1
|
Yu SP, Choi E, Jiang MQ, Wei L. Acute and chronic excitotoxicity in ischemic stroke and late-onset Alzheimer's disease. Neural Regen Res 2025; 20:1981-1988. [PMID: 39101641 DOI: 10.4103/nrr.nrr-d-24-00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals. The comorbidity of the two neurological disorders represents a grave health threat to older populations. This review presents a brief background of the development of novel concepts and their clinical potentials. The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca 2+ influx is critical for neuronal function. An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca 2+ mainly via N-methyl-D-aspartate receptors, particularly of those at the extrasynaptic site. This Ca 2+ -evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity. Furthermore, mild but sustained Ca 2+ increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic, but gradually set off deteriorating Ca 2+ -dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways. Based on the Ca 2+ hypothesis of Alzheimer's disease and recent advances, this Ca 2+ -activated "silent" degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis. The N-methyl-D-aspartate receptor subunit GluN3A, primarily at the extrasynaptic site, serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity. Ischemic stroke and Alzheimer's disease, therefore, share an N-methyl-D-aspartate receptor- and Ca 2+ -mediated mechanism, although with much different time courses. It is thus proposed that early interventions to control Ca 2+ homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia. This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Emily Choi
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Khosroshahi PA, Ghanbari M. MicroRNA dysregulation in glutamate and dopamine pathways of schizophrenia: From molecular pathways to diagnostic and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111081. [PMID: 39002925 DOI: 10.1016/j.pnpbp.2024.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia is a complex psychiatric disorder, and genetic and environmental factors have been implicated in its development. Dysregulated glutamatergic and dopaminergic transmission pathways are involved in schizophrenia development. Besides genetic mutations, epigenetic dysregulation has a considerable role in dysregulating molecular pathways involved in schizophrenia. MicroRNAs (miRNAs) are small, non-coding RNAs that target specific mRNAs and inhibit their translation into proteins. As epigenetic factors, miRNAs regulate many genes involved in glutamate and dopamine signaling pathways; thereby, their dysregulation can contribute to the development of schizophrenia. Secretion of specific miRNAs from damaged cells into body fluids can make them one of the ideal non-invasive biomarkers in the early diagnosis of schizophrenia. Also, understanding the molecular mechanisms of miRNAs in schizophrenia pathogenesis can pave the way for developing novel treatments for patients with schizophrenia. In this study, we reviewed the glutamatergic and dopaminergic pathophysiology and highlighted the role of miRNA dysregulation in schizophrenia development. Besides, we shed light on the significance of circulating miRNAs for schizophrenia diagnosis and the recent findings on the miRNA-based treatment for schizophrenia.
Collapse
Affiliation(s)
| | - Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
3
|
Bej A, Hell JW, Ames JB. Chemical shift assignments of the α-actinin C-terminal EF-hand domain bound to a cytosolic C0 domain of GluN1 (residues 841-865) from the NMDA receptor. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:239-244. [PMID: 39207574 PMCID: PMC11511685 DOI: 10.1007/s12104-024-10194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs) consist of glycine-binding GluN1 and glutamate-binding GluN2 subunits that form tetrameric ion channels. NMDARs in the brain are important for controlling neuronal excitability to promote synaptic plasticity. The cytoskeletal protein, α-actinin-1 (100 kDa, called ACTN1) binds to the cytosolic C0 domain of GluN1 (residues 841-865) that may play a role in the Ca2+-dependent desensitization of NMDAR channels. Mutations that disrupt NMDAR channel function are linked to Alzheimer's disease, depression, stroke, epilepsy, and schizophrenia. NMR chemical shift assignments are reported here for the C-terminal EF-hand domain of ACTN1 (residues 824-892, called ACTN_EF34) and ACTN_EF34 bound to the GluN1 C0 domain (BMRB numbers 52385 and 52386, respectively).
Collapse
Affiliation(s)
- Aritra Bej
- Departments of Chemistry, University of California, Davis, CA, 95616, USA
| | - Johannes W Hell
- Departments of Pharmacology, University of California, Davis, CA, 95616, USA
| | - James B Ames
- Departments of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Pan G, Chai L, Chen R, Yuan Q, Song Z, Feng W, Wei J, Yang Z, Zhang Y, Xie G, Yan A, Lv Q, Wang C, Zhao Y, Wang Y. Potential mechanism of Qinggong Shoutao pill alleviating age-associated memory decline based on integration strategy. PHARMACEUTICAL BIOLOGY 2024; 62:105-119. [PMID: 38145345 PMCID: PMC10763866 DOI: 10.1080/13880209.2023.2291689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 11/30/2023] [Indexed: 12/26/2023]
Abstract
CONTEXT Qinggong Shoutao Wan (QGSTW) is a pill used as a traditional medicine to treat age-associated memory decline (AAMI). However, its potential mechanisms are unclear. OBJECTIVE This study elucidates the possible mechanisms of QGSTW in treating AAMI. MATERIALS AND METHODS Network pharmacology and molecular docking approaches were utilized to identify the potential pathway by which QGSTW alleviates AAMI. C57BL/6J mice were divided randomly into control, model, and QGSTW groups. A mouse model of AAMI was established by d-galactose, and the pathways that QGSTW acts on to ameliorate AAMI were determined by ELISA, immunofluorescence staining and Western blotting after treatment with d-gal (100 mg/kg) and QGSTW (20 mL/kg) for 12 weeks. RESULTS Network pharmacology demonstrated that the targets of the active components were significantly enriched in the cAMP signaling pathway. AKT1, FOS, GRIN2B, and GRIN1 were the core target proteins. QGSTW treatment increased the discrimination index from -16.92 ± 7.06 to 23.88 ± 15.94% in the novel location test and from -19.54 ± 5.71 to 17.55 ± 6.73% in the novel object recognition test. ELISA showed that QGSTW could increase the levels of cAMP. Western blot analysis revealed that QGSTW could upregulate the expression of PKA, CREB, c-Fos, GluN1, GluA1, CaMKII-α, and SYN. Immunostaining revealed that the expression of SYN was decreased in the CA1 and DG. DISCUSSION AND CONCLUSIONS This study not only provides new insights into the mechanism of QGSTW in the treatment of AAMI but also provides important information and new research ideas for the discovery of traditional Chinese medicine compounds that can treat AAMI.
Collapse
Affiliation(s)
- Guiyun Pan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lijuan Chai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Yuan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanying Feng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinna Wei
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhang Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guinan Xie
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - An Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingbo Lv
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Caijun Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingqiang Zhao
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Freibauer A, Almohaimeed B, Datta A. The curious case of the gene, the lesion, or neither. Epileptic Disord 2024. [PMID: 39460637 DOI: 10.1002/epd2.20293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Affiliation(s)
| | | | - Anita Datta
- University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Heresco-Levy U, Haviv J, Caine YG. NMDAR Down-Regulation: Dual - Hit Molecular Target For COPD - Depression Comorbidity. J Inflamm Res 2024; 17:7619-7625. [PMID: 39464345 PMCID: PMC11512766 DOI: 10.2147/jir.s487650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterized by sustained airflow limitation that represents one of the main causes of disability in modern society. Depression affects approximately 40% of COPD patients. Both COPD and depression are associated with chronic systemic inflammation and their comorbidity represents a critical unmet treatment need. N-methyl-D-aspartate glutamatergic receptors (NMDAR) are well characterized in the central nervous system (CNS) and widely expressed in lung tissue and inflammation-related cells. Accumulating evidence indicates that pathologic NMDAR up-regulation, leading to pro-inflammatory pathways activation and tissue damage, may play a crucial role in chronic lung injury as well as in depression. D-cycloserine, a bacteriostatic antibiotic used since the 1950's in tuberculosis, acts at therapeutic dosages also as a NMDAR functional antagonist and has antidepressant and anti-inflammatory effects. We hypothesize that NMDAR down-regulation may represent a unified molecular target for the treatment of COPD - depression comorbidity and may simultaneously alleviate both respiratory and depression symptomatology. We postulate that D-cycloserine treatment may achieve these dual - hit objectives and envisage that our hypotheses may apply to additional inflammation disorders that are frequently accompanied by depression.
Collapse
Affiliation(s)
- Uriel Heresco-Levy
- Herzog Medical Center, Jerusalem, Israel
- Psychiatry Department, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
7
|
Infield D, Schene ME, Galpin JD, Ahern CA. Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology. Chem Rev 2024; 124:11523-11543. [PMID: 39207057 PMCID: PMC11503617 DOI: 10.1021/acs.chemrev.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the resulting data via rigorous, established biophysical methods. In an ideal scenario, the encoding of synthetic, noncanonical amino acids via GCE allows the experimenter to ask questions inaccessible to traditional methods. For this reason, GCE has been successfully applied to a variety of ligand- and voltage-gated channels wherein extensive structural, functional, and pharmacological data exist. Here, we provide a comprehensive summary of GCE as applied to ion channels. We begin with an overview of the methods used to encode noncanonical amino acids in channels and then describe mechanistic studies wherein GCE was used for photochemistry (cross-linking; caged amino acids) and atomic mutagenesis (isosteric manipulation of charge and aromaticity; backbone mutation). Lastly, we cover recent advances in the encoding of fluorescent amino acids for the real-time study of protein conformational dynamics.
Collapse
Affiliation(s)
- Daniel
T. Infield
- Department of Molecular Physiology
and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Miranda E. Schene
- Department of Molecular Physiology
and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jason D. Galpin
- Department of Molecular Physiology
and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christopher A. Ahern
- Department of Molecular Physiology
and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
8
|
Hassan A, di Vito R, Nuzzo T, Vidali M, Carlini MJ, Yadav S, Yang H, D'Amico A, Kolici X, Valsecchi V, Panicucci C, Pignataro G, Bruno C, Bertini E, Errico F, Pellizzoni L, Usiello A. Dysregulated balance of D- and L-amino acids modulating glutamatergic neurotransmission in severe spinal muscular atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619645. [PMID: 39484528 PMCID: PMC11526884 DOI: 10.1101/2024.10.22.619645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by reduced expression of the survival motor neuron (SMN) protein. In addition to motor neuron survival, SMN deficiency affects the integrity and function of afferent synapses that provide glutamatergic excitatory drive essential for motor neuron firing and muscle contraction. However, it is unknown whether deficits in the metabolism of excitatory amino acids and their precursors contribute to neuronal dysfunction in SMA. To address this issue, we measured the levels of the main neuroactive D- and L-amino acids acting on glutamatergic receptors in the central nervous system of SMNΔ7 mice as well as the cerebrospinal fluid (CSF) of SMA patients of varying severity before and after treatment with the SMN-inducing drug Nusinersen. Our findings reveal that SMN deficiency disrupts glutamate and serine metabolism in the CSF of severe SMA patients, including decreased concentration of L-glutamate, which is partially corrected by Nusinersen therapy. Moreover, we identify dysregulated L-glutamine to L-glutamate conversion as a shared neurochemical signature of altered glutamatergic synapse metabolism that implicates astrocyte dysfunction in both severe SMA patients and mouse models. Lastly, consistent with a correlation of higher CSF levels of D-serine with better motor function in severe SMA patients, we show that daily supplementation with the NMDA receptor co-agonist D-serine improves neurological deficits in SMNΔ7 mice. Altogether, these findings provide direct evidence for dysregulation of D- and L-amino acid metabolism linked to glutamatergic neurotransmission in severe SMA and have potential implications for treating this neurological disorder.
Collapse
|
9
|
Zhang G, Liang Z, Wang Y, Zhang Z, Hoi PM. Tetramethylpyrazine Analogue T-006 Protects Neuronal and Endothelial Cells Against Oxidative Stress via PI3K/AKT/mTOR and Nrf2 Signaling. Antioxidants (Basel) 2024; 13:1272. [PMID: 39456524 PMCID: PMC11505549 DOI: 10.3390/antiox13101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND T-006, a novel neuroprotective derivative of tetramethylpyrazine (TMP), exhibits multifunctional neuroprotective properties. T-006 has been shown to improve neurological and behavioral functions in animal models of ischemic stroke and neurodegenerative diseases. The present study aims to further elucidate the mechanisms underlying the protective effects of T-006 against oxidative injuries induced by glutamate or hypoxia. METHODS Mouse hippocampal HT22 cells were used to evaluate the neuroprotective effects of T-006 against glutamate-induced injuries, while mouse brain endothelial bEnd.3 cells were used to evaluate the cerebrovascular protective effects of T-006 against oxygen-glucose deprivation followed by reperfusion (OGD/R)-induced injuries. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to measure cell viability and oxidative stress. Western blot and immunofluorescence analyses of protein expression were used to study cell signaling pathways. RESULTS T-006 exhibited significant protective effects in both oxidative injury models. In HT22 cells, T-006 reduced cell death and enhanced antioxidant capacity by upregulating mTOR and nuclear factor erythroid 2-related factor 2/Heme oxygenase-1 (Nrf2/HO-1) signaling. Similarly, in bEnd.3 cells, T-006 reduced oxidative injuries and preserved tight junction integrity through Nrf2/HO-1 upregulation. These effects were inhibited by LY294002, a Phosphoinositide 3-kinase (PI3K) inhibitor. CONCLUSIONS T-006 may exert its neuroprotective and cerebrovascular protective effects via the regulation of PI3K/AKT-mediated pathways, which facilitate downstream mTOR and Nrf2 signaling, leading to improved cell survival and antioxidant defenses.
Collapse
Affiliation(s)
- Guiliang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Zirong Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Yuqiang Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou 510632, China; (Y.W.); (Z.Z.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou 510632, China; (Y.W.); (Z.Z.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
10
|
Soda T, Pasqua T, De Sarro G, Moccia F. Cognitive Impairment and Synaptic Dysfunction in Cardiovascular Disorders: The New Frontiers of the Heart-Brain Axis. Biomedicines 2024; 12:2387. [PMID: 39457698 PMCID: PMC11504205 DOI: 10.3390/biomedicines12102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Within the central nervous system, synaptic plasticity, fundamental to processes like learning and memory, is largely driven by activity-dependent changes in synaptic strength. This plasticity often manifests as long-term potentiation (LTP) and long-term depression (LTD), which are bidirectional modulations of synaptic efficacy. Strong epidemiological and experimental evidence show that the heart-brain axis could be severely compromised by both neurological and cardiovascular disorders. Particularly, cardiovascular disorders, such as heart failure, hypertension, obesity, diabetes and insulin resistance, and arrhythmias, may lead to cognitive impairment, a condition known as cardiogenic dementia. Herein, we review the available knowledge on the synaptic and molecular mechanisms by which cardiogenic dementia may arise and describe how LTP and/or LTD induction and maintenance may be compromised in the CA1 region of the hippocampus by heart failure, metabolic syndrome, and arrhythmias. We also discuss the emerging evidence that endothelial dysfunction may contribute to directly altering hippocampal LTP by impairing the synaptically induced activation of the endothelial nitric oxide synthase. A better understanding of how CV disorders impact on the proper function of central synapses will shed novel light on the molecular underpinnings of cardiogenic dementia, thereby providing a new perspective for more specific pharmacological treatments.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Teresa Pasqua
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio“, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
11
|
Guo Q. Quantitative analysis of the interaction between NMDA and AMPA receptors in glutamatergic synapses based on mathematical model. Neurosci Res 2024:S0168-0102(24)00123-8. [PMID: 39427699 DOI: 10.1016/j.neures.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
NMDA and AMPA receptors are co-localized at most glutamatergic synapses, where their numbers and distribution undergo dynamic changes. Glutamate binds to both the NMDA and AMPA receptors. Initially, I investigated whether there is competition between AMPA receptors and N-methyl-D-aspartic acid (NMDA) receptors for glutamate. Subsequently, I examined how these dynamic receptor changes affect synaptic response. To test the hypothesis, a synaptic model incorporating coexisting NMDA and AMPA receptors within the postsynaptic density (PSD) was developed. During long-term potentiation (LTP) induction, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the PSD increase. If there is competition for glutamate between AMPA receptors and NMDA receptors, the number of activated NMDA receptor channels will decrease. Since LTP induction relies on the activation of NMDA receptors, reducing their activation will raise the threshold for LTP induction. Consequently, the LTP of the synapse itself can establish negative feedback, preventing excessive dynamics and maintaining the stability of the neural network.
Collapse
Affiliation(s)
- Qingchen Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
12
|
Bender PA, Chakraborty S, Durham RJ, Berka V, Carrillo E, Jayaraman V. Bi-directional allosteric pathway in NMDA receptor activation and modulation. Nat Commun 2024; 15:8841. [PMID: 39396999 PMCID: PMC11471786 DOI: 10.1038/s41467-024-53181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are ionotropic glutamate receptors involved in learning and memory. NMDA receptors primarily comprise two GluN1 and two GluN2 subunits. The GluN2 subunit dictates biophysical receptor properties, including the extent of receptor activation and desensitization. GluN2A- and GluN2D-containing receptors represent two functional extremes. To uncover the conformational basis of their functional divergence, we utilize single-molecule fluorescence resonance energy transfer to probe the extracellular domains of these receptor subtypes under resting and ligand-bound conditions. We find that the conformational profile of the GluN2 amino-terminal domain correlates with the disparate functions of GluN2A- and GluN2D-containing receptors. Changes at the pre-transmembrane segments inversely correlate with those observed at the amino-terminal domain, confirming direct allosteric communication between these domains. Additionally, binding of a positive allosteric modulator at the transmembrane domain shifts the conformational profile of the amino-terminal domain towards the active state, revealing a bidirectional allosteric pathway between extracellular and transmembrane domains.
Collapse
Affiliation(s)
- Paula A Bender
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Subhajit Chakraborty
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ryan J Durham
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vladimir Berka
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elisa Carrillo
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vasanthi Jayaraman
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
13
|
Van Hove JLK. The role of NMDA-receptor type glutamatergic antagonists dextromethorphan or ketamine in the treatment of nonketotic hyperglycinemia: A critical reassessment. Mol Genet Metab 2024; 143:108594. [PMID: 39423724 DOI: 10.1016/j.ymgme.2024.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The recognition of glycine as an endogenous ligand at the allosteric activation site of the NMDA-type glutamatergic receptor led to the assumption that the excess glycine in nonketotic hyperglycinemia would result in overactivation of these receptors, and of the proposed use of inhibitors such as dextromethorphan or ketamine as a therapeutic agent. Years later it was recognized that these same receptors have an alternative endogenous activator d-serine, which is markedly decreased in nonketotic hyperglycinemia. This may result in underactivation of these NMDA-type glutamatergic receptors, challenging the earlier hypothesis. Clear clinical evidence of an added therapeutic benefit beyond the use of glycine reduction strategies from use of either dextromethorphan or ketamine in nonketotic hyperglycinemia has not been documented. The systematic use of these NMDA-type receptor antagonists in nonketotic hyperglycinemia should be reevaluated, particularly in light of emerging potential adverse effects.
Collapse
Affiliation(s)
- Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Liu R, Liu N, Ma L, Liu Y, Huang Z, Peng X, Zhuang C, Niu J, Yu J, Du J. Research Progress on NMDA Receptor Enhancement Drugs for the Treatment of Depressive Disorder. CNS Drugs 2024:10.1007/s40263-024-01123-x. [PMID: 39379772 DOI: 10.1007/s40263-024-01123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Major depressive disorder (MDD) is a severe mental illness with a complex etiology. Currently, many medications employed in clinical treatment exhibit limitations such as delayed onset of action and a high incidence of adverse reactions. Therefore, there is a pressing need to develop antidepressants that exhibit enhanced efficacy and safety. The N-methyl-D-aspartate receptor (NMDAR), a distinctive glutamate-gated ion channel receptor, has been implicated in the onset and progression of depressive disorder, as evidenced by both preclinical and clinical research. The NMDAR antagonist, ketamine, exhibits rapid and sustained antidepressant effects, holding promise as a novel therapeutic approach for depressive disorder. However, its psychotomimetic impact and potential for addiction have restricted its widespread clinical application. Notably, over the past decade, studies have suggested that enhancing NMDAR functionality can produce antidepressant effects with improved safety, especially with the emergence of NMDAR-positive allosteric modulators (PAMs). We view this as a potential novel strategy for treating depression, forming the basis for the narrative review that follows.
Collapse
Affiliation(s)
- Ruyun Liu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Xiaodong Peng
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jianguo Niu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
| | - Juan Du
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
15
|
Hong I, Kim J, Hainmueller T, Kim DW, Keijser J, Johnson RC, Park SH, Limjunyawong N, Yang Z, Cheon D, Hwang T, Agarwal A, Cholvin T, Krienen FM, McCarroll SA, Dong X, Leopold DA, Blackshaw S, Sprekeler H, Bergles DE, Bartos M, Brown SP, Huganir RL. Calcium-permeable AMPA receptors govern PV neuron feature selectivity. Nature 2024:10.1038/s41586-024-08027-2. [PMID: 39358515 DOI: 10.1038/s41586-024-08027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
The brain helps us survive by forming internal representations of the external world1,2. Excitatory cortical neurons are often precisely tuned to specific external stimuli3,4. However, inhibitory neurons, such as parvalbumin-positive (PV) interneurons, are generally less selective5. PV interneurons differ from excitatory neurons in their neurotransmitter receptor subtypes, including AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs)6,7. Excitatory neurons express calcium-impermeable AMPARs that contain the GluA2 subunit (encoded by GRIA2), whereas PV interneurons express receptors that lack the GluA2 subunit and are calcium-permeable (CP-AMPARs). Here we demonstrate a causal relationship between CP-AMPAR expression and the low feature selectivity of PV interneurons. We find low expression stoichiometry of GRIA2 mRNA relative to other subunits in PV interneurons that is conserved across ferrets, rodents, marmosets and humans, and causes abundant CP-AMPAR expression. Replacing CP-AMPARs in PV interneurons with calcium-impermeable AMPARs increased their orientation selectivity in the visual cortex. Manipulations to induce sparse CP-AMPAR expression demonstrated that this increase was cell-autonomous and could occur with changes beyond development. Notably, excitatory-PV interneuron connectivity rates and unitary synaptic strength were unaltered by CP-AMPAR removal, which suggested that the selectivity of PV interneurons can be altered without markedly changing connectivity. In Gria2-knockout mice, in which all AMPARs are calcium-permeable, excitatory neurons showed significantly degraded orientation selectivity, which suggested that CP-AMPARs are sufficient to drive lower selectivity regardless of cell type. Moreover, hippocampal PV interneurons, which usually exhibit low spatial tuning, became more spatially selective after removing CP-AMPARs, which indicated that CP-AMPARs suppress the feature selectivity of PV interneurons independent of modality. These results reveal a new role of CP-AMPARs in maintaining low-selectivity sensory representation in PV interneurons and implicate a conserved molecular mechanism that distinguishes this cell type in the neocortex.
Collapse
Affiliation(s)
- Ingie Hong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Juhyun Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Thomas Hainmueller
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg, Germany
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Dong Won Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Joram Keijser
- Modelling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Richard C Johnson
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Soo Hyun Park
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD, USA
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Zhuonan Yang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - David Cheon
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Taeyoung Hwang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amit Agarwal
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
| | - Thibault Cholvin
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD, USA
| | - Seth Blackshaw
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Henning Sprekeler
- Modelling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Solange P Brown
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Richard L Huganir
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
16
|
Cimino M, Feligioni M. The selective disruption of the JNK2/Syntaxin-1A interaction by JGRi1 protects against NMDA-evoked toxicity in SH-SY5Y cells. Neurochem Int 2024; 179:105824. [PMID: 39098765 DOI: 10.1016/j.neuint.2024.105824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
N-methyl-D-aspartate (NMDA) receptors are calcium-permeable ion-channel receptors, specifically activated by glutamate, that permit the activation of specific intracellular calcium-dependent pathways. Aberrant NMDA receptor activation leads to a condition known as excitotoxicity, in which excessive calcium inflow induces apoptotic pathways. To date, memantine is the only NMDA receptor antagonist authorized in clinical practice, hence, a better understanding of the NMDA cascade represents a need to discover novel pharmacological targets. We previously reported non-conventional intracellular signaling triggered by which, upon activation, promotes the interaction between JNK2 and STX1A which enhances the rate of vesicular secretion. We developed a cell-permeable peptide, named JGRi1, able to disrupt such interaction, thus reducing vesicular secretion. In this work, to selectively study the effect of JGRi1 in a much simpler system, we employed neuroblastoma cells, SH-SY5Y. We found that SH-SY5Y cells express the components of the NMDA receptor-JNK2 axis and that the NMDA stimulus increases the rate of vesicle release. Both JGRi1 and memantine protected SH-SY5Y cells from NMDA toxicity, but only JGRi1 reduced the interaction between JNK2 and STX1A. Both drugs successfully reduced NMDA-induced vesicle release, although, unlike memantine, JGRi1 did not prevent calcium influx. NMDA treatment induced JNK2 expression, but not JNK1 or JNK3, which was prevented by both JGRi1 and memantine, suggesting that JNK2 may be specifically involved in the response to NMDA. In conclusion, being JGRi1 able to protect cells against NMDA toxicity by interfering with JNK2/STX1A interaction, it could be considered a novel pharmacological tool to counteract excitotoxicity.
Collapse
Affiliation(s)
- M Cimino
- EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| | - M Feligioni
- EBRI Rita Levi-Montalcini Foundation, Rome, Italy; Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| |
Collapse
|
17
|
Lee S, Jung WB, Moon H, Im GH, Noh YW, Shin W, Kim YG, Yi JH, Hong SJ, Jung Y, Ahn S, Kim SG, Kim E. Anterior cingulate cortex-related functional hyperconnectivity underlies sensory hypersensitivity in Grin2b-mutant mice. Mol Psychiatry 2024; 29:3195-3207. [PMID: 38704508 PMCID: PMC11449790 DOI: 10.1038/s41380-024-02572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
Sensory abnormalities are observed in ~90% of individuals with autism spectrum disorders (ASD), but the underlying mechanisms are poorly understood. GluN2B, an NMDA receptor subunit that regulates long-term depression and circuit refinement during brain development, has been strongly implicated in ASD, but whether GRIN2B mutations lead to sensory abnormalities remains unclear. Here, we report that Grin2b-mutant mice show behavioral sensory hypersensitivity and brain hyperconnectivity associated with the anterior cingulate cortex (ACC). Grin2b-mutant mice with a patient-derived C456Y mutation (Grin2bC456Y/+) show sensory hypersensitivity to mechanical, thermal, and electrical stimuli through supraspinal mechanisms. c-fos and functional magnetic resonance imaging indicate that the ACC is hyperactive and hyperconnected with other brain regions under baseline and stimulation conditions. ACC pyramidal neurons show increased excitatory synaptic transmission. Chemogenetic inhibition of ACC pyramidal neurons normalizes ACC hyperconnectivity and sensory hypersensitivity. These results suggest that GluN2B critically regulates ASD-related cortical connectivity and sensory brain functions.
Collapse
Affiliation(s)
- Soowon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Won Beom Jung
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, Korea
| | - Heera Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea
| | - Young Woo Noh
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yong Gyu Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Seok Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yongwhan Jung
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Sunjoo Ahn
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Korea.
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
18
|
Bulthuis NE, McGowan JC, Ladner LR, LaGamma CT, Lim SC, Shubeck CX, Brachman RA, Sydnor E, Pavlova IP, Seo DO, Drew MR, Denny CA. GluN2B on Adult-Born Granule Cells Modulates (R,S)-Ketamine's Rapid-Acting Effects in Mice. Int J Neuropsychopharmacol 2024; 27:pyae036. [PMID: 39240140 PMCID: PMC11461768 DOI: 10.1093/ijnp/pyae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Standard antidepressant treatments often take weeks to reach efficacy and are ineffective for many patients. (R,S)-ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been shown to be a rapid-acting antidepressant and to decrease depressive symptoms within hours of administration. While previous studies have shown the importance of the GluN2B subunit of the NMDA receptor on interneurons in the medial prefrontal cortex, no study to our knowledge has investigated the influence of GluN2B-expressing adult-born granule cells. METHODS Here, we examined whether (R,S)-ketamine's efficacy depends on adult-born hippocampal neurons using a genetic strategy to selectively ablate the GluN2B subunit of the NMDA receptor from Nestin+ cells in male and female mice, tested across an array of standard behavioral assays. RESULTS We report that in male mice, GluN2B expression on 6-week-old adult-born neurons is necessary for (R,S)-ketamine's effects on behavioral despair in the forced swim test and on hyponeophagia in the novelty suppressed feeding paradigm, as well on fear behavior following contextual fear conditioning. In female mice, GluN2B expression is necessary for effects on hyponeophagia in novelty suppressed feeding. These effects were not replicated when ablating GluN2B from 2-week-old adult-born neurons. We also find that ablating neurogenesis increases fear expression in contextual fear conditioning, which is buffered by (R,S)-ketamine administration. CONCLUSIONS In line with previous studies, these results suggest that 6-week-old adult-born hippocampal neurons expressing GluN2B partially modulate (R,S)-ketamine's rapid-acting effects. Future work targeting these 6-week-old adult-born neurons may prove beneficial for increasing the efficacy of (R,S)-ketamine.
Collapse
Affiliation(s)
- Nicholas E Bulthuis
- Doctoral Program in Neurobiology and Behavior (NB&B), Columbia University, New York, New York, USA
| | - Josephine C McGowan
- Doctoral Program in Neurobiology and Behavior (NB&B), Columbia University, New York, New York, USA
| | - Liliana R Ladner
- Department of Neuroscience, Barnard College, New York, New York, USA
| | - Christina T LaGamma
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| | - Sean C Lim
- Medical Science Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
- Doctoral Program in Neurobiology and Behavior (NB&B), Columbia University, New York, New York, USA
| | | | - Rebecca A Brachman
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
| | - Ezra Sydnor
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| | - Ina P Pavlova
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| | - Dong-oh Seo
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | - Michael R Drew
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| |
Collapse
|
19
|
Doyle MA, Salimando GJ, Altemus ME, Badt JK, Bedenbaugh MN, Vardy AS, Adank DN, Park AS, Winder DG. BNST GluN2D-containing NMDARs contribute to ethanol intake but not negative affective behaviors in female mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1876-1891. [PMID: 39179522 PMCID: PMC11464179 DOI: 10.1111/acer.15432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a chronic, relapsing disease, highly comorbid with anxiety and depression. The bed nucleus of the stria terminalis (BNST) and Crh+ neurons in this region play a key role in chronic ethanol-induced increases in volitional intake, hypothesized to be driven by emergent negative affective behaviors. Excitatory N-methyl-d-aspartate receptors (NMDARs) are a major target of ethanol, and chronic ethanol exposure has been shown to regulate NMDAR function and expression. Specifically, GluN2D subunit-containing NMDARs have emerged as a target of interest due to their limited distribution and potential roles in affective behavior. METHODS Male and female mice underwent a home cage chronic drinking forced abstinence model (CDFA) to assess the impact of 1 day or 2 weeks of ethanol abstinence on BNST synaptic transmission and BNST Grin gene expression. Constitutive and conditional BNST GluN2D knockout mice were used to assess the impact of GluN2D deletion on continuous access ethanol intake as well as negative affect behaviors, using the open field, elevated zero maze, and forced swim tasks. RESULTS We report here that excitatory transmission undergoes time-dependent upregulation in BNST Crh+ cells. Further, knockdown of dorsal BNST (dBNST) GluN2D expression significantly decreases ethanol intake in female, but not male, mice. While BNST Grin2b expression was significantly increased in protracted abstinence following CDFA, no differences in Grin2d expression were observed in the dBNST or dBNST Crh+ neurons. Finally, we find that deletion of GluN2D fails to alter negative affect in ethanol-naïve female mice. CONCLUSIONS These data suggest a role for BNST GluN2D-containing NMDARs in ethanol drinking but not ethanol abstinence, highlighting sex differences and behavioral specificity. Overall, these data further suggest roles for BNST synaptic signaling in volitional ethanol intake that are partially independent of actions on affective behavior.
Collapse
Affiliation(s)
- Marie A. Doyle
- Department of Neurobiology, UMass Chan Medical School
- Department of Molecular Physiology and Biophysics, Vanderbilt University
- Vanderbilt Center for Addiction Research, Vanderbilt University
| | - Gregory J. Salimando
- Department of Molecular Physiology and Biophysics, Vanderbilt University
- Vanderbilt Center for Addiction Research, Vanderbilt University
| | | | - Justin K. Badt
- Vanderbilt Center for Addiction Research, Vanderbilt University
| | - Michelle N. Bedenbaugh
- Department of Molecular Physiology and Biophysics, Vanderbilt University
- Vanderbilt Center for Addiction Research, Vanderbilt University
| | | | | | - Anika S. Park
- Vanderbilt Center for Addiction Research, Vanderbilt University
| | - Danny G. Winder
- Department of Neurobiology, UMass Chan Medical School
- Department of Molecular Physiology and Biophysics, Vanderbilt University
- Vanderbilt Center for Addiction Research, Vanderbilt University
| |
Collapse
|
20
|
Kadamani KL, Rahnamaie-Tajadod R, Eaton L, Bengtsson J, Ojaghi M, Cheng H, Pamenter ME. What can naked mole-rats teach us about ameliorating hypoxia-related human diseases? Ann N Y Acad Sci 2024; 1540:104-120. [PMID: 39269277 DOI: 10.1111/nyas.15219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Ameliorating the deleterious impact of systemic or tissue-level hypoxia or ischemia is key to preventing or treating many human diseases and pathologies. Usefully, environmental hypoxia is also a common challenge in many natural habitats; animals that are native to such hypoxic niches often exhibit strategies that enable them to thrive with limited O2 availability. Studying how such species have evolved to tolerate systemic hypoxia offers a promising avenue of discovery for novel strategies to mitigate the deleterious effects of hypoxia in human diseases and pathologies. Of particular interest are naked mole-rats, which are among the most hypoxia-tolerant mammals. Naked mole-rats that tolerate severe hypoxia in a laboratory setting are also protected against clinically relevant mimics of heart attack and stroke. The mechanisms that support this tolerance are currently being elucidated but results to date suggest that metabolic rate suppression, reprogramming of metabolic pathways, and mechanisms that defend against deleterious perturbations of cellular signaling pathways all provide layers of protection. Herein, we synthesize and discuss what is known regarding adaptations to hypoxia in the naked mole-rat cardiopulmonary system and brain, as these systems comprise both the primary means of delivering O2 to tissues and the most hypoxia-sensitive organs in mammals.
Collapse
Affiliation(s)
- Karen L Kadamani
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - John Bengtsson
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mohammad Ojaghi
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hang Cheng
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Beaurain M, Salabert AS, Payoux P, Gras E, Talmont F. NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2024; 17:1265. [PMID: 39458906 PMCID: PMC11509972 DOI: 10.3390/ph17101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family. These ligand-gated channels are entwined with numerous fundamental neurological functions within the central nervous system (CNS), and numerous neuropsychiatric disorders may arise from their malfunction. METHODS The purpose of the present review is to provide a detailed description of NMDARs by addressing their molecular structures, activation mechanisms, and physiological roles in the mammalian brain. In the second part, their role in various neuropsychiatric disorders including stroke, epilepsy, anti-NMDA encephalitis, Alzheimer's and Huntington's diseases, schizophrenia, depression, neuropathic pain, opioid-induced tolerance, and hyperalgesia will be covered. RESULTS Finally, through a careful exploration of the main non-competitive NMDARs antagonists (channel-blockers). CONCLUSION We discuss the strengths and limitations of the various molecular structures developed for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Marie Beaurain
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, UPS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
22
|
Silva RH, Pedro LC, Manosso LM, Gonçalves CL, Réus GZ. Pre- and Post-Synaptic protein in the major depressive Disorder: From neurobiology to therapeutic targets. Neuroscience 2024; 556:14-24. [PMID: 39103041 DOI: 10.1016/j.neuroscience.2024.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Major depressive disorder (MDD) has demonstrated its negative impact on various aspects of the lives of those affected. Although several therapies have been developed over the years, it remains a challenge for mental health professionals. Thus, understanding the pathophysiology of MDD is necessary to improve existing treatment options or seek new therapeutic alternatives. Clinical and preclinical studies in animal models of depression have shown the involvement of synaptic plasticity in both the development of MDD and the response to available drugs. However, synaptic plasticity involves a cascade of events, including the action of presynaptic proteins such as synaptophysin and synapsins and postsynaptic proteins such as postsynaptic density-95 (PSD-95). Additionally, several factors can negatively impact the process of spinogenesis/neurogenesis, which are related to many outcomes, including MDD. Thus, this narrative review aims to deepen the understanding of the involvement of synaptic formations and their components in the pathophysiology and treatment of MDD.
Collapse
Affiliation(s)
- Ritele H Silva
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Lucas C Pedro
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cinara L Gonçalves
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
23
|
Radin DP, Zhong S, Cerne R, Shoaib M, Witkin JM, Lippa A. Preclinical characterization of a water-soluble low-impact ampakine prodrug, CX1942 and its active moiety, CX1763. Future Med Chem 2024:1-12. [PMID: 39301929 DOI: 10.1080/17568919.2024.2401312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Aim: AMPA-glutamate receptor (AMPAR) dysfunction mediates multiple neurological/neuropsychiatric disorders. Ampakines bind AMPARs and allosterically enhance glutamate-elicited currents. This report describes the activity of the water-soluble ampakine CX1942 prodrug and the active moiety CX1763.Results: CX1763 and CX1942 enhance synaptic transmission in hippocampi of rats. CX1763 increases attention in the 5CSRTT in rats and reduces amphetamine-induced hyperactivity in mice. CX1942 potently reverses opioid-induced respiratory depression in rats. CX1942/CX1763 was effective at 2.5-10 mg/kg. CX1763 lacked epileptogenicity up to 1500 mg/kg in rats.Conclusion: These data document that CX1942 and CX1763 are active and without prominent side effects in multiple pre-clinical assays. CX1942 could serve as a prodrug for CX1763 with the advantage of high water solubility as in an intravenous formulation.
Collapse
Affiliation(s)
- Daniel P Radin
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ 07452, USA
| | - Sheng Zhong
- Psychogenics, 215 College Road, Paramus, NJ 07652, USA
| | - Rok Cerne
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ 07452, USA
| | - Mohammed Shoaib
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Jeffrey M Witkin
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ 07452, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ 07452, USA
| |
Collapse
|
24
|
Fournier LA, Phadke RA, Salgado M, Brack A, Nocon JC, Bolshakova S, Grant JR, Padró Luna NM, Sen K, Cruz-Martín A. Overexpression of the schizophrenia risk gene C4 in PV cells drives sex-dependent behavioral deficits and circuit dysfunction. iScience 2024; 27:110800. [PMID: 39310747 PMCID: PMC11416532 DOI: 10.1016/j.isci.2024.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Fast-spiking parvalbumin (PV)-positive cells are key players in orchestrating pyramidal neuron activity, and their dysfunction is consistently observed in myriad brain diseases. To understand how immune complement pathway dysregulation in PV cells drives disease pathogenesis, we have developed a transgenic line that permits cell-type specific overexpression of the schizophrenia-associated C4 gene. We found that overexpression of mouse C4 (mC4) in PV cells causes sex-specific alterations in anxiety-like behavior and deficits in synaptic connectivity and excitability of PFC PV cells. Using a computational model, we demonstrated that these microcircuit deficits led to hyperactivity and disrupted neural communication. Finally, pan-neuronal overexpression of mC4 failed to evoke the same deficits in behavior as PV-specific mC4 overexpression, suggesting that perturbations of this neuroimmune gene in fast-spiking neurons are especially detrimental to circuits associated with anxiety-like behavior. Together, these results provide a causative link between C4 and the vulnerability of PV cells in brain disease.
Collapse
Affiliation(s)
- Luke A. Fournier
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Rhushikesh A. Phadke
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Maria Salgado
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Alison Brack
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Jian Carlo Nocon
- Neurophotonics Center, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Hearing Research Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sonia Bolshakova
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics MS Program, Boston University, Boston, MA, USA
| | - Jaylyn R. Grant
- Biological Sciences, Eastern Illinois University, Charleston, IL, USA
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, MA, USA
| | - Nicole M. Padró Luna
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, MA, USA
- Biology Department, College of Natural Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Kamal Sen
- Neurophotonics Center, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Hearing Research Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Alberto Cruz-Martín
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- NeuroTechnology Center (NTC), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
25
|
Trainito A, Muscarà C, Gugliandolo A, Chiricosta L, Salamone S, Pollastro F, Mazzon E, D'Angiolini S. Cannabinol (CBN) Influences the Ion Channels and Synaptic-Related Genes in NSC-34 Cell Line: A Transcriptomic Study. Cells 2024; 13:1573. [PMID: 39329756 PMCID: PMC11430194 DOI: 10.3390/cells13181573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Neurological disorders such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and schizophrenia are associated with altered neuronal excitability, resulting from dysfunctions in the molecular architecture and physiological regulation of ion channels and synaptic transmission. Ion channels and synapses are regarded as suitable therapeutic targets in modern pharmacology. Cannabinoids have received great attention as an original therapeutic approach for their effects on human health due to their ability to modulate the neurotransmitter release through interaction with the endocannabinoid system. In our study, we explored the effect of cannabinol (CBN) through next-generation sequencing analysis of NSC-34 cell physiology. Our findings revealed that CBN strongly influences the ontologies related to ion channels and synapse activity at all doses tested. Specifically, the genes coding for calcium and potassium voltage-gated channel subunits, and the glutamatergic and GABAergic receptors (Cacna1b, Cacna1h, Cacng8, Kcnc3, Kcnd1, Kcnd2, Kcnj4, Grik5, Grik1, Slc17a7, Gabra5), were up-regulated. Conversely, the genes involved into serotoninergic and cholinergic pathways (Htr3a, Htr3b, Htr1b, Chrna3, Chrnb2, Chrnb4), were down-regulated. These findings highlight the influence of CBN in the expression of genes involved into ion influx and synaptic transmission.
Collapse
Affiliation(s)
- Alessandra Trainito
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Claudia Muscarà
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
| | - Emanuela Mazzon
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Simone D'Angiolini
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
26
|
Brooks IA, Jedrasiak-Cape I, Rybicki-Kler C, Ekins TG, Ahmed OJ. Unique Transcriptomic Cell Types of the Granular Retrosplenial Cortex are Preserved Across Mice and Rats Despite Dramatic Changes in Key Marker Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613545. [PMID: 39345493 PMCID: PMC11429737 DOI: 10.1101/2024.09.17.613545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The granular retrosplenial cortex (RSG) supports key functions ranging from memory consolidation to spatial navigation. The mouse RSG contains several cell types that are remarkably distinct from those found in other cortical regions. This includes the physiologically and transcriptomically unique low rheobase neuron that is the dominant cell-type in RSG layers 2/3 (L2/3 LR), as well as the similarly exclusive pyramidal cells that comprise much of RSG layer 5a (L5a RSG). While the functions of the RSG are extensively studied in both mice and rats, it remains unknown if the transcriptomically unique cell types of the mouse RSG are evolutionarily conserved in rats. Here, we show that mouse and rat RSG not only contain the same cell types, but key subtypes including the L2/3 LR and L5a RSG neurons are amplified in their representations in rats compared to mice. This preservation of cell types in male and female rats happens despite dramatic changes in key cell-type-specific marker genes, with the Scnn1a expression that selectively tags mouse L5a RSG neurons completely absent in rats. Important for Cre-driver line development, we identify alternative, cross-species genes that can be used to selectively target the cell types of the RSG in both mice and rats. Our results show that the unique cell types of the RSG are evolutionarily conserved across millions of years of evolution between mice and rats, but also emphasize stark species-specific differences in marker genes that need to be considered when making cell-type-specific transgenic lines of mice versus rats.
Collapse
Affiliation(s)
- Isla A.W. Brooks
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | | | - Chloe Rybicki-Kler
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Tyler G. Ekins
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Omar J. Ahmed
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
27
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen 0213 Oslo, Norway
| |
Collapse
|
28
|
Bohovyk R, Kravtsova O, Levchenko V, Klemens CA, Palygin O, Staruschenko A. Effects of zinc in podocytes and cortical collecting duct in vitro and Dahl salt-sensitive rats in vivo. J Biol Chem 2024; 300:107781. [PMID: 39276935 DOI: 10.1016/j.jbc.2024.107781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
Zinc is one of the essential divalent cations in the human body and a fundamental microelement involved in the regulation of many cellular and subcellular functions. Experimental studies reported that zinc deficiency is associated with renal damage and could increase blood pressure. It was proposed that zinc dietary supplementation plays a renoprotective role. Our study aimed to investigate the effects of zinc on intracellular signaling in renal cells and explore the correlation between dietary zinc and the progression of salt-induced hypertension. The impact of extracellular zinc concentrations on two different kidney epithelial cell types, podocytes and principal cells of the cortical collecting duct (CCD), was tested. In podocytes, a rise in extracellular zinc promotes TRPC6 channel-mediated calcium entry but not altered intracellular zinc levels. However, we observe the opposite effect in CCD cells with no alteration in calcium levels and steady-state elevation in intracellular zinc. Moreover, prolonged extracellular zinc exposure leads to cytotoxic insults in CCD cells but not in podocytes, characterized by increased cell death and disrupted cytoskeletal organization. Next, we tested if dietary zinc plays a role in the development of hypertension in Dahl salt-sensitive rats. Neither zinc-rich nor deficient diets impact the regular development of salt-sensitive hypertension. These results suggest specialized roles for zinc in renal function, implicating its involvement in proliferation and apoptosis in CCD cells and calcium signaling and cytoskeletal dynamics modulation in podocytes. Further research is required to elucidate the detailed mechanisms of zinc action and its implications in renal health and disease.
Collapse
Affiliation(s)
- Ruslan Bohovyk
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA; James A. Haley Veterans' Hospital, Tampa, Florida, USA.
| |
Collapse
|
29
|
Sumino A, Sumikama T, Zhao Y, Flechsig H, Umeda K, Kodera N, Konno H, Hattori M, Shibata M. High-Speed Atomic Force Microscopy Reveals Fluctuations and Dimer Splitting of the N-Terminal Domain of GluA2 Ionotropic Glutamate Receptor-Auxiliary Subunit Complex. ACS NANO 2024; 18:25018-25035. [PMID: 39180186 DOI: 10.1021/acsnano.4c06295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid glutamate receptors (AMPARs) enable rapid excitatory synaptic transmission by localizing to the postsynaptic density of glutamatergic spines. AMPARs possess large extracellular N-terminal domains (NTDs), which are crucial for AMPAR clustering at synaptic sites. However, the dynamics of NTDs and the molecular mechanism governing their synaptic clustering remain elusive. Here, we employed high-speed atomic force microscopy (HS-AFM) to directly visualize the conformational dynamics of NTDs in the GluA2 subunit complexed with TARP γ2 in lipid environments. HS-AFM videos of GluA2-γ2 in the resting and activated/open states revealed fluctuations in NTD dimers. Conversely, in the desensitized/closed state, the two NTD dimers adopted a separated conformation with less fluctuation. Notably, we observed individual NTD dimers transitioning into monomers, with extended monomeric states in the activated/open state. Molecular dynamics simulations provided further support, confirming the energetic stability of the monomeric NTD states within lipids. This NTD-dimer splitting resulted in subunit exchange between the receptors and increased the number of interaction sites with synaptic protein neuronal pentraxin 1 (NP1). Moreover, our HS-AFM studies revealed that NP1 forms a ring-shaped octamer through N-terminal disulfide bonds and binds to the tip of the NTD. These findings suggest a molecular mechanism in which NP1, upon forming an octamer, is secreted into the synaptic region and binds to the tip of the GluA2 NTD, thereby bridging and clustering multiple AMPARs. Thus, our findings illuminate the critical role of NTD dynamics in the synaptic clustering of AMPARs and contribute valuable insights into the fundamental processes of synaptic transmission.
Collapse
Affiliation(s)
- Ayumi Sumino
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takashi Sumikama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yimeng Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, and Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Yangpu District, Shanghai 200438, China
- Human Phenome Institute, Fudan University, Yangpu District, Shanghai 200438, China
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, and Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Yangpu District, Shanghai 200438, China
| | - Mikihiro Shibata
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
30
|
Yan Y, Yao C, Zhang B, Yang Z, Xie J, Tang M, Long Q, Tu E, Dong X. Olanzapine vs. magnesium valproate vs. lamotrigine in anti-N-methyl-D-aspartic acid receptor encephalitis: a retrospective study. BMC Neurol 2024; 24:331. [PMID: 39251922 PMCID: PMC11382376 DOI: 10.1186/s12883-024-03811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND This study aimed to compare the impact of olanzapine, magnesium valproate, and lamotrigine as adjunctive treatments for anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. And it is expected to add supporting points related to the rebalance of neurotransmitters in the brain through adjuvant therapy in the clinical management of anti-NMDAR encephalitis. METHODS This retrospective study included patients diagnosed with anti-NMDAR encephalitis who received standardized immunotherapy at Hunan Brain Hospital between January 2018 and December 2020. RESULTS Compared to the olanzapine group, both the magnesium valproate and lamotrigine groups showed lower scores on the positive and negative symptom scale (PANSS) total score after 3 weeks of treatment (all P < 0.05). The Montreal Cognitive Assessment Scale (MoCA) scores in the magnesium valproate and lamotrigine groups were significantly higher than in the olanzapine group after 3 weeks and 3 months of treatment (all P < 0.05). After 3 months of treatment, the proportions of patients with a modified Rankin scale score (mRS) of 0-1 in the magnesium valproate and lamotrigine groups were significantly higher than in the olanzapine group (all P < 0.05). The electroencephalogram (EEG) abnormality ranks at 3 months were significantly lower in the magnesium valproate and lamotrigine groups compared with the olanzapine group (all P < 0.05). Furthermore, the Glx/Cr ratio significantly decreased after 3 months of treatment (all P < 0.05) in the magnesium valproate and lamotrigine groups, while the Glx/Cr ratio in the olanzapine group showed no significant change (P > 0.05). CONCLUSION Compared with olanzapine, the addition of magnesium valproate or lamotrigine to immunotherapy might be associated with a lower PANSS score, higher MoCA score, and lower mRS score. The improvement of neurological functions and cognitive function may be related to the decreased Glx/Cr ratio.
Collapse
Affiliation(s)
- Yinhua Yan
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province (The Second Hospital of Hunan Province), Changsha, 410007, Hunan, China
| | - Chenxiao Yao
- The Hospital of Trade-Business of Hunan Province, Changsha, 410006, Hunan, China
| | - Bo Zhang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
- Hunan society of traditional Chinese medicine and integrated traditional Chinese and Western Medicine, Changsha, 410005, Hunan, China
| | - Zhenyu Yang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province (The Second Hospital of Hunan Province), Changsha, 410007, Hunan, China
| | - Jiahui Xie
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province (The Second Hospital of Hunan Province), Changsha, 410007, Hunan, China
| | - Miao Tang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province (The Second Hospital of Hunan Province), Changsha, 410007, Hunan, China
| | - Qiong Long
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province (The Second Hospital of Hunan Province), Changsha, 410007, Hunan, China
| | - Ewen Tu
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China.
- Department of Neurology, Brain Hospital of Hunan Province (The Second Hospital of Hunan Province), Changsha, 410007, Hunan, China.
| | - Xuanqi Dong
- Brain Hospital of Hunan Province, Brain Hospital of Hunan Province(The Second Hospital of Hunan Province), Changsha, 410007, Hunan, China.
| |
Collapse
|
31
|
Drotos AC, Zarb RL, Booth V, Roberts MT. GluN2C/D-containing NMDA receptors enhance temporal summation and increase sound-evoked and spontaneous firing in the inferior colliculus. J Physiol 2024. [PMID: 39240253 DOI: 10.1113/jp286754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Along the ascending auditory pathway, there is a broad shift from temporal coding, which is common in the lower auditory brainstem, to rate coding, which predominates in auditory cortex. This temporal-to-rate transition is particularly prominent in the inferior colliculus (IC), the midbrain hub of the auditory system, but the mechanisms that govern how individual IC neurons integrate information across time remain largely unknown. Here, we report the widespread expression of Glun2c and Glun2d mRNA in IC neurons. GluN2C/D-containing NMDA receptors are relatively insensitive to voltage-dependent Mg2+ blockade, and thus can conduct current at resting membrane potential. Using in situ hybridization and pharmacology, we show that vasoactive intestinal peptide neurons in the IC express GluN2D-containing NMDA receptors that are activatable by commissural inputs from the contralateral IC. In addition, GluN2C/D-containing receptors have much slower kinetics than other NMDA receptors, and we found that GluN2D-containing receptors facilitate temporal summation of synaptic inputs in vasoactive intestinal peptide neurons. In a model neuron, we show that a GluN2C/D-like conductance interacts with the passive membrane properties of the neuron to alter temporal and rate coding of stimulus trains. Consistent with this, we show in vivo that blocking GluN2C/D-containing receptors decreases both the spontaneous firing rate and the overall firing rate elicited by amplitude-modulated sounds in many IC neurons. These results suggest that GluN2C/D-containing NMDA receptors influence rate coding for auditory stimuli in the IC by facilitating the temporal integration of synaptic inputs. KEY POINTS: NMDA receptors are critical components of most glutamatergic circuits in the brain, and the diversity of NMDA receptor subtypes yields receptors with a variety of functions. We found that many neurons in the auditory midbrain express GluN2C and/or GluN2D NMDA receptor subunits, which are less sensitive to Mg2+ blockade than the more commonly expressed GluN2A/B subunits. We show that GluN2C/D-containing receptors conducted current at resting membrane potential and enhanced temporal summation of synaptic inputs. In a model, we show that GluN2C/D-containing receptors provide additive gain for input-output functions driven by trains of synaptic inputs. In line with this, we found that blocking GluN2C/D-containing NMDA receptors in vivo decreased both spontaneous firing rates and firing evoked by amplitude-modulated sounds.
Collapse
Affiliation(s)
- Audrey C Drotos
- Department of Otolaryngology - Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Rachel L Zarb
- Department of Otolaryngology - Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Victoria Booth
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Michael T Roberts
- Department of Otolaryngology - Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Zulueta Diaz YDLM, Arnspang EC. Super-resolution microscopy to study membrane nanodomains and transport mechanisms in the plasma membrane. Front Mol Biosci 2024; 11:1455153. [PMID: 39290992 PMCID: PMC11405310 DOI: 10.3389/fmolb.2024.1455153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Biological membranes are complex, heterogeneous, and dynamic systems that play roles in the compartmentalization and protection of cells from the environment. It is still a challenge to elucidate kinetics and real-time transport routes for molecules through biological membranes in live cells. Currently, by developing and employing super-resolution microscopy; increasing evidence indicates channels and transporter nano-organization and dynamics within membranes play an important role in these regulatory mechanisms. Here we review recent advances and discuss the major advantages and disadvantages of using super-resolution microscopy to investigate protein organization and transport within plasma membranes.
Collapse
Affiliation(s)
| | - Eva C Arnspang
- Department of Green Technology, SDU Biotechnology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
33
|
Castillo-Vazquez SK, Massieu L, Rincón-Heredia R, García-de la Torre P, Quiroz-Baez R, Gomez-Verjan JC, Rivero-Segura NA. Glutamatergic Neurotransmission in Aging and Neurodegenerative Diseases: A Potential Target to Improve Cognitive Impairment in Aging. Arch Med Res 2024; 55:103039. [PMID: 38981341 DOI: 10.1016/j.arcmed.2024.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Aging is characterized by the decline in many of the individual's capabilities. It has been recognized that the brain undergoes structural and functional changes during aging that are occasionally associated with the development of neurodegenerative diseases. In this sense, altered glutamatergic neurotransmission, which involves the release, binding, reuptake, and degradation of glutamate (Glu) in the brain, has been widely studied in physiological and pathophysiological aging. In particular, changes in glutamatergic neurotransmission are exacerbated during neurodegenerative diseases and are associated with cognitive impairment, characterized by difficulties in memory, learning, concentration, and decision-making. Thus, in the present manuscript, we aim to highlight the relevance of glutamatergic neurotransmission during cognitive impairment to develop novel strategies to prevent, ameliorate, or delay cognitive decline. To achieve this goal, we provide a comprehensive review of the changes reported in glutamatergic neurotransmission components, such as Glu transporters and receptors during physiological aging and in the most studied neurodegenerative diseases. Finally, we describe the current therapeutic strategies developed to target glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourdes Massieu
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Paola García-de la Torre
- 4 Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City Mexico
| | - Ricardo Quiroz-Baez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico
| | | | | |
Collapse
|
34
|
Wong YT, Zheng X, Lau SH, Sun KHM, Chen X, Li H, Ng SL, Jiang H, Lau GCY, He J. Artificial fluorescent sensor reveals pre-synaptic NMDA receptors switch cholecystokinin release and LTP in the hippocampus. J Neurochem 2024; 168:2621-2639. [PMID: 38750623 DOI: 10.1111/jnc.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 10/04/2024]
Abstract
Cholecystokinin (CCK) has been confirmed to be essential in NMDA-dependent long-term potentiation (LTP) at mouse cortical synapses. This paper has proven that CCK is necessary for LTP induced by high-frequency stimulation of mouse hippocampal synapses projected from the entorhinal cortex. We show that the subunit of the axonal NMDA receptor dominant modulates the activity-induced LTP by triggering pre-synaptic CCK release. A functional pre-synaptic NMDA receptor is required to induce LTP mediated by the axonal Ca2+ elevation and CCK exocytosis at CCK-specific neurons. Genetic depletion of the GluN1 subunit of NMDA receptors on CCK neurons, which projected from the entorhinal cortex largely abolished the axonal Ca2+ elevation and disturbed the secretion of CCK in hippocampus. These results demonstrate that activity-induced LTP at the hippocampal synapse is CCK-dependent, and CCK secretion from the axonal terminal is modulated by pre-synaptic NMDA receptors.
Collapse
Grants
- CityU11101521, CityU11103922, CityU11104923 Hong Kong Research Grants Council, General Research Fund
- Ref The College Research Grant under Hong Kong Tung Wah College
- 2023-00-51CRG230204 The College Research Grant under Hong Kong Tung Wah College
- C1043-21G Hong Kong Research Grants Council, Collaborative Research Fund
- T13-605/18-W Hong Kong Research Grants Council, Theme-Based Research Scheme
- SRFS2324-1S02 Hong Kong Research Grants Council, Senior Research Fellow Scheme
- GHP_075_19GD Innovation and Technology Fund of the Hong Kong SAR, China
- 09203656, 08194106 Hong Kong Health Bureau, Health and Medical Research Fund
- Health@InnoHKprogram Innovation Technology Commission of the Hong Kong SAR, China
Collapse
Affiliation(s)
- Yin-Ting Wong
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- School of Medical and Health Sciences, Tung Wah College, Ho Man Tin, Hong Kong
| | - Xuejiao Zheng
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Siu-Hin Lau
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Ka-Hei Murphy Sun
- Department of Pathology, Princess Margaret Hospital, Hong Kong City, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Huangcan Li
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - Siu-Lung Ng
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - HeHai Jiang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- Guangzhou Laboratory, Guangzhou, China
| | | | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
35
|
Dossat AM, Trychta KA, Glotfelty EJ, Hinkle JJ, Fortuno LV, Gore LN, Richie CT, Harvey BK. Excitotoxic glutamate levels cause the secretion of resident endoplasmic reticulum proteins. J Neurochem 2024; 168:2461-2478. [PMID: 38491746 PMCID: PMC11401966 DOI: 10.1111/jnc.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
Dysregulation of synaptic glutamate levels can lead to excitotoxicity such as that observed in stroke, traumatic brain injury, and epilepsy. The role of increased intracellular calcium (Ca2+) in the development of excitotoxicity is well established. However, less is known regarding the impact of glutamate on endoplasmic reticulum (ER)-Ca2+-mediated processes such as proteostasis. To investigate this, we expressed a secreted ER Ca2+ modulated protein (SERCaMP) in primary cortical neurons to monitor exodosis, a phenomenon whereby ER calcium depletion causes the secretion of ER-resident proteins that perform essential functions to the ER and the cell. Activation of glutamatergic receptors (GluRs) led to an increase in SERCaMP secretion indicating that normally ER-resident proteins are being secreted in a manner consistent with ER Ca2+ depletion. Antagonism of ER Ca2+ channels attenuated the effects of glutamate and GluR agonists on SERCaMP release. We also demonstrate that endogenous proteins containing an ER retention/retrieval sequence (ERS) are secreted in response to GluR activation supporting that neuronal activation by glutamate promotes ER exodosis. Ectopic expression of KDEL receptors attenuated the secretion of ERS-containing proteins caused by GluR agonists. Taken together, our data indicate that excessive GluR activation causes disruption of neuronal proteostasis by triggering the secretion of ER-resident proteins through ER Ca2+ depletion and describes a new facet of excitotoxicity.
Collapse
Affiliation(s)
- Amanda M. Dossat
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Kathleen A. Trychta
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Elliot J. Glotfelty
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Joshua J. Hinkle
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Lowella V. Fortuno
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Lana N. Gore
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Christopher T. Richie
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Brandon K. Harvey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| |
Collapse
|
36
|
Sonawane S, Všianský V, Brázdil M. MicroRNA-mediated regulation of neurotransmitter receptors in epilepsy: A systematic review. Epilepsy Behav 2024; 158:109912. [PMID: 38924965 DOI: 10.1016/j.yebeh.2024.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Pathogenesis of epilepsy involves dysregulation of the neurotransmitter system contributing to hyper-excitability of neuronal cells. MicroRNA (miRNAs) are small non-coding RNAs known to play a crucial role in post-transcriptional regulation of gene expression. METHODS The present review was prepared following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, employing a comprehensive search strategy to identify and extract data from published research articles. Keywords suchas epilepsy, micro RNA (micro RNAs, miRNA, miRNAs, miR), neurotransmitters (specific names), and neurotransmitter receptors (specific names) were used to construct the query. RESULTS A total of 724 articles were identified using the keywords epilepsy, microRNA along with select neurotransmitter and neurotransmitter receptor names. After exclusions, the final selection consisted of 17 studies, most of which centered on glutamate and gamma-aminobutyric acid (GABA) receptors. Singular studies also investigated miRNAs affecting cholinergic, purinergic, and glycine receptors. CONCLUSION This review offers a concise overview of the current knowledge on miRNA-mediated regulation of neurotransmitter receptors in epilepsy and highlights their potential for future clinical application.
Collapse
Affiliation(s)
- Shivani Sonawane
- Brno Epilepsy Center, 1st Department of Neurology, Faculty of Medicine, Masaryk University and St. Annés University Hospital, Brno, Czech Republic; Behavioural and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology Masaryk University, Brno, Czech Republic
| | - Vít Všianský
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Member of the ERN EpiCARE, Brno, Czech Republic
| | - Milan Brázdil
- Brno Epilepsy Center, 1st Department of Neurology, Faculty of Medicine, Masaryk University and St. Annés University Hospital, Brno, Czech Republic; Behavioural and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology Masaryk University, Brno, Czech Republic.
| |
Collapse
|
37
|
Das K, Sen J, Borode AS. Ketamine and α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) Receptor Potentiation in the Somatosensory Cortex: A Comprehensive Review. Cureus 2024; 16:e69261. [PMID: 39398836 PMCID: PMC11470829 DOI: 10.7759/cureus.69261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Ketamine, a dissociative anesthetic primarily recognized for its antagonism of N-methyl-D-aspartate (NMDA) receptors, has gained significant attention for its rapid antidepressant effects and potential in treating mood disorders. However, recent research indicates that ketamine's influence extends beyond NMDA receptor inhibition, affecting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and sensory processing. This review delves into ketamine's role in enhancing AMPA receptor function and its implications for sensory processing within the somatosensory cortex. AMPA receptors, essential for fast excitatory neurotransmission and synaptic plasticity, play a key role in sensory perception and integration. By examining preclinical and clinical studies, this review sheds light on how ketamine's modulation of AMPA receptors may improve sensory processing and contribute to its therapeutic effects. Additionally, the review explores the potential for ketamine-based therapies to treat sensory processing disorders and refine current treatment strategies. A deeper understanding of ketamine's complex effects on AMPA receptors and sensory processing could provide valuable insights for developing targeted interventions and advancing clinical applications.
Collapse
Affiliation(s)
- Kaustuv Das
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Jayshree Sen
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aishwarya S Borode
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
38
|
He X, Hu XY, Yin XY, Wu XM, Liu QR, Shen JC. GluR2 can Drive Neuroinflammation and Cognitive Impairments Following Peripherally Repeated Lipopolysaccharide Exposures. Neurochem Res 2024; 49:2393-2407. [PMID: 38837093 DOI: 10.1007/s11064-024-04183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Neuroinflammation is being increasingly recognized as a vital factor in the development of various neurological and neuropsychiatric diseases. Lipopolysaccharides (LPS), an outer membrane component of gram-negative bacteria, can trigger innate immune responses, resulting in neuroinflammation and subsequent cognitive deficits. The expression of glutamate receptors (GluRs) on glial cells can induce glial activation. Therefore, we hypothesized that repeated LPS exposure can increase GluR levels, promoting microglial activation and ultimately affecting synaptic plasticity and cognitive function. In this study, C57/BL6 mice were repeatedly exposed to LPS to construct a neuroinflammation animal model. The levels of GluRs, inflammatory cytokines, ionized calcium-binding adaptor molecule 1, postsynaptic density protein 95, synaptophysin 38, NMDA receptor 2 A, and NMDA receptor 2B (GluN2B) were measured in the hippocampi. Furthermore, dendritic spine density in the CA1 hippocampal region was determined. Repeated LPS exposure induced cognitive impairments and microglial activation and increased GluR1 and GluR2 levels. This was accompanied by a significant decrease in GluN2B expression and dendritic spine density in the hippocampi. However, CFM-2, an α-amino-3- hydroxy-5-methyl-4-isoxazolepropionate receptor antagonist, reversed these anomalies. Furthermore, minocycline, a microglial inhibitor, reversed these anomalies and downregulated GluR2 but not GluR1 expression. In summary, we demonstrated that GluR2 plays an essential role in microglia-induced neuroinflammation, resulting in synaptic plasticity and cognitive impairment induced by repeated exposure to LPS.
Collapse
Affiliation(s)
- Xue He
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiao-Yi Hu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Yu Yin
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xin-Miao Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing-Ren Liu
- Department of Anesthesiology, Xishan People's Hospital of Wuxi City, Wuxi, China.
| | - Jin-Chun Shen
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| |
Collapse
|
39
|
Bay Y, Cabello FJM, Koens CC, Frantsen SM, Pickering DS, Frydenvang K, Francotte P, Pirotte B, Kristensen AS, Bowie D, Kastrup JS. Crystal structure of the GluK1 ligand-binding domain with kainate and the full-spanning positive allosteric modulator BPAM538. J Struct Biol 2024; 216:108113. [PMID: 39079583 DOI: 10.1016/j.jsb.2024.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
Kainate receptors play an important role in the central nervous system by mediating postsynaptic excitatory neurotransmission and modulating the release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. To date, only three structures of the ligand-binding domain (LBD) of the kainate receptor subunit GluK1 in complex with positive allosteric modulators have been determined by X-ray crystallography, all belonging to class II modulators. Here, we report a high-resolution structure of GluK1-LBD in complex with kainate and BPAM538, which belongs to the full-spanning class III. One BPAM538 molecule binds at the GluK1 dimer interface, thereby occupying two allosteric binding sites simultaneously. BPAM538 stabilizes the active receptor conformation with only minor conformational changes being introduced to the receptor. Using a calcium-sensitive fluorescence-based assay, a 5-fold potentiation of the kainate response (100 μM) was observed in presence of 100 μM BPAM538 at GluK1(Q)b, whereas no potentiation was observed at GluK2(VCQ)a. Using electrophysiology recordings of outside-out patches excised from HEK293 cells, BPAM538 increased the peak response of GluK1(Q)b co-expressed with NETO2 to rapid application of 10 mM L-glutamate with 130 ± 20 %, and decreased desensitization determined as the steady-state/peak response ratio from 23 ± 2 % to 90 ± 4 %. Based on dose-response relationship experiments on GluK1(Q)b the EC50 of BPAM538 was estimated to be 58 ± 29 μM.
Collapse
Affiliation(s)
- Yasmin Bay
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | - Chloe C Koens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Stine M Frantsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Karla Frydenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Pierre Francotte
- Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Bernard Pirotte
- Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Jette Sandholm Kastrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
40
|
Rathing F, Schepmann D, Wünsch B. Quinolone bioisosteres of phenolic GluN2B-selective NMDA receptor antagonists. Arch Pharm (Weinheim) 2024; 357:e2400279. [PMID: 38889396 DOI: 10.1002/ardp.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024]
Abstract
Cyclopenta[g]quinolones of type 4 were designed with the aim to bioisosterically replace the phenol of potent GluN2B ligands such as ifenprodil and Ro 25-6981 by the quinolone system and to restrict the conformational flexibility of the aminopropanol substructure in a cyclopentane system. The designed ligands were synthesized in an eight-step sequence starting with terephthalaldehyde (5). Key steps pf the synthesis were the intramolecular Friedel-Crafts acylation of propionic acids 10 to yield the cyclopenta[g]quinolinediones 11 and the Mannich reaction of diketone 11a followed by conjugate addition at the α,β-unsaturated ketone 12a. Although the quinolones 13a, 15a, and 16a contain an H-bond donor group (secondary lactam) as ifenprodil and Ro 25-6981, they show only moderate GluN2B affinity (Ki > 410 nM). However, the introduction of lipophilic substituents at the quinolone N-atom resulted in more than 10-fold increased GluN2B affinity of the benzyl and benzyloxymethyl derivatives cis-13c (Ko = 36 nM) and 13e (Ko = 27 nM). All compounds are selective over the phencyclidine (PCP) binding site of the N-methyl-D-aspartate (NMDA) receptor. The benzyl derivative 13c showed six- and threefold selectivity over σ1 and σ2 receptors, respectively.
Collapse
Affiliation(s)
- Friederike Rathing
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Universität Münster, Münster, Germany
| |
Collapse
|
41
|
Kolić D, Kovarik Z. N-methyl-d-aspartate receptors: Structure, function, and role in organophosphorus compound poisoning. Biofactors 2024; 50:868-884. [PMID: 38415801 DOI: 10.1002/biof.2048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Acute organophosphorus compound (OP) poisoning induces symptoms of the cholinergic crises with the occurrence of severe epileptic seizures. Seizures are induced by hyperstimulation of the cholinergic system, but are enhanced by hyperactivation of the glutamatergic system. Overstimulation of muscarinic cholinergic receptors by the elevated acetylcholine causes glutamatergic hyperexcitation and an increased influx of Ca2+ into neurons through a type of ionotropic glutamate receptors, N-methyl-d-aspartate (NMDA) receptors (NMDAR). These excitotoxic signaling processes generate reactive oxygen species, oxidative stress, and activation of the neuroinflammatory response, which can lead to recurrent epileptic seizures, neuronal cell death, and long-term neurological damage. In this review, we illustrate the NMDAR structure, complexity of subunit composition, and the various receptor properties that change accordingly. Although NMDARs are in normal physiological conditions important for controlling synaptic plasticity and mediating learning and memory functions, we elaborate the detrimental role NMDARs play in neurotoxicity of OPs and focus on the central role NMDAR inhibition plays in suppressing neurotoxicity and modulating the inflammatory response. The limited efficacy of current medical therapies for OP poisoning concerning the development of pharmacoresistance and mitigating proinflammatory response highlights the importance of NMDAR inhibitors in preventing neurotoxic processes and points to new avenues for exploring therapeutics for OP poisoning.
Collapse
Affiliation(s)
- Dora Kolić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Zrinka Kovarik
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
42
|
Chen J, Zhang M, Shen Z, Tang M, Zeng Y, Bai D, Zhao P, Jiang G. Low-dose diazepam improves cognitive function in APP/PS1 mouse models: Involvement of AMPA receptors. Brain Res 2024; 1845:149207. [PMID: 39214326 DOI: 10.1016/j.brainres.2024.149207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Previous studies have indicated a close association between cognitive impairment in patients with neurodegenerative diseases, such as Alzheimer's disease (AD), and synaptic damage. Diazepam (DZP), a benzodiazepine class drug, is used to control symptoms such as seizures, anxiety, and sleep disorders. These symptoms can potentially manifest throughout the entire course of AD. Therefore, DZP may be utilized in the treatment of AD to manage these symptoms. However, the specific role and mechanisms of DZP in AD remain unclear. In this study, we discovered that long-term administration of a low dose of DZP (0.5 mg/kg) improved cognitive function and protected neurons from damage in APP/PS1 mice. Mechanistic investigations revealed that DZP exerted its neuroprotective effects and reduced Aβ deposition by modulating GluA1 (glutamate AMPA receptor subunit) to influence synaptic function. In conclusion, these findings highlight the potential benefits of DZP as a novel therapeutic approach, suggesting that long-term use of low-dose DZP in early-stage AD patients may be advantageous in slowing disease progression.
Collapse
Affiliation(s)
- Junwen Chen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ming Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ziyi Shen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ming Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yumei Zeng
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dazhang Bai
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Peilin Zhao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
43
|
Cecconello DK, Silva KADS, de Senna ECM, Rechenmacher C, Daudt LE, Michalowski MB. Insights into Asparaginase Allergic Responses: Exploring Pharmacogenetic Influences. Pharmaceutics 2024; 16:1134. [PMID: 39339172 PMCID: PMC11435241 DOI: 10.3390/pharmaceutics16091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Acute lymphoblastic leukemia represents the most prevalent childhood cancer. Modern chemotherapy has significantly improved outcomes, achieving EFS rates of 80% and OS rates nearing 90% in developed nations, while in developing regions, rates remain below 50%, highlighting disparities, and this difference is due to several factors. Genetic variability plays a role in these drug response disparities, presenting single-nucleotide variations (SNVs). Pharmacogenetic research aims to pinpoint these SNVs early in treatment to predict specific drug responses effectively. This review aims to explore advancements in pharmacogenetics associated with asparaginase (ASNase). ASNase plays a crucial role in the treatment of ALL and is available in three formulations: E. coli, Erwinia, and PEG ASNase. ASNase therapy presents challenges due to adverse effects, like hypersensitivity reactions. Identifying predictive markers for hypersensitivity development beforehand is crucial for optimizing treatments. Several pharmacogenetic studies have investigated the association between SNVs and the risk of hypersensitivity. Key genes include GRIA1, NFATC2, CNTO3, ARHGAP28, MYBBP1A, and HLA. Studies have highlighted associations between SNVs within these genes and hypersensitivity reactions. Notably, most pharmacogenetic investigations of hypersensitivity have focused on patients treated with E. coli, emphasizing the need for broader exploration across different formulations. Future research investigating these variants holds promise for advancing our understanding of ASNase's pharmacogenetics.
Collapse
Affiliation(s)
- Daiane Keller Cecconello
- Post Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Translational Pediatrics Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Klerize Anecely de Souza Silva
- Post Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Translational Pediatrics Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | | | - Ciliana Rechenmacher
- Post Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Translational Pediatrics Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Liane Esteves Daudt
- Post Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Translational Pediatrics Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Mariana Bohns Michalowski
- Post Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Translational Pediatrics Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| |
Collapse
|
44
|
Bleier J, Furtado de Mendonca PR, Habrian CH, Stanley C, Vyklicky V, Isacoff EY. Subtype-specific conformational landscape of NMDA receptor gating. Cell Rep 2024; 43:114634. [PMID: 39154344 PMCID: PMC11446236 DOI: 10.1016/j.celrep.2024.114634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/22/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
N-methyl-D-aspartate receptors are ionotropic glutamate receptors that mediate synaptic transmission and plasticity. Variable GluN2 subunits in diheterotetrameric receptors with identical GluN1 subunits set very different functional properties. To understand this diversity, we use single-molecule fluorescence resonance energy transfer (smFRET) to measure the conformations of the ligand binding domain and modulatory amino-terminal domain of the common GluN1 subunit in receptors with different GluN2 subunits. Our results demonstrate a strong influence of the GluN2 subunits on GluN1 rearrangements, both in non-agonized and partially agonized activation intermediates, which have been elusive to structural analysis, and in the fully liganded state. Chimeric analysis reveals structural determinants that contribute to these subtype differences. Our study provides a framework for understanding the conformational landscape that supports highly divergent levels of activity, desensitization, and agonist potency in receptors with different GluN2s and could open avenues for the development of subtype-specific modulators.
Collapse
Affiliation(s)
- Julia Bleier
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Chris H Habrian
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cherise Stanley
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vojtech Vyklicky
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ehud Y Isacoff
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Weill Neurohub, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biology & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
45
|
Leippe P, Donthamsetti P, Ko T, Stanley C, Isacoff E, Trauner D. Cell-Specific Optical Control of AMPA Glutamate Receptors with a Photoswitchable Tethered Antagonist. Angew Chem Int Ed Engl 2024:e202411181. [PMID: 39189798 DOI: 10.1002/anie.202411181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
AMPA receptors (AMPARs) are the main drivers of excitatory glutamatergic transmission in the brain, central to synaptic plasticity, and are key drug targets. However, AMPARs are expressed in virtually every neuron in the central nervous system and are activated with complex temporal dynamics, making it difficult to determine their functional roles with sufficient precision. Here we describe a cell specific, light-controllable competitive antagonist for the AMPA receptor called MP-GluAblock that combines the temporal precision of a photo-switchable ligand with the spatial and cellular specificity of a genetically-encoded membrane-anchor protein. This tool could pave the way for controlling endogenous AMPARs in neural circuits with cellular, spatial, and temporal specificity.
Collapse
Affiliation(s)
- Philipp Leippe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Prashant Donthamsetti
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave., Preston Research Building 460, Nashville, TN, 37232, USA
| | - Tongil Ko
- Department of Chemistry in the School of Arts and Sciences, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Cherise Stanley
- Departments of Neuroscience and Molecular & Cell Biology and the Helen Wills Neuroscience Institute, University of California Berkeley, 271 Weill Hall MC 3220, Berkeley, CA, 94720, USA
| | - Ehud Isacoff
- Departments of Neuroscience and Molecular & Cell Biology and the Helen Wills Neuroscience Institute, University of California Berkeley, 271 Weill Hall MC 3220, Berkeley, CA, 94720, USA
| | - Dirk Trauner
- Department of Chemistry in the School of Arts and Sciences, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| |
Collapse
|
46
|
Rafe MR, Saha P, Bello ST. Targeting NMDA receptors with an antagonist is a promising therapeutic strategy for treating neurological disorders. Behav Brain Res 2024; 472:115173. [PMID: 39097148 DOI: 10.1016/j.bbr.2024.115173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Glutamate activates the NMDARs, significantly affecting multiple processes such as learning, memory, synaptic integration, and excitatory transmission in the central nervous system. Uncontrolled activation of NMDARs is a significant contributor to synaptic dysfunction. Having a properly functioning NMDAR and synapse is crucial for maintaining neuronal communication. In addition, the dysfunction of NMDAR and synapse function could contribute to the development of neurological disorders at the neuronal level; hence, targeting NMDARs with antagonists in the fight against neurological disorders is a promising route. Recently published results from the animal study on different kinds of brain diseases like stroke, epilepsy, tinnitus, ataxia, Alzheimer's disease, Parkinson's disease, and spinal cord injury have demonstrated promising therapeutic scopes. Several NMDA receptor antagonists, such as memantine, MK801, ketamine, ifenprodil, gacyclidine, amantadine, agmatine, etc., showed encouraging results against different brain disease mouse models. Given the unique expression of different subunits of the well-organized NMDA receptor system by neurons. It could potentially lead to the development of medications specifically targeting certain receptor subtypes. For a future researcher, conducting more targeted research and trials is crucial to fully understand and develop highly specific medications with good clinical effects and potential neuroprotective properties.
Collapse
Affiliation(s)
- Md Rajdoula Rafe
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh
| | - Pranoy Saha
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh
| | - Stephen Temitayo Bello
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, New Territories, Hong Kong.
| |
Collapse
|
47
|
Sullivan MT, Tidball P, Yan Y, Intson K, Chen W, Xu Y, Venkatesan S, Horsfall W, Georgiou J, Finnie PSB, Lambe EK, Traynelis SF, Salahpour A, Yuan H, Collingridge GL, Ramsey AJ. Grin1 Y 647 S/+ Mice: A Preclinical Model of GRIN1 -Related Neurodevelopmental Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608984. [PMID: 39229143 PMCID: PMC11370376 DOI: 10.1101/2024.08.21.608984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Objective GRIN1 -related neurodevelopmental disorder ( GRIN1 -NDD) is characterized by clinically significant variation in the GRIN1 gene, which encodes the obligatory GluN1 subunit of N-methyl-D-aspartate receptors (NMDARs). The identified p.Tyr647Ser (Y647S) variant - carried by a 33-year-old female with seizures and intellectual disability - is located in the M3 helix in the GluN1 transmembrane domain. This study builds upon initial in vitro investigations of the functional impacts of the GRIN1 Y647S variant and examines its in vivo consequences in a mouse model. Methods To investigate in vitro functional impacts of NMDARs containing GluN1-Y647S variant subunits, GluN1-Y647S was co-expressed with wildtype GluN2A or GluN2B subunits in Xenopus laevis oocytes and HEK cells. Grin1 Y647S/+ mice were created by CRISPR-Cas9 endonuclease-mediated transgenesis and the molecular, electrophysiological, and behavioural consequences of the variant were examined. Results In vitro , NMDARs containing GluN1-Y647S show altered sensitivity to endogenous agonists and negative allosteric modulators, and reduced cell surface trafficking. Grin1 Y647S/+ mice displayed a reduction in whole brain GluN1 levels and deficiency in NMDAR-mediated synaptic transmission in the hippocampus. Behaviourally, Grin1 Y647S/+ mice exhibited spontaneous seizures, altered vocalizations, muscle strength, sociability, and problem-solving. Interpretation The Y647S variant confers a complex in vivo phenotype, which reflects largely diminished properties of NMDAR function. As a result, Grin1 Y647S/+ mice display atypical behaviour in domains relevant to the clinical characteristics of GRIN1 -NDD and the individual carrying the variant. Ultimately, the characterization of Grin1 Y647S/+ mice accomplished in the present work expands our understanding of the mechanisms underlying GRIN1 -NDD and provides a foundation for the development of novel therapeutics.
Collapse
|
48
|
Liu Y, Shao D, Lou S, Kou Z. Structural prediction of GluN3 NMDA receptors. Front Physiol 2024; 15:1446459. [PMID: 39229618 PMCID: PMC11368749 DOI: 10.3389/fphys.2024.1446459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are heterotetrametric ion channels composed of two obligatory GluN1 subunits and two alternative GluN2 or GluN3 subunits, forming GluN1-N2, GluN1-N3, and GluN1-N2-N3 type of NMDA receptors. Extensive research has focused on the functional and structural properties of conventional GluN1-GluN2 NMDA receptors due to their early discovery and high expression levels. However, the knowledge of unconventional GluN1-N3 NMDA receptors remains limited. In this study, we modeled the GluN1-N3A, GluN1-N3B, and GluN1-N3A-N3B NMDA receptors using deep-learned protein-language predication algorithms AlphaFold and RoseTTAFold All-Atom. We then compared these structures with GluN1-N2 and GluN1-N3A receptor cryo-EM structures and found that GluN1-N3 receptors have distinct properties in subunit arrangement, domain swap, and domain interaction. Furthermore, we predicted the agonist- or antagonist-bound structures, highlighting the key molecular-residue interactions. Our findings shed new light on the structural and functional diversity of NMDA receptors and provide a new direction for drug development. This study uses advanced AI algorithms to model GluN1-N3 NMDA receptors, revealing unique structural properties and interactions compared to conventional GluN1-N2 receptors. By highlighting key molecular-residue interactions and predicting ligand-bound structures, our research enhances the understanding of NMDA receptor diversity and offers new insights for targeted drug development.
Collapse
Affiliation(s)
- Yunsheng Liu
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen Second People’s Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Da Shao
- Research Center of Translational Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shulei Lou
- Institute of Hospital Management, Linyi People’s Hospital, Linyi, China
| | - Zengwei Kou
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Gao B, Li C, Qu Y, Cai M, Zhou Q, Zhang Y, Lu H, Tang Y, Li H, Shen H. Progress and trends of research on mineral elements for depression. Heliyon 2024; 10:e35469. [PMID: 39170573 PMCID: PMC11336727 DOI: 10.1016/j.heliyon.2024.e35469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Objective To explore the research progress and trends on mineral elements and depression. Methods After querying the MeSH database and referring to the search rules, the search terms were selected and optimized to obtain the target literature collection. We analyzed the general characteristics of the literature, conducted network clustering and co-occurrence analysis, and carried out a narrative review of crucial literature. Results Bipolar disorder was a dominant topic in the retrieved literature, which saw a significant increase in 2010 and 2019-2020. Most studies focused on mineral elements, including lithium, calcium, magnesium, zinc, and copper. The majority of journals and disciplines were in the fields of psychiatry, neuropsychology, neuropharmacology, nutrition, medical informatics, chemistry, and public health. The United States had the highest proportion in terms of paper sources, most-cited articles, high-frequency citations, frontier citations, and high centrality citation. Regarding the influence of academic institutions, the top five were King's College London, the Chinese Academy of Sciences, University of Barcelona, INSERM, and Heidelberg University. Frontier keywords included bipolar disorder, drinking water, (neuro)inflammation, gut microbiota, and systematic analysis. Research on lithium response, magnesium supplementation, and treatment-resistant unipolar depression increased significantly after 2013. Conclusion Global adverse events may have indirectly driven the progress in related research. Although the literature from the United States represents an absolute majority, its influence on academic institutions is relatively weaker. Multiple pieces of evidence support the efficacy of lithium in treating bipolar disorder (BD). A series of key discoveries have led to a paradigm shift in research, leading to increasingly detailed studies on the role of magnesium, calcium, zinc, and copper in the treatment of depression. Most studies on mineral elements remain diverse and inconclusive. The potential toxicity and side effects of some elements warrant careful attention.
Collapse
Affiliation(s)
- Biao Gao
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
- Teaching and Research Support Center, Naval Medical University, Shanghai, 200433, China
| | - Chenqi Li
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
- Department of Nutrition, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Yicui Qu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Mengyu Cai
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Qicheng Zhou
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Yinyin Zhang
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Hongtao Lu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Yuxiao Tang
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Hongxia Li
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
50
|
Mirmotahari SA, Aliomrani M, Hassanzadeh F, Sirous H, Rostami M. Hybrid derivatives containing dimethyl fumarate and benzothiazole scaffolds for the potential treatment of multiple sclerosis; in silico & in vivo study. Daru 2024:10.1007/s40199-024-00529-8. [PMID: 39106020 DOI: 10.1007/s40199-024-00529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 06/30/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) is a chronic autoimmune, inflammatory neurological disease of the CNS. Riluzole and dimethyl fumarate (DMF) are two FDA-approved drugs to treat amyotrophic lateral sclerosis (ALS) and MS. Riluzole (a benzothiazole derivative) inhibits glutamate release from nerve terminals by antagonizing the N-Methyl-D-Aspartate (NMDA) receptor, and DMF upregulates anti-oxidative pathways. OBJECTIVES Herein, using molecular hybridization strategy, we synthesized some new hybrid structures of Riluzole and DMF through some common successive synthetic pathways for evaluating their potential activity for remyelination in MS treatment. METHODS Molecular docking experiments assessed the binding affinity of proposed structures to the NMDA active site. The designed structures were synthesized and purified based on well-known chemical synthesis procedures. Afterward, in vivo evaluation for their activity was done in the C57Bl/6 Cuprizone-induced demyelination MS model. RESULTS AND CONCLUSION The proposed derivatives were recognized to be potent enough based on docking studies (ΔGbind of all derivatives were -7.2 to -7.52 compare to the Ifenprodil (-6.98) and Riluzole (-4.42)). The correct structures of desired derivatives were confirmed using spectroscopic methods. Based on in vivo studies, D4 and D6 derivatives exhibited the best pharmacological results, although only D6 showed a statistically significant difference compared to the control. Also, for D4 and D6 derivatives, myelin staining confirmed reduced degeneration in the corpus callosum. Consequently, D4 and D6 derivatives are promising candidates for developing new NMDA antagonists with therapeutic value against MS disorders.
Collapse
Affiliation(s)
- Seyedeh Azin Mirmotahari
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R., Iran
| | - Mehdi Aliomrani
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R., Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R., Iran
| | - Mahboubeh Rostami
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R., Iran.
| |
Collapse
|