1
|
Fang F, Zhu Y, Xu W, Zhang Y, Cheng J. Insights into the developmental and cardiovascular toxicity of bixafen using zebrafish embryos and larvae. ENVIRONMENTAL RESEARCH 2024; 262:119916. [PMID: 39233032 DOI: 10.1016/j.envres.2024.119916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Bixafen (BIX), a member of the succinate dehydrogenase inhibitor (SDHI) class of fungicides, has seen a surge in interest due to its expanding market presence and positive development outlook. However, there is a growing concern about its potential harm to aquatic life, largely due to its resistance to breaking down in the environment. In this study, we thoroughly examined the toxicological impact of BIX on zebrafish as a model organism. Our results revealed that BIX significantly hindered the development of zebrafish embryos, leading to increased mortality, hatching failures, and oxidative stress. Additionally, we observed cardiovascular abnormalities, including dilated cardiac chambers, reduced heart rate, sluggish blood circulation, and impaired vascular function. Notably, BIX also altered the expression of key genes involved in cardiovascular development, such as myl7, vmhc, nkx2.5, tbx5, and flt1. In summary, BIX was found to induce developmental and cardiovascular toxicity in zebrafish, underscoring the risks associated with SDHI pesticides and emphasizing the need for a reassessment of their impact on human health. These findings are crucial for the responsible use of BIX.
Collapse
Affiliation(s)
- Fei Fang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanjuan Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
2
|
Wang ZY, Mehra A, Wang QC, Gupta S, Ribeiro da Silva A, Juan T, Günther S, Looso M, Detleffsen J, Stainier DYR, Marín-Juez R. flt1 inactivation promotes zebrafish cardiac regeneration by enhancing endothelial activity and limiting the fibrotic response. Development 2024; 151:dev203028. [PMID: 39612288 PMCID: PMC11634031 DOI: 10.1242/dev.203028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024]
Abstract
VEGFA administration has been explored as a pro-angiogenic therapy for cardiovascular diseases including heart failure for several years, but with little success. Here, we investigate a different approach to augment VEGFA bioavailability: by deleting the VEGFA decoy receptor VEGFR1 (also known as FLT1), one can achieve more physiological VEGFA concentrations. We find that after cryoinjury, zebrafish flt1 mutant hearts display enhanced coronary revascularization and endocardial expansion, increased cardiomyocyte dedifferentiation and proliferation, and decreased scarring. Suppressing Vegfa signaling in flt1 mutants abrogates these beneficial effects of flt1 deletion. Transcriptomic analyses of cryoinjured flt1 mutant hearts reveal enhanced endothelial MAPK/ERK signaling and downregulation of the transcription factor gene egr3. Using newly generated genetic tools, we observe egr3 upregulation in the regenerating endocardium, and find that Egr3 promotes myofibroblast differentiation. These data indicate that with enhanced Vegfa bioavailability, the endocardium limits myofibroblast differentiation via egr3 downregulation, thereby providing a more permissive microenvironment for cardiomyocyte replenishment after injury.
Collapse
Affiliation(s)
- Zhen-Yu Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Armaan Mehra
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Qian-Chen Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Savita Gupta
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Agatha Ribeiro da Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Thomas Juan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Stefan Günther
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Mario Looso
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jan Detleffsen
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Centre Hospitalier Universitaire Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, H3T 1C5 Montréal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, H3T 1J4 Montréal, QC, Canada
| |
Collapse
|
3
|
Nazzal MK, Battina HL, Tewari NP, Mostardo SL, Nagaraj RU, Zhou D, Awosanya OD, Majety SK, Samson S, Blosser RJ, Dadwal UC, Mulcrone PL, Kacena MA. The effects of young and aged, male and female megakaryocyte conditioned media on angiogenic properties of endothelial cells. Aging (Albany NY) 2024; 16:13181-13200. [PMID: 39578050 DOI: 10.18632/aging.206077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/11/2024] [Indexed: 11/24/2024]
Abstract
With aging, the risk of fractures and compromised healing increases. Angiogenesis plays a significant role in bone healing and is impaired with aging. We have previously shown the impact of megakaryocytes (MKs) in regulating bone healing. Notably, MKs produce factors known to promote angiogenesis. We examined the effects of conditioned media (CM) generated from MKs derived from young (3-4-month-old) and aged (22-24-month-old), male and female C57BL/6J mice on bone marrow endothelial cell (BMEC) growth and function. Female MK CM, regardless of age, caused a >65% increase in BMEC proliferation and improved vessel formation by >115%. Likewise, young male MK CM increased vessel formation by 160%. Although aged male MK CM resulted in >150% increases in the formation of vascular nodes and meshes, 62% fewer vessels formed compared to young male MK CM treatment. Aged female MK CM improved migration by over 2500%. However, aged female and male MK CM caused less wound closure. MK CM treatments also significantly altered the expression of several genes including PDGFRβ, CXCR4, and CD36 relative to controls and between ages. Further testing of mechanisms responsible for age-associated differences may allow for novel strategies to improve MK-mediated angiogenesis and bone healing, particularly within the aging population.
Collapse
Affiliation(s)
- Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hanisha L Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nikhil P Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah L Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Rohit U Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Olatundun D Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Saveda K Majety
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sue Samson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rachel J Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Ushashi C Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Patrick L Mulcrone
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Wang X, Zhao J, Xu J, Li B, Liu X, Xie G, Duan X, Liu D. Noncaloric monosaccharides induce excessive sprouting angiogenesis in zebrafish via foxo1a-marcksl1a signal. eLife 2024; 13:RP95427. [PMID: 39365738 PMCID: PMC11452176 DOI: 10.7554/elife.95427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoning Wang
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Jinxiang Zhao
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
- Suqian First HospitalSuqianChina
| | - Jiehuan Xu
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Bowen Li
- Medical School, Nantong UniversityNantongChina
| | - Xia Liu
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Gangcai Xie
- Medical School, Nantong UniversityNantongChina
| | - Xuchu Duan
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Dong Liu
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| |
Collapse
|
5
|
Han W, Qi M, Ye K, He Q, Yekefenhazi D, Xu D, Han F, Li W. Genome-wide association study for growth traits with 1066 individuals in largemouth bass ( Micropterus salmoides). Front Mol Biosci 2024; 11:1443522. [PMID: 39385983 PMCID: PMC11461307 DOI: 10.3389/fmolb.2024.1443522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
The largemouth bass is a native species of North America that was first introduced to mainland China in the 1980s. In recent years, it has been extensively farmed in China due to its high meat quality and broad adaptability. In this study, we collected growth trait data from 1,066 largemouth bass individuals across two populations. We generated an average of approximately 7× sequencing coverage for these fish using Illumina sequencers. From the samples, we identified 2,695,687 SNPs and retained 1,809,116 SNPs for further analysis after filtering. To estimate the number of genome-wide effective SNPs, we performed LD pruning with PLINK software and identified 77,935 SNPs. Our GWAS revealed 15 SNPs associated with six growth traits. We identified a total of 24 genes related to growth, with three genes-igf1, myf5, and myf6-directly associated with skeletal muscle development and growth, located near the leading SNP on chromosome 23. Other candidate genes are involved in the development of tissues and organs or other physiological processes. These findings provide a valuable set of SNPs and genes that could be useful for genetic breeding programs aimed at enhancing growth in largemouth bass.
Collapse
Affiliation(s)
- Wei Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Ming Qi
- Zhejiang Fisheries Technical Extension Center, Hangzhou, China
| | - Kun Ye
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Qiwei He
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Dinaer Yekefenhazi
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Dongdong Xu
- Key Lab of Mariculture and enhancement of Zhejiang Province, Zhejiang Marine fisheries Research institute, Zhoushan, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| |
Collapse
|
6
|
Fernezelian D, Pfitsch S, Rastegar S, Diotel N. Mapping the cellular expression patterns of vascular endothelial growth factor aa and bb genes and their receptors in the adult zebrafish brain during constitutive and regenerative neurogenesis. Neural Dev 2024; 19:17. [PMID: 39267104 PMCID: PMC11396322 DOI: 10.1186/s13064-024-00195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024] Open
Abstract
The complex interplay between vascular signaling and neurogenesis in the adult brain remains a subject of intense research. By exploiting the unique advantages of the zebrafish model, in particular the persistent activity of neural stem cells (NSCs) and the remarkable ability to repair brain lesions, we investigated the links between NSCs and cerebral blood vessels. In this study, we first examined the gene expression profiles of vascular endothelial growth factors aa and bb (vegfaa and vegfbb), under physiological and regenerative conditions. Employing fluorescence in situ hybridization combined with immunostaining and histology techniques, we demonstrated the widespread expression of vegfaa and vegfbb across the brain, and showed their presence in neurons, microglia/immune cells, endothelial cells and NSCs. At 1 day post-lesion (dpl), both vegfaa and vegfbb were up-regulated in neurons and microglia/peripheral immune cells (macrophages). Analysis of vegf receptors (vegfr) revealed high expression throughout the brain under homeostatic conditions, with vegfr predominantly expressed in neurons and NSCs and to a lower extent in microglia/immune cells and endothelial cells. These findings were further validated by Vegfr3 and Vegfr4 immunostainings, which showed significant expression in neurogenic radial glial cells.Following brain lesion (1 dpl), while vegfr gene expression remained stable, vegfr transcripts were detected in proliferative cells within the injured parenchyma. Collectively, our results provide a first overview of Vegf/Vegfr signaling in the brain and suggest important roles for Vegf in neurogenesis and regenerative processes.
Collapse
Affiliation(s)
- Danielle Fernezelian
- UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM, Saint-Pierre, La Réunion, France
| | - Sabrina Pfitsch
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Nicolas Diotel
- UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM, Saint-Pierre, La Réunion, France.
| |
Collapse
|
7
|
Furtado J, Eichmann A. Vascular development, remodeling and maturation. Curr Top Dev Biol 2024; 159:344-370. [PMID: 38729681 DOI: 10.1016/bs.ctdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand. These advances contribute to overall knowledge of vascular biology and are predicted to unlock the unprecedented therapeutic potential of the endothelium as an avenue for treatment of diseases associated with dysfunctional vasculature.
Collapse
Affiliation(s)
- Jessica Furtado
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Anne Eichmann
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; Paris Cardiovascular Research Center, Inserm U970, Université Paris, Paris, France.
| |
Collapse
|
8
|
Le T, Salas Sanchez A, Nashawi D, Kulkarni S, Prisby RD. Diabetes and the Microvasculature of the Bone and Marrow. Curr Osteoporos Rep 2024; 22:11-27. [PMID: 38198033 DOI: 10.1007/s11914-023-00841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight the evidence of microvascular dysfunction in bone and marrow and its relation to poor skeletal outcomes in diabetes mellitus. RECENT FINDINGS Diabetes mellitus is characterized by chronic hyperglycemia, which may lead to microangiopathy and macroangiopathy. Micro- and macroangiopathy have been diagnosed in Type 1 and Type 2 diabetes, coinciding with osteopenia, osteoporosis, enhanced fracture risk and delayed fracture healing. Microangiopathy has been reported in the skeleton, correlating with reduced blood flow and perfusion, vasomotor dysfunction, microvascular rarefaction, reduced angiogenic capabilities, and augmented vascular permeability. Microangiopathy within the skeleton may be detrimental to bone and manifest as, among other clinical abnormalities, reduced mass, enhanced fracture risk, and delayed fracture healing. More investigations are required to elucidate the various mechanisms by which diabetic microvascular dysfunction impacts the skeleton.
Collapse
Affiliation(s)
- Teresa Le
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Amanda Salas Sanchez
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Danyah Nashawi
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Sunidhi Kulkarni
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Rhonda D Prisby
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
9
|
Singhal SS, Garg R, Mohanty A, Garg P, Ramisetty SK, Mirzapoiazova T, Soldi R, Sharma S, Kulkarni P, Salgia R. Recent Advancement in Breast Cancer Research: Insights from Model Organisms-Mouse Models to Zebrafish. Cancers (Basel) 2023; 15:cancers15112961. [PMID: 37296923 DOI: 10.3390/cancers15112961] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Animal models have been utilized for decades to investigate the causes of human diseases and provide platforms for testing novel therapies. Indeed, breakthrough advances in genetically engineered mouse (GEM) models and xenograft transplantation technologies have dramatically benefited in elucidating the mechanisms underlying the pathogenesis of multiple diseases, including cancer. The currently available GEM models have been employed to assess specific genetic changes that underlay many features of carcinogenesis, including variations in tumor cell proliferation, apoptosis, invasion, metastasis, angiogenesis, and drug resistance. In addition, mice models render it easier to locate tumor biomarkers for the recognition, prognosis, and surveillance of cancer progression and recurrence. Furthermore, the patient-derived xenograft (PDX) model, which involves the direct surgical transfer of fresh human tumor samples to immunodeficient mice, has contributed significantly to advancing the field of drug discovery and therapeutics. Here, we provide a synopsis of mouse and zebrafish models used in cancer research as well as an interdisciplinary 'Team Medicine' approach that has not only accelerated our understanding of varied aspects of carcinogenesis but has also been instrumental in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Rachana Garg
- Department of Surgery, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sravani Keerthi Ramisetty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Raffaella Soldi
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Sunil Sharma
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
10
|
Payne LB, Abdelazim H, Hoque M, Barnes A, Mironovova Z, Willi CE, Darden J, Houk C, Sedovy MW, Johnstone SR, Chappell JC. A Soluble Platelet-Derived Growth Factor Receptor-β Originates via Pre-mRNA Splicing in the Healthy Brain and Is Upregulated during Hypoxia and Aging. Biomolecules 2023; 13:711. [PMID: 37189457 PMCID: PMC10136073 DOI: 10.3390/biom13040711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
The platelet-derived growth factor-BB (PDGF-BB) pathway provides critical regulation of cerebrovascular pericytes, orchestrating their investment and retention within the brain microcirculation. Dysregulated PDGF Receptor-beta (PDGFRβ) signaling can lead to pericyte defects that compromise blood-brain barrier (BBB) integrity and cerebral perfusion, impairing neuronal activity and viability, which fuels cognitive and memory deficits. Receptor tyrosine kinases such as PDGF-BB and vascular endothelial growth factor-A (VEGF-A) are often modulated by soluble isoforms of cognate receptors that establish signaling activity within a physiological range. Soluble PDGFRβ (sPDGFRβ) isoforms have been reported to form by enzymatic cleavage from cerebrovascular mural cells, and pericytes in particular, largely under pathological conditions. However, pre-mRNA alternative splicing has not been widely explored as a possible mechanism for generating sPDGFRβ variants, and specifically during tissue homeostasis. Here, we found sPDGFRβ protein in the murine brain and other tissues under normal, physiological conditions. Utilizing brain samples for follow-on analysis, we identified mRNA sequences corresponding to sPDGFRβ isoforms, which facilitated construction of predicted protein structures and related amino acid sequences. Human cell lines yielded comparable sequences and protein model predictions. Retention of ligand binding capacity was confirmed for sPDGFRβ by co-immunoprecipitation. Visualizing fluorescently labeled sPDGFRβ transcripts revealed a spatial distribution corresponding to murine brain pericytes alongside cerebrovascular endothelium. Soluble PDGFRβ protein was detected throughout the brain parenchyma in distinct regions, such as along the lateral ventricles, with signals also found more broadly adjacent to cerebral microvessels consistent with pericyte labeling. To better understand how sPDGFRβ variants might be regulated, we found elevated transcript and protein levels in the murine brain with age, and acute hypoxia increased sPDGFRβ variant transcripts in a cell-based model of intact vessels. Our findings indicate that soluble isoforms of PDGFRβ likely arise from pre-mRNA alternative splicing, in addition to enzymatic cleavage mechanisms, and these variants exist under normal physiological conditions. Follow-on studies will be needed to establish potential roles for sPDGFRβ in regulating PDGF-BB signaling to maintain pericyte quiescence, BBB integrity, and cerebral perfusion-critical processes underlying neuronal health and function, and in turn, memory and cognition.
Collapse
Affiliation(s)
- Laura Beth Payne
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Hanaa Abdelazim
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Maruf Hoque
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Audra Barnes
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zuzana Mironovova
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Caroline E. Willi
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Jordan Darden
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Clifton Houk
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Meghan W. Sedovy
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Scott R. Johnstone
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - John C. Chappell
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
11
|
Chen G, Liu J, Wang H, Wang M, Wang G, Hu T. SYP-3343 drives abnormal vascularization in zebrafish through regulating endothelial cell behavior. Food Chem Toxicol 2023; 174:113671. [PMID: 36796616 DOI: 10.1016/j.fct.2023.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
SYP-3343 is a novel strobilurin fungicide with excellent and broad-spectrum antifungal activity, and its potential toxicity raises public health concerns. However, the vascular toxicity of SYP-3343 to zebrafish embryos is still not well understood. In the present study, we investigated the effects of SYP-3343 on vascular growth and its potential mechanism of action. SYP-3343 inhibited zebrafish endothelial cell (zEC) migration, altered nuclear morphology, and triggered abnormal vasculogenesis and zEC sprouting angiogenesis, resulting in angiodysplasia. RNA sequencing showed that SYP-3343 exposure altered the transcriptional levels of vascular development-related biological processes in zebrafish embryos including angiogenesis, sprouting angiogenesis, blood vessel morphogenesis, blood vessel development, and vasculature development. Whereas, the addition of NAC exerted an improvement effect on zebrafish vascular defects owing to SYP-3343 exposure. Additionally, SYP-3343 altered cell cytoskeleton and morphology, obstructed migration and viability, disrupted cell cycle progression, and depolarized mitochondrial membrane potential, as well as promoted apoptosis and reactive oxygen species (ROS) in HUVEC. SYP-3343 also caused an imbalance of the oxidation and antioxidant systems and irritated the alterations in the cell cycle- and apoptosis-related genes in HUVECs. Collectively, SYP-3343 has high cytotoxicity, possibly by up-regulating p53 and caspase3 expressions and bax/bcl-2 ratio via ROS, leading to malformed vascular development.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
12
|
Min N, Park H, Hong T, An G, Song G, Lim W. Developmental toxicity of prometryn induces mitochondrial dysfunction, oxidative stress, and failure of organogenesis in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130202. [PMID: 36272374 DOI: 10.1016/j.jhazmat.2022.130202] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Prometryn, 2-methylthio-4,6-bis(isopropylamino)-1,3,5-triazine, is a selective thiomethyl triazine herbicide widely used to control unwanted weeds and harmful insects by inhibiting electron transport in target organisms. Despite having various advantages, herbicides pose as a major threat to the environment and human health due to persistent contamination, bioaccumulation, and damage to non-target organisms. In this study, the developmental toxicity of 5, 10, and 20 mg/L prometryn in zebrafish (Danio rerio) embryos was evaluated and compared to that of the solvent control for 96 h. Several transgenic zebrafish models (fli1a:eGFP, flk1:eGFP, olig2:dsRed and L-fabp:dsRed) were visually assessed to detect fluorescently tagged genes. Results showed that prometryn shortened body length, and induced yolk sac, heart edema, abnormal heart rate, and loss of viability. Fluorescence microscopy revealed that prometryn exposure caused defects in organ development, reactive oxygen species accumulation, and apoptotic cell death. Mitochondrial bioenergetics were also evaluated to determine the effect of prometryn on the electron transport chain activity and metabolic alterations. Prometryn was found to interfere with mitochondrial function, ultimately inhibiting energy metabolism and embryonic development. Collectively, our findings suggest that prometryn is a potential contaminate for non-target sites and organisms, especially aquatic, and emphasize the need to consider the toxic effects of prometryn.
Collapse
Affiliation(s)
- Nayoung Min
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
13
|
Payne LB, Abdelazim H, Hoque M, Barnes A, Mironovova Z, Willi CE, Darden J, Jenkins-Houk C, Sedovy MW, Johnstone SR, Chappell JC. A Soluble Platelet-Derived Growth Factor Receptor-β Originates via Pre-mRNA Splicing in the Healthy Brain and is Differentially Regulated during Hypoxia and Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527005. [PMID: 36778261 PMCID: PMC9915746 DOI: 10.1101/2023.02.03.527005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The platelet-derived growth factor-BB (PDGF-BB) pathway provides critical regulation of cerebrovascular pericytes, orchestrating their investment and retention within the brain microcirculation. Dysregulated PDGF Receptor-beta (PDGFRβ) signaling can lead to pericyte defects that compromise blood-brain barrier (BBB) integrity and cerebral perfusion, impairing neuronal activity and viability, which fuels cognitive and memory deficits. Receptor tyrosine kinases (RTKs) like PDGF-BB and vascular endothelial growth factor-A (VEGF-A) are often modulated by soluble isoforms of cognate receptors that establish signaling activity within a physiological range. Soluble PDGFRβ (sPDGFRβ) isoforms have been reported to form by enzymatic cleavage from cerebrovascular mural cells, and pericytes in particular, largely under pathological conditions. However, pre-mRNA alternative splicing has not been widely explored as a possible mechanism for generating sPDGFRβ variants, and specifically during tissue homeostasis. Here, we found sPDGFRβ protein in the murine brain and other tissues under normal, physiological conditions. Utilizing brain samples for follow-on analysis, we identified mRNA sequences corresponding to sPDGFRβ isoforms, which facilitated construction of predicted protein structures and related amino acid sequences. Human cell lines yielded comparable sequences and protein model predictions. Retention of ligand binding capacity was confirmed for sPDGFRβ by co-immunoprecipitation. Visualizing fluorescently labeled sPDGFRβ transcripts revealed a spatial distribution corresponding to murine brain pericytes alongside cerebrovascular endothelium. Soluble PDGFRβ protein was detected throughout the brain parenchyma in distinct regions such as along the lateral ventricles, with signals also found more broadly adjacent to cerebral microvessels consistent with pericyte labeling. To better understand how sPDGFRβ variants might be regulated, we found elevated transcript and protein levels in the murine brain with age, and acute hypoxia increased sPDGFRβ variant transcripts in a cell-based model of intact vessels. Our findings indicate that soluble isoforms of PDGFRβ likely arise from pre-mRNA alternative splicing, in addition to enzymatic cleavage mechanisms, and these variants exist under normal physiological conditions. Follow-on studies will be needed to establish potential roles for sPDGFRβ in regulating PDGF-BB signaling to maintain pericyte quiescence, BBB integrity, and cerebral perfusion - critical processes underlying neuronal health and function, and in turn memory and cognition.
Collapse
|
14
|
Chalakova ZP, Johnston SA. Zebrafish Larvae as an Experimental Model of Cryptococcal Meningitis. Methods Mol Biol 2023; 2667:47-69. [PMID: 37145275 DOI: 10.1007/978-1-0716-3199-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This chapter provides guidance for introducing Cryptococcus neoformans into the zebrafish larvae model system to establish a CNS infection phenotype that mimics cryptococcal meningitis as seen in humans. The method outlines techniques for visualizing different stages of pathology development, from initial to severe infection profiles. The chapter provides tips for real time visualization of the interactions between the pathogen and different aspects of the CNS anatomy and immune system.
Collapse
Affiliation(s)
- Z P Chalakova
- University of Sheffield, Firth Court, Western Bank, UK
| | - S A Johnston
- University of Sheffield, Firth Court, Western Bank, UK.
| |
Collapse
|
15
|
Ortiz-Cerda T, Mosso C, Alcudia A, Vázquez-Román V, González-Ortiz M. Pathophysiology of Preeclampsia and L-Arginine/L-Citrulline Supplementation as a Potential Strategy to Improve Birth Outcomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:127-148. [PMID: 37466772 DOI: 10.1007/978-3-031-32554-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In preeclampsia, the shallow invasion of cytotrophoblast cells to uterine spiral arteries, leading to a reduction in placental blood flow, is associated with an imbalance of proangiogenic/antiangiogenic factors to impaired nitric oxide (NO) production. Proangiogenic factors, such as vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), require NO to induce angiogenesis through antioxidant regulation mechanisms. At the same time, there are increases in antiangiogenic factors in preeclampsia, such as soluble fms-like tyrosine kinase type 1 receptor (sFIt1) and toll-like receptor 9 (TLR9), which are mechanism derivates in the reduction of NO bioavailability and oxidative stress in placenta.Different strategies have been proposed to prevent or alleviate the detrimental effects of preeclampsia. However, the only intervention to avoid the severe consequences of the disease is the interruption of pregnancy. In this scenario, different approaches have been analysed to treat preeclamptic pregnant women safely. The supplementation with amino acids is one of them, especially those associated with NO synthesis. In this review, we discuss emerging concepts in the pathogenesis of preeclampsia to highlight L-arginine and L-citrulline supplementation as potential strategies to improve birth outcomes. Clinical and experimental data concerning L-arginine and L-citrulline supplementation have shown benefits in improving NO availability in the placenta and uterine-placental circulation, prolonging pregnancy in patients with gestational hypertension and decreasing maternal blood pressure.
Collapse
Affiliation(s)
- Tamara Ortiz-Cerda
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Constanza Mosso
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Victoria Vázquez-Román
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
16
|
Vegf signaling between Müller glia and vascular endothelial cells is regulated by immune cells and stimulates retina regeneration. Proc Natl Acad Sci U S A 2022; 119:e2211690119. [PMID: 36469778 PMCID: PMC9897474 DOI: 10.1073/pnas.2211690119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
In the zebrafish retina, Müller glia (MG) can regenerate retinal neurons lost to injury or disease. Even though zebrafish MG share structure and function with those of mammals, only in zebrafish do MG function as retinal stem cells. Previous studies suggest dying neurons, microglia/macrophage, and T cells contribute to MG's regenerative response [White et al., Proc. Natl. Acad. Sci. U.S.A. 114, E3719 (2017); Hui et al., Dev. Cell 43, 659 (2017)]. Although MG end-feet abut vascular endothelial (VE) cells to form the blood-retina barrier, a role for VE cells in retina regeneration has not been explored. Here, we report that MG-derived Vegfaa and Pgfa engage Flt1 and Kdrl receptors on VE cells to regulate MG gene expression, Notch signaling, proliferation, and neuronal regeneration. Remarkably, vegfaa and pgfa expression is regulated by microglia/macrophages, while Notch signaling in MG is regulated by a Vegf-dll4 signaling system in VE cells. Thus, our studies link microglia/macrophage, MG, and VE cells in a multicomponent signaling pathway that controls MG reprogramming and proliferation.
Collapse
|
17
|
Britto DD, He J, Misa JP, Chen W, Kakadia PM, Grimm L, Herbert CD, Crosier KE, Crosier PS, Bohlander SK, Hogan BM, Hall CJ, Torres-Vázquez J, Astin JW. Plexin D1 negatively regulates zebrafish lymphatic development. Development 2022; 149:dev200560. [PMID: 36205097 PMCID: PMC9720674 DOI: 10.1242/dev.200560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Lymphangiogenesis is a dynamic process that involves the directed migration of lymphatic endothelial cells (LECs) to form lymphatic vessels. The molecular mechanisms that underpin lymphatic vessel patterning are not fully elucidated and, to date, no global regulator of lymphatic vessel guidance is known. In this study, we identify the transmembrane cell signalling receptor Plexin D1 (Plxnd1) as a negative regulator of both lymphatic vessel guidance and lymphangiogenesis in zebrafish. plxnd1 is expressed in developing lymphatics and is required for the guidance of both the trunk and facial lymphatic networks. Loss of plxnd1 is associated with misguided intersegmental lymphatic vessel growth and aberrant facial lymphatic branches. Lymphatic guidance in the trunk is mediated, at least in part, by the Plxnd1 ligands, Semaphorin 3AA and Semaphorin 3C. Finally, we show that Plxnd1 normally antagonises Vegfr/Erk signalling to ensure the correct number of facial LECs and that loss of plxnd1 results in facial lymphatic hyperplasia. As a global negative regulator of lymphatic vessel development, the Sema/Plxnd1 signalling pathway is a potential therapeutic target for treating diseases associated with dysregulated lymphatic growth.
Collapse
Affiliation(s)
- Denver D. Britto
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jia He
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - June P. Misa
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Wenxuan Chen
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Purvi M. Kakadia
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Lin Grimm
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne 3010, Australia
| | - Caitlin D. Herbert
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Kathryn E. Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Philip S. Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Stefan K. Bohlander
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Benjamin M. Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne 3010, Australia
| | - Christopher J. Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jesús Torres-Vázquez
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan W. Astin
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
18
|
Ramchandran R. Endothelial cells and their role in the vasculature: Past, present and future. Front Cell Dev Biol 2022; 10:994133. [PMID: 36187473 PMCID: PMC9520988 DOI: 10.3389/fcell.2022.994133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
|
19
|
Moon JE, Lawrence JB. Chromosome silencing in vitro reveals trisomy 21 causes cell-autonomous deficits in angiogenesis and early dysregulation in Notch signaling. Cell Rep 2022; 40:111174. [PMID: 35947952 PMCID: PMC9505374 DOI: 10.1016/j.celrep.2022.111174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/24/2021] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the prevalence of Down syndrome (DS), little is known regarding the specific cell pathologies that underlie this multi-system disorder. To understand which cell types and pathways are more directly affected by trisomy 21 (T21), we used an inducible-XIST system to silence one chromosome 21 in vitro. T21 caused the dysregulation of Notch signaling in iPSCs, potentially affecting cell-type programming. Further analyses identified dysregulation of pathways important for two cell types: neurogenesis and angiogenesis. Angiogenesis is essential to many bodily systems, yet is understudied in DS; therefore, we focused next on whether T21 affects endothelial cells. An in vitro assay for microvasculature formation revealed a cellular pathology involving delayed tube formation in response to angiogenic signals. Parallel transcriptomic analysis of endothelia further showed deficits in angiogenesis regulators. Results indicate a direct cell-autonomous impact of T21 on endothelial function, highlighting the importance of angiogenesis, with wide-reaching implications for development and disease progression. Moon and Lawrence examine the immediate effects of trisomy 21 silencing and find angiogenesis and neurogenesis pathways, including Notch signaling, affected as early as pluripotency. In endothelial cells, functional analyses show that trisomy delays the angiogenic response for microvessel formation and transcriptomics show a parallel impact on angiogenic regulators and signal-response and cytoskeleton processes.
Collapse
Affiliation(s)
- Jennifer E Moon
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
20
|
Labbaf Z, Petratou K, Ermlich L, Backer W, Tarbashevich K, Reichman-Fried M, Luschnig S, Schulte-Merker S, Raz E. A robust and tunable system for targeted cell ablation in developing embryos. Dev Cell 2022; 57:2026-2040.e5. [PMID: 35914525 DOI: 10.1016/j.devcel.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 11/03/2022]
Abstract
Cell ablation is a key method in the research fields of developmental biology, tissue regeneration, and tissue homeostasis. Eliminating specific cell populations allows for characterizing interactions that control cell differentiation, death, behavior, and spatial organization of cells. Current methodologies for inducing cell death suffer from relatively slow kinetics, making them unsuitable for analyzing rapid events and following primary and immediate consequences of the ablation. To address this, we developed a cell-ablation system that is based on bacterial toxin/anti-toxin proteins and enables rapid and cell-autonomous elimination of specific cell types and organs in zebrafish embryos. A unique feature of this system is that it uses an anti-toxin, which allows for controlling the degree and timing of ablation and the resulting phenotypes. The transgenic zebrafish generated in this work represent a highly efficient tool for cell ablation, and this approach is applicable to other model organisms as demonstrated here for Drosophila.
Collapse
Affiliation(s)
- Zahra Labbaf
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster 48149, Germany
| | - Kleio Petratou
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Münster 48149, Germany
| | - Laura Ermlich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster 48149, Germany
| | - Wilko Backer
- Institute for Integrative Cell Biology and Physiology, University of Münster, Münster 48149, Germany
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster 48149, Germany
| | - Michal Reichman-Fried
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster 48149, Germany
| | - Stefan Luschnig
- Institute for Integrative Cell Biology and Physiology, University of Münster, Münster 48149, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Münster 48149, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster 48149, Germany.
| |
Collapse
|
21
|
Wang X, Ge X, Qin Y, Liu D, Chen C. Ifi30 Is Required for Sprouting Angiogenesis During Caudal Vein Plexus Formation in Zebrafish. Front Physiol 2022; 13:919579. [PMID: 35910561 PMCID: PMC9325957 DOI: 10.3389/fphys.2022.919579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Interferon-gamma-inducible protein 30 (IFI30) is a critical enzyme that mainly exists in immune cells and functions in reducing protein disulfide bonds in endocytosis-mediated protein degradation. Regardless of this, it is also found to be expressed in vascular system. However, the functions of IFI30 in vascular development remains unknown. Vascular network formation is a tightly controlled process coordinating a series of cell behaviors, including endothelial cell (EC) sprouting, proliferation, and anastomosis. In this work, we analyzed the function of zebrafish Ifi30, orthologous to the human IFI30, in vascular development during embryogenesis. The ifi30 gene was found to be highly expressed in the caudal vein plexus (CVP) region of zebrafish embryos. Morpholino-mediated Ifi30 knockdown in zebrafish resulted in incomplete CVP formation with reduced loop numbers, area, and width. Further analyses implied that Ifi30 deficiency impaired cell behaviors of both ECs and macrophages, including cell proliferation and migration. Here, we demonstrate a novel role of IFI30, which was originally identified as a lysosomal thiol reductase involved in immune responses, in CVP development during embryogenesis. Our results suggest that Ifi30 is required for sprouting angiogenesis during CVP formation, which may offer an insight into the function of human IFI30 in angiogenesis under physiological or pathological conditions.
Collapse
Affiliation(s)
| | | | | | - Dong Liu
- *Correspondence: Dong Liu, ; Changsheng Chen,
| | | |
Collapse
|
22
|
You B, Pan S, Gu M, Zhang K, Xia T, Zhang S, Chen W, Xie H, Fan Y, Yao H, Cheng T, Zhang P, Liu D, You Y. Extracellular vesicles rich in HAX1 promote angiogenesis by modulating ITGB6 translation. J Extracell Vesicles 2022; 11:e12221. [PMID: 35524442 PMCID: PMC9077140 DOI: 10.1002/jev2.12221] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 12/27/2022] Open
Abstract
Tumour-associated angiogenesis plays a critical role in metastasis, the main cause of malignancy-related death. Extracellular vesicles (EVs) can regulate angiogenesis to participate in tumour metastasis. Our previous study showed that EVs rich in HAX1 are associated with in metastasis of nasopharyngeal carcinoma (NPC). However, the mechanism by which HAX1 of EVs promotes metastasis and angiogenesis is unclear. In this study, we demonstrated that EVs rich in HAX1 promote angiogenesis phenotype by activating the FAK pathway in endothelial cells (ECs) by increasing expression level of ITGB6. The expression level of HAX1 is markedly correlated with microvessel density (MVDs) in NPC and head and neck cancers based on an analysis of IHC. In addition to a series of in vitro cellular analyses, in vivo models revealed that HAX1 was correlated with migration and blood vessel formation of ECs, and metastasis of NPC. Using ribosome profiling, we found that HAX1 regulates the FAK pathway to influence microvessel formation and promote NPC metastasis by enhancing the translation efficiency of ITGB6. Our findings demonstrate that HAX1 can be used as an important biomarker for NPC metastasis, providing a novel basis for antiangiogenesis therapy in clinical settings.
Collapse
Affiliation(s)
- Bo You
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Si Pan
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Miao Gu
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Kaiwen Zhang
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Tian Xia
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Siyu Zhang
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Wenhui Chen
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Haijing Xie
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Yue Fan
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Hui Yao
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Tianyi Cheng
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Panpan Zhang
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Dong Liu
- Laboratory of Neuroregeneration of JiangsuMinistry of EducationNantong UniversityNantongJiangsu ProvinceChina
| | - Yiwen You
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| |
Collapse
|
23
|
Zhang Y, Huo L, Wei Z, Tang Q, Sui H. Hotspots and Frontiers in Inflammatory Tumor Microenvironment Research: A Scientometric and Visualization Analysis. Front Pharmacol 2022; 13:862585. [PMID: 35370647 PMCID: PMC8968939 DOI: 10.3389/fphar.2022.862585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
Methods: Articles on inflammatory tumor microenvironment were retrieved from the Web of Science Core Collection, and the characteristics of the articles were analyzed by CiteSpace software. Background: The inflammatory tumor microenvironment is an essential feature of the tumor microenvironment. The way in which it promotes or inhibits tumor progression plays an important role in the outcome of a tumor treatment. This research aims to explore a scientific collaboration network, describe evolution of hotspots, and predict future trends through bibliometric analysis. Results: A total of 3,534 papers published by 390 institutions in 81 countries/regions were screened, and the annual quantity has been increasing rapidly in the past decades. United States was the leading country and has the most productive institutions in this field. The research topics were mainly focused on inflammation and immunity mediated by crucial factors as well as the mechanisms of angiogenesis. Additionally, the development and application of nanoparticles is currently a novel research frontier with bright prospect. Conclusion: The present scientometric study provides an overview of inflammatory tumor microenvironment research over the previous decades using quantitative and qualitative methods, and the findings of this study can provide references for researchers focusing on tumor treatment.
Collapse
Affiliation(s)
- Yuli Zhang
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Traditional Chinese Medicine, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Huo
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenzhen Wei
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Tang
- Department of Clinical Laboratory, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Clinical Laboratory and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Sui
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Sheng J, Gong J, Shi Y, Wang X, Liu D. MicroRNA-22 coordinates vascular and motor neuronal pathfinding via sema4 during zebrafish development. Open Biol 2022; 12:210315. [PMID: 35382569 PMCID: PMC8984383 DOI: 10.1098/rsob.210315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A precise guiding signal is crucial to orchestrate directional migration and patterning of the complex vascular network and neural system. So far, limited studies have reported the discovery and functions of microRNAs (miRNAs) in guiding vascular and neural pathfinding. Currently, we showed that the deficiency of miRNA-22a, an endothelial-enriched miRNA, caused dramatic pathfinding defects both in intersegmental vessels (ISVs) and primary motor neurons (PMNs) in zebrafish embryos. Furthermore, we found the specific inhibition of miR-22a in endothelial cells (ECs) resulted in patterning defects of both ISVs and PMNs. Neuronal block of miR-22a mainly led to axonal defects of PMN. Sema4c was identified as a potential target of miR-22a through transcriptomic analysis and in silico analysis. Additionally, a luciferase assay and EGFP sensor assay confirmed the binding of miR-22a with 3'-UTR of sema4c. In addition, downregulation of sema4c in the miR-22a morphants significantly neutralized the aberrant patterning of vascular and neural networks. Then we demonstrated that endothelial miR-22a regulates PMNs axonal navigation. Our study revealed that miR-22a acted as a dual regulatory cue coordinating vascular and neuronal patterning, and expanded the repertoire of regulatory molecules, which might be of use therapeutically to guide vessels and nerves in the relevant diseases.
Collapse
Affiliation(s)
- Jiajing Sheng
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Jie Gong
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Yunwei Shi
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Xin Wang
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| |
Collapse
|
25
|
Coxam B, Collins RT, Hußmann M, Huisman Y, Meier K, Jung S, Bartels-Klein E, Szymborska A, Finotto L, Helker CSM, Stainier DYR, Schulte-Merker S, Gerhardt H. Svep1 stabilises developmental vascular anastomosis in reduced flow conditions. Development 2022; 149:274823. [PMID: 35312765 PMCID: PMC8977097 DOI: 10.1242/dev.199858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
Abstract
Molecular mechanisms controlling the formation, stabilisation and maintenance of blood vessel connections remain poorly defined. Here, we identify blood flow and the large extracellular protein Svep1 as co-modulators of vessel anastomosis during developmental angiogenesis in zebrafish embryos. Both loss of Svep1 and blood flow reduction contribute to defective anastomosis of intersegmental vessels. The reduced formation and lumenisation of the dorsal longitudinal anastomotic vessel (DLAV) is associated with a compensatory increase in Vegfa/Vegfr pERK signalling, concomittant expansion of apelin-positive tip cells, but reduced expression of klf2a. Experimentally, further increasing Vegfa/Vegfr signalling can rescue the DLAV formation and lumenisation defects, whereas its inhibition dramatically exacerbates the loss of connectivity. Mechanistically, our results suggest that flow and Svep1 co-regulate the stabilisation of vascular connections, in part by modulating the Vegfa/Vegfr signalling pathway. Summary: Blood flow and the large extracellular matrix protein Svep1 jointly regulate vessel anastomosis during developmental angiogenesis in zebrafish embryos partly by modulating the Vegfa/Vegfr signalling pathway.
Collapse
Affiliation(s)
- Baptiste Coxam
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Berlin 10785, Germany
| | - Russell T. Collins
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Berlin 10785, Germany
| | - Melina Hußmann
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstraße 7, 48149 Münster, Germany
| | - Yvonne Huisman
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstraße 7, 48149 Münster, Germany
| | - Katja Meier
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Simone Jung
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Eireen Bartels-Klein
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Anna Szymborska
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Lise Finotto
- Vascular Patterning Laboratory, Center for Cancer Biology, VIB, Leuven 3000, Belgium
- Vascular Patterning Laboratory, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Christian S. M. Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstraße 7, 48149 Münster, Germany
| | - Holger Gerhardt
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Berlin 10785, Germany
- Berlin Institute of Health (BIH), Berlin 10178, Germany
| |
Collapse
|
26
|
Lv F, Ge X, Qian P, Lu X, Liu D, Chen C. Neuron navigator 3 (NAV3) is required for heart development in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:173-183. [PMID: 35039994 DOI: 10.1007/s10695-022-01049-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
As a tightly controlled biological process, cardiogenesis requires the specification and migration of a suite of cell types to form a particular three-dimensional configuration of the heart. Many genetic factors are involved in the formation and maturation of the heart, and any genetic mutations may result in severe cardiac failures. The neuron navigator (NAV) family consists of three vertebrate homologs (NAV1, NAV2, and NAV3) of the neural guidance molecule uncoordinated-53 (UNC-53) in Caenorhabditis elegans. Although they are recognized as neural regulators, their expressions are also detected in many organs, including the heart, kidney, and liver. However, the functions of NAVs, regardless of neural guidance, remain largely unexplored. In our study, we found that nav3 gene was expressed in the cardiac region of zebrafish embryos from 24 to 48 h post-fertilization (hpf) by means of in situ hybridization (ISH) assay. A CRISPR/Cas9-based genome editing method was utilized to delete the nav3 gene in zebrafish and loss of function of Nav3 resulted in a severe deficiency in its cardiac morphology and structure. The similar phenotypic defects of the knockout mutants could recur by nav3 morpholino injection and be rescued by nav3 mRNA injection. Dual-color fluorescence imaging of ventricle and atrium markers further confirmed the disruption of the heart development in nav3-deleted mutants. Although the heart rate was not affected by the deletion of nav3, the heartbeat intensity was decreased in the mutants. All these findings indicate that Nav3 was required for cardiogenesis in developing zebrafish embryos.
Collapse
Affiliation(s)
- Feng Lv
- Nantong Science and Technology College, School of Life Sciences, Nantong University, Nantong, China
| | - Xiaojuan Ge
- Nantong Science and Technology College, School of Life Sciences, Nantong University, Nantong, China
| | - Peipei Qian
- Medical School, Nantong University, Nantong, China
| | - Xiaofeng Lu
- Nantong Science and Technology College, School of Life Sciences, Nantong University, Nantong, China
| | - Dong Liu
- Nantong Science and Technology College, School of Life Sciences, Nantong University, Nantong, China.
| | - Changsheng Chen
- Nantong Science and Technology College, School of Life Sciences, Nantong University, Nantong, China.
| |
Collapse
|
27
|
Dadwal UC, de Andrade Staut C, Tewari NP, Awosanya OD, Mendenhall SK, Valuch CR, Nagaraj RU, Blosser RJ, Li J, Kacena MA. Effects of diet, BMP-2 treatment, and femoral skeletal injury on endothelial cells derived from the ipsilateral and contralateral limbs. J Orthop Res 2022; 40:439-448. [PMID: 33713476 PMCID: PMC8435543 DOI: 10.1002/jor.25033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/08/2021] [Accepted: 03/10/2021] [Indexed: 02/04/2023]
Abstract
Type 2 diabetes (T2D) results in physiological and structural changes in bone, contributing to poor fracture healing. T2D compromises microvascular performance, which can negatively impact bone regeneration as angiogenesis is required for new bone formation. We examined the effects of bone morphogenetic protein-2 (BMP-2) administered locally at the time of femoral segmental bone defect (SBD) surgery, and its angiogenic impacts on endothelial cells (ECs) isolated from the ipsilateral or contralateral tibia in T2D mice. Male C57BL/6 mice were fed either a low-fat diet (LFD) or high-fat diet (HFD) starting at 8 weeks. After 12 weeks, the T2D phenotype in HFD mice was confirmed via glucose and insulin tolerance testing and echoMRI, and all mice underwent SBD surgery. Mice were treated with BMP-2 (5 µg) or saline at the time of surgery. Three weeks postsurgery, bone marrow ECs were isolated from ipsilateral and contralateral tibias, and proliferation, angiogenic potential, and gene expression of the cells was analyzed. BMP-2 treatment increased EC proliferation by two fold compared with saline in LFD contralateral tibia ECs, but no changes were seen in surgical tibia EC proliferation. BMP-2 treatment enhanced vessel-like structure formation in HFD mice whereas, the opposite was observed in LFD mice. Still, in BMP-2 treated LFD mice, ipsilateral tibia ECs increased expression of CD31, FLT-1, ANGPT1, and ANGPT2. These data suggest that the modulating effects of T2D and BMP-2 on the microenvironment of bone marrow ECs may differentially influence angiogenic properties at the fractured limb versus the contralateral limb.
Collapse
Affiliation(s)
- Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA,Richard L. Roudebush VA Medical Center, IN, USA
| | | | - Nikhil P. Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | | | | | - Conner R. Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Rohit U. Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA,Richard L. Roudebush VA Medical Center, IN, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Melissa Ann Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA,Richard L. Roudebush VA Medical Center, IN, USA,Corresponding Author: Melissa A. Kacena, Ph.D., Director of Basic and Translational Research, Professor of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN 46202, (317) 278-3482 – office, (317) 278-9568 – fax,
| |
Collapse
|
28
|
Hu S, Xu H, Qian F, Chen C, Wang X, Liu D, Cheng L. Interferon regulatory factor-7 is required for hair cell development during zebrafish embryogenesis. Dev Neurobiol 2022; 82:88-97. [PMID: 34779143 PMCID: PMC9305156 DOI: 10.1002/dneu.22860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 11/08/2022]
Abstract
Interferon regulatory factor-7 (IRF7) is an essential regulator of both innate and adaptive immunity. It is also expressed in the otic vesicle of zebrafish embryos. However, any role for irf7 in hair cell development was uncharacterized. Does it work as a potential deaf gene to regulate hair cell development? We used whole-mount in situ hybridization (WISH) assay and morpholino-mediated gene knockdown method to investigate the role of irf7 in the development of otic vesicle hair cells during zebrafish embryogenesis. We performed RNA sequencing to gain a detailed insight into the molecules/genes which are altered upon downregulation of irf7. Compared to the wild-type siblings, knockdown of irf7 resulted in severe developmental retardation in zebrafish embryos as well as loss of neuromasts and damage to hair cells at an early stage (within 3 days post fertilization). Coinjection of zebrafish irf7 mRNA could partially rescued the defects of the morphants. atp1b2b mRNA injection can also partially rescue the phenotype induced by irf7 gene deficiency. Loss of hair cells in irf7-morphants does not result from cell apoptosis. Gene expression profiles show that, compared to wild-type, knockdown of irf7 can lead to 2053 and 2678 genes being upregulated and downregulated, respectively. Among them, 18 genes were annotated to hair cell (HC) development or posterior lateral line (PLL) development. All results suggest that irf7 plays an essential role in hair cell development in zebrafish, indicating that irf7 may be a member of deafness gene family.
Collapse
Affiliation(s)
- Song‐Qun Hu
- Department of OtorhinolaryngologyThe First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Department of OtorhinolaryngologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Hui‐Min Xu
- Department of OtorhinolaryngologyThe Second Affiliated Hospital of Nantong UniversityNantongChina
| | - Fu‐Ping Qian
- School of Life SciencesCo‐innovation Center of NeuroregenerationKey Laboratory of Neuroregeneration of Ministry of EducationNantong UniversityNantongChina
| | - Chang‐Sheng Chen
- School of Life SciencesCo‐innovation Center of NeuroregenerationKey Laboratory of Neuroregeneration of Ministry of EducationNantong UniversityNantongChina
| | - Xin Wang
- School of Life SciencesCo‐innovation Center of NeuroregenerationKey Laboratory of Neuroregeneration of Ministry of EducationNantong UniversityNantongChina
| | - Dong Liu
- School of Life SciencesCo‐innovation Center of NeuroregenerationKey Laboratory of Neuroregeneration of Ministry of EducationNantong UniversityNantongChina
| | - Lei Cheng
- Department of OtorhinolaryngologyThe First Affiliated HospitalNanjing Medical UniversityNanjingChina
- WHO Collaborating Centre for the Prevention of Deafness and Hearing ImpairmentNanjing Medical UniversityNanjingChina
| |
Collapse
|
29
|
Park H, Yun BH, Lim W, Song G. Dinitramine induces cardiotoxicity and morphological alterations on zebrafish embryo development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105982. [PMID: 34598048 DOI: 10.1016/j.aquatox.2021.105982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Dinitramine (DN), an herbicide in the dinitroaniline family, is used in agricultural areas to prevent unwanted plant growth. Dinitroaniline herbicides inhibit cell division by preventing microtubulin synthesis. They are strongly absorbed by the soil and can contaminate groundwater; however, the mode of action of these herbicides in non-target organisms remains unclear. In this study, we examined the developmental toxicity of DN in zebrafish embryos exposed to 1.6, 3.2, and 6.4 mg/L DN, compared to embryos exposed to DMSO (control) for 96 h. Visual assessments using transgenic zebrafish (fli1:eGFP) indicated abnormal cardiac development with enlarged ventricles and atria, decreased heartbeats, and impaired cardiac function. Along with cardiac development, vessel formation and angiogenesis were suppressed through activation of the inflammatory response. In addition, exposure to 6.4 mg/L DN for 96 h induced cell death, with upregulation of genes related to apoptosis. Our results showed that DN induced morphological changes and triggered an inflammatory response and apoptotic cell death that can impair embryonic growth and survival, providing an important mechanism of DN in aquatic organisms.
Collapse
Affiliation(s)
- Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Bo Hyun Yun
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
30
|
Molecular and Cellular Mechanisms of Vascular Development in Zebrafish. Life (Basel) 2021; 11:life11101088. [PMID: 34685459 PMCID: PMC8539546 DOI: 10.3390/life11101088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
The establishment of a functional cardiovascular system is crucial for the development of all vertebrates. Defects in the development of the cardiovascular system lead to cardiovascular diseases, which are among the top 10 causes of death worldwide. However, we are just beginning to understand which signaling pathways guide blood vessel growth in different tissues and organs. The advantages of the model organism zebrafish (Danio rerio) helped to identify novel cellular and molecular mechanisms of vascular growth. In this review we will discuss the current knowledge of vasculogenesis and angiogenesis in the zebrafish embryo. In particular, we describe the molecular mechanisms that contribute to the formation of blood vessels in different vascular beds within the embryo.
Collapse
|
31
|
An G, Park H, Lim W, Song G. Fluroxypyr-1-methylheptyl ester interferes with the normal embryogenesis of zebrafish by inducing apoptosis, inflammation, and neurovascular toxicity. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109069. [PMID: 33930526 DOI: 10.1016/j.cbpc.2021.109069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
Fluroxypyr-1-methylheptyl ester (FPMH) is a synthetic auxin herbicide used to regulate the growth of post-emergence broad-leaved weeds. Although acute exposure to FPMH increases the mortality of several fish species in the juvenile stage, the developmental toxicity of FPMH in aquatic vertebrates has not yet been investigated. In the present study, we assessed the developmental toxicity of FPMH using zebrafish models that offer many advantages for studying toxicology. During embryogenesis, survival rates gradually decreased with increasing FPMH concentrations and exposure times. At 120 h post-fertilization, FPMH-exposed zebrafish larvae showed various abnormalities such as small eye size, heart defects, enlarged yolk sac, and shortened body length. The study results confirmed the induction of apoptosis in the anterior body of zebrafish and upregulation of inflammatory gene expression. Further, defects in vascular networks, especially the loss of central arteries and abnormal aortic arch structures, were seen in the fli1:eGFP transgenic zebrafish model. Neurotoxicity of FPMH was examined using mbp:eGFP zebrafish and which displayed compromised myelination following FPMH administration. Our study has demonstrated the mechanisms underlying FPMH toxicity in developing zebrafish that is a representative model of vertebrates.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
32
|
Watterston C, Halabi R, McFarlane S, Childs SJ. Endothelial Semaphorin 3fb regulates Vegf pathway-mediated angiogenic sprouting. PLoS Genet 2021; 17:e1009769. [PMID: 34424892 PMCID: PMC8412281 DOI: 10.1371/journal.pgen.1009769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/02/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Vessel growth integrates diverse extrinsic signals with intrinsic signaling cascades to coordinate cell migration and sprouting morphogenesis. The pro-angiogenic effects of Vascular Endothelial Growth Factor (VEGF) are carefully controlled during sprouting to generate an efficiently patterned vascular network. We identify crosstalk between VEGF signaling and that of the secreted ligand Semaphorin 3fb (Sema3fb), one of two zebrafish paralogs of mammalian Sema3F. The sema3fb gene is expressed by endothelial cells in actively sprouting vessels. Loss of sema3fb results in abnormally wide and stunted intersegmental vessel artery sprouts. Although the sprouts initiate at the correct developmental time, they have a reduced migration speed. These sprouts have persistent filopodia and abnormally spaced nuclei suggesting dysregulated control of actin assembly. sema3fb mutants show simultaneously higher expression of pro-angiogenic (VEGF receptor 2 (vegfr2) and delta-like 4 (dll4)) and anti-angiogenic (soluble VEGF receptor 1 (svegfr1)/ soluble Fms Related Receptor Tyrosine Kinase 1 (sflt1)) pathway components. We show increased phospho-ERK staining in migrating angioblasts, consistent with enhanced Vegf activity. Reducing Vegfr2 kinase activity in sema3fb mutants rescues angiogenic sprouting. Our data suggest that Sema3fb plays a critical role in promoting endothelial sprouting through modulating the VEGF signaling pathway, acting as an autocrine cue that modulates intrinsic growth factor signaling.
Collapse
Affiliation(s)
- Charlene Watterston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Rami Halabi
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sarah McFarlane
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Sarah J. Childs
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
33
|
Abdelhakim M, Dohi T, Yamato M, Takada H, Sakai A, Suzuki H, Ema M, Fukuhara S, Ogawa R. A New Model for Specific Visualization of Skin Graft Neoangiogenesis Using Flt1-tdsRed BAC Transgenic Mice. Plast Reconstr Surg 2021; 148:89-99. [PMID: 34014859 DOI: 10.1097/prs.0000000000008039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neovascularization plays a critical role in skin graft survival. Up to date, the lack of specificity to solely track the newly sprouting blood vessels has remained a limiting factor in skin graft transplantation models. Therefore, the authors developed a new model by using Flt1-tdsRed BAC transgenic mice. Flt1 is a vascular endothelial growth factor receptor expressed by sprouting endothelial cells mediating neoangiogenesis. The authors determined whether this model reliably visualizes neovascularization by quantifying tdsRed fluorescence in the graft over 14 days. METHODS Cross-transplantation of two full-thickness 1 × 1-cm dorsal skin grafts was performed between 6- to 8-week-old male Flt1 mice and KSN/Slc nude mice (n = 5). The percentage of graft area occupied by tdsRed fluorescence in the central and lateral areas of the graft on days 3, 5, 9, and 14 was determined using confocal-laser scanning microscopy. RESULTS Flt1+ endothelial cells migrating from the transgenic wound bed into the nude graft were first visible in the reticular dermis of the graft center on day 3 (0.5 ± 0.1; p < 0.05). Peak neovascularization was observed on day 9 in the lateral and central parts, increasing by 2- to 4-fold (4.6 ± 0.8 and 4.2 ± 0.9; p < 0.001). Notably, some limited neoangiogenesis was displayed within the Flt grafts on nude mice, particularly in the center. No neovascularization was observed from the wound margins. CONCLUSION The ability of the Flt1-tdsRed transgenic mouse model to efficiently identify the origin of the skin-graft vasculature and visualize graft neovascularization over time suggests its potential utility for developing techniques that promote graft neovascularization.
Collapse
Affiliation(s)
- Mohamed Abdelhakim
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Teruyuki Dohi
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Mizuho Yamato
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Hiroya Takada
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Atsushi Sakai
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Hidenori Suzuki
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Masatsugu Ema
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Shigetomo Fukuhara
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Rei Ogawa
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| |
Collapse
|
34
|
Phng LK, Belting HG. Endothelial cell mechanics and blood flow forces in vascular morphogenesis. Semin Cell Dev Biol 2021; 120:32-43. [PMID: 34154883 DOI: 10.1016/j.semcdb.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022]
Abstract
The vertebrate cardiovascular system is made up by a hierarchically structured network of highly specialised blood vessels. This network emerges during early embryogenesis and evolves in size and complexity concomitant with embryonic growth and organ formation. Underlying this plasticity are actin-driven endothelial cell behaviours, which allow endothelial cells to change their shape and move within the vascular network. In this review, we discuss the cellular and molecular mechanisms involved in vascular network formation and how these intrinsic mechanisms are influenced by haemodynamic forces provided by pressurized blood flow. While most of this review focusses on in vivo evidence from zebrafish embryos, we also mention complementary findings obtained in other experimental systems.
Collapse
Affiliation(s)
- Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum, University of Basel, Basel 4056, Switzerland.
| |
Collapse
|
35
|
The BMP Pathway in Blood Vessel and Lymphatic Vessel Biology. Int J Mol Sci 2021; 22:ijms22126364. [PMID: 34198654 PMCID: PMC8232321 DOI: 10.3390/ijms22126364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) were originally identified as the active components in bone extracts that can induce ectopic bone formation. In recent decades, their key role has broadly expanded beyond bone physiology and pathology. Nowadays, the BMP pathway is considered an important player in vascular signaling. Indeed, mutations in genes encoding different components of the BMP pathway cause various severe vascular diseases. Their signaling contributes to the morphological, functional and molecular heterogeneity among endothelial cells in different vessel types such as arteries, veins, lymphatic vessels and capillaries within different organs. The BMP pathway is a remarkably fine-tuned pathway. As a result, its signaling output in the vessel wall critically depends on the cellular context, which includes flow hemodynamics, interplay with other vascular signaling cascades and the interaction of endothelial cells with peri-endothelial cells and the surrounding matrix. In this review, the emerging role of BMP signaling in lymphatic vessel biology will be highlighted within the framework of BMP signaling in the circulatory vasculature.
Collapse
|
36
|
Semaphorin3E/plexinD1 Axis in Asthma: What We Know So Far! ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:205-213. [PMID: 34019271 DOI: 10.1007/978-3-030-68748-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Semaphorin3E belongs to the large family of semaphorin proteins. Semaphorin3E was initially identified as axon guidance cues in the neural system. It is universally expressed beyond the nervous system and contributes to regulating essential cell functions such as cell migration, proliferation, and adhesion. Binding of semaphorin3E to its receptor, plexinD1, triggers diverse signaling pathways involved in the pathogenesis of various diseases from cancer to autoimmune and allergic disorders. Here, we highlight the novel findings on the role of semaphorin3E in airway biology. In particular, we highlight our recent findings on the function and potential mechanisms by which semaphorin3E and its receptor, plexinD1, impact airway inflammation, airway hyperresponsiveness, and remodeling in the context of asthma.
Collapse
|
37
|
Kempers L, Wakayama Y, van der Bijl I, Furumaya C, De Cuyper IM, Jongejan A, Kat M, van Stalborch AMD, van Boxtel AL, Hubert M, Geerts D, van Buul JD, de Korte D, Herzog W, Margadant C. The endosomal RIN2/Rab5C machinery prevents VEGFR2 degradation to control gene expression and tip cell identity during angiogenesis. Angiogenesis 2021; 24:695-714. [PMID: 33983539 PMCID: PMC8292304 DOI: 10.1007/s10456-021-09788-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Sprouting angiogenesis is key to many pathophysiological conditions, and is strongly regulated by vascular endothelial growth factor (VEGF) signaling through VEGF receptor 2 (VEGFR2). Here we report that the early endosomal GTPase Rab5C and its activator RIN2 prevent lysosomal routing and degradation of VEGF-bound, internalized VEGFR2 in human endothelial cells. Stabilization of endosomal VEGFR2 levels by RIN2/Rab5C is crucial for VEGF signaling through the ERK and PI3-K pathways, the expression of immediate VEGF target genes, as well as specification of angiogenic 'tip' and 'stalk' cell phenotypes and cell sprouting. Using overexpression of Rab mutants, knockdown and CRISPR/Cas9-mediated gene editing, and live-cell imaging in zebrafish, we further show that endosomal stabilization of VEGFR2 levels is required for developmental angiogenesis in vivo. In contrast, the premature degradation of internalized VEGFR2 disrupts VEGF signaling, gene expression, and tip cell formation and migration. Thus, an endosomal feedforward mechanism maintains receptor signaling by preventing lysosomal degradation, which is directly linked to the induction of target genes and cell fate in collectively migrating cells during morphogenesis.
Collapse
Affiliation(s)
- Lanette Kempers
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Yuki Wakayama
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Ivo van der Bijl
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Charita Furumaya
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Iris M De Cuyper
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science /Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marije Kat
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | | | - Antonius L van Boxtel
- Cancer Biology and Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marvin Hubert
- University of Muenster, Schlossplatz 2, 48149, Muenster, Germany
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Dirk de Korte
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.,Sanquin Blood Bank, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Wiebke Herzog
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.,University of Muenster, Schlossplatz 2, 48149, Muenster, Germany
| | - Coert Margadant
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Bhatti FUR, Dadwal UC, Valuch CR, Tewari NP, Awosanya OD, de Andrade Staut C, Sun S, Mendenhall SK, Perugini AJ, Nagaraj RU, Battina HL, Nazzal MK, Blosser RJ, Maupin KA, Childress PJ, Li J, Kacena MA. The effects of high fat diet, bone healing, and BMP-2 treatment on endothelial cell growth and function. Bone 2021; 146:115883. [PMID: 33581374 PMCID: PMC8009863 DOI: 10.1016/j.bone.2021.115883] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
Angiogenesis is a vital process during the regeneration of bone tissue. The aim of this study was to investigate angiogenesis at the fracture site as well as at distal locations from obesity-induced type 2 diabetic mice that were treated with bone morphogenetic protein-2 (BMP-2, local administration at the time of surgery) to heal a femoral critical sized defect (CSD) or saline as a control. Mice were fed a high fat diet (HFD) to induce a type 2 diabetic-like phenotype while low fat diet (LFD) animals served as controls. Endothelial cells (ECs) were isolated from the lungs (LECs) and bone marrow (BMECs) 3 weeks post-surgery, and the fractured femurs were also examined. Our studies demonstrate that local administration of BMP-2 at the fracture site in a CSD model results in complete bone healing within 3 weeks for all HFD mice and 66.7% of LFD mice, whereas those treated with saline remain unhealed. At the fracture site, vessel parameters and adipocyte numbers were significantly increased in BMP-2 treated femurs, irrespective of diet. At distal sites, LEC and BMEC proliferation was not altered by diet or BMP-2 treatment. HFD increased the tube formation ability of both LECs and BMECs. Interestingly, BMP-2 treatment at the time of surgery reduced tube formation in LECs and humeri BMECs. However, migration of BMECs from HFD mice treated with BMP-2 was increased compared to BMECs from HFD mice treated with saline. BMP-2 treatment significantly increased the expression of CD31, FLT-1, and ANGPT2 in LECs and BMECs in LFD mice, but reduced the expression of these same genes in HFD mice. To date, this is the first study that depicts the systemic influence of fracture surgery and local BMP-2 treatment on the proliferation and angiogenic potential of ECs derived from the bone marrow and lungs.
Collapse
Affiliation(s)
- Fazal Ur Rehman Bhatti
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Ushashi C Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Conner R Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Nikhil P Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Olatundun D Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | | | - Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Stephen K Mendenhall
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Anthony J Perugini
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Rohit U Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Hanisha L Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Rachel J Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Kevin A Maupin
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Paul J Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA.
| |
Collapse
|
39
|
Chico TJA, Kugler EC. Cerebrovascular development: mechanisms and experimental approaches. Cell Mol Life Sci 2021; 78:4377-4398. [PMID: 33688979 PMCID: PMC8164590 DOI: 10.1007/s00018-021-03790-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
The cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature. In this review we summarise the experimental approaches used to study the cerebral vessels and the mechanisms that contribute to their development.
Collapse
Affiliation(s)
- Timothy J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| | - Elisabeth C Kugler
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| |
Collapse
|
40
|
Gamble JT, Elson DJ, Greenwood JA, Tanguay RL, Kolluri SK. The Zebrafish Xenograft Models for Investigating Cancer and Cancer Therapeutics. BIOLOGY 2021; 10:biology10040252. [PMID: 33804830 PMCID: PMC8063817 DOI: 10.3390/biology10040252] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary The identification and development of new anti-cancer drugs requires extensive testing in animal models to establish safety and efficacy of drug candidates. The transplantation of human tumor tissue into mouse (tumor xenografts) is commonly used to study cancer progression and to test potential drugs for their anti-cancer activity. Mouse models do not afford the ability to test a large number of drug candidates quickly as it takes several weeks to conduct these experiments. In contrast, tumor xenograft studies in zebrafish provide an efficient platform for rapid testing of safety and efficacy in less than two weeks. Abstract In order to develop new cancer therapeutics, rapid, reliable, and relevant biological models are required to screen and validate drug candidates for both efficacy and safety. In recent years, the zebrafish (Danio rerio) has emerged as an excellent model organism suited for these goals. Larval fish or immunocompromised adult fish are used to engraft human cancer cells and serve as a platform for screening potential drug candidates. With zebrafish sharing ~80% of disease-related orthologous genes with humans, they provide a low cost, high-throughput alternative to mouse xenografts that is relevant to human biology. In this review, we provide background on the methods and utility of zebrafish xenograft models in cancer research.
Collapse
Affiliation(s)
- John T. Gamble
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA;
| | - Daniel J. Elson
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
| | - Juliet A. Greenwood
- School of Mathematics and Natural Sciences, Arizona State University, Scotsdale, AZ 85257, USA;
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
| | - Siva K. Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
- Correspondence:
| |
Collapse
|
41
|
Zhou ZY, Wang L, Wang YS, Dou GR. PFKFB3: A Potential Key to Ocular Angiogenesis. Front Cell Dev Biol 2021; 9:628317. [PMID: 33777937 PMCID: PMC7991106 DOI: 10.3389/fcell.2021.628317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
The current treatment for ocular pathological angiogenesis mainly focuses on anti-VEGF signals. This treatment has been confirmed as effective despite the unfavorable side effects and unsatisfactory efficiency. Recently, endothelial cell metabolism, especially glycolysis, has been attracting attention as a potential treatment by an increasing number of researchers. Emerging evidence has shown that regulation of endothelial glycolysis can influence vessel sprouting. This new evidence has raised the potential for novel treatment targets that have been overlooked for a long time. In this review, we discuss the process of endothelial glycolysis as a promising target and consider regulation of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as treatment for ocular pathological angiogenesis.
Collapse
Affiliation(s)
- Zi-Yi Zhou
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi’an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yu-Sheng Wang
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi’an, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
42
|
Li Z, Li B, Wang J, Lu Y, Chen AFY, Sun K, Yu Y, Chen S. GAA deficiency promotes angiogenesis through upregulation of Rac1 induced by autophagy disorder. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118969. [PMID: 33513417 DOI: 10.1016/j.bbamcr.2021.118969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 01/14/2023]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones, is vital for vertebrate development and adult homeostasis. Acid α-glucosidase (GAA) is a glycoside hydrolase involved in the lysosomal breakdown of glycogen. Our previous study showed that GAA was highly expressed in mouse pulmonary veins. While whether GAA was involved in angiogenesis remained largely unknown, thus, we performed knockdown experiments both in vivo and in vitro and endothelial cell function experiments to clarify this concern point. We identified that GAA expressed widely at different levels during zebrafish embryonic development and GAA morphants showed excessive angiogenesis of ISV at later stage. In GAA knockdown HUVECs, the migration and tube formation capacity were increased, resulted from the formation of large lamellipodia-like protrusions at the edge of cells. By analyzing autophagic flux, we found that autophagy disorder was the mechanism of GAA knockdown-induced excessive angiogenesis. The block of autophagic flux caused upregulation of Rac1, a small GTPase, and the latter promoted excessive sprouts in zebrafish and enhanced angiogenic behavior in HUVECs. In addition, overexpression of transcription factor E3, a master regulator of autophagy, rescued upregulation of RAC1 and enhanced angiogenic function in GAA-knockdown HUVECs. Also, inhibition of Rac1 partly restored enhanced angiogenic function in GAA-knockdown HUVECs. Taken together, our study firstly reported a novel function of GAA in angiogenesis which is mediated by upregulation of Rac1 induced by autophagy disorder.
Collapse
Affiliation(s)
- Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Baolei Li
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yanan Lu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Alex F Y Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yu Yu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
43
|
Wang K, Xu Q, Zhong H. The Bruton's Tyrosine Kinase Inhibitor Ibrutinib Impairs the Vascular Development of Zebrafish Larvae. Front Pharmacol 2021; 11:625498. [PMID: 33519491 PMCID: PMC7838594 DOI: 10.3389/fphar.2020.625498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Ibrutinib is an orally bioavailable, irreversible selective Bruton’s tyrosine kinase inhibitor that has demonstrated impressive therapeutic effects in patients with B cell malignancies. However, adverse effects, such as bleeding and hypertension, are also reported, implying that studies on the toxicological effect of ibrutinib on living organisms are needed. Here, we have used zebrafish, a successful model organism for studying toxicology, to investigate the influence of ibrutinib during embryogenesis. We found that ibrutinib had potent toxicity on embryonic development, especially vascular development in zebrafish embryos. We also revealed that ibrutinib perturbed vascular formation by suppressing angiogenesis, rather than vasculogenesis. In addition, ibrutinib exposure led to the collapse of the vascular lumen, as well as reduced proliferation and enhanced apoptosis of vascular endothelial cells. Moreover, the expression of vascular development-related genes was also altered in ibrutinib-treated embryos. To our knowledge, this is the first study to describe the vascular toxicity of ibrutinib in an animal model, providing a theoretical basis for clinical safety guidelines in ibrutinib treatment.
Collapse
Affiliation(s)
- Kun Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Qiushi Xu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Hanbing Zhong
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
44
|
Shi L, Chen C, Yin Z, Wei G, Xie G, Liu D. Systematic profiling of early regulators during tissue regeneration using zebrafish model. Wound Repair Regen 2020; 29:189-195. [PMID: 32776615 DOI: 10.1111/wrr.12852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 11/28/2022]
Abstract
Great progresses have been made in comprehension of tissue regeneration process. However, one of the central questions in regeneration research remains to be deciphered is what factors initiate regenerative process. In present study, we focused on systematic profiling of early regulators in tissue regeneration via high-throughput screening on zebrafish caudal fin model. Firstly, 53 GO-annotated regeneration-related genes, which were specifically activated upon fin amputation, were identified according to the transcriptomic analysis. Moreover, qRT-PCR analysis of a couple of randomly selected genes from the aforementioned gene list validated our sequencing results. These studies confirmed the reliability of transcriptome sequencing analysis. Fibroblast growth factor 20a (fgf20a) is a key initial factor in the regeneration of zebrafish. Through a gene expression correlation analysis, we discovered a collection of 70 genes correlating with fgf20a, whose expression increased promptly at 2 days post amputation (dpa) and went down to the basal level until the completion of fin regeneration. In addition, two genes, socs3b and nppc, were chosen to investigate their functions during the fin regeneration. Inhibition of either of those genes significantly delayed the regenerative process. Taken together, we provided a simple and effective time-saving strategy that may serve as a tool for identifying early regulators in regeneration and identified 71 genes as early regulators of fin regeneration.
Collapse
Affiliation(s)
- Linsheng Shi
- The Second Affiliated Hospital of Nantong University, School of Life Science, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Changsheng Chen
- The Second Affiliated Hospital of Nantong University, School of Life Science, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhenhua Yin
- Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Guanyun Wei
- The Second Affiliated Hospital of Nantong University, School of Life Science, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gangcai Xie
- Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Dong Liu
- The Second Affiliated Hospital of Nantong University, School of Life Science, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
45
|
Chappell JC, Darden J, Payne LB, Fink K, Bautch VL. Blood Vessel Patterning on Retinal Astrocytes Requires Endothelial Flt-1 (VEGFR-1). J Dev Biol 2019; 7:E18. [PMID: 31500294 PMCID: PMC6787756 DOI: 10.3390/jdb7030018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
Feedback mechanisms are critical components of many pro-angiogenic signaling pathways that keep vessel growth within a functional range. The Vascular Endothelial Growth Factor-A (VEGF-A) pathway utilizes the decoy VEGF-A receptor Flt-1 to provide negative feedback regulation of VEGF-A signaling. In this study, we investigated how the genetic loss of flt-1 differentially affects the branching complexity of vascular networks in tissues despite similar effects on endothelial sprouting. We selectively ablated flt-1 in the post-natal retina and found that maximum induction of flt-1 loss resulted in alterations in endothelial sprouting and filopodial extension, ultimately yielding hyper-branched networks in the absence of changes in retinal astrocyte architecture. The mosaic deletion of flt-1 revealed that sprouting endothelial cells flanked by flt-1-/- regions of vasculature more extensively associated with underlying astrocytes and exhibited aberrant sprouting, independent of the tip cell genotype. Overall, our data support a model in which tissue patterning features, such as retinal astrocytes, integrate with flt-1-regulated angiogenic molecular and cellular mechanisms to yield optimal vessel patterning for a given tissue.
Collapse
Affiliation(s)
- John C Chappell
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jordan Darden
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Laura Beth Payne
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kathryn Fink
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Victoria L Bautch
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
46
|
Li Y, Sun R, Zou J, Ying Y, Luo Z. Dual Roles of the AMP-Activated Protein Kinase Pathway in Angiogenesis. Cells 2019; 8:E752. [PMID: 31331111 PMCID: PMC6678403 DOI: 10.3390/cells8070752] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis plays important roles in development, stress response, wound healing, tumorigenesis and cancer progression, diabetic retinopathy, and age-related macular degeneration. It is a complex event engaging many signaling pathways including vascular endothelial growth factor (VEGF), Notch, transforming growth factor-beta/bone morphogenetic proteins (TGF-β/BMPs), and other cytokines and growth factors. Almost all of them eventually funnel to two crucial molecules, VEGF and hypoxia-inducing factor-1 alpha (HIF-1α) whose expressions could change under both physiological and pathological conditions. Hypoxic conditions stabilize HIF-1α, while it is upregulated by many oncogenic factors under normaxia. HIF-1α is a critical transcription activator for VEGF. Recent studies have shown that intracellular metabolic state participates in regulation of sprouting angiogenesis, which may involve AMP-activated protein kinase (AMPK). Indeed, AMPK has been shown to exert both positive and negative effects on angiogenesis. On the one hand, activation of AMPK mediates stress responses to facilitate autophagy which stabilizes HIF-1α, leading to increased expression of VEGF. On the other hand, AMPK could attenuate angiogenesis induced by tumor-promoting and pro-metastatic factors, such as the phosphoinositide 3-kinase /protein kinase B (Akt)/mammalian target of rapamycin (PI3K/Akt/mTOR), hepatic growth factor (HGF), and TGF-β/BMP signaling pathways. Thus, this review will summarize research progresses on these two opposite effects and discuss the mechanisms behind the discrepant findings.
Collapse
Affiliation(s)
- Yuanjun Li
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China
| | - Ruipu Sun
- Queen Mary School, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi 30006, China
| | - Junrong Zou
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China
| | - Ying Ying
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China.
- Queen Mary School, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi 30006, China.
| |
Collapse
|
47
|
Page DJ, Thuret R, Venkatraman L, Takahashi T, Bentley K, Herbert SP. Positive Feedback Defines the Timing, Magnitude, and Robustness of Angiogenesis. Cell Rep 2019; 27:3139-3151.e5. [PMID: 31189101 PMCID: PMC6581738 DOI: 10.1016/j.celrep.2019.05.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/01/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is driven by the coordinated collective branching of specialized leading "tip" and trailing "stalk" endothelial cells (ECs). While Notch-regulated negative feedback suppresses excessive tip selection, roles for positive feedback in EC identity decisions remain unexplored. Here, by integrating computational modeling with in vivo experimentation, we reveal that positive feedback critically modulates the magnitude, timing, and robustness of angiogenic responses. In silico modeling predicts that positive-feedback-mediated amplification of VEGF signaling generates an ultrasensitive bistable switch that underpins quick and robust tip-stalk decisions. In agreement, we define a positive-feedback loop exhibiting these properties in vivo, whereby Vegf-induced expression of the atypical tetraspanin, tm4sf18, amplifies Vegf signaling to dictate the speed and robustness of EC selection for angiogenesis. Consequently, tm4sf18 mutant zebrafish select fewer motile ECs and exhibit stunted hypocellular vessels with unstable tip identity that is severely perturbed by even subtle Vegfr attenuation. Hence, positive feedback spatiotemporally shapes the angiogenic switch to ultimately modulate vascular network topology.
Collapse
Affiliation(s)
- Donna J Page
- Faculty of Biology, Medicine and Health, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK; School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Raphael Thuret
- Faculty of Biology, Medicine and Health, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Lakshmi Venkatraman
- Biomedical Engineering Department, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA; Immunology, Genetics and Pathology Department, University of Uppsala, 751 85 Uppsala, Sweden
| | - Tokiharu Takahashi
- Faculty of Biology, Medicine and Health, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Katie Bentley
- Biomedical Engineering Department, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA; Immunology, Genetics and Pathology Department, University of Uppsala, 751 85 Uppsala, Sweden; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cellular Adaptive Behaviour Lab, The Francis Crick Institute, Midland Road, London NW1 1AT, UK; Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Strand Campus, London WC2B 4BG, UK.
| | - Shane P Herbert
- Faculty of Biology, Medicine and Health, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
48
|
Ugwuagbo KC, Maiti S, Omar A, Hunter S, Nault B, Northam C, Majumder M. Prostaglandin E2 promotes embryonic vascular development and maturation in zebrafish. Biol Open 2019; 8:bio.039768. [PMID: 30890523 PMCID: PMC6504002 DOI: 10.1242/bio.039768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Prostaglandin (PG)-E2 is essential for growth and development of vertebrates. PGE2 binds to G-coupled receptors to regulate embryonic stem cell differentiation and maintains tissue homeostasis. Overproduction of PGE2 by breast tumor cells promotes aggressive breast cancer phenotypes and tumor-associated lymphangiogenesis. In this study, we investigated novel roles of PGE2 in early embryonic vascular development and maturation with the microinjection of PGE2 in fertilized zebrafish (Danio rerio) eggs. We injected Texas Red dextran to trace vascular development. Embryos injected with the solvent of PGE2 served as vehicle. Distinct developmental changes were noted from 28-96 h post fertilization (hpf), showing an increase in embryonic tail flicks, pigmentation, growth, hatching and larval movement post-hatching in the PGE2-injected group compared to the vehicle. We recorded a significant increase in trunk vascular fluorescence and maturation of vascular anatomy, embryo heartbeat and blood vessel formation in the PGE2 injected group. At 96 hpf, all larvae were euthanized to measure vascular marker mRNA expression. We observed a significant increase in the expression of stem cell markers efnb2a, ephb4a, angiogenesis markers vegfa, kdrl, etv2 and lymphangiogenesis marker prox1 in the PGE2-group compared to the vehicle. This study shows the novel roles of PGE2 in promoting embryonic vascular maturation and angiogenesis in zebrafish.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | - Sujit Maiti
- Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| | - Ahmed Omar
- Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| | - Stephanie Hunter
- Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| | - Braydon Nault
- Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| | - Caleb Northam
- Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| | - Mousumi Majumder
- Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| |
Collapse
|
49
|
A ribosomal DNA-hosted microRNA regulates zebrafish embryonic angiogenesis. Angiogenesis 2019; 22:211-221. [PMID: 30656567 DOI: 10.1007/s10456-019-09663-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are single-stranded small non-coding RNAs, generally 18-25 nucleotides in length, that act as repressors of gene expression. miRNAs are encoded by independent genes or processed from a variety of different RNA species. So far, there is no evidence showing that the ribosomal DNA-hosted microRNA is implicated in vertebrate development. Currently, we found a highly expressed small RNA hosted in ribosomal DNA was predicted as a novel miRNA, named miR-ntu1, in zebrafish endothelial cells by deep sequencing analysis. The miRNA was validated by custom-designed Taqman PCR, Northern Blot, and in silico analysis. Furthermore, we demonstrated that miR-ntu1 played a crucial role in zebrafish angiogenesis via modulation of Notch signaling. Our findings provide a notable case that a miRNA hosted in ribosomal DNA is involved in vertebrate development.
Collapse
|
50
|
Darden J, Payne LB, Zhao H, Chappell JC. Excess vascular endothelial growth factor-A disrupts pericyte recruitment during blood vessel formation. Angiogenesis 2018; 22:167-183. [PMID: 30238211 DOI: 10.1007/s10456-018-9648-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
Pericyte investment into new blood vessels is essential for vascular development such that mis-regulation within this phase of vessel formation can contribute to numerous pathologies including arteriovenous and cerebrovascular malformations. It is critical therefore to illuminate how angiogenic signaling pathways intersect to regulate pericyte migration and investment. Here, we disrupted vascular endothelial growth factor-A (VEGF-A) signaling in ex vivo and in vitro models of sprouting angiogenesis, and found pericyte coverage to be compromised during VEGF-A perturbations. Pericytes had little to no expression of VEGF receptors, suggesting VEGF-A signaling defects affect endothelial cells directly but pericytes indirectly. Live imaging of ex vivo angiogenesis in mouse embryonic skin revealed limited pericyte migration during exposure to exogenous VEGF-A. During VEGF-A gain-of-function conditions, pericytes and endothelial cells displayed abnormal transcriptional changes within the platelet-derived growth factor-B (PDGF-B) and Notch pathways. To further test potential crosstalk between these pathways in pericytes, we stimulated embryonic pericytes with Notch ligands Delta-like 4 (Dll4) and Jagged-1 (Jag1) and found induction of Notch pathway activity but no changes in PDGF Receptor-β (Pdgfrβ) expression. In contrast, PDGFRβ protein levels decreased with mis-regulated VEGF-A activity, observed in the effects on full-length PDGFRβ and a truncated PDGFRβ isoform generated by proteolytic cleavage or potentially by mRNA splicing. Overall, these observations support a model in which, during the initial stages of vascular development, pericyte distribution and coverage are indirectly affected by endothelial cell VEGF-A signaling and the downstream regulation of PDGF-B-PDGFRβ dynamics, without substantial involvement of pericyte Notch signaling during these early stages.
Collapse
Affiliation(s)
- Jordan Darden
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Laura Beth Payne
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Huaning Zhao
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - John C Chappell
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA. .,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA. .,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA. .,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA.
| |
Collapse
|