1
|
Yu SP, Choi E, Jiang MQ, Wei L. Acute and chronic excitotoxicity in ischemic stroke and late-onset Alzheimer's disease. Neural Regen Res 2025; 20:1981-1988. [PMID: 39101641 PMCID: PMC11691467 DOI: 10.4103/nrr.nrr-d-24-00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals. The comorbidity of the two neurological disorders represents a grave health threat to older populations. This review presents a brief background of the development of novel concepts and their clinical potentials. The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca 2+ influx is critical for neuronal function. An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca 2+ mainly via N-methyl-D-aspartate receptors, particularly of those at the extrasynaptic site. This Ca 2+ -evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity. Furthermore, mild but sustained Ca 2+ increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic, but gradually set off deteriorating Ca 2+ -dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways. Based on the Ca 2+ hypothesis of Alzheimer's disease and recent advances, this Ca 2+ -activated "silent" degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis. The N-methyl-D-aspartate receptor subunit GluN3A, primarily at the extrasynaptic site, serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity. Ischemic stroke and Alzheimer's disease, therefore, share an N-methyl-D-aspartate receptor- and Ca 2+ -mediated mechanism, although with much different time courses. It is thus proposed that early interventions to control Ca 2+ homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia. This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Emily Choi
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Q. Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Mercado-Ayón E, Talgo E, Flatley L, Coulman J, Lynch DR. Neurochemical alterations in the cerebellum of Friedreich's Ataxia mouse models. Exp Neurol 2025; 386:115176. [PMID: 39904419 DOI: 10.1016/j.expneurol.2025.115176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by frataxin deficiency. Neurological deficits remain the ubiquitous feature of FRDA and include progressive ataxia and dysarthria, both of which are controlled to a large degree by the cerebellum. The precise impact of frataxin deficiency on the cerebellum including Purkinje cells remains unclear. In the present work, we examined the biochemical and structural properties of the cerebellum and Purkinje cells in the doxycycline-inducible (FRDAkd) and the Knock-in/Knockout (KIKO) mouse models of FRDA. Acute systemic knockdown of frataxin in FRDAkd mice and chronic frataxin deficiency in KIKO leads to a significant decrease in levels of AMPA receptors, particularly GluR2, and an increase in glial glutamate transporters. Significant astroglial accumulation occurred in KIKO cerebellum but not in FRDAkd mice. Purkinje cell dendritic arbors in the molecular layer did not change compared to wildtype in either model. The Purkinje cell postsynaptic receptor NMDAR1 significantly decreased only in the FRDAkd cerebellum while other NMDA receptor subunits, largely found in non-Purkinje cells, did not change. Overall, we observed dysregulated levels of glutamate receptors and transporters in the KIKO and FRDAkd mice models of Friedreich ataxia, suggesting the importance of frataxin in maintaining Purkinje cells and cerebellar integrity along with synaptic properties. These results point to conserved but not identical synaptic features between the models that may represent markers or conceivably targets in human FRDA.
Collapse
Affiliation(s)
- Elizabeth Mercado-Ayón
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - Ellarie Talgo
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Liam Flatley
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Jennifer Coulman
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - David R Lynch
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Lu X, Ren H, Chen H, Shi G, Luo X, Liu K, Zhao Q, Zhao D, Li C, Bu W. Effects of Electroacupuncture on Syt3 and GluA2 in Rats With Limb Spasms After Intracerebral Hemorrhage. Brain Behav 2025; 15:e70366. [PMID: 40021946 PMCID: PMC11870825 DOI: 10.1002/brb3.70366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Clinical studies have confirmed that electroacupuncture (EA) has the potential to improve spasticity after intracerebral hemorrhage (ICH), yet its precise mechanism remains unclear. Synaptotagmin-3 (SYT-3), by mediating the internalization of the glutamate AMPA receptor GLUA2, may be related to EA's mechanism. This study aims to explore the mechanism by which EA improves limb spasticity after ICH, providing scientific evidence for its clinical application. METHODS ICH models were established using stereotaxic injection of autologous tail blood into the right striatum. SD rats were randomly divided into Sham, ICH, ICH + SCRAMBLE, EA, and ICH + TAT-GLUA2-3Y groups. Rats in the EA group received 30 min of EA treatment daily after ICH. Muscle tone, neurological deficits, and motor function were assessed. After 3 and 7 days of intervention, the motor cortex was dissected for Western blot analysis of SYT-3, GLUA2, and P-GLUA2-Ser880 expression. Immunoprecipitation was used to detect the interaction between SYT-3 and GLUA2. Nissl staining and NeuN staining were employed to evaluate brain damage. Fluorescence double-labeling technique was used to observe the expression of SYT-3 and GLUA2 in the cell membrane and cytoplasm. Transmission electron microscopy was utilized to examine the microstructure of neurons and synapses. RESULTS Compared to the ICH group, rats in the EA group showed reduced muscle tone in the left limbs and significant improvement in neurological deficits and motor function. In the ICH + TAT-GLUA2-3Y group, the binding of SYT-3 and GLUA2 was inhibited, spastic symptoms were alleviated, and membrane expression of GLUA2 increased. In the EA group, SYT-3 levels were significantly reduced, GLUA2 expression increased in the membrane and cytoplasm, and P-GLUA2-Ser880 expression decreased. Rats in the EA group showed increased neuron numbers, normal mitochondrial morphology, and improved synaptic structure in Nissl staining, immunofluorescence, and transmission electron microscopy. CONCLUSION EA effectively improves limb spasticity following ICH by inhibiting the SYT-3/GLUA2 pathway.
Collapse
Affiliation(s)
- Xudong Lu
- Basic Medical CollegeHebei Medical UniversityShijiazhuangChina
- Department of NeurosurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Huiling Ren
- Department of NeurologyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Hequn Chen
- Department of NeurosurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Guosheng Shi
- Department of NeurosurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xuanbo Luo
- Department of NeurosurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Kai Liu
- Department of NeurosurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Qinglin Zhao
- Department of NeurosurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Dawei Zhao
- Department of NeurosurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Changfa Li
- Department of AcupunctureThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Wei Bu
- Department of NeurosurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
4
|
Liu X, Huang Y, Mu L, Friedman V, Kelly TJ, Hu Y, Yuan D, Liu QS. Epac2-mediated synaptic insertion of Ca 2+-permeable AMPARs in the nucleus accumbens contributes to incubation of cocaine craving. Neuropsychopharmacology 2025; 50:620-629. [PMID: 39702576 PMCID: PMC11845495 DOI: 10.1038/s41386-024-02030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
The accumulation of GluA2-lacking Ca2+-permeable AMPARs (CP-AMPARs) in the medium spiny neurons (MSNs) of the nucleus accumbens (NAc) is required for the expression of incubation of cocaine craving. The exchange protein directly activated by cAMP (Epac) is an intracellular effector of cAMP and a guanine nucleotide exchange factor for the small GTPase Rap1. Epac2 has been implicated in the trafficking of AMPA receptors at central synapses. We tested the hypothesis that Epac2 activation contributes to the accumulation of CP-AMPARs in NAc MSNs and incubation of cocaine craving. Here we demonstrate that the selective Epac2 agonist S-220 facilitated the synaptic insertion of GluA2-lacking CP-AMPARs at excitatory synapses onto NAc MSNs. In addition, prolonged abstinence from cocaine self-administration in rats resulted in elevated Rap1-GTP levels in the NAc, implying that Epac2 is activated during incubation. Importantly, we show that AAV-mediated shRNA knockdown of Epac2 in the NAc core attenuated the accumulation of CP-AMPARs and cue-induced drug-seeking behavior after prolonged abstinence from cocaine self-administration. In contrast, acute pharmacological inhibition of Epac2 with the selective Epac2 inhibitor ESI-05 did not alter CP-AMPARs that had already accumulated during incubation, and intra-NAc application of ESI-05 did not significantly affect cue-induced drug seeking following prolonged abstinence. Taken together, these results suggest that Epac2 activation during the period of incubation, but not during cue-induced drug seeking, leads to the accumulation of CP-AMPARs in NAc MSNs, which in turn contributes to incubation of cocaine craving.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Yao Huang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thomas J Kelly
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ying Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dong Yuan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
5
|
Guo Q. Quantitative analysis of the interaction between NMDA and AMPA receptors in glutamatergic synapses based on mathematical model. Neurosci Res 2025; 212:127-135. [PMID: 39427699 DOI: 10.1016/j.neures.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
NMDA and AMPA receptors are co-localized at most glutamatergic synapses, where their numbers and distribution undergo dynamic changes. Glutamate binds to both the NMDA and AMPA receptors. Initially, I investigated whether there is competition between AMPA receptors and N-methyl-D-aspartic acid (NMDA) receptors for glutamate. Subsequently, I examined how these dynamic receptor changes affect synaptic response. To test the hypothesis, a synaptic model incorporating coexisting NMDA and AMPA receptors within the postsynaptic density (PSD) was developed. During long-term potentiation (LTP) induction, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the PSD increase. If there is competition for glutamate between AMPA receptors and NMDA receptors, the number of activated NMDA receptor channels will decrease. Since LTP induction relies on the activation of NMDA receptors, reducing their activation will raise the threshold for LTP induction. Consequently, the LTP of the synapse itself can establish negative feedback, preventing excessive dynamics and maintaining the stability of the neural network.
Collapse
Affiliation(s)
- Qingchen Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
6
|
Levinstein MR, Budinich RC, Bonaventura J, Schatzberg AF, Zarate CA, Michaelides M. Redefining Ketamine Pharmacology for Antidepressant Action: Synergistic NMDA and Opioid Receptor Interactions? Am J Psychiatry 2025; 182:247-258. [PMID: 39810555 PMCID: PMC11872000 DOI: 10.1176/appi.ajp.20240378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Ketamine is a racemic compound and medication comprised of (S)-ketamine and (R)-ketamine enantiomers and its metabolites. It has been used for decades as a dissociative anesthetic, analgesic, and recreational drug. More recently, ketamine, its enantiomers, and its metabolites have been used or are being investigated for the treatment of refractory depression, as well as for comorbid disorders such as anxiety, obsessive-compulsive, and opioid use disorders. Despite its complex pharmacology, ketamine is referred to as an N-methyl-d-aspartate (NMDA) receptor antagonist. In this review, the authors argue that ketamine's pharmacology should be redefined to include opioid receptors and the endogenous opioid system. They also highlight a potential mechanism of action of ketamine for depression that is attributed to bifunctional, synergistic interactions involving NMDA and opioid receptors.
Collapse
Affiliation(s)
- Marjorie R. Levinstein
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Section, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Reece C. Budinich
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Section, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Jordi Bonaventura
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L’Hospitalet de Llobregat
- Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat
| | - Alan F. Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Carlos A. Zarate
- Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Michael Michaelides
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Section, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Bischoff FP, Van Brandt S, Viellevoye M, De Cleyn M, Surkyn M, Carbajo RJ, Dominguez Blanco M, Wroblowski B, Karpowich NK, Steele RA, Schalk-Hihi C, Miller R, Duda D, Shaffer P, Ballentine S, Simavorian S, Lord B, Neff RA, Bonaventure P, Gijsen HJM. Design, Synthesis, and Characterization of GluN2A Negative Allosteric Modulators Suitable for In Vivo Exploration. J Med Chem 2025; 68:4672-4693. [PMID: 39960408 DOI: 10.1021/acs.jmedchem.4c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
N-Methyl-d-aspartate receptors are ionotropic glutamate receptors that mediate fast excitatory neurotransmission in the central nervous system. These receptors play essential roles in synaptic plasticity, learning, and memory and are implicated in various neuropathological and psychiatric disorders. Selective modulation of NMDAR subtypes, particularly GluN2A, has proven challenging. The TCN-201 derivatives MPX-004 and MPX-007 are potent and selective for GluN2A receptors, yet their physical properties limit their in vivo utility. In this study, we optimized the MPX-004/MPX-007 scaffold by modifying the linker region between the distal halogenated aromatic ring and the central pyrazine nucleus, resulting in the identification of potent and selective compounds with improved drug-like properties. Notably, compound 1 was used to develop the first GluN2A NAM-based radioligand, and compound 11 showed improved pharmacokinetics and dose-dependent receptor occupancy in vivo. Thus, we provide an array of powerful new tools for the study of GluN2A receptors.
Collapse
Affiliation(s)
- François P Bischoff
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Sven Van Brandt
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Marcel Viellevoye
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Michel De Cleyn
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Michel Surkyn
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Rodrigo J Carbajo
- Janssen Research & Development, Janssen Cilag, Calle Jarama 75, 45007 Toledo, Spain
| | - Maria Dominguez Blanco
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Berthold Wroblowski
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Nathan K Karpowich
- Janssen Research & Development, LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Ruth A Steele
- Janssen Research & Development, LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Celine Schalk-Hihi
- Janssen Research & Development, LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Robyn Miller
- Janssen Research & Development, LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - David Duda
- Janssen Research & Development, LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Paul Shaffer
- Janssen Research & Development, LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Scott Ballentine
- Janssen Research & Development, LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Sirak Simavorian
- Janssen Research & Development, LLC, 3210 Merryfield Row, La Jolla, California 92121, United States
| | - Brian Lord
- Janssen Research & Development, LLC, 3210 Merryfield Row, La Jolla, California 92121, United States
| | - Robert A Neff
- Janssen Research & Development, LLC, 3210 Merryfield Row, La Jolla, California 92121, United States
| | - Pascal Bonaventure
- Janssen Research & Development, LLC, 3210 Merryfield Row, La Jolla, California 92121, United States
| | - Harrie J M Gijsen
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
8
|
Banzato M, Furlan A, Locatelli P, Sgrignani J, Ongaro A, Dolmella A, De Martin S, Comai S, Cavalli A, Inturrisi C, Bettini E, Manfredi PL, Mattarei A. New Synthesis and Pharmacological Evaluation of Enantiomerically Pure ( R)- and ( S)-Methadone Metabolites as N-Methyl-d-aspartate Receptor Antagonists. J Med Chem 2025. [PMID: 39999356 DOI: 10.1021/acs.jmedchem.4c02605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
N-Methyl-d-aspartate receptor (NMDAR) is gaining increasing interest as a pharmacological target for the development of fast-acting antidepressants. (S)-Methadone (esmethadone), has recently shown promising efficacy for the treatment of major depressive disorder. However, methods for its enantiopure preparation still rely on complex and expensive resolution procedures. In addition, enantiopure methadone metabolites have never been evaluated for their NMDAR activity. Here, we report the development of a novel chiral pool approach, based on cyclic sulfamidate ring-opening reaction, for the asymmetric synthesis of (R)- and (S)-methadone, and the application of this methodology to the stereodivergent synthesis of 20 enantiopure methadone metabolites. The compounds were evaluated for their NMDAR antagonism and for their affinity toward a series of relevant CNS receptors. Strikingly, N-demethylated (6R)-methadol metabolites retain the higher NMDAR uncompetitive antagonism of (R)-methadone, while presenting lower opioid receptor affinity compared to (S)-methadone. These compounds could represent novel candidates for drug development in CNS disorders.
Collapse
Affiliation(s)
- Marco Banzato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
| | - Alberto Furlan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
- Institute for Research in Biomedicine, Via Chiesa 5, 6500 Bellinzona, Switzerland
| | - Patrizia Locatelli
- Institute for Research in Biomedicine, Via Chiesa 5, 6500 Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Via Chiesa 5, 6500 Bellinzona, Switzerland
| | - Alberto Ongaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
| | - Alessandro Dolmella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padua, Italy
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada
- IRCSS San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Via Chiesa 5, 6500 Bellinzona, Switzerland
| | | | - Ezio Bettini
- In Vitro Pharmacology Department, Aptuit, An Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Paolo L Manfredi
- Relmada Therapeutics, Coral Gables, Florida 33134, United States
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
| |
Collapse
|
9
|
Hassan A, di Vito R, Nuzzo T, Vidali M, Carlini MJ, Yadav S, Yang H, D'Amico A, Kolici X, Valsecchi V, Panicucci C, Pignataro G, Bruno C, Bertini E, Errico F, Pellizzoni L, Usiello A. Dysregulated balance of D- and L-amino acids modulating glutamatergic neurotransmission in severe spinal muscular atrophy. Neurobiol Dis 2025; 207:106849. [PMID: 40010612 DOI: 10.1016/j.nbd.2025.106849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by reduced expression of the survival motor neuron (SMN) protein. In addition to motor neuron survival, SMN deficiency affects the integrity and function of afferent synapses that provide glutamatergic excitatory drive essential for motor neuron firing and muscle contraction. However, it is unknown whether deficits in the metabolism of excitatory amino acids and their precursors contribute to neuronal dysfunction in SMA. To address this issue, we measured the levels of the main neuroactive D- and L-amino acids acting on glutamatergic receptors in the central nervous system of SMN∆7 mice as well as the cerebrospinal fluid (CSF) of SMA patients of varying severity before and after treatment with the SMN-inducing drug Nusinersen. Our findings reveal that SMN deficiency is associated with disruption of glutamate and serine metabolism in the CSF of severe SMA patients, including decreased concentration of L-glutamate, which is partially corrected by Nusinersen therapy. Moreover, we identify dysregulated l-glutamine/L-glutamate ratio as a shared neurochemical signature of altered glutamatergic synapse metabolism that implicates neuron-astrocyte dysfunction in both severe SMA patients and mouse models. Lastly, consistent with hypo-glutamatergic neurotransmission in SMA, we show that daily supplementation with the NMDA receptor co-agonist d-serine improves neurological deficits in SMN∆7 mice. Altogether, these findings provide direct evidence for central dysregulation of D- and L-amino acid metabolism linked to glutamatergic neurotransmission in severe SMA and have potential implications for treating this neurological disorder.
Collapse
Affiliation(s)
- Amber Hassan
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate "Franco Salvatore", 80145 Naples, Italy; European School of Molecular medicine, University of Milan, Milan, Italy
| | - Raffaella di Vito
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate "Franco Salvatore", 80145 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Tommaso Nuzzo
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate "Franco Salvatore", 80145 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Matteo Vidali
- Clinical Pathology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | - Shubhi Yadav
- Department of Neurology, Columbia University, New York, NY, USA
| | - Hua Yang
- Department of Neurology, Columbia University, New York, NY, USA
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Dept. Neurosciences, Bambino Gesu' Children's Hospital IRCCS, Roma, Italy
| | - Xhesika Kolici
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy; School of Advanced Studies, Centre for Neuroscience, University of Camerino, Italy
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health - DINOGMI, University of Genova, Genova, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Dept. Neurosciences, Bambino Gesu' Children's Hospital IRCCS, Roma, Italy
| | - Francesco Errico
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate "Franco Salvatore", 80145 Naples, Italy; Department of Agricultural Sciences, University of Naples "Federico II", Portici 80055, Italy
| | - Livio Pellizzoni
- Department of Neurology, Columbia University, New York, NY, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Alessandro Usiello
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate "Franco Salvatore", 80145 Naples, Italy; European School of Molecular medicine, University of Milan, Milan, Italy; Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|
10
|
Capó T, Rebassa JB, Raïch I, Lillo J, Badia P, Navarro G, Reyes-Resina I. Future Perspectives of NMDAR in CNS Disorders. Molecules 2025; 30:877. [PMID: 40005187 PMCID: PMC11857888 DOI: 10.3390/molecules30040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Neurodegenerative diseases such as Alzheimer's and Parkinson's diseases are among the leading causes of physical and cognitive disability across the globe. Fifty million people worldwide suffer these diseases, and that number is expected to rise as the population ages. Ictus is another pathology that also courses with neurodegeneration and is a leading cause of mortality and long-term disability in developed countries. Schizophrenia is not as common as other mental disorders, affecting approximately 24 million people worldwide. All these disorders have in common that still there is not an effective pharmacological treatment to cure them. The N-methyl-D-aspartate (NMDA) receptor (NMDAR) has attracted attention as a potential therapeutic target due to its important role in learning and memory and also due to its implication in excitotoxicity processes. Some drugs targeting NMDARs are already being used to treat symptoms of disorders affecting the central nervous system (CNS). Here, we aim to review the implications of NMDAR in these CNS pathologies, its role as a potential therapeutic target, and the future perspectives for developing new treatments focused on these receptors.
Collapse
Affiliation(s)
- Toni Capó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Joan Biel Rebassa
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Iu Raïch
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Pau Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Irene Reyes-Resina
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| |
Collapse
|
11
|
Fu J, Wang R, He J, Liu X, Wang X, Yao J, Liu Y, Ran C, Ye Q, He Y. Pathogenesis and therapeutic applications of microglia receptors in Alzheimer's disease. Front Immunol 2025; 16:1508023. [PMID: 40028337 PMCID: PMC11867950 DOI: 10.3389/fimmu.2025.1508023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Microglia, the resident immune cells of the central nervous system, continuously monitor the brain's microenvironment through their array of specific receptors. Once brain function is altered, microglia are recruited to specific sites to perform their immune functions, including phagocytosis of misfolded proteins, cellular debris, and apoptotic cells to maintain homeostasis. When toxic substances are overproduced, microglia are over-activated to produce large amounts of pro-inflammatory cytokines, which induce chronic inflammatory responses and lead to neurotoxicity. Additionally, microglia can also monitor and protect neuronal function through microglia-neuron crosstalk. Microglia receptors are important mediators for microglia to receive external stimuli, regulate the functional state of microglia, and transmit signals between cells. In this paper, we first review the role of microglia-expressed receptors in the pathogenesis and treatment of Alzheimer's disease; moreover, we emphasize the complexity of targeting microglia for therapeutic interventions in neurodegenerative disorders to inform the discovery of new biomarkers and the development of innovative therapeutics.
Collapse
Affiliation(s)
- Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - RuoXuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - JiHui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - XiaoJing Liu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - JuMing Yao
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - ChongZhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - QingSong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Lucido MJ, Dunlop BW. Emerging Medications for Treatment-Resistant Depression: A Review with Perspective on Mechanisms and Challenges. Brain Sci 2025; 15:161. [PMID: 40002494 PMCID: PMC11853532 DOI: 10.3390/brainsci15020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Non-response to initial treatment options for major depressive disorder (MDD) is a common clinical challenge with profound deleterious impacts for affected patients. Few treatments have received regulatory approval for treatment-resistant depression (TRD). Methods: A systematic search of United States and European Union clinical trials registries was conducted to identify Phase II, III, or IV clinical trials, with a last update posted on or after 1 January 2020, that were evaluating medications for TRD. For both the US and EU registries, the condition term "treatment resistant depression" and associated lower-level terms (per registry search protocol) were used. For the US registry, a secondary search using the condition term "depressive disorders" and the modifying term "inadequate" was also performed to capture registrations not tagged as TRD. Two additional searches were also conducted in the US registry for the terms "suicide" and "anhedonia" as transdiagnostic targets of investigational medications. Trials were categorized based on the primary mechanism of action of the trial's investigational medication. Results: Fifty clinical trials for TRD, 20 for anhedonia, and 25 for suicide were identified. Glutamate system modulation was the mechanism currently with the most compounds in development, including antagonists and allosteric modulators of NMDA receptors, AMPA receptors, metabotropic type 2/3 glutamate receptors, and intracellular effector molecules downstream of glutamate signaling. Psychedelics have seen the greatest surge among mechanistic targets in the past 5 years, however, with psilocybin in particular garnering significant attention. Other mechanisms included GABA modulators, monoamine modulators, anti-inflammatory/immune-modulating agents, and an orexin type 2 receptor antagonist. Conclusions: These investigations offer substantial promise for more efficacious and potentially personalized medication approaches for TRD. Challenges for detecting efficacy in TRD include the heterogeneity within the TRD population stemming from the presumed variety of biological dysfunctions underlying the disorder, comorbid disorders, chronic psychosocial stressors, and enduring effects of prior serotonergic antidepressant medication treatments.
Collapse
Affiliation(s)
| | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA;
| |
Collapse
|
13
|
Choi H, An YK, Lee CJ, Song CU, Kim EJ, Lee CE, Cho SJ, Eyun SI. Genome assembly, gene content, and plastic gene expression responses to salinity changes in the Brackishwater Clam (Corbicula japonica) from a dynamic estuarine environment. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136627. [PMID: 39616841 DOI: 10.1016/j.jhazmat.2024.136627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 01/28/2025]
Abstract
Estuaries are dynamic transition zones between marine and freshwater environments, where salinity varies greatly on spatial and temporal scales. The temporal salinity fluctuations of these habitats require organisms to rapidly regulate ionic concentrations and osmotic pressure to survive in these dynamic conditions. Understanding the extent of plasticity of euryhaline animals is vital for predicting their responses and resilience to salinity change. We generated the first high-resolution genome and transcriptome sequences of C. japonica. In comparison with 11 other molluscan genomes, the C. japonica genome displayed striking expansions of putative neuron-related genes and gene families. The involvement of these genes in the glutamate/GABA-glutamine and glycine cycle suggests a possible contribution to the excitation of neuronal networks, particularly under high salinity conditions. This study contributes to our understanding of mechanisms underlying the rapid responses of estuarine species to changing conditions and raises many intriguing hypotheses and questions for future investigation.
Collapse
Affiliation(s)
- Hyeongwoo Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Yun Keun An
- Division of Marine Technology, Chonnam National University, Yeosu 59626, Korea
| | - Chan-Jun Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea
| | - Chi-Une Song
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Eun-Jeong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea.
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
14
|
Earnhardt-San AL, Baker EC, Cilkiz KZ, Cardoso RC, Ghaffari N, Long CR, Riggs PK, Randel RD, Riley DG, Welsh TH. Evaluation of Prenatal Transportation Stress on DNA Methylation (DNAm) and Gene Expression in the Hypothalamic-Pituitary-Adrenal (HPA) Axis Tissues of Mature Brahman Cows. Genes (Basel) 2025; 16:191. [PMID: 40004522 PMCID: PMC11855312 DOI: 10.3390/genes16020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The experience of prenatal stress results in various physiological disorders due to an alteration of an offspring's methylome and transcriptome. The objective of this study was to determine whether PNS affects DNA methylation (DNAm) and gene expression in the stress axis tissues of mature Brahman cows. Methods: Samples were collected from the paraventricular nucleus (PVN), anterior pituitary (PIT), and adrenal cortex (AC) of 5-year-old Brahman cows that were prenatally exposed to either transportation stress (PNS, n = 6) or were not transported (Control, n = 8). The isolated DNA and RNA samples were, respectively, used for methylation and RNA-Seq analyses. A gene ontology and KEGG pathway enrichment analysis of each data set within each sample tissue was conducted with the DAVID Functional Annotation Tool. Results: The DNAm analysis revealed 3, 64, and 99 hypomethylated and 2, 93, and 90 hypermethylated CpG sites (FDR < 0.15) within the PVN, PIT, and AC, respectively. The RNA-Seq analysis revealed 6, 25, and 5 differentially expressed genes (FDR < 0.15) in the PVN, PIT, and AC, respectively, that were up-regulated in the PNS group relative to the Control group, as well as 24 genes in the PIT that were down-regulated. Based on the enrichment analysis, several developmental and cellular processes, such as maintenance of the actin cytoskeleton, cell motility, signal transduction, neurodevelopment, and synaptic function, were potentially modulated. Conclusions: The methylome and transcriptome were altered in the stress axis tissues of mature cows that had been exposed to prenatal transportation stress. These findings are relevant to understanding how prenatal experiences may affect postnatal neurological functions.
Collapse
Affiliation(s)
- Audrey L. Earnhardt-San
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA
| | - Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Kubra Z. Cilkiz
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| |
Collapse
|
15
|
Zhan Z, Chen Z, Zheng X, Xie X, Li G, Chen H. Mouse Bladder Smooth Muscle Lack the Functional Active NMDAR. Neurourol Urodyn 2025; 44:480-488. [PMID: 39552551 DOI: 10.1002/nau.25631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
AIMS This study aimed to investigate the role of N-methyl-D-aspartate receptors (NMDARs) in bladder smooth muscle (BSM) function and their potential as therapeutic targets for overactive bladder conditions. METHODS We employed a multi-faceted approach to assess NMDAR activity in BSM. Myography was used to evaluate the effects of NMDAR antagonists and agonists on BSM contraction. Calcium imaging was conducted to determine changes in intracellular calcium ions. We also analyzed single-cell RNA sequencing data to examine NMDAR subunit expression in bladder cell subpopulations from both human and mouse tissues. Immunofluorescence staining was performed to localize the obligate NMDAR subunit, GluN1, in mouse BSM. RESULTS NMDAR agonists did not modulate BSM contractile force. NMDAR antagonists had varied effects: D-AP5 showed no impact, CGS-19755 significantly inhibited contraction at the highest concentration, and MK-801 enhanced contractile force in a concentration-dependent manner at EFS frequencies of 1, 2, and 5 Hz. Neither agonists nor antagonists, including MK-801, induced calcium ion shifts in BSM cells. Single-cell RNA sequencing revealed no NMDAR subunit expression in BSM cells from human or mouse tissues. Immunofluorescence confirmed GluN1 expression in pulmonary artery smooth muscle but not in BSM. CONCLUSIONS Our findings indicate the absence of functional active NMDARs in BSM, suggesting that the therapeutic benefits of NMDAR inhibition observed in vivo for treating overactive bladder are unlikely to be directly mediated through effects on the BSM itself. This highlights the need to explore alternative mechanisms or targets for therapeutic interventions in overactive bladder conditions.
Collapse
Affiliation(s)
- Zhean Zhan
- The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhibin Chen
- Department of Urology, Neijiang First People's Hospital, Neijiang, Sichuan, China
| | - Xiaoli Zheng
- The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiang Xie
- The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Huan Chen
- The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
16
|
Freibauer A, Almohaimeed B, Datta A. The curious case of the gene, the lesion, or neither. Epileptic Disord 2025; 27:96-99. [PMID: 39460637 PMCID: PMC11829617 DOI: 10.1002/epd2.20293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Affiliation(s)
| | | | - Anita Datta
- University of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
17
|
Gakare SG, Shelkar GP, Gawande DY, Pavuluri R, Gandhi PJ, Dravid SM. GluN2D-containing NMDA receptors in parvalbumin neurons in the nucleus accumbens regulate nocifensive responses in neuropathic pain. Neurobiol Dis 2025; 205:106784. [PMID: 39733959 DOI: 10.1016/j.nbd.2024.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024] Open
Abstract
Neuropathic pain presents a significant challenge, with its underlying mechanisms still not fully understood. Here, we investigated the role of GluN2C- and GluN2D-containing NMDA receptors in the development of neuropathic pain induced by cisplatin, a widely used chemotherapeutic agent. Through genetic and pharmacological strategies, we found that GluN2D-containing NMDA receptors play a targeted role in regulating cisplatin-induced neuropathic pain (CINP), while sparing inflammatory or acute pain responses. Specifically, both GluN2D knockout (KO) mice and pharmacological blockade of GluN2D-containing receptors produced robust reduction in mechanical nocifensive response in CINP. In contrast, GluN2C KO mice behaved similar to wildtype mice in CINP but showed reduced mechanical hypersensitivity in inflammatory pain. Using conditional KO strategy, we addressed the region- and cell-type involved in GluN2D-mediated changes in CINP. Animals with conditional deletion of GluN2D receptors from parvalbumin interneurons (PVIs) or local ablation of GluN2D from nucleus accumbens (NAc) displayed reduced mechanical hypersensitivity in CINP, underscoring the pivotal role of accumbal GluN2D in PVIs in neuropathic pain. Furthermore, CINP increased excitatory neurotransmission in the NAc in wildtype mice and this effect is dampened in PV-GluN2D KO mice. Other changes in CINP in NAc included an increase in vGluT1 and c-fos labeled neurons in wildtype which were absent in PV-GluN2D KO mice. GiDREADD-induced inhibition of PVIs in the NAc produced reduction in mechanical hypersensitivity in CINP. These findings unveil a novel cell-type and region-specific role of GluN2D-containing NMDA receptors in neuropathic pain and identify PVIs in NAc as a novel mediator of pain behaviors.
Collapse
Affiliation(s)
- Sukanya G Gakare
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA
| | - Gajanan P Shelkar
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA
| | - Dinesh Y Gawande
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA
| | - Ratnamala Pavuluri
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA
| | - Pauravi J Gandhi
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA
| | - Shashank M Dravid
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA.
| |
Collapse
|
18
|
Kim HJ, Lee S, Kim GH, Sung K, Yoo T, Pyo JH, Jo HJ, Lee S, Lee HY, Jung JH, Lee KJ, Kim JH. GluN2B-mediated regulation of silent synapses for receptor specification and addiction memory. Exp Mol Med 2025; 57:436-449. [PMID: 39930130 PMCID: PMC11873126 DOI: 10.1038/s12276-025-01399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 03/04/2025] Open
Abstract
Psychostimulants, including cocaine, elicit stereotyped, addictive behaviors. The reemergence of silent synapses containing only NMDA-type glutamate receptors is a critical mediator of addiction memory and seeking behaviors. Despite the predominant abundance of GluN2B-containing NMDA-type glutamate receptors in silent synapses, their operational mechanisms are not fully understood. Here, using conditional depletion/deletion of GluN2B in D1-expressing accumbal medium spiny neurons, we examined the synaptic and behavioral actions that silent synapses incur after repeated exposure to cocaine. GluN2B ablation reduces the proportion of silent synapses, but some of them can persist by substitution with GluN2C, which drives the aberrantly facilitated synaptic incorporation of calcium-impermeable AMPA-type glutamate receptors (AMPARs). The resulting precocious maturation of silent synapses impairs addiction memory but increases locomotor activity, both of which can be normalized by the blockade of calcium-impermeable AMPAR trafficking. Collectively, GluN2B supports the competence of cocaine-induced silent synapses to specify the subunit composition of AMPARs and thereby the expression of addiction memory and related behaviors.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sangjun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Gyu Hyun Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kibong Sung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Taesik Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jung Hyun Pyo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hee-Jung Jo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sanghyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Young Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jung Hoon Jung
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
19
|
Yan C, Bai L, Du J, Chong Z, Xu G, Yang X. Severe anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor encephalitis with prolonged hyperammonemia: a case report. BMC Neurol 2025; 25:43. [PMID: 39891080 PMCID: PMC11783855 DOI: 10.1186/s12883-025-04040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor encephalitis (Anti-AMPAR-E) is a very rare subtype of autoimmune encephalitis, typically presenting with memory decline, seizures, and changes in psychosis and behavior. Anti-AMPAR-E is often associated with the presence of neoplasms and generally has a poor prognosis. Currently, cases of severe anti-AMPAR-E, particularly those accompanied by hyperammonemia, are exceedingly rare. CASE PRESENTATION A 66-year-old man was admitted to the hospital, complaining of deterioration in memory and confusion for at least 10 days and worsening for 3 days. The patient's condition rapidly progressed to coma, which persisted for 2 months, manifesting as a fulminant course. At that time, his Glasgow Coma Scale (GCS) score was 6, and AMPAR antibodies were strongly positive in both serum and cerebrospinal fluid (CSF). Additionally, his serum ammonia levels consistently exceeded reference values during his hospital stay. Consequently, he was diagnosed with severe anti-AMPAR-E with prolonged hyperammonemia and treated with intravenous methylprednisolone pulse (IVMP) therapy, intravenous immunoglobulin (IVIG), and rituximab therapy until he regained consciousness. However, 10 months after discharge, he was readmitted to the hospital due to seizures and subsequently diagnosed with lung cancer. The patient eventually passed away at home. CONCLUSIONS Even if the short-term prognosis is good, regular tumor-related screening is essential for patients with severe anti-AMPAR-E to detect potential tumors early and improve long-term outcomes. Moreover, it is necessary to perform repeated ammonia level assessments and to adequately treat hyperammonemia.
Collapse
Affiliation(s)
- Chunxia Yan
- Department of Neurology, Liaocheng People ' s Hospital, No. 45 Huashan Road, Economic Development Zone, Liaocheng, Shandong, 252000, China
| | - Lingling Bai
- Department of Neurology, Liaocheng People ' s Hospital, No. 45 Huashan Road, Economic Development Zone, Liaocheng, Shandong, 252000, China
| | - Jingwei Du
- Department of Neurology, Liaocheng People ' s Hospital, No. 45 Huashan Road, Economic Development Zone, Liaocheng, Shandong, 252000, China
| | - Zonglei Chong
- Department of Neurosurgery, Liaocheng People's Hospital, No. 45 Huashan Road, Economic Development Zone, Liaocheng, Shandong, 252000, China
| | - Guangjun Xu
- Department of Neurology, Liaocheng People ' s Hospital, No. 45 Huashan Road, Economic Development Zone, Liaocheng, Shandong, 252000, China.
| | - Xiaoqian Yang
- Department of Neurology, Liaocheng People ' s Hospital, No. 45 Huashan Road, Economic Development Zone, Liaocheng, Shandong, 252000, China.
| |
Collapse
|
20
|
Radin DP, Cerne R, Smith JL, Witkin JM, Lippa A. Safety, tolerability and pharmacokinetic profile of the low-impact ampakine CX717 in young healthy male subjects and elderly healthy male and female subjects. Eur J Pharmacol 2025; 993:177317. [PMID: 39892449 DOI: 10.1016/j.ejphar.2025.177317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Ampakines, AMPA-type glutamate receptors (AMPAR) positive allosteric modulators, possess the capacity to treat neurological and neuropsychiatric disorders underpinned by deficient excitatory synaptic communication. Low-impact ampakines partially offset AMPAR desensitization which may explain their lack of epileptogenic effects and acceptable safety margins in preclinical studies. The low-impact ampakine CX717 has shown efficacy in prior preclinical studies and the ability to prevent opiate-induced respiratory depression in humans. The current clinical study examines the tolerability and pharmacokinetics of CX717 in healthy male subjects and elderly male and female subjects in a four-part study. Part A was a single dose escalation study (25-1600 mg, 72 subjects). Part B was a two-period food effect crossover study (100 mg, 8 subjects). Part C was a multiple dose escalation study (100 mg QD - 800 mg BID, 10 days, 32 subjects), and Part D was a multiple dose study of CX717 (300 mg QD, 10 days, 7 males and 8 females) in elderly subjects. CX717 was well tolerated up to 1600 mg and 800 mg BID. CX717 was also well tolerated when fed or fasted and was well tolerated in the elderly with prominent side effects being headache, dizziness and nausea. The half-life of CX717 was 8-12 h, and Tmax was 3-5 h. Cmax and AUC were dose-proportional. These findings provide key dosing and safety pharmacology data that can be used to inform further investigations of CX717 in subsequent clinical studies such as ADHD, opiate-induced respiratory depression and spinal cord injury.
Collapse
Affiliation(s)
| | - Rok Cerne
- RespireRx Pharmaceuticals Inc, USA; Laboratory of Antiepileptic Drug Discovery, St. Vincent Hospital, Indianapolis, IN, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, St. Vincent Hospital, Indianapolis, IN, USA
| | - Jeffrey M Witkin
- RespireRx Pharmaceuticals Inc, USA; Laboratory of Antiepileptic Drug Discovery, St. Vincent Hospital, Indianapolis, IN, USA
| | | |
Collapse
|
21
|
Montanucci L, Brünger T, Bhattarai N, Boßelmann CM, Kim S, Allen JP, Zhang J, Klöckner C, Krey I, Fariselli P, May P, Lemke JR, Myers SJ, Yuan H, Traynelis SF, Lal D. Ligand distances as key predictors of pathogenicity and function in NMDA receptors. Hum Mol Genet 2025; 34:128-139. [PMID: 39535073 PMCID: PMC11780861 DOI: 10.1093/hmg/ddae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Genetic variants in the genes GRIN1, GRIN2A, GRIN2B, and GRIN2D, which encode subunits of the N-methyl-D-aspartate receptor (NMDAR), have been associated with severe and heterogeneous neurologic and neurodevelopmental disorders, including early onset epilepsy, developmental and epileptic encephalopathy, intellectual disability, and autism spectrum disorders. Missense variants in these genes can result in gain or loss of the NMDAR function, requiring opposite therapeutic treatments. Computational methods that predict pathogenicity and molecular functional effects of missense variants are therefore crucial for therapeutic applications. We assembled 223 missense variants from patients, 631 control variants from the general population, and 160 missense variants characterized by electrophysiological readouts that show whether they can enhance or reduce the function of the receptor. This includes new functional data from 33 variants reported here, for the first time. By mapping these variants onto the NMDAR protein structures, we found that pathogenic/benign variants and variants that increase/decrease the channel function were distributed unevenly on the protein structure, with spatial proximity to ligands bound to the agonist and antagonist binding sites being a key predictive feature for both variant pathogenicity and molecular functional consequences. Leveraging distances from ligands, we developed two machine-learning based predictors for NMDA variants: a pathogenicity predictor which outperforms currently available predictors and the first molecular function (increase/decrease) predictor. Our findings can have direct application to patient care by improving diagnostic yield for genetic neurodevelopmental disorders and by guiding personalized treatment informed by the knowledge of the molecular disease mechanism.
Collapse
Affiliation(s)
- Ludovica Montanucci
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 1133 John Freeman Blvd, Houston, TX 77030, United States
| | - Tobias Brünger
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Weyertal 115b, Cologne 50937, Germany
| | - Nisha Bhattarai
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44106, United States
| | - Christian M Boßelmann
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44106, United States
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - James P Allen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Philipp-Rosenthal-street 55, Leipzig 04103, Germany
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Philipp-Rosenthal-street 55, Leipzig 04103, Germany
| | - Piero Fariselli
- Department of Medical Sciences, University of Torino, Via Santena 19,Torino, 10123, Italy
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Av. des Hauts-Fourneaux, Esch-sur-Alzette, 4362, Luxembourg
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Philipp-Rosenthal-street 55, Leipzig 04103, Germany
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Dennis Lal
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 1133 John Freeman Blvd, Houston, TX 77030, United States
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44106, United States
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, 415 Main St, Cambridge, MA 02142, United States
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, 415 Main St., Cambridge, MA 02142, United States
| |
Collapse
|
22
|
Zhao F, Jiang L, Xie J, Liu N, Gao Z, Yang Y, Wang Y, Huang B, Kang D, Zhan P, Yi F, Liu X. Discovery of Brain-Penetrative Negative Allosteric Modulators of NMDA Receptors Using FEP-Guided Structure Optimization and Membrane Permeability Prediction. J Chem Inf Model 2025; 65:857-872. [PMID: 39809515 DOI: 10.1021/acs.jcim.4c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
N-Methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors in the central nervous system (CNS), have garnered attention for their role in brain disorders. Specifically, GluN2A-containing NMDA receptors have emerged as a potential therapeutic target for the treatment of depressive disorders and epilepsy. However, the development of GluN2A-containing NMDA receptor-selective antagonists, represented by N-(4-(2-benzoylhydrazine-1-carbonyl)benzyl)-3-chloro-4-fluorobenzenesulfonamide (TCN-201) and its derivatives, faces a significant challenge due to their limited ability to penetrate the blood-brain barrier (BBB), hampering their in vivo characterization and further advancement. In this study, we reported a series of 2-((5-(phemylamino)-1,3,4-thiadiazol-2-yl)thio)-N-(cyclohexylmethyl)acetamide derivatives, achieved through a structure-guided optimization strategy using free energy perturbation (FEP) and BBB permeability estimation. Through systematic exploration of various phenyl substitutions, compound 1f emerged as a standout compound, demonstrating substantially enhanced inhibitory activity compared with the lead compound TCN-213. Compound 1f not only displayed satisfactory BBB permeability but also showed antidepressant-like potency in the hydrocortisone-induced zebrafish depression-like model. All results position it as a promising candidate for developing innovative therapeutics for NMDA receptor-related disorders.
Collapse
Affiliation(s)
- Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, Shandong, China
| | - Liyang Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, Shandong, China
| | - Jieying Xie
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Na Liu
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250012, China
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, Shandong, China
| | - Yue Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, Shandong, China
| | - Yu Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, Shandong, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, Shandong, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, Shandong, China
| | - Feng Yi
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, Shandong, China
| |
Collapse
|
23
|
Storey GP, Riquelme R, Barria A. Activity-Dependent Internalization of Glun2B-Containing NMDARs Is Required for Synaptic Incorporation of Glun2A and Synaptic Plasticity. J Neurosci 2025; 45:e0823242024. [PMID: 39562042 PMCID: PMC11756629 DOI: 10.1523/jneurosci.0823-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/21/2024] Open
Abstract
NMDA-type glutamate receptors are heterotetrameric complexes composed of two GluN1 and two GluN2 subunits. The precise composition of the GluN2 subunits determines the channel's biophysical properties and influences its interaction with postsynaptic scaffolding proteins and signaling molecules involved in synaptic physiology and plasticity. The precise regulation of NMDAR subunit composition at synapses is crucial for proper synaptogenesis, neuronal circuit development, and synaptic plasticity, a cellular model of memory formation. In the forebrain during early development, NMDARs contain solely the GluN2B subunit, which is necessary for proper synaptogenesis and synaptic plasticity. In rodents, GluN2A subunit expression begins in the second postnatal week, replacing GluN2B-containing NMDARs at synapses in an activity- or sensory experience-dependent process. This switch in NMDAR subunit composition at synapses alters channel properties and reduces synaptic plasticity. The molecular mechanism regulating the switch remains unclear. We have investigated the role of activity-dependent internalization of GluN2B-containing receptors in shaping synaptic NMDAR subunit composition. Using molecular, pharmacological, and electrophysiological approaches in cultured organotypic hippocampal slices from rats of both sexes, we show that the process of incorporating GluN2A-containing NMDAR receptors requires activity-dependent internalization of GluN2B-containing NMDARs. Interestingly, blockade of GluN2A synaptic incorporation was associated with impaired potentiation of AMPA-mediated synaptic transmission, suggesting a potential coupling between the trafficking of AMPARs into synapses and that of GluN2A-containing NMDARs. These insights contribute to our understanding of the molecular mechanisms underlying synaptic trafficking of glutamate receptors and synaptic plasticity. They may also have implications for therapeutic strategies targeting NMDAR function in neurological disorders.
Collapse
Affiliation(s)
- Granville P Storey
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195-7290
| | - Raul Riquelme
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195-7290
| | - Andres Barria
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195-7290
| |
Collapse
|
24
|
Gong YY, Wu CZ, Wu YS, Alfieri A, Xiang YC, Shi DX, Duan S, Zhang MF, Li XX, Sun YC, Chao J, Tester M, Shang Z, Forde BG, Liu LH. A Glutamate Receptor-Like Gene AtGLR25 With Its Unusual Splice Variant Has a Role in Mediating Glutamate-Elicited Changes in Arabidopsis Root Architecture. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39817416 DOI: 10.1111/pce.15387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
The occurrence of external L-glutamate at the Arabidopsis root tip triggers major changes in root architecture, but the mechanism of -L-Glu sensing is unknown. Members of the family of GLUTAMATE RECEPTOR-LIKE (GLR) proteins are known to act as amino acid-gated Ca2+-permeable channels and to have signalling roles in diverse plant processes. To investigate the possible role of GLRs in the root architectural response to L-Glu, we screened a collection of mutants with T-DNA insertions in each of the 20 AtGLR genes. Reduced sensitivity of root growth to L-Glu was found in mutants of one gene, GLR2.5. Interestingly, GLR2.5 was found to apparently produce four transcript variants encoding hypothetical proteins of 169-720 amino acids. One of these transcripts, GLR2.5c, encodes a truncated GLR protein lacking both the conserved amino-terminal domain and part of the ligand-binding domain. When a glr2.5 mutant was transformed with a construct constitutively expressing GLR2.5c, both L-Glu sensitivity of root growth and L-Glu-elicited Ca2+ currents in root tip protoplasts were restored. These results, along with homology modelling of the truncated ligand-binding domain of GLR2.5c, suggest that GLR2.5c has a regulatory or scaffolding role in heteromeric GLR complex(es) that may involve triggering the root architectural response to L-Glu.
Collapse
Affiliation(s)
- Yuan-Yong Gong
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Chang-Zheng Wu
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Yan-Sheng Wu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, South Second Ring, China
| | - Andrea Alfieri
- Centro Grandi Strumenti, University of Pavia, Pavia, Italy
| | - Yu-Cheng Xiang
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Dong-Xue Shi
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Shuhui Duan
- Hunan Tobacco Research Institute (Changsha, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, Tianxin, China
| | - Ming-Fa Zhang
- Hunan Tobacco Research Institute (Changsha, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, Tianxin, China
| | - Xiao-Xu Li
- Tobacco Research, Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, Yuhua, China
| | - Yi-Chen Sun
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Jin Chao
- Hunan Tobacco Research Institute (Changsha, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, Tianxin, China
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Zhonglin Shang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, South Second Ring, China
| | - Brian G Forde
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Lai-Hua Liu
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| |
Collapse
|
25
|
López-Guerrero V, Posadas Y, Sánchez-López C, Smart A, Miranda J, Singewald K, Bandala Y, Juaristi E, Den Auwer C, Perez-Cruz C, González-Mariscal L, Millhauser G, Segovia J, Quintanar L. A Copper-Binding Peptide with Therapeutic Potential against Alzheimer's Disease: From the Blood-Brain Barrier to Metal Competition. ACS Chem Neurosci 2025; 16:241-261. [PMID: 39723808 PMCID: PMC11741003 DOI: 10.1021/acschemneuro.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide. AD brains are characterized by the accumulation of amyloid-β peptides (Aβ) that bind Cu2+ and have been associated with several neurotoxic mechanisms. Although the use of copper chelators to prevent the formation of Cu2+-Aβ complexes has been proposed as a therapeutic strategy, recent studies show that copper is an important neuromodulator that is essential for a neuroprotective mechanism mediated by Cu2+ binding to the cellular prion protein (PrPC). Therefore, in addition to metal selectivity and blood-brain barrier (BBB) permeability, an emerging challenge for copper chelators is to prevent the formation of neurotoxic Cu2+-Aβ species without perturbing the neuroprotective Cu2+-PrPC interaction. Previously, we reported the design of a tetrapeptide (TP) that withdraws Cu2+ from Aβ(1-16) and impacts the Cu2+-induced aggregation of Aβ(1-40). In this study, we improved the drug-like properties of TP in a BBB model, evaluated the metal selectivity of the optimized peptide (TP*), and tested its effect on Cu2+ coordination to PrPC and proteins involved in copper trafficking, such as copper transporter 1 and albumin. Our results show that changing the stereochemistry of the first residue prevents TP degradation in the BBB model and coadministration of TP with a peptide that increases BBB permeability allows its passage through the BBB model. TP* is highly selective toward Cu2+ in the presence of Zn2+ ions, transfers Cu2+ to copper-trafficking proteins, and forms a ternary TP*-Cu2+-PrP species that does not perturb the physiological conformation of PrP and displays only a minor impact in the neuroprotective Cu2+-dependent interaction of PrPC with the N-methyl-d-aspartate receptor. Overall, these results show that TP* displays desirable features for a copper chelator with therapeutic potential against AD. Moreover, this is the first study that explores the effect of a Cu2+ chelator with therapeutic potential for AD on Cu2+ coordination to PrPC (an emerging key player in AD pathology), integrating recent knowledge about metalloproteins involved in AD with the design of copper chelators against AD.
Collapse
Affiliation(s)
- Victor
E. López-Guerrero
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
| | - Yanahi Posadas
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
- Department
of Pharmacology, Center for Research and
Advanced Studies (Cinvestav), Mexico
City 07360, Mexico
| | - Carolina Sánchez-López
- Center
for Research in Aging, Center for Research
and Advanced Studies (Cinvestav), Mexico City 14330, Mexico
| | - Amanda Smart
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, 1156, Santa Cruz 95064, United States
| | - Jael Miranda
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Kevin Singewald
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, 1156, Santa Cruz 95064, United States
| | - Yamir Bandala
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
| | - Eusebio Juaristi
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
- El Colegio
Nacional, Mexico City 06020, Mexico
| | | | - Claudia Perez-Cruz
- Department
of Pharmacology, Center for Research and
Advanced Studies (Cinvestav), Mexico
City 07360, Mexico
| | - Lorenza González-Mariscal
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Glenn Millhauser
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, 1156, Santa Cruz 95064, United States
| | - Jose Segovia
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Liliana Quintanar
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
- Center
for Research in Aging, Center for Research
and Advanced Studies (Cinvestav), Mexico City 14330, Mexico
| |
Collapse
|
26
|
Micheva KD, Simhal AK, Schardt J, Smith SJ, Weinberg RJ, Owen SF. Data-driven synapse classification reveals a logic of glutamate receptor diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.11.628056. [PMID: 39713368 PMCID: PMC11661198 DOI: 10.1101/2024.12.11.628056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The rich diversity of synapses facilitates the capacity of neural circuits to transmit, process and store information. We used multiplex super-resolution proteometric imaging through array tomography to define features of single synapses in mouse neocortex. We find that glutamatergic synapses cluster into subclasses that parallel the distinct biochemical and functional categories of receptor subunits: GluA1/4, GluA2/3 and GluN1/GluN2B. Two of these subclasses align with physiological expectations based on synaptic plasticity: large AMPAR-rich synapses may represent potentiated synapses, whereas small NMDAR-rich synapses suggest "silent" synapses. The NMDA receptor content of large synapses correlates with spine neck diameter, and thus the potential for coupling to the parent dendrite. Overall, ultrastructural features predict receptor content of synapses better than parent neuron identity does, suggesting synapse subclasses act as fundamental elements of neuronal circuits. No barriers prevent future generalization of this approach to other species, or to study of human disorders and therapeutics.
Collapse
Affiliation(s)
- Kristina D. Micheva
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Anish K. Simhal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jenna Schardt
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Stephen J Smith
- Allen Institute for Brain Science, Seattle, WA 98109
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Richard J. Weinberg
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27514
| | - Scott F. Owen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
- Lead contact
| |
Collapse
|
27
|
He M, Wollmuth LP. Regulation of NMDAR activation efficiency by environmental factors and subunit composition. J Gen Physiol 2025; 157:e202413637. [PMID: 39576244 PMCID: PMC11586625 DOI: 10.1085/jgp.202413637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
NMDA receptors (NMDAR) convert the major excitatory neurotransmitter glutamate into a synaptic signal. A key question is how efficiently the ion channel opens in response to the rapid exposure to presynaptic glutamate release. Here, we applied glutamate to single channel outside-out patches and measured the successes of channel openings and the latency to first opening to assay the activation efficiency of NMDARs under different physiological conditions and with different human subunit compositions. For GluN1/GluN2A receptors, we find that various factors, including intracellular ATP and GTP, can enhance the efficiency of activation presumably via the intracellular C-terminal domain. Notably, an energy-based internal solution or increasing the time between applications to increase recovery time improved efficiency. However, even under these optimized conditions and with a 1-s glutamate application, there remained around 10-15% inefficiency. Channel activation became more inefficient with brief synaptic-like pulses of glutamate at 2 ms. Of the different NMDAR subunit compositions, GluN2B-containing NMDARs showed the lowest success rate and longest latency to first openings, highlighting that they display the most distinct activation mechanism. In contrast, putative triheteromeric GluN1/GluN2A/GluN2B receptors showed high activation efficiency. Despite the low open probability, NMDARs containing either GluN2C or GluN2D subunits displayed high activation efficiency, nearly comparable with that for GluN2A-containing receptors. These results highlight that activation efficiency in NMDARs can be regulated by environmental surroundings and varies across different subunits.
Collapse
Affiliation(s)
- Miaomiao He
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | - Lonnie P. Wollmuth
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
28
|
Ying Q, Luo H, Xie Z, Huang Y, Hu H, Jin M, Xu K, Pang Y, Song Y, Zhang X. SIRT4 Protects Retina Against Excitotoxic Injury by Promoting OPA1-Mediated Müller Glial Cell Mitochondrial Fusion and GLAST Expression. Invest Ophthalmol Vis Sci 2025; 66:62. [PMID: 39873651 PMCID: PMC11781329 DOI: 10.1167/iovs.66.1.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Purpose This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs). Methods A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury. The influence of SIRT4 on mitochondrial dynamics-related proteins and GLAST was examined by inducing SIRT4 overexpression through intraperitoneal injection of resveratrol or by using SIRT4 knockout (KO) mice. Additionally, the effects of upregulating and downregulating SIRT4 expression in rat Müller glial cell lines (rMC-1) were explored via lentiviral vector transfection to assess changes in mitochondrial morphology and GLAST expression. Results After excitotoxic injury to the mouse retina, the retinal thickness and structure were disrupted, the number of retinal ganglion cells (RGCs) decreased, and Müller glial cells were activated by day 1. The levels of OPA1, GLAST, and SIRT4 proteins peaked on the first day after injury and then gradually decreased, indicating a synchronized dynamic trend. The upregulation of SIRT4 expression promoted OPA1 and GLAST protein expression, thereby alleviating retinal excitotoxic injury. Furthermore, the upregulation of SIRT4 expression promoted mitochondrial fusion and increased GLAST expression in rMC-1 cells, reducing cellular excitotoxic damage. Conversely, downregulation of SIRT4 had the opposite effect. Conclusions SIRT4 plays a significant role in mitigating excitotoxic damage in the retina, modulating Müller glial cell injury by regulating mitochondrial dynamics and glutamate transporter expression, ultimately influencing retinal health.
Collapse
Affiliation(s)
- Qian Ying
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Hongdou Luo
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Zhi Xie
- Xingguo Hospital Affiliated to Gannan Medical University, Xingguo, China
| | - Yi Huang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ming Jin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ke Xu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Yuning Song
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| |
Collapse
|
29
|
Rana S, Fusco AF, Witkin JM, Radin DP, Cerne R, Lippa A, Fuller DD. Pharmacological modulation of respiratory control: Ampakines as a therapeutic strategy. Pharmacol Ther 2025; 265:108744. [PMID: 39521442 PMCID: PMC11849399 DOI: 10.1016/j.pharmthera.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Ampakines are a class of compounds that are positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and enhance glutamatergic neurotransmission. Glutamatergic synaptic transmission and AMPA receptor activation are fundamentally important to the genesis and propagation of the neural impulses driving breathing, including respiratory motoneuron depolarization. Ampakines therefore have the potential to modulate the neural control of breathing. In this paper, we describe the influence of ampakines on respiratory motor output in health and disease. We dissect the molecular mechanisms underlying ampakine action, delineate the diverse targets of ampakines along the respiratory neuraxis, survey the spectrum of respiratory disorders in which ampakines have been tested, and culminate with an examination of how ampakines modulate respiratory function after spinal cord injury. Collectively, the studies reviewed here indicate that ampakines may be a useful adjunctive strategy to pair with conventional respiratory rehabilitation approaches in conditions with impaired neural activation of the respiratory muscles.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America.
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Daniel P Radin
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America; Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| |
Collapse
|
30
|
Paudyal N, Das A, Carrillo E, Berka V, Jayaraman V. Partial agonism in heteromeric GLUK2/GLUK5 kainate receptor. Proteins 2025; 93:134-144. [PMID: 37526035 PMCID: PMC10830895 DOI: 10.1002/prot.26565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Kainate receptors are a subtype of ionotropic glutamate receptors that form transmembrane channels upon binding glutamate. Here, we have investigated the mechanism of partial agonism in heteromeric GluK2/K5 receptors, where the GluK2 and GluK5 subunits have distinct agonist binding profiles. Using single-molecule Förster resonance energy transfer, we found that at the bi-lobed agonist-binding domain, the partial agonist AMPA-bound receptor occupied intermediate cleft closure conformational states at the GluK2 cleft, compared to the more open cleft conformations in apo form and more closed cleft conformations in the full agonist glutamate-bound form. In contrast, there is no significant difference in cleft closure states at the GluK5 agonist-binding domain between the partial agonist AMPA- and full agonist glutamate-bound states. Additionally, unlike the glutamate-bound state, the dimer interface at the agonist-binding domain is not decoupled in the AMPA-bound state. Our findings suggest that partial agonism observed with AMPA binding is mediated primarily due to differences in the GluK2 subunit, highlighting the distinct contributions of the subunits towards activation.
Collapse
Affiliation(s)
- Nabina Paudyal
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Anindita Das
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Vladimir Berka
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
31
|
Papp ZT, Ribiczey P, Kató E, Tóth ZE, Varga ZV, Giricz Z, Hanuska A, Al-Khrasani M, Zsembery Á, Zelles T, Harsing LG, Köles L. Angiotensin IV Receptors in the Rat Prefrontal Cortex: Neuronal Expression and NMDA Inhibition. Biomedicines 2024; 13:71. [PMID: 39857655 PMCID: PMC11760436 DOI: 10.3390/biomedicines13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT1 receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC. At the same time, it suggests that alternative angiotensin pathways, presumably involving AT4 receptors (AT4Rs), might exert inhibitory effects. Angiotensin IV (Ang IV) and its analogs have demonstrated cognitive benefits in animal models of learning and memory deficits. METHODS Immunohistochemistry and whole-cell patch-clamp techniques were used to map the cell-type-specific localization of AT4R, identical to insulin-regulated aminopeptidase (IRAP), and to investigate the modulatory effects of Ang IV on NMDAR function in layer V pyramidal cells of the rat PFC. RESULTS AT4R/IRAP expression was detected in pyramidal cells and GABAergic interneurons, but not in microglia or astrocytes, in layer V of the PFC in 9-12-day-old and 6-month-old rats. NMDA (30 μM) induced stable inward cation currents, significantly inhibited by Ang IV (1 nM-1 µM) in a subset of pyramidal neurons. This inhibition was reproduced by the IRAP inhibitor LVVYP-H7 (10-100 nM). Synaptic isolation of pyramidal neurons did not affect the Ang IV-mediated inhibition of NMDA currents. CONCLUSIONS Ang IV/IRAP-mediated inhibition of NMDA currents in layer V pyramidal neurons of the PFC may represent a way of regulating cognitive functions and thus a potential pharmacological target for cognitive impairments and related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zsolt Tamás Papp
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Polett Ribiczey
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Erzsébet Kató
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Zsuzsanna E. Tóth
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary;
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Adrienn Hanuska
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| |
Collapse
|
32
|
Terry-Lorenzo RT, Fan RH, Khin NA, Singh JB. Therapeutic potential of D-amino acid oxidase inhibitors for cognitive impairment associated with schizophrenia: learnings from luvadaxistat. Int J Neuropsychopharmacol 2024; 28:pyae066. [PMID: 39756412 PMCID: PMC11712274 DOI: 10.1093/ijnp/pyae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) has been proposed to underlie the pathophysiology of schizophrenia, suggesting that promoting NMDAR activity may alleviate the negative or cognitive symptoms associated with schizophrenia. To circumvent excitotoxicity that may accompany direct agonism of the glutamate binding site on the NMDAR, therapeutic trials have focused on targeting the glycine binding site on the NMDAR. Direct administration of either glycine or D-serine, both of which are endogenous coagonists at the NMDAR glycine site, has yielded mixed outcomes across an array of clinical trials investigating different doses or patient populations. Furthermore, directly administering D-serine and glycine is challenging, and thus attention has turned to alternative, indirect methods that increase endogenous D-serine and glycine levels in the brain, such as D-amino acid oxidase (DAAO) inhibitors and glycine transporter 1 inhibitors, respectively. In this review, we provide an overview of the evidence supporting the potential of NMDAR modulators in general, and DAAO inhibitors in particular, as potential adjunctive treatments for schizophrenia. We also discuss the preclinical and clinical data related to luvadaxistat, an investigational highly selective and potent DAAO inhibitor that was under development for the treatment of the cognitive impairment associated with schizophrenia.
Collapse
Affiliation(s)
| | - Reuben H Fan
- Neurocrine Biosciences, Inc., San Diego, CA, United States
| | - Ni A Khin
- Neurocrine Biosciences, Inc., San Diego, CA, United States
| | | |
Collapse
|
33
|
Khosroshahi PA, Ghanbari M. MicroRNA dysregulation in glutamate and dopamine pathways of schizophrenia: From molecular pathways to diagnostic and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111081. [PMID: 39002925 DOI: 10.1016/j.pnpbp.2024.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia is a complex psychiatric disorder, and genetic and environmental factors have been implicated in its development. Dysregulated glutamatergic and dopaminergic transmission pathways are involved in schizophrenia development. Besides genetic mutations, epigenetic dysregulation has a considerable role in dysregulating molecular pathways involved in schizophrenia. MicroRNAs (miRNAs) are small, non-coding RNAs that target specific mRNAs and inhibit their translation into proteins. As epigenetic factors, miRNAs regulate many genes involved in glutamate and dopamine signaling pathways; thereby, their dysregulation can contribute to the development of schizophrenia. Secretion of specific miRNAs from damaged cells into body fluids can make them one of the ideal non-invasive biomarkers in the early diagnosis of schizophrenia. Also, understanding the molecular mechanisms of miRNAs in schizophrenia pathogenesis can pave the way for developing novel treatments for patients with schizophrenia. In this study, we reviewed the glutamatergic and dopaminergic pathophysiology and highlighted the role of miRNA dysregulation in schizophrenia development. Besides, we shed light on the significance of circulating miRNAs for schizophrenia diagnosis and the recent findings on the miRNA-based treatment for schizophrenia.
Collapse
Affiliation(s)
| | - Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
34
|
Chen J, Zhang M, Shen Z, Tang M, Zeng Y, Bai D, Zhao P, Jiang G. Low-dose diazepam improves cognitive function in APP/PS1 mouse models: Involvement of AMPA receptors. Brain Res 2024; 1845:149207. [PMID: 39214326 DOI: 10.1016/j.brainres.2024.149207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Previous studies have indicated a close association between cognitive impairment in patients with neurodegenerative diseases, such as Alzheimer's disease (AD), and synaptic damage. Diazepam (DZP), a benzodiazepine class drug, is used to control symptoms such as seizures, anxiety, and sleep disorders. These symptoms can potentially manifest throughout the entire course of AD. Therefore, DZP may be utilized in the treatment of AD to manage these symptoms. However, the specific role and mechanisms of DZP in AD remain unclear. In this study, we discovered that long-term administration of a low dose of DZP (0.5 mg/kg) improved cognitive function and protected neurons from damage in APP/PS1 mice. Mechanistic investigations revealed that DZP exerted its neuroprotective effects and reduced Aβ deposition by modulating GluA1 (glutamate AMPA receptor subunit) to influence synaptic function. In conclusion, these findings highlight the potential benefits of DZP as a novel therapeutic approach, suggesting that long-term use of low-dose DZP in early-stage AD patients may be advantageous in slowing disease progression.
Collapse
Affiliation(s)
- Junwen Chen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ming Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ziyi Shen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ming Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yumei Zeng
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dazhang Bai
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Peilin Zhao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
35
|
Küper K, Poschet G, Rossmann J, Garbade SF, Spiegelhalter A, Wen D, Hoffmann GF, Schmitt CP, Opladen T, Peters V. Dipeptides in CSF and plasma: diagnostic and therapeutic potential in neurological diseases. Amino Acids 2024; 57:2. [PMID: 39673003 PMCID: PMC11645304 DOI: 10.1007/s00726-024-03434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Dipeptides (DPs), composed of two amino acids (AAs), hold significant therapeutic potential but remain underexplored. Given the crucial role of AAs in central nervous system (CNS) function, this study investigated the presence of DPs in cerebrospinal fluid (CSF) and their correlation with corresponding AAs, potentially indicating their role as AA donors. Plasma and CSF samples were collected from 43 children with neurological or metabolic conditions of unknown origin, including 23 with epilepsy. A panel of 33 DPs was quantified using UPLC-MS/MS. Out of 33 DPs, 18 were detectable in CSF and 20 in plasma, displaying high inter-individual variance. Gly-Asp, Gly-Pro, and Ala-Glu were consistently found in all CSF samples, while only Gly-Asp was universally detectable in plasma. Anserine and carnosine were prominent in CSF and plasma, respectively, with no other histidine-containing DPs observed. Generally, DP concentrations were higher in plasma than in CSF; however, anserine and Gly-Pro had similar concentrations in both fluids. Significant correlations were observed between specific DPs and their corresponding AAs in CSF (Gly-Glu, Gly-Pro and Ser-Gln) and plasma (Glu-Glu and Glu-Ser). Notably, patients with epilepsy had elevated medium anserine concentrations in CSF. This study is the first to demonstrate the presence of numerous DPs in CSF and plasma. Further research is needed to determine if DP patterns can support the diagnosis of neurological diseases and whether DP administration can modulate amino acid availability in the brain, potentially offering new therapeutic options, such as for defects in the amino acid transporter.
Collapse
Affiliation(s)
- Katharina Küper
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, Heidelberg, Germany
| | - Julia Rossmann
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Sven F Garbade
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Alexander Spiegelhalter
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, Heidelberg, Germany
| | - Dan Wen
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Claus P Schmitt
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Thomas Opladen
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Verena Peters
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
36
|
Gil-Martínez A, Galiana-Roselló C, Lázaro-Gómez A, Mulet-Rivero L, González-García J. Deciphering the Interplay Between G-Quadruplexes and Natural/Synthetic Polyamines. Chembiochem 2024:e202400873. [PMID: 39656761 DOI: 10.1002/cbic.202400873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The interplay between polyamines and G-quadruplexes has been largely overlooked in the literature, even though polyamines are ubiquitous metabolites in living cells and G-quadruplexes are transient regulatory elements, being both of them key regulators of biological processes. Herein, we compile the investigations connecting G-quadruplexes and biogenic polyamines to understand the biological interplay between them. Moreover, we overview the main works focused on synthetic ligands containing polyamines designed to target G-quadruplexes, aiming to unravel the structural motifs for designing potent and selective G4 ligands.
Collapse
Affiliation(s)
- Ariadna Gil-Martínez
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Cristina Galiana-Roselló
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
- Príncipe Felipe Research Center, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Andrea Lázaro-Gómez
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Laura Mulet-Rivero
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Jorge González-García
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| |
Collapse
|
37
|
Hu R, Boshans LL, Zhu B, Cai P, Tao Y, Youssef M, Girrbach GI, Song Y, Wang X, Tsankov A, Buxbaum JD, Ma S, Yang N. Expanding GABAergic Neuronal Diversity in iPSC-Derived Disease Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626438. [PMID: 39677822 PMCID: PMC11642846 DOI: 10.1101/2024.12.03.626438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
GABAergic interneurons play a critical role in maintaining neural circuit function, and their dysfunction is implicated in various neurodevelopmental and psychiatric disorders. Traditional approaches for differentiating human pluripotent stem cells (PSCs) into neuronal cells often face challenges such as incomplete neural differentiation, prolonged culture periods, and variability across PSC lines. To address these limitations, we developed a new strategy that integrates overexpression of transcription factors ASCL1 and DLX2 with dual-SMAD and WNT inhibition, efficiently driving the differentiation of human PSCs into diverse, region-specific GABAergic neuronal types. Using single-cell sequencing, we characterized the cellular heterogeneity of GABAergic induced neurons (iNs) generated with the patterning factors (patterned iNs) and those derived solely with transcription factors (PSC-derived iNs), uncovering the regulatory mechanisms that govern their fate specification. Patterned iNs exhibited gene expression features corresponding to multiple brain regions, particularly ganglionic eminence (GE) and neocortex, while GABAergic PSC-derived iNs predominantly resembled hypothalamic and thalamic neurons. Both iN types were enriched for genes relevant to neurodevelopmental and psychiatric disorders, with patterned iNs more specifically linked to neural lineage genes, highlighting their utility for disease modeling. We further applied this protocol to investigate the impact of an ADNP syndrome-associated mutation (p.Tyr719* variant) on GABAergic neuron differentiation, revealing that this mutation disrupts GABAergic fate specification and synaptic transmission. Overall, this study expands the toolkit for disease modeling by demonstrating the complementary advantages of GABAergic PSC-derived iNs and patterned iNs in representing distinct GABAergic neuron subtypes, brain regions, and disease contexts. These approaches offer a powerful platform for elucidating the molecular mechanisms underlying various neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Ruiqi Hu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- These authors contributed equally
| | - Linda L Boshans
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- These authors contributed equally
| | - Bohan Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peiwen Cai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yiran Tao
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mark Youssef
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gizem Inak Girrbach
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yingnan Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xuran Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph D Buxbaum
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sai Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nan Yang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Lead contact
| |
Collapse
|
38
|
Leana-Sandoval G, Kolli AV, Sandoval MA, Saavedra E, Li KH, Chen LY, Burlingame AL, Ramírez-Franco J, Díaz-Alonso J. The VGCC auxiliary subunit α2δ1 is an extracellular GluA1 interactor and regulates LTP, spatial memory, and seizure susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626379. [PMID: 39677598 PMCID: PMC11642997 DOI: 10.1101/2024.12.02.626379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Activity-dependent synaptic accumulation of AMPA receptors (AMPARs) and subsequent long-term synaptic strengthening underlie different forms of learning and memory. The AMPAR subunit GluA1 amino-terminal domain is essential for synaptic docking of AMPAR during LTP, but the precise mechanisms involved are not fully understood. Using unbiased proteomics, we identified the epilepsy and intellectual disability-associated VGCC auxiliary subunit α2δ1 as a candidate extracellular AMPAR slot. Presynaptic α2δ1 deletion in CA3 affects synaptic AMPAR incorporation during long-term potentiation, but not basal synaptic transmission, at CA1 synapses. Consistently, mice lacking α2δ1 in CA3 display a specific impairment in CA1-dependent spatial memory, but not in memory tests involving other cortical regions. Decreased seizure susceptibility in mice lacking α2δ1 in CA3 suggests a regulation of circuit excitability by α2δ1/AMPAR interactions. Our study sheds light on the regulation of activity-dependent AMPAR trafficking, and highlights the synaptic organizing roles of α2δ1.
Collapse
Affiliation(s)
- Gerardo Leana-Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Ananth V. Kolli
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Matthew A. Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Emily Saavedra
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lulu Y. Chen
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jorge Ramírez-Franco
- Institut de Neurosciences de la Timone, Aix-Marseille Université (AMU) & CNRS, UMR7289, 13005, Marseille, France
| | - Javier Díaz-Alonso
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| |
Collapse
|
39
|
Leippe P, Donthamsetti P, Ko T, Stanley C, Isacoff E, Trauner D. Cell-Specific Optical Control of AMPA Glutamate Receptors with a Photoswitchable Tethered Antagonist. Angew Chem Int Ed Engl 2024; 63:e202411181. [PMID: 39189798 DOI: 10.1002/anie.202411181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
AMPA receptors (AMPARs) are the main drivers of excitatory glutamatergic transmission in the brain, central to synaptic plasticity, and are key drug targets. However, AMPARs are expressed in virtually every neuron in the central nervous system and are activated with complex temporal dynamics, making it difficult to determine their functional roles with sufficient precision. Here we describe a cell specific, light-controllable competitive antagonist for the AMPA receptor called MP-GluAblock that combines the temporal precision of a photo-switchable ligand with the spatial and cellular specificity of a genetically-encoded membrane-anchor protein. This tool could pave the way for controlling endogenous AMPARs in neural circuits with cellular, spatial, and temporal specificity.
Collapse
Affiliation(s)
- Philipp Leippe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Prashant Donthamsetti
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave., Preston Research Building 460, Nashville, TN, 37232, USA
| | - Tongil Ko
- Department of Chemistry in the School of Arts and Sciences, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Cherise Stanley
- Departments of Neuroscience and Molecular & Cell Biology and the Helen Wills Neuroscience Institute, University of California Berkeley, 271 Weill Hall MC 3220, Berkeley, CA, 94720, USA
| | - Ehud Isacoff
- Departments of Neuroscience and Molecular & Cell Biology and the Helen Wills Neuroscience Institute, University of California Berkeley, 271 Weill Hall MC 3220, Berkeley, CA, 94720, USA
| | - Dirk Trauner
- Department of Chemistry in the School of Arts and Sciences, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| |
Collapse
|
40
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024; 130:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, Oslo 0213, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
41
|
Mirmotahari SA, Aliomrani M, Hassanzadeh F, Sirous H, Rostami M. Hybrid derivatives containing dimethyl fumarate and benzothiazole scaffolds for the potential treatment of multiple sclerosis; in silico & in vivo study. Daru 2024; 32:599-615. [PMID: 39106020 PMCID: PMC11554962 DOI: 10.1007/s40199-024-00529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 06/30/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) is a chronic autoimmune, inflammatory neurological disease of the CNS. Riluzole and dimethyl fumarate (DMF) are two FDA-approved drugs to treat amyotrophic lateral sclerosis (ALS) and MS. Riluzole (a benzothiazole derivative) inhibits glutamate release from nerve terminals by antagonizing the N-Methyl-D-Aspartate (NMDA) receptor, and DMF upregulates anti-oxidative pathways. OBJECTIVES Herein, using molecular hybridization strategy, we synthesized some new hybrid structures of Riluzole and DMF through some common successive synthetic pathways for evaluating their potential activity for remyelination in MS treatment. METHODS Molecular docking experiments assessed the binding affinity of proposed structures to the NMDA active site. The designed structures were synthesized and purified based on well-known chemical synthesis procedures. Afterward, in vivo evaluation for their activity was done in the C57Bl/6 Cuprizone-induced demyelination MS model. RESULTS AND CONCLUSION The proposed derivatives were recognized to be potent enough based on docking studies (ΔGbind of all derivatives were -7.2 to -7.52 compare to the Ifenprodil (-6.98) and Riluzole (-4.42)). The correct structures of desired derivatives were confirmed using spectroscopic methods. Based on in vivo studies, D4 and D6 derivatives exhibited the best pharmacological results, although only D6 showed a statistically significant difference compared to the control. Also, for D4 and D6 derivatives, myelin staining confirmed reduced degeneration in the corpus callosum. Consequently, D4 and D6 derivatives are promising candidates for developing new NMDA antagonists with therapeutic value against MS disorders.
Collapse
Affiliation(s)
- Seyedeh Azin Mirmotahari
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R., Iran
| | - Mehdi Aliomrani
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R., Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R., Iran
| | - Mahboubeh Rostami
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R., Iran.
| |
Collapse
|
42
|
Song R, Zhang J, Perszyk RE, Camp CR, Tang W, Kannan V, Li J, Xu Y, Chen J, Li Y, Liang SH, Traynelis SF, Yuan H. Differential responses of disease-related GRIN variants located in pore-forming M2 domain of N-methyl-D-aspartate receptor to FDA-approved inhibitors. J Neurochem 2024; 168:3936-3949. [PMID: 37649269 PMCID: PMC10902181 DOI: 10.1111/jnc.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023]
Abstract
N-methyl-D-aspartate receptors (NMDAR), ionotropic glutamate receptors, mediate a slow component of excitatory synaptic transmission in the central nervous system and play a key role in normal brain function and development. Genetic variations in GRIN genes encoding NMDAR subunits that alter the receptor's functional characteristics are associated with a wide range of neurological and neuropsychiatric conditions. Pathological GRIN variants located in the M2 re-entrant loop lining the channel pore cause significant functional changes, the most consequential alteration being a reduction in voltage-dependent Mg2+ inhibition. Voltage-dependent Mg2+ block is a unique feature of NMDAR biology whereby channel activation requires both ligand binding and postsynaptic membrane depolarization. Thus, loss of NMDAR Mg2+ block will have a profound impact on synaptic function and plasticity. Here, we choose 11 missense variants within the GRIN1, GRIN2A, and GRIN2B genes that alter residues located in the M2 loop and significantly reduce Mg2+ inhibition. Each variant was evaluated for tolerance to genetic variation using the 3-dimensional structure and assessed for functional rescue pharmacology via electrophysiological recordings. Three FDA-approved NMDAR drugs-memantine, dextromethorphan, and ketamine-were chosen based on their ability to bind near the M2 re-entrant loop, potentially rectifying dysregulated NMDAR function by supplementing the reduced voltage-dependent Mg2+ block. These results provide insight of structural determinants of FDA-approved NMDAR drugs at their binding sites in the channel pore and may further define conditions necessary for the use of such agents as potential rescue pharmacology.
Collapse
Affiliation(s)
- Rui Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jin Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chad R Camp
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Weiting Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Varun Kannan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jia Li
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yuchen Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
43
|
Liu R, Liu N, Ma L, Liu Y, Huang Z, Peng X, Zhuang C, Niu J, Yu J, Du J. Research Progress on NMDA Receptor Enhancement Drugs for the Treatment of Depressive Disorder. CNS Drugs 2024; 38:985-1002. [PMID: 39379772 DOI: 10.1007/s40263-024-01123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Major depressive disorder (MDD) is a severe mental illness with a complex etiology. Currently, many medications employed in clinical treatment exhibit limitations such as delayed onset of action and a high incidence of adverse reactions. Therefore, there is a pressing need to develop antidepressants that exhibit enhanced efficacy and safety. The N-methyl-D-aspartate receptor (NMDAR), a distinctive glutamate-gated ion channel receptor, has been implicated in the onset and progression of depressive disorder, as evidenced by both preclinical and clinical research. The NMDAR antagonist, ketamine, exhibits rapid and sustained antidepressant effects, holding promise as a novel therapeutic approach for depressive disorder. However, its psychotomimetic impact and potential for addiction have restricted its widespread clinical application. Notably, over the past decade, studies have suggested that enhancing NMDAR functionality can produce antidepressant effects with improved safety, especially with the emergence of NMDAR-positive allosteric modulators (PAMs). We view this as a potential novel strategy for treating depression, forming the basis for the narrative review that follows.
Collapse
Affiliation(s)
- Ruyun Liu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Xiaodong Peng
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jianguo Niu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
| | - Juan Du
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
44
|
Acutain MF, Baez MV. Reduced expression of GluN2A induces a delay in neuron maturation. J Neurochem 2024; 168:4001-4013. [PMID: 38037434 DOI: 10.1111/jnc.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
NMDA receptors (NMDARs) play an important role in synaptic plasticity both in physiological and pathological conditions. GluN2A and GluN2B are the most expressed NMDAR regulatory subunits, in the hippocampus and other cognitive-related brain structures. GluN2B is characteristic of immature structures and GluN2A of mature ones. Changes in GluN2A expression were associated with complex phenotypes that led to complex neurodevelopmental disorders, including the occurrence of seizures. However, little is known about the role of GluN2A in these phenotypes. In this work, we reduced GluN2A expression in mature neuronal cultures and observed an altered GluN2A/GluN2B ratio. Furthermore, those neurons exhibit an increase in immature dendritic spines and dendritic branching, as well as an increased response to glutamate stimulus. This phenotype (considering GluN2A/GluN2B ratio, index branching and glutamate response) resembles those observed at immature neuronal stages in vitro. We propose that this immature phenotype led to a higher response to glutamate stimulus which, in vivo, would be the basis of reduced threshold for seizure onset in GluN2A-pathological conditions.
Collapse
Affiliation(s)
- María Florencia Acutain
- Laboratorio de Sinapsis y Neurobiología Celular, Instituto de Biología Celular y Neurociencia (IBCN)-CONICET-UBA, Ciudad de Buenos Aires, Argentina
| | - María Verónica Baez
- Laboratorio de Sinapsis y Neurobiología Celular, Instituto de Biología Celular y Neurociencia (IBCN)-CONICET-UBA, Ciudad de Buenos Aires, Argentina
- 1UA de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, UBA, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
45
|
Gamba AG, Oakley CA, Ashley IA, Grossman AR, Weis VM, Suggett DJ, Davy SK. Oxylipin Receptors and Their Role in Inter-Partner Signalling in a Model Cnidarian-Dinoflagellate Symbiosis. Environ Microbiol 2024; 26:e70015. [PMID: 39702992 DOI: 10.1111/1462-2920.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/07/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
Oxylipin signalling is central in biology, mediating processes such as cellular homeostasis, inflammation and molecular signalling. It may also facilitate inter-partner communication in the cnidarian-dinoflagellate symbiosis, though this aspect remains understudied. In this study, four oxylipin receptors were characterised using immunohistochemistry and immunoblotting in the sea anemone Exaiptasia diaphana ('Aiptasia'): Prostaglandin E2 receptor 2 (EP2) and 4 (EP4), Transient Receptor Potential cation channel A1 (TRPA1) and Glutamate Receptor Ionotropic, Kainate 2 (GRIK2). Receptor abundance and localisation were compared between aposymbiotic anemones and symbiotic anemones hosting either native Breviolum minutum or non-native Durusdinium trenchii. All receptors were localised to the putative symbiosome of freshly isolated symbionts, suggesting a role in host-symbiont crosstalk. EP2, EP4 and TRPA1 abundance decreased in the gastrodermis of anemones hosting B. minutum, indicating potential downregulation of pathways mediated by these receptors. In contrast, GRIK2 abundance increased in anemones hosting D. trenchii in both the epidermis and gastrodermis; GRIK2 acts as a chemosensor of potential pathogens in other systems and could play a similar role here given D. trenchii's reputation as a sub-optimal partner for Aiptasia. This study contributes to the understanding of oxylipin signalling in the cnidarian-dinoflagellate symbiosis and supports further exploration of host-symbiont molecular signalling.
Collapse
Affiliation(s)
- Andrea G Gamba
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Immy A Ashley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - David J Suggett
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
46
|
Han TH, Vicidomini R, Ramos CI, Mayer ML, Serpe M. The gating properties of Drosophila NMJ glutamate receptors and their dependence on Neto. J Physiol 2024; 602:7043-7064. [PMID: 39602131 DOI: 10.1113/jp287331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
The Drosophila neuromuscular junction (NMJ) is a powerful genetic system that has revealed numerous conserved mechanisms for synapse development and homeostasis. The fly NMJ uses glutamate as the excitatory neurotransmitter and relies on kainate-type glutamate receptors and their auxiliary protein Neto for synapse assembly and function. However, despite decades of study, the reconstitution of NMJ glutamate receptors using heterologous systems has been achieved only recently, and there are no reports on the gating properties for the recombinant receptors. Here, using outside-out, patch clamp recordings and fast ligand application, we examine for the first time the biophysical properties of native type-A and type-B NMJ receptors in complexes with either Neto-α or Neto-β and compare them with recombinant receptors expressed in HEK293T cells. We found that type-A and type-B receptors have strikingly different gating properties that are further modulated by Neto-α and Neto-β. We captured single-channel events and revealed major differences between type-A and type-B receptors and also between Neto splice variants. Surprisingly, we found that deactivation is extremely fast and that the decay of synaptic currents resembles the rate of ionotropic glutamate receptor (iGluR) desensitization. The functional analyses of recombinant iGluRs that we report here should greatly facilitate the interpretation of compound in vivo phenotypes of mutant animals. KEY POINTS: We report the reconstitution of Drosophila neuromuscular junction ionotropic glutamate receptors (iGluRs) with Neto splice forms. Using outside-out patches and fast ligand application, we examine the deactivation and desensitization of the four iGluR/Neto complexes found in vivo. Expression of functional channels is absolutely dependent on Neto. Single-channel recordings revealed different lifetimes for different receptor complexes. The decay of synaptic currents is controlled by desensitization.
Collapse
Affiliation(s)
- Tae Hee Han
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Cathy Isaura Ramos
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
- Present address: The Institute of Functional Genomics of Lyon, Lyon, France
| | - Mark L Mayer
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Mihaela Serpe
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
47
|
Bej A, Hell JW, Ames JB. Chemical shift assignments of the α-actinin C-terminal EF-hand domain bound to a cytosolic C0 domain of GluN1 (residues 841-865) from the NMDA receptor. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:239-244. [PMID: 39207574 PMCID: PMC11511685 DOI: 10.1007/s12104-024-10194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs) consist of glycine-binding GluN1 and glutamate-binding GluN2 subunits that form tetrameric ion channels. NMDARs in the brain are important for controlling neuronal excitability to promote synaptic plasticity. The cytoskeletal protein, α-actinin-1 (100 kDa, called ACTN1) binds to the cytosolic C0 domain of GluN1 (residues 841-865) that may play a role in the Ca2+-dependent desensitization of NMDAR channels. Mutations that disrupt NMDAR channel function are linked to Alzheimer's disease, depression, stroke, epilepsy, and schizophrenia. NMR chemical shift assignments are reported here for the C-terminal EF-hand domain of ACTN1 (residues 824-892, called ACTN_EF34) and ACTN_EF34 bound to the GluN1 C0 domain (BMRB numbers 52385 and 52386, respectively).
Collapse
Affiliation(s)
- Aritra Bej
- Departments of Chemistry, University of California, Davis, CA, 95616, USA
| | - Johannes W Hell
- Departments of Pharmacology, University of California, Davis, CA, 95616, USA
| | - James B Ames
- Departments of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
48
|
Pan G, Chai L, Chen R, Yuan Q, Song Z, Feng W, Wei J, Yang Z, Zhang Y, Xie G, Yan A, Lv Q, Wang C, Zhao Y, Wang Y. Potential mechanism of Qinggong Shoutao pill alleviating age-associated memory decline based on integration strategy. PHARMACEUTICAL BIOLOGY 2024; 62:105-119. [PMID: 38145345 PMCID: PMC10763866 DOI: 10.1080/13880209.2023.2291689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 11/30/2023] [Indexed: 12/26/2023]
Abstract
CONTEXT Qinggong Shoutao Wan (QGSTW) is a pill used as a traditional medicine to treat age-associated memory decline (AAMI). However, its potential mechanisms are unclear. OBJECTIVE This study elucidates the possible mechanisms of QGSTW in treating AAMI. MATERIALS AND METHODS Network pharmacology and molecular docking approaches were utilized to identify the potential pathway by which QGSTW alleviates AAMI. C57BL/6J mice were divided randomly into control, model, and QGSTW groups. A mouse model of AAMI was established by d-galactose, and the pathways that QGSTW acts on to ameliorate AAMI were determined by ELISA, immunofluorescence staining and Western blotting after treatment with d-gal (100 mg/kg) and QGSTW (20 mL/kg) for 12 weeks. RESULTS Network pharmacology demonstrated that the targets of the active components were significantly enriched in the cAMP signaling pathway. AKT1, FOS, GRIN2B, and GRIN1 were the core target proteins. QGSTW treatment increased the discrimination index from -16.92 ± 7.06 to 23.88 ± 15.94% in the novel location test and from -19.54 ± 5.71 to 17.55 ± 6.73% in the novel object recognition test. ELISA showed that QGSTW could increase the levels of cAMP. Western blot analysis revealed that QGSTW could upregulate the expression of PKA, CREB, c-Fos, GluN1, GluA1, CaMKII-α, and SYN. Immunostaining revealed that the expression of SYN was decreased in the CA1 and DG. DISCUSSION AND CONCLUSIONS This study not only provides new insights into the mechanism of QGSTW in the treatment of AAMI but also provides important information and new research ideas for the discovery of traditional Chinese medicine compounds that can treat AAMI.
Collapse
Affiliation(s)
- Guiyun Pan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lijuan Chai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Yuan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanying Feng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinna Wei
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhang Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guinan Xie
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - An Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingbo Lv
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Caijun Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingqiang Zhao
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
49
|
Lai YC, Yao ZK, Chang TC, Feng CW, Kuo TJ, Luo YW, Jean YH, Lin HYH, Wen ZH. Dextromethorphan Inhibits Osteoblast Differentiation and Bone Regeneration of Rats With Subcritical-Sized Calvarial Defects. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39607004 DOI: 10.1002/tox.24447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The glutamatergic signaling pathway, which is mediated by N-methyl-D-aspartate (NMDA) receptors, is crucial for osteoblast differentiation and bone function. Dextromethorphan (DXM), a widely used antitussive, is a noncompetitive antagonist of the NMDA receptor. However, the effects of DXM on osteoblast and bone regeneration remain unclear. The present study investigated the effects of DXM on osteogenesis in vitro and in vivo. A MC3T3-E1 preosteoblast cell line was treated with varying concentrations of DXM. Real-time-quantitative polymerase chain reaction (RT-qPCR) and Western-blot analysis were performed to evaluate the expression of osteogenesis-related runt-related transcription factor 2 (RUNX2), osterix (OSX), osteocalcin (OCN), collagen type 1α (Col-1α), and alkaline phosphatase (ALP) after DXM treatment. Zebrafish embryos were incubated with DXM, which had potential to affect the ossification of the vertebrae and skull, and analyzed using calcein staining. Furthermore, we used a rat calvarial defect model to assess the effects of DXM on bone regeneration by using microcomputed tomography. The results indicate that DXM inhibited extracellular mineralization, ALP activity, and the expression of osteogenic markers, namely RUNX2, OSX, OCN, Col-1α, and ALP, in MC3T3-E1 cells. DXM suppressed skeleton ossification in zebrafish and affected bone regeneration in rats with calvarial defects. However, the mineral density of the regenerated bones did not differ significantly between the DXM and control groups. The present study demonstrated that DXM negatively affects the osteogenic function of osteoblasts, leading to impaired skeletal development and bone regeneration. Thus, clinicians should consider the negative effects of DXM on bone regeneration.
Collapse
Affiliation(s)
- Yu-Cheng Lai
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Orthopedics, Asia University Hospital, Taichung, Taiwan
| | - Zhi-Kang Yao
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tien-Chieh Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Wei Feng
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsu-Jen Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Eternal Dental Clinic, Taichung, Taiwan
| | - Yi-Wei Luo
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yen-Hsuan Jean
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Hugo Y-H Lin
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- National Museum of Marine Biology & Aquarium, Pingtung, Taiwan
| |
Collapse
|
50
|
Iyer L, Johnson K, Collier S, Koretsky AP, Petrus E. Post-Critical Period Transcriptional and Physiological Adaptations of Thalamocortical Connections after Sensory Loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624130. [PMID: 39876977 PMCID: PMC11774545 DOI: 10.1101/2024.11.19.624130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Unilateral whisker denervation activates plasticity mechanisms and circuit adaptations in adults. Single nucleus RNA sequencing and multiplex fluorescence in situ hybridization revealed differentially expressed genes related to altered glutamate receptor distributions and synaptogenesis in thalamocortical (TC) recipient layer 4 (L4) neurons of the sensory cortex, specifically those receiving input from the intact whiskers after whisker denervation. Electrophysiology detected increased spontaneous excitatory events at L4 neurons, confirming an increase in synaptic connections. Elevated expression levels of Gria2 mRNA and functional GluA2 subunit of AMPA receptors at the TC synapse indicate the presence of stabilized and potentiated TC synapses to L4 excitatory neurons along the intact pathway after unilateral whisker denervation. These adaptations likely underlie the increased cortical activity observed in rodents during intact whisker sensation after unilateral whisker denervation. Our findings provide new insights into the mechanisms by which the adult brain supports recovery after unilateral sensory loss.
Collapse
|