1
|
Sun X, Qiu P, He Z, Zhu Y, Zhang R, Li X, Wang X. HERC5: a comprehensive in silico analysis of its diagnostic, prognostic, and therapeutic potential in cancer. APMIS 2024; 132:760-774. [PMID: 39199018 DOI: 10.1111/apm.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024]
Abstract
HERC5, a vital protein in the HERC family, plays crucial roles in immune response, cancer progression, and antiviral defense. This bioinformatic study comprehensively assessed HERC5's significance across various malignancies by analyzing its gene expression, immune and molecular subtype expressions, target proteins, biological functions, and prognostic and diagnostic values in pan-cancer. We further examined its correlation with clinical features, co-expressed and differentially expressed genes, and prognosis in clinical subgroups, focusing on endometrial cancer (UCEC). Our findings showed that HERC5 RNA is expressed at low levels in most cancers and significantly differs across immune and molecular subtypes. HERC5 accurately predicts cancer and correlates with most cancer prognoses. In UCEC, HERC5 was significantly associated with age, hormonal status, clinical stage, treatment status, and metastasis. Elevated HERC5 expression was linked to worse progression-free interval, disease-specific survival, and overall survival in UCEC, particularly in diverse clinical subgroups. Significant differences in HERC5 expression were also observed in various human cancer cell line validations. In summary, HERC5 may be a critical biomarker for pan-cancer prognosis, progression, and diagnosis, as well as a promising new target for cancer therapy.
Collapse
Affiliation(s)
- Xianqing Sun
- Department of Traumatology and Orthopedics, The First People's Hospital of Qujing, Yunnan, China
| | - Peng Qiu
- Department of Traumatology and Orthopedics, The First People's Hospital of Qujing, Yunnan, China
| | - Zhennan He
- Department of Traumatology and Orthopedics, The First People's Hospital of Qujing, Yunnan, China
| | - Yuan Zhu
- Department of Traumatology and Orthopedics, The First People's Hospital of Qujing, Yunnan, China
| | - Rui Zhang
- Department of Traumatology and Orthopedics, The First People's Hospital of Qujing, Yunnan, China
| | - Xiang Li
- Department of Traumatology and Orthopedics, The First People's Hospital of Qujing, Yunnan, China
| | - Xiaoyan Wang
- Department of Traumatology and Orthopedics, The First People's Hospital of Qujing, Yunnan, China
| |
Collapse
|
2
|
Li A, Zhang J, Zhan L, Liu X, Zeng X, Zhu Q, Wang Z, Li J. TOX2 nuclear-cytosol translocation is linked to leukemogenesis of acute T-cell leukemia by repressing TIM3 transcription. Cell Death Differ 2024; 31:1506-1518. [PMID: 39080376 PMCID: PMC11519604 DOI: 10.1038/s41418-024-01352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 10/30/2024] Open
Abstract
Nuclear factors TOX and TOX2 upregulate TIM3 expression and lead to T-cell exhaustion in malignancies. Here, we demonstrate two distinct TIM3 expression patterns (high & low) with high TOX and TOX2 levels in T-cell acute lymphoblastic leukemia (T-ALL) specimens and cell lines. However, the mechanisms regulated by TOX and TIM3 signaling in leukemogenesis are unclear. We found that TOX and TOX2 proteins each directly upregulated HAVCR2 transcription, while the cellular localization of TOX2 was different in Jurkat and MOLT3 cells (nucleus) and lymphoblastic cell T2 and normal T cells (cytoplasm). Nuclear TOX and TOX2 formed a protein complex and repressed HAVCR2 promoter activity by recruiting transcriptional corepressor LCOR and deacetylase HDAC3. The nuclear-cytosol translocation of TOX2 was deacetylation-dependent and cooperatively mediated by deacetylase Sirt1 and kinase TBK1. Radiation damage induced TOX2 nuclear translocation and decreased Sirt1, TIM3, and caspase 1 expression in normal T cells. Accordingly, knockdown of TOX, TOX2 or LCOR; HDAC3 inhibition; or TIM3 overexpression induced Jurkat cell apoptosis in vitro and slow growth in vivo. Thus, our findings demonstrate a novel regulatory mechanism involving TOX-TOX2 and the TIM3 pathway in the leukemogenesis of T-ALL.
Collapse
Affiliation(s)
- Anzhou Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China
| | - Junbao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liangping Zhan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiufeng Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiliang Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zifeng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China
| | - Jiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China.
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
3
|
Franklin JM, Dubocanin D, Chittenden C, Barillas A, Lee RJ, Ghosh RP, Gerton JL, Guan KL, Altemose N. Human Satellite 3 DNA encodes megabase-scale transcription factor binding platforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.616524. [PMID: 39484556 PMCID: PMC11526998 DOI: 10.1101/2024.10.22.616524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Eukaryotic genomes are frequently littered with large arrays of tandem repeats, called satellite DNA, which underlie the constitutive heterochromatin often found around centromeric regions. While some satellite DNA types have well-established roles in centromere biology, other abundant satellite DNAs have poorly characterized functions. For example, Human Satellite 3 (HSat3), which makes up roughly 2% of the human genome, forms enormous arrays up to tens of megabases, but these arrays play no known roles in centromere function and were almost fully excluded from genome assemblies until recently. As a result, these massive genomic regions have remained relatively understudied, and the potential functional roles of HSat3 have remained largely unknown. To address this, we performed a systematic screen for novel HSat3 binding factors. Our work revealed HSat3 arrays contain high densities of transcription factor (TF) motifs that are bound by factors related to multiple, highly conserved signaling pathways. Unexpectedly, the most enriched TFs in HSat3 belong to the Hippo pathway transcription effector family TEAD. We found that TEAD recruits the co-activator YAP to HSat3 regions in a cell-state specific manner. Using RNA polymerase-I reporter assays, targeted repression of HSat3, inducible degradation of YAP, and super-resolution microscopy, we show that HSat3 arrays can localize YAP/TEAD inside the nucleolus, where YAP regulates RNA Polymerase-I activity. Beyond revealing a direct relationship between the Hippo pathway and ribosomal DNA regulation, this work demonstrates that satellite DNA can encode multiple transcription factor binding motifs, defining a new role for these enormous genomic elements.
Collapse
|
4
|
Swaraj S, Tripathi S. Interference without interferon: interferon-independent induction of interferon-stimulated genes and its role in cellular innate immunity. mBio 2024; 15:e0258224. [PMID: 39302126 PMCID: PMC11481898 DOI: 10.1128/mbio.02582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Interferons (IFNs) are multifaceted proteins that play pivotal roles in orchestrating robust antiviral immune responses and modulating the intricate landscape of host immunity. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, which leads to the transcription of a battery of genes, collectively known as IFN-stimulated genes (ISGs). While the well-established role of IFNs in coordinating the innate immune response against viral infections is widely acknowledged, recent years have provided a more distinct comprehension of the functional significance attributed to non-canonical, IFN-independent induction of ISGs. In this review, we summarize the non-conventional signaling pathways of ISG induction. These alternative pathways offer new avenues for developing antiviral strategies or immunomodulation in various diseases.
Collapse
Affiliation(s)
- Shachee Swaraj
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
5
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Bie J, Li Y, Song C, Weng Q, Zhao L, Su L, Zhao Z, Ye Y, Shen Z, Ji J, Luo J. LAMTOR1 ablation impedes cGAS degradation caused by chemotherapy and promotes antitumor immunity. Proc Natl Acad Sci U S A 2024; 121:e2320591121. [PMID: 39361643 PMCID: PMC11474068 DOI: 10.1073/pnas.2320591121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/22/2024] [Indexed: 10/05/2024] Open
Abstract
Chemotherapy resistance remains a significant obstacle that limits the long-term efficacy of cancer therapy, necessitating further investigations into the underlying mechanisms. Here, we find that DNA fragments induced by chemotherapeutic agents trigger the degradation of cGAS, a potent double-strand DNA (dsDNA) sensor, by lysosomes. Mechanically, the lysosome-localized protein LAMTOR1 is up-regulated, and the interaction between LAMTOR1 and cGAS is enhanced upon exposure to DNA fragments, boosting the accumulation and digestion of cGAS in lysosomes through the receptor protein p62. LAMTOR1 deficiency increases cGAS abundance and promotes activation of the cGAS-STING pathway, leading to subsequent production of type I interferons induced by cytosolic DNA stimulation. Loss of LAMTOR1 synergizes with immunotherapy and chemotherapy to inhibit tumor growth and prolong the survival time of tumor-bearing mice by promoting the infiltration of effective T lymphocytes. Thus, our study reveals a regulation of cGAS abundance and provides a potential strategy to overcome chemotherapy resistance by targeting LAMTOR1.
Collapse
Affiliation(s)
- Juntao Bie
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China
- Medical Innovation Center (Taizhou) of Peking University, Taizhou225316, China
| | - Yutong Li
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China
| | - Chen Song
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China
| | - Qiaoyou Weng
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui323000, China
| | - Long Zhao
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing100044, China
| | - Li Su
- Peking University Medical and Health Analysis Center, Beijing100191, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui323000, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing100044, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing100044, China
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui323000, China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China
- Medical Innovation Center (Taizhou) of Peking University, Taizhou225316, China
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China
| |
Collapse
|
7
|
Zhu H, Hou P, Chu F, Li X, Zhang W, Sun X, Liu Y, Zhao G, Gao Y, He DC, Wang H, He H. PBLD promotes IRF3 mediated the type I interferon (IFN-I) response and apoptosis to inhibit viral replication. Cell Death Dis 2024; 15:727. [PMID: 39362857 PMCID: PMC11450232 DOI: 10.1038/s41419-024-07083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Recent studies have implicated the phenazine biosynthesis-like domain-containing protein (PBLD) in the negative regulation of the development and progression of various cancers. However, its function in viral infection remains unknown. In this study, we found that PBLD plays important roles in multiple virus infections including BPIV3, SeV, VSV, and HSV-1. Our study revealed that PBLD enhances the expression of type I interferon (IFN-I) and ISGs through interferon regulatory factor 3 (IRF3). Further study indicated that PBLD promotes transcriptional phosphorylation of IRF3 (S385/386), thereby facilitating virus-induced IFN-I production. Interestingly, PBLD mediates virus-triggered mitochondrial apoptosis through its dependence on IRF3 (K313/315). Mechanistically, PBLD facilitated virus-induced apoptosis by recruiting the Puma protein to the mitochondria via IRF3. Additionally, we performed mutational analyses of IRF3, showing that its loss of either transcriptional or apoptotic function markedly increased viral replication. Moreover, macrophages with PBLD deficiency during viral infection exhibited decreased the IFN-I and ISGs expression, exacerbating viral infection. Importantly, mice deficient in PBLD exhibited increased viral replication and susceptibility to SeV infection, leading to decreased survival. Notably, Cedrelone, a chemical activator of PBLD, has the ability to reduce SeV replication. Collectively, we first discovered the new function of PBLD in viral infection, broadening our understanding of potential therapeutic targets and offering new insights for antiviral drug development.
Collapse
Affiliation(s)
- Hongchao Zhu
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Peili Hou
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Fengyun Chu
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xingyu Li
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Wenjia Zhang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiaonan Sun
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Yu Liu
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Guimin Zhao
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Daniel Chang He
- The College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China.
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China.
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
8
|
Wang M, Li XW, Yuan SC, Pan J, Guo ZL, Sun LM, Jiang SZ, Zhao M, Xue W, Cai H, Gu L, Luo D, Chen L, Zhou XQ, Han QY, Li J, Zhou T, Xia T, Li T. Indomethacin restrains cytoplasmic nucleic acid-stimulated immune responses by inhibiting the nuclear translocation of IRF3. J Mol Cell Biol 2024; 16:mjae015. [PMID: 38578631 PMCID: PMC11472148 DOI: 10.1093/jmcb/mjae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024] Open
Abstract
The recognition of cytosolic nucleic acid triggers the DNA/RNA sensor-IRF3 axis-mediated production of type I interferons (IFNs), which are essential for antiviral immune responses. However, the inappropriate activation of these signaling pathways is implicated in autoimmune conditions. Here, we report that indomethacin, a widely used nonsteroidal anti-inflammatory drug, inhibits nucleic acid-triggered IFN production. We found that both DNA- and RNA-stimulated IFN expression can be effectively blocked by indomethacin. Interestingly, indomethacin also prohibits the nuclear translocation of IRF3 following cytosolic nucleic acid recognition. Importantly, in cell lines and a mouse model of Aicardi-Goutières syndrome, indomethacin administration blunts self-DNA-induced autoimmune responses. Thus, our study reveals a previously unknown function of indomethacin and provides a potential treatment for cytosolic nucleic acid-stimulated autoimmunity.
Collapse
Affiliation(s)
- Miao Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Xiao-Wei Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Sen-Chao Yuan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Jie Pan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Zeng-Lin Guo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Li-Ming Sun
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Shao-Zhen Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ming Zhao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Wen Xue
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Hong Cai
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Lin Gu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Dan Luo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ling Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xue-Qing Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Qiu-Ying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Jin Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Tian Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Tao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Tu S, Zou J, Xiong C, Dai C, Sun H, Luo D, Jin M, Chen H, Zhou H. Zinc-finger CCHC-type containing protein 8 promotes RNA virus replication by suppressing the type-I interferon responses. J Virol 2024; 98:e0079624. [PMID: 39115433 PMCID: PMC11406956 DOI: 10.1128/jvi.00796-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/18/2024] [Indexed: 09/18/2024] Open
Abstract
Host cells have evolved an intricate regulatory network to fine tune the type-I interferon responses. However, the full picture of this regulatory network remains to be depicted. In this study, we found that knock out of zinc-finger CCHC-type containing protein 8 (ZCCHC8) impairs the replication of influenza A virus (IAV), Sendai virus (Sev), Japanese encephalitis virus (JEV), and vesicular stomatitis virus (VSV). Further investigation unveiled that ZCCHC8 suppresses the type-I interferon responses by targeting the interferon regulatory factor 3 (IRF3) signaling pathway. Mechanistically, ZCCHC8 associates with phosphorylated IRF3 and disrupts the interaction of IRF3 with the co-activator CREB-binding protein (CBP). Additionally, the direct binding of ZCCHC8 with the IFN-stimulated response element (ISRE) impairs the ISRE-binding of IRF3. Our study contributes to the comprehensive understanding for the negative regulatory network of the type-I interferon responses and provides valuable insights for the control of multiple viruses from a host-centric perspective.IMPORTANCEThe innate immune responses serve as the initial line of defense against invading pathogens and harmful substances. Negative regulation of the innate immune responses plays an essential role in avoiding auto-immune diseases and over-activated immune responses. Hence, the comprehensive understanding of the negative regulation network for innate immune responses could provide novel therapeutic insights for the control of viral infections and immune dysfunction. In this study, we report that ZCCHC8 negatively regulates the type-I interferon responses. We illustrate that ZCCHC8 impedes the IRF3-CBP association by interacting with phosphorylated IRF3 and competes with IRF3 for binding to ISRE. Our study demonstrates the role of ZCCHC8 in the replication of multiple RNA viruses and contributes to a deeper understanding of the negative regulation system for the type-I interferon responses.
Collapse
Affiliation(s)
- Shaoyu Tu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chuhan Xiong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Dai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huimin Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Didan Luo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
10
|
Nelemans T, Tas A, Kikkert M, van Hemert MJ. Usutu virus NS4A suppresses the host interferon response by disrupting MAVS signaling. Virus Res 2024; 347:199431. [PMID: 38969013 PMCID: PMC11292556 DOI: 10.1016/j.virusres.2024.199431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Usutu virus (USUV) is an emerging flavivirus that can infect birds and mammals. In humans, in severe cases, it may cause neuroinvasive disease. The innate immune system, and in particular the interferon response, functions as the important first line of defense against invading pathogens such as USUV. Many, if not all, viruses have developed mechanisms to suppress and/or evade the interferon response in order to facilitate their replication. The ability of USUV to antagonize the interferon response has so far remained largely unexplored. Using dual-luciferase reporter assays we observed that multiple of the USUV nonstructural (NS) proteins were involved in suppressing IFN-β production and signaling. In particular NS4A was very effective at suppressing IFN-β production. We found that NS4A interacted with the mitochondrial antiviral signaling protein (MAVS) and thereby blocked its interaction with melanoma differentiation-associated protein 5 (MDA5), resulting in reduced IFN-β production. The TM1 domain of NS4A was found to be essential for binding to MAVS. By screening a panel of flavivirus NS4A proteins we found that the interaction of NS4A with MAVS is conserved among flaviviruses. The increased understanding of the role of NS4A in flavivirus immune evasion could aid the development of vaccines and therapeutic strategies.
Collapse
Affiliation(s)
- Tessa Nelemans
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Ali Tas
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
| | - Martijn J van Hemert
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
11
|
Tong Z, Zou JP, Wang SY, Luo WW, Wang YY. Activation of the cGAS-STING-IRF3 Axis by Type I and II Interferons Contributes to Host Defense. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308890. [PMID: 39004913 PMCID: PMC11425201 DOI: 10.1002/advs.202308890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/08/2024] [Indexed: 07/16/2024]
Abstract
Interferons (IFNs) activate JAK-STAT pathways to induce downstream effector genes for host defense against invaded pathogens and tumors. Here both type I (β) and II (γ) IFNs are shown that can activate the transcription factor IRF3 in parallel with STAT1. IRF3-deficiency impairs transcription of a subset of downstream effector genes induced by IFN-β and IFN-γ. Mechanistically, IFN-induced activation of IRF3 is dependent on the cGAS-STING-TBK1 axis. Both IFN-β and IFN-γ cause mitochondrial DNA release into the cytosol. In addition, IFNs induce JAK1-mediated tyrosine phosphorylation of cGAS at Y214/Y215, which is essential for its DNA binding activity and signaling. Furthermore, deficiency of cGAS, STING, or IRF3 impairs IFN-β- or IFN-γ-mediated antiviral and antitumor activities. The findings reveal a novel IRF3 activation pathway parallel with the canonical STAT1/2 activation pathways triggered by IFNs and provide an explanation for the pleiotropic roles of the cGAS-STING-IRF3 axis in host defense.
Collapse
Affiliation(s)
- Zhen Tong
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Bejing, 100049, China
| | - Jia-Peng Zou
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Bejing, 100049, China
| | - Su-Yun Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wei-Wei Luo
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Bejing, 100049, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Yan-Yi Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Bejing, 100049, China
| |
Collapse
|
12
|
Saikh KU, Anam K, Sultana H, Ahmed R, Kumar S, Srinivasan S, Ahmed H. Targeting Myeloid Differentiation Primary Response Protein 88 (MyD88) and Galectin-3 to Develop Broad-Spectrum Host-Mediated Therapeutics against SARS-CoV-2. Int J Mol Sci 2024; 25:8421. [PMID: 39125989 PMCID: PMC11313481 DOI: 10.3390/ijms25158421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Nearly six million people worldwide have died from the coronavirus disease (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although COVID-19 vaccines are largely successful in reducing the severity of the disease and deaths, the decline in vaccine-induced immunity over time and the continuing emergence of new viral variants or mutations underscore the need for an alternative strategy for developing broad-spectrum host-mediated therapeutics against SARS-CoV-2. A key feature of severe COVID-19 is dysregulated innate immune signaling, culminating in a high expression of numerous pro-inflammatory cytokines and chemokines and a lack of antiviral interferons (IFNs), particularly type I (alpha and beta) and type III (lambda). As a natural host defense, the myeloid differentiation primary response protein, MyD88, plays pivotal roles in innate and acquired immune responses via the signal transduction pathways of Toll-like receptors (TLRs), a type of pathogen recognition receptors (PRRs). However, recent studies have highlighted that infection with viruses upregulates MyD88 expression and impairs the host antiviral response by negatively regulating type I IFN. Galectin-3 (Gal3), another key player in viral infections, has been shown to modulate the host immune response by regulating viral entry and activating TLRs, the NLRP3 inflammasome, and NF-κB, resulting in the release of pro-inflammatory cytokines and contributing to the overall inflammatory response, the so-called "cytokine storm". These studies suggest that the specific inhibition of MyD88 and Gal3 could be a promising therapy for COVID-19. This review presents future directions for MyD88- and Gal3-targeted antiviral drug discovery, highlighting the potential to restore host immunity in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Kamal U. Saikh
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| | | | | | | | | | | | - Hafiz Ahmed
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| |
Collapse
|
13
|
Li X, Villanueva V, Jimenez V, Nguyen B, Chauhan NR, Khan SQ, Dorschner JM, Jensen MA, Alzahrani K, Wei H, Cimbaluk DJ, Wei DC, Jolly M, Lopez-Rodriguez D, Pineda SB, Barbosa A, Vazquez-Padron RI, Faridi HM, Reiser J, Niewold TB, Gupta V. CD11b suppresses TLR7-driven inflammatory signaling to protect against lupus nephritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605143. [PMID: 39211173 PMCID: PMC11361177 DOI: 10.1101/2024.07.26.605143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lupus Nephritis (LN) is a severe complication of systemic lupus erythematosus (SLE) that affects kidney function. Here, we investigated the role of CD11b, a protein encoded by the ITGAM gene, in the development of LN and its functional activation as a therapeutic strategy. Genetic coding variants of ITGAM significantly increase the risk for SLE and LN by producing a less active CD11b and leading to elevated levels of type I interferon (IFN I). However, a molecular mechanism for how these variants increase LN risk has been unclear. Here, we determined that these variants also significantly associate with elevations in soluble urokinase plasminogen activator receptor (suPAR), a known biomarker linked to kidney disease, suggesting a novel molecular connection. Pharmacologic activation of CD11b with a novel, clinical-stage agonist ONT01 significantly suppressed suPAR production in myeloid cells and reduced systemic inflammation and kidney damage in multiple experimental models of LN. Importantly, delaying treatment with ONT01 until after disease onset also significantly reduced serum suPAR and inflammatory cytokines, and decreased immune complex deposition in the glomerulus, glomerulonephritis and albuminuria, suggesting that CD11b activation is therapeutic for LN. Genetic activation of CD11b via a gain-of-function CD11b mutation also showed complete protection from LN, whereas genetic deletion of CD11b worsened the disease in mice, providing further evidence of the role of CD11b activation in regulating LN. Finally, transfer of human LN PBMCs generated human LN like disease in mice that was significantly reduced by ONT01. Together, these data provide strong evidence that ONT01 mediated CD11b activation can therapeutically modulate TLR7-driven inflammation and protect against LN. These findings support clinical development of CD11b agonists as novel therapeutics for treating lupus nephritis in human patients.
Collapse
|
14
|
Yan S, Santoro A, Niphakis MJ, Pinto AM, Jacobs CL, Ahmad R, Suciu RM, Fonslow BR, Herbst-Graham RA, Ngo N, Henry CL, Herbst DM, Saghatelian A, Kahn BB, Rosen ED. Inflammation causes insulin resistance in mice via interferon regulatory factor 3 (IRF3)-mediated reduction in FAHFA levels. Nat Commun 2024; 15:4605. [PMID: 38816388 PMCID: PMC11139994 DOI: 10.1038/s41467-024-48220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Obesity-induced inflammation causes metabolic dysfunction, but the mechanisms remain elusive. Here we show that the innate immune transcription factor interferon regulatory factor (IRF3) adversely affects glucose homeostasis through induction of the endogenous FAHFA hydrolase androgen induced gene 1 (AIG1) in adipocytes. Adipocyte-specific knockout of IRF3 protects male mice against high-fat diet-induced insulin resistance, whereas overexpression of IRF3 or AIG1 in adipocytes promotes insulin resistance on a high-fat diet. Furthermore, pharmacological inhibition of AIG1 reversed obesity-induced insulin resistance and restored glucose homeostasis in the setting of adipocyte IRF3 overexpression. We, therefore, identify the adipocyte IRF3/AIG1 axis as a crucial link between obesity-induced inflammation and insulin resistance and suggest an approach for limiting the metabolic dysfunction accompanying obesity.
Collapse
Affiliation(s)
- Shuai Yan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02130, USA
| | - Anna Santoro
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02130, USA
| | - Micah J Niphakis
- Lundbeck La Jolla Research Center Inc., 10835 Road To The Cure Dr. #250, San Diego, CA, 92121, USA
| | - Antonio M Pinto
- The Salk Institute for Biological Studies, 10010 N. Torey Pines Rd, La Jolla, CA, 92037-1002, USA
| | - Christopher L Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02130, USA
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Jasim Mohamad Al Bahar St., Kuwait City, Kuwait
| | - Radu M Suciu
- Lundbeck La Jolla Research Center Inc., 10835 Road To The Cure Dr. #250, San Diego, CA, 92121, USA
| | - Bryan R Fonslow
- Lundbeck La Jolla Research Center Inc., 10835 Road To The Cure Dr. #250, San Diego, CA, 92121, USA
| | - Rachel A Herbst-Graham
- Lundbeck La Jolla Research Center Inc., 10835 Road To The Cure Dr. #250, San Diego, CA, 92121, USA
| | - Nhi Ngo
- Lundbeck La Jolla Research Center Inc., 10835 Road To The Cure Dr. #250, San Diego, CA, 92121, USA
| | - Cassandra L Henry
- Lundbeck La Jolla Research Center Inc., 10835 Road To The Cure Dr. #250, San Diego, CA, 92121, USA
| | - Dylan M Herbst
- Lundbeck La Jolla Research Center Inc., 10835 Road To The Cure Dr. #250, San Diego, CA, 92121, USA
| | - Alan Saghatelian
- The Salk Institute for Biological Studies, 10010 N. Torey Pines Rd, La Jolla, CA, 92037-1002, USA
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02130, USA
- Broad Institute of Harvard and MIT, 320 Charles St., Cambridge, MA, 02141, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA.
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02130, USA.
- Broad Institute of Harvard and MIT, 320 Charles St., Cambridge, MA, 02141, USA.
| |
Collapse
|
15
|
Liu X, Tang J, Wang Z, Zhu C, Deng H, Sun X, Yu G, Rong F, Chen X, Liao Q, Jia S, Liu W, Zha H, Fan S, Cai X, Gui JF, Xiao W. Oxygen enhances antiviral innate immunity through maintenance of EGLN1-catalyzed proline hydroxylation of IRF3. Nat Commun 2024; 15:3533. [PMID: 38670937 PMCID: PMC11053110 DOI: 10.1038/s41467-024-47814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Oxygen is essential for aerobic organisms, but little is known about its role in antiviral immunity. Here, we report that during responses to viral infection, hypoxic conditions repress antiviral-responsive genes independently of HIF signaling. EGLN1 is identified as a key mediator of the oxygen enhancement of antiviral innate immune responses. Under sufficient oxygen conditions, EGLN1 retains its prolyl hydroxylase activity to catalyze the hydroxylation of IRF3 at proline 10. This modification enhances IRF3 phosphorylation, dimerization and nuclear translocation, leading to subsequent IRF3 activation. Furthermore, mice and zebrafish with Egln1 deletion, treatment with the EGLN inhibitor FG4592, or mice carrying an Irf3 P10A mutation are more susceptible to viral infections. These findings not only reveal a direct link between oxygen and antiviral responses, but also provide insight into the mechanisms by which oxygen regulates innate immunity.
Collapse
Affiliation(s)
- Xing Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jinhua Tang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Zixuan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chunchun Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hongyan Deng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xueyi Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Guangqing Yu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Fangjing Rong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoyun Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qian Liao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Shuke Jia
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wen Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Huangyuan Zha
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Sijia Fan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xiaolian Cai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jian-Fang Gui
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China.
- Hubei Hongshan Laboratory, Wuhan, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China.
| |
Collapse
|
16
|
Shi X, Wei M, Feng Y, Yang Y, Zhang X, Chen H, Xing Y, Wang K, Wang W, Wang L, Wang A, Zhang G. IFI16 Positively Regulates RIG-I-Mediated Type I Interferon Production in a STING-Independent Manner. DNA Cell Biol 2024; 43:197-205. [PMID: 38466944 DOI: 10.1089/dna.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Previous studies have shown that interferon gene-stimulating protein (STING) is essential for IFN-γ-inducible protein 16 (IFI16) as the DNA sensor and RNA sensor to induce transcription of type I interferon (IFN-I) and is essential for IFI16 to synergize with DNA sensor GMP-AMP (cGAMP) synthase (cGAS) in induction of IFN-I transcription. While other and our previous studies have shown that IFI16 enhanced retinoic acid-inducible gene I (RIG-I)-, which was an RNA sensor, and mitochondrial antiviral signaling (MAVS)-, which was the adaptor protein of RIG-I, induced production of IFN-I, so we wonder whether IFI16 regulates the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-dependent manner. We used HEK 293T cells, which did not express endogenous STING and were unable to mount an innate immune response upon DNA transfection and found that IFI16 could enhance RIG-I- and MAVS-mediated induction of IFN-I in a STING-independent way. Furthermore, we found that upregulation of the expression of NF-kappa-B essential modulator (NEMO) by IFI16 was not the mechanism that IFI16 regulated the induction of IFN-I. In conclusion, we found that IFI16 regulated the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-independent manner.
Collapse
Affiliation(s)
- Xibao Shi
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Menglu Wei
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuwen Feng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuanhao Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiaozhuan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hao Chen
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuqi Xing
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Keqi Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wensheng Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, China
| |
Collapse
|
17
|
Maliar NL, Talbot EJ, Edwards AR, Khoronenkova SV. Microglial inflammation in genome instability: A neurodegenerative perspective. DNA Repair (Amst) 2024; 135:103634. [PMID: 38290197 DOI: 10.1016/j.dnarep.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
The maintenance of genome stability is crucial for cell homeostasis and tissue integrity. Numerous human neuropathologies display chronic inflammation in the central nervous system, set against a backdrop of genome instability, implying a close interplay between the DNA damage and immune responses in the context of neurological disease. Dissecting the molecular mechanisms of this crosstalk is essential for holistic understanding of neuroinflammatory pathways in genome instability disorders. Non-neuronal cell types, specifically microglia, are major drivers of neuroinflammation in the central nervous system with neuro-protective and -toxic capabilities. Here, we discuss how persistent DNA damage affects microglial homeostasis, zooming in on the cytosolic DNA sensing cGAS-STING pathway and the downstream inflammatory response, which can drive neurotoxic outcomes in the context of genome instability.
Collapse
Affiliation(s)
- Nina L Maliar
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Emily J Talbot
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Abigail R Edwards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | | |
Collapse
|
18
|
Basak B, Akashi-Takamura S. IRF3 function and immunological gaps in sepsis. Front Immunol 2024; 15:1336813. [PMID: 38375470 PMCID: PMC10874998 DOI: 10.3389/fimmu.2024.1336813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Lipopolysaccharide (LPS) induces potent cell activation via Toll-like receptor 4/myeloid differentiation protein 2 (TLR4/MD-2), often leading to septic death and cytokine storm. TLR4 signaling is diverted to the classical acute innate immune, inflammation-driving pathway in conjunction with the classical NF-κB pivot of MyD88, leading to epigenetic linkage shifts in nuclear pro-inflammatory transcription and chromatin structure-function; in addition, TLR4 signaling to the TIR domain-containing adapter-induced IFN-β (TRIF) apparatus and to nuclear pivots that signal the association of interferons alpha and beta (IFN-α and IFN-β) with acute inflammation, often coupled with oxidants favor inhibition or resistance to tissue injury. Although the immune response to LPS, which causes sepsis, has been clarified in this manner, there are still many current gaps in sepsis immunology to reduce mortality. Recently, selective agonists and inhibitors of LPS signals have been reported, and there are scattered reports on LPS tolerance and control of sepsis development. In particular, IRF3 signaling has been reported to be involved not only in sepsis but also in increased pathogen clearance associated with changes in the gut microbiota. Here, we summarize the LPS recognition system, main findings related to the IRF3, and finally immunological gaps in sepsis.
Collapse
Affiliation(s)
- Bristy Basak
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
19
|
Georgana I, Hosmillo M, Jahun AS, Emmott E, Sorgeloos F, Cho KO, Goodfellow IG. Porcine Sapovirus Protease Controls the Innate Immune Response and Targets TBK1. Viruses 2024; 16:247. [PMID: 38400023 PMCID: PMC10892870 DOI: 10.3390/v16020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Human sapoviruses (HuSaVs) and noroviruses are considered the leading cause of acute gastroenteritis worldwide. While extensive research has focused on noroviruses, our understanding of sapoviruses (SaVs) and their interactions with the host's immune response remains limited. HuSaVs have been challenging to propagate in vitro, making the porcine sapovirus (PSaV) Cowden strain a valuable model for studying SaV pathogenesis. In this study we show, for the first time, that PSaV Cowden strain has mechanisms to evade the host's innate immune response. The virus 3C-like protease (NS6) inhibits type I IFN production by targeting TBK1. Catalytically active NS6, both during ectopic expression and during PSaV infection, targets TBK1 which is then led for rapid degradation by the proteasome. Moreover, deletion of TBK1 from porcine cells led to an increase in PSaV titres, emphasizing its role in regulating PSaV infection. Additionally, we successfully established PSaV infection in IPEC-J2 cells, an enterocytic cell line originating from the jejunum of a neonatal piglet. Overall, this study provides novel insights into PSaV evasion strategies, opening the way for future investigations into SaV-host interactions, and enabling the use of a new cell line model for PSaV research.
Collapse
Affiliation(s)
- Iliana Georgana
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| | - Aminu S. Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| | - Edward Emmott
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
- Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, 74 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Ian G. Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| |
Collapse
|
20
|
Nuñez Y, Vera S, Baeza V, Gonzalez-Pecchi V. NSD3 in Cancer: Unraveling Methyltransferase-Dependent and Isoform-Specific Functions. Int J Mol Sci 2024; 25:944. [PMID: 38256018 PMCID: PMC10815784 DOI: 10.3390/ijms25020944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
NSD3 (nuclear receptor-binding SET domain protein 3) is a member of the NSD histone methyltransferase family of proteins. In recent years, it has been identified as a potential oncogene in certain types of cancer. The NSD3 gene encodes three isoforms, the long version (NSD3L), a short version (NSD3S) and the WHISTLE isoforms. Importantly, the NSD3S isoform corresponds to the N-terminal region of the full-length protein, lacking the methyltransferase domain. The chromosomal location of NSD3 is frequently amplified across cancer types, such as breast, lung, and colon, among others. Recently, this amplification has been correlated to a chromothripsis event, that could explain the different NSD3 alterations found in cancer. The fusion proteins containing NSD3 have also been reported in leukemia (NSD3-NUP98), and in NUT (nuclear protein of the testis) midline carcinoma (NSD3-NUT). Its role as an oncogene has been described by modulating different cancer pathways through its methyltransferase activity, or the short isoform of the protein, through protein interactions. Specifically, in this review we will focus on the functions that have been characterized as methyltransferase dependent, and those that have been correlated with the expression of the NSD3S isoform. There is evidence that both the NSD3L and NSD3S isoforms are relevant for cancer progression, establishing NSD3 as a therapeutic target. However, further functional studies are needed to differentiate NSD3 oncogenic activity as dependent or independent of the catalytic domain of the protein, as well as the contribution of each isoform and its clinical significance in cancer progression.
Collapse
Affiliation(s)
- Yanara Nuñez
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
- Biochemistry, Faculty of Pharmacy, Universidad de Concepción, Concepción 4070383, Chile
| | - Sebastian Vera
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
| | - Victor Baeza
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
| | - Valentina Gonzalez-Pecchi
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
| |
Collapse
|
21
|
Eren RO, Kaya GG, Schwarzer R, Pasparakis M. IKKε and TBK1 prevent RIPK1 dependent and independent inflammation. Nat Commun 2024; 15:130. [PMID: 38167258 PMCID: PMC10761900 DOI: 10.1038/s41467-023-44372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
TBK1 and IKKε regulate multiple cellular processes including anti-viral type-I interferon responses, metabolism and TNF receptor signaling. However, the relative contributions and potentially redundant functions of IKKε and TBK1 in cell death, inflammation and tissue homeostasis remain poorly understood. Here we show that IKKε compensates for the loss of TBK1 kinase activity to prevent RIPK1-dependent and -independent inflammation in mice. Combined inhibition of IKKε and TBK1 kinase activities caused embryonic lethality that was rescued by heterozygous expression of kinase-inactive RIPK1. Adult mice expressing kinase-inactive versions of IKKε and TBK1 developed systemic inflammation that was induced by both RIPK1-dependent and -independent mechanisms. Combined inhibition of IKKε and TBK1 kinase activities in myeloid cells induced RIPK1-dependent cell death and systemic inflammation mediated by IL-1 family cytokines. Tissue-specific studies showed that IKKε and TBK1 were required to prevent cell death and inflammation in the intestine but were dispensable for liver and skin homeostasis. Together, these findings revealed that IKKε and TBK1 exhibit tissue-specific functions that are important to prevent cell death and inflammation and maintain tissue homeostasis.
Collapse
Affiliation(s)
- Remzi Onur Eren
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Göksu Gökberk Kaya
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Robin Schwarzer
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Genentech Inc, South San Francisco, USA
| | - Manolis Pasparakis
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
22
|
Kim J, Pena JV, McQueen HP, Kong L, Michael D, Lomashvili EM, Cook PR. Downstream STING pathways IRF3 and NF-κB differentially regulate CCL22 in response to cytosolic dsDNA. Cancer Gene Ther 2024; 31:28-42. [PMID: 37990062 DOI: 10.1038/s41417-023-00678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Double-stranded DNA (dsDNA) in the cytoplasm of eukaryotic cells is abnormal and typically indicates the presence of pathogens or mislocalized self-DNA. Multiple sensors detect cytosolic dsDNA and trigger robust immune responses via activation of type I interferons. Several cancer immunotherapy treatments also activate cytosolic nucleic acid sensing pathways, including oncolytic viruses, nucleic acid-based cancer vaccines, and pharmacological agonists. We report here that cytosolic dsDNA introduced into malignant cells can robustly upregulate expression of CCL22, a chemokine responsible for the recruitment of regulatory T cells (Tregs). Tregs in the tumor microenvironment are thought to repress anti-tumor immune responses and contribute to tumor immune evasion. Surprisingly, we found that CCL22 upregulation by dsDNA was mediated primarily by interferon regulatory factor 3 (IRF3), a key transcription factor that activates type I interferons. This finding was unexpected given previous reports that type I interferon alpha (IFN-α) inhibits CCL22 and that IRF3 is associated with strong anti-tumor immune responses, not Treg recruitment. We also found that CCL22 upregulation by dsDNA occurred concurrently with type I interferon beta (IFN-β) upregulation. IRF3 is one of two transcription factors downstream of the STimulator of INterferon Genes (STING), a hub adaptor protein through which multiple dsDNA sensors transmit their signals. The other transcription factor downstream of STING, NF-κB, has been reported to regulate CCL22 expression in other contexts, and NF-κB has also been associated with multiple pro-tumor functions, including Treg recruitment. However, we found that NF-κB in the context of activation by cytosolic dsDNA contributed minimally to CCL22 upregulation compared with IRF3. Lastly, we observed that two strains of the same cell line differed profoundly in their capacity to upregulate CCL22 and IFN-β in response to dsDNA, despite apparent STING activation in both cell lines. This finding suggests that during tumor evolution, cells can acquire, or lose, the ability to upregulate CCL22. This study adds to our understanding of factors that may modulate immune activation in response to cytosolic DNA and has implications for immunotherapy strategies that activate DNA sensing pathways in cancer cells.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jocelyn V Pena
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Hannah P McQueen
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Dina Michael
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Elmira M Lomashvili
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Pamela R Cook
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
23
|
Zou J, Niu K, Lu T, Kan J, Cheng H, Xu L. The Multifunction of TRIM26: From Immune Regulation to Oncology. Protein Pept Lett 2024; 31:424-436. [PMID: 38956921 PMCID: PMC11475100 DOI: 10.2174/0109298665311516240621114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
Ubiquitination, a crucial post-translational modification, plays a role in nearly all physiological processes. Its functional execution depends on a series of catalytic reactions involving numerous proteases. TRIM26, a protein belonging to the TRIM family, exhibits E3 ubiquitin ligase activity because of its RING structural domain, and is present in diverse cell lineages. Over the last few decades, TRIM26 has been documented to engage in numerous physiological and pathological processes as a controller, demonstrating a diverse array of biological roles. Despite the growing research interest in TRIM26, there has been limited attention given to examining the protein's structure and function in existing reviews. This review begins with a concise overview of the composition and positioning of TRIM26 and then proceeds to examine its roles in immune response, viral invasion, and inflammatory processes. Simultaneously, we demonstrate the contribution of TRIM26 to the progression of various diseases, encompassing numerous malignancies and neurologic conditions. Finally, we have investigated the potential areas for future research on TRIM26.
Collapse
Affiliation(s)
- Jialai Zou
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Kaiyi Niu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Tao Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Jianxun Kan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Hao Cheng
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Lijian Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
24
|
Kazzaz SA, Shaikh KA, White J, Zhou Q, Powell WH, Harhaj EW. Phosphorylation of aryl hydrocarbon receptor interacting protein by TBK1 negatively regulates IRF7 and the type I interferon response. J Biol Chem 2024; 300:105525. [PMID: 38043800 PMCID: PMC10792245 DOI: 10.1016/j.jbc.2023.105525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023] Open
Abstract
The innate antiviral response to RNA viruses is initiated by sensing of viral RNAs by RIG-I-like receptors and elicits type I interferon (IFN) production, which stimulates the expression of IFN-stimulated genes that orchestrate the antiviral response to prevent systemic infection. Negative regulation of type I IFN and its master regulator, transcription factor IRF7, is essential to maintain immune homeostasis. We previously demonstrated that AIP (aryl hydrocarbon receptor interacting protein) functions as a negative regulator of the innate antiviral immune response by binding to and sequestering IRF7 in the cytoplasm, thereby preventing IRF7 transcriptional activation and type I IFN production. However, it remains unknown how AIP inhibition of IRF7 is regulated. We show here that the kinase TBK1 phosphorylates AIP and Thr40 serves as the primary target for TBK1 phosphorylation. AIP Thr40 plays critical roles in regulating AIP stability and mediating its interaction with IRF7. The AIP phosphomimetic T40E exhibited increased proteasomal degradation and enhanced interaction with IRF7 compared with wildtype AIP. AIP T40E also blocked IRF7 nuclear translocation, which resulted in reduced type I IFN production and increased viral replication. In sharp contrast, AIP phosphonull mutant T40A had impaired IRF7 binding, and stable expression of AIP T40A in AIP-deficient mouse embryonic fibroblasts elicited a heightened type I IFN response and diminished RNA virus replication. Taken together, these results demonstrate that TBK1-mediated phosphorylation of AIP at Thr40 functions as a molecular switch that enables AIP to interact with and inhibit IRF7, thus preventing overactivation of type I IFN genes by IRF7.
Collapse
Affiliation(s)
- Sarah A Kazzaz
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kashif A Shaikh
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Jesse White
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Qinjie Zhou
- Department of Microbiology and Immunology, Miller School of Medicine, The University of Miami, Miami, Florida, USA
| | - Wade H Powell
- Biology Department, Kenyon College, Gambier, Ohio, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
25
|
Zemke NR, Hsu E, Barshop WD, Sha J, Wohlschlegel JA, Berk AJ. Adenovirus E1A binding to DCAF10 targets proteasomal degradation of RUVBL1/2 AAA+ ATPases required for quaternary assembly of multiprotein machines, innate immunity, and responses to metabolic stress. J Virol 2023; 97:e0099323. [PMID: 37962355 PMCID: PMC10734532 DOI: 10.1128/jvi.00993-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Inactivation of EP300/CREBB paralogous cellular lysine acetyltransferases (KATs) during the early phase of infection is a consistent feature of DNA viruses. The cell responds by stabilizing transcription factor IRF3 which activates transcription of scores of interferon-stimulated genes (ISGs), inhibiting viral replication. Human respiratory adenoviruses counter this by assembling a CUL4-based ubiquitin ligase complex that polyubiquitinylates RUVBL1 and 2 inducing their proteasomal degradation. This inhibits accumulation of active IRF3 and the expression of anti-viral ISGs, allowing replication of the respiratory HAdVs in the face of inhibition of EP300/CBEBBP KAT activity by the N-terminal region of E1A.
Collapse
Affiliation(s)
- Nathan R. Zemke
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Emily Hsu
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - William D. Barshop
- Thermo Fisher Scientific, San Jose, California, USA
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Jihui Sha
- Thermo Fisher Scientific, San Jose, California, USA
| | - James A. Wohlschlegel
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Thermo Fisher Scientific, San Jose, California, USA
| | - Arnold J. Berk
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
26
|
Gibson WJ, Sadagopan A, Shoba VM, Choudhary A, Meyerson M, Schreiber SL. Bifunctional Small Molecules That Induce Nuclear Localization and Targeted Transcriptional Regulation. J Am Chem Soc 2023; 145:26028-26037. [PMID: 37992275 PMCID: PMC10704550 DOI: 10.1021/jacs.3c06179] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
The aberrant localization of proteins in cells is a key factor in the development of various diseases, including cancer and neurodegenerative disease. To better understand and potentially manipulate protein localization for therapeutic purposes, we engineered bifunctional compounds that bind to proteins in separate cellular compartments. We show these compounds induce nuclear import of cytosolic cargoes, using nuclear-localized BRD4 as a "carrier" for co-import and nuclear trapping of cytosolic proteins. We use this system to calculate kinetic constants for passive diffusion across the nuclear pore and demonstrate single-cell heterogeneity in response to these bifunctional molecules with cells requiring high carrier to cargo expression for complete import. We also observe incorporation of cargo into BRD4-containing condensates. Proteins shown to be substrates for nuclear transport include oncogenic mutant nucleophosmin (NPM1c) and mutant PI3K catalytic subunit alpha (PIK3CAE545K), suggesting potential applications to cancer treatment. In addition, we demonstrate that chemically induced localization of BRD4 to cytosolic-localized DNA-binding proteins, namely, IRF1 with a nuclear export signal, induces target gene expression. These results suggest that induced localization of proteins with bifunctional molecules enables the rewiring of cell circuitry, with significant implications for disease therapy.
Collapse
Affiliation(s)
- William J. Gibson
- Broad
Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Dana
Farber Cancer Institute, 450 Brookline Ave, Boston, Massachusetts 02215, United States
- Department of Medicine and Department of
Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ananthan Sadagopan
- Broad
Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Dana
Farber Cancer Institute, 450 Brookline Ave, Boston, Massachusetts 02215, United States
| | - Veronika M. Shoba
- Broad
Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Amit Choudhary
- Broad
Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Divisions
of Renal Medicine and Engineering, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Matthew Meyerson
- Broad
Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Dana
Farber Cancer Institute, 450 Brookline Ave, Boston, Massachusetts 02215, United States
- Department of Medicine and Department of
Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Stuart L. Schreiber
- Broad
Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
27
|
Wang SH, Du J, Yu J, Zhao Y, Wang Y, Hua S, Zhao K. Coxsackievirus A6 2C protein antagonizes IFN-β production through MDA5 and RIG-I depletion. J Virol 2023; 97:e0107523. [PMID: 37847581 PMCID: PMC10688345 DOI: 10.1128/jvi.01075-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/09/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Coxsackievirus A6 (CV-A6) is a major emerging pathogen associated with atypical hand, foot, and mouth disease and can cause serious complications such as encephalitis, acute flaccid paralysis, and neurorespiratory syndrome. Therefore, revealing the associated pathogenic mechanisms could benefit the control of CV-A6 infections. In this study, we demonstrate that the nonstructural 2CCV-A6 suppresses IFN-β production, which supports CV-A6 infection. This is achieved by depleting RNA sensors such as melanoma differentiation-associated gene 5 and retinoic acid-inducible gene I (RIG-I) through the lysosomal pathway. Such a function is shared by 2CEV-A71 and 2CCV-B3 but not 2CCV-A16, suggesting the latter might have an alternative way to promote viral replication. This study broadens our understanding of enterovirus 2C protein regulation of the RIG-I-like receptor signaling pathway and reveals a novel mechanism by which CV-A6 and other enteroviruses evade the host innate immune response. These findings on 2C may provide new therapeutic targets for the development of effective inhibitors against CV-A6 and other enterovirus infections.
Collapse
Affiliation(s)
- Shao-Hua Wang
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Jinghua Yu
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Yifei Zhao
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Yu Wang
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Shucheng Hua
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Zeng X, Liu C, Fan J, Zou J, Guo M, Sun G. RNF138 Downregulates Antiviral Innate Immunity by Inhibiting IRF3 Activation. Int J Mol Sci 2023; 24:16110. [PMID: 38003298 PMCID: PMC10671598 DOI: 10.3390/ijms242216110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
A viral infection activates the transcription factors IRF3 and NF-κB, which synergistically induces type I interferons (IFNs). Here, we identify the E3 ubiquitin ligase RNF138 as an important negative regulator of virus-triggered IRF3 activation and IFN-β induction. The overexpression of RNF138 inhibited the virus-induced activation of IRF3 and the transcription of the IFNB1 gene, whereas the knockout of RNF138 promoted the virus-induced activation of IRF3 and transcription of the IFNB1 gene. We further found that RNF138 promotes the ubiquitination of PTEN and subsequently inhibits PTEN interactions with IRF3, which is essential for the PTEN-mediated nuclear translocation of IRF3, thereby inhibiting IRF3 import into the nucleus. Our findings suggest that RNF138 negatively regulates virus-triggered signaling by inhibiting the interaction of PTEN with IRF3, and these data provide new insights into the molecular mechanisms of cellular antiviral responses.
Collapse
Affiliation(s)
- Xianhuang Zeng
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Chaozhi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jinhao Fan
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Jiabin Zou
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Guihong Sun
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan 430071, China
| |
Collapse
|
29
|
Wang R, Liu X, Han Q, Wang X. Characterisation, evolution and expression analysis of the interferon regulatory factor (IRF) family from olive flounder (Paralichthys olivaceus) in response to Edwardsiella tarda infection and temperature stress. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109115. [PMID: 37758096 DOI: 10.1016/j.fsi.2023.109115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Interferon regulatory factor (IRF) family involves in the transcriptional regulation of type I Interferons (IFNs) and IFN-stimulated genes (ISGs) and plays a critical role in cytokine signaling and immune response. However, systematic identification of the IRF gene family in teleost has been rarely reported. In this study, twelve IRF members, named PoIRF1, PoIRF2, PoIRF3, PoIRF4a, PoIRF4b, PoIRF5, PoIRF6, PoIRF7, PoIRF8, PoIRF9, PoIRF10 and PoIRF11, were identified from genome-wide data of olive flounder (Paralichthys olivaceus). Phylogenetic analysis indicated that PoIRFs could be classified into four clades, including IRF1 subfamily (PoIRF1, PoIRF11), IRF3 subfamily (PoIRF3, PoIRF7), IRF4 subfamily (PoIRF4a, PoIRF8, PoIRF9, PoIRF10) and IRF5 subfamily (PoIRF5, PoIRF6). They were evolutionarily related to their counterparts in other fish. Gene structure and motif analysis showed that PoIRFs protein sequences were highly conserved. Under normal physiological conditions, all PoIRFs were generally expressed in multiple developmental stages and healthy tissues. After E. tarda attack and temperature stress, twelve PoIRFs showed significant and different changes in mRNA levels. The expression of PoIRF1, PoIRF3, PoIRF4a, PoIRF5, PoIRF7, PoIRF8, PoIRF9, PoIRF10 and PoIRF11 could be markedly induced by E. tarda, indicating that they played a key role in the process of antibacterial immunity. Besides, temperature stress could significantly stimulate the expression of PoIRF3, PoIRF5, PoIRF6 and PoIRF7, indicating that they could transmit signals rapidly when the temperature changes. In conclusion, this study reported the molecular properties and expression analysis of PoIRFs, and explored their role in immune response, which laid a favorable foundation for further studies on the evolution and functional characteristics of the IRF family in teleost fish.
Collapse
Affiliation(s)
- Ruoxin Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Qingxi Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
30
|
Zou J, Tian S, Zhu Y, Cheng Y, Jiang M, Tu S, Jin M, Chen H, Zhou H. Prohibitin1 facilitates viral replication by impairing the RIG-I-like receptor signaling pathway. J Virol 2023; 97:e0092623. [PMID: 37754758 PMCID: PMC10617439 DOI: 10.1128/jvi.00926-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Type I interferon (IFN-I), produced by the innate immune system, plays an essential role in host antiviral responses. Proper regulation of IFN-I production is required for the host to balance immune responses and prevent superfluous inflammation. IFN regulatory factor 3 (IRF3) and subsequent sensors are activated by RNA virus infection to induce IFN-I production. Therefore, proper regulation of IRF3 serves as an important way to control innate immunity and viral replication. Here, we first identified Prohibitin1 (PHB1) as a negative regulator of host IFN-I innate immune responses. Mechanistically, PHB1 inhibited the nucleus import of IRF3 by impairing its binding with importin subunit alpha-1 and importin subunit alpha-5. Our study demonstrates the mechanism by which PHB1 facilitates the replication of multiple RNA viruses and provides insights into the negative regulation of host immune responses.
Collapse
Affiliation(s)
- Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shan Tian
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yinxing Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanqing Cheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meijun Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaoyu Tu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
31
|
Abstract
Biomolecular condensates formed by phase separation are widespread and play critical roles in many physiological and pathological processes. cGAS-STING signaling functions to detect aberrant DNA signals to initiate anti-infection defense and antitumor immunity. At the same time, cGAS-STING signaling must be carefully regulated to maintain immune homeostasis. Interestingly, exciting recent studies have reported that biomolecular phase separation exists and plays important roles in different steps of cGAS-STING signaling, including cGAS condensates, STING condensates, and IRF3 condensates. In addition, several intracellular and extracellular factors have been proposed to modulate the condensates in cGAS-STING signaling. These studies reveal novel activation and regulation mechanisms of cGAS-STING signaling and provide new opportunities for drug discovery. Here, we summarize recent advances in the phase separation of cGAS-STING signaling and the development of potential drugs targeting these innate immune condensates.
Collapse
Affiliation(s)
- Quanjin Li
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
32
|
Song YJ, Zhang J, Xu Z, Nie P, Chang MX. Liver X Receptor LXRα Promotes Grass Carp Reovirus Infection by Attenuating IRF3-CBP Interaction and Inhibiting RLR Antiviral Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1006-1019. [PMID: 37548504 DOI: 10.4049/jimmunol.2300214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Liver X receptors (LXRs) are nuclear receptors involved in metabolism and the immune response. Different from mammalian LXRs, which include two isoforms, LXRα and LXRβ, only a single LXRα gene exists in the piscine genomes. Although a study has suggested that piscine LXR inhibits intracellular bacterial survival, the functions of piscine LXRα in viral infection are unknown. In this study, we show that overexpression of LXRα from grass carp (Ctenopharyngodon idellus), which is named as gcLXRα, increases host susceptibility to grass carp reovirus (GCRV) infection, whereas gcLXRα knockdown in CIK (C. idellus kidney) cells inhibits GCRV infection. Consistent with these functional studies, gcLXRα knockdown promotes the transcription of antiviral genes involved in the RIG-I-like receptor (RLR) antiviral signaling pathway, including IFN regulatory factor (IRF3) and the type I IFN IFN1. Further results show that gcLXRα knockdown induces the expression of CREB-binding protein (CBP), a transcriptional coactivator. In the knockdown of CBP, the inhibitory effect of gcLXRα knockdown in limiting GCRV infection is completely abolished. gcLXRα also interacts with IRF3 and CBP, which impairs the formation of the IRF3/CBP transcription complex. Moreover, gcLXRα heterodimerizes with RXRg, which cooperatively impair the transcription of the RLR antiviral signaling pathway and promote GCRV infection. Taken together, to our knowledge, our findings provide new insight into the functional correlation between nuclear receptor LXRα and the RLR antiviral signaling pathway, and they demonstrate that gcLXRα can impair the RLR antiviral signaling pathway and the production of type I IFN via forming gcLXRα/RXRg complexes and attenuating IRF3/CBP complexes.
Collapse
Affiliation(s)
- Yun Jie Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
33
|
Pennisi R, Sciortino MT. HSV-1 Triggers an Antiviral Transcriptional Response during Viral Replication That Is Completely Abrogated in PKR -/- Cells. Pathogens 2023; 12:1126. [PMID: 37764935 PMCID: PMC10536113 DOI: 10.3390/pathogens12091126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The activation of the innate immune response during HSV-1 infection stimulates several transcription factors, such as NF-κB and IRF3, which are critical regulators of IFN-β expression. The released IFN-β activates the ISGs, which encode antiviral effectors such as the PKR. We found that HSV-1 triggers an antiviral transcriptional response during viral replication by activating TBK1-IRF3-NF-κB network kinetically. In contrast, we reported that infected PKR-/- cells fail to activate the transcription of TBK1. Downstream, TBK1 was unable to activate the transcription of IRF3 and NF-κB. These data suggested that in PKR-/- cells, HSV-1 replication counteracts TBK1-IRF3-NF-κB network. In this scenario, a combined approach of gene knockout and gene silencing was used to determine how the lack of PKR facilitates HSV-1 replication. We reported that in HEp-2-infected cells, PKR can influence the TBK1-IRF3-NF-κB network, consequently interfering with viral replication. Otherwise, an abrogated PKR-mediated signaling sustains the HSV-1 replication. Our result allows us to add additional information on the complex HSV-host interaction network by reinforcing the concept of the PKR role in the innate response-related networks during HSV replication in an in vitro model.
Collapse
Affiliation(s)
- Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
34
|
Xiang Y, Mou C, Shi K, Chen X, Meng X, Bao W, Chen Z. SADS-CoV nsp1 inhibits the IFN-β production by preventing TBK1 phosphorylation and inducing CBP degradation. J Med Virol 2023; 95:e29104. [PMID: 37721411 DOI: 10.1002/jmv.29104] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/07/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Swine acute diarrhea syndrome (SADS) is first reported in January 2017 in Southern China. It subsequently causes widespread outbreaks in multiple pig farms, leading to economic losses. Therefore, it is an urgent to understand the molecular mechanisms underlying the pathogenesis and immune evasion of Swine acute diarrhea syndrome coronavirus (SADS-CoV). Our research discovered that SADS-CoV inhibited the production of interferon-β (IFN-β) during viral infection. The nonstructural protein 1 (nsp1) prevented the phosphorylation of TBK1 by obstructing the interaction between TBK1 and Ub protein. Moreover, nsp1 induced the degradation of CREB-binding protein (CBP) through the proteasome-dependent pathway, thereby disrupting the IFN-β enhancer and inhibiting IFN transcription. Finally, we identified nsp1-Phe39 as the critical amino acid that downregulated IFN production. In conclusion, our findings described two mechanisms in nsp1 that inhibited IFN production and provided new insights into the evasion strategy adopted by SADS-CoV to evade host antiviral immunity.
Collapse
Affiliation(s)
- Yingjie Xiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety,The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, Guangxi, China
| | - Xiang Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety,The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
35
|
Fox AR, Fingert JH. Familial normal tension glaucoma genetics. Prog Retin Eye Res 2023; 96:101191. [PMID: 37353142 DOI: 10.1016/j.preteyeres.2023.101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Glaucoma is defined by characteristic optic nerve damage and corresponding visual field defects and is the leading cause of irreversible blindness in the world. Elevated intraocular pressure (IOP) is a strong risk factor for developing glaucoma. However, glaucoma can occur at any IOP. Normal tension glaucoma (NTG) arises with IOPs that are within what has been defined as a normal range, i.e., 21 mm Hg or less, which may present challenges in its diagnosis and management. Identifying inheritance patterns and genetic mutations in families with NTG has helped elucidate mechanisms of NTG, however the pathophysiology is complex and not fully understood. Approximately 2% of NTG cases are caused primarily by mutations in single genes, optineurin (OPTN), TANK binding kinase 1 (TKB1), or myocilin (MYOC). Herein, we review pedigree studies of NTG and autosomal dominant NTG caused by OPTN, TBK1, and MYOC mutations. We review identified mutations and resulting clinical features of OPTN-associated and TBK1-associated NTG, including long-term follow up of these patients with NTG. In addition, we report a new four-generation pedigree of NTG caused by a Glu50Lys OPTN mutation, including six family members with a mean follow up of 17 years. Common features of OPTN -associated NTG due to Glu50Lys mutation included early onset of disease with an IOP <21 mm Hg, marked optic disc cupping, and progressive visual field loss which appeared to stabilize once an IOP of less than 10 mm Hg was achieved. Lastly, we review risk factor genes which have been identified to contribute to the complex inheritance of NTG.
Collapse
Affiliation(s)
- Austin R Fox
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - John H Fingert
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
36
|
Gibson WJ, Sadagopan A, Shoba VM, Choudhary A, Meyerson M, Schreiber SL. Bifunctional small molecules that induce nuclear localization and targeted transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548101. [PMID: 37461636 PMCID: PMC10350064 DOI: 10.1101/2023.07.07.548101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
The aberrant localization of proteins in cells is a key factor in the development of various diseases, including cancer and neurodegenerative disease. To better understand and potentially manipulate protein localization for therapeutic purposes, we engineered bifunctional compounds that bind to proteins in separate cellular compartments. We show these compounds induce nuclear import of cytosolic cargoes, using nuclear-localized BRD4 as a "carrier" for co-import and nuclear trapping of cytosolic proteins. We use this system to calculate kinetic constants for passive diffusion across the nuclear pore and demonstrate single-cell heterogeneity in response to these bifunctional molecules, with cells requiring high carrier to cargo expression for complete import. We also observe incorporation of cargoes into BRD4-containing condensates. Proteins shown to be substrates for nuclear transport include oncogenic mutant nucleophosmin (NPM1c) and mutant PI3K catalytic subunit alpha (PIK3CAE545K), suggesting potential applications to cancer treatment. In addition, we demonstrate that chemical-induced localization of BRD4 to cytosolic-localized DNA-binding proteins, namely, IRF1 with a nuclear export signal, induces target gene expression. These results suggest that induced localization of proteins with bifunctional molecules enables the rewiring of cell circuitry with significant implications for disease therapy.
Collapse
Affiliation(s)
- William J Gibson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ananthan Sadagopan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Veronika M Shoba
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Amit Choudhary
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Matthew Meyerson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stuart L Schreiber
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
37
|
Espada CE, Sari L, Cahill MP, Yang H, Phillips S, Martinez N, Kenney AD, Yount JS, Xiong Y, Lin MM, Wu L. SAMHD1 impairs type I interferon induction through the MAVS, IKKε, and IRF7 signaling axis during viral infection. J Biol Chem 2023; 299:104925. [PMID: 37328105 PMCID: PMC10404699 DOI: 10.1016/j.jbc.2023.104925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) infection by reducing the intracellular dNTP pool. We have shown that SAMHD1 suppresses nuclear factor kappa-B activation and type I interferon (IFN-I) induction by viral infection and inflammatory stimuli. However, the mechanism by which SAMHD1 inhibits IFN-I remains unclear. Here, we show that SAMHD1 inhibits IFN-I activation induced by the mitochondrial antiviral-signaling protein (MAVS). SAMHD1 interacted with MAVS and suppressed MAVS aggregation in response to Sendai virus infection in human monocytic THP-1 cells. This resulted in increased phosphorylation of TANK binding kinase 1 (TBK1), inhibitor of nuclear factor kappa-B kinase epsilon (IKKε), and IFN regulatory factor 3 (IRF3). SAMHD1 suppressed IFN-I activation induced by IKKε and prevented IRF7 binding to the kinase domain of IKKε. We found that SAMHD1 interaction with the inhibitory domain (ID) of IRF7 (IRF7-ID) was necessary and sufficient for SAMHD1 suppression of IRF7-mediated IFN-I activation in HEK293T cells. Computational docking and molecular dynamics simulations revealed possible binding sites between IRF7-ID and full-length SAMHD1. Individual substitution of F411, E416, or V460 in IRF7-ID significantly reduced IRF7 transactivation activity and SAMHD1 binding. Furthermore, we investigated the role of SAMHD1 inhibition of IRF7-mediated IFN-I induction during HIV-1 infection. We found that THP-1 cells lacking IRF7 expression had reduced HIV-1 infection and viral transcription compared to control cells, indicating a positive role of IRF7 in HIV-1 infection. Our findings suggest that SAMHD1 suppresses IFN-I induction through the MAVS, IKKε, and IRF7 signaling axis.
Collapse
Affiliation(s)
- Constanza E Espada
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Levent Sari
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael P Cahill
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Hua Yang
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stacia Phillips
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas Martinez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Adam D Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Milo M Lin
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
38
|
Dalskov L, Gad HH, Hartmann R. Viral recognition and the antiviral interferon response. EMBO J 2023:e112907. [PMID: 37367474 DOI: 10.15252/embj.2022112907] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Interferons (IFNs) are antiviral cytokines that play a key role in the innate immune response to viral infections. In response to viral stimuli, cells produce and release interferons, which then act on neighboring cells to induce the transcription of hundreds of genes. Many of these gene products either combat the viral infection directly, e.g., by interfering with viral replication, or help shape the following immune response. Here, we review how viral recognition leads to the production of different types of IFNs and how this production differs in spatial and temporal manners. We then continue to describe how these IFNs play different roles in the ensuing immune response depending on when and where they are produced or act during an infection.
Collapse
Affiliation(s)
- Louise Dalskov
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
39
|
Zhao M, Zhang Y, Qiang L, Lu Z, Zhao Z, Fu Y, Wu B, Chai Q, Ge P, Lei Z, Zhang X, Li B, Wang J, Zhang L, Liu CH. A Golgi-resident GPR108 cooperates with E3 ubiquitin ligase Smurf1 to suppress antiviral innate immunity. Cell Rep 2023; 42:112655. [PMID: 37330913 DOI: 10.1016/j.celrep.2023.112655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/10/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
The regulation of antiviral immunity is crucial in maintaining host immune homeostasis, a process that involves dynamic modulations of host organelles. The Golgi apparatus is increasingly perceived as a host organelle functioning as a critical platform for innate immunity, but the detailed mechanism by which it regulates antiviral immunity remains elusive. Here, we identify the Golgi-localized G protein-coupled receptor 108 (GPR108) as a regulator of type Ι interferon responses by targeting interferon regulatory factor 3 (IRF3). Mechanistically, GPR108 enhances the ubiquitin ligase Smad ubiquitylation regulatory factor 1 (Smurf1)-mediated K63-linked polyubiquitination of phosphorylated IRF3 for nuclear dot 10 protein 52 (NDP52)-dependent autophagic degradation, leading to suppression of antiviral immune responses against DNA or RNA viruses. Taken together, our study provides insight into the crosstalk between the Golgi apparatus and antiviral immunity via a dynamic and spatiotemporal regulation of GPR108-Smurf1 axis, thereby indicating a potential target for treating viral infection.
Collapse
Affiliation(s)
- Mengyuan Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lihua Qiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhuo Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yesheng Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Bo Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pupu Ge
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xinwen Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bingxi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
40
|
Guo Y, Pan L, Wang L, Wang S, Fu J, Luo W, Wang K, Li X, Huang C, Liu Y, Kang H, Zeng Q, Fu X, Huang Z, Li W, He Y, Li L, Peng T, Yang H, Li M, Xiao B, Cai M. Epstein-Barr Virus Envelope Glycoprotein gp110 Inhibits IKKi-Mediated Activation of NF-κB and Promotes the Degradation of β-Catenin. Microbiol Spectr 2023; 11:e0032623. [PMID: 37022262 PMCID: PMC10269791 DOI: 10.1128/spectrum.00326-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Epstein-Barr virus (EBV) infects host cells and establishes a latent infection that requires evasion of host innate immunity. A variety of EBV-encoded proteins that manipulate the innate immune system have been reported, but whether other EBV proteins participate in this process is unclear. EBV-encoded envelope glycoprotein gp110 is a late protein involved in virus entry into target cells and enhancement of infectivity. Here, we reported that gp110 inhibits RIG-I-like receptor pathway-mediated promoter activity of interferon-β (IFN-β) as well as the transcription of downstream antiviral genes to promote viral proliferation. Mechanistically, gp110 interacts with the inhibitor of NF-κB kinase (IKKi) and restrains its K63-linked polyubiquitination, leading to attenuation of IKKi-mediated activation of NF-κB and repression of the phosphorylation and nuclear translocation of p65. Additionally, gp110 interacts with an important regulator of the Wnt signaling pathway, β-catenin, and induces its K48-linked polyubiquitination degradation via the proteasome system, resulting in the suppression of β-catenin-mediated IFN-β production. Taken together, these results suggest that gp110 is a negative regulator of antiviral immunity, revealing a novel mechanism of EBV immune evasion during lytic infection. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous pathogen that infects almost all human beings, and the persistence of EBV in the host is largely due to immune escape mediated by its encoded products. Thus, elucidation of EBV's immune escape mechanisms will provide a new direction for the design of novel antiviral strategies and vaccine development. Here, we report that EBV-encoded gp110 serves as a novel viral immune evasion factor, which inhibits RIG-I-like receptor pathway-mediated interferon-β (IFN-β) production. Furthermore, we found that gp110 targeted two key proteins, inhibitor of NF-κB kinase (IKKi) and β-catenin, which mediate antiviral activity and the production of IFN-β. gp110 inhibited K63-linked polyubiquitination of IKKi and induced β-catenin degradation via the proteasome, resulting in decreased IFN-β production. In summary, our data provide new insights into the EBV-mediated immune evasion surveillance strategy.
Collapse
Affiliation(s)
- Yingjie Guo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Lingxia Pan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Liding Wang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Shuai Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jiangqin Fu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Wenqi Luo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Kezhen Wang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Xiaoqing Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Chen Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Yintao Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Haoran Kang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Qiyuan Zeng
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Xiuxia Fu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Zejin Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Wanying Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Yingxin He
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Guangdong South China Vaccine, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Meili Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Mingsheng Cai
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
41
|
Zhang Y, Cheng F, Ma J, Shi G, Deng H. Development of cancer-associated fibroblast-related gene signature for predicting the survival and immunotherapy response in lung adenocarcinoma. Aging (Albany NY) 2023; 15:204774. [PMID: 37280069 PMCID: PMC10292873 DOI: 10.18632/aging.204774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
The present study aims to construct a predictive model for prognosis and immunotherapy response in lung adenocarcinoma (LUAD). Transcriptome data were extracted from the Cancer Genome Atlas (TCGA), GSE41271, and IMvigor210. The weighted gene correlation network analysis was utilized to identify the hub modules related to immune/stromal cells. Then, univariate, LASSO, and multivariate Cox regression analyses were employed to develop a predictive signature based on genes of the hub module. Moreover, the association between the predictive signature and immunotherapy response was also investigated. As a result, seven genes (FGF10, SERINE2, LSAMP, STXBP5, PDE5A, GLI2, FRMD6) were screened to develop the cancer associated fibroblasts (CAFs)-related risk signature (CAFRS). LUAD patients with high-risk score underwent shortened Overall survival (OS). A strong correlation was found between CAFRS and immune infiltrations/functions. The gene set variation analysis showed that G2/M checkpoint, epithelial-mesenchymal transition, hypoxia, glycolysis, and PI3K-Akt-mTOR pathways were greatly enriched in the high-risk subgroup. Moreover, patients with higher risk score were less likely to respond to immunotherapy. A nomogram based on CAFRS and Stage presented a stronger predictive performance for OS than the single indicator. In conclusion, the CAFRS exhibited a potent predictive value for OS and immunotherapy response in LUAD.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fuyi Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinhu Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
42
|
Baran M, Feriotti C, McGinley A, Carlile SR, Jiang Z, Calderon-Gonzalez R, Dumigan A, Sá-Pessoa J, Sutton CE, Kearney J, McLoughlin RM, Mills KHG, Fitzgerald KA, Bengeochea JA, Bowie AG. PYHIN protein IFI207 regulates cytokine transcription and IRF7 and contributes to the establishment of K. pneumoniae infection. Cell Rep 2023; 42:112341. [PMID: 37018072 DOI: 10.1016/j.celrep.2023.112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 02/02/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
PYHIN proteins AIM2 and IFI204 sense pathogen DNA, while other PYHINs have been shown to regulate host gene expression through as-yet unclear mechanisms. We characterize mouse PYHIN IFI207, which we find is not involved in DNA sensing but rather is required for cytokine promoter induction in macrophages. IFI207 co-localizes with both active RNA polymerase II (RNA Pol II) and IRF7 in the nucleus and enhances IRF7-dependent gene promoter induction. Generation of Ifi207-/- mice shows no role for IFI207 in autoimmunity. Rather, IFI207 is required for the establishment of a Klebsiella pneumoniae lung infection and for Klebsiella macrophage phagocytosis. These insights into IFI207 function illustrate that PYHINs can have distinct roles in innate immunity independent of DNA sensing and highlight the need to better characterize the whole mouse locus, one gene at a time.
Collapse
Affiliation(s)
- Marcin Baran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Claudia Feriotti
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, 97 Lisburn Road, Belfast, UK
| | - Aoife McGinley
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Simon R Carlile
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Zhaozhao Jiang
- Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ricardo Calderon-Gonzalez
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, 97 Lisburn Road, Belfast, UK
| | - Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, 97 Lisburn Road, Belfast, UK
| | - Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, 97 Lisburn Road, Belfast, UK
| | - Caroline E Sutton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Jay Kearney
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Rachel M McLoughlin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Katherine A Fitzgerald
- Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jose A Bengeochea
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, 97 Lisburn Road, Belfast, UK
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland.
| |
Collapse
|
43
|
Kuhl N, Linder A, Philipp N, Nixdorf D, Fischer H, Veth S, Kuut G, Xu TT, Theurich S, Carell T, Subklewe M, Hornung V. STING agonism turns human T cells into interferon-producing cells but impedes their functionality. EMBO Rep 2023; 24:e55536. [PMID: 36705069 PMCID: PMC9986811 DOI: 10.15252/embr.202255536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
The cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) axis is the predominant DNA sensing system in cells of the innate immune system. However, human T cells also express high levels of STING, while its role and physiological trigger remain largely unknown. Here, we show that the cGAS-STING pathway is indeed functional in human primary T cells. In the presence of a TCR-engaging signal, both cGAS and STING activation switches T cells into type I interferon-producing cells. However, T cell function is severely compromised following STING activation, as evidenced by increased cell death, decreased proliferation, and impaired metabolism. Interestingly, these different phenotypes bifurcate at the level of STING. While antiviral immunity and cell death require the transcription factor interferon regulatory factor 3 (IRF3), decreased proliferation is mediated by STING independently of IRF3. In summary, we demonstrate that human T cells possess a functional cGAS-STING signaling pathway that can contribute to antiviral immunity. However, regardless of its potential antiviral role, the activation of the cGAS-STING pathway negatively affects T cell function at multiple levels. Taken together, these results could help inform the future development of cGAS-STING-targeted immunotherapies.
Collapse
Affiliation(s)
- Niklas Kuhl
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of Medicine II, University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Andreas Linder
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of Medicine II, University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Nora Philipp
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of Medicine III, University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Daniel Nixdorf
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of Medicine III, University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Hannah Fischer
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Simon Veth
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Gunnar Kuut
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Teng Teng Xu
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of Medicine III, University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Sebastian Theurich
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of Medicine III, University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
- German Cancer Consortium (DKTK), Partner site MunichHeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Thomas Carell
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Marion Subklewe
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of Medicine III, University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Veit Hornung
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
| |
Collapse
|
44
|
Sun Y, Cao Z, Zhang P, Wei C, Li J, Wu Y, Zhou Y. IFN regulatory factor 3 of golden pompano and its NLS domain are involved in antibacterial innate immunity and regulate the expression of type I interferon (IFNa3). Front Immunol 2023; 14:1128196. [PMID: 36817435 PMCID: PMC9933344 DOI: 10.3389/fimmu.2023.1128196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The transcription factor interferon regulatory factor 3 (IRF3) plays an important role in host defence against viral infections. However, its role during bacterial infection in teleosts remains unclear. In the present study, we evaluated the antibacterial effects of Trachinotus ovatus IRF3 (TroIRF3) and how it regulates type I interferon (IFN). Methods Subcellular localisation experiments, overexpression, and quantitative real-time PCR (qRT-PCR) were performed to examine the nuclear localisation signal (NLS) of TroIRF3 and its role in the antibacterial regulatory function of TroIRF3. We assessed the binding activity of TroIRF3 to the IFNa3 promoter by luciferase reporter assay. Results and Discussion The results showed that TroIRF3 was constitutively expressed at high levels in the gill and liver. TroIRF3 was significantly upregulated and transferred from the cytoplasm to the nucleus after Vibrio harveyi infection. By overexpressing TroIRF3, the fish were able to inhibit the replication of V. harveyi, whereas knocking it down increased bacterial replication. Moreover, the overexpression of TroIRF3 increased type I interferon (IFNa3) production and the IFN signalling molecules. The NLS, which is from the 64-127 amino acids of TroIRF3, contains the basic amino acids KR74/75 and RK82/84. The results proved that NLS is required for the efficient nuclear import of TroIRF3 and that the NLS domain of TroIRF3 consists of the key amino acids KR74/75 and RK82/84. The findings also showed that NLS plays a key role in the antibacterial immunity and upregulation of TroIFNa3 induced by TroIRF3. Moreover, TroIRF3 induces TroIFNa3 promoter activity, whereas these effects are inhibited when the NLS domain is deficient. Overall, our results suggested that TroIRF3 is involved in the antibacterial immunity and regulation of type I IFN in T. ovatus and that the NLS of TroIRF3 is vital for IRF3-mediated antibacterial responses, which will aid in understanding the immune role of fish IRF3.
Collapse
Affiliation(s)
- Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Panpan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Caoying Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Jianlong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China,*Correspondence: Ying Wu, ; Yongcan Zhou,
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China,*Correspondence: Ying Wu, ; Yongcan Zhou,
| |
Collapse
|
45
|
Krawczyk E, Kangas C, He B. HSV Replication: Triggering and Repressing STING Functionality. Viruses 2023; 15:226. [PMID: 36680267 PMCID: PMC9864509 DOI: 10.3390/v15010226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Herpes simplex virus (HSV) has persisted within human populations due to its ability to establish both lytic and latent infection. Given this, human hosts have evolved numerous immune responses to protect against HSV infection. Critical in this defense against HSV, the host protein stimulator of interferon genes (STING) functions as a mediator of the antiviral response by inducing interferon (IFN) as well as IFN-stimulated genes. Emerging evidence suggests that during HSV infection, dsDNA derived from either the virus or the host itself ultimately activates STING signaling. While a complex regulatory circuit is in operation, HSV has evolved several mechanisms to neutralize the STING-mediated antiviral response. Within this review, we highlight recent progress involving HSV interactions with the STING pathway, with a focus on how STING influences HSV replication and pathogenesis.
Collapse
Affiliation(s)
| | | | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
46
|
Netherton CL, Shimmon GL, Hui JYK, Connell S, Reis AL. African Swine Fever Virus Host-Pathogen Interactions. Subcell Biochem 2023; 106:283-331. [PMID: 38159232 DOI: 10.1007/978-3-031-40086-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
African swine fever virus is a complex double-stranded DNA virus that exhibits tropism for cells of the mononuclear phagocytic system. Virus replication is a multi-step process that involves the nucleus of the host cell as well the formation of large perinuclear sites where progeny virions are assembled prior to transport to, and budding through, the plasma membrane. Like many viruses, African swine fever virus reorganises the cellular architecture to facilitate its replication and has evolved multiple mechanisms to avoid the potential deleterious effects of host cell stress response pathways. However, how viral proteins and virus-induced structures trigger cellular stress pathways and manipulate the subsequent responses is still relatively poorly understood. African swine fever virus alters nuclear substructures, modulates autophagy, apoptosis and the endoplasmic reticulum stress response pathways. The viral genome encodes for at least 150 genes, of which approximately 70 are incorporated into the virion. Many of the non-structural genes have not been fully characterised and likely play a role in host range and modifying immune responses. As the field moves towards approaches that take a broader view of the effect of expression of individual African swine fever genes, we summarise how the different steps in virus replication interact with the host cell and the current state of knowledge on how it modulates the resulting stress responses.
Collapse
|
47
|
Su CM, Du Y, Rowland RRR, Wang Q, Yoo D. Reprogramming viral immune evasion for a rational design of next-generation vaccines for RNA viruses. Front Immunol 2023; 14:1172000. [PMID: 37138878 PMCID: PMC10149994 DOI: 10.3389/fimmu.2023.1172000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Type I interferons (IFNs-α/β) are antiviral cytokines that constitute the innate immunity of hosts to fight against viral infections. Recent studies, however, have revealed the pleiotropic functions of IFNs, in addition to their antiviral activities, for the priming of activation and maturation of adaptive immunity. In turn, many viruses have developed various strategies to counteract the IFN response and to evade the host immune system for their benefits. The inefficient innate immunity and delayed adaptive response fail to clear of invading viruses and negatively affect the efficacy of vaccines. A better understanding of evasion strategies will provide opportunities to revert the viral IFN antagonism. Furthermore, IFN antagonism-deficient viruses can be generated by reverse genetics technology. Such viruses can potentially serve as next-generation vaccines that can induce effective and broad-spectrum responses for both innate and adaptive immunities for various pathogens. This review describes the recent advances in developing IFN antagonism-deficient viruses, their immune evasion and attenuated phenotypes in natural host animal species, and future potential as veterinary vaccines.
Collapse
Affiliation(s)
- Chia-Ming Su
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Raymond R. R. Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Dongwan Yoo,
| |
Collapse
|
48
|
Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, Hu D. Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduct Target Ther 2022; 7:394. [PMID: 36550103 PMCID: PMC9780328 DOI: 10.1038/s41392-022-01252-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of Stimulator of Interferon Genes (STING) as an important pivot for cytosolic DNA sensation and interferon (IFN) induction, intensive efforts have been endeavored to clarify the molecular mechanism of its activation, its physiological function as a ubiquitously expressed protein, and to explore its potential as a therapeutic target in a wide range of immune-related diseases. With its orthodox ligand 2'3'-cyclic GMP-AMP (2'3'-cGAMP) and the upstream sensor 2'3'-cGAMP synthase (cGAS) to be found, STING acquires its central functionality in the best-studied signaling cascade, namely the cGAS-STING-IFN pathway. However, recently updated research through structural research, genetic screening, and biochemical assay greatly extends the current knowledge of STING biology. A second ligand pocket was recently discovered in the transmembrane domain for a synthetic agonist. On its downstream outputs, accumulating studies sketch primordial and multifaceted roles of STING beyond its cytokine-inducing function, such as autophagy, cell death, metabolic modulation, endoplasmic reticulum (ER) stress, and RNA virus restriction. Furthermore, with the expansion of the STING interactome, the details of STING trafficking also get clearer. After retrospecting the brief history of viral interference and the milestone events since the discovery of STING, we present a vivid panorama of STING biology taking into account the details of the biochemical assay and structural information, especially its versatile outputs and functions beyond IFN induction. We also summarize the roles of STING in the pathogenesis of various diseases and highlight the development of small-molecular compounds targeting STING for disease treatment in combination with the latest research. Finally, we discuss the open questions imperative to answer.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, 430022, Wuhan, China.
- Clinical Research Center of Cancer Immunotherapy, 430022, Hubei, Wuhan, China.
| |
Collapse
|
49
|
Lu Y, Michel HA, Wang PH, Smith GL. Manipulation of innate immune signaling pathways by SARS-CoV-2 non-structural proteins. Front Microbiol 2022; 13:1027015. [PMID: 36478862 PMCID: PMC9720297 DOI: 10.3389/fmicb.2022.1027015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 11/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic, induces an unbalanced immune response in the host. For instance, the production of type I interferon (IFN) and the response to it, which act as a front-line defense against virus invasion, are inhibited during SARS-CoV-2 infection. In addition, tumor necrosis factor alpha (TNF-α), a proinflammatory cytokine, is upregulated in COVID-19 patients with severe symptoms. Studies on the closely related betacoronavirus, SARS-CoV, showed that viral proteins such as Nsp1, Orf6 and nucleocapsid protein inhibit IFN-β production and responses at multiple steps. Given the conservation of these proteins between SARS-CoV and SARS-CoV-2, it is not surprising that SARS-CoV-2 deploys similar immune evasion strategies. Here, we carried out a screen to examine the role of individual SARS-CoV-2 proteins in regulating innate immune signaling, such as the activation of transcription factors IRF3 and NF-κB and the response to type I and type II IFN. In addition to established roles of SARS-CoV-2 proteins, we report that SARS-CoV-2 proteins Nsp6 and Orf8 inhibit the type I IFN response but at different stages. Orf6 blocks the translocation of STAT1 and STAT2 into the nucleus, whereas ORF8 inhibits the pathway in the nucleus after STAT1/2 translocation. SARS-CoV-2 Orf6 also suppresses IRF3 activation and TNF-α-induced NF-κB activation.
Collapse
Affiliation(s)
- Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Hendrik A. Michel
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Pei-Hui Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
50
|
Substitution of S179P in the Lyssavirus Phosphoprotein Impairs Its Interferon Antagonistic Function. J Virol 2022; 96:e0112522. [PMID: 36326274 PMCID: PMC9683011 DOI: 10.1128/jvi.01125-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon (IFN) and the IFN-induced cellular antiviral response constitute the first line of defense against viral invasion. Evading host innate immunity, especially IFN signaling, is the key step required for lyssaviruses to establish infection.
Collapse
|