1
|
Li Z, Li Q, Peng Q, Smagghe G, Li G. RNAi of nuclear receptor E78 inhibits the cuticle formation in the molting process of spider mite, Tetranychus urticae. PEST MANAGEMENT SCIENCE 2025; 81:809-818. [PMID: 39400455 DOI: 10.1002/ps.8484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND The two-spotted spider mite, Tetranychus urticae, is an important pest mite in agriculture worldwide. E78, as a member of the nuclear receptor superfamily and a downstream responsive gene of ecdysteroids, plays a crucial role in regulating physiological behaviors such as development and reproduction in insects. However, its function in mites remains unclear. The aim of this study was to explore how E78 functions in the molting process of spider mites. RESULTS In this study, reverse transcription quantitative polymerase chain reaction (RT-qPCR) experiments to analyze the expression pattern of TuE78 during the development of Tetranychus urticae, demonstrated that the expression level of TuE78 was higher during the molting state than that after the completion of molting, and it reached a peak expression level when the deutonymph mites entered the molting stage. RNA interference (RNAi)-mediated gene-silencing of TuE78 resulted in 95% deutonymph mite molt failure. A series of analysis under a light microscope, and scanning and transmission electron microscopy revealed that RNAi mites died within the exuvium without ecdysis, and that apolysis had started but the new cuticle was thin and the typical cuticular lamellae were absent, indicating blockage of the post-apolysial processes and explaining molt failure. Hence, transcriptome sequencing confirmed that the expression of cuticle protein and lipid metabolism-related genes was significantly affected after TuE78 silencing. CONCLUSION This study demonstrated that TuE78 participates in the molting process of Tetranychus urticae by regulating the post-apolysial processes with the formation of new cuticle and successful ecdysis. This in turn suggests the potential of TuE78 as a target for pest mite control and provides a theoretical basis for further exploration of the molecular regulatory mechanism of spider mite molting. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhuo Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Qingyan Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Qixiang Peng
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Gang Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Lima JCDS, da Silva Cavalcante E, Gonçalves CR, Lima-Junior SE, Cardoso CAL, Antonialli-Junior WF. Effect of Seasonal Variation on the Cuticular Chemical Composition of Atta laevigata (Smith 1858) (Hymenoptera: Formicidae). J Chem Ecol 2025; 51:15. [PMID: 39888559 DOI: 10.1007/s10886-025-01559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 02/01/2025]
Abstract
Cuticular hydrocarbons (CHCs) constitute an important class of chemical compounds present in the cuticular layer of insects, where their main functions are to prevent desiccation of the cuticle and as signals for intraspecific recognition. Studies concerning CHCs have shown a phenotypic flexibility of their composition, depending on environmental factors. However, the way that each of these factors influences this variation remains little explored. The aim of the present study was to evaluate the effects of environmental variations on the cuticular chemical composition of the ant Atta laevigata. Workers from four different colonies nesting in forest edge environments were collected over the course of a year, during the hot and humid and cold and dry seasons. The cuticular compounds were extracted and then analyzed by gas chromatography, revealing that the compounds of this species belonged to the classes of linear alkanes, mono, di and trimethyl alkanes, alkenes and alkadienes. Furthermore, the cuticular profile varied significantly among colonies of this species and between seasons, while intra-season variability was more significant during the hot and humid season. The observed temporal variation indicated that the numbers of compounds and the proportion of different types of CHC can vary according to the period of the year, however with a greater significant variation in colonies in the hot and humid season. These results showed that variations in environmental conditions, especially climate, can have decisive effects in the dynamics of cuticular chemistry.
Collapse
Affiliation(s)
- Jean Carlos Dos Santos Lima
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil.
- Laboratório de Ecologia Comportamental, Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil.
| | - Elivelto da Silva Cavalcante
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Cristiano Ramos Gonçalves
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Sidnei Eduardo Lima-Junior
- Centro de Estudos em Recursos Naturais, Programa de Pós-graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | - Claudia Andrea Lima Cardoso
- Centro de Estudos em Recursos Naturais, Programa de Pós-graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | - William Fernando Antonialli-Junior
- Laboratório de Ecologia Comportamental, Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| |
Collapse
|
3
|
Straub F, Birkenbach M, Boesing AL, Manning P, Olsson O, Kuppler J, Wilfert L, Ayasse M. Local and landscape factors differently influence health and pollination services in two important pollinator groups. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178330. [PMID: 39752984 DOI: 10.1016/j.scitotenv.2024.178330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
Agricultural management significantly affects insects, especially pollinators, which are crucial for crop pollination and biodiversity. In agricultural landscapes, various factors spanning different spatial scales are known to affect pollinator health, which, in turn, can influence pollination services. However, the importance of these factors in driving the health and performance of different pollinator groups remains unclear. Using a long-term biodiversity research platform, the German Biodiversity Exploratories, we investigated links between local and landscape-level land-use, health and pollination services in common pollinators, the bumblebee Bombus lapidarius and the syrphid fly Episyrphus balteatus, by measuring various traits as proxies for pollinator health and pollination services. Because of their different life histories, we expected the territorial bumblebees to be more vulnerable to land-use intensification at both spatial levels, compared with the migratory syrphid flies. Both land-use and environmental factors (climate) across spatial scales affected pollinator health, mostly via changes in body size: High land-use intensity reduced bumblebee body size, whereas higher ambient air temperature decreased syrphid fly body size. Increasing proportions of intensively managed areas at the landscape level decreased viral infections in both species. Additionally, landscape-level land-use and climate changed the bumblebees cuticular chemical profile, which is essential for communication in these social insects. Increasing land-use intensity at the local level and higher proportions of intensive land-use at the landscape level both had an indirect negative effect on pollination services in bumblebees via local flower cover and body size. Pollination services in both species were linked to body size. Thus, land-use factors affect pollinator health differently: bumblebees are more vulnerable to local and landscape-level land-use intensification, while syrphid flies are more resilient potentially due to their higher mobility. As pollinator health affects pollination services, our results indicate that land-use intensification poses a high risk to crops pollinated by species with small home ranges.
Collapse
Affiliation(s)
- Florian Straub
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Markus Birkenbach
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Andrea Larissa Boesing
- Senckenberg Biodiversität und Klima Forschungszentrum, Georg-Voigt-Straße 14-16, 60325 Frankfurt am Main, Germany
| | - Peter Manning
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ola Olsson
- Lund University, Department of Biology, Ecology Building, 22362 Lund, Sweden
| | - Jonas Kuppler
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Lena Wilfert
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Ayasse
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
4
|
Park SJ, Pérez J, Mendez V, Taylor PW. Rectal glands and tergal glands as sources of volatile pheromones in cucumber fruit fly, Zeugodacus Cucumis. Sci Rep 2025; 15:743. [PMID: 39755710 DOI: 10.1038/s41598-024-84356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Male tephritid fruit flies typically emit pheromones from rectal glands to attract mates. Consistent with this, virgin females of the cucumber fruit fly, Zeugodacus cucumis (French), were found to be attracted to volatiles emitted by crushed male rectal glands in Y-tube olfactometer bioassays. Electrophysiological studies identified several male rectal gland compounds that triggered responses in female antennae. In other studied tephritids, the proportion of each compound is similar in excised rectal glands and headspace of calling intact flies, but our initial investigations revealed substantial discrepancies in the abundance of aliphatic amides, suggesting additional sources of these compounds. To address the discrepancies, we examined the volatile chemistry of headspace, rectal glands, tergal glands, and cuticles from both sexes using gas chromatography-mass spectrometry (GC-MS). Our analyses confirmed previously identified compounds and also detected several previously unreported compounds. Notably, the aliphatic amides were found to be more abundant in both tergal glands and cuticle than in rectal glands in both sexes, suggesting glands associated with these sites as additional sources of these compounds in headspace. Most studies of tephritid sex pheromones have focused on rectal gland extracts, but insights of the present study indicate that headspace volatiles of live flies can also reflect contributions from other glands.
Collapse
Affiliation(s)
- Soo J Park
- Applied BioSciences, Macquarie University, NSW, 2109, Sydney, Australia.
| | - Jeanneth Pérez
- Applied BioSciences, Macquarie University, NSW, 2109, Sydney, Australia
| | - Vivian Mendez
- Applied BioSciences, Macquarie University, NSW, 2109, Sydney, Australia
| | - Phillip W Taylor
- Applied BioSciences, Macquarie University, NSW, 2109, Sydney, Australia
| |
Collapse
|
5
|
Barbosa-da-Silva HR, Pontes WJT, Lira AFA, Navarro DMAF, Salomão RP, Maia ACD. The role of intraspecific mechanical and chemical signaling for mate and sexual recognition in male Tityus pusillus (Scorpiones, Buthidae). ZOOLOGY 2025; 168:126235. [PMID: 39693864 DOI: 10.1016/j.zool.2024.126235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Hydrophobic compounds present in the cuticular wax layer (CWL) of terrestrial arthropods protect them from dehydration and are also involved in chemical communication. However, the role of CWL compounds in the behavioral ecology of scorpions has been studied less often, with most investigations focusing on their responses to mechanical stimuli. In this study, we aimed to characterize the CWL composition of Tityus pusillus (Scorpiones, Buthidae) and examine the influence of CWL solvent extracts and movement on intraspecific mate and sexual recognition by males of this species. We analyzed CWL hexane extracts of adult female and male T. pusillus by gas chromatography-mass spectrometry (GC-MS). In paired behavioral tests inside an experimental arena, we exposed adult males to i) live and intact dead conspecific females; ii) intact dead females and females without the CWL (removed with solvent washes); and iii) intact dead males with and without the CWL. Our results showed that CWL extracts of both female and male T. pusillus contained a series of linear alkanes (C21 - C34; > 54 % relative composition), as well as fatty acyls (> 9.5 %) and methyl-branched alkanes (> 9.1 %). Two unassigned C31 monomethyl-branched alkanes were exclusively identified in male CWL extracts (∼ 4.7 %), while female samples contained high relative concentrations (> 22.5 %) of sterol derivatives, present only as minor constituents in male samples. Male T. pusillus performed sexually-oriented behavioral acts when paired with both live and dead conspecific females, intact or without the CWL. However, they ignored conspecific dead males. Our results show that CWL compounds have a role in intraspecific sexual recognition by male T. pusillus but only the CWL compounds does not explain mate recognition.
Collapse
Affiliation(s)
- Hugo R Barbosa-da-Silva
- Programa de Pós-Graduação em Ecologia e Conservação, Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, Campo Grande 79070-900, Brazil; Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil.
| | - Wendel J T Pontes
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - André F A Lira
- Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Daniela M A F Navarro
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife 50740-560, Brazil
| | - Renato P Salomão
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | - Artur C D Maia
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil; Laboratory of Sciences for the Environment, University of Corsica, UMR 6134 SPE, Ajaccio 20000, France
| |
Collapse
|
6
|
Ali AAB. Cuticular composition: An alternative taxonomic approach to differentiate between Argas arboreus and Argas persicus ticks (Acari: Argasidae). Vet Parasitol 2025; 333:110353. [PMID: 39561508 DOI: 10.1016/j.vetpar.2024.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Argas arboreus and A. persicus are blood sucking ectoparasites on domestic birds in Egypt. They cause anemia in birds, in addition to transmitting a variety of pathogens that leads to economical loss in the poultry industry. It is difficult for non-taxonomists to differentiate between these species because of minor morphological characters. Therefore, it is very important to identify tick species for developing a suitable strategy to reduce risks to poultry wealth. This study characterized the female cuticular hydrocarbons of two Argas species using gas chromatography-mass spectrometry. Sixty different hydrocarbons were exclusively identified in A. arboureus, whereas only 51 in A. persicus. Some of the hydrocarbon compounds were stage-specific ones that differentiate between two species. Others shared between all feeding stages of both species that improved they are closely related ones. Genetic variability recorded its maximum value between unfed stages of the two species, and similarity reached only 25 %. The present study provides the first chemotaxonomic data to differentiate between two closely related Argas species according to their cuticular hydrocarbons. Therefore, hydrocarbon composition seems to be a promising tool available as a taxonomic character, in addition improved that feeding stage was the susceptible one to be controlled.
Collapse
Affiliation(s)
- Asmaa Ali Baioumy Ali
- Zoology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
7
|
Qu H, Long Y, Chen L, Luo Z, Chen H, Wang X, Long L, Tian J, Jing T, Chen L. Metabolomic profiling identifies metabolites in the pheromone glands of Agriophara rhombata associated with the synthesis and release of female pheromone signals. Heliyon 2024; 10:e40768. [PMID: 39687108 PMCID: PMC11648114 DOI: 10.1016/j.heliyon.2024.e40768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The tea moth pest, Agriophara rhombata is an economically important and highly damaging pest that drastically affects tea plant leaves. The chemical composition of its pheromone glands metabolites before and during calling period has not been reported yet. Therefore, the present study aimed at the metabolomic profiling of female moths' sex pheromones glands before and during calling period using gas chromatography time-of-flight mass spectrometry. A total of 114 significant differentially expressed metabolites were identified including 54 up- and 70 down-regulated metabolites in pheromone glands of the female moth. Two of the important previously recognized moth pheromones were identified including E,Z-5,7-dodecadien-1-ol acetate and Z-12-Octadecen-1-ol acetate, which were downregulated. The top ten up-regulated metabolites were "dodecanamide", "tetradecanamide", "2-propyn-1-amine, N,N-dimethyl", "cyclohexane, (1-methylethyl)", "tetradecane, 2-methyl", "1-cyclopentyleicosane", "cyclohexane, octyl", "1-decan-3-one", "cyclopentane, decyl" and "cyclopentadecane". In conclusion, while most of the identified compounds have not previously been identified as primary pheromones in moths, their differential expression in A. rhombata's pheromone glands during the calling period strongly suggests their supporting roles in the synthesis, stabilization, or release of the active pheromone components.
Collapse
Affiliation(s)
- Hao Qu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Menghai, 666201, China
| | - Yaqin Long
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Menghai, 666201, China
| | - Long Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Menghai, 666201, China
| | - Ziwen Luo
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Menghai, 666201, China
| | - Hongyun Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Menghai, 666201, China
| | - Xuesong Wang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Menghai, 666201, China
| | - Lixue Long
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Menghai, 666201, China
| | - Jun Tian
- Kunming Colourful Yunnan King-shine Tea Industry Co., Ltd, Kunming, 650500, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Linbo Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Menghai, 666201, China
| |
Collapse
|
8
|
Zhang H, Zhu Y, Wang Y, Jiang L, Shi X, Cheng G. Microbial interactions shaping host attractiveness: insights into dynamic behavioral relationships. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101275. [PMID: 39332621 DOI: 10.1016/j.cois.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/18/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Insects discern the presence of hosts (host plants) by integrating chemosensory, gustatory, and visual cues, with olfaction playing a pivotal role in this process. Among these factors, volatile signals produced by host-associated microbial communities significantly affect insect attraction. Microorganisms are widely and abundantly found on the surfaces of humans, plants, and insects. Notably, these microorganisms can metabolize compounds from the host surface and regulate the production of characteristic volatiles, which may guide the use of host microorganisms to modulate insect behavior. Essentially, the attraction of hosts to insects is intricately linked to the presence of their symbiotic microorganisms. This review underscores the critical role of microorganisms in shaping the dynamics of attractiveness between insects and their hosts.
Collapse
Affiliation(s)
- Hong Zhang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Southwest United Graduate School, Kunming 650092, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Liping Jiang
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Southwest United Graduate School, Kunming 650092, China.
| |
Collapse
|
9
|
Būda V, Radžiutė S, Apšegaitė V, Budrys E, Budrienė A, Blažytė-Čereškienė L. Cuticular Hydrocarbons as Putative Sex Pheromones and Mating Peculiarity of Cuckoo Wasps Chrysis Angustula, Chrysis fulgida and Chrysis Iris (Hymenoptera: Chrysididae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70014. [PMID: 39665750 DOI: 10.1002/arch.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Cuckoo wasps, also known as jewel or gold wasps (Hymenoptera: Chrysididae), are kleptoparasites and parasitoids that impose their offspring on the breeding efforts of other wasp species. Chrysidids oviposit in the nests of predatory wasps, and the hatched larva kills the host's larva and consumes the resources collected by the host. When a cuckoo wasp is detected by the host wasp, the host may abandon the nest or take other measures to prevent the development of the kleptoparasite. Chemical camouflage, particularly involving cuticlar hydrocarbons (CHCs), is crucial for cuckoo wasp females. There is a conflict because females need chemical signals that are easily detectable by males but not by the host wasps. It was demonstrated that virgin females of Chrysis angustula, Chrysis fulgida, and Chrysis iris contain CHCs that stimulate behavioral reactions in conspecific males. Coupled gas chromatography-electroantennogram detection analysis revealed 16 hydrocarbons with carbon chain lengths of C23-27 in virgin females: 6 in C. angustula, 8 in C. fulgida, and 13 in C. iris. A specific ratio of CHC compounds, including putative sex pheromones, was established for these three chrysidid species. Observations of re-mating refusals led to the hypothesis that virgin females of cuckoo wasps cease production of some unsaturated CHCs, functioning as sex pheromones, following mating. This change could reduce the risk of detection of CHCs traces left while entering the host's nest.
Collapse
Affiliation(s)
- Vincas Būda
- Laboratory of Chemical and Behavioral Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Sandra Radžiutė
- Laboratory of Chemical and Behavioral Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Violeta Apšegaitė
- Laboratory of Chemical and Behavioral Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Eduardas Budrys
- Laboratory of Chemical and Behavioral Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Anna Budrienė
- Laboratory of Chemical and Behavioral Ecology, Nature Research Centre, Vilnius, Lithuania
| | | |
Collapse
|
10
|
Pei XJ, Schal C, Fan YL. Genetic Underpinnings of Cuticular Hydrocarbon Biosynthesis in the German Cockroach, Blattella germanica (L.): Progress and Perspectives. J Chem Ecol 2024; 50:955-968. [PMID: 38727793 DOI: 10.1007/s10886-024-01509-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 01/11/2025]
Abstract
Insect cuticular hydrocarbons (CHCs) serve as important waterproofing barriers and as signals and cues in chemical communication. Over the past 30 years, numerous studies on CHCs have been conducted in the German cockroach, Blattella germanica, leading to substantial progress in the field. However, there has not been a systematic review of CHC studies in this species in recent years. This review aims to provide a concise overview of the chemical composition, storage, transport, and physical properties of different CHCs in B. germanica. Additionally, we focus on the biosynthetic pathway and the genetic regulation of HC biosynthesis in this species. A considerable amount of biochemical evidence regarding the biosynthetic pathway of insect CHCs has been gathered from studies conducted in B. germanica. In recent years, there has also been an improved understanding of the molecular mechanisms that underlie CHC production in this insect. In this article, we summarize the biosynthesis of different classes of CHCs in B. germanica. Then, we review CHCs reaction to various environmental conditions and stressors and internal physiological states. Additionally, we review a body of work showing that in B. germanica, CHC profiles exhibit significant sexual dimorphism, specific CHCs act as essential precursors for female contact sex pheromone components, and we summarize the molecular regulatory mechanisms that underlie sexual dimorphism of CHC profiles. Finally, we highlight future directions and challenges in research on the biosynthesis and regulatory mechanisms of CHCs in B. germanica, and also identify potential applications of CHC studies in the pest control.
Collapse
Affiliation(s)
- Xiao-Jin Pei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of the Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yong-Liang Fan
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of the Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| |
Collapse
|
11
|
Narimanov N, Heuschele JM, Entling MH, Menzel F, Mestre L. Differential Effects of Ephemeral and Stable Predator Chemical Cues on Spider Antipredator Behaviour. J Chem Ecol 2024; 50:714-724. [PMID: 39305439 PMCID: PMC11543770 DOI: 10.1007/s10886-024-01543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 11/08/2024]
Abstract
Semiochemicals left by predators in their foraging area can be utilised by prey to avoid predation. The range of predators' chemical cues with contrasting degradation rates might provide information of different quality, potentially allowing prey to differentiate between the immediate and the longer-term presence of predators in a location. So far, knowledge about the roles of volatile versus stable chemical cues in informing predation risk is limited. We here seek to disentangle the role of ephemeral trail pheromones compared to persistent cuticular hydrocarbons of ants (predators) on the antipredator behaviour of juvenile spiders (prey), with the expectation that volatile semiochemicals induce avoidance behaviour in spiders at a higher rate compared to stable cues. We allowed the spiders to choose between sites with and without ant cues separately for volatile trail pheromones and stable hydrocarbons. Unexpectedly, spiders avoided the presence of persistent cuticular hydrocarbons more clearly than the highly volatile trail pheromone. This underscores the widespread impact of these stable cues on the avoidance behaviour of potential intraguild prey. The response to trail pheromones was unclear, possibly because spiders always encounter these cues simultaneously with visual and vibratory cues from ants; hence, trail pheromones may not contain any additional information, hindering the evolution of the ability to detect them.
Collapse
Affiliation(s)
- Nijat Narimanov
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, 76829, Landau (Pfalz), Germany.
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, 55128, Mainz, Germany.
| | - Jonna M Heuschele
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, 76829, Landau (Pfalz), Germany
- Department of Community Ecology, UFZ, Helmholtz Centre for Environmental Research, 06120, Halle (Saale), Germany
- iDiv, German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Martin H Entling
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, 76829, Landau (Pfalz), Germany
| | - Florian Menzel
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, 55128, Mainz, Germany
| | - Laia Mestre
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, 76829, Landau (Pfalz), Germany
| |
Collapse
|
12
|
Rodríguez-León DS, Uzunov A, Costa C, Elen D, Charistos L, Galea T, Gabel M, Scheiner R, Pinto MA, Schmitt T. Deciphering the variation in cuticular hydrocarbon profiles of six European honey bee subspecies. BMC Ecol Evol 2024; 24:131. [PMID: 39468449 PMCID: PMC11520070 DOI: 10.1186/s12862-024-02325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
The Western honey bee (Apis mellifera) subspecies exhibit local adaptive traits that evolved in response to the different environments that characterize their native distribution ranges. An important trait is the cuticular hydrocarbon (CHC) profile, which helps to prevent desiccation and mediate communication. We compared the CHC profiles of six European subspecies (A. m. mellifera, A. m. carnica, A. m. ligustica, A. m. macedonica, A. m. iberiensis, and A. m. ruttneri) and investigated potential factors shaping their composition. We did not find evidence of adaptation of the CHC profiles of the subspecies to the climatic conditions in their distribution range. Subspecies-specific differences in CHC composition might be explained by phylogenetic constraints or genetic drift. The CHC profiles of foragers were more subspecies-specific than those of nurse bees, while the latter showed more variation in their CHC profiles, likely due to the lower desiccation stress exerted by the controlled environment inside the hive. The strongest profile differences appeared between nurse bees and foragers among all subspecies, suggesting an adaptation to social task and a role in communication. Foragers also showed an increase in the relative amount of alkanes in their profiles compared to nurses, indicating adaptation to climatic conditions.
Collapse
Affiliation(s)
| | - Aleksandar Uzunov
- Faculty for Agricultural Science and Food, Ss. Cyril and Methodius University in Skopje, Skopje, 1000, Republic of Macedonia
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cecilia Costa
- CREA Research Centre for Agriculture and Environment, Via di Corticella 133, Bologna, 40128, Italy
| | - Dylan Elen
- School of Natural Sciences, Department of Molecular Ecology & Evolution, Bangor University, Bangor, LL57 2DG, UK
- ZwarteBij.org vzw, Taskforce Research, Gavere, 9890, Belgium
| | - Leonidas Charistos
- Hellenic Agricultural Organization DIMITRA, Institute of Animal Science, Department of Apiculture, Nea, 63200, Moudania, Greece
| | - Thomas Galea
- Breeds of Origin Conservancy, Ħaż - Żebbuġ, Malta
| | - Martin Gabel
- LLH Bee Institute Kirchhain, Erlenstraße 9, 35274, Kirchhain, Germany
| | - Ricarda Scheiner
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - M Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, 5300- 253, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, 5300-253, Portugal
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
13
|
Luo Y, Takau A, Li J, Fan T, Hopkins BR, Le Y, Ramirez SR, Matsuo T, Kopp A. Regulatory Changes in the Fatty Acid Elongase eloF Underlie the Evolution of Sex-specific Pheromone Profiles in Drosophila prolongata. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617394. [PMID: 39464098 PMCID: PMC11507777 DOI: 10.1101/2024.10.09.617394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Pheromones play a key role in regulating sexual behavior throughout the animal kingdom. In Drosophila and other insects, many cuticular hydrocarbons (CHCs) are sexually dimorphic, and some are known to perform pheromonal functions. However, the genetic control of sex-specific CHC production is not understood outside of the model species D. melanogaster. A recent evolutionary change is found in D. prolongata, which, compared to its closest relatives, shows greatly increased sexual dimorphism in both CHCs and the chemosensory system responsible for their perception. A key transition involves a male-specific increase in the proportion of long-chain CHCs. Perfuming D. prolongata females with the male-biased CHCs reduces copulation success, suggesting that these compounds function as sex pheromones. The evolutionary change in CHC profiles correlates with a male-specific increase in the expression of multiple genes involved in CHC biosynthesis, including fatty acid elongases and reductases and other key enzymes. In particular, elongase F, which is responsible for producing female-specific pheromones in D. melanogaster, is strongly upregulated in D. prolongata males compared both to females and to males of the sibling species. Induced mutations in eloF reduce the amount of long-chain CHCs, resulting in a partial feminization of pheromone profiles in D. prolongata males while having minimal effect in females. Transgenic experiments show that sex-biased expression of eloF is caused in part by a putative transposable element insertion in its regulatory region. These results reveal one of the genetic mechanisms responsible for a recent evolutionary change in sexual communication.
Collapse
Affiliation(s)
- Yige Luo
- Department of Evolution and Ecology, University of California, Davis
| | - Ayumi Takau
- Department of Agricultural and Environmental Biology, The University of Tokyo
| | - Jiaxun Li
- Department of Evolution and Ecology, University of California, Davis
| | - Tiezheng Fan
- Department of Evolution and Ecology, University of California, Davis
| | - Ben R Hopkins
- Department of Evolution and Ecology, University of California, Davis
| | - Yvonne Le
- Department of Evolution and Ecology, University of California, Davis
| | | | - Takashi Matsuo
- Department of Agricultural and Environmental Biology, The University of Tokyo
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis
| |
Collapse
|
14
|
Issar S, Leroy C, d'Ettorre P, Kilner R. Seasonal Patterns of Resource Use Within Natural Populations of Burying Beetles. Ecol Evol 2024; 14:e70429. [PMID: 39463740 PMCID: PMC11502939 DOI: 10.1002/ece3.70429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
For organisms in temperate environments, seasonal variation in resource availability and weather conditions exert fluctuating selection pressures on survival and fitness, resulting in diverse adaptive responses. By manipulating resource availability on a local spatial scale, we studied seasonal patterns of resource use within natural populations of burying beetles Nicrophorus vespilloides in a Norfolk woodland. Burying beetles are necrophagous insects that breed on vertebrate carcasses. They are active in Europe between April and October, after which they burrow into the soil and overwinter. Using breeding and chemical analyses, we compared the fecundity and physiological state of beetles that differed in their seasonal resource use. We found seasonal variation in carrion use by wild burying beetles and correlated differences in their reproductive success and cuticular hydrocarbon profiles. Our results provide novel insight into the seasonal correlates of behaviour, physiology and life history in burying beetles.
Collapse
Affiliation(s)
- Swastika Issar
- Department of ZoologyUniversity of CambridgeCambridgeUK
- National Centre for Biological Sciences‐Tata Institute of Fundamental ResearchBangaloreIndia
| | - Chloé Leroy
- Laboratory of Experimental and Comparative Ethology (LEEC), UR4443University Sorbonne Paris NordVilletaneuseFrance
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology (LEEC), UR4443University Sorbonne Paris NordVilletaneuseFrance
| | | |
Collapse
|
15
|
Qiao JW, Wu BJ, Wang WQ, Yuan CX, Su S, Zhang ZF, Fan YL, Liu TX. The ATP-binding cassette transporter subfamily G member 4 mediates cuticular hydrocarbon transport to regulate drought tolerance in Acyrthosiphon pisum. Int J Biol Macromol 2024; 278:134605. [PMID: 39127281 DOI: 10.1016/j.ijbiomac.2024.134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
ABC transporters are a highly conserved membrane protein class that promote the transport of substances across membranes. Under drought conditions, insects primarily regulate the content of cuticular hydrocarbon (CHC) to retain water and prevent evaporative loss. Involvement of ABC transporter protein G (ABCG) subfamily genes in insect CHC transport has been relatively understudied. In this study, we demonstrated that ABCG4 gene in Acyrthosiphon pisum (ApABCG4) is involved in CHC transport and affects drought tolerance by regulating CHC accumulation. ApABCG4 is strongly expressed in the abdominal cuticle and embryonic stages of A. pisum. Effective silencing of ApABCG4 was achieved using RNAi, and the silencing duration was analyzed. ApABCG4 silencing resulted in a significant decrease in the total and component contents of the CHC and cuticular waxy coatings of A. pisum. Nevertheless, the internal hydrocarbon content remained unchanged. The lack of cuticular hydrocarbons significantly reduced the drought tolerance of A. pisum, shortening its survival time under drought stress. Drought stress caused significant upregulation of ApABCG4. Molecular docking showed that ApABCG4 has a high binding affinity for nine n-alkanes of CHC through electrostatic interactions. These results indicate that ApABCG4 is a novel RNAi target with key applications in aphid biological control.
Collapse
Affiliation(s)
- Jian-Wen Qiao
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Bing-Jin Wu
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Wen-Qiang Wang
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Cai-Xia Yuan
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Sha Su
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhan-Feng Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, P.R. China; College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Yong-Liang Fan
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, P.R. China; College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Tong-Xian Liu
- Institute of Entomology and Institute of Plant Health and Medicine, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
16
|
Ferveur JF, Cortot J, Moussian B, Everaerts C. Population Density Affects Drosophila Male Pheromones in Laboratory-Acclimated and Natural Lines. J Chem Ecol 2024; 50:536-548. [PMID: 39186176 DOI: 10.1007/s10886-024-01540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
In large groups of vertebrates and invertebrates, aggregation can affect biological characters such as gene expression, physiological, immunological and behavioral responses. The insect cuticle is covered with hydrocarbons (cuticular hydrocarbons; CHCs) which reduce dehydration and increase protection against xenobiotics. Drosophila melanogaster and D. simulans flies also use some of their CHCs as contact pheromones. In these two sibling species, males also produce the volatile pheromone 11-cis-Vaccenyl acetate (cVa). To investigate the effect of insect density on the production of CHCs and cVa we compared the level of these male pheromones in groups of different sizes. These compounds were measured in six lines acclimated for many generations in our laboratory - four wild-type and one CHC mutant D. melanogaster lines plus one D. simulans line. Increasing the group size substantially changed pheromone amounts only in the four D. melanogaster wild-type lines. To evaluate the role of laboratory acclimation in this effect, we measured density-dependent pheromonal production in 21 lines caught in nature after 1, 12 and 25 generations in the laboratory. These lines showed varied effects which rarely persisted across generations. Although increasing group size often affected pheromone production in laboratory-established and freshly-caught D. melanogaster lines, this effect was not linear, suggesting complex determinants.
Collapse
Affiliation(s)
- Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, Dijon, 21000, France.
| | - Jérôme Cortot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, Dijon, 21000, France
| |
Collapse
|
17
|
Hais A, Casacci LP, d’Ettorre P, Badía-Villas D, Leroy C, Barbero F. Variation in Ants' Chemical Recognition Signals across Vineyard Agroecosystems. Int J Mol Sci 2024; 25:10407. [PMID: 39408736 PMCID: PMC11477430 DOI: 10.3390/ijms251910407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Ant evolutionary success depends mainly on the coordination of colony members, who recognize nestmates based on the cuticular hydrocarbon (CHC) profile of their epicuticle. While several studies have examined variations in this crucial factor for colony identity, few have investigated the anthropic impact on CHC profiles, and none have focused on Lasius paralienus. Here, we surveyed the changes in L. paralienus CHC assemblages across agroecosystems and assessed whether different vineyard management influences these profiles. Soil sampling within ant nests and in close surroundings was performed to measure microhabitat variations. Our results show that the cuticular chemical composition of Lasius paralienus is mainly affected by the differences between areas, with an existing but unclear anthropic influence on them. Normalized soil respiration partially explains these interarea variations. Irrespective of the conventional or organic management, human activities in agroecosystems mostly impacted L. paralienus linear alkanes, a specific class of CHCs known to play a major role against dehydration, but also affected the abundance of compounds that can be pivotal for maintaining the colony identity. Our findings suggest that vineyard practices primarily affect features of the ant cuticle, potentially enhancing microclimate adaptations. Still, the potential effects as disruptive factors need further investigation through the implementation of behavioral bioassays.
Collapse
Affiliation(s)
- Arthur Hais
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (A.H.); (L.P.C.)
| | - Luca Pietro Casacci
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (A.H.); (L.P.C.)
| | - Patrizia d’Ettorre
- Laboratory of Experimental and Comparative Ethology (LEEC), UR4443, University Sorbonne Paris Nord, 93430 Villetaneuse, France; (P.d.); (C.L.)
| | - David Badía-Villas
- Department of Agriculture and Natural Sciences, Escuela Politécnica Superior, 22071 Huesca, Spain;
| | - Chloé Leroy
- Laboratory of Experimental and Comparative Ethology (LEEC), UR4443, University Sorbonne Paris Nord, 93430 Villetaneuse, France; (P.d.); (C.L.)
| | - Francesca Barbero
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (A.H.); (L.P.C.)
| |
Collapse
|
18
|
Török P, Lakk-Bogáth D, Unjaroen D, Browne WR, Kaizer J. Effect of monodentate heterocycle co-ligands on the μ-1,2-peroxo-diiron(III) mediated aldehyde deformylation reactions. J Inorg Biochem 2024; 258:112620. [PMID: 38824901 DOI: 10.1016/j.jinorgbio.2024.112620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Peroxo-diiron(III) species are present in the active sites of many metalloenzymes that carry out challenging organic transformations. The reactivity of these species is influenced by various factors, such as the structure and topology of the supporting ligands, the identity of the axial and equatorial co-ligands, and the oxidation states of the metal ion(s). In this study, we aim to diversify the importance of equatorial ligands in controlling the reactivity of peroxo-diiron(III) species. As a model compound, we chose the previously published and fully characterized [(PBI)2(CH3CN)FeIII(μ-O2)FeIII(CH3CN)(PBI)2]4+ complex, where the steric effect of the four PBI ligands is minimal, so the labile CH3CN molecules easily can be replaced by different monodentate co-ligands (substituted pyridines and N-donor heterocyclic compounds). Thus, their effect on the electronic and spectral properties of peroxo-divas(III) intermediates could be easily investigated. The relationship between structure and reactivity was also investigated in the stoichiometric deformylation of PPA mediated by peroxo-diiron(III) complexes. It was found that the deformylation rates are influenced by the Lewis acidity and redox properties of the metal centers, and showed a linear correlation with the FeIII/FeII redox potentials (in the range of 197 to 415 mV).
Collapse
Affiliation(s)
- Patrik Török
- Research Group of Bioorganic and Biocoordination Chemistry, Universtiy of Pannonia, 8201 Veszprém, Hungary
| | - Dóra Lakk-Bogáth
- Research Group of Bioorganic and Biocoordination Chemistry, Universtiy of Pannonia, 8201 Veszprém, Hungary
| | - Duenpen Unjaroen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - József Kaizer
- Research Group of Bioorganic and Biocoordination Chemistry, Universtiy of Pannonia, 8201 Veszprém, Hungary.
| |
Collapse
|
19
|
Santos AD, Santos ICLD, Mendonça PMDS, Santos JCD, Zanuncio AJV, Zanuncio JC, Zanetti R. Colony identity clues for Syntermes grandis (Blattodea: Termitidae) individuals using near-infrared spectroscopy and PLS-DA approach. ENVIRONMENTAL ENTOMOLOGY 2024; 53:561-566. [PMID: 38703128 DOI: 10.1093/ee/nvae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
Termites are social insects with high species diversity in tropical ecosystems. Multivariate analysis with near-infrared spectroscopy (NIRS) and data interpretation can separate social insects belonging to different colonies of the same species. The objective of this study was to propose the use of discriminant analysis by partial least squares (PLS-DA) combined with NIRS to identify the colonial origin of the Syntermes grandis (Rambur, 1842) (Blattodea: Termitidae) in 2 castes. Six ground S. grandis colonies were identified and mapped; 30 workers and 30 soldier termites in each colony were submitted to spectral measurement with NIRS. PLS-DA applied to the termites' spectral absorbance was used to detect a spectral pattern per S. grandis colony by caste. PLS-DA regression with NIRS proved to be an approach with 99.9% accuracy for identifying the colonial origin of S. grandis workers and 98.3% for soldiers. The methodology showed the importance of qualitatively characterizing the colonial phenotypic response of this species. NIRS is a high-precision approach to identifying the colony origin of S. grandis workers and soldiers. The PLS-DA can be used to design ecological field studies to identify colony territorial competition and foraging behavior of subterranean termite species.
Collapse
Affiliation(s)
- Alexandre Dos Santos
- Laboratório de Fitossanidade (FitLab), Instituto Federal de Mato Grosso, Cáceres, MT, Brazil
| | | | | | - Juliana Cristina Dos Santos
- Departamento de Ensino, Instituto Federal do Sul de Minas Gerais, Campus Muzambinho, Estrada de Muzambinho, Morro Preto, Muzambinho, MG, Brazil
| | | | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Ronald Zanetti
- Departamento de Entomologia, Universidade Federal de Lavras, Lavras, MG, Brazil
| |
Collapse
|
20
|
Lorrain-Soligon L, Muller K, Delaby C, Thiéry D, Moreau J. Interaction between females and males grapevine moth Lobesia botrana modifies further mating preference. JOURNAL OF INSECT PHYSIOLOGY 2024; 156:104668. [PMID: 38942138 DOI: 10.1016/j.jinsphys.2024.104668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
During reproduction, females may boost their fitness by being selective based on direct material benefits provided by the males, such as nuptial gifts. In Lepidoptera, male provides a spermatophore containing nutrients. However, virgin males produce a bigger spermatophore, containing spermatozoa and nutrients, allowing higher female fertility. Lepidoptera females that could detect the sexual status of males may thus prefer a male without previous mating experience (i.e. a virgin male). This mate selection could be achieved by the use of chemical indices, such as sexual pheromones and cuticular compounds, known to be possibly exchanged during reproduction, and which can be indicators of a previous mating experience and known to be possibly sources of information exchanged. In this study, we experimentally presented Lobesia botrana virgin males with females in order for them to be exposed to females' natural sexual pheromones or cuticular compounds. 12 or 48 h after the exposure of males to either females' sexual pheromones or cuticular compounds, these males were confronted to naïve females, which have a choice between them or a virgin non-exposed males. We highlighted that, despite producing a spermatophore of similar volume, all exposed virgin males were less likely to mate with females 12 h after exposure, while after 48 h of exposure this is only the case for virgin males exposed to sexual pheromones. L. botrana females may thus discriminate male sexual experience based on chemical cues (either from cues transferred directly from females to males, or from changes in the cuticular or pheromone males' profile) indicating past mating experiences. Mating duration was longer for males exposed to sexual pheromones after 12 h only, and for males exposed to cuticular compounds after 48 h only. Pheromones signal might be more persistent over time and seems to more easily gather information for males. The physiological reasoning behind this result still needs to be investigated.
Collapse
Affiliation(s)
| | - Karen Muller
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Camille Delaby
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Denis Thiéry
- INRA UMR 1065 Santé et Agroecologie du Vignoble, Institut des Science de la Vigne et du Vin, Ave E. Bourleaux, F-33883 Villenave d'Ornon Cedex, France; Université de bordeaux, INRA UMR 1065, Save, Bordeaux Sciences Agro, Ave E. Bourleaux, 33883 Villenave d'Ornon Cedex, France
| | - Jérôme Moreau
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360 Villiers-en-bois, France
| |
Collapse
|
21
|
Ceballos-González AV, da Silva RC, Lima LD, Kaminski LA, Turatti ICC, Lopes NP, do Nascimento FS. Influence of Host Plants and Tending Ants on the Cuticular Hydrocarbon Profile of a Generalist Myrmecophilous Caterpillar. J Chem Ecol 2024; 50:222-236. [PMID: 38748380 DOI: 10.1007/s10886-024-01477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 07/10/2024]
Abstract
In myrmecophilous organisms, which live in symbiosis with ants, cuticular hydrocarbons (CHCs) play a pivotal role in interspecific communication and defense against chemical-oriented predators. Although these interactions form complex information webs, little is known about the influence of biotic environmental factors on the CHC profiles of myrmecophiles. Here, we analyzed the effect of different host plants and tending ants on the larval CHC profile of Synargis calyce (Lepidoptera: Riodinidae), a polyphagous species with facultative myrmecophily. Groups of caterpillars were fed individually with three host plant species (without tending ants), and with two tending ant species. Through gas chromatography analysis, we compared the cuticular profiles of treatments and found a high similarity between plants and caterpillars (65-82%), but a low similarity between caterpillars and their tending ants (30 - 25%). Cluster analysis showed that caterpillars, ants, and plants form distinct groups, indicating that S. calyce caterpillars have their own chemical profile. These results are similar to those observed for Lycaenidae caterpillars indicating that there is functional convergence in the chemical strategies used by myrmecophilous caterpillar species with similar ecology. Also, the results suggest that the cuticular compounds of S. calyce are primarily influenced by their host plants rather than their tending ants. Thus, we propose that these caterpillars present a trade-off between camouflage and directly informing their presence to ants, maintaining their unique chemical profile, though slightly affected by biotic environmental factors.
Collapse
Affiliation(s)
- Amalia Victoria Ceballos-González
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, 14040-901, SP, Brazil.
| | | | - Luan Dias Lima
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Lucas Augusto Kaminski
- Núcleo de Ecologia e Biodiversidade, Instituto de Ciências Básicas e da Saúde, Universidade Federal de Alagoas - UFAL, Maceió, 57072-900, AL, Brazil
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul- UFRGS, Porto Alegre, 91540-000, RS, Brazil
| | - Izabel Cristina Casanova Turatti
- NPPNS, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ciências BioMoleculares, Universidade de São Paulo - USP, Ribeirão Preto, 14040-900, SP, Brazil
| | - Norberto Peporine Lopes
- NPPNS, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ciências BioMoleculares, Universidade de São Paulo - USP, Ribeirão Preto, 14040-900, SP, Brazil
| | - Fábio Santos do Nascimento
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, 14040-901, SP, Brazil
| |
Collapse
|
22
|
Galassi FG, Picollo MI, González-Audino P. Cuticular extracts induce aggregation in head lice. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:227-233. [PMID: 38429866 DOI: 10.1111/mve.12711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
The human head lice Pediculus humanus capitis (De Geer) (Phthiraptera: Pediculidae) are strict, obligate human ectoparasites that spends their entire life cycle in the host and cause skin irritation and derived infections. Despite the health-related importance, few studies have evaluated the chemical communication among these insects. Here, we evaluate the response of lice of both sexes to cuticular extracts using two solvents of different polarity (hexane and methanol). Cuticular extracts that elicited an attraction response towards head lice were analysed by gas chromatography-mass spectrometry (GC-MS) to determine the cuticular lipid profile. Both lice sexes were attracted to the hexane extracts but not the methanol extracts, suggesting the non-polarity of the compounds present in the cuticle. Chemical analyses of hexane extracts from males and females showed high similarity in major compounds. This study provides the first evidence that lice respond to cuticle extracts, which may be important to understand aggregation behaviour.
Collapse
Affiliation(s)
- Federico Gabriel Galassi
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Villa Martelli, Buenos Aires, Argentina
| | - Maria Ines Picollo
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Villa Martelli, Buenos Aires, Argentina
| | - Paola González-Audino
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Villa Martelli, Buenos Aires, Argentina
| |
Collapse
|
23
|
Cama B, Heaton K, Thomas-Oates J, Schulz S, Dasmahapatra KK. Complexity of Chemical Emissions Increases Concurrently with Sexual Maturity in Heliconius Butterflies. J Chem Ecol 2024; 50:197-213. [PMID: 38478290 PMCID: PMC11233321 DOI: 10.1007/s10886-024-01484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 07/10/2024]
Abstract
Pheromone communication is widespread among animals. Since it is often involved in mate choice, pheromone production is often tightly controlled. Although male sex pheromones (MSPs) and anti-aphrodisiacs have been studied in some Heliconius butterfly species, little is known about the factors affecting their production and release in these long-lived butterflies. Here, we investigate the effect of post-eclosion age on chemical blends from pheromone-emitting tissues in Heliconius atthis and Heliconius charithonia, exhibiting respectively free-mating and pupal-mating strategies that are hypothesised to differently affect the timing of their pheromone emissions. We focus on two different tissues: the wing androconia, responsible for MSPs used in courtship, and the genital tip, the production site for anti-aphrodisiac pheromones that affect post-mating behaviour. Gas chromatography-mass spectrometric analysis of tissue extracts from virgin males and females of both species from day 0 to 8 post-eclosion demonstrates the following. Some ubiquitous fatty acid precursors are already detectable at day 0. The complexity of the chemical blends increases with age regardless of tissue or sex. No obvious difference in the time course of blend production was evident between the two species, but female tissues in H. charithonia were more affected by age than in H. atthis. We suggest that compounds unique to male androconia and genitals and whose amount increases with age are potential candidates for future investigation into their roles as pheromones. While this analysis revealed some of the complexity in Heliconius chemical ecology, the effects of other factors, such as the time of day, remain unknown.
Collapse
Affiliation(s)
- Bruna Cama
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, UK.
| | - Karl Heaton
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK
| | - Jane Thomas-Oates
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig, 38106, Germany
| | | |
Collapse
|
24
|
Gutiérrez-Vera JA, Ponce-Rivas E, Braga A, Paniagua-Chávez CG, Alfaro-Montoya J, Rosales-Leija M. Evidence of the Existence of Site-Specific Female Contact Pheromones Involved in the Sexual Interaction Behavior of the Pacific Whiteleg Shrimp Penaeus vannamei. Animals (Basel) 2024; 14:1523. [PMID: 38891570 PMCID: PMC11171375 DOI: 10.3390/ani14111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Although the presence of female contact sex pheromones in P. vannamei has been hypothesized, to date its existence has not been proven. To gather more evidence of their existence, cuticular liposoluble extracts were obtained from the following samples of adult females to be used as the experimental treatments: (1) ventral exoskeleton of immature female (VI), (2) dorsolateral exoskeleton of immature female (DI), (3) ventral exoskeleton of mature female (VM), and (4) dorsolateral exoskeleton of mature female (DM). Polyvinyl chloride tubes (artificial females; AF) were coated with each extract and the behavior displayed by sexually mature males in contact with the AF was recorded and classified as follows: 0 = no response; 1 = contact; 2 = pushing; and 3 = prolonged contact (≥10 s). To test the hypothesis that the extracts collected from the ventral portion of the abdomen exoskeleton have a higher effect on the behavior of males than the extracts collected from the dorsolateral portion of the abdomen exoskeleton, the experiment was divided into two bioassays: Bioassay I (VI vs. DI) and Bioassay II (VM vs. DM). In each bioassay, all experimental treatments were significantly different (p > 0.05) from the CTL group (AF coated with hexane). Notably, the pushing behavior was significantly higher (p < 0.05) in the VI treatment compared to the CTL and DI treatment. These results provide evidence of the existence of contact female sex pheromones with sexual recognition function located primarily in the ventral portion of the abdomen exoskeleton of P. vannamei.
Collapse
Affiliation(s)
- José A. Gutiérrez-Vera
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada 22860, Mexico; (J.A.G.-V.); (E.P.-R.); (C.G.P.-C.)
| | - Elizabeth Ponce-Rivas
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada 22860, Mexico; (J.A.G.-V.); (E.P.-R.); (C.G.P.-C.)
| | - André Braga
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada 22873, Mexico;
| | - Carmen G. Paniagua-Chávez
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada 22860, Mexico; (J.A.G.-V.); (E.P.-R.); (C.G.P.-C.)
| | - Jorge Alfaro-Montoya
- Estación de Biología Marina, Escuela de Ciencias Biológicas, Universidad Nacional, Puntarenas 86-3000, Costa Rica;
| | - Misael Rosales-Leija
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada 22860, Mexico; (J.A.G.-V.); (E.P.-R.); (C.G.P.-C.)
| |
Collapse
|
25
|
Möllerke A, Montes Vidal D, Petter Leinaas H, Schulz S. Socialane, a Nonaprenyl Terpene Hydrocarbon Surface Lipid from the Collembola Hypogastrura socialis. Chemistry 2024; 30:e202400272. [PMID: 38445549 DOI: 10.1002/chem.202400272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
Springtails use unique compounds for their outermost epicuticular wax layer, often of terpenoid origin. We report here the structure and synthesis of socialane, the major cuticular constituent of the Collembola Hypogastrura socialis. Socialane is also the first regular nonaprenyl terpene with a cyclic head group. The saturated side chain has seven stereogenic centers, making the determination of the configuration difficult. We describe here the identification of socialane and a synthetic approach using the building blocks farnesol and phytol, enantioselective hydrogenation, and α-alkylation of sulfones for the synthesis of various stereoisomers. NMR experiments showed the presence of an anti-configuration of the methyl groups closest to the benzene ring and that the other methyl groups of the polyprenyl side-chain are not uniformly configured. Furthermore, socialane is structurally different from [6+2]-terpene viaticene of the closely related H. viatica, showing species specificity of the epicuticular lipids of this genus and hinting at a possible role of surface lipids in the communication of these gregarious arthropods.
Collapse
Affiliation(s)
- Anton Möllerke
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Diogo Montes Vidal
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
- Department of Chemistry, ICEx, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Hans Petter Leinaas
- Department of Bioscience, University of Oslo, Postboks, 1066, Blindern, 0316, Oslo, Norway
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
26
|
Ferveur JF, Cortot J, Cobb M, Everaerts C. Natural Diversity of Cuticular Pheromones in a Local Population of Drosophila after Laboratory Acclimation. INSECTS 2024; 15:273. [PMID: 38667403 PMCID: PMC11050499 DOI: 10.3390/insects15040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Experimental studies of insects are often based on strains raised for many generations in constant laboratory conditions. However, laboratory acclimation could reduce species diversity reflecting adaptation to varied natural niches. Hydrocarbons covering the insect cuticle (cuticular hydrocarbons; CHCs) are reliable adaptation markers. They are involved in dehydration reduction and protection against harmful factors. CHCs can also be involved in chemical communication principally related to reproduction. However, the diversity of CHC profiles in nature and their evolution in the laboratory have rarely been investigated. Here, we sampled CHC natural diversity in Drosophila melanogaster flies from a particular location in a temperate region. We also measured cis-Vaccenyl acetate, a male-specific volatile pheromone. After trapping flies using varied fruit baits, we set up 21 D. melanogaster lines and analysed their pheromones at capture and after 1 to 40 generations in the laboratory. Under laboratory conditions, the broad initial pheromonal diversity found in male and female flies rapidly changed and became more limited. In some females, we detected CHCs only reported in tropical populations: the presence of flies with a novel CHC profile may reflect the rapid adaptation of this cosmopolitan species to global warming in a temperate area.
Collapse
Affiliation(s)
- Jean-François Ferveur
- Centre des Sciences du Goût et de l’Alimentation, Unité Mixte de Recherche 6265 Centre National de la Recherche Scientifique, Unité Mixte de Recherche 1324 Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France; (J.C.); (C.E.)
| | - Jérôme Cortot
- Centre des Sciences du Goût et de l’Alimentation, Unité Mixte de Recherche 6265 Centre National de la Recherche Scientifique, Unité Mixte de Recherche 1324 Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France; (J.C.); (C.E.)
| | - Matthew Cobb
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK;
| | - Claude Everaerts
- Centre des Sciences du Goût et de l’Alimentation, Unité Mixte de Recherche 6265 Centre National de la Recherche Scientifique, Unité Mixte de Recherche 1324 Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France; (J.C.); (C.E.)
| |
Collapse
|
27
|
Melet A, Leibold V, Schmitt T, Biedermann PHW. Highly diverse cuticular hydrocarbon profiles but no evidence for aggression towards non-kin in the ambrosia beetle Xyleborinus saxesenii. Ecol Evol 2024; 14:e11274. [PMID: 38654710 PMCID: PMC11036074 DOI: 10.1002/ece3.11274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Animal societies use nestmate recognition to protect against social cheaters and parasites. In most social insect societies, individuals recognize and exclude any non-nestmates and the roles of cuticular hydrocarbons as recognition cues are well documented. Some ambrosia beetles live in cooperatively breeding societies with farmed fungus cultures that are challenging to establish, but of very high value once established. Hence, social cheaters that sneak into a nest without paying the costs of nest foundation may be selected. Therefore, nestmate recognition is also expected to exist in ambrosia beetles, but so far nobody has investigated this behavior and its underlying mechanisms. Here we studied the ability for nestmate recognition in the cooperatively breeding ambrosia beetle Xyleborinus saxesenii, combining behavioural observations and cuticular hydrocarbon analyses. Laboratory nests of X. saxesenii were exposed to foreign adult females from the same population, another population and another species. Survival as well as the behaviours of the foreign female were observed. The behaviours of the receiving individuals were also observed. We expected that increasing genetic distance would cause increasing distance in chemical profiles and increasing levels of behavioural exclusion and possibly mortality. Chemical profiles differed between populations and appeared as variable as in other highly social insects. However, we found only very little evidence for the behavioural exclusion of foreign individuals. Interpopulation donors left nests at a higher rate than control donors, but neither their behaviours nor the behaviours of receiver individuals within the nest showed any response to the foreign individual in either of the treatments. These results suggest that cuticular hydrocarbon profiles might be used for communication and nestmate recognition, but that behavioural exclusion of non-nestmates is either absent in X. saxesenii or that agonistic encounters are so rare or subtle that they could not be detected by our method. Additional studies are needed to investigate this further.
Collapse
Affiliation(s)
- Antoine Melet
- Chair of Forest Entomology and Protection, Faculty of Environment and Natural ResourcesAlbert‐Ludwigs‐UniversitätFreiburgGermany
- Department of Animal Ecology and Tropical Biology, BiocentreUniversity of WürzburgWürzburgGermany
| | - Viesturs Leibold
- Department of Animal Ecology and Tropical Biology, BiocentreUniversity of WürzburgWürzburgGermany
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, BiocentreUniversity of WürzburgWürzburgGermany
| | - Peter H. W. Biedermann
- Chair of Forest Entomology and Protection, Faculty of Environment and Natural ResourcesAlbert‐Ludwigs‐UniversitätFreiburgGermany
- Department of Animal Ecology and Tropical Biology, BiocentreUniversity of WürzburgWürzburgGermany
| |
Collapse
|
28
|
Pei X, Bai T, Luo Y, Zhang Z, Li S, Fan Y, Liu TX. Acetyl coenzyme A carboxylase modulates lipogenesis and sugar homeostasis in Blattella germanica. INSECT SCIENCE 2024; 31:387-404. [PMID: 37486126 DOI: 10.1111/1744-7917.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 07/25/2023]
Abstract
Lipid and sugar homeostasis is critical for insect development and survival. In this study, we characterized an acetyl coenzyme A carboxylase gene in Blattella germanica (BgACC) that is involved in both lipogenesis and sugar homeostasis. We found that BgACC was dominantly expressed in the fat body and integument, and was significantly upregulated after molting. Knockdown of BgACC in 5th-instar nymphs did not affect their normal molting to the next nymphal stage, but it caused a lethal phenotype during adult emergence. BgACC-RNA interference (RNAi) significantly downregulated total free fatty acid (FFA) and triacylglycerol (TAG) levels, and also caused a significant decrease of cuticular hydrocarbons (CHCs). Repression of BgACC in adult females affected the development of oocytes and resulted in sterile females, but BgACC-RNAi did not affect the reproductive ability of males. Interestingly, knockdown of BgACC also changed the expression of insulin-like peptide genes (BgILPs), which mimicked a physiological state of high sugar uptake. In addition, BgACC was upregulated when B. germanica were fed on a high sucrose diet, and repression of BgACC upregulated the expression of the glycogen synthase gene (BgGlyS). Moreover, BgACC-RNAi increased the circulating sugar levels and glycogen storage, and a longevity assay suggested that BgACC was important for the survival of B. germanica under conditions of high sucrose uptake. Our results confirm that BgACC is involved in multiple lipid biogenesis and sugar homeostasis processes, which further modulates insect reproduction and sugar tolerance. This study benefits our understanding of the crosstalk between lipid and sugar metabolism.
Collapse
Affiliation(s)
- Xiaojin Pei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Tiantian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Zhanfeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Yongliang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
29
|
Bell MA, Lim G, Caldwell C, Emlen DJ, Swanson BO. Rhinoceros beetle (Trypoxylus dichotomus) cuticular hydrocarbons contain information about body size and sex. PLoS One 2024; 19:e0299796. [PMID: 38483942 PMCID: PMC10939270 DOI: 10.1371/journal.pone.0299796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
Japanese rhinoceros beetle (Trypoxylus dichotomus) males have exaggerated horns that are used to compete for territories. Larger males with larger horns tend to win these competitions, giving them access to females. Agonistic interactions include what appears to be assessment and often end without escalating to physical combat. However, it is unknown what information competitors use to assess each other. In many insect species chemical signals can carry a range of information, including social position, nutritional state, morphology, and sex. Specifically, cuticular hydrocarbons (CHCs), which are waxes excreted on the surface of insect exoskeletons, can communicate a variety of information. Here, we asked whether CHCs in rhinoceros beetles carry information about sex, body size, and condition that could be used by males during assessment behavior. Multivariate analysis of hydrocarbon composition revealed patterns associated with both sex and body size. We suggest that Rhinoceros beetles could be communicating information through CHCs that would explain behavioral decisions.
Collapse
Affiliation(s)
- Micah A. Bell
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
| | - Garrett Lim
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
| | - Chelsey Caldwell
- Division of Biological Sciences, The University of Montana, Missoula, Montana, United States of America
| | - Douglas J. Emlen
- Division of Biological Sciences, The University of Montana, Missoula, Montana, United States of America
| | - Brook O. Swanson
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
| |
Collapse
|
30
|
Sharif S, Wunder C, Amendt J, Qamar A. Deciphering the impact of microenvironmental factors on cuticular hydrocarbon degradation in Lucilia sericata empty Puparia: Bridging ecological and forensic entomological perspectives using machine learning models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169719. [PMID: 38171456 DOI: 10.1016/j.scitotenv.2023.169719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024]
Abstract
Blow flies (Calliphoridae) play essential ecological roles in nutrient recycling by consuming decaying organic matter. They serve as valuable bioindicators in ecosystem management and forensic entomology, with their unique feeding behavior leading to the accumulation of environmental pollutants in their cuticular hydrocarbons (CHCs), making them potential indicators of exposure history. This study focuses on CHC degradation dynamics in empty puparia of Lucilia sericata under different environmental conditions for up to 90 days. The three distinct conditions were considered: outdoor-buried, outdoor-above-ground, and indoor environments. Five predominant CHCs, n-Pentacosane (n-C25), n-Hexacosane (n-C26), n-Heptacosane (n-C27), n-Octacosane (n-C28), and n-Nonacosane (n-C29), were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The findings revealed variations in CHC concentrations over time, influenced by environmental factors, with significant differences at different time points. Correlation heatmap analysis indicated negative correlations between weathering time and certain CHCs, suggesting decreasing concentrations over time. Machine learning techniques Support Vector Machine (SVM), Multilayer Perceptron (MLP), and eXtreme Gradient Boosting (XGBoost) models explored the potential of CHCs as age indicators. SVM achieved an R-squared value of 0.991, demonstrating high accuracy in age estimation based on CHC concentrations. MLP also exhibited satisfactory performance in outdoor conditions, while SVM and MLP yielded unsatisfactory results indoors due to the lack of significant CHC variations. After comprehensive model selection and performance evaluations, it was found that the XGBoost model excelled in capturing the patterns in all three datasets. This study bridges the gap between baseline and ecological/forensic use of empty puparia, offering valuable insights into the potential of CHCs in environmental monitoring and investigations. Understanding CHCs' stability and degradation enhances blow flies' utility as bioindicators for pollutants and exposure history, benefiting environmental monitoring and forensic entomology.
Collapse
Affiliation(s)
- Swaima Sharif
- Institute of Legal Medicine, Forensic Biology, University Hospital, Goethe University, Frankfurt am Main, Germany.
| | - Cora Wunder
- Institute of Legal Medicine, Forensic Biology, University Hospital, Goethe University, Frankfurt am Main, Germany.
| | - Jens Amendt
- Institute of Legal Medicine, Forensic Biology, University Hospital, Goethe University, Frankfurt am Main, Germany.
| | - Ayesha Qamar
- Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
31
|
Santos GKN, Navarro DMDAF, Maia ACD. Cuticular lipid profiles of selected species of cyclocephaline beetles (Melolonthidae, Cyclocephalini). BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:124-133. [PMID: 38268108 DOI: 10.1017/s0007485323000664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Neotropical cyclocephaline beetles, a diverse group of flower-loving insects, significantly impact natural and agricultural ecosystems. In particular, the genus Cyclocephala, with over 350 species, displays polymorphism and cryptic complexes. Lacking a comprehensive DNA barcoding framework, accessible tools for species differentiation are needed for research in taxonomy, ecology, and crop management. Moreover, cuticular hydrocarbons are believed to be involved in sexual recognition mechanisms in these beetles. In the present study we examined the cuticular chemical profiles of six species from the genus Cyclocephala and two populations of Erioscelis emarginata and assessed their efficiency in population, species, and sex differentiation. Overall we identified 74 compounds in cuticular extracts of the selected taxa. Linear alkanes and unsaturated hydrocarbons were prominent, with ten compounds between them explaining 85.6% of species dissimilarity. Although the cuticular chemical profiles efficiently differentiated all investigated taxa, only C. ohausiana showed significant cuticular profile differences between sexes. Our analysis also revealed two E. emarginata clades within a larger group of 'Cyclocephala' species, but they were not aligned with the two studied populations. Our research underscores the significance of cuticular lipid profiles in distinguishing selected cyclocephaline beetle species and contemplates their potential impact as contact pheromones on sexual segregation and speciation.
Collapse
Affiliation(s)
- Geanne Karla N Santos
- Secretaria Executiva de Meio Ambiente de Paulista (SEMA), Prefeitura Municipal do Paulista, Paulista, 53401-441, Brazil
- Department of Fundamental Chemistry, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, 50740-560, Brazil
| | - Daniela Maria do Amaral F Navarro
- Department of Fundamental Chemistry, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, 50740-560, Brazil
| | - Artur Campos D Maia
- Department of Zoology, Centro de Biociências, Universidade Federal de Pernambuco, Recife PE, 50670-901, Brazil
- Laboratory of Sciences for the Environment, University of Corsica, UMR 6134 SPE, Ajaccio, France
| |
Collapse
|
32
|
Yang Y, Flaven-Pouchon J, Cortot J, Ferveur JF, Moussian B. Colorimetric surface lipid quantification in Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22091. [PMID: 38385805 DOI: 10.1002/arch.22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Insects are covered with free neutral cuticular hydrocarbons (CHC) that may be linear, branched, and unsaturated and vary in their chain length. The CHC composition is species-specific and contributes to the adaptation of the animal to its ecological niche. Commonly, CHCs contribute substantially to the inward and outward barrier function of the cuticle and serve pheromonal communication. They are generally determined by gas-chromatography, a time-consuming method requiring detailed expertize, but it is not available in many laboratories. Here, we report on the establishment of a colorimetric method allowing semi-quantitative determination of unsaturated CHCs in Drosophila flies. This method is based on the in vitro reaction of vanillin with double bounds in lipid molecules in an acidic solution to generate a reddish color. We found a robust correlation between gas chromatographic and vanillin-colorimetric data on unsaturated CHCs amounts in single flies. As the role of unsaturated CHCs in the performance of insects in their environment is only partly understood, we think that this novel method would allow fast and broad analyses of this type of CHCs in insects both in the field and in laboratories and thereby contribute to a substantial improvement in the investigation of this matter.
Collapse
Affiliation(s)
- Yang Yang
- Interfaculty Institute for Cell Biology, Animal Genetics, Universität Tübingen, Tübingen, Germany
| | - Justin Flaven-Pouchon
- Interfaculty Institute for Cell Biology, Animal Genetics, Universität Tübingen, Tübingen, Germany
| | - Jerôme Cortot
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Universite ́ de Bourgogne, Dijon, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Universite ́ de Bourgogne, Dijon, France
| | - Bernard Moussian
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| |
Collapse
|
33
|
Groot AT, Blankers T, Halfwerk W, Burdfield Steel E. The Evolutionary Importance of Intraspecific Variation in Sexual Communication Across Sensory Modalities. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:21-40. [PMID: 37562048 DOI: 10.1146/annurev-ento-030223-111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The evolution of sexual communication is critically important in the diversity of arthropods, which are declining at a fast pace worldwide. Their environments are rapidly changing, with increasing chemical, acoustic, and light pollution. To predict how arthropod species will respond to changing climates, habitats, and communities, we need to understand how sexual communication systems can evolve. In the past decades, intraspecific variation in sexual signals and responses across different modalities has been identified, but never in a comparative way. In this review, we identify and compare the level and extent of intraspecific variation in sexual signals and responses across three different modalities, chemical, acoustic, and visual, focusing mostly on insects. By comparing causes and possible consequences of intraspecific variation in sexual communication among these modalities, we identify shared and unique patterns, as well as knowledge needed to predict the evolution of sexual communication systems in arthropods in a changing world.
Collapse
Affiliation(s)
- Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands; , ,
| | - Thomas Blankers
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands; , ,
| | - Wouter Halfwerk
- Amsterdam Institute for Life and Environment (A-LIFE), VU Amsterdam, Netherlands;
| | - Emily Burdfield Steel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands; , ,
| |
Collapse
|
34
|
Zhang W, Chen X, Eleftherianos I, Mohamed A, Bastin A, Keyhani NO. Cross-talk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts. FEMS Microbiol Rev 2024; 48:fuae003. [PMID: 38341280 PMCID: PMC10883697 DOI: 10.1093/femsre/fuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024] Open
Abstract
Insects are one of the most successful animals in nature, and entomopathogenic fungi play a significant role in the natural epizootic control of insect populations in many ecosystems. The interaction between insects and entomopathogenic fungi has continuously coevolved over hundreds of millions of years. Many components of the insect innate immune responses against fungal infection are conserved across phyla. Additionally, behavioral responses, which include avoidance, grooming, and/or modulation of body temperature, have been recognized as important mechanisms for opposing fungal pathogens. In an effort to investigate possible cross-talk and mediating mechanisms between these fundamental biological processes, recent studies have integrated and/or explored immune and behavioral responses. Current information indicates that during discrete stages of fungal infection, several insect behavioral and immune responses are altered simultaneously, suggesting important connections between the two systems. This review synthesizes recent advances in our understanding of the physiological and molecular aspects influencing cross-talk between behavioral and innate immune antifungal reactions, including chemical perception and olfactory pathways.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Xuanyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
- Research fellow, King Saud University Museum of Arthropods, Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Saudi Arabia
| | - Ashley Bastin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, United States
| |
Collapse
|
35
|
Antón-Herrero R, Chicca I, García-Delgado C, Crognale S, Lelli D, Gargarello RM, Herrero J, Fischer A, Thannberger L, Eymar E, Petruccioli M, D’Annibale A. Main Factors Determining the Scale-Up Effectiveness of Mycoremediation for the Decontamination of Aliphatic Hydrocarbons in Soil. J Fungi (Basel) 2023; 9:1205. [PMID: 38132804 PMCID: PMC10745009 DOI: 10.3390/jof9121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Soil contamination constitutes a significant threat to the health of soil ecosystems in terms of complexity, toxicity, and recalcitrance. Among all contaminants, aliphatic petroleum hydrocarbons (APH) are of particular concern due to their abundance and persistence in the environment and the need of remediation technologies to ensure their removal in an environmentally, socially, and economically sustainable way. Soil remediation technologies presently available on the market to tackle soil contamination by petroleum hydrocarbons (PH) include landfilling, physical treatments (e.g., thermal desorption), chemical treatments (e.g., oxidation), and conventional bioremediation. The first two solutions are costly and energy-intensive approaches. Conversely, bioremediation of on-site excavated soil arranged in biopiles is a more sustainable procedure. Biopiles are engineered heaps able to stimulate microbial activity and enhance biodegradation, thus ensuring the removal of organic pollutants. This soil remediation technology is currently the most environmentally friendly solution available on the market, as it is less energy-intensive and has no detrimental impact on biological soil functions. However, its major limitation is its low removal efficiency, especially for long-chain hydrocarbons (LCH), compared to thermal desorption. Nevertheless, the use of fungi for remediation of environmental contaminants retains the benefits of bioremediation treatments, including low economic, social, and environmental costs, while attaining removal efficiencies similar to thermal desorption. Mycoremediation is a widely studied technology at lab scale, but there are few experiences at pilot scale. Several factors may reduce the overall efficiency of on-site mycoremediation biopiles (mycopiles), and the efficiency detected in the bench scale. These factors include the bioavailability of hydrocarbons, the selection of fungal species and bulking agents and their application rate, the interaction between the inoculated fungi and the indigenous microbiota, soil properties and nutrients, and other environmental factors (e.g., humidity, oxygen, and temperature). The identification of these factors at an early stage of biotreatability experiments would allow the application of this on-site technology to be refined and fine-tuned. This review brings together all mycoremediation work applied to aliphatic petroleum hydrocarbons (APH) and identifies the key factors in making mycoremediation effective. It also includes technological advances that reduce the effect of these factors, such as the structure of mycopiles, the application of surfactants, and the control of environmental factors.
Collapse
Affiliation(s)
- Rafael Antón-Herrero
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (R.A.-H.); (E.E.)
| | | | - Carlos García-Delgado
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Silvia Crognale
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Davide Lelli
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Romina Mariel Gargarello
- Water, Air and Soil Unit, Eurecat, Centre Tecnològic de Catalunya, 08242 Manresa, Spain; (R.M.G.); (J.H.)
| | - Jofre Herrero
- Water, Air and Soil Unit, Eurecat, Centre Tecnològic de Catalunya, 08242 Manresa, Spain; (R.M.G.); (J.H.)
| | | | | | - Enrique Eymar
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (R.A.-H.); (E.E.)
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Alessandro D’Annibale
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| |
Collapse
|
36
|
Moyano A, Croce AC, Scolari F. Pathogen-Mediated Alterations of Insect Chemical Communication: From Pheromones to Behavior. Pathogens 2023; 12:1350. [PMID: 38003813 PMCID: PMC10675518 DOI: 10.3390/pathogens12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens can influence the physiology and behavior of both animal and plant hosts in a manner that promotes their own transmission and dispersal. Recent research focusing on insects has revealed that these manipulations can extend to the production of pheromones, which are pivotal in chemical communication. This review provides an overview of the current state of research and available data concerning the impacts of bacterial, viral, fungal, and eukaryotic pathogens on chemical communication across different insect orders. While our understanding of the influence of pathogenic bacteria on host chemical profiles is still limited, viral infections have been shown to induce behavioral changes in the host, such as altered pheromone production, olfaction, and locomotion. Entomopathogenic fungi affect host chemical communication by manipulating cuticular hydrocarbons and pheromone production, while various eukaryotic parasites have been observed to influence insect behavior by affecting the production of pheromones and other chemical cues. The effects induced by these infections are explored in the context of the evolutionary advantages they confer to the pathogen. The molecular mechanisms governing the observed pathogen-mediated behavioral changes, as well as the dynamic and mutually influential relationships between the pathogen and its host, are still poorly understood. A deeper comprehension of these mechanisms will prove invaluable in identifying novel targets in the perspective of practical applications aimed at controlling detrimental insect species.
Collapse
Affiliation(s)
- Andrea Moyano
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Francesca Scolari
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| |
Collapse
|
37
|
Scott AM, Johnson NS, Siefkes MJ, Li W. Synergistic behavioral antagonists of a sex pheromone reduce reproduction of invasive sea lamprey. iScience 2023; 26:107744. [PMID: 37810212 PMCID: PMC10550721 DOI: 10.1016/j.isci.2023.107744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Sex pheromones impart maximal attraction when their components are present at optimal ratios that confer balanced olfactory inputs in potential mates. Altering ratios or adding pheromone analogs to optimal mixtures may disrupt balanced olfactory antagonism and result in reduced attraction, however, tests in natural populations are lacking. We tested this hypothesis in sea lamprey (Petromyzon marinus), a fish whose male sex pheromone attracts females when two critical components, 3-keto petromyzonol sulfate (3kPZS) and petromyzonol sulfate (PZS), are present at certain ratios. Here, we report a pheromone analog, petromyzonol tetrasulfate (3sPZS), reduced female attraction to 3kPZS but not to PZS. 3sPZS mixed with additional PZS synergistically disrupted female attraction to the male pheromone and reduced spawning by 97% in a high-density population. Our results provide evidence of balanced olfactory antagonism in a vertebrate and establish a tactic to disrupt spawning of sea lamprey, a destructive invader of the Laurentian Great Lakes.
Collapse
Affiliation(s)
- Anne M. Scott
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Nicholas S. Johnson
- U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, MI 49759, USA
| | | | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
38
|
Straub F, Birkenbach M, Leonhardt SD, Ruedenauer FA, Kuppler J, Wilfert L, Ayasse M. Land-use-associated stressors interact to reduce bumblebee health at the individual and colony level. Proc Biol Sci 2023; 290:20231322. [PMID: 37817596 PMCID: PMC10565366 DOI: 10.1098/rspb.2023.1322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/08/2023] [Indexed: 10/12/2023] Open
Abstract
In agricultural landscapes, bees face a variety of stressors, including insecticides and poor-quality food. Although both stressors individually have been shown to affect bumblebee health negatively, few studies have focused on stressor interactions, a scenario expected in intensively used agricultural landscapes. Using the bumblebee Bombus terrestris, a key pollinator in agricultural landscapes, we conducted a fully factorial laboratory experiment starting at nest initiation. We assessed the effects of food quality and insecticides, alone and in interaction, on health traits at various levels, some of which have been rarely studied. Pollen with a diluted nutrient content (low quality) reduced ovary size and delayed colony development. Wing asymmetry, indicating developmental stress, was increased during insecticide exposure and interactions with poor food, whereas both stressors reduced body size. Both stressors and their interaction changed the workers' chemical profile and reduced worker interactions and the immune response. Our findings suggest that insecticides combined with nutritional stress reduce bumblebee health at the individual and colony levels, thus possibly affecting colony performance, such as development and reproduction, and the stability of plant-pollinator networks. The synergistic effects highlight the need of combining stressors in risk assessments and when studying the complex effects of anthropogenic stressors on health outcomes.
Collapse
Affiliation(s)
- Florian Straub
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Markus Birkenbach
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sara D. Leonhardt
- Plant-Insect-Interactions, Research Department Life Science Systems, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Fabian A. Ruedenauer
- Plant-Insect-Interactions, Research Department Life Science Systems, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Lena Wilfert
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
39
|
Enge S, Mérot C, Mozūraitis R, Apšegaitė V, Bernatchez L, Martens GA, Radžiutė S, Pavia H, Berdan EL. A supergene in seaweed flies modulates male traits and female perception. Proc Biol Sci 2023; 290:20231494. [PMID: 37817592 PMCID: PMC10565388 DOI: 10.1098/rspb.2023.1494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023] Open
Abstract
Supergenes, tightly linked sets of alleles, offer some of the most spectacular examples of polymorphism persisting under long-term balancing selection. However, we still do not understand their evolution and persistence, especially in the face of accumulation of deleterious elements. Here, we show that an overdominant supergene in seaweed flies, Coelopa frigida, modulates male traits, potentially facilitating disassortative mating and promoting intraspecific polymorphism. Across two continents, the Cf-Inv(1) supergene strongly affected the composition of male cuticular hydrocarbons (CHCs) but only weakly affected CHC composition in females. Using gas chromatography-electroantennographic detection, we show that females can sense male CHCs and that there may be differential perception between genotypes. Combining our phenotypic results with RNA-seq data, we show that candidate genes for CHC biosynthesis primarily show differential expression for Cf-Inv(1) in males but not females. Conversely, candidate genes for odorant detection were differentially expressed in both sexes but showed high levels of divergence between supergene haplotypes. We suggest that the reduced recombination between supergene haplotypes may have led to rapid divergence in mate preferences as well as increasing linkage between male traits, and overdominant loci. Together this probably helped to maintain the polymorphism despite deleterious effects in homozygotes.
Collapse
Affiliation(s)
- Swantje Enge
- Department of Marine Sciences, University of Gothenburg, Tjärnö, Sweden
| | - Claire Mérot
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- CNRS UMR 6553 Ecobio, Université de Rennes, OSUR, Rennes, France
| | - Raimondas Mozūraitis
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Violeta Apšegaitė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Gerrit A. Martens
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Sandra Radžiutė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Henrik Pavia
- Department of Marine Sciences, University of Gothenburg, Tjärnö, Sweden
| | - Emma L. Berdan
- Department of Marine Sciences, University of Gothenburg, Tjärnö, Sweden
| |
Collapse
|
40
|
Fladerer JP, Grollitsch S, Bucar F. Three cuticular amides in the tripartite symbiosis of leafcutter ants. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-13. [PMID: 37518892 DOI: 10.1002/arch.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Cuticular hydrocarbons (CHCs) play various roles in insects' chemical ecology. As leafcutter ants live in a specific symbiosis with fungi, they harvest and with different bacteria, some of these CHCs might be associated with a mutualistic function within this symbiosis. To obtain a more precise picture in that respect we compared the CHC profiles of the leafcutter ants, Atta sexdens, Atta cephalotes, and Acromyrmex octospinosus inhabited by mutualistic bacteria with the profiles of Polyrhachis dives and Messor aciculatus by GC-EI-MS analysis and 28 other ant species by data from the literature. We were able to identify three alkyl amides (hexadecanamide, hexadecenamide, and tetradecanamide), occurring only in the CHC profiles of leafcutter ants inhabited by symbiotic bacteria. Our results lead to the conclusion that those alkyl amides could have a function in the tripartite symbiosis of leafcutter ants.
Collapse
Affiliation(s)
| | | | - Franz Bucar
- Karl-Franzens-Universitat Graz Pharmacognosy, Graz, Austria
| |
Collapse
|
41
|
Sharif S, Wunder C, Khan MK, Qamar A, Amendt J. Cuticular hydrocarbons as weathering biomarkers of empty puparia of the forensically important blowfly Calliphora vicina Robineau-Desvoidy, 1830 (Diptera: Calliphoridae) in soil v/s under room conditions. Forensic Sci Int 2023; 349:111748. [PMID: 37301034 DOI: 10.1016/j.forsciint.2023.111748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Forensic entomology uses the age of insects, such as blow flies, to determine a minimum post-mortem interval (PMImin). Recent research has focused on using the analysis of specific cuticular hydrocarbons (CHCs) in adult insects and their empty puparia to estimate their age, as it has been shown that their profile changes are consistent with age. The current work is based on the weathering of five CHCs from empty puparia of Calliphora vicina that were stored in soil (field/outdoor) and non-soil (room/indoor conditions) based pupariation media for a total of six months. The experiment was conducted in a controlled environment chamber at a constant temperature of 25 ± 2 °C under constant darkness. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the cuticular hydrocarbons after they were extracted in n-Hexane. n-Pentacosane, n-Hexacosane, n-Heptacosane, n-Octacosane, and n-Nonacosane were the five CHCs investigated. Results showed that CHCs weathered more quickly in the soil than in the non-soil environment. It was also found that the abundance of Heptacosane increased in the samples during the fifth month when stored in a non-soil medium, while the abundances of all five CHCs were not detected after eight weeks onwards in soil pupation medium.
Collapse
Affiliation(s)
- Swaima Sharif
- Institute of Legal Medicine, Forensic Biology, University Hospital, Goethe University, Frankfurt am Main, Germany; Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Cora Wunder
- Institute of Legal Medicine, Forensic Toxicology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Mohd Kaleem Khan
- Department of Forensic Medicine, Jawahar Lal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Ayesha Qamar
- Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh 202002, U.P., India.
| | - Jens Amendt
- Institute of Legal Medicine, Forensic Biology, University Hospital, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
42
|
Caselli A, Favaro R, Petacchi R, Valicenti M, Angeli S. The Cuticular Hydrocarbons of Dasineura Oleae Show Differences Between Sex, Adult Age and Mating Status. J Chem Ecol 2023; 49:369-383. [PMID: 37093418 PMCID: PMC10611616 DOI: 10.1007/s10886-023-01428-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
In insects, cuticular lipids prevent water loss and act as semiochemicals. Because of their ecological function, the profile change across the insects' sex and development offers insight into insect biology and possible tools for pest management. Here, the first work on cecidomyiid cuticular extracts is proposed considering Dasineura oleae (Diptera: Cecidomyiidae) males and females at different adult ages (0-12 h, 12-24 h, 24-36 h) and distinct sexual conditions (virgin and mated). A set of 49 compounds were recorded (12 alkanes, 1 monomethyl alkane, 11 fatty acids, 4 esters, 1 aldehyde, 1 allylbenzene, 1 amine, 1 flavonoid, 1 ketone, 1 phenol, 1 steradiene, 1 sterol, 1 terpene, 1 triterpene and 11 unknown compounds), and 18 of them showed significant differences between groups. Among alkanes, hexacosane (nC26) exhibited a decreasing trend from the youngest to the oldest females, while pentacosane (nC25) and nonacosane (nC29) showed a decreasing trend from 0 to 12 h to 12-24 h virgin females. In addition, nonadecane (nC19) was significantly more abundant in the youngest males compared to older males and females. The alkanes nC25, nC26 and nC29 have been reported to be age-related also in other dipterans, while nC19 has been described as gender-specific chemical cue for platygastrid parasitoids. Further behavioural trials and analyses are required to assign the specific ecological roles to the characterized compounds. Our results may contribute to develop new low-impact control strategies relying on the manipulation of D. oleae's chemical communication (e.g. disruption of mating or species recognition). HIGHLIGHTS: • Cuticular hydrocarbons are often involved in dipteran intraspecific communication. • We explored the cuticular profile of D. oleae at different age, sex, mating condition. • Five alkanes and one mono-methyl alkane showed differences among groups. • Linoleic acid is the most abundant compound in virgins, absent in mated insects. • Eleven compounds disappear in mated insects, but were present in all virgins.
Collapse
Affiliation(s)
- Alice Caselli
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy.
| | - Riccardo Favaro
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, 39100, Italy
| | - Ruggero Petacchi
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Marta Valicenti
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, 39100, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| |
Collapse
|
43
|
Kanyile SN, Engl T, Heddi A, Kaltenpoth M. Endosymbiosis allows Sitophilus oryzae to persist in dry conditions. Front Microbiol 2023; 14:1199370. [PMID: 37497544 PMCID: PMC10366622 DOI: 10.3389/fmicb.2023.1199370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
Insects frequently associate with intracellular microbial symbionts (endosymbionts) that enhance their ability to cope with challenging environmental conditions. Endosymbioses with cuticle-enhancing microbes have been reported in several beetle families. However, the ecological relevance of these associations has seldom been demonstrated, particularly in the context of dry environments where high cuticle quality can reduce water loss. Thus, we investigated how cuticle-enhancing symbionts of the rice-weevil, Sitophilus oryzae contribute to desiccation resistance. We exposed symbiotic and symbiont-free (aposymbiotic) beetles to long-term stressful (47% RH) or relaxed (60% RH) humidity conditions and measured population growth. We found that symbiont presence benefits host fitness especially under dry conditions, enabling symbiotic beetles to increase their population size by over 33-fold within 3 months, while aposymbiotic beetles fail to increase in numbers beyond the starting population in the same conditions. To understand the mechanisms underlying this drastic effect, we compared beetle size and body water content and found that endosymbionts confer bigger body size and higher body water content. While chemical analyses revealed no significant differences in composition and quantity of cuticular hydrocarbons after long-term exposure to desiccation stress, symbiotic beetles lost water at a proportionally slower rate than did their aposymbiotic counterparts. We posit that the desiccation resistance and higher fitness observed in symbiotic beetles under dry conditions is due to their symbiont-enhanced thicker cuticle, which provides protection against cuticular transpiration. Thus, we demonstrate that the cuticle enhancing symbiosis of Sitophilus oryzae confers a fitness benefit under drought stress, an ecologically relevant condition for grain pest beetles. This benefit likely extends to many other systems where symbiont-mediated cuticle synthesis has been identified, including taxa spanning beetles and ants that occupy different ecological niches.
Collapse
Affiliation(s)
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
44
|
Iwai H, Kono N. Cuticular Hydrocarbon Profiling by Fractionation and GC-MS in Socially Parasitic Ants. Bio Protoc 2023; 13:e4772. [PMID: 37456338 PMCID: PMC10338635 DOI: 10.21769/bioprotoc.4772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/06/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Ants use cuticular hydrocarbon (CHC) as a semiochemical for recognizing their nestmates. For socially parasitic ants, deceiving the CHC is an important survival strategy. Profiling and quantifying CHC is a potent approach to understanding such nestmate discrimination behavior. Thus, a highly efficient, stable, and reproducible extraction method for CHC is essential for this purpose. This paper describes a method for socially parasitic ants to disguise the host species' CHC profile under laboratory conditions, as well as the extraction and measurement of CHC from ants (from a previous study). First, the artificial isotopic substance is applied to the host worker; then, the socially parasitic ant disguises the host-like CHC profile against the above host worker. Next, the CHC is extracted and fractionated from a socially parasitic ant using hexane and silica gel. After concentrating the fractionated product, this product is then used for measurement by gas chromatographymass spectrometry (GC-MS). The CHC extraction protocol described in this paper may be used for various ant species.
Collapse
Affiliation(s)
- Hironori Iwai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Graduate School of Media and Governance, Keio University, Tsuruoka, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| |
Collapse
|
45
|
Sun J, Liu WK, Ellsworth C, Sun Q, Pan Y, Huang YC, Deng WM. Integrating lipid metabolism, pheromone production and perception by Fruitless and Hepatocyte Nuclear Factor 4. SCIENCE ADVANCES 2023; 9:eadf6254. [PMID: 37390217 PMCID: PMC10313179 DOI: 10.1126/sciadv.adf6254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/30/2023] [Indexed: 07/02/2023]
Abstract
Sexual attraction and perception are crucial for mating and reproductive success. In Drosophila melanogaster, the male-specific isoform of Fruitless (Fru), FruM, is a known master neuro-regulator of innate courtship behavior to control the perception of sex pheromones in sensory neurons. Here, we show that the non-sex-specific Fru isoform (FruCOM) is necessary for pheromone biosynthesis in hepatocyte-like oenocytes for sexual attraction. Loss of FruCOM in oenocytes resulted in adults with reduced levels of cuticular hydrocarbons (CHCs), including sex pheromones, and show altered sexual attraction and reduced cuticular hydrophobicity. We further identify Hepatocyte nuclear factor 4 (Hnf4) as a key target of FruCOM in directing fatty acid conversion to hydrocarbons. Fru or Hnf4 depletion in oenocytes disrupts lipid homeostasis, resulting in a sex-dimorphic CHC profile that differs from doublesex- and transformer-dependent CHC dimorphism. Thus, Fru couples pheromone perception and production in separate organs to regulate chemosensory communications and ensure efficient mating behavior.
Collapse
Affiliation(s)
- Jie Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Kan Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Calder Ellsworth
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Qian Sun
- Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
46
|
Ruhland F, Gabant G, Toussaint T, Nemcic M, Cadène M, Lucas C. Reproductives signature revealed by protein profiling and behavioral bioassays in termite. Sci Rep 2023; 13:7070. [PMID: 37127756 PMCID: PMC10151321 DOI: 10.1038/s41598-023-33252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
Proteins are known to be social interaction signals in many species in the animal kingdom. Common mediators in mammals and aquatic species, they have seldom been identified as such in insects' behaviors. Yet, they could represent an important component to support social signals in social insects, as the numerous physical contacts between individuals would tend to favor the use of contact compounds in their interactions. However, their role in social interactions is largely unexplored: are they rare or simply underestimated? In this preliminary study, we show that, in the termite Reticulitermes flavipes, polar extracts from reproductives trigger body-shaking of workers (a vibratory behavior involved in reproductives recognition) while extracts from workers do not. Molecular profiling of these cuticular extracts using MALDI-TOF mass spectrometry reveals higher protein diversity in reproductives than in workers and a sex-specific composition exclusive to reproductives. While the effects observed with extracts are not as strong as with live termites, these results open up the intriguing possibility that social signaling may not be limited to cuticular hydrocarbons or other non-polar, volatile chemicals as classically accepted. Our results suggest that polar compounds, in particular some of the Cuticular Protein Compounds (CPCs) shown here by MALDI to be specific to reproductives, could play a significant role in insect societies. While this study is preliminary and further comprehensive molecular characterization is needed to correlate the body-shaking triggering effects with a given set of polar compounds, this exploratory study opens new perspectives for understanding the role of polar compounds such as proteins in caste discrimination, fertility signaling, or interspecific insect communication.
Collapse
Affiliation(s)
- Fanny Ruhland
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Guillaume Gabant
- Centre de Biophysique Moléculaire (UPR 4301), CNRS - University of Orléans, Orléans, France
| | - Timothée Toussaint
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Matej Nemcic
- Centre de Biophysique Moléculaire (UPR 4301), CNRS - University of Orléans, Orléans, France
| | - Martine Cadène
- Centre de Biophysique Moléculaire (UPR 4301), CNRS - University of Orléans, Orléans, France
| | - Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France.
| |
Collapse
|
47
|
Vrkoslav V, Horká P, Jindřich J, Buděšínský M, Cvačka J. Silver Ion High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry: A Tool for Analyzing Cuticular Hydrocarbons. Molecules 2023; 28:molecules28093794. [PMID: 37175204 PMCID: PMC10179885 DOI: 10.3390/molecules28093794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Aliphatic hydrocarbons (HCs) are usually analyzed by gas chromatography (GC) or matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. However, analyzing long-chain HCs by GC is difficult because of their low volatility and the risk of decomposition at high temperatures. MALDI cannot distinguish between isomeric HCs. An alternative approach based on silver ion high-performance liquid chromatography (Ag-HPLC) is shown here. The separation of HC standards and cuticular HCs was accomplished using two ChromSpher Lipids columns connected in series. A gradient elution of the analytes was optimized using mobile phases prepared from hexane (or isooctane) and acetonitrile, 2-propanol, or toluene. HCs were detected by atmospheric pressure chemical ionization mass spectrometry (APCI-MS). Good separation of the analytes according to the number of double bonds, cis/trans geometry, and position of double bonds was achieved. The retention times increased with the number of double bonds, and trans isomers eluted ahead of cis isomers. The mobile phase significantly affected the mass spectra of HCs. Depending on the mobile phase composition, deprotonated molecules, molecular ions, protonated molecules, and various solvent-related adducts of HCs were observed. The optimized Ag-HPLC/APCI-MS was applied for characterizing cuticular HCs from a flesh fly, Neobellieria bullata, and cockroach, Periplaneta americana. The method made it possible to detect a significantly higher number of HCs than previously reported for GC or MALDI-MS. Unsaturated HCs were frequently detected as isomers differing by double-bond position(s). Minor HCs with trans double bonds were found beside the prevailing cis isomers. Ag-HPLC/APCI-MS has great potential to become a new tool in chemical ecology for studying cuticular HCs.
Collapse
Affiliation(s)
- Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 160 00 Prague, Czech Republic
| | - Petra Horká
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 160 00 Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 00 Prague, Czech Republic
| | - Jindřich Jindřich
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 00 Prague, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 160 00 Prague, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 160 00 Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 00 Prague, Czech Republic
| |
Collapse
|
48
|
Redjdal A, Sahnoune M, Moali A, De Biseau JC. High Divergence of Cuticular Hydrocarbons and Hybridization Success in Two Allopatric Seven-Spot Ladybugs. J Chem Ecol 2023; 49:103-115. [PMID: 36749496 DOI: 10.1007/s10886-023-01406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023]
Abstract
The seven-spotted ladybug is a widespread species in the Palearctic, and also acclimated in the Nearctic. It has been classified into different species on the basis of certain morphological characteristics, the geographical origin, and the genitalia structure of both sexes. The morphotypes of North Africa and the Canary Islands are separated, under the name of Coccinella algerica Kovář, 1977, from the rest of the Palearctic and Nearctic populations of Coccinella septempunctata Linnaeus, 1758. In this study, we investigated, on one hand, whether potential reproductive barriers have been established during evolution between the geographically isolated North African and the European seven-spotted ladybugs by performing reciprocal crosses. On the other hand, we assessed their cuticular hydrocarbon (CHC) divergence by GC-MS. The 33 CHCs indentified are with a skeleton of 23 to 32 carbon atoms. These CHCs are linear alkanes (24.9 ± 3.6%) and methyl-branched alkanes (75.1 ± 3.6%) including monomethylalkanes (48.8 ± 2.4%), dimethylalkanes (24.6 ± 4.0%) and trimethylalkanes (2.0 ± 1.0%). Although all the CHC compounds identified are present in the two seven-spotted ladybugs and their F1 and F2 hybrids, their profiles diverged significantly. However, these chemical divergences have not altered the sexual communication to cause reproductive isolation. The two ladybugs interbreed and leave viable and fertile offspring, with even a heterosis effect on reproductive performances, without phenotypic degradation after the F1 generation. So, these chemical differences are just an intraspecific variability in response to heterogeneous environments. The two types of ladybugs can be considered as two different races of the same species with reduced genetic divergence.
Collapse
Affiliation(s)
- Ahcene Redjdal
- Faculté Des Sciences de La Nature Et de La Vie, Laboratoire d'Ecologie Et Environnement, Université de Bejaia, 06000, Bejaia, Algérie.
| | - Mohamed Sahnoune
- Faculté Des Sciences de La Nature Et de La Vie, Laboratoire d'Ecologie Et Environnement, Université de Bejaia, 06000, Bejaia, Algérie
| | - Aïssa Moali
- Faculté Des Sciences de La Nature Et de La Vie, Laboratoire d'Ecologie Et Environnement, Université de Bejaia, 06000, Bejaia, Algérie
| | - Jean-Christophe De Biseau
- UR. Evolution Biologique Et Ecologie, Faculté Des Sciences, Université Libre de Bruxelles, Campus du Solbosch - CP 160/12, Avenue F.D. Roosevelt, 50, 1050, Brussels, Belgium
| |
Collapse
|
49
|
de Fouchier A, Leroy C, Khila A, d'Ettorre P. Discrimination of non-nestmate early brood in ants: behavioural and chemical analyses. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
50
|
Huerta C, Cruz-Rosales M, González-Vainer P, Chamorro-Florescano I, Rivera JD, Favila ME. The reproductive behavior of Neotropical dung beetles. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Dung beetles display complex reproductive behaviors involving sexual findings, sexual recognition, fighting for mates and food used for nesting, sperm competition, and parental care. Over the past 40 years, significant advances have been made regarding the knowledge of various aspects of the sexual and nesting behavior of Neotropical dung beetles. However, human activities modify the natural habitats of dung beetles at an alarming rate, affecting food availability and altering the ecological functions performed by the species in their different habitats. A deeper understanding of the reproductive behavior of dung beetles may contribute significantly in understanding the evolutionary diversification of these insects and their response to environmental changes. The present study reviews and analyzes studies regarding the sexual and reproductive behavior of Neotropical dung beetle species under field and laboratory conditions. We gathered 132 studies and 146 species; 42% of the available data were based on field observations, 23% on laboratory observations, 30% under both field and laboratory conditions, and 5% unspecified. Our review detected significant knowledge, geographic, and habitat gaps regarding the reproductive behavior of Neotropical dung beetles. Based on our findings, we propose future research goals and alternative methods to measure the behavioral responses of Neotropical dung beetles to the impacts of human activities.
Collapse
|