vivo, targeted delivery of rolipram to the liver prevented fibrogenesis and collagen deposition and decreased the expression of several fibrosis-related genes, and HSC activation. Proteomic analysis of mouse liver tissues identified the regulation of actin cytoskeleton by the kinase effectors of Rho GTPases as a major pathway impacted by rolipram. Western blot analyses confirmed that PDE4 inhibition decreased active MLC and endothelin 1 levels, key proteins involved in cytoskeleton remodeling and contractility. The current study, for the first time, demonstrates that PDE4 enzymes are expressed in hepatic myofibroblasts and promote cytoskeleton remodeling and HSC migration. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mohamed Elnagdy
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Yali Wang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Walter Rodriguez
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - JingWen Zhang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Philip Bauer
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
- EndoProtech, Inc., Louisville, Kentucky, USA
| | - Daniel W. Wilkey
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Michael Merchant
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Jianmin Pan
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Kentucky, USA
| | - Zainab Farooqui
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Robert Cannon
- Department of Surgery, School of Medicine, University of Louisville, Kentucky, USA
| | - Shesh Rai
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Kentucky, USA
| | - Claudio Maldonado
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
- EndoProtech, Inc., Louisville, Kentucky, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Craig J. McClain
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
- Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
| |
Collapse
|
46
|
Lyons AC, Mehta S, Zhang J. Fluorescent biosensors illuminate the spatial regulation of cell signaling across scales. Biochem J 2023; 480:1693-1717. [PMID: 37903110 PMCID: PMC10657186 DOI: 10.1042/bcj20220223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023]
Abstract
As cell signaling research has advanced, it has become clearer that signal transduction has complex spatiotemporal regulation that goes beyond foundational linear transduction models. Several technologies have enabled these discoveries, including fluorescent biosensors designed to report live biochemical signaling events. As genetically encoded and live-cell compatible tools, fluorescent biosensors are well suited to address diverse cell signaling questions across different spatial scales of regulation. In this review, methods of examining spatial signaling regulation and the design of fluorescent biosensors are introduced. Then, recent biosensor developments that illuminate the importance of spatial regulation in cell signaling are highlighted at several scales, including membranes and organelles, molecular assemblies, and cell/tissue heterogeneity. In closing, perspectives on how fluorescent biosensors will continue enhancing cell signaling research are discussed.
Collapse
Affiliation(s)
- Anne C. Lyons
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
47
|
Wang Y, Chen L, Chen J, Bai Z, Cao L. Comprehensive analysis of transcriptome data and experimental identification show that solute carrier 35 member A2 (SLC35A2) is a prognostic marker of colorectal cancer. Aging (Albany NY) 2023; 15:11554-11570. [PMID: 37889544 PMCID: PMC10637800 DOI: 10.18632/aging.205145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a solid tumor with high morbidity and mortality rates. Accumulating evidence shows that the soluble carrier family 35 member A2 (SLC35A2), a nucleotide sugar transporter, plays a key role in the pathogenesis of various tumors. However, its expression and function in CRC has not been fully elucidated. METHODS The prognosis-related gene SLC35A2 was obtained using differential analysis, prognosis correlation analysis, and LASSO regression screening. Its expression levels in CRC tissues were analyzed, and so was the relationship of this expression with clinical characteristics of patients. Subsequently, the expression levels were correlated with clinicopathological parameters using immunohistochemical analysis. Analysis based on GO/KEGG databases was used to reveal the potential mechanisms of SLC35A2. Next, we explored the relationship between SLC35A2 and immune cells in CRC tissues. A nomogram was created to help understand the prognosis of CRC patients. Finally, western blotting and qRT-PCR reaction were used to verify the expression of SLC35A2 in CRC cell lines. RESULTS SLC35A2 expression was upregulated and related to tumor pathological stage and lymph node metastasis, indicating that SLC35A2 is an independent prognostic factor and a potential diagnostic marker for CRC. We verified by IHC, WB and PCR that the expression of SLC35A2 was up-regulated in colorectal cancer tissues and cell lines, and its high expression was related to the tumor pathological stage of CRC clinical samples. CONCLUSIONS Our study found that SLC35A2 can be used as a biomarker for the diagnosis and prognosis of CRC, providing motivation for further study.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Liang Chen
- First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Jing Chen
- Department of Pathology, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, People’s Republic of China
| | - Zhenzhen Bai
- Department of Pathology, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, People’s Republic of China
| | - Liyu Cao
- Department of Pathology, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, People’s Republic of China
| |
Collapse
|
48
|
Lin H, Cheng S, Yang S, Zhang Q, Wang L, Li J, Zhang X, Liang L, Zhou X, Yang F, Song J, Cao X, Yang W, Weng Z. Isoforskolin modulates AQP4-SPP1-PIK3C3 related pathway for chronic obstructive pulmonary disease via cAMP signaling. Chin Med 2023; 18:128. [PMID: 37817209 PMCID: PMC10566078 DOI: 10.1186/s13020-023-00778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Cyclic adenosine monophosphate (cAMP) levels are directly activated by adenylate cyclase (AC) and play an anti-inflammatory role in chronic obstructive pulmonary disease (COPD). Previously, we have shown that isoforskolin (ISOF) can effectively activate AC1 and AC2 in vitro, improve pulmonary ventilation and reduce the inflammatory response in COPD model rats, supporting that ISOF may be a potential drug for the prevention and treatment of COPD, but the mechanism has not been explored in detail. METHODS The potential pharmacological mechanisms of ISOF against COPD were analyzed by network pharmacology and multi-omics based on pharmacodynamic study. To use specific agonists, inhibitors and/or SiRNA for gene regulation function studies, combined qPCR, WB were applied to detect changes in mRNA and protein expression of important targets PIK3C3, AKT, mTOR, SPP1 and AQP4 which related to ISOF effect on COPD. And the key inflammatory factors detected by ELISA. RESULTS Bioinformatics suggested that the anti-COPD pharmacological mechanism of ISOF was related to PI3K-AKT signaling pathway, and suggested target protein like PIK3C3, AQP4, SPP1, AKT, mTOR. Using the AQP4 inhibitor,or inhibiting SPP1 expression by siRNA-SPP1 could block the PIK3C3-AKT-mTOR pathway and ameliorate chronic inflammation. ISOF showed cAMP-promoting effect then suppressed AQP4 expression, together with decreased level of IL-1β, IL-6, and IL-8. CONCLUSIONS These findings demonstrate ISOF controlled the cAMP-regulated PIK3C3-AKT-mTOR pathway, thereby alleviating inflammatory development in COPD. The cAMP/AQP4/PIK3C3 axis also modulate Th17/Treg differentiation, revealed potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Haochang Lin
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Sha Cheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, Guizhou, China
| | - Songye Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Qian Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Lueli Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Jiangya Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Xinyue Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Liju Liang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Xiaoqian Zhou
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Furong Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Jingfeng Song
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
| | - Xue Cao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, 650500, China.
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
| | - Zhiying Weng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
| |
Collapse
|
49
|
Montoya-Durango D, Walter MN, Rodriguez W, Wang Y, Chariker JH, Rouchka EC, Maldonado C, Barve S, McClain CJ, Gobejishvili L. Dysregulated Cyclic Nucleotide Metabolism in Alcohol-Associated Steatohepatitis: Implications for Novel Targeted Therapies. BIOLOGY 2023; 12:1321. [PMID: 37887031 PMCID: PMC10604143 DOI: 10.3390/biology12101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Cyclic nucleotides are second messengers, which play significant roles in numerous biological processes. Previous work has shown that cAMP and cGMP signaling regulates various pathways in liver cells, including Kupffer cells, hepatocytes, hepatic stellate cells, and cellular components of hepatic sinusoids. Importantly, it has been shown that cAMP levels and enzymes involved in cAMP homeostasis are affected by alcohol. Although the role of cyclic nucleotide signaling is strongly implicated in several pathological pathways in liver diseases, studies describing the changes in genes regulating cyclic nucleotide metabolism in ALD are lacking. METHODS Male C57B/6 mice were used in an intragastric model of alcohol-associated steatohepatitis (ASH). Liver injury, inflammation, and fibrogenesis were evaluated by measuring plasma levels of injury markers, liver tissue cytokines, and gene expression analyses. Liver transcriptome analysis was performed to examine the effects of alcohol on regulators of cyclic AMP and GMP levels and signaling. cAMP and cGMP levels were measured in mouse livers as well as in livers from healthy human donors and patients with alcohol-associated hepatitis (AH). RESULTS Our results show significant changes in several phosphodiesterases (PDEs) with specificity to degrade cAMP (Pde4a, Pde4d, and Pde8a) and cGMP (Pde5a, Pde6d, and Pde9a), as well as dual-specificity PDEs (Pde1a and Pde10a) in ASH mouse livers. Adenylyl cyclases (ACs) 7 and 9, which are responsible for cAMP generation, were also affected by alcohol. Importantly, adenosine receptor 1, which has been implicated in the pathogenesis of liver diseases, was significantly increased by alcohol. Adrenoceptors 1 and 3 (Adrb), which couple with stimulatory G protein to regulate cAMP and cGMP signaling, were significantly decreased. Additionally, beta arrestin 2, which interacts with cAMP-specific PDE4D to desensitize G-protein-coupled receptor to generate cAMP, was significantly increased by alcohol. Notably, we observed that cAMP levels are much higher than cGMP levels in the livers of humans and mice; however, alcohol affected them differently. Specifically, cGMP levels were higher in patients with AH and ASH mice livers compared with controls. As expected, these changes in liver cyclic nucleotide signaling were associated with increased inflammation, steatosis, apoptosis, and fibrogenesis. CONCLUSIONS These data strongly implicate dysregulated cAMP and cGMP signaling in the pathogenesis of ASH. Future studies to identify changes in these regulators in a cell-specific manner could lead to the development of novel targeted therapies for ASH.
Collapse
Affiliation(s)
- Diego Montoya-Durango
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
| | - Mary Nancy Walter
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
| | - Walter Rodriguez
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
| | - Yali Wang
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
| | - Julia H. Chariker
- Department of Neuroscience Training, University of Louisville, Louisville, KY 40290, USA;
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40290, USA;
| | - Eric C. Rouchka
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40290, USA;
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Claudio Maldonado
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
| | - Shirish Barve
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (S.B.); (C.J.M.)
- Alcohol Research Center, University of Louisville, Louisville, KY 40290, USA
| | - Craig J. McClain
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (S.B.); (C.J.M.)
- Alcohol Research Center, University of Louisville, Louisville, KY 40290, USA
- Robley Rex VA Medical Center, Louisville, KY 40206, USA
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY 40290, USA
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (S.B.); (C.J.M.)
- Alcohol Research Center, University of Louisville, Louisville, KY 40290, USA
| |
Collapse
|
50
|
Wadud MA, Karal MAS, Moniruzzaman M, Rashid MMO. Effects of membrane potentials on the electroporation of giant unilamellar vesicles. PLoS One 2023; 18:e0291496. [PMID: 37699026 PMCID: PMC10497157 DOI: 10.1371/journal.pone.0291496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Living organisms maintain a resting membrane potential, which plays an important role in various biophysical and biological processes. In the context of medical applications, irreversible electroporation (IRE) is a non-thermal and minimally invasive technique that utilizes precisely controlled electric field pulses of micro- to millisecond durations to effectively ablate cancer and tumor cells. Previous studies on IRE-induced rupture of cell-mimetic giant unilamellar vesicles (GUVs) have primarily been conducted in the absence of membrane potentials. In this study, we investigated the electroporation of GUVs, including parameters such as the rate constant of rupture and the probability of rupture, in the presence of various negative membrane potentials. The membranes of GUVs were prepared using lipids and channel forming proteins. As the membrane potential increased from 0 to -90 mV, the rate constant of rupture showed a significant increase from (7.5 ± 1.6)×10-3 to (35.6 ± 5.5)×10-3 s-1. The corresponding probability of rupture also exhibited a notable increase from 0.40 ± 0.05 to 0.68 ± 0.05. To estimate the pore edge tension, the electric tension-dependent logarithm of the rate constant was fitted with the Arrhenius equation for different membrane potentials. The presence of membrane potential did not lead to any significant changes in the pore edge tension. The increase in electroporation is reasonably explained by the decrease in the prepore free energy barrier. The choice of buffer used in GUVs can significantly influence the kinetics of electroporation. This study provides valuable insights that can contribute to the application of electroporation techniques in the biomedical field.
Collapse
Affiliation(s)
- Md. Abdul Wadud
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | | | - Md. Moniruzzaman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Mamun Or Rashid
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|