1
|
González-Flores O, Domínguez-Ordóñez R, Delgado-Macuil RJ, Tlachi-López JL, Luna-Hernández A, Montes-Narváez O, Pfaus JG, García-Juárez M. Participation of kisspeptin, progesterone, and GnRH receptors on lordosis behavior induced by kisspeptin. Physiol Behav 2024; 283:114609. [PMID: 38851441 DOI: 10.1016/j.physbeh.2024.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
The neuropeptide kisspeptin (Kiss) is crucial in regulating the hypothalamic-pituitary-gonadal axis. It is produced by two main groups of neurons in the hypothalamus: the rostral periventricular region around the third ventricle and the arcuate nucleus. Kiss is the peptide product of the KiSS-1 gene and serves as the endogenous agonist for the GPR54 receptor. The Kiss/GPR54 system functions as a critical regulator of the reproductive system. Thus, we examined the effect of intracerebroventricular administration of 3 μg of Kiss to the right lateral ventricle of ovariectomized rats primed with a dose of 5 μg subcutaneous (sc) of estradiol benzoate (EB). Kiss treatment increased the lordosis quotient at all times tested. However, the lordosis reflex score was comparatively lower yet still significant compared to the control group. To investigate receptor specificity and downstream mechanisms on lordosis, we infused 10 μg of GPR54 receptor antagonist, Kiss-234, 5 μg of the progestin receptor antagonist, RU486, or 3 μg of antide, a gonadotropin-releasing hormone-1 (GnRH-1) receptor antagonist, to the right lateral ventricle 30 min before an infusion of 3 μg of Kiss. Results demonstrated a significant reduction in the facilitation of lordosis behavior by Kiss at 60 and 120 min when Kiss-234, RU486, or antide were administered. These findings suggest that Kiss stimulates lordosis expression by activating GPR54 receptors on GnRH neurons and that Kiss/GPR54 system is an essential intermediary by which progesterone activates GnRH.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Raymundo Domínguez-Ordóñez
- Licenciatura en Ingeniería Agronómica y Zootecnia, CRC, Benemérita Universidad Autónoma de, Puebla, México
| | - Raul Jacobo Delgado-Macuil
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Santa Inés, Tecuexcomac, Tlaxcala, México
| | | | - Ailyn Luna-Hernández
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Omar Montes-Narváez
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, Czech Republic; Department of Psychology and Life Sciences, Charles University, Prague, Czech Republic
| | - Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México.
| |
Collapse
|
2
|
Hess RA, Park CJ, Soto S, Reinacher L, Oh JE, Bunnell M, Ko CJ. Male animal sterilization: history, current practices, and potential methods for replacing castration. Front Vet Sci 2024; 11:1409386. [PMID: 39027909 PMCID: PMC11255590 DOI: 10.3389/fvets.2024.1409386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Sterilization and castration have been synonyms for thousands of years. Making an animal sterile meant to render them incapable of producing offspring. Castration or the physical removal of the testes was discovered to be the most simple but reliable method for managing reproduction and sexual behavior in the male. Today, there continues to be global utilization of castration in domestic animals. More than six hundred million pigs are castrated every year, and surgical removal of testes in dogs and cats is a routine practice in veterinary medicine. However, modern biological research has extended the meaning of sterilization to include methods that spare testis removal and involve a variety of options, from chemical castration and immunocastration to various methods of vasectomy. This review begins with the history of sterilization, showing a direct link between its practice in man and animals. Then, it traces the evolution of concepts for inducing sterility, where research has overlapped with basic studies of reproductive hormones and the discovery of testicular toxicants, some of which serve as sterilizing agents in rodent pests. Finally, the most recent efforts to use the immune system and gene editing to block hormonal stimulation of testis function are discussed. As we respond to the crisis of animal overpopulation and strive for better animal welfare, these novel methods provide optimism for replacing surgical castration in some species.
Collapse
Affiliation(s)
- Rex A. Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| | - Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| | | | | | - Ji-Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - CheMyong J. Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| |
Collapse
|
3
|
Yamamoto S, Arakaki R, Noguchi H, Takeda A, Uchishiba M, Kamada S, Mineda A, Kon M, Kinouchi R, Yamamoto Y, Yoshida K, Kaji T, Shinohara N, Iwasa T. Kisspeptin administration may promote precopulatory behavior in male rats independently or supplementally to testosterone and contribute to proceptive behavior in female partners, reducing mating failure. Gen Comp Endocrinol 2024; 353:114528. [PMID: 38643848 DOI: 10.1016/j.ygcen.2024.114528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Kisspeptin is a peptide that plays an important role through its effects on the hypothalamus-pituitary-gonadal (HPG) axis. It has also been implicated in sexual behavior. The present study investigated whether the relationship between kisspeptin and sexual behavior is independent of the HPG axis, i.e., testosterone. Sexual behavior was examined after the administration of kisspeptin to gonadally intact male rats and gonadectomized male rats that received testosterone supplementation. Other male rats were also observed for sexual behavior once a week from 2 to 5 weeks after gonadectomy and receiving kisspeptin for the sixth postoperative week. Sexual behavior in female rats serving as the partner for each male was also observed. Female rats were not administered kisspeptin in the present study. The results obtained showed that the administration of kisspeptin increased precopulatory behavior in gonadally intact male rats and gonadectomized male rats that received testosterone supplementation and proceptive behavior in their female partners. Precopulatory behavior in males and receptive behavior in females increased, while copulatory behavior in males and receptive behavior in females remained unchanged. Furthermore, the administration of kisspeptin increased precopulatory behavior in gonadectomized males, but did not affect receptive behavior in females. These results suggest that kisspeptin affected males independently and/or supplementally to testosterone, and also that changes in the presence of testosterone in males had an impact on proceptive behavior in their female partners. In conclusion, kisspeptin may involve an as-yet-unidentified neural pathway in sexual desire independently of the HPG axis.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan; Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Ryosuke Arakaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Asuka Takeda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Maimi Uchishiba
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Shuhei Kamada
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Ayuka Mineda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Masafumi Kon
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Riyo Kinouchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Takashi Kaji
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan.
| |
Collapse
|
4
|
Nakajo M, Kanda S, Oka Y. Involvement of the kisspeptin system in regulation of sexual behaviors in medaka. iScience 2024; 27:108971. [PMID: 38333699 PMCID: PMC10850746 DOI: 10.1016/j.isci.2024.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/09/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
In mammals, kisspeptin (Kiss1) neurons are generally considered as a sex steroid-dependent key regulator of hypothalamic-pituitary-gonadal (HPG) axis. In contrast, previous studies in non-mammalian species, especially in teleosts, propose that Kiss1 is not directly involved in the HPG axis regulation, which suggests some sex-steroid-dependent functions of kisspeptin(s) other than the HPG axis regulation in non-mammals. Here, we used knockout (KO) medaka of kisspeptin receptor-coding genes (gpr54-1 and gpr54-2) and examined possible roles of kisspeptin in the regulation of sexual behaviors. We found that the KO pairs of gpr54-1, but not gpr54-2, spawned fewer eggs and exhibited delayed spawning than wild type pairs. Detailed behavior analysis suggested that the KO females are responsible for the delayed spawning and that the KO males showed hyper-motivation for courtship. Taken together, the present finding suggests that one of the reproductive-state-dependent functions of the Kiss1 may be the control of successful sexual behaviors.
Collapse
Affiliation(s)
- Mikoto Nakajo
- Department of Physiology, Division of Life Sciences, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Shinji Kanda
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
5
|
Patel B, Koysombat K, Mills EG, Tsoutsouki J, Comninos AN, Abbara A, Dhillo WS. The Emerging Therapeutic Potential of Kisspeptin and Neurokinin B. Endocr Rev 2024; 45:30-68. [PMID: 37467734 PMCID: PMC10765167 DOI: 10.1210/endrev/bnad023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Kisspeptin (KP) and neurokinin B (NKB) are neuropeptides that govern the reproductive endocrine axis through regulating hypothalamic gonadotropin-releasing hormone (GnRH) neuronal activity and pulsatile GnRH secretion. Their critical role in reproductive health was first identified after inactivating variants in genes encoding for KP or NKB signaling were shown to result in congenital hypogonadotropic hypogonadism and a failure of pubertal development. Over the past 2 decades since their discovery, a wealth of evidence from both basic and translational research has laid the foundation for potential therapeutic applications. Beyond KP's function in the hypothalamus, it is also expressed in the placenta, liver, pancreas, adipose tissue, bone, and limbic regions, giving rise to several avenues of research for use in the diagnosis and treatment of pregnancy, metabolic, liver, bone, and behavioral disorders. The role played by NKB in stimulating the hypothalamic thermoregulatory center to mediate menopausal hot flashes has led to the development of medications that antagonize its action as a novel nonsteroidal therapeutic agent for this indication. Furthermore, the ability of NKB antagonism to partially suppress (but not abolish) the reproductive endocrine axis has supported its potential use for the treatment of various reproductive disorders including polycystic ovary syndrome, uterine fibroids, and endometriosis. This review will provide a comprehensive up-to-date overview of the preclinical and clinical data that have paved the way for the development of diagnostic and therapeutic applications of KP and NKB.
Collapse
Affiliation(s)
- Bijal Patel
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Kanyada Koysombat
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Edouard G Mills
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Jovanna Tsoutsouki
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Alexander N Comninos
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Ali Abbara
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Waljit S Dhillo
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| |
Collapse
|
6
|
Willmore L, Minerva AR, Engelhard B, Murugan M, McMannon B, Oak N, Thiberge SY, Peña CJ, Witten IB. Overlapping representations of food and social stimuli in VTA dopamine neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541104. [PMID: 37293057 PMCID: PMC10245666 DOI: 10.1101/2023.05.17.541104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dopamine neurons of the ventral tegmental area (VTA DA ) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear if the same or different VTA DA neurons encode these different stimuli. To address this question, we performed 2-photon calcium imaging in mice presented with food and conspecifics, and found statistically significant overlap in the populations responsive to both stimuli. Both hunger and opposite-sex social experience further increased the proportion of neurons that respond to both stimuli, implying that modifying motivation for one stimulus affects responses to both stimuli. In addition, single-nucleus RNA sequencing revealed significant co-expression of feeding- and social-hormone related genes in individual VTA DA neurons. Taken together, our functional and transcriptional data suggest overlapping VTA DA populations underlie food and social motivation.
Collapse
Affiliation(s)
- Lindsay Willmore
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Adelaide R. Minerva
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Ben Engelhard
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
- Department of Medicine, Technion, Haifa, 3525433, Israel
| | - Malavika Murugan
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Brenna McMannon
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Nirja Oak
- Department of Medicine, Technion, Haifa, 3525433, Israel
| | - Stephan Y. Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Catherine J. Peña
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Ilana B. Witten
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| |
Collapse
|
7
|
Medeiros LDS, Rodrigues PDS, Santos DNL, Silva-Sampaio AC, Kirsten TB, Suffredini IB, Coque ADC, da Silva RA, Bernardi MM. Prenatal restraint stress downregulates the hypothalamic kisspeptidergic system transcripts genes, reduces the estrogen plasma levels, delayed the onset of puberty, and reduced the sexual behavior intensity in female rats. Physiol Behav 2023; 260:114055. [PMID: 36563733 DOI: 10.1016/j.physbeh.2022.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
AIMS This study investigated the possible relationships between the expression of the Kiss1 and Gpr54 gene expressions and the pituitary-gonadal hormones with the female onset of puberty and sexual behavior. The Kiss1 and Gpr54 gene expressions were examined because they are critical to controlling the hypothalamic activation of GnRH neurons and, in turn, the pituitary-gonadal hormones related to the early onset of puberty and sexual behavior. Further, it was evaluated that the pituitary and gonadal hormones involved in the vaginal opening and the expression of sexual behavior. METHODS Pregnant rats exposed to PRS from gestation days 17 to 20 were evaluated for maternal and open-field behaviors. The maternal behavior was analyzed because it may alter brain sexual organization affecting the pups development. It was observed in female pups the physical and development and, in adult age, the open-field behavior, the anxiety-like behavior, the estrous cycle, the sexual behavior, the serum FSH, LH, estrogen, progesterone, and testosterone levels, and the gene expression of kisspeptin protein (Kiss1) and Gpr54 in the hypothalamus. RESULTS the maternal and open-field behaviors were unaffected. In the F1 generation, PRS reduced weight at weaning, delayed the day of the vaginal opening and reduced the intensity of lordosis, the estrogen levels, and the Kiss1 and Gpr54 gene expression. These effects were attributed to hypothalamic kisspeptidergic system downregulation of transcripts genes and the reduced estrogen levels affected by the PRS.
Collapse
Affiliation(s)
- Loren da Silva Medeiros
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Paula da Silva Rodrigues
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Daniel Nascimento Lago Santos
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Ana Claudia Silva-Sampaio
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Thiago Berti Kirsten
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Ivana Barbosa Suffredini
- Núcleo de Pesquisas em Biodiversidade, Laboratório de Extração, Universidade Paulista - UNIP, Av. Paulista, 900, São Paulo, SP 01310-100, Brazil
| | - Alex de Camargo Coque
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Rodrigo Augusto da Silva
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil; School of Dentistry, Graduate Program in Health Sciences, University of Taubaté, Rua dos Operários, 9, Taubaté, SP 12020-340, Brazil
| | - Maria Martha Bernardi
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil.
| |
Collapse
|
8
|
Effects of Group Size on Behavior, Reproduction, and mRNA Expression in Brains of Brandt's Voles. Brain Sci 2023; 13:brainsci13020311. [PMID: 36831854 PMCID: PMC9954483 DOI: 10.3390/brainsci13020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
For social animals, a moderate group size is greatly important to maintain their reproductive success. However, the underlying neurobiological mechanism of group size on behavior and reproduction has rarely been investigated. In this study, we examined the effects of group size (1, 2, 4 pairs of adult male and female voles raised per cage) on behavior and reproduction. Meanwhile, the mRNA expression of stress and reproduction response-related genes in male brains was detected. We found that Brandt's voles (Lasiopodomys brandtii) in the large-sized group fight more severely than those in the small-sized group. Meanwhile, male voles were more anxious than females. The average number of embryos and litters per female in the medium-sized group was significantly higher than that of large-sized group. In male voles, stress- or reproduction-response mRNA expressions were more related to final group size or final density due to death caused by fighting. Our results indicated that a moderate group size was beneficial to the reproductive output of Brandt's voles. Our study highlights the combined effects of stress- or reproduction-related gene expression or behavior in regulating the fitness of voles with different group sizes.
Collapse
|
9
|
González-Flores O, Pfaus JG, Luna-Hernández A, Montes-Narváez O, Domínguez-Ordóñez R, Tecamachaltzi-Silvarán MB, García-Juárez M. Estradiol and progesterone-induced lordosis behavior is modulated by both the Kisspeptin receptor and melanin-concentrating hormone in estradiol benzoate-primed rats. Horm Behav 2022; 146:105257. [PMID: 36115135 DOI: 10.1016/j.yhbeh.2022.105257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
Intracerebroventricular (ICV) administration of estradiol benzoate (E2B) and progesterone (P) induces intense lordosis behavior in ovariectomized rats primed peripherally with E2B. The present study tested the hypothesis that the Kisspeptin (Kiss) and melanin-concentrating hormone (MCH) pathways regulate female sexual behavior induced by these steroid hormones. In Experiment 1, we tested the relevance of the Kiss pathway by ICV infusion of its inhibitor, kiss-234, before administration of E2B or P in estrogen-primed rats. Lordosis induced by E2B alone or with the addition of P was reduced significantly at 30, 120, and 240 min. In Experiment 2, ICV infusion of MCH 30 min before E2B or P significantly reduced lordosis in rats primed with E2B alone. These data support the hypothesis that the Kiss and MCH pathways, which can release or modulate gonadotropin-releasing hormone (GnRH), are involved in E2B- and P-induced lordosis.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - James G Pfaus
- Department of Psychology and Life Sciences, Charles University, Prague, Czech Republic; Czech National Institute of Mental Health, Klecany, Czech Republic
| | - Ailyn Luna-Hernández
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Omar Montes-Narváez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Raymundo Domínguez-Ordóñez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Licenciatura en Ingeniería Agronómica y Zootecnia, CRC, Benemérita Universidad Autónoma de Puebla, México
| | | | - Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México.
| |
Collapse
|
10
|
Masumi S, Lee EB, Dilower I, Upadhyaya S, Chakravarthi VP, Fields PE, Rumi MAK. The role of Kisspeptin signaling in Oocyte maturation. Front Endocrinol (Lausanne) 2022; 13:917464. [PMID: 36072937 PMCID: PMC9441556 DOI: 10.3389/fendo.2022.917464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Kisspeptins (KPs) secreted from the hypothalamic KP neurons act on KP receptors (KPRs) in gonadotropin (GPN) releasing hormone (GnRH) neurons to produce GnRH. GnRH acts on pituitary gonadotrophs to induce secretion of GPNs, namely follicle stimulating hormone (FSH) and luteinizing hormone (LH), which are essential for ovarian follicle development, oocyte maturation and ovulation. Thus, hypothalamic KPs regulate oocyte maturation indirectly through GPNs. KPs and KPRs are also expressed in the ovarian follicles across species. Recent studies demonstrated that intraovarian KPs also act directly on the KPRs expressed in oocytes to promote oocyte maturation and ovulation. In this review article, we have summarized published reports on the role of hypothalamic and ovarian KP-signaling in oocyte maturation. Gonadal steroid hormones regulate KP secretion from hypothalamic KP neurons, which in turn induces GPN secretion from the hypothalamic-pituitary (HP) axis. On the other hand, GPNs secreted from the HP axis act on the granulosa cells (GCs) and upregulate the expression of ovarian KPs. While KPs are expressed predominantly in the GCs, the KPRs are in the oocytes. Expression of KPs in the ovaries increases with the progression of the estrous cycle and peaks during the preovulatory GPN surge. Intrafollicular KP levels in the ovaries rise with the advancement of developmental stages. Moreover, loss of KPRs in oocytes in mice leads to failure of oocyte maturation and ovulation similar to that of premature ovarian insufficiency (POI). These findings suggest that GC-derived KPs may act on the KPRs in oocytes during their preovulatory maturation. In addition to the intraovarian role of KP-signaling in oocyte maturation, in vivo, a direct role of KP has been identified during in vitro maturation of sheep, porcine, and rat oocytes. KP-stimulation of rat oocytes, in vitro, resulted in Ca2+ release and activation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1 and 2. In vitro treatment of rat or porcine oocytes with KPs upregulated messenger RNA levels of the factors that favor oocyte maturation. In clinical trials, human KP-54 has also been administered successfully to patients undergoing assisted reproductive technologies (ARTs) for increasing oocyte maturation. Exogenous KPs can induce GPN secretion from hypothalamus; however, the possibility of direct KP action on the oocytes cannot be excluded. Understanding the direct in vivo and in vitro roles of KP-signaling in oocyte maturation will help in developing novel KP-based ARTs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
11
|
Kauffman AS. Neuroendocrine mechanisms underlying estrogen positive feedback and the LH surge. Front Neurosci 2022; 16:953252. [PMID: 35968365 PMCID: PMC9364933 DOI: 10.3389/fnins.2022.953252] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 01/26/2023] Open
Abstract
A fundamental principle in reproductive neuroendocrinology is sex steroid feedback: steroid hormones secreted by the gonads circulate back to the brain to regulate the neural circuits governing the reproductive neuroendocrine axis. These regulatory feedback loops ultimately act to modulate gonadotropin-releasing hormone (GnRH) secretion, thereby affecting gonadotropin secretion from the anterior pituitary. In females, rising estradiol (E2) during the middle of the menstrual (or estrous) cycle paradoxically "switch" from being inhibitory on GnRH secretion ("negative feedback") to stimulating GnRH release ("positive feedback"), resulting in a surge in GnRH secretion and a downstream LH surge that triggers ovulation. While upstream neural afferents of GnRH neurons, including kisspeptin neurons in the rostral hypothalamus, are proposed as critical loci of E2 feedback action, the underlying mechanisms governing the shift between E2 negative and positive feedback are still poorly understood. Indeed, the precise cell targets, neural signaling factors and receptors, hormonal pathways, and molecular mechanisms by which ovarian-derived E2 indirectly stimulates GnRH surge secretion remain incompletely known. In many species, there is also a circadian component to the LH surge, restricting its occurrence to specific times of day, but how the circadian clock interacts with endocrine signals to ultimately time LH surge generation also remains a major gap in knowledge. Here, we focus on classic and recent data from rodent models and discuss the consensus knowledge of the neural players, including kisspeptin, the suprachiasmatic nucleus, and glia, as well as endocrine players, including estradiol and progesterone, in the complex regulation and generation of E2-induced LH surges in females.
Collapse
|
12
|
Ma Y, Awe O, Radovick S, Yang X, Divall S, Wolfe A, Wu S. Lower FSH With Normal Fertility in Male Mice Lacking Gonadotroph Kisspeptin Receptor. Front Physiol 2022; 13:868593. [PMID: 35557961 PMCID: PMC9089166 DOI: 10.3389/fphys.2022.868593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
The kisspeptin receptor, crucial for hypothalamic control of puberty and reproduction, is also present in the pituitary gland. Its role in the pituitary gland is not defined. Kisspeptin signaling via the Kiss1r could potentially regulate reproductive function at the level of pituitary gonadotrope. Using Cre/Lox technology, we deleted the Kiss1r gene in pituitary gonadotropes (PKiRKO). PKiRKO males have normal genital development (anogenital distance WT: 19.1 ± 0.4 vs. PKiRKO: 18.5 ± 0.4 mm), puberty onset, testes cell structure on gross histology, normal testes size, and fertility. PKiRKO males showed significantly decreased serum FSH levels compared to WT males (5.6 ± 1.9 vs. 10.2 ± 1.8 ng/ml) with comparable LH (1.1 ± 0.2 vs. 1.8 ± 0.4 ng/ml) and testosterone levels (351.8 ± 213.0 vs. 342.2 ± 183.0 ng/dl). PKiRKO females have normal puberty onset, cyclicity, LH and FSH levels and fertility. Overall, these findings indicate that absence of pituitary Kiss1r reduces FSH levels in male mice without affecting testis function. PKiRKO mice have normal reproductive function in both males and females.
Collapse
Affiliation(s)
- Yaping Ma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Olubusayo Awe
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sally Radovick
- Department of Pediatrics, Rutgers University Medical School, New Brunswick, NJ, United States
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Sara Divall
- Department of Pediatrics, University of Washington, Seattle's Children's Hospital, Seattle, United States
| | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sheng Wu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
13
|
Zup SL, Park JH, Dominguez JM. Editorial: Intersection of Hormones and Neuropeptides in the Brain. Front Behav Neurosci 2022; 16:886591. [PMID: 35530729 PMCID: PMC9074826 DOI: 10.3389/fnbeh.2022.886591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Susan L Zup
- Developmental and Brain Sciences Program (DBS), Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - Jin Ho Park
- Developmental and Brain Sciences Program (DBS), Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - Juan M Dominguez
- Departments of Psychology, The University of Texas at Austin, Austin, TX, United States.,Department of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
14
|
Dynamics of sexual development in teleosts with a note on Mugil cephalus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Amodei R, Jonker SS, Whitler W, Estill CT, Roselli CE. The GnRH Antagonist Degarelix Suppresses Gonadotropin Secretion and Pituitary Sensitivity in Midgestation Sheep Fetuses. Endocrinology 2022; 163:6484550. [PMID: 34958103 PMCID: PMC8760895 DOI: 10.1210/endocr/bqab262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 12/30/2022]
Abstract
The specific role of gonadotropin-releasing hormone (GnRH) on brain sexual differentiation remains unclear. To investigate whether gonadotropin and, in turn, testosterone (T) secretion is regulated by GnRH during the critical period for brain differentiation in sheep fetuses, we attempted to selectively suppress pituitary-testicular activation during midgestation with the long-acting GnRH antagonist degarelix. Fetuses received subcutaneous injections of the antagonist or vehicle on day 62 of gestation. After 2 to 3 weeks we examined consequences of the intervention on baseline and GnRH-stimulated plasma luteinizing hormone (LH) and T levels. In addition, we measured the effect of degarelix-treatment on messenger RNA (mRNA) expression for the pituitary gonadotropins and key gonadal steroidogenic enzymes. Baseline and GnRH-stimulated plasma LH levels were significantly suppressed in degarelix-treated male and female fetuses compared to control values. Similarly, T concentrations were suppressed in degarelix-treated males. The percentage of LHβ-immunoreactive cells colocalizing c-fos was significantly reduced by degarelix treatment indicating that pituitary sensitivity was inhibited. Degarelix treatment also led to the significant suppression of mRNA expression coding for the pituitary gonadotropin subunits and for the gonadal enzymes involved in androgen synthesis. These findings demonstrate that pharmacologic inhibition of GnRH early in gestation results in suppression of LH secretion and deficits in the plasma T levels of male lamb fetuses. We conclude that GnRH signaling plays a pivotal role for regulating T exposure during the critical period of sheep gestation when the brain is masculinized. Thus, disturbance to gonadotropin secretion during this phase of gestation could have long-term consequence on adult sexual behaviors and fertility.
Collapse
Affiliation(s)
- Rebecka Amodei
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Sonnet S Jonker
- Center for Developmental Health, Oregon Health and Science University, Portland, OR, USA
| | - William Whitler
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Charles T Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, USA
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Charles E Roselli
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
- Correspondence: Charles E. Roselli, PhD, Department of Chemical Physiology and Biochemistry Oregon Health and Science University 3181 SW Sam Jackson Park Rd, Portland, OR 97239-3098 USA.
| |
Collapse
|
16
|
Tsukamura H. Kobayashi Award 2019: The neuroendocrine regulation of the mammalian reproduction. Gen Comp Endocrinol 2022; 315:113755. [PMID: 33711315 DOI: 10.1016/j.ygcen.2021.113755] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 02/05/2023]
Abstract
Mammalian reproductive function is a complex system of many players orchestrated by the hypothalamus-pituitary-gonadal (HPG) axis. The hypothalamic gonadotropin-releasing hormone (GnRH) and the consequent pituitary gonadotropin release show two modes of secretory patterns, namely the surge and pulse modes. The surge mode is triggered by the positive feedback action of estrogen secreted from the mature ovarian follicle to induce ovulation in females of most mammalian species. The pulse mode of GnRH release is required for stimulating tonic gonadotropin secretion to drive folliculogenesis, spermatogenesis and steroidogenesis and is negatively fine-tuned by the sex steroids. Accumulating evidence suggests that hypothalamic kisspeptin neurons are the master regulator for animal reproduction to govern the HPG axis. Specifically, kisspeptin neurons located in the anterior hypothalamus, such as the anteroventral periventricular nucleus (AVPV) in rodents and preoptic nucleus (POA) in ruminants, primates and others, and the neurons located in the arcuate nucleus (ARC) in posterior hypothalamus in most mammals are considered to play a key role in generating the surge and pulse modes of GnRH release, respectively. The present article focuses on the role of AVPV (or POA) kisspeptin neurons as a center for GnRH surge generation and of the ARC kisspeptin neurons as a center for GnRH pulse generation to mediate estrogen positive and negative feedback mechanisms, respectively, and discusses how the estrogen epigenetically regulates kisspeptin gene expression in these two populations of neurons. This article also provides the mechanism how malnutrition and lactation suppress GnRH/gonadotropin pulses through an inhibition of the ARC kisspeptin neurons. Further, the article discusses the programming effect of estrogen on kisspeptin neurons in the developmental brain to uncover the mechanism underlying the sex difference in GnRH/gonadotropin release as well as an irreversible infertility induced by supra-physiological estrogen exposure in rodent models.
Collapse
Affiliation(s)
- Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
17
|
Xie Q, Kang Y, Zhang C, Xie Y, Wang C, Liu J, Yu C, Zhao H, Huang D. The Role of Kisspeptin in the Control of the Hypothalamic-Pituitary-Gonadal Axis and Reproduction. Front Endocrinol (Lausanne) 2022; 13:925206. [PMID: 35837314 PMCID: PMC9273750 DOI: 10.3389/fendo.2022.925206] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/30/2022] [Indexed: 01/07/2023] Open
Abstract
The discovery of kisspeptin as a critical central regulatory factor of GnRH release has given people a novel understanding of the neuroendocrine regulation in human reproduction. Kisspeptin activates the signaling pathway by binding to its receptor kisspeptin receptor (KISS1R) to promote GnRH secretion, thereby regulating the hypothalamic-pituitary-gonadal axis (HPG) axis. Recent studies have shown that kisspeptin neurons located in arcuate nucleus (ARC) co-express neurokinin B (NKB) and dynorphin (Dyn). Such neurons are called KNDy neurons. KNDy neurons participate in the positive and negative feedback of estrogen to GnRH secretion. In addition, kisspeptin is a key factor in the initiation of puberty, and also regulates the processes of female follicle development, oocyte maturation, and ovulation through the HPG axis. In male reproduction, kisspeptin also plays an important role, getting involved in the regulation of Leydig cells, spermatogenesis, sperm functions and reproductive behaviors. Mutations in the KISS1 gene or disorders of the kisspeptin/KISS1R system may lead to clinical symptoms such as idiopathic hypogonadotropic hypogonadism (iHH), central precocious puberty (CPP) and female infertility. Understanding the influence of kisspeptin on the reproductive axis and related mechanisms will help the future application of kisspeptin in disease diagnosis and treatment. In this review, we critically appraise the role of kisspeptin in the HPG axis, including its signaling pathways, negative and positive feedback mechanisms, and its control on female and male reproduction.
Collapse
Affiliation(s)
- Qinying Xie
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Kang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlu Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Xie
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuxiong Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caiqian Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Zhao
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghui Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Nakamura S, Watanabe Y, Goto T, Ikegami K, Inoue N, Uenoyama Y, Tsukamura H. Kisspeptin neurons as a key player bridging the endocrine system and sexual behavior in mammals. Front Neuroendocrinol 2022; 64:100952. [PMID: 34755641 DOI: 10.1016/j.yfrne.2021.100952] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023]
Abstract
Reproductive behaviors are sexually differentiated: for example, male rodents show mounting behavior, while females in estrus show lordosis behavior as sex-specific sexual behaviors. Kisspeptin neurons govern reproductive function via direct stimulation of gonadotropin-releasing hormone (GnRH) and subsequent gonadotropin release for gonadal steroidogenesis in mammals. First, we discuss the role of hypothalamic kisspeptin neurons as an indispensable regulator of sexual behavior by stimulating the synthesis of gonadal steroids, which exert "activational effects" on the behavior in adulthood. Second, we discuss the central role of kisspeptin neurons that are directly involved in neural circuits controlling sexual behavior in adulthood. We then focused on the role of perinatal hypothalamic kisspeptin neurons in the induction of perinatal testosterone secretion for its "organizational effects" on masculinization/defeminization of the male brain in rodents during a critical period. We subsequently concluded that kisspeptin neurons are key players in bridging the endocrine system and sexual behavior in mammals.
Collapse
Affiliation(s)
- Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Youki Watanabe
- Graduate School of Applied Life Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Teppei Goto
- RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Kana Ikegami
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
19
|
Mills EG, Yang L, Abbara A, Dhillo WS, Comninos AN. Current Perspectives on Kisspeptins Role in Behaviour. Front Endocrinol (Lausanne) 2022; 13:928143. [PMID: 35757400 PMCID: PMC9225141 DOI: 10.3389/fendo.2022.928143] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
The neuropeptide kisspeptin is now well-established as the master regulator of the mammalian reproductive axis. Beyond the hypothalamus, kisspeptin and its cognate receptor are also extensively distributed in extra-hypothalamic brain regions. An expanding pool of animal and human data demonstrates that kisspeptin sits within an extensive neuroanatomical and functional framework through which it can integrate a range of internal and external cues with appropriate neuroendocrine and behavioural responses. In keeping with this, recent studies reveal wide-reaching effects of kisspeptin on key behaviours such as olfactory-mediated partner preference, sexual motivation, copulatory behaviour, bonding, mood, and emotions. In this review, we provide a comprehensive update on the current animal and human literature highlighting the far-reaching behaviour and mood-altering roles of kisspeptin. A comprehensive understanding of this important area in kisspeptin biology is key to the escalating development of kisspeptin-based therapies for common reproductive and related psychological and psychosexual disorders.
Collapse
Affiliation(s)
- Edouard G. Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Lisa Yang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Waljit S. Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- *Correspondence: Waljit S. Dhillo, ; Alexander N. Comninos,
| | - Alexander N. Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- *Correspondence: Waljit S. Dhillo, ; Alexander N. Comninos,
| |
Collapse
|
20
|
Hypothalamic kisspeptin and kisspeptin receptors: Species variation in reproduction and reproductive behaviours. Front Neuroendocrinol 2022; 64:100951. [PMID: 34757093 DOI: 10.1016/j.yfrne.2021.100951] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Kisspeptin, encoded by the KISS1 gene, was first discovered as a potential metastasis suppressor gene. The prepro-kisspeptin precursor is cleaved into shorter mature bioactive peptides of varying sizes that bind to the G protein-coupled receptor GPR54 (=KISS1R). Over the last two decades, multiple types of Kiss and KissR genes have been discovered in mammalian and non-mammalian vertebrate species, but they are remarkably absent in birds. Kiss neuronal populations are distributed mainly in the hypothalamus. The KissRs are widely distributed in the brain, including the hypothalamic and non-hypothalamic regions, such as the hippocampus, amygdala, and habenula. The role of KISS1-KISS1R in humans and Kiss1-Kiss1R in rodents is associated with puberty, gonadal maturation, and the reproductive axis. However, recent gene deletion studies in zebrafish and medaka have provided controversial results, suggesting that the reproductive role of kiss is dispensable. This review highlights the evolutionary history, localisation, and significance of Kiss-KissR in reproduction and reproductive behaviours in mammalian and non-mammalian vertebrates.
Collapse
|
21
|
Bentefour Y, Bakker J. Kisspeptin signaling and nNOS neurons in the VMHvl modulate lordosis behavior but not mate preference in female mice. Neuropharmacology 2021; 198:108762. [PMID: 34437905 DOI: 10.1016/j.neuropharm.2021.108762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/15/2022]
Abstract
It was recently shown that kisspeptin neurons in the anteroventral periventricular area (AVPV) orchestrate female sexual behavior, including lordosis behavior and mate preference. A potential target of AVPV kisspeptin signaling could be neurons expressing the neuronal form of nitric oxide synthase (nNOS) in the ventrolateral part of the ventromedial hypothalamus (VMHvl). Therefore, in the present study, we further refined the role of the VHMvl in female sexual behavior. Adult female mice received a bilateral cannula aimed at the VMHvl. A single injection with kisspeptin (Kp-10) or SNAP/BAY, a nitric oxide donor, significantly increased lordosis, whereas the nNOS inhibitor l-NAME decreased it. None of these drugs affected mate preference. Interestingly, administration of GnRH into the VMHvl had no effect on lordosis or mate preference. To determine whether the stimulatory effect of Kp-10 on lordosis was specific to the VMHvl, an additional group of females received Kp-10 directly into the paraventricular nucleus (PVN). No effect was found on lordosis and mate preference. These results suggest that kisspeptin most likely modulates lordosis behavior through nNOS neurons in the VMHvl whereas mate preference is modulated by kisspeptin through a separate neuronal circuit not including the VMHvl.
Collapse
Affiliation(s)
- Yassine Bentefour
- GIGA Neurosciences, Neuroendocrinology, University of Liège, 4000, Liège, Belgium
| | - Julie Bakker
- GIGA Neurosciences, Neuroendocrinology, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
22
|
The "Adipo-Cerebral" Dialogue in Childhood Obesity: Focus on Growth and Puberty. Physiopathological and Nutritional Aspects. Nutrients 2021; 13:nu13103434. [PMID: 34684432 PMCID: PMC8539184 DOI: 10.3390/nu13103434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Overweight and obesity in children and adolescents are overwhelming problems in western countries. Adipocytes, far from being only fat deposits, are capable of endocrine functions, and the endocrine activity of adipose tissue, resumable in adipokines production, seems to be a key modulator of central nervous system function, suggesting the existence of an “adipo-cerebral axis.” This connection exerts a key role in children growth and puberty development, and it is exemplified by the leptin–kisspeptin interaction. The aim of this review was to describe recent advances in the knowledge of adipose tissue endocrine functions and their relations with nutrition and growth. The peculiarities of major adipokines are briefly summarized in the first paragraph; leptin and its interaction with kisspeptin are focused on in the second paragraph; the third paragraph deals with the regulation of the GH-IGF axis, with a special focus on the model represented by growth hormone deficiency (GHD); finally, old and new nutritional aspects are described in the last paragraph.
Collapse
|
23
|
Neural basis for estrous cycle-dependent control of female behaviors. Neurosci Res 2021; 176:1-8. [PMID: 34331974 DOI: 10.1016/j.neures.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 01/30/2023]
Abstract
Females display changes in distinct behaviors along the estrous cycle. Levels of circulating ovarian sex steroid hormones peak around ovulation, which occur around estrus phase of the cycle. This increase of sex hormones is thought to be important for changes in behaviors, however, neural circuit mechanisms of periodic behavioral changes in females are not understood well. Different lines of research indicate sex hormonal effects on several forms of neuronal plasticity. This review provides an overview of behavioral and plastic changes that occur in an estrous cycle-dependent manner and explores the current research linking these changes to understand neural circuit mechanisms that control female behaviors.
Collapse
|
24
|
The Role of Peptide Hormones Discovered in the 21st Century in the Regulation of Adipose Tissue Functions. Genes (Basel) 2021; 12:genes12050756. [PMID: 34067710 PMCID: PMC8155905 DOI: 10.3390/genes12050756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Peptide hormones play a prominent role in controlling energy homeostasis and metabolism. They have been implicated in controlling appetite, the function of the gastrointestinal and cardiovascular systems, energy expenditure, and reproduction. Furthermore, there is growing evidence indicating that peptide hormones and their receptors contribute to energy homeostasis regulation by interacting with white and brown adipose tissue. In this article, we review and discuss the literature addressing the role of selected peptide hormones discovered in the 21st century (adropin, apelin, elabela, irisin, kisspeptin, MOTS-c, phoenixin, spexin, and neuropeptides B and W) in controlling white and brown adipogenesis. Furthermore, we elaborate how these hormones control adipose tissue functions in vitro and in vivo.
Collapse
|
25
|
Mills EG, Izzi-Engbeaya C, Abbara A, Comninos AN, Dhillo WS. Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nat Rev Endocrinol 2021; 17:97-113. [PMID: 33273729 DOI: 10.1038/s41574-020-00438-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The bioactive peptides galanin, spexin and kisspeptin have a common ancestral origin and their pathophysiological roles are increasingly the subject of investigation. Evidence suggests that these bioactive peptides play a role in the regulation of metabolism, pancreatic β-cell function, energy homeostasis, mood and behaviour in several species, including zebrafish, rodents and humans. Galanin signalling suppresses insulin secretion in animal models (but not in humans), is potently obesogenic and plays putative roles governing certain evolutionary behaviours and mood modulation. Spexin decreases insulin secretion and has potent anorectic, analgesic, anxiolytic and antidepressive-like effects in animal models. Kisspeptin modulates glucose-stimulated insulin secretion, food intake and/or energy expenditure in animal models and humans. Furthermore, kisspeptin is implicated in the control of reproductive behaviour in animals, modulation of human sexual and emotional brain processing, and has antidepressive and fear-suppressing effects. In addition, galanin-like peptide is a further member of the galaninergic family that plays emerging key roles in metabolism and behaviour. Therapeutic interventions targeting galanin, spexin and/or kisspeptin signalling pathways could therefore contribute to the treatment of conditions ranging from obesity to mood disorders. However, many gaps and controversies exist, which must be addressed before the therapeutic potential of these bioactive peptides can be established.
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
26
|
Lopez-Rodriguez D, Franssen D, Bakker J, Lomniczi A, Parent AS. Cellular and molecular features of EDC exposure: consequences for the GnRH network. Nat Rev Endocrinol 2021; 17:83-96. [PMID: 33288917 DOI: 10.1038/s41574-020-00436-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The onset of puberty and the female ovulatory cycle are important developmental milestones of the reproductive system. These processes are controlled by a tightly organized network of neurotransmitters and neuropeptides, as well as genetic, epigenetic and hormonal factors, which ultimately drive the pulsatile secretion of gonadotropin-releasing hormone. They also strongly depend on organizational processes that take place during fetal and early postnatal life. Therefore, exposure to environmental pollutants such as endocrine-disrupting chemicals (EDCs) during critical periods of development can result in altered brain development, delayed or advanced puberty and long-term reproductive consequences, such as impaired fertility. The gonads and peripheral organs are targets of EDCs, and research from the past few years suggests that the organization of the neuroendocrine control of reproduction is also sensitive to environmental cues and disruption. Among other mechanisms, EDCs interfere with the action of steroidal and non-steroidal receptors, and alter enzymatic, metabolic and epigenetic pathways during development. In this Review, we discuss the cellular and molecular consequences of perinatal exposure (mostly in rodents) to representative EDCs with a focus on the neuroendocrine control of reproduction, pubertal timing and the female ovulatory cycle.
Collapse
Affiliation(s)
| | - Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Julie Bakker
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center (ONPRC), OHSU, OR, USA
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium.
- Department of Pediatrics, University Hospital Liège, Liège, Belgium.
| |
Collapse
|
27
|
Gene Profiles in the Early Stage of Neuronal Differentiation of Mouse Bone Marrow Stromal Cells Induced by Basic Fibroblast Growth Factor. Stem Cells Int 2021; 2020:8857057. [PMID: 33424980 PMCID: PMC7775150 DOI: 10.1155/2020/8857057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 11/20/2022] Open
Abstract
A stably established population of mouse bone marrow stromal cells (BMSCs) with self-renewal and multilineage differentiation potential was expanded in vitro for more than 50 passages. These cells express high levels of mesenchymal stem cell markers and can be differentiated into adipogenic, chondrogenic, and osteogenic lineages in vitro. Subjected to basic fibroblast growth factor (bFGF) treatment, a typical neuronal phenotype was induced in these cells, as supported by neuronal morphology, induction of neuronal markers, and relevant electrophysiological excitability. To identify the genes regulating neuronal differentiation, cDNA microarray analysis was conducted using mRNAs isolated from cells differentiated for different time periods (0, 4, 24, and 72 h) after bFGF treatment. Various expression patterns of neuronal genes were stimulated by bFGF. These gene profiles were shown to be involved in developmental, functional, and structural integration of the nervous system. The expression of representative genes stimulated by bFGF in each group was verified by RT-PCR. Amongst proneural genes, the mammalian achate-schute homolog 1 (Mash-1), a basic helix-loop-helix transcriptional factor, was further demonstrated to be significantly upregulated. Overexpression of Mash-1 in mouse BMSCs was shown to induce the expression of neuronal specific enolase (NSE) and terminal neuronal morphology, suggesting that Mash-1 plays an important role in the induction of neuronal differentiation of mouse BMSCs.
Collapse
|
28
|
Prabhat A, Batra T, Kumar V. Effects of timed food availability on reproduction and metabolism in zebra finches: Molecular insights into homeostatic adaptation to food-restriction in diurnal vertebrates. Horm Behav 2020; 125:104820. [PMID: 32710887 DOI: 10.1016/j.yhbeh.2020.104820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 01/06/2023]
Abstract
Food availability affects metabolism and reproduction in higher vertebrates including birds. This study tested the idea of adaptive homeostasis to time-restricted feeding (TRF) in diurnal zebra finches by using multiple (behavioral, physiological and molecular) assays. Adult birds were subjected for 1 week or 3 weeks to food restriction for 4 h in the evening (hour 8-12) of the 12 h light-on period, with controls on ad lib feeding. Birds on TRF showed enhanced exploratory behavior and plasma triglycerides levels, but did not show differences from ad lib birds in the overall food intake, body mass, and plasma corticosterone and thyroxine levels. As compared to ad lib feeding, testis size and circulation testosterone were reduced after first but not after third week of TRF. The concomitant change in the mRNA expression of metabolic and reproductive genes was also found after week 1 of TRF. Particularly, TRF birds showed increased expression of genes coding for gonadotropin releasing hormone (GnRH) in hypothalamus, and for receptors of androgen (AR) and estrogen (ER-alpha) in both hypothalamus and testes. However, genes coding for the deiodinases (Dio2, Dio3) and gonadotropin inhibiting hormone (GnIH) showed no difference between feeding conditions in both hypothalamus and testes. Further, increased Sirt1, Fgf10 and Ppar-alpha, and decreased Egr1 expression in the liver suggested TRF-effects on the overall metabolism. Importantly, TRF-effects on gene expressions by week 1 seemed alleviated to a considerable extent by week 3. These results on TRF-induced reproductive and metabolic effects suggest homeostatic adaptation to food-restriction in diurnal vertebrates.
Collapse
Affiliation(s)
- Abhilash Prabhat
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Twinkle Batra
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
29
|
Bhardwaj S, Kumar P, Jerome A, Ravesh S, Patil C, Singh P, Lailer PC. Serum kisspeptin: New possible biomarker for sexual behaviour and sperm concentration in buffalo bulls. Reprod Domest Anim 2020; 55:1190-1201. [PMID: 32602182 DOI: 10.1111/rda.13761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/23/2020] [Indexed: 11/26/2022]
Abstract
The study was designed to decipher the inter-relationship between peripheral hormones (kisspeptin and testosterone), sexual behaviour and seminal variables of Murrah buffalo bulls (n = 134). In this study, we recorded that 13%, 37%, 40%, 6% and 4% Murrah buffalo bulls had reaction time of <30, 31-60, 61-180, 181-300 and >300 s, respectively. Further, it was observed that 4%, 85% and 10% buffalo bulls were sexually aggressive, active and dull, respectively, during semen collection. The courtship behaviour was not found to be desirable for the bulls used for the semen collection. Mean of ejaculate volume, sperm concentration and mass motility (0-5 scale) were 3.57 ml, 977.11 million/ml, 2.7, respectively. Correlation studies revealed that the reaction time was positively correlated with courtship behaviour and body weight, and negatively correlated with sexual aggressiveness and sperm concentration. Serum kisspeptin in buffalo bulls, measured for the first time, was found to 3.8 ± 0.7 ng/ml. Serum kisspeptin and testosterone level are negatively correlated to each other and kisspeptin level influenced the sexual behaviour (reaction time, sexual aggressiveness and penile erection) of study bulls. Serum kisspeptin was higher in the buffalo bulls with higher sperm concentration indicating its role in spermatogenesis. In conclusion, for the first time basic information related to sexual behaviour of Murrah buffalo bulls in large population along with its inter-relationship with peripheral hormones (kisspeptin and testosterone) has been documented.
Collapse
Affiliation(s)
- Sonam Bhardwaj
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, India.,Livestock Production and Management Section, ICAR- National Dairy Research Institute, Karnal, India
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, India
| | - Andonissamy Jerome
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, India
| | - Suman Ravesh
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, India
| | - Chandrashekhar Patil
- Department of Animal Breeding and Genetics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Pawan Singh
- Livestock Production and Management Section, ICAR- National Dairy Research Institute, Karnal, India
| | - Puran Chand Lailer
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
30
|
Ikegami K, Goto T, Nakamura S, Watanabe Y, Sugimoto A, Majarune S, Horihata K, Nagae M, Tomikawa J, Imamura T, Sanbo M, Hirabayashi M, Inoue N, Maeda KI, Tsukamura H, Uenoyama Y. Conditional kisspeptin neuron-specific Kiss1 knockout with newly generated Kiss1-floxed and Kiss1-Cre mice replicates a hypogonadal phenotype of global Kiss1 knockout mice. J Reprod Dev 2020; 66:359-367. [PMID: 32307336 PMCID: PMC7470906 DOI: 10.1262/jrd.2020-026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The present study aimed to evaluate whether novel conditional kisspeptin neuron-specific Kiss1 knockout (KO) mice utilizing the Cre-loxP system could recapitulate
the infertility of global Kiss1 KO models, thereby providing further evidence for the fundamental role of hypothalamic kisspeptin neurons in regulating mammalian
reproduction. We generated Kiss1-floxed mice and hypothalamic kisspeptin neuron-specific Cre-expressing transgenic mice and then crossed these two
lines. The conditional Kiss1 KO mice showed pubertal failure along with a suppression of gonadotropin secretion and ovarian atrophy. These results indicate that
newly-created hypothalamic Kiss1 KO mice obtained by the Cre-loxP system recapitulated the infertility of global Kiss1 KO models, suggesting that
hypothalamic kisspeptin, but not peripheral kisspeptin, is critical for reproduction. Importantly, these Kiss1-floxed mice are now available and will be a valuable
tool for detailed analyses of roles of each population of kisspeptin neurons in the brain and peripheral kisspeptin-producing cells by the spatiotemporal-specific manipulation of
Cre expression.
Collapse
Affiliation(s)
- Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Teppei Goto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.,Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Sho Nakamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Youki Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Arisa Sugimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Sutisa Majarune
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei Horihata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Nagae
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Junko Tomikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takuya Imamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei-Ichiro Maeda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
31
|
Amodei R, Gribbin K, He W, Lindgren I, Corder KR, Jonker SS, Estill CT, Coolen LM, Lehman MN, Whitler W, Stormshak F, Roselli CE. Role for Kisspeptin and Neurokinin B in Regulation of Luteinizing Hormone and Testosterone Secretion in the Fetal Sheep. Endocrinology 2020; 161:bqaa013. [PMID: 32005991 PMCID: PMC7079722 DOI: 10.1210/endocr/bqaa013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022]
Abstract
Evidence suggests that the hypothalamic-pituitary-gonadal (HPG) axis is active during the critical period for sexual differentiation of the ovine sexually dimorphic nucleus, which occurs between gestational day (GD) 60 and 90. Two possible neuropeptides that could activate the fetal HPG axis are kisspeptin and neurokinin B (NKB). We used GD85 fetal lambs to determine whether intravenous administration of kisspeptin-10 (KP-10) or senktide (NKB agonist) could elicit luteinizing hormone (LH) release. Immunohistochemistry and fluorescent in situ hybridization (FISH) were employed to localize these peptides in brains of GD60 and GD85 lamb fetuses. In anesthetized fetuses, KP-10 elicited robust release of LH that was accompanied by a delayed rise in serum testosterone in males. Pretreatment with the GnRH receptor antagonist (acyline) abolished the LH response to KP-10, confirming a hypothalamic site of action. In unanesthetized fetuses, senktide, as well as KP-10, elicited LH release. The senktide response of females was greater than that of males, indicating a difference in NKB sensitivity between sexes. Gonadotropin-releasing hormone also induced a greater LH discharge in females than in males, indicating that testosterone negative feedback is mediated through pituitary gonadotrophs. Kisspeptin and NKB immunoreactive cells in the arcuate nucleus were more abundant in females than in males. Greater than 85% of arcuate kisspeptin cells costained for NKB. FISH revealed that the majority of these were kisspeptin/NKB/dynorphin (KNDy) neurons. These results support the hypothesis that kisspeptin-GnRH signaling regulates the reproductive axis of the ovine fetus during the prenatal critical period acting to maintain a stable androgen milieu necessary for brain masculinization.
Collapse
Affiliation(s)
- Rebecka Amodei
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - Kyle Gribbin
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - Wen He
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Isa Lindgren
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon
| | - Keely R Corder
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon
| | - Sonnet S Jonker
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon
| | - Charles T Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Lique M Coolen
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - William Whitler
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Fred Stormshak
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon
| | - Charles E Roselli
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
32
|
Yang L, Demetriou L, Wall MB, Mills EG, Zargaran D, Sykes M, Prague JK, Abbara A, Owen BM, Bassett PA, Rabiner EA, Comninos AN, Dhillo WS. Kisspeptin enhances brain responses to olfactory and visual cues of attraction in men. JCI Insight 2020; 5:133633. [PMID: 32051344 PMCID: PMC7098781 DOI: 10.1172/jci.insight.133633] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023] Open
Abstract
Successful reproduction is a fundamental physiological process that relies on the integration of sensory cues of attraction with appropriate emotions and behaviors and the reproductive axis. However, the factors responsible for this integration remain largely unexplored. Using functional neuroimaging, hormonal, and psychometric analyses, we demonstrate that the reproductive hormone kisspeptin enhances brain activity in response to olfactory and visual cues of attraction in men. Furthermore, the brain regions enhanced by kisspeptin correspond to areas within the olfactory and limbic systems that govern sexual behavior and perception of beauty as well as overlap with its endogenous expression pattern. Of key functional and behavioral significance, we observed that kisspeptin was most effective in men with lower sexual quality-of-life scores. As such, our results reveal a previously undescribed attraction pathway in humans activated by kisspeptin and identify kisspeptin signaling as a new therapeutic target for related reproductive and psychosexual disorders. Kisspeptin enhances brain processing in response to olfactory and visual cues of attraction and is most effective in men with lower sexual quality of life.
Collapse
Affiliation(s)
- Lisa Yang
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, United Kingdom
| | - Lysia Demetriou
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, United Kingdom.,Invicro, Hammersmith Hospital, London, United Kingdom
| | - Matthew B Wall
- Invicro, Hammersmith Hospital, London, United Kingdom.,Division of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom.,Clinical Psychopharmacology Unit, University College London, United Kingdom
| | - Edouard Ga Mills
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, United Kingdom
| | - David Zargaran
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, United Kingdom
| | - Mark Sykes
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, United Kingdom
| | - Julia K Prague
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, United Kingdom
| | - Ali Abbara
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, United Kingdom
| | - Bryn M Owen
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, United Kingdom
| | | | - Eugenii A Rabiner
- Invicro, Hammersmith Hospital, London, United Kingdom.,Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, United Kingdom
| | - Alexander N Comninos
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, United Kingdom.,Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Waljit S Dhillo
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, United Kingdom
| |
Collapse
|
33
|
Sen A, Hoffmann HM. Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis. Mol Cell Endocrinol 2020; 501:110655. [PMID: 31756424 PMCID: PMC6962569 DOI: 10.1016/j.mce.2019.110655] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/17/2022]
Abstract
Precise timing in hormone release from the hypothalamus, the pituitary and ovary is critical for fertility. Hormonal release patterns of the reproductive axis are regulated by a feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. The timing and rhythmicity of hormone release and tissue sensitivity in the HPG axis is regulated by circadian clocks located in the hypothalamus (suprachiasmatic nucleus, kisspeptin and GnRH neurons), the pituitary (gonadotrophs), the ovary (theca and granulosa cells), the testis (Leydig cells), as well as the uterus (endometrium and myometrium). The circadian clocks integrate environmental and physiological signals to produce cell endogenous rhythms generated by a transcriptional-translational feedback loop of transcription factors that are collectively called the "molecular clock". This review specifically focuses on the contribution of molecular clock transcription factors in regulating hormone release patterns in the reproductive axis, with an emphasis on the female reproductive system. Specifically, we discuss the contributions of circadian rhythms in distinct neuronal populations of the female hypothalamus, the molecular clock in the pituitary and its overall impact on female and male fertility.
Collapse
Affiliation(s)
- Aritro Sen
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Hanne M Hoffmann
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
34
|
Fujiyama T, Miyashita S, Tsuneoka Y, Kanemaru K, Kakizaki M, Kanno S, Ishikawa Y, Yamashita M, Owa T, Nagaoka M, Kawaguchi Y, Yanagawa Y, Magnuson MA, Muratani M, Shibuya A, Nabeshima YI, Yanagisawa M, Funato H, Hoshino M. Forebrain Ptf1a Is Required for Sexual Differentiation of the Brain. Cell Rep 2019; 24:79-94. [PMID: 29972793 DOI: 10.1016/j.celrep.2018.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/14/2018] [Accepted: 05/31/2018] [Indexed: 01/11/2023] Open
Abstract
The mammalian brain undergoes sexual differentiation by gonadal hormones during the perinatal critical period. However, the machinery at earlier stages has not been well studied. We found that Ptf1a is expressed in certain neuroepithelial cells and immature neurons around the third ventricle that give rise to various neurons in several hypothalamic nuclei. We show that conditional Ptf1a-deficient mice (Ptf1a cKO) exhibit abnormalities in sex-biased behaviors and reproductive organs in both sexes. Gonadal hormone administration to gonadectomized animals revealed that the abnormal behavior is caused by disorganized sexual development of the knockout brain. Accordingly, expression of sex-biased genes was severely altered in the cKO hypothalamus. In particular, Kiss1, important for sexual differentiation of the brain, was drastically reduced in the cKO hypothalamus, which may contribute to the observed phenotypes in the Ptf1a cKO. These findings suggest that forebrain Ptf1a is one of the earliest regulators for sexual differentiation of the brain.
Collapse
Affiliation(s)
- Tomoyuki Fujiyama
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | | | - Kazumasa Kanemaru
- Department of Immunology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Miyo Kakizaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satomi Kanno
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukiko Ishikawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Mariko Yamashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan; Department of Developmental and Regenerative Biology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tomoo Owa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | - Mai Nagaoka
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | - Yoshiya Kawaguchi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University, Maebashi 371-8511, Japan
| | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Masafumi Muratani
- Department of Genome Biology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Shibuya
- Department of Immunology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yo-Ichi Nabeshima
- Foundation for Biomedical Research and Innovation, Kobe 650-0047, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Anatomy, Toho University, Tokyo 143-8540, Japan.
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
35
|
Tolson KP, Marooki N, Wolfe A, Smith JT, Kauffman AS. Cre/lox generation of a novel whole-body Kiss1r KO mouse line recapitulates a hypogonadal, obese, and metabolically-impaired phenotype. Mol Cell Endocrinol 2019; 498:110559. [PMID: 31442544 PMCID: PMC6814569 DOI: 10.1016/j.mce.2019.110559] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Kisspeptin and its receptor, Kiss1r, act centrally to stimulate reproduction. Recent evidence indicates that kisspeptin is also important for body weight and metabolism, as whole-body Kiss1r KO mice, developed with gene trap technology, display obesity and reduced metabolism. Kiss1r is expressed in brain and multiple peripheral tissues, but it is unknown which is responsible for the metabolic phenotype. Here, we sought to confirm that 1) the metabolic phenotype of the gene trap Kiss1r KOs is due to disruption of kisspeptin signaling and not off-target effects of viral mutagenesis, and 2) the Kiss1r flox line is suitable for creating conditional KOs to study the metabolic phenotype. We used Cre/lox technology (Zp3-Cre/Kiss1r flox) to develop a new global Kiss1r KO ("Kiss1r gKO") to compare with the original gene trap KO phenotype. We confirmed that deleting exon 2 of Kiss1r from the entire body induces hypogonadism in both sexes. Moreover, global deletion of Kiss1r induced obesity in females, but not males, along with increased adiposity and impaired glucose tolerance, similar to the gene trap Kiss1r KOs. Likewise, Kiss1r gKO females had decreased VO2 and VCO2, likely underlying their obesity. These findings support that our previous results in gene trap Kiss1r KOs are due to disrupted kisspeptin signaling, and further highlight a role for Kiss1r signaling in energy expenditure and metabolism besides controlling reproduction. Moreover, given Kiss1r expression in multiple cell-types, our findings indicate that the Kiss1r flox line is viable for future investigations to isolate specific target cells of kisspeptin's metabolic effects.
Collapse
Affiliation(s)
- Kristen P Tolson
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Nuha Marooki
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Andrew Wolfe
- Department of Pediatrics and Physiology, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy T Smith
- School of Human Sciences, University of Western Australia, Perth, Australia
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
36
|
Leptin actions through the nitrergic system to modulate the hypothalamic expression of the kiss1 mRNA in the female rat. Brain Res 2019; 1728:146574. [PMID: 31790683 DOI: 10.1016/j.brainres.2019.146574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 11/22/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) is the main controller of the reproductive axis and stimulates the synthesis and secretion of gonadotrophins. Estrogen is the main peripheral factor controlling GnRH secretion, and this action is mainly mediated by the transsynaptic pathway through nitric oxide, kisspeptin, leptin, among other factors. Kisspeptin is the most potent factor known to induce GnRH release. Nitric oxide and leptin also promote GnRH release; however, neurons expressing GnRH do not express the leptin receptor (OB-R). Leptin seems to modulate the expression of genes and proteins involved in the kisspeptin system. However, few kisspeptin-synthesizing cells in the arcuate nucleus (ARC) and few cells, if any, in the preoptic area (POA) express OB-R; this indicates an indirect mechanism of leptin action on kisspeptin. Nitric oxide is an important intermediate in the actions of leptin in the central nervous system. Thus, this work aimed to verify the numbers of nNOS cells were activated by leptin in different hypothalamic areas; the modulatory effects of the nitrergic system on the kisspeptin system; and the indirect regulatory effect of leptin on the kisspeptin system via nitric oxide. Ovariectomized rats were treated with estrogen or a vehicle and received an intracerebroventricular (i.c.v.) injection of a nitric oxide donor, leptin or neuronal nitric oxide synthase (nNOS) enzyme inhibitor. Thirty minutes after the injection, the animals were decapitated. Leptin acts directly on nitrergic neurons in different hypothalamic regions, and the effects on the ventral premammillary nucleus (PMV) and ventral dorsomedial hypothalamus (vDMH) are enhanced. The use of a nitric oxide donor or the administration of leptin stimulates the expression of the kisspeptin mRNA in the ARC of animals with or without estrogenic action; however, these changes are not observed in the POA. In addition, the action of leptin on the expression of the kisspeptin mRNA in the ARC is blocked by a nitric oxide synthesis inhibitor. We concluded that the effects of leptin on the central nervous system are at least partially mediated by the nitrergic system. Also, nitric oxide acts on the kisspeptin system by modulating the expression of the kisspeptin mRNA, and leptin at least partially modulates the kisspeptin system through the nitrergic system, particularly in the ARC.
Collapse
|
37
|
Cherry JA, Baum MJ. Sex differences in main olfactory system pathways involved in psychosexual function. GENES BRAIN AND BEHAVIOR 2019; 19:e12618. [PMID: 31634411 DOI: 10.1111/gbb.12618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/21/2023]
Abstract
We summarize literature from animal and human studies assessing sex differences in the ability of the main olfactory system to detect and process sex-specific olfactory signals ("pheromones") that control the expression of psychosexual functions in males and females. A case is made in non primate mammals for an obligatory role of pheromonal signaling via the main olfactory system (in addition to the vomeronasal-accessory olfactory system) in mate recognition and sexual arousal, with male-specific as well as female-specific pheromones subserving these functions in the opposite sex. Although the case for an obligatory role of pheromones in mate recognition and mating among old world primates, including humans, is weaker, we review the current literature assessing the role of putative human pheromones (eg, AND, EST, "copulin"), detected by the main olfactory system, in promoting mate choice and mating in men and women. Based on animal studies, we hypothesize that sexually dimorphic effects of putative human pheromones are mediated via main olfactory inputs to the medial amygdala which, in turn, transmits olfactory information to sites in the hypothalamus that regulate reproduction.
Collapse
Affiliation(s)
- James A Cherry
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Michael J Baum
- Department of Biology, Boston University, Boston, Massachusetts
| |
Collapse
|
38
|
Iovino M, Messana T, Iovino E, De Pergola G, Guastamacchia E, Giagulli VA, Triggiani V. Neuroendocrine Mechanisms Involved in Male Sexual and Emotional Behavior. Endocr Metab Immune Disord Drug Targets 2019; 19:472-480. [PMID: 30706797 PMCID: PMC7360913 DOI: 10.2174/1871530319666190131155310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The aim of this narrative review was to analyze the role played by brain areas, neurohormones and neurotransmitters in the regulation of emotional and sexual behavior in the male. METHODS We analyzed the currently available literature dealing with brain structures, neurotransmitters and neurohormones involved in the regulation of emotional and sexual behavior in the male. RESULTS A common brain pathway is involved in these two aspects. The Hippocampus seems to control the signals coming from the external environment, while the amygdala and the hypothalamus control the response to social stimuli. Stimulation of amygdala in the animal models increases sexual performance, while it triggers violent emotional responses. Stimulation of the hypothalamus causes reactions of violent anger and increases sexual activity. Catecholaminergic stimulation of the amygdala and hypothalamus increases emotional and sexual behavior, while serotonin plays an inhibitory role. Cholinergic inhibition leads to a suppression of copulatory activity, while the animal becomes hyperemotive. Opioids, such as β-endorphin and met-enkephalin, reduce copulatory activity and induce impotence. Gonadal steroid hormones, such as estrogen in female and testosterone in male, which play a major role in the control of sexual behavior and gender difference have been highlighted in this review. Vasopressin, oxytocin and their receptors are expressed in high density in the "social behavior neural network" and play a role as signal system controlling social behavior. Finally, the neuropeptide kisspeptin and its receptors, located in the limbic structures, mediate olfactory control of the gonadotropic axis. CONCLUSION Further studies are needed to evaluate possible implications in the treatment of psychosexual and reproductive disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vincenzo Triggiani
- Address correspondence to this author at the Interdisciplinary Department of Medicine-University of Bari “Aldo Moro”, Bari, Italy; Tel: 0039 0805478814; E-mail:
| |
Collapse
|
39
|
Zafer D, Aycan N, Ozaydin B, Kemanli P, Ferrazzano P, Levine JE, Cengiz P. Sex differences in Hippocampal Memory and Learning following Neonatal Brain Injury: Is There a Role for Estrogen Receptor-α? Neuroendocrinology 2019; 109:249-256. [PMID: 30884486 PMCID: PMC6893032 DOI: 10.1159/000499661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/17/2019] [Indexed: 01/11/2023]
Abstract
Neonatal encephalopathy due to hypoxia-ischemia (HI) leads to severe, life-long morbidities in thousands of neonates born in the USA and worldwide each year. Varying capacities of long-term episodic memory, verbal working memory, and learning can present without cerebral palsy and have been associated with the severity of neonatal encephalopathy sustained at birth. Among children who sustain a moderate degree of HI at birth, girls have larger hippocampal volumes compared to boys. Clinical studies indicate that female neonatal brains are more resistant to the effects of neonatal HI, resulting in better long-term cognitive outcomes compared to males with comparable brain injury. Our most recent mechanistic studies have addressed the origins and cellular basis of sex differences in hippocampal neuroprotection following neonatal HI-related brain injury and implicate estrogen receptor-α (ERα) in the neurotrophin receptor-mediated hippocampal neuroprotection in female mice. This review summarizes the recent findings on ERα-dependent, neurotrophin-mediated hippocampal neuroprotection and weighs the evidence that this mechanism plays an important role in preservation of long-term memory and learning following HI in females.
Collapse
Affiliation(s)
- Dila Zafer
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Nur Aycan
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Burak Ozaydin
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Pinar Kemanli
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Peter Ferrazzano
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Pelin Cengiz
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA,
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA,
| |
Collapse
|
40
|
Matsuzaki T, Munkhzaya M, Iwasa T, Tungalagsuvd A, Yano K, Mayila Y, Yanagihara R, Tokui T, Kato T, Kuwahara A, Matsui S, Irahara M. Prenatal undernutrition suppresses sexual behavior in female rats. Gen Comp Endocrinol 2018; 269:46-52. [PMID: 30099033 DOI: 10.1016/j.ygcen.2018.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 01/20/2023]
Abstract
Infectious, psychological and metabolic stresses in the prenatal and early neonatal period induce long-lasting effects in physiological function and increase the risk of metabolic disorders later in life. We examined the sexual behavior of female rats that were subjected to undernutrition in the prenatal period. Eight pregnant rats were divided into two groups: a maternal normal nutrition group (mNN; n = 4) and a maternal undernutrition group (mUN; n = 4), which received 50% of the daily food intake amount of the mNN group from gestation day 13 to delivery. Nine and seven female offspring were randomly selected from the mNN and mUN groups, respectively. Vaginal opening (VO), estrous cycle length, sexual behavior and mRNA expression levels of the factors that regulate sexual behavior were observed. In the mUN group, VO day was later, the estrous cycle was longer, and the lordosis quotient and lordosis rating were lower than in the mNN group; such differences were not seen in other sexual performances, such as ear wiggles, darts, kick bouts and box. The hypothalamic mRNA expression level of progesterone receptor (PR) A + B and oxytocin (OT) were significantly lower in the mUN group than in the mNN group. These findings indicated that prenatal undernutrition disrupted puberty onset, the estrous cycle, sexual behavior and hypothalamic mRNA expression of PR and OT in female rat pups.
Collapse
Affiliation(s)
- Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Munkhsaikhan Munkhzaya
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan; Department of Gynecology, The First Maternity Hospital of Mongolia, Peace Avenue, 1st khoroo, Sukhbaatar District, Ulaanbaatar 14210, Mongolia
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Altankhuu Tungalagsuvd
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan; Division of Obstetrics and Gynecology, National Center for Maternal and Child Health, Khuvisgalchid Street, Bayangol District, Ulaanbaatar 160660, Mongolia
| | - Kiyohito Yano
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yiliyasi Mayila
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Rie Yanagihara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takako Tokui
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takeshi Kato
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Sumika Matsui
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
41
|
Hoffmann HM. Determination of Reproductive Competence by Confirming Pubertal Onset and Performing a Fertility Assay in Mice and Rats. J Vis Exp 2018. [PMID: 30371660 DOI: 10.3791/58352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Assessment of reproductive competence is critical for understanding the impact of a treatment or genetic manipulation on the reproductive axis, also termed the hypothalamic-pituitary-gonadal axis. The reproductive axis is a key integrator of environmental and internal input adapting fertility to favorable conditions for reproduction. Prior to embarking upon a fertility study in mice and rats, sexual maturity is evaluated to exclude the possibility that the observed reproductive phenotypes are caused by delayed or absent pubertal onset. This protocol describes a non-invasive approach to assess pubertal onset in males through the determination of preputial separation, and in females through vaginal opening and first estrus. After the confirmation of the completion of puberty and the achievement of sexual maturity, a fertility study can be initiated. The procedure describes the optimal breeding conditions for mice and rats, how to set up a fertility study, and what parameters to evaluate and determine if the treatment or gene deletion has an impact on fertility.
Collapse
|
42
|
Abstract
Reproduction is fundamental for the survival of all species and requires meticulous synchronisation of a diverse complement of neural, endocrine and related behaviours. The reproductive hormone kisspeptin (encoded by the KISS1/Kiss1 gene) is now a well-established orchestrator of reproductive hormones, acting upstream of gonadotrophin-releasing hormone (GnRH) at the apex of the hypothalamic–pituitary–gonadal (HPG) reproductive axis. Beyond the hypothalamus, kisspeptin is also expressed in limbic and paralimbic brain regions, which are areas of the neurobiological network implicated in sexual and emotional behaviours. We are now forming a more comprehensive appreciation of extra-hypothalamic kisspeptin signalling and the complex role of kisspeptin as an upstream mediator of reproductive behaviours, including olfactory-driven partner preference, copulatory behaviour, audition, mood and emotion. An increasing body of research from zebrafish to humans has implicated kisspeptin in the integration of reproductive hormones with an overall positive influence on these reproductive behaviours. In this review, we critically appraise the current literature regarding kisspeptin and its control of reproductive behaviour. Collectively, these data significantly enhance our understanding of the integration of reproductive hormones and behaviour and provide the foundation for kisspeptin-based therapies to treat related disorders of body and mind.
Collapse
Affiliation(s)
- Edouard G A Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| |
Collapse
|
43
|
Yang L, Comninos AN, Dhillo WS. Intrinsic links among sex, emotion, and reproduction. Cell Mol Life Sci 2018; 75:2197-2210. [PMID: 29619543 PMCID: PMC5948280 DOI: 10.1007/s00018-018-2802-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/27/2018] [Accepted: 03/20/2018] [Indexed: 01/23/2023]
Abstract
Species survival is dependent on successful reproduction. This begins with a desire to mate, followed by selection of a partner, copulation and in monogamous mammals including humans, requires emotions and behaviours necessary to maintain partner bonds for the benefit of rearing young. Hormones are integral to all of these stages and not only mediate physiological and endocrine processes involved in reproduction, but also act as neuromodulators within limbic brain centres to facilitate the expression of innate emotions and behaviours required for reproduction. A significant body of work is unravelling the roles of several key hormones in the modulation of mood states and sexual behaviours; however, a full understanding of the integration of these intrinsic links among sexual and emotional brain circuits still eludes us. This review summarises the evidence to date and postulates future directions to identify potential psycho-neuroendocrine frameworks linking sexual and emotional brain processes with reproduction.
Collapse
Affiliation(s)
- Lisa Yang
- Section of Endocrinology and Investigative Medicine, Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK.
| |
Collapse
|
44
|
Adekunbi DA, Li XF, Lass G, Shetty K, Adegoke OA, Yeo SH, Colledge WH, Lightman SL, O'Byrne KT. Kisspeptin neurones in the posterodorsal medial amygdala modulate sexual partner preference and anxiety in male mice. J Neuroendocrinol 2018; 30:e12572. [PMID: 29356147 PMCID: PMC5873280 DOI: 10.1111/jne.12572] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 01/05/2018] [Accepted: 01/16/2018] [Indexed: 01/27/2023]
Abstract
The posterodorsal medial amygdala (MePD) is a neural site in the limbic brain involved in regulating emotional and sexual behaviours. There is, however, limited information available on the specific neuronal cell type in the MePD functionally mediating these behaviours in rodents. The recent discovery of a significant kisspeptin neurone population in the MePD has raised interest in the possible role of kisspeptin and its cognate receptor in sexual behaviour. The present study therefore tested the hypothesis that the MePD kisspeptin neurone population is involved in regulating attraction towards opposite sex conspecifics, sexual behaviour, social interaction and the anxiety response by selectively stimulating these neurones using the novel pharmacosynthetic DREADDs (designer receptors exclusively activated by designer drugs) technique. Adult male Kiss-Cre mice received bilateral stereotaxic injections of a stimulatory DREADD viral construct (AAV-hSyn-DIO-hM3 D(Gq)-mCherry) targeted to the MePD, with subsequent activation by i.p. injection of clozapine-N-oxide (CNO). Socio-sexual behaviours were assessed in a counter-balanced fashion after i.p. injection of either saline or CNO (5 mg kg-1 ). Selective activation of MePD kisspeptin neurones by CNO significantly increased the time spent by male mice in investigating an oestrous female, as well as the duration of social interaction. Additionally, after CNO injection, the mice appeared less anxious, as indicated by a longer exploratory time in the open arms of the elevated plus maze. However, levels of copulatory behaviour were comparable between CNO and saline-treated controls. These data indicate that DREADD-induced activation of MePD kisspeptin neurones enhances both sexual partner preference in males and social interaction and also decreases anxiety, suggesting a key role played by MePD kisspeptin in sexual motivation and social behaviour.
Collapse
Affiliation(s)
- D. A. Adekunbi
- Division of Women's HealthFaculty of Life Sciences and MedicineKing's College LondonLondonUK
- Department of PhysiologyCollege of MedicineUniversity of LagosLagosNigeria
| | - X. F. Li
- Division of Women's HealthFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - G. Lass
- Division of Women's HealthFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - K. Shetty
- Division of Women's HealthFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - O. A. Adegoke
- Department of PhysiologyCollege of MedicineUniversity of LagosLagosNigeria
| | - S. H. Yeo
- Reproductive Physiology GroupDepartment of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - W. H. Colledge
- Reproductive Physiology GroupDepartment of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - S. L. Lightman
- Henry Wellcome Laboratory for Integrative Neuroscience and EndocrinologyUniversity of BristolBristolUK
| | - K. T. O'Byrne
- Division of Women's HealthFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| |
Collapse
|
45
|
Hellier V, Brock O, Candlish M, Desroziers E, Aoki M, Mayer C, Piet R, Herbison A, Colledge WH, Prévot V, Boehm U, Bakker J. Female sexual behavior in mice is controlled by kisspeptin neurons. Nat Commun 2018; 9:400. [PMID: 29374161 PMCID: PMC5786055 DOI: 10.1038/s41467-017-02797-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022] Open
Abstract
Sexual behavior is essential for the survival of many species. In female rodents, mate preference and copulatory behavior depend on pheromones and are synchronized with ovulation to ensure reproductive success. The neural circuits driving this orchestration in the brain have, however, remained elusive. Here, we demonstrate that neurons controlling ovulation in the mammalian brain are at the core of a branching neural circuit governing both mate preference and copulatory behavior. We show that male odors detected in the vomeronasal organ activate kisspeptin neurons in female mice. Classical kisspeptin/Kiss1R signaling subsequently triggers olfactory-driven mate preference. In contrast, copulatory behavior is elicited by kisspeptin neurons in a parallel circuit independent of Kiss1R involving nitric oxide signaling. Consistent with this, we find that kisspeptin neurons impinge onto nitric oxide-synthesizing neurons in the ventromedial hypothalamus. Our data establish kisspeptin neurons as a central regulatory hub orchestrating sexual behavior in the female mouse brain. Mate preference and copulatory behavior in female rodents are coordinated with the ovulation cycles of the animal. This study shows that hypothalamic kisspeptin neurons control both mate choice and copulation, and therefore, that sexual behavior and ovulation may be synchronized by the same neuropeptide.
Collapse
Affiliation(s)
- Vincent Hellier
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium
| | - Olivier Brock
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium.,Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Michael Candlish
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany
| | - Elodie Desroziers
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium
| | - Mari Aoki
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany
| | | | - Richard Piet
- Center for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - Allan Herbison
- Center for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - William Henry Colledge
- Reproductive Physiology Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Vincent Prévot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Inserm U1172, F- 59000, Lille Cedex, France
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany.
| | - Julie Bakker
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium. .,Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Volk KM, Pogrebna VV, Roberts JA, Zachry JE, Blythe SN, Toporikova N. High-Fat, High-Sugar Diet Disrupts the Preovulatory Hormone Surge and Induces Cystic Ovaries in Cycling Female Rats. J Endocr Soc 2017; 1:1488-1505. [PMID: 29308444 PMCID: PMC5740526 DOI: 10.1210/js.2017-00305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022] Open
Abstract
Diet-induced obesity has been associated with various metabolic and reproductive disorders, including polycystic ovary syndrome. However, the mechanisms by which obesity influences the reproductive system are still not fully known. Studies have suggested that impairments in hormone signaling are associated with the development of symptoms such as acyclicity and ovarian cysts. However, these studies have often failed to address how these hormonal changes arise and how they might contribute to the progression of reproductive diseases. In the present study, we used a high-fat, high-sugar (HFHS) diet to induce obesity in a female rodent model to determine the changes in critical reproductive hormones that might contribute to the development of irregular estrous cycling and reproductive cycle termination. The HFHS animals exhibited impaired estradiol, progesterone (P4), and luteinizing hormone (LH) surges before ovulation. The HFHS diet also resulted in altered basal levels of testosterone (T) and LH. Furthermore, alterations in the basal P4/T ratio correlated strongly with ovarian cyst formation in HFHS rats. Thus, this model provides a method to assess the underlying etiology of obesity-related reproductive dysfunction and to examine an acyclic reproductive phenotype as it develops.
Collapse
Affiliation(s)
- Katrina M. Volk
- Neuroscience Program, Washington and Lee University, Lexington, Virginia 24450
| | | | - Jackson A. Roberts
- Neuroscience Program, Washington and Lee University, Lexington, Virginia 24450
| | - Jennifer E. Zachry
- Neuroscience Program, Washington and Lee University, Lexington, Virginia 24450
| | - Sarah N. Blythe
- Neuroscience Program, Washington and Lee University, Lexington, Virginia 24450
- Department of Biology, Washington and Lee University, Lexington, Virginia 24450
| | - Natalia Toporikova
- Neuroscience Program, Washington and Lee University, Lexington, Virginia 24450
- Department of Biology, Washington and Lee University, Lexington, Virginia 24450
| |
Collapse
|
47
|
Poling MC, Luo EY, Kauffman AS. Sex Differences in Steroid Receptor Coexpression and Circadian-Timed Activation of Kisspeptin and RFRP-3 Neurons May Contribute to the Sexually Dimorphic Basis of the LH Surge. Endocrinology 2017; 158:3565-3578. [PMID: 28938464 PMCID: PMC5659694 DOI: 10.1210/en.2017-00405] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/04/2017] [Indexed: 01/18/2023]
Abstract
In rodents, the ovulation-inducing luteinizing hormone (LH) surge is sexually dimorphic, occurring only in females, but the reasons for this sex difference are unclear. Two neuropeptides, kisspeptin and RFamide-related peptide 3 (RFRP-3), are hypothesized to regulate the gonadotropin-releasing hormone (GnRH)/LH surge. In females, both of these systems show circadian changes coincident with the LH surge, but whether males show similar temporal changes under comparable hormonal conditions is unknown. Here, we evaluated circadian time (CT)-dependent changes in gene expression and neuronal activation of Kiss1 and Rfrp neurons of female and male mice given identical LH surge-inducing estrogen regimens. As expected, females, but not males, displayed a late afternoon LH surge and GnRH neuronal activation. Kiss1 expression in the anteroventral periventricular nucleus (AVPV) was temporally increased in females in the late afternoon, whereas males demonstrated no temporal changes in AVPV Kiss1 expression. Likewise, neuronal activation of AVPV Kiss1 neurons was dramatically elevated in the late afternoon in females but was low at all circadian times in males. Estrogen receptor α levels in AVPV Kiss1 neurons were sexually dimorphic, being higher in females than males. AVPV progesterone receptor levels were also higher in females than males. Hypothalamic Rfrp messenger RNA levels showed no CT-dependent changes in either sex. However, Rfrp neuronal activation was temporally diminished in the afternoon/evening in females but not males. Collectively, the identified sex differences in absolute and CT-dependent AVPV Kiss1 levels, AVPV sex steroid receptor levels, and circadian-timed changes in neuronal activation of both Kiss1 and Rfrp neurons suggest that multiple sexually dimorphic processes in the brain may underlie proper LH surge generation.
Collapse
Affiliation(s)
- Matthew C. Poling
- Department of Reproductive Medicine, University of California San Diego, La Jolla, California 92093
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093
| | - Elena Y. Luo
- Department of Reproductive Medicine, University of California San Diego, La Jolla, California 92093
| | - Alexander S. Kauffman
- Department of Reproductive Medicine, University of California San Diego, La Jolla, California 92093
- Center for Chronobiology, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
48
|
Jamil Z, Fatima SS, Arif S, Alam F, Rehman R. Kisspeptin and embryo implantation after ICSI. Reprod Biomed Online 2017; 34:147-153. [DOI: 10.1016/j.rbmo.2016.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
|
49
|
Comninos AN, Wall MB, Demetriou L, Shah AJ, Clarke SA, Narayanaswamy S, Nesbitt A, Izzi-Engbeaya C, Prague JK, Abbara A, Ratnasabapathy R, Salem V, Nijher GM, Jayasena CN, Tanner M, Bassett P, Mehta A, Rabiner EA, Hönigsperger C, Silva MR, Brandtzaeg OK, Lundanes E, Wilson SR, Brown RC, Thomas SA, Bloom SR, Dhillo WS. Kisspeptin modulates sexual and emotional brain processing in humans. J Clin Invest 2017; 127:709-719. [PMID: 28112678 PMCID: PMC5272173 DOI: 10.1172/jci89519] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/01/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND. Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. METHODS. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. RESULTS. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin’s enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. CONCLUSIONS. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. FUNDING. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).
Collapse
Affiliation(s)
| | - Matthew B. Wall
- Division of Brain Sciences,and
- Imanova Centre for Imaging Sciences, Imperial College London, London, United Kingdom
| | - Lysia Demetriou
- Investigative Medicine
- Imanova Centre for Imaging Sciences, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | - Mark Tanner
- Imanova Centre for Imaging Sciences, Imperial College London, London, United Kingdom
| | - Paul Bassett
- Statsconsultancy Ltd., Amersham, Bucks, United Kingdom
| | - Amrish Mehta
- Department of Neuroradiology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Eugenii A. Rabiner
- Imanova Centre for Imaging Sciences, Imperial College London, London, United Kingdom
- Centre for Neuroimaging Sciences, King’s College London, London, United Kingdom
| | | | - Meire Ribeiro Silva
- Department of Chemistry, University of Oslo, Oslo, Norway
- Institute of Chemistry, University of Sao Paulo, Sao Carlos, Brazil
| | | | - Elsa Lundanes
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - Rachel C. Brown
- King’s College London, Faculty of Life Sciences & Medicine, Institute of Pharmaceutical Science and Department of Physiology, London, United Kingdom
| | - Sarah A. Thomas
- King’s College London, Faculty of Life Sciences & Medicine, Institute of Pharmaceutical Science and Department of Physiology, London, United Kingdom
| | | | | |
Collapse
|
50
|
Stephens SBZ, Kauffman AS. Regulation and Possible Functions of Kisspeptin in the Medial Amygdala. Front Endocrinol (Lausanne) 2017; 8:191. [PMID: 28824550 PMCID: PMC5545938 DOI: 10.3389/fendo.2017.00191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Kisspeptin, encoded by the Kiss1 gene, is required for reproduction. Humans and mice lacking kisspeptin or its receptor, Kiss1r, have impairments in reproductive physiology and fertility. In addition to being located in the hypothalamus in the anteroventral periventricular and arcuate nuclei, kisspeptin neurons are also present in several extra-hypothalamic regions, such as the medial amygdala (MeA). However, while there has been a significant focus on the reproductive roles of hypothalamic kisspeptin neurons, the regulation and function(s) of MeA and other extra-hypothalamic kisspeptin neurons have received far less attention. This review summarizes what is currently known about the regulation, development, neural projections, and potential functions of MeA kisspeptin neurons, as well as kisspeptin signaling directly within the MeA, with emphasis on data gathered from rodent models. Recent data are summarized and compared between rodent species and also between males and females. In addition, critical gaps in knowledge and important future directions are discussed.
Collapse
Affiliation(s)
- Shannon B. Z. Stephens
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Alexander S. Kauffman
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Alexander S. Kauffman,
| |
Collapse
|