1
|
Salamon M, Astorg L, Paccard A, Chain F, Hendry A, Derry A, Barrett R. Limited Migration From Physiological Refugia Constrains the Rescue of Native Gastropods Facing an Invasive Predator. Evol Appl 2024; 17:e70004. [PMID: 39439433 PMCID: PMC11493756 DOI: 10.1111/eva.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/03/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
Biological invasions have caused the loss of freshwater biodiversity worldwide. The interplay between adaptive responses and demographic characteristics of populations impacted by invasions is expected to be important for their resilience, but the interaction between these factors is poorly understood. The freshwater gastropod Amnicola limosus is native to the Upper St. Lawrence River and distributed along a water calcium concentration gradient within which high-calcium habitats are impacted by an invasive predator fish (Neogobius melanostomus, round goby), whereas low-calcium habitats provide refuges for the gastropods from the invasive predator. Our objectives were to (1) test for adaptation of A. limosus to the invasive predator and the low-calcium habitats, and (2) investigate if migrant gastropods could move from refuge populations to declining invaded populations (i.e., demographic rescue), which could also help maintain genetic diversity through gene flow (i.e., genetic rescue). We conducted a laboratory reciprocal transplant of wild F0 A. limosus sourced from the two habitat types (high calcium/invaded and low calcium/refuge) to measure adult survival and fecundity in home and transplant treatments of water calcium concentration (low/high) and round goby cue (present/absent). We then applied pooled whole-genome sequencing of 12 gastropod populations from across the calcium/invasion gradient. We identified patterns of life-history traits and genetic differentiation across the habitats that are consistent with local adaptation to low-calcium concentrations in refuge populations and to round goby predation in invaded populations. We also detected restricted gene flow from the low-calcium refugia towards high-calcium invaded populations, implying that the potential for demographic and genetic rescue is limited by natural dispersal. Our study highlights the importance of considering the potentially conflicting effects of local adaptation and gene flow for the resilience of populations coping with invasive predators.
Collapse
Affiliation(s)
| | - Louis Astorg
- Université du Québec à MontréalMontrealQuebecCanada
| | | | - Frederic Chain
- University of Massachusetts LowellLowellMassachusettsUSA
| | | | | | | |
Collapse
|
2
|
Modica A, Lalagüe H, Muratorio S, Scotti I. Rolling down that mountain: microgeographical adaptive divergence during a fast population expansion along a steep environmental gradient in European beech. Heredity (Edinb) 2024; 133:99-112. [PMID: 38890557 PMCID: PMC11286953 DOI: 10.1038/s41437-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Forest tree populations harbour high genetic diversity thanks to large effective population sizes and strong gene flow, allowing them to diversify through adaptation to local environmental pressures within dispersal distance. Many tree populations also experienced historical demographic fluctuations, including spatial population contraction or expansions at various temporal scales, which may constrain their ability to adapt to environmental variations. Our aim is to investigate how recent contraction and expansion events interfere with local adaptation, by studying patterns of adaptive divergence between closely related stands undergoing environmentally contrasted conditions, and having or not recently expanded. To investigate genome-wide signatures of local adaptation while accounting for demography, we analysed divergence in a European beech population by testing pairwise differentiation among four tree stands at ~35k Single Nucleotide Polymorphisms from ~9k genomic regions. We applied three divergence outlier search methods resting on different assumptions and targeting either single SNPs or contiguous genomic regions, while accounting for the effect of population size variations on genetic divergence. We found 27 signals of selective signatures in 19 target regions. Putatively adaptive divergence involved all stand pairs. We retrieved signals both when comparing old-growth stands and recently colonised areas and when comparing stands within the old-growth area. Therefore, adaptive divergence processes have taken place both over short time spans, under strong environmental contrasts, and over short ecological gradients, in populations that have been stable in the long term. This suggests that standing genetic variation supports local, microgeographic divergence processes, which can maintain genetic diversity at the landscape level.
Collapse
Affiliation(s)
- Andrea Modica
- INRAE, URFM, 228, Route de l'Aérodrome, 84914, Avignon, France
| | - Hadrien Lalagüe
- INRAE, EcoFoG, Campus agronomique, 97310, Kourou, French Guiana
| | - Sylvie Muratorio
- INRAE, EcoBioP, 173, Route de Saint-Jean-de-Luz RD 918, 64310, Saint-Pée-sur-Nivelle, France
| | - Ivan Scotti
- INRAE, URFM, 228, Route de l'Aérodrome, 84914, Avignon, France.
| |
Collapse
|
3
|
Spurgin LG, Bosse M, Adriaensen F, Albayrak T, Barboutis C, Belda E, Bushuev A, Cecere JG, Charmantier A, Cichon M, Dingemanse NJ, Doligez B, Eeva T, Erikstad KE, Fedorov V, Griggio M, Heylen D, Hille S, Hinde CA, Ivankina E, Kempenaers B, Kerimov A, Krist M, Kvist L, Laine VN, Mänd R, Matthysen E, Nager R, Nikolov BP, Norte AC, Orell M, Ouyang J, Petrova-Dinkova G, Richner H, Rubolini D, Slagsvold T, Tilgar V, Török J, Tschirren B, Vágási CI, Yuta T, Groenen MAM, Visser ME, van Oers K, Sheldon BC, Slate J. The great tit HapMap project: A continental-scale analysis of genomic variation in a songbird. Mol Ecol Resour 2024; 24:e13969. [PMID: 38747336 DOI: 10.1111/1755-0998.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude - almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear 'islands of differentiation', even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.
Collapse
Affiliation(s)
- Lewis G Spurgin
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
- Department of Biology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Mirte Bosse
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Department of Ecological Science, Animal Ecology Group, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank Adriaensen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Tamer Albayrak
- Department of Biology, Science and art Faculty, Mehmet Akif Ersoy University, Istiklal Yerleskesi, Burdur, Turkey
- Biology Education, Buca Faculty of Education, Mathematics and Science Education, Dokuz Eylül University, İzmir, Turkey
| | | | - Eduardo Belda
- Institut d'Investigació per a la Gestió Integrada de Zones Costaneres, Campus de Gandia, Universitat Politècnica de València, València, Spain
| | - Andrey Bushuev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano Emilia, Italy
| | | | - Mariusz Cichon
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Niels J Dingemanse
- Behavioural Ecology, Faculty of Biology, LMU München, Planegg-Martinsried, Germany
| | - Blandine Doligez
- UMR CNRS 5558-LBBE, Biométrie et Biologie Évolutive, Villeurbanne, France
- Department of Ecology and Evolution, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Tapio Eeva
- Department of Biology, University of Turku, Turku, Finland
| | - Kjell Einar Erikstad
- Norwegian Institute for Nature Research, FRAM-High North Research Centre for Climate and the Environment, Tromsø, Norway
| | | | - Matteo Griggio
- Department of Biology, University of Padova, Padova, Italy
| | - Dieter Heylen
- Department of Biology, Edward Grey Institute, University of Oxford, Oxford, UK
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - Sabine Hille
- Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Science, Vienna, Austria
| | - Camilla A Hinde
- Behavioural Ecology Group, Department of Life Sciences, Anglia Ruskin University, Cambridgeshire, UK
| | - Elena Ivankina
- Faculty of Biology, Zvenigorod Biological Station, Lomonosov Moscow State University, Moscow, Russia
| | - Bart Kempenaers
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Anvar Kerimov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Milos Krist
- Department of Zoology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Laura Kvist
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Veronika N Laine
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Raivo Mänd
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Ruedi Nager
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Boris P Nikolov
- Bulgarian Ornithological Centre, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ana Claudia Norte
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Markku Orell
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Gergana Petrova-Dinkova
- Bulgarian Ornithological Centre, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Heinz Richner
- Evolutionary Ecology Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università Degli Studi di Milano, Milan, Italy
| | - Tore Slagsvold
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Vallo Tilgar
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Csongor I Vágási
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Teru Yuta
- Yamashina Institute for Ornithology, Abiko, Japan
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Ben C Sheldon
- Department of Biology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Jon Slate
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Gutiérrez-Guerrero YT, Phifer-Rixey M, Nachman MW. Across two continents: The genomic basis of environmental adaptation in house mice (Mus musculus domesticus) from the Americas. PLoS Genet 2024; 20:e1011036. [PMID: 38968323 PMCID: PMC11253941 DOI: 10.1371/journal.pgen.1011036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/17/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024] Open
Abstract
Replicated clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas. Past studies of North American populations across latitudinal gradients provided evidence of environmental adaptation in traits related to body size, metabolism, and behavior and identified candidate genes using selection scans. Here, we investigate genomic signals of environmental adaptation on a second continent, South America, and ask whether there is evidence of parallel adaptation across multiple latitudinal transects in the Americas. We first identified loci across the genome showing signatures of selection related to climatic variation in mice sampled across a latitudinal transect in South America, accounting for neutral population structure. Consistent with previous results, most candidate SNPs were in putatively regulatory regions. Genes that contained the most extreme outliers relate to traits such as body weight or size, metabolism, immunity, fat, eye function, and the cardiovascular system. We then compared these results with the results of analyses of published data from two transects in North America. While most candidate genes were unique to individual transects, we found significant overlap among candidate genes identified independently in the three transects. These genes are diverse, with functions relating to metabolism, immunity, cardiac function, and circadian rhythm, among others. We also found parallel shifts in allele frequency in candidate genes across latitudinal gradients. Finally, combining data from all three transects, we identified several genes associated with variation in body weight. Overall, our results provide strong evidence of shared responses to selection and identify genes that likely underlie recent environmental adaptation in house mice across North and South America.
Collapse
Affiliation(s)
- Yocelyn T. Gutiérrez-Guerrero
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| | - Megan Phifer-Rixey
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Michael W. Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| |
Collapse
|
5
|
Barton N. Limits to species' range: the tension between local and global adaptation. J Evol Biol 2024; 37:605-615. [PMID: 38683160 DOI: 10.1093/jeb/voae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/01/2024]
Abstract
We know that heritable variation is abundant, and that selection causes all but the smallest populations to rapidly shift beyond their original trait distribution. So then, what limits the range of a species? There are physical constraints and also population genetic limits to the effectiveness of selection, ultimately set by population size. Global adaptation, where the same genotype is favoured over the whole range, is most efficient when based on a multitude of weakly selected alleles and is effective even when local demes are small, provided that there is some gene flow. In contrast, local adaptation is sensitive to gene flow and may require alleles with substantial effect. How can populations combine the advantages of large effective size with the ability to specialise into local niches? To what extent does reproductive isolation help resolve this tension? I address these questions using eco-evolutionary models of polygenic adaptation, contrasting discrete demes with continuousspace.
Collapse
Affiliation(s)
- Nicholas Barton
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
6
|
Raimondi D, Passemiers A, Verplaetse N, Corso M, Ferrero-Serrano Á, Nazzicari N, Biscarini F, Fariselli P, Moreau Y. Biologically meaningful genome interpretation models to address data underdetermination for the leaf and seed ionome prediction in Arabidopsis thaliana. Sci Rep 2024; 14:13188. [PMID: 38851759 PMCID: PMC11162433 DOI: 10.1038/s41598-024-63855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Genome interpretation (GI) encompasses the computational attempts to model the relationship between genotype and phenotype with the goal of understanding how the first leads to the second. While traditional approaches have focused on sub-problems such as predicting the effect of single nucleotide variants or finding genetic associations, recent advances in neural networks (NNs) have made it possible to develop end-to-end GI models that take genomic data as input and predict phenotypes as output. However, technical and modeling issues still need to be fixed for these models to be effective, including the widespread underdetermination of genomic datasets, making them unsuitable for training large, overfitting-prone, NNs. Here we propose novel GI models to address this issue, exploring the use of two types of transfer learning approaches and proposing a novel Biologically Meaningful Sparse NN layer specifically designed for end-to-end GI. Our models predict the leaf and seed ionome in A.thaliana, obtaining comparable results to our previous over-parameterized model while reducing the number of parameters by 8.8 folds. We also investigate how the effect of population stratification influences the evaluation of the performances, highlighting how it leads to (1) an instance of the Simpson's Paradox, and (2) model generalization limitations.
Collapse
Affiliation(s)
| | | | | | - Massimiliano Corso
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Ángel Ferrero-Serrano
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | | | - Piero Fariselli
- Department of Medical Sciences, University of Torino, 10123, Turin, Italy
| | - Yves Moreau
- ESAT-STADIUS, KU Leuven, 3001, Leuven, Belgium
| |
Collapse
|
7
|
D'Anatro A, Calvelo J, Feijóo M, Giorello FM. Differential expression analyses and detection of SNP loci associated with environmental variables: Are salinity and temperature factors involved in population differentiation and speciation in Odontesthes? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101262. [PMID: 38861850 DOI: 10.1016/j.cbd.2024.101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Environmental factors play a key role in individual adaptation to different local conditions. Because of this, studies about the physiological and genetic responses of individuals exposed to different natural environments offer clues about mechanisms involved in population differentiation, and as a subsequent result, speciation. Marine environments are especially suited to survey this kind of phenomena because they commonly harbor species adapted to different local conditions along a geographic continuum. Silversides belonging to Odontesthes are commonly distributed in tropical and temperate regions of South America and exhibit noticeable phenotypic plasticity, which allows them to adapt to contrasting environments. In this study, the genetic expression of O. argentinensis sampled along the Uruguayan Atlantic coast and estuarine adjacent areas was investigated. In addition, the correlation between individual genotypes and environmental variables was also analysed in O. argentinensis and O. bonariensis. Results obtained suggest a differential expression pattern of low magnitude among individuals from the different areas sampled and a correlation between several SNP loci and environmental variables. The analyses carried out did not show a clear differentiation among individuals sampled along different salinity regimens, but enriched GOTerms seem to be driven by water oxygen content. On the other hand, a total of 46 SNPs analysed in O. argentinensis and O. bonariensis showed a correlation with salinity and temperature. Although none of the correlated SNPs and corresponding genes from our both analyses were directly associated with hypoxia, genes related to the cardiovascular system and muscle cell differentiation were found. All these genes are interesting candidates for future studies since they are closely related to the differentially expressed genes. Although salinity was also mentioned as an important parameter limiting introgression between O. argentinensis and O. bonariensis, it was found that salinity does not drive differential expression in O. argentinensis, but rather oxygen levels. Moreover, salinity does not directly affect the structure and genetic divergence of the populations, they appear to be structured based on their degree of isolation and geographical distance between them. Further studies, like genome-wide analyses, could help to elucidate additional genes adapted to the different environments in these silverside species.
Collapse
Affiliation(s)
- Alejandro D'Anatro
- Laboratorio de Evolución y Sistemática, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| | - Javier Calvelo
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Matías Feijóo
- Centro Universitario Regional Este, Sede Treinta y Tres, Universidad de la República, Treinta y Tres, Uruguay
| | - Facundo M Giorello
- Espacio de Biología Vegetal del Noreste, Centro Universitario de Tacuarembó, Universidad de la República, Tacuarembó, Uruguay
| |
Collapse
|
8
|
Xu WQ, Ren CQ, Zhang XY, Comes HP, Liu XH, Li YG, Kettle CJ, Jalonen R, Gaisberger H, Ma YZ, Qiu YX. Genome sequences and population genomics reveal climatic adaptation and genomic divergence between two closely related sweetgum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1372-1387. [PMID: 38343032 DOI: 10.1111/tpj.16675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 05/31/2024]
Abstract
Understanding the genetic basis of population divergence and adaptation is an important goal in population genetics and evolutionary biology. However, the relative roles of demographic history, gene flow, and/or selective regime in driving genomic divergence, climatic adaptation, and speciation in non-model tree species are not yet fully understood. To address this issue, we generated whole-genome resequencing data of Liquidambar formosana and L. acalycina, which are broadly sympatric but altitudinally segregated in the Tertiary relict forests of subtropical China. We integrated genomic and environmental data to investigate the demographic history, genomic divergence, and climatic adaptation of these two sister species. We inferred a scenario of allopatric species divergence during the late Miocene, followed by secondary contact during the Holocene. We identified multiple genomic islands of elevated divergence that mainly evolved through divergence hitchhiking and recombination rate variation, likely fostered by long-term refugial isolation and recent differential introgression in low-recombination genomic regions. We also found some candidate genes with divergent selection signatures potentially involved in climatic adaptation and reproductive isolation. Our results contribute to a better understanding of how late Tertiary/Quaternary climatic change influenced speciation, genomic divergence, climatic adaptation, and introgressive hybridization in East Asia's Tertiary relict flora. In addition, they should facilitate future evolutionary, conservation genomics, and molecular breeding studies in Liquidambar, a genus of important medicinal and ornamental values.
Collapse
Affiliation(s)
- Wu-Qin Xu
- Systematic & Evolutionary Botany and Biodiversity Group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Chao-Qian Ren
- Systematic & Evolutionary Botany and Biodiversity Group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Xin-Yi Zhang
- Systematic & Evolutionary Botany and Biodiversity Group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hans-Peter Comes
- Department of Environment & Biodiversity, Salzburg University, Salzburg, Austria
| | - Xin-Hong Liu
- Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | - Yin-Gang Li
- Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | | | - Riina Jalonen
- Bioversity International, Regional Office for Asia, Penang, Malaysia
| | | | - Ya-Zhen Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Ying-Xiong Qiu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|
9
|
Ferrero-Serrano Á, Chakravorty D, Kirven KJ, Assmann SM. Oryza CLIMtools: A genome-environment association resource reveals adaptive roles for heterotrimeric G proteins in the regulation of rice agronomic traits. PLANT COMMUNICATIONS 2024; 5:100813. [PMID: 38213027 PMCID: PMC11009157 DOI: 10.1016/j.xplc.2024.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/12/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Modern crop varieties display a degree of mismatch between their current distributions and the suitability of the local climate for their productivity. To address this issue, we present Oryza CLIMtools (https://gramene.org/CLIMtools/oryza_v1.0/), the first resource for pan-genome prediction of climate-associated genetic variants in a crop species. Oryza CLIMtools consists of interactive web-based databases that enable the user to (1) explore the local environments of traditional rice varieties (landraces) in South-East Asia and (2) investigate the environment by genome associations for 658 Indica and 283 Japonica rice landrace accessions collected from georeferenced local environments and included in the 3K Rice Genomes Project. We demonstrate the value of these resources by identifying an interplay between flowering time and temperature in the local environment that is facilitated by adaptive natural variation in OsHD2 and disrupted by a natural variant in OsSOC1. Prior quantitative trait locus analysis has suggested the importance of heterotrimeric G proteins in the control of agronomic traits. Accordingly, we analyzed the climate associations of natural variants in the different heterotrimeric G protein subunits. We identified a coordinated role of G proteins in adaptation to the prevailing potential evapotranspiration gradient and revealed their regulation of key agronomic traits, including plant height and seed and panicle length. We conclude by highlighting the prospect of targeting heterotrimeric G proteins to produce climate-resilient crops.
Collapse
Affiliation(s)
- Ángel Ferrero-Serrano
- Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | - David Chakravorty
- Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | - Kobie J Kirven
- Intercollege Graduate Degree Program in Bioinformatics and Genomics, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | - Sarah M Assmann
- Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| |
Collapse
|
10
|
Cooper RD, Shaffer HB. Managing invasive hybrids with pond hydroperiod manipulation in an endangered salamander system. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14167. [PMID: 37551773 DOI: 10.1111/cobi.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
When invasive and endangered native taxa hybridize, the resulting admixture introduces novel conservation challenges. Across a large region of central California, a hybrid swarm consisting of admixed endangered California tiger salamanders (CTS) (Ambystoma californiense) and introduced barred tiger salamanders (BTS) (Ambystoma mavortium) has replaced native populations, threatening the genetic integrity of CTS and the vernal pool systems they inhabit. We employed a large-scale, genomically informed field experiment to test whether shortening breeding pond hydroperiod would favor native CTS genotypes. We constructed 14 large, seminatural ponds to evaluate the effect of hydroperiod duration on larval survival and mass at metamorphosis. We tracked changes in non-native allele frequencies with a 5237-gene exon capture array and employed a combination of custom Bayesian and generalized linear models to quantify the effect of pond duration on salamander fitness. Earlier work on this system showed hybrid superiority under many conditions and suggested that hybrids are favored in human-modified ponds with artificially long hydroperiods. Consistent with these earlier studies, we found overwhelming evidence for hybrid superiority. Very short hydroperiods substantially reduced the mass (1.1-1.5 fold) and survival probability (10-13 fold) of both native and hybrid larvae, confirming that hydroperiod likely exerts a strong selective pressure in the wild. We identified 86 genes, representing 1.8% of 4723 screened loci, that significantly responded to this hydroperiod-driven selection. In contrast to earlier work, under our more natural experimental conditions, native CTS survival and size at metamorphosis were always less than hybrids, suggesting that hydroperiod management alone will not shift selection to favor native larval genotypes. However, shortening pond hydroperiod may limit productivity of hybrid ponds, complementing other strategies to remove hybrids while maintaining vernal pool ecosystems. This study confirms and expands on previous work that highlights the importance of hydroperiod management to control invasive aquatic species.
Collapse
Affiliation(s)
- Robert D Cooper
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, California, USA
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
11
|
Sheppard EC, Martin CA, Armstrong C, González-Quevedo C, Illera JC, Suh A, Spurgin LG, Richardson DS. Genotype-environment associations reveal genes potentially linked to avian malaria infection in populations of an endemic island bird. Mol Ecol 2024; 33:e17329. [PMID: 38533805 DOI: 10.1111/mec.17329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Patterns of pathogen prevalence are, at least partially, the result of coevolutionary host-pathogen interactions. Thus, exploring the distribution of host genetic variation in relation to infection by a pathogen within and across populations can provide important insights into mechanisms of host defence and adaptation. Here, we use a landscape genomics approach (Bayenv) in conjunction with genome-wide data (ddRADseq) to test for associations between avian malaria (Plasmodium) prevalence and host genetic variation across 13 populations of the island endemic Berthelot's pipit (Anthus berthelotii). Considerable and consistent spatial heterogeneity in malaria prevalence was observed among populations over a period of 15 years. The prevalence of malaria infection was also strongly positively correlated with pox (Avipoxvirus) prevalence. Multiple host loci showed significant associations with malaria prevalence after controlling for genome-wide neutral genetic structure. These sites were located near to or within genes linked to metabolism, stress response, transcriptional regulation, complement activity and the inflammatory response, many previously implicated in vertebrate responses to malarial infection. Our findings identify diverse genes - not just limited to the immune system - that may be involved in host protection against malaria and suggest that spatially variable pathogen pressure may be an important evolutionary driver of genetic divergence among wild animal populations, such as Berthelot's pipit. Furthermore, our data indicate that spatio-temporal variation in multiple different pathogens (e.g. malaria and pox in this case) may have to be studied together to develop a more holistic understanding of host pathogen-mediated evolution.
Collapse
Affiliation(s)
| | - Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | - Claire Armstrong
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Catalina González-Quevedo
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Grupo Ecología y Evolución de Vertebrados, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo, University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
12
|
Krieg CP, Smith DD, Adams MA, Berger J, Layegh Nikravesh N, von Wettberg EJ. Greater ecophysiological stress tolerance in the core environment than in extreme environments of wild chickpea (Cicer reticulatum). Sci Rep 2024; 14:5744. [PMID: 38459248 PMCID: PMC10923935 DOI: 10.1038/s41598-024-56457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Global climate change and land use change underlie a need to develop new crop breeding strategies, and crop wild relatives (CWR) have become an important potential source of new genetic material to improve breeding efforts. Many recent approaches assume adaptive trait variation increases towards the relative environmental extremes of a species range, potentially missing valuable trait variation in more moderate or typical climates. Here, we leveraged distinct genotypes of wild chickpea (Cicer reticulatum) that differ in their relative climates from moderate to more extreme and perform targeted assessments of drought and heat tolerance. We found significance variation in ecophysiological function and stress tolerance between genotypes but contrary to expectations and current paradigms, it was individuals from more moderate climates that exhibited greater capacity for stress tolerance than individuals from warmer and drier climates. These results indicate that wild germplasm collection efforts to identify adaptive variation should include the full range of environmental conditions and habitats instead of only environmental extremes, and that doing so may significantly enhance the success of breeding programs broadly.
Collapse
Affiliation(s)
| | | | - Mark A Adams
- Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Jens Berger
- CSIRO, Agriculture and Food, Perth, WA, Australia
| | | | - Eric J von Wettberg
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| |
Collapse
|
13
|
Folkertsma R, Charbonnel N, Henttonen H, Heroldová M, Huitu O, Kotlík P, Manzo E, Paijmans JLA, Plantard O, Sándor AD, Hofreiter M, Eccard JA. Genomic signatures of climate adaptation in bank voles. Ecol Evol 2024; 14:e10886. [PMID: 38455148 PMCID: PMC10918726 DOI: 10.1002/ece3.10886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024] Open
Abstract
Evidence for divergent selection and adaptive variation across the landscape can provide insight into a species' ability to adapt to different environments. However, despite recent advances in genomics, it remains difficult to detect the footprints of climate-mediated selection in natural populations. Here, we analysed ddRAD sequencing data (21,892 SNPs) in conjunction with geographic climate variation to search for signatures of adaptive differentiation in twelve populations of the bank vole (Clethrionomys glareolus) distributed across Europe. To identify the loci subject to selection associated with climate variation, we applied multiple genotype-environment association methods, two univariate and one multivariate, and controlled for the effect of population structure. In total, we identified 213 candidate loci for adaptation, 74 of which were located within genes. In particular, we identified signatures of selection in candidate genes with functions related to lipid metabolism and the immune system. Using the results of redundancy analysis, we demonstrated that population history and climate have joint effects on the genetic variation in the pan-European metapopulation. Furthermore, by examining only candidate loci, we found that annual mean temperature is an important factor shaping adaptive genetic variation in the bank vole. By combining landscape genomic approaches, our study sheds light on genome-wide adaptive differentiation and the spatial distribution of variants underlying adaptive variation influenced by local climate in bank voles.
Collapse
Affiliation(s)
- Remco Folkertsma
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Comparative Cognition Unit, Messerli Research InstituteUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | - Marta Heroldová
- Department of Forest Ecology, FFWTMendel University in BrnoBrnoCzech Republic
| | - Otso Huitu
- Natural Resources Institute FinlandHelsinkiFinland
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and GeneticsCzech Academy of SciencesLiběchovCzech Republic
| | - Emiliano Manzo
- Fondazione Ethoikos, Convento dell'OsservanzaRadicondoliItaly
| | - Johanna L. A. Paijmans
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Present address:
Evolutionary Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Attila D. Sándor
- HUN‐RENClimate Change: New Blood‐Sucking Parasites and Vector‐Borne Pathogens Research GroupBudapestHungary
- Department of Parasitology and ZoologyUniversity of Veterinary MedicineBudapestHungary
- Department of Parasitology and Parasitic DiseasesUniversity of Agricultural Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
| | - Jana A. Eccard
- Animal Ecology, Institute for Biochemistry and Biology, Faculty of ScienceBerlin‐Brandenburg Institute for Biodiversity ResearchUniversity of PotsdamPotsdamGermany
| |
Collapse
|
14
|
Meilutytė-Lukauskienė D, Nazarenko S, Kobets Y, Akstinas V, Sharifi A, Haghighi AT, Hashemi H, Kokorīte I, Ozolina B. Hydro-meteorological droughts across the Baltic Region: The role of the accumulation periods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169669. [PMID: 38176563 DOI: 10.1016/j.scitotenv.2023.169669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
Based on the physical and geographical conditions, the Baltic Region is categorised as a humid climate zone. This means that, there is usually more precipitation than evaporation throughout the year, suggesting that droughts should not occur frequently in this region. Despite the humid climate in the region, the study focused on assessing the spatio-temporal patterns of droughts. The drought events were analysed across the Baltic Region, including Sweden, Finland, Lithuania, Latvia, and Estonia. This analysis included two drought indices, the Standardized Precipitation Index (SPI) and the Streamflow Drought Index (SDI), for different accumulation periods. Daily data series of precipitation and river discharge were used. The spatial and temporal analyses of selected drought indices were carried out for the Baltic Region. In addition, the decadal distribution of drought classes was analysed to disclose the temporal changes and spatial extent of drought patterns. The Pearson correlation between SPI and SDI was applied to investigate the relationship between meteorological and hydrological droughts. The analysis showed that stations with more short-duration SPI or SDI cases had fewer long-duration cases and vice versa. The number of SDI cases (SDI ≤ -1) increased in the Western Baltic States and some WGSs in Sweden and Finland from 1991 to 2020 compared to 1961-1990. The SPI showed no such tendencies except in Central Estonia and Southern Finland. The 6-month accumulation period played a crucial role in both the meteorological and hydrological drought analyses, as it revealed prolonged and widespread drought events. Furthermore, the 9- and 12-month accumulation periods showed similar trends in terms of drought duration and spatial extent. The highest number of correlation links between different months was found between SPI12-SDI9 and SPI12-SDI12. The results obtained have deepened our understanding of drought patterns and their potential impacts in the Baltic Region.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ilga Kokorīte
- University of Latvia, Latvia; Latvian Environment, Geology and Meteorology Centre, Latvia
| | - Baiba Ozolina
- Latvian Environment, Geology and Meteorology Centre, Latvia
| |
Collapse
|
15
|
Booker TR, Yeaman S, Whiting JR, Whitlock MC. The WZA: A window-based method for characterizing genotype-environment associations. Mol Ecol Resour 2024; 24:e13768. [PMID: 36785926 DOI: 10.1111/1755-0998.13768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Genotype-environment association (GEA) studies have the potential to identify the genetic basis of local adaptation in natural populations. Specifically, GEA approaches look for a correlation between allele frequencies and putatively selective features of the environment. Genetic markers with extreme evidence of correlation with the environment are presumed to be tagging the location of alleles that contribute to local adaptation. In this study, we propose a new method for GEA studies called the Weighted-Z Analysis (WZA) that combines information from closely linked sites into analysis windows in a way that was inspired by methods for calculating FST . Performing GEA methods in analysis windows has the advantage that it takes advantage of the increased linkage disequilibrium expected surrounding sites subject to local adaptation. We analyse simulations modelling local adaptation to heterogeneous environments to compare the WZA with existing methods. In the majority of cases we tested, the WZA either outperformed single-SNP (single nucleotide polymorphism)-based approaches or performed similarly. In particular, the WZA outperformed individual SNP approaches when a small number of individuals or demes were sampled. Particularly troubling, we found that some GEA methods exhibit very high false positive rates. We applied the WZA to previously published data from lodgepole pine and identified candidate loci that were identified in the original study alongside numerous loci that were not found in the original study.
Collapse
Affiliation(s)
- Tom R Booker
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - James R Whiting
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Michael C Whitlock
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Schiebelhut LM, Guillaume AS, Kuhn A, Schweizer RM, Armstrong EE, Beaumont MA, Byrne M, Cosart T, Hand BK, Howard L, Mussmann SM, Narum SR, Rasteiro R, Rivera-Colón AG, Saarman N, Sethuraman A, Taylor HR, Thomas GWC, Wellenreuther M, Luikart G. Genomics and conservation: Guidance from training to analyses and applications. Mol Ecol Resour 2024; 24:e13893. [PMID: 37966259 DOI: 10.1111/1755-0998.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Environmental change is intensifying the biodiversity crisis and threatening species across the tree of life. Conservation genomics can help inform conservation actions and slow biodiversity loss. However, more training, appropriate use of novel genomic methods and communication with managers are needed. Here, we review practical guidance to improve applied conservation genomics. We share insights aimed at ensuring effectiveness of conservation actions around three themes: (1) improving pedagogy and training in conservation genomics including for online global audiences, (2) conducting rigorous population genomic analyses properly considering theory, marker types and data interpretation and (3) facilitating communication and collaboration between managers and researchers. We aim to update students and professionals and expand their conservation toolkit with genomic principles and recent approaches for conserving and managing biodiversity. The biodiversity crisis is a global problem and, as such, requires international involvement, training, collaboration and frequent reviews of the literature and workshops as we do here.
Collapse
Affiliation(s)
- Lauren M Schiebelhut
- Life and Environmental Sciences, University of California, Merced, California, USA
| | - Annie S Guillaume
- Geospatial Molecular Epidemiology group (GEOME), Laboratory for Biological Geochemistry (LGB), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arianna Kuhn
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Virginia Museum of Natural History, Martinsville, Virginia, USA
| | - Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | | | - Mark A Beaumont
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Margaret Byrne
- Department of Biodiversity, Conservation and Attractions, Biodiversity and Conservation Science, Perth, Western Australia, Australia
| | - Ted Cosart
- Flathead Lake Biology Station, University of Montana, Missoula, Montana, USA
| | - Brian K Hand
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Leif Howard
- Flathead Lake Biology Station, University of Montana, Missoula, Montana, USA
| | - Steven M Mussmann
- Southwestern Native Aquatic Resources and Recovery Center, U.S. Fish & Wildlife Service, Dexter, New Mexico, USA
| | - Shawn R Narum
- Hagerman Genetics Lab, University of Idaho, Hagerman, Idaho, USA
| | - Rita Rasteiro
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Angel G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Norah Saarman
- Department of Biology and Ecology Center, Utah State University, Logan, Utah, USA
| | - Arun Sethuraman
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Helen R Taylor
- Royal Zoological Society of Scotland, Edinburgh, Scotland
| | - Gregg W C Thomas
- Informatics Group, Harvard University, Cambridge, Massachusetts, USA
| | - Maren Wellenreuther
- Plant and Food Research, Nelson, New Zealand
- University of Auckland, Auckland, New Zealand
| | - Gordon Luikart
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Flathead Lake Biology Station, University of Montana, Missoula, Montana, USA
| |
Collapse
|
17
|
Yang Z, Zhao A, Teng M, Li M, Wang H, Wang X, Liu Z, Zeng Q, Hu L, Hu J, Bao Z, Huang X. Signatures of selection in Mulinia lateralis underpinning its rapid adaptation to laboratory conditions. Evol Appl 2024; 17:e13657. [PMID: 38357357 PMCID: PMC10866071 DOI: 10.1111/eva.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The dwarf surf clam, Mulinia lateralis, is considered as a model species for bivalves because of its rapid growth and short generation time. Recently, successful breeding of this species for multiple generations in our laboratory revealed its acquisition of adaptive advantages during artificial breeding. In this study, 310 individuals from five different generations were genotyped with 22,196 single nucleotide polymorphisms (SNPs) with the aim of uncovering the genetic basis of their adaptation to laboratory conditions. Results revealed that M. lateralis consistently maintained high genetic diversity across generations, characterized by high observed heterozygosity (H o: 0.2733-0.2934) and low levels of inbreeding (F is: -0.0244-0.0261). Population analysis indicated low levels of genetic differentiation among generations of M. lateralis during artificial breeding (F st <0.05). In total, 316 genomic regions exhibited divergent selection, with 168 regions under positive selection. Furthermore, 227 candidate genes were identified in the positive selection regions, which have functions including growth, stress resistance, and reproduction. Notably, certain selection signatures with significantly higher F st value were detected in genes associated with male reproduction, such as GAL3ST1, IFT88, and TSSK2, which were significantly upregulated during artificial breeding. This suggests a potential role of sperm-associated genes in the rapid evolutionary response of M. lateralis to selection in laboratory conditions. Overall, our findings highlight the phenotypic and genetic changes, as well as selection signatures, in M. lateralis during artificial breeding. This contributes to understanding their adaptation to laboratory conditions and underscores the potential for using this species to explore the adaptive evolution of bivalves.
Collapse
Affiliation(s)
- Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Ang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Mingxuan Teng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xuefeng Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
| | - Liping Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Yantai Marine Economic Research InstituteYantaiChina
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
18
|
Pettie KP, Mumbach M, Lea AJ, Ayroles J, Chang HY, Kasowski M, Fraser HB. Chromatin activity identifies differential gene regulation across human ancestries. Genome Biol 2024; 25:21. [PMID: 38225662 PMCID: PMC10789071 DOI: 10.1186/s13059-024-03165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Current evidence suggests that cis-regulatory elements controlling gene expression may be the predominant target of natural selection in humans and other species. Detecting selection acting on these elements is critical to understanding evolution but remains challenging because we do not know which mutations will affect gene regulation. RESULTS To address this, we devise an approach to search for lineage-specific selection on three critical steps in transcriptional regulation: chromatin activity, transcription factor binding, and chromosomal looping. Applying this approach to lymphoblastoid cells from 831 individuals of either European or African descent, we find strong signals of differential chromatin activity linked to gene expression differences between ancestries in numerous contexts, but no evidence of functional differences in chromosomal looping. Moreover, we show that enhancers rather than promoters display the strongest signs of selection associated with sites of differential transcription factor binding. CONCLUSIONS Overall, our study indicates that some cis-regulatory adaptation may be more easily detected at the level of chromatin than DNA sequence. This work provides a vast resource of genomic interaction data from diverse human populations and establishes a novel selection test that will benefit future study of regulatory evolution in humans and other species.
Collapse
Affiliation(s)
- Kade P Pettie
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Maxwell Mumbach
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julien Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Maya Kasowski
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
19
|
Yaqoob H, Tariq A, Bhat BA, Bhat KA, Nehvi IB, Raza A, Djalovic I, Prasad PVV, Mir RA. Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system. GM CROPS & FOOD 2023; 14:1-20. [PMID: 36606637 PMCID: PMC9828793 DOI: 10.1080/21645698.2022.2146952] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Domestication of orphan crops could be explored by editing their genomes. Genome editing has a lot of promise for enhancing agricultural output, and there is a lot of interest in furthering breeding in orphan crops, which are sometimes plagued with unwanted traits that resemble wild cousins. Consequently, applying model crop knowledge to orphan crops allows for the rapid generation of targeted allelic diversity and innovative breeding germplasm. We explain how plant breeders could employ genome editing as a novel platform to accelerate the domestication of semi-domesticated or wild plants, resulting in a more diversified base for future food and fodder supplies. This review emphasizes both the practicality of the strategy and the need to invest in research that advances our understanding of plant genomes, genes, and cellular systems. Planting more of these abandoned orphan crops could help alleviate food scarcities in the challenge of future climate crises.
Collapse
Affiliation(s)
- Huwaida Yaqoob
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Arooj Tariq
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Kaisar Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Iqra Bashir Nehvi
- Department of Clinical Biochemistry, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China,Ali Raza College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - PV Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, Kansas, USA
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Jammu and Kashmir, India,CONTACT Rakeeb Ahmad MirDepartment of Biotechnology, School of Life Sciences, Central University of Kashmir, Jammu and Kashmir, India
| |
Collapse
|
20
|
Poklukar K, Mestre C, Škrlep M, Čandek-Potokar M, Ovilo C, Fontanesi L, Riquet J, Bovo S, Schiavo G, Ribani A, Muñoz M, Gallo M, Bozzi R, Charneca R, Quintanilla R, Kušec G, Mercat MJ, Zimmer C, Razmaite V, Araujo JP, Radović Č, Savić R, Karolyi D, Servin B. A meta-analysis of genetic and phenotypic diversity of European local pig breeds reveals genomic regions associated with breed differentiation for production traits. Genet Sel Evol 2023; 55:88. [PMID: 38062367 PMCID: PMC10704730 DOI: 10.1186/s12711-023-00858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Intense selection of modern pig breeds has resulted in genetic improvement of production traits while the performance of local pig breeds has remained lower. As local pig breeds have been bred in extensive systems, they have adapted to specific environmental conditions, resulting in a rich genotypic and phenotypic diversity. This study is based on European local pig breeds that have been genetically characterized using DNA-pool sequencing data and phenotypically characterized using breed level phenotypes related to stature, fatness, growth, and reproductive performance traits. These data were analyzed using a dedicated approach to detect signatures of selection linked to phenotypic traits in order to uncover potential candidate genes that may underlie adaptation to specific environments. RESULTS Analysis of the genetic data of European pig breeds revealed four main axes of genetic variation represented by the Iberian and three modern breeds (i.e. Large White, Landrace, and Duroc). In addition, breeds clustered according to their geographical origin, for example French Gascon and Basque breeds, Italian Apulo Calabrese and Casertana breeds, Spanish Iberian, and Portuguese Alentejano breeds. Principal component analysis of the phenotypic data distinguished the larger and leaner breeds with better growth potential and reproductive performance from the smaller and fatter breeds with low growth and reproductive efficiency. Linking the signatures of selection with phenotype identified 16 significant genomic regions associated with stature, 24 with fatness, 2 with growth, and 192 with reproduction. Among them, several regions contained candidate genes with possible biological effects on stature, fatness, growth, and reproductive performance traits. For example, strong associations were found for stature in two regions containing, respectively, the ANXA4 and ANTXR1 genes, for fatness in a region containing the DNMT3A and POMC genes and for reproductive performance in a region containing the HSD17B7 gene. CONCLUSIONS In this study on European local pig breeds, we used a dedicated approach for detecting signatures of selection that were supported by phenotypic data at the breed level to identify potential candidate genes that may have adapted to different living environments and production systems.
Collapse
Affiliation(s)
- Klavdija Poklukar
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000, Ljubljana, Slovenia
| | - Camille Mestre
- GenPhySE, Université de Toulouse, INRAE, INP, ENVT, 31320, Castanet-Tolosan, France
| | - Martin Škrlep
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000, Ljubljana, Slovenia
| | | | - Cristina Ovilo
- Departamento Mejora Genética Animal, INIA-CSIC, Crta. de la Coruña Km. 7,5, 28040, Madrid, Spain
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Juliette Riquet
- GenPhySE, Université de Toulouse, INRAE, INP, ENVT, 31320, Castanet-Tolosan, France
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Maria Muñoz
- Departamento Mejora Genética Animal, INIA-CSIC, Crta. de la Coruña Km. 7,5, 28040, Madrid, Spain
| | - Maurizio Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, 00198, Rome, Italy
| | - Ricardo Bozzi
- DAGRI-Animal Science Section, Università Di Firenze, Via Delle Cascine 5, 50144, Florence, Italy
| | - Rui Charneca
- MED- Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Apartado 94, 7006-554, Évora, Portugal
| | - Raquel Quintanilla
- Programa de Genética y Mejora Animal, IRTA, Torre Marimon, Caldes de Montbui, 08140, Barcelona, Spain
| | - Goran Kušec
- Faculty of Agrobiotechnical Sciences, University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia
| | - Marie-José Mercat
- IFIP Institut du Porc, La Motte au Vicomte, BP 35104, 35651, Le Rheu Cedex, France
| | - Christoph Zimmer
- Bauerliche Erzeugergemeinschaft Schwäbisch Hall, Haller Str. 20, 74549, Wolpertshausen, Germany
| | - Violeta Razmaite
- Animal Science Institute, Lithuanian University of Health Sciences, 82317, Baisogala, Lithuania
| | - Jose P Araujo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Refóios do Lima, 4990-706, Ponte de Lima, Portugal
| | - Čedomir Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, 11080, Belgrade-Zemun, Serbia
| | - Radomir Savić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade-Zemun, Serbia
| | - Danijel Karolyi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000, Zagreb, Croatia
| | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRAE, INP, ENVT, 31320, Castanet-Tolosan, France.
| |
Collapse
|
21
|
Meng J, Yang G, Li X, Zhao Y, He S. Population structure of wild soybean ( Glycine soja) based on SLAF-seq have implications for its conservation. PeerJ 2023; 11:e16415. [PMID: 37953790 PMCID: PMC10638924 DOI: 10.7717/peerj.16415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Background Glycine soja Sieb. & Zucc. is the wild ancestor from which the important crop plant soybean was bred. G. soja provides important germplasm resources for the breeding and improvement of cultivated soybean crops, however the species is threatened by habitat loss and fragmentation, and is experiencing population declines across its natural range. Understanding the patterns of genetic diversity in G. soja populations can help to inform conservation practices. Methods In this study, we analyzed the genetic diversity and differentiation of G. soja at different sites and investigated the gene flow within the species. We obtained 147 G. soja accessions collected from 16 locations across the natural range of the species from China, Korea and Japan. Samples were analyzed using SLAF-seq (Specific-Locus Amplified Fragment Sequencing). Results We obtained a total of 56,489 highly consistent SNPs. Our results suggested that G. soja harbors relatively high diversity and that populations of this species are highly differentiated. The populations harboring high genetic diversity, especially KR, should be considered first when devising conservation plans for the protection of G. soja, and in situ protection should be adopted in KR. G. soja populations from the Yangtze River, the Korean peninsula and northeastern China have a close relationship, although these areas are geographically disconnected. Other populations from north China clustered together. Analysis of gene flow suggested that historical migrations of G. soja may have occurred from the south northwards across the East-Asia land-bridge, but not across north China. All G. soja populations could be divided into one of two lineages, and these two lineages should be treated separately when formulating protection policies.
Collapse
Affiliation(s)
- Jing Meng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guoqian Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yuannan, China
| | - Xuejiao Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan Zhao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shuilian He
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
22
|
Gutiérrez-Guerrero YT, Phifer-Rixey M, Nachman MW. Across two continents: the genomic basis of environmental adaptation in house mice ( Mus musculus domesticus) from the Americas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564674. [PMID: 37961195 PMCID: PMC10634997 DOI: 10.1101/2023.10.30.564674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Parallel clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas. Past studies of North American populations across latitudinal gradients provided evidence of environmental adaptation in traits related to body size, metabolism, and behavior and identified candidate genes using selection scans. Here, we investigate genomic signals of environmental adaptation on a second continent, South America, and ask whether there is evidence of parallel adaptation across multiple latitudinal transects in the Americas. We first identified loci across the genome showing signatures of selection related to climatic variation in mice sampled across a latitudinal transect in South America, accounting for neutral population structure. Consistent with previous results, most candidate SNPs were in regulatory regions. Genes containing the most extreme outliers relate to traits such as body weight or size, metabolism, immunity, fat, and development or function of the eye as well as traits associated with the cardiovascular and renal systems. We then combined these results with published results from two transects in North America. While most candidate genes were unique to individual transects, we found significant overlap among candidate genes identified independently in the three transects, providing strong evidence of parallel adaptation and identifying genes that likely underlie recent environmental adaptation in house mice across North and South America.
Collapse
Affiliation(s)
- Yocelyn T. Gutiérrez-Guerrero
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, United States of America
| | - Megan Phifer-Rixey
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, United States of America
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Michael W. Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, United States of America
| |
Collapse
|
23
|
Goudet J, Weir BS. An allele-sharing, moment-based estimator of global, population-specific and population-pair FST under a general model of population structure. PLoS Genet 2023; 19:e1010871. [PMID: 38011288 PMCID: PMC10703327 DOI: 10.1371/journal.pgen.1010871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/07/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
Being able to properly quantify genetic differentiation is key to understanding the evolutionary potential of a species. One central parameter in this context is FST, the mean coancestry within populations relative to the mean coancestry between populations. Researchers have been estimating FST globally or between pairs of populations for a long time. More recently, it has been proposed to estimate population-specific FST values, and population-pair mean relative coancestry. Here, we review the several definitions and estimation methods of FST, and stress that they provide values relative to a reference population. We show the good statistical properties of an allele-sharing, method of moments based estimator of FST (global, population-specific and population-pair) under a very general model of population structure. We point to the limitation of existing likelihood and Bayesian estimators when the populations are not independent. Last, we show that recent attempts to estimate absolute, rather than relative, mean coancestry fail to do so.
Collapse
Affiliation(s)
- Jerome Goudet
- Dept Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of BioInformatics, University of Lausanne, Lausanne, Switzerland
| | - Bruce S. Weir
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
24
|
Wang TR, Meng HH, Wang N, Zheng SS, Jiang Y, Lin DQ, Song YG, Kozlowski G. Adaptive divergence and genetic vulnerability of relict species under climate change: a case study of Pterocarya macroptera. ANNALS OF BOTANY 2023; 132:241-254. [PMID: 37409981 PMCID: PMC10583204 DOI: 10.1093/aob/mcad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND AND AIMS Understanding adaptive genetic variation and whether it can keep pace with predicted future climate change is critical in assessing the genetic vulnerability of species and developing conservation management strategies. The lack of information on adaptive genetic variation in relict species carrying abundant genetic resources hinders the assessment of genetic vulnerability. Using a landscape genomics approach, this study aimed to determine how adaptive genetic variation shapes population divergence and to predict the adaptive potential of Pterocarya macroptera (a vulnerable relict species in China) under future climate scenarios. METHODS We applied restriction site-associated DNA sequencing (RAD-seq) to obtain 8244 single-nucleotide polymorphisms (SNPs) from 160 individuals across 28 populations. We examined the pattern of genetic diversity and divergence, and then identified outliers by genetic differentiation (FST) and genotype-environment association (GEA) methods. We further dissected the effect of geographical/environmental gradients on genetic variation. Finally, we predicted genetic vulnerability and adaptive risk under future climate scenarios. KEY RESULTS We identified three genetic lineages within P. macroptera: the Qinling-Daba-Tianmu Mountains (QDT), Western Sichuan (WS) and Northwest Yunnan (NWY) lineages, which showed significant signals of isolation by distance (IBD) and isolation by environment (IBE). IBD and IBE explained 3.7-5.7 and 8.6-12.8 % of the genetic structure, respectively. The identified GEA SNP-related genes were involved in chemical defence and gene regulation and may exhibit higher genetic variation to adapt to the environment. Gradient forest analysis revealed that the genetic variation was mainly shaped by temperature-related variables, indicating its adaptation to local thermal environments. A limited adaptive potential was suggested by the high levels of genetic vulnerability in marginal populations. CONCLUSIONS Environmental gradient mainly shaped the population differentiation of P. macroptera. Marginal populations may be at high risk of extinction, and thus proactive management measures, such as assisted gene flow, are required to ensure the survival of these populations.
Collapse
Affiliation(s)
- Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Nian Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, 271018, China
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yun Jiang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Duo-Qing Lin
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, CH-1700, Switzerland
- Natural History Museum Fribourg, Fribourg, CH-1700, Switzerland
| |
Collapse
|
25
|
Vera M, Wilmes SB, Maroso F, Hermida M, Blanco A, Casanova A, Iglesias D, Cao A, Culloty SC, Mahony K, Orvain F, Bouza C, Robins PE, Malham SK, Lynch S, Villalba A, Martínez P. Heterogeneous microgeographic genetic structure of the common cockle (Cerastoderma edule) in the Northeast Atlantic Ocean: biogeographic barriers and environmental factors. Heredity (Edinb) 2023; 131:292-305. [PMID: 37596415 PMCID: PMC10539317 DOI: 10.1038/s41437-023-00646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Knowledge of genetic structure at the finest level is essential for the conservation of genetic resources. Despite no visible barriers limiting gene flow, significant genetic structure has been shown in marine species. The common cockle (Cerastoderma edule) is a bivalve of great commercial and ecological value inhabiting the Northeast Atlantic Ocean. Previous population genomics studies demonstrated significant structure both across the Northeast Atlantic, but also within small geographic areas, highlighting the need to investigate fine-scale structuring. Here, we analysed two geographic areas that could represent opposite models of structure for the species: (1) the SW British Isles region, highly fragmented due to biogeographic barriers, and (2) Galicia (NW Spain), a putative homogeneous region. A total of 9250 SNPs genotyped by 2b-RAD on 599 individuals from 22 natural beds were used for the analysis. The entire SNP dataset mostly confirmed previous observations related to genetic diversity and differentiation; however, neutral and divergent SNP outlier datasets enabled disentangling physical barriers from abiotic environmental factors structuring both regions. While Galicia showed a homogeneous structure, the SW British Isles region was split into four reliable genetic regions related to oceanographic features and abiotic factors, such as sea surface salinity and temperature. The information gathered supports specific management policies of cockle resources in SW British and Galician regions also considering their particular socio-economic characteristics; further, these new data will be added to those recently reported in the Northeast Atlantic to define sustainable management actions across the whole distribution range of the species.
Collapse
Affiliation(s)
- Manuel Vera
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain.
| | - Sophie B Wilmes
- School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, UK
| | - Francesco Maroso
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Miguel Hermida
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Andrés Blanco
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Adrián Casanova
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - David Iglesias
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| | - Asunción Cao
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| | - Sarah C Culloty
- School of Biological, Earth and Environmental Sciences/Aquaculture and Fisheries Development Centre, University College Cork, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Kate Mahony
- School of Biological, Earth and Environmental Sciences/Aquaculture and Fisheries Development Centre, University College Cork, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Francis Orvain
- UNICAEN - UMR BOREA "Biologie des ORganismes et Ecosystèmes Aquatiques" MNHN, UPMC, UCBN, CNRS-7208, IRD-207, University of Caen, Caen, France
| | - Carmen Bouza
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Peter E Robins
- School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, UK
| | - Sharon Lynch
- School of Biological, Earth and Environmental Sciences/Aquaculture and Fisheries Development Centre, University College Cork, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Antonio Villalba
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
- Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871, Alcalá de Henares, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain.
| |
Collapse
|
26
|
Soudi S, Crepeau M, Collier TC, Lee Y, Cornel AJ, Lanzaro GC. Genomic signatures of local adaptation in recent invasive Aedes aegypti populations in California. BMC Genomics 2023; 24:311. [PMID: 37301847 PMCID: PMC10257851 DOI: 10.1186/s12864-023-09402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Rapid adaptation to new environments can facilitate species invasions and range expansions. Understanding the mechanisms of adaptation used by invasive disease vectors in new regions has key implications for mitigating the prevalence and spread of vector-borne disease, although they remain relatively unexplored. RESULTS Here, we integrate whole-genome sequencing data from 96 Aedes aegypti mosquitoes collected from various sites in southern and central California with 25 annual topo-climate variables to investigate genome-wide signals of local adaptation among populations. Patterns of population structure, as inferred using principal components and admixture analysis, were consistent with three genetic clusters. Using various landscape genomics approaches, which all remove the confounding effects of shared ancestry on correlations between genetic and environmental variation, we identified 112 genes showing strong signals of local environmental adaptation associated with one or more topo-climate factors. Some of them have known effects in climate adaptation, such as heat-shock proteins, which shows selective sweep and recent positive selection acting on these genomic regions. CONCLUSIONS Our results provide a genome wide perspective on the distribution of adaptive loci and lay the foundation for future work to understand how environmental adaptation in Ae. aegypti impacts the arboviral disease landscape and how such adaptation could help or hinder efforts at population control.
Collapse
Affiliation(s)
- Shaghayegh Soudi
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Marc Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Travis C Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA
| | - Anthony J Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Mosquito Control Research Laboratory, Department of Entomology and Nematology, University of California, Parlier, CA, USA
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
27
|
Zhang W, Wang H, Zhang T, Fang X, Liu M, Xiao H. Geographic-genomic and geographic-phenotypic differentiation of the Aquilegia viridiflora complex. HORTICULTURE RESEARCH 2023; 10:uhad041. [PMID: 37159802 PMCID: PMC10163360 DOI: 10.1093/hr/uhad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/05/2023] [Indexed: 05/11/2023]
Abstract
How species diverge into different lineages is a central issue in evolutionary biology. Despite the increasing evidence indicating that such divergences do not need geographic isolation, the correlation between lineage divergence and the adaptive ecological divergence of phenotype corresponding to distribution is still unknown. In addition, gene flow has been widely detected during and through such diverging processes. We used one widely distributed Aquilegia viridiflora complex as a model system to examine genomic differentiation and corresponding phenotypic variations along geographic gradients. Our phenotypic analyses of 20 populations from northwest to northeast China identified two phenotypic groups along the geographic cline. All examined traits are distinct from each other, although a few intermediate individuals occur in their contacting regions. We further sequenced the genomes of representative individuals of each population. However, four distinct genetic lineages were detected based on nuclear genomes. In particular, we recovered numerous genetic hybrids in the contact regions of four lineages. Gene flow is widespread and continuous between four lineages but much higher between contacting lineages than geographically isolated lineages. Gene flow and natural selection might result in inconsistency between heredity and phenotype. Moreover, many genes with fast lineage-specific mutations were identified to be involved in local adaptation. Our results suggest that both geographic isolation and local selection exerted by the environment and pollinators may together create geographic distributions of phenotypic variations as well as the underlying genomic divergences in numerous lineages.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | | | - Tengjiao Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiaoxue Fang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Meiying Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | | |
Collapse
|
28
|
Zhang X, Guo R, Shen R, Landis JB, Jiang Q, Liu F, Wang H, Yao X. The genomic and epigenetic footprint of local adaptation to variable climates in kiwifruit. HORTICULTURE RESEARCH 2023; 10:uhad031. [PMID: 37799629 PMCID: PMC10548413 DOI: 10.1093/hr/uhad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/14/2023] [Indexed: 10/07/2023]
Abstract
A full understanding of adaptive genetic variation at the genomic level will help address questions of how organisms adapt to diverse climates. Actinidia eriantha is a shade-tolerant species, widely distributed in the southern tropical region of China, occurring in spatially heterogeneous environments. In the present study we combined population genomic, epigenomic, and environmental association analyses to infer population genetic structure and positive selection across a climatic gradient, and to assess genomic offset to climatic change for A. eriantha. The population structure is strongly shaped by geography and influenced by restricted gene flow resulting from isolation by distance due to habitat fragmentation. In total, we identified 102 outlier loci and annotated 455 candidate genes associated with the genomic basis of climate adaptation, which were enriched in functional categories related to development processes and stress response; both temperature and precipitation are important factors driving adaptive variation. In addition to single-nucleotide polymorphisms (SNPs), a total of 27 single-methylation variants (SMVs) had significant correlation with at least one of four climatic variables and 16 SMVs were located in or adjacent to genes, several of which were predicted to be involved in plant response to abiotic or biotic stress. Gradient forest analysis indicated that the central/east populations were predicted to be at higher risk of future population maladaptation under climate change. Our results demonstrate that local climate factors impose strong selection pressures and lead to local adaptation. Such information adds to our understanding of adaptive mechanisms to variable climates revealed by both population genome and epigenome analysis.
Collapse
Affiliation(s)
- Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruinan Shen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853 USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Quan Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Xiaohong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| |
Collapse
|
29
|
Lotterhos KE. The paradox of adaptive trait clines with nonclinal patterns in the underlying genes. Proc Natl Acad Sci U S A 2023; 120:e2220313120. [PMID: 36917658 PMCID: PMC10041142 DOI: 10.1073/pnas.2220313120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 03/16/2023] Open
Abstract
Multivariate climate change presents an urgent need to understand how species adapt to complex environments. Population genetic theory predicts that loci under selection will form monotonic allele frequency clines with their selective environment, which has led to the wide use of genotype-environment associations (GEAs). This study used a set of simulations to elucidate the conditions under which allele frequency clines are more or less likely to evolve as multiple quantitative traits adapt to multivariate environments. Phenotypic clines evolved with nonmonotonic (i.e., nonclinal) patterns in allele frequencies under conditions that promoted unique combinations of mutations to achieve the multivariate optimum in different parts of the landscape. Such conditions resulted from interactions among landscape, demography, pleiotropy, and genetic architecture. GEA methods failed to accurately infer the genetic basis of adaptation under a range of scenarios due to first principles (clinal patterns did not evolve) or statistical issues (clinal patterns evolved but were not detected due to overcorrection for structure). Despite the limitations of GEAs, this study shows that a back-transformation of multivariate ordination can accurately predict individual multivariate traits from genotype and environmental data regardless of whether inference from GEAs was accurate. In addition, frameworks are introduced that can be used by empiricists to quantify the importance of clinal alleles in adaptation. This research highlights that multivariate trait prediction from genotype and environmental data can lead to accurate inference regardless of whether the underlying loci display clinal or nonmonotonic patterns.
Collapse
Affiliation(s)
- Katie E. Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA01908
| |
Collapse
|
30
|
Dauphin B, Rellstab C, Wüest RO, Karger DN, Holderegger R, Gugerli F, Manel S. Re-thinking the environment in landscape genomics. Trends Ecol Evol 2023; 38:261-274. [PMID: 36402651 DOI: 10.1016/j.tree.2022.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
Detecting the extrinsic selective pressures shaping genomic variation is critical for a better understanding of adaptation and for forecasting evolutionary responses of natural populations to changing environmental conditions. With increasing availability of geo-referenced environmental data, landscape genomics provides unprecedented insights into how genomic variation and underlying gene functions affect traits potentially under selection. Yet, the robustness of genotype-environment associations used in landscape genomics remains tempered due to various limitations, including the characteristics of environmental data used, sampling designs employed, and statistical frameworks applied. Here, we argue that using complementary or new environmental data sources and well-informed sampling designs may help improve the detection of selective pressures underlying patterns of local adaptation in various organisms and environments.
Collapse
Affiliation(s)
- Benjamin Dauphin
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland.
| | | | - Rafael O Wüest
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Dirk N Karger
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Rolf Holderegger
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland; Institute of Integrative Biology (IBZ), ETH, Zurich, 8092 Zurich, Switzerland
| | - Felix Gugerli
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Stéphanie Manel
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland; CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, 34000 Montpellier, France; Institut Universitaire de France, Paris, France
| |
Collapse
|
31
|
Capblancq T, Lachmuth S, Fitzpatrick MC, Keller SR. From common gardens to candidate genes: exploring local adaptation to climate in red spruce. THE NEW PHYTOLOGIST 2023; 237:1590-1605. [PMID: 36068997 PMCID: PMC10092705 DOI: 10.1111/nph.18465] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/09/2022] [Indexed: 05/12/2023]
Abstract
Local adaptation to climate is common in plant species and has been studied in a range of contexts, from improving crop yields to predicting population maladaptation to future conditions. The genomic era has brought new tools to study this process, which was historically explored through common garden experiments. In this study, we combine genomic methods and common gardens to investigate local adaptation in red spruce and identify environmental gradients and loci involved in climate adaptation. We first use climate transfer functions to estimate the impact of climate change on seedling performance in three common gardens. We then explore the use of multivariate gene-environment association methods to identify genes underlying climate adaptation, with particular attention to the implications of conducting genome scans with and without correction for neutral population structure. This integrative approach uncovered phenotypic evidence of local adaptation to climate and identified a set of putatively adaptive genes, some of which are involved in three main adaptive pathways found in other temperate and boreal coniferous species: drought tolerance, cold hardiness, and phenology. These putatively adaptive genes segregated into two 'modules' associated with different environmental gradients. This study nicely exemplifies the multivariate dimension of adaptation to climate in trees.
Collapse
Affiliation(s)
- Thibaut Capblancq
- Department of Plant BiologyUniversity of VermontBurlingtonVT05405USA
| | - Susanne Lachmuth
- Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgMD21532USA
| | - Matthew C. Fitzpatrick
- Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgMD21532USA
| | - Stephen R. Keller
- Department of Plant BiologyUniversity of VermontBurlingtonVT05405USA
| |
Collapse
|
32
|
Novikova SV, Sharov VV, Oreshkova NV, Simonov EP, Krutovsky KV. Genetic Adaptation of Siberian Larch ( Larix sibirica Ledeb.) to High Altitudes. Int J Mol Sci 2023; 24:ijms24054530. [PMID: 36901960 PMCID: PMC10003562 DOI: 10.3390/ijms24054530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Forest trees growing in high altitude conditions offer a convenient model for studying adaptation processes. They are subject to a whole range of adverse factors that are likely to cause local adaptation and related genetic changes. Siberian larch (Larix sibirica Ledeb.), whose distribution covers different altitudes, makes it possible to directly compare lowland with highland populations. This paper presents for the first time the results of studying the genetic differentiation of Siberian larch populations, presumably associated with adaptation to the altitudinal gradient of climatic conditions, based on a joint analysis of altitude and six other bioclimatic variables, together with a large number of genetic markers, single nucleotide polymorphisms (SNPs), obtained from double digest restriction-site-associated DNA sequencing (ddRADseq). In total, 25,143 SNPs were genotyped in 231 trees. In addition, a dataset of 761 supposedly selectively neutral SNPs was assembled by selecting SNPs located outside coding regions in the Siberian larch genome and mapped to different contigs. The analysis using four different methods (PCAdapt, LFMM, BayeScEnv and RDA) revealed 550 outlier SNPs, including 207 SNPs whose variation was significantly correlated with the variation of some of environmental factors and presumably associated with local adaptation, including 67 SNPs that correlated with altitude based on either LFMM or BayeScEnv and 23 SNPs based on both of them. Twenty SNPs were found in the coding regions of genes, and 16 of them represented non-synonymous nucleotide substitutions. They are located in genes involved in the processes of macromolecular cell metabolism and organic biosynthesis associated with reproduction and development, as well as organismal response to stress. Among these 20 SNPs, nine were possibly associated with altitude, but only one of them was identified as associated with altitude by all four methods used in the study, a nonsynonymous SNP in scaffold_31130 in position 28092, a gene encoding a cell membrane protein with uncertain function. Among the studied populations, at least two main groups (clusters), the Altai populations and all others, were significantly genetically different according to the admixture analysis based on any of the three SNP datasets as follows: 761 supposedly selectively neutral SNPs, all 25,143 SNPs and 550 adaptive SNPs. In general, according to the AMOVA results, genetic differentiation between transects or regions or between population samples was relatively low, although statistically significant, based on 761 neutral SNPs (FST = 0.036) and all 25,143 SNPs (FST = 0.017). Meanwhile, the differentiation based on 550 adaptive SNPs was much higher (FST = 0.218). The data showed a relatively weak but highly significant linear correlation between genetic and geographic distances (r = 0.206, p = 0.001).
Collapse
Affiliation(s)
- Serafima V. Novikova
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Vadim V. Sharov
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
- Department of High-Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, 660074 Krasnoyarsk, Russia
- Tauber Bioinformatics Research Center, University of Haifa, Haifa 3498838, Israel
| | - Natalia V. Oreshkova
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Forest Genetics and Selection, V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Evgeniy P. Simonov
- Laboratory of Evolutionary Trophology, A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Konstantin V. Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, George-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
- Correspondence: ; Tel.: +49-551-339-3537
| |
Collapse
|
33
|
Chung MY, Merilä J, Li J, Mao K, López-Pujol J, Tsumura Y, Chung MG. Neutral and adaptive genetic diversity in plants: An overview. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1116814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Genetic diversity is a prerequisite for evolutionary change in all kinds of organisms. It is generally acknowledged that populations lacking genetic variation are unable to evolve in response to new environmental conditions (e.g., climate change) and thus may face an increased risk of extinction. Although the importance of incorporating genetic diversity into the design of conservation measures is now well understood, less attention has been paid to the distinction between neutral (NGV) and adaptive (AGV) genetic variation. In this review, we first focus on the utility of NGV by examining the ways to quantify it, reviewing applications of NGV to infer ecological and evolutionary processes, and by exploring its utility in designing conservation measures for plant populations and species. Against this background, we then summarize the ways to identify and estimate AGV and discuss its potential use in plant conservation. After comparing NGV and AGV and considering their pros and cons in a conservation context, we conclude that there is an urgent need for a better understanding of AGV and its role in climate change adaptation. To date, however, there are only a few AGV studies on non-model plant species aimed at deciphering the genetic and genomic basis of complex trait variation. Therefore, conservation researchers and practitioners should keep utilizing NGV to develop relevant strategies for rare and endangered plant species until more estimates of AGV are available.
Collapse
|
34
|
Abstract
Insects constitute vital components of ecosystems. There is alarming evidence for global declines in insect species diversity, abundance, and biomass caused by anthropogenic drivers such as habitat degradation or loss, agricultural practices, climate change, and environmental pollution. This raises important concerns about human food security and ecosystem functionality and calls for more research to assess insect population trends and identify threatened species and the causes of declines to inform conservation strategies. Analysis of genetic diversity is a powerful tool to address these goals, but so far animal conservation genetics research has focused strongly on endangered vertebrates, devoting less attention to invertebrates, such as insects, that constitute most biodiversity. Insects' shorter generation times and larger population sizes likely necessitate different analytical methods and management strategies. The availability of high-quality reference genome assemblies enables population genomics to address several key issues. These include precise inference of past demographic fluctuations and recent declines, measurement of genetic load levels, delineation of evolutionarily significant units and cryptic species, and analysis of genetic adaptation to stressors. This enables identification of populations that are particularly vulnerable to future threats, considering their potential to adapt and evolve. We review the application of population genomics to insect conservation and the outlook for averting insect declines.
Collapse
Affiliation(s)
- Matthew T Webster
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Alexis Beaurepaire
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Eckart Stolle
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| |
Collapse
|
35
|
Venkataraman K, Shai N, Lakhiani P, Zylka S, Zhao J, Herre M, Zeng J, Neal LA, Molina H, Zhao L, Vosshall LB. Two novel, tightly linked, and rapidly evolving genes underlie Aedes aegypti mosquito reproductive resilience during drought. eLife 2023; 12:e80489. [PMID: 36744865 PMCID: PMC10076016 DOI: 10.7554/elife.80489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 01/29/2023] [Indexed: 02/07/2023] Open
Abstract
Female Aedes aegypti mosquitoes impose a severe global public health burden as vectors of multiple viral pathogens. Under optimal environmental conditions, Aedes aegypti females have access to human hosts that provide blood proteins for egg development, conspecific males that provide sperm for fertilization, and freshwater that serves as an egg-laying substrate suitable for offspring survival. As global temperatures rise, Aedes aegypti females are faced with climate challenges like intense droughts and intermittent precipitation, which create unpredictable, suboptimal conditions for egg-laying. Here, we show that under drought-like conditions simulated in the laboratory, females retain mature eggs in their ovaries for extended periods, while maintaining the viability of these eggs until they can be laid in freshwater. Using transcriptomic and proteomic profiling of Aedes aegypti ovaries, we identify two previously uncharacterized genes named tweedledee and tweedledum, each encoding a small, secreted protein that both show ovary-enriched, temporally-restricted expression during egg retention. These genes are mosquito-specific, linked within a syntenic locus, and rapidly evolving under positive selection, raising the possibility that they serve an adaptive function. CRISPR-Cas9 deletion of both tweedledee and tweedledum demonstrates that they are specifically required for extended retention of viable eggs. These results highlight an elegant example of taxon-restricted genes at the heart of an important adaptation that equips Aedes aegypti females with 'insurance' to flexibly extend their reproductive schedule without losing reproductive capacity, thus allowing this species to exploit unpredictable habitats in a changing world.
Collapse
Affiliation(s)
- Krithika Venkataraman
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Nadav Shai
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Priyanka Lakhiani
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller UniversityNew YorkUnited States
| | - Sarah Zylka
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Jieqing Zhao
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Margaret Herre
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| | - Joshua Zeng
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Lauren A Neal
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Henrik Molina
- Proteomics Resource Center, Rockefeller UniversityNew YorkUnited States
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller UniversityNew YorkUnited States
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| |
Collapse
|
36
|
Nielsen SV, Vaughn AH, Leppälä K, Landis MJ, Mailund T, Nielsen R. Bayesian inference of admixture graphs on Native American and Arctic populations. PLoS Genet 2023; 19:e1010410. [PMID: 36780565 PMCID: PMC9956672 DOI: 10.1371/journal.pgen.1010410] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/24/2023] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Admixture graphs are mathematical structures that describe the ancestry of populations in terms of divergence and merging (admixing) of ancestral populations as a graph. An admixture graph consists of a graph topology, branch lengths, and admixture proportions. The branch lengths and admixture proportions can be estimated using numerous numerical optimization methods, but inferring the topology involves a combinatorial search for which no polynomial algorithm is known. In this paper, we present a reversible jump MCMC algorithm for sampling high-probability admixture graphs and show that this approach works well both as a heuristic search for a single best-fitting graph and for summarizing shared features extracted from posterior samples of graphs. We apply the method to 11 Native American and Siberian populations and exploit the shared structure of high-probability graphs to characterize the relationship between Saqqaq, Inuit, Koryaks, and Athabascans. Our analyses show that the Saqqaq is not a good proxy for the previously identified gene flow from Arctic people into the Na-Dene speaking Athabascans.
Collapse
Affiliation(s)
- Svend V. Nielsen
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Andrew H. Vaughn
- Center for Computational Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Kalle Leppälä
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Michael J. Landis
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Rasmus Nielsen
- Departments of Integrative Biology and Statistics, University of California Berkeley, Berkeley, California, United States of America
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Lin X, Hu L, Chen Z, Dong Y. Thermal heterogeneity is an important factor for maintaining the genetic differentiation pattern of the pelagic barnacle Lepas anatifera in the northwest Pacific. Ecol Evol 2023; 13:e9843. [PMID: 36844671 PMCID: PMC9944158 DOI: 10.1002/ece3.9843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Macrobenthic invertebrates are ubiquitously distributed in the epipelagic zone of the open ocean. Yet, our understanding of their genetic structure patterns remains poorly understood. Investigating the genetic differentiation patterns of pelagic Lepas anatifera and clarifying the potential roles of temperature maintaining this pattern are crucial for our understanding of the distribution and biodiversity of pelagic macrobenthos. In the present study, mitochondrial cytochrome oxidase subunit I (mtDNA COI) from three South China Sea (SCS) populations and six Kuroshio Extension (KE) region populations of L. anatifera sampled from fixed buoys and genome-wide SNPs from a subset of populations (two SCS populations and four KE region populations) were sequenced and analyzed for investigating the genetic pattern of the pelagic barnacle. Water temperature was different among sampling sites; in other words, the water temperature decreased with latitude increases, and the water temperature on the surface was higher than in the subsurface. Our result showed that three lineages with clear genetic differentiation were found in different geographical locations and depths based on mtDNA COI, all SNPs, neutral SNPs, and outlier SNPs. Lineage 1 and lineage 2 were dominant in the subsurface populations and surface populations from the KE region, respectively. Lineage 3 was dominant in the SCS populations. Historical events during the Pliocene epoch shaped the differentiation of the three lineages, while, nowadays, temperature heterogeneity maintains the current genetic pattern of L. anatifera in the northwest Pacific. The subsurface populations were genetically isolated from the surface populations in the Kuroshio Extension (KE) region, implying small-scale vertical thermal heterogeneity was also an important factor maintaining the genetic differentiation pattern of the pelagic species.
Collapse
Affiliation(s)
- Xiao‐Nie Lin
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries CollegeOcean University of ChinaQingdaoChina
| | - Li‐Sha Hu
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries CollegeOcean University of ChinaQingdaoChina
- Function Laboratory for Marine Fisheries Science and Food Production ProcessesPilot National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Zhao‐Hui Chen
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography LaboratoryOcean University of ChinaQingdaoChina
- Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Yun‐Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries CollegeOcean University of ChinaQingdaoChina
- Function Laboratory for Marine Fisheries Science and Food Production ProcessesPilot National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
38
|
Lin N, Liu Q, Landis JB, Rana HK, Li Z, Wang H, Sun H, Deng T. Staying in situ or shifting range under ongoing climate change: A case of an endemic herb in the
Himalaya‐Hengduan
Mountains across elevational gradients. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Nan Lin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- College of Life Science Henan Agricultural University Zhengzhou China
| | - Qun Liu
- School of Life Sciences Yunnan Normal University Kunming China
| | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium Cornell University Ithaca New York USA
- BTI Computational Biology Center Boyce Thompson Institute Ithaca New York USA
| | - Hum Kala Rana
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| | - Zhimin Li
- School of Life Sciences Yunnan Normal University Kunming China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia Kunming Institute of Botany, Chinese Academy of Sciences Kunming China
| | - Tao Deng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia Kunming Institute of Botany, Chinese Academy of Sciences Kunming China
| |
Collapse
|
39
|
Strickland K, Räsänen K, Kristjánsson BK, Phillips JS, Einarsson A, Snorradóttir RG, Bartrons M, Jónsson ZO. Genome-phenotype-environment associations identify signatures of selection in a panmictic population of threespine stickleback. Mol Ecol 2023; 32:1708-1725. [PMID: 36627230 DOI: 10.1111/mec.16845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Adaptive genetic divergence occurs when selection imposed by the environment causes the genomic component of the phenotype to differentiate. However, genomic signatures of natural selection are usually identified without information on which trait is responding to selection by which selective agent(s). Here, we integrate whole-genome sequencing with phenomics and measures of putative selective agents to assess the extent of adaptive divergence in threespine stickleback occupying the highly heterogeneous lake Mývatn, NE Iceland. We find negligible genome wide divergence, yet multiple traits (body size, gill raker structure and defence traits) were divergent along known ecological gradients (temperature, predatory bird densities and water depth). SNP based heritability of all measured traits was high (h2 = 0.42-0.65), indicating adaptive potential for all traits. Environment-association analyses further identified thousands of loci putatively involved in selection, related to genes linked to, for instance, neuron development and protein phosphorylation. Finally, we found that loci linked to water depth were concurrently associated with pelvic spine length variation - supporting the conclusion that divergence in pelvic spine length occurred in the face of gene flow. Our results suggest that whilst there is substantial genetic variation in the traits measured, phenotypic divergence of Mývatn stickleback is mostly weakly associated with environmental gradients, potentially as a result of substantial gene flow. Our study illustrates the value of integrative studies that combine genomic assays of multivariate trait variation with landscape genomics.
Collapse
Affiliation(s)
- Kasha Strickland
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
| | - Katja Räsänen
- Department of Aquatic Ecology, EAWAG and Institute of Integrative Biology, ETH, Zurich, Switzerland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Joseph S Phillips
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland.,Department of Biology, Creighton University, Omaha, Nebraska, USA
| | | | - Ragna G Snorradóttir
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
| | - Mireia Bartrons
- Aquatic Ecology Group, University of Vic (UVic-UCC), Catalonia, Spain
| | | |
Collapse
|
40
|
Puckett EE, Davis IS, Harper DC, Wakamatsu K, Battu G, Belant JL, Beyer DE, Carpenter C, Crupi AP, Davidson M, DePerno CS, Forman N, Fowler NL, Garshelis DL, Gould N, Gunther K, Haroldson M, Ito S, Kocka D, Lackey C, Leahy R, Lee-Roney C, Lewis T, Lutto A, McGowan K, Olfenbuttel C, Orlando M, Platt A, Pollard MD, Ramaker M, Reich H, Sajecki JL, Sell SK, Strules J, Thompson S, van Manen F, Whitman C, Williamson R, Winslow F, Kaelin CB, Marks MS, Barsh GS. Genetic architecture and evolution of color variation in American black bears. Curr Biol 2023; 33:86-97.e10. [PMID: 36528024 PMCID: PMC10039708 DOI: 10.1016/j.cub.2022.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Color variation is a frequent evolutionary substrate for camouflage in small mammals, but the underlying genetics and evolutionary forces that drive color variation in natural populations of large mammals are mostly unexplained. The American black bear, Ursus americanus (U. americanus), exhibits a range of colors including the cinnamon morph, which has a similar color to the brown bear, U. arctos, and is found at high frequency in the American southwest. Reflectance and chemical melanin measurements showed little distinction between U. arctos and cinnamon U. americanus individuals. We used a genome-wide association for hair color as a quantitative trait in 151 U. americanus individuals and identified a single major locus (p < 10-13). Additional genomic and functional studies identified a missense alteration (R153C) in Tyrosinase-related protein 1 (TYRP1) that likely affects binding of the zinc cofactor, impairs protein localization, and results in decreased pigment production. Population genetic analyses and demographic modeling indicated that the R153C variant arose 9.36 kya in a southwestern population where it likely provided a selective advantage, spreading both northwards and eastwards by gene flow. A different TYRP1 allele, R114C, contributes to the characteristic brown color of U. arctos but is not fixed across the range.
Collapse
Affiliation(s)
- Emily E Puckett
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA.
| | - Isis S Davis
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Dawn C Harper
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Gopal Battu
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jerrold L Belant
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Dean E Beyer
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Colin Carpenter
- West Virginia Division of Natural Resources, Beckley, WV 25801, USA
| | - Anthony P Crupi
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Douglas, Juneau, AK 99824, USA
| | - Maria Davidson
- The Louisiana Department of Wildlife and Fisheries, Baton Rouge, LA 70898, USA
| | - Christopher S DePerno
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695-7646, USA
| | - Nicholas Forman
- New Mexico Department of Game and Fish, Santa Fe, NM 87507, USA
| | - Nicholas L Fowler
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Douglas, Juneau, AK 99824, USA
| | - David L Garshelis
- Minnesota Department of Natural Resources, Grand Rapids, MN 55744, USA; IUCN SSC Bear Specialist Group
| | - Nicholas Gould
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695-7646, USA
| | - Kerry Gunther
- National Park Service, Yellowstone National Park, WY 82190-0168, USA
| | - Mark Haroldson
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Interagency Grizzly Bear Study Team, Bozeman, MT 59715, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - David Kocka
- Virginia Department of Wildlife Resources, Verona, VA 24482, USA
| | - Carl Lackey
- Nevada Department of Wildlife, Reno, NV 89512, USA
| | - Ryan Leahy
- National Park Service, Yosemite National Park Wildlife Management, Yosemite, CA 95389, USA
| | - Caitlin Lee-Roney
- National Park Service, Yosemite National Park Wildlife Management, Yosemite, CA 95389, USA
| | - Tania Lewis
- National Park Service, Glacier Bay National Park, Gustavus, AK 99826, USA
| | - Ashley Lutto
- U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge, Soldotna, AK 99669, USA
| | - Kelly McGowan
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Mike Orlando
- Florida Fish and Wildlife Conservation Commission, Tallahassee, FL 32399, USA
| | - Alexander Platt
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew D Pollard
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Megan Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Jaime L Sajecki
- Virginia Department of Wildlife Resources, Verona, VA 24482, USA
| | - Stephanie K Sell
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Douglas, Juneau, AK 99824, USA
| | - Jennifer Strules
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695-7646, USA
| | - Seth Thompson
- Virginia Department of Wildlife Resources, Verona, VA 24482, USA
| | - Frank van Manen
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Interagency Grizzly Bear Study Team, Bozeman, MT 59715, USA
| | - Craig Whitman
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Interagency Grizzly Bear Study Team, Bozeman, MT 59715, USA
| | - Ryan Williamson
- National Park Service, Great Smoky Mountains National Park, Gatlinburg, TN 37738, USA
| | | | - Christopher B Kaelin
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Pathology and Laboratory Medicine and of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory S Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
41
|
Lasky JR, Josephs EB, Morris GP. Genotype-environment associations to reveal the molecular basis of environmental adaptation. THE PLANT CELL 2023; 35:125-138. [PMID: 36005926 PMCID: PMC9806588 DOI: 10.1093/plcell/koac267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/23/2022] [Indexed: 06/14/2023]
Abstract
A fundamental goal in plant biology is to identify and understand the variation underlying plants' adaptation to their environment. Climate change has given new urgency to this goal, as society aims to accelerate adaptation of ecologically important plant species, endangered plant species, and crops to hotter, less predictable climates. In the pre-genomic era, identifying adaptive alleles was painstaking work, leveraging genetics, molecular biology, physiology, and ecology. Now, the rise of genomics and new computational approaches may facilitate this research. Genotype-environment associations (GEAs) use statistical associations between allele frequency and environment of origin to test the hypothesis that allelic variation at a given gene is adapted to local environments. Researchers may scan the genome for GEAs to generate hypotheses on adaptive genetic variants (environmental genome-wide association studies). Despite the rapid adoption of these methods, many important questions remain about the interpretation of GEA findings, which arise from fundamental unanswered questions on the genetic architecture of adaptation and limitations inherent to association-based analyses. We outline strategies to ground GEAs in the underlying hypotheses of genetic architecture and better test GEA-generated hypotheses using genetics and ecophysiology. We provide recommendations for new users who seek to learn about the molecular basis of adaptation. When combined with a rigorous hypothesis testing framework, GEAs may facilitate our understanding of the molecular basis of climate adaptation for plant improvement.
Collapse
Affiliation(s)
- Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Emily B Josephs
- Department of Plant Biology; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Geoffrey P Morris
- Department of Soil and Crop Sciences; Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80526, USA
| |
Collapse
|
42
|
Maier PA, Vandergast AG, Bohonak AJ. Using landscape genomics to delineate future adaptive potential for climate change in the Yosemite toad ( Anaxyrus canorus). Evol Appl 2023; 16:74-97. [PMID: 36699123 PMCID: PMC9850018 DOI: 10.1111/eva.13511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
An essential goal in conservation biology is delineating population units that maximize the probability of species persisting into the future and adapting to future environmental change. However, future-facing conservation concerns are often addressed using retrospective patterns that could be irrelevant. We recommend a novel landscape genomics framework for delineating future "Geminate Evolutionary Units" (GEUs) in a focal species: (1) identify loci under environmental selection, (2) model and map adaptive conservation units that may spawn future lineages, (3) forecast relative selection pressures on each future lineage, and (4) estimate their fitness and likelihood of persistence using geo-genomic simulations. Using this process, we delineated conservation units for the Yosemite toad (Anaxyrus canorus), a U.S. federally threatened species that is highly vulnerable to climate change. We used a genome-wide dataset, redundancy analysis, and Bayesian association methods to identify 24 candidate loci responding to climatic selection (R 2 ranging from 0.09 to 0.52), after controlling for demographic structure. Candidate loci included genes such as MAP3K5, involved in cellular response to environmental change. We then forecasted future genomic response to climate change using the multivariate machine learning algorithm Gradient Forests. Based on all available evidence, we found three GEUs in Yosemite National Park, reflecting contrasting adaptive optima: YF-North (high winter snowpack with moderate summer rainfall), YF-East (low to moderate snowpack with high summer rainfall), and YF-Low-Elevation (low snowpack and rainfall). Simulations under the RCP 8.5 climate change scenario suggest that the species will decline by 29% over 90 years, but the highly diverse YF-East lineage will be least impacted for two reasons: (1) geographically it will be sheltered from the largest climatic selection pressures, and (2) its standing genetic diversity will promote a faster adaptive response. Our approach provides a comprehensive strategy for protecting imperiled non-model species with genomic data alone and has wide applicability to other declining species.
Collapse
Affiliation(s)
- Paul A. Maier
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- FamilyTreeDNAGene by GeneHoustonTexasUSA
| | - Amy G. Vandergast
- Western Ecological Research CenterU.S. Geological SurveySan DiegoCaliforniaUSA
| | - Andrew J. Bohonak
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
43
|
Parvizi E, Dhami MK, Yan J, McGaughran A. Population genomic insights into invasion success in a polyphagous agricultural pest, Halyomorpha halys. Mol Ecol 2023; 32:138-151. [PMID: 36261398 PMCID: PMC10099481 DOI: 10.1111/mec.16740] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 01/07/2023]
Abstract
Invasive species are increasingly threatening ecosystems and agriculture by rapidly expanding their range and adapting to environmental and human-imposed selective pressures. The genomic mechanisms that underlie such rapid changes remain unclear, especially for agriculturally important pests. Here, we used genome-wide polymorphisms derived from native, invasive, and intercepted samples and populations of the brown marmorated stink bug (BMSB), Halyomorpha halys, to gain insights into population genomics processes that have promoted the successful global invasion of this polyphagous pest. Our analysis demonstrated that BMSB exhibits spatial structure but admixture rates are high among introduced populations, resulting in similar levels of genomic diversity across native and introduced populations. These spatial genomic patterns suggest a complex invasion scenario, potentially with multiple bridgehead events, posing a challenge for accurately assigning BMSB incursions to their source using reduced-representation genomic data. By associating allele frequencies with the invasion status of BMSB populations, we found significantly differentiated single nucleotide polymorphisms (SNPs) located in close proximity to genes for insecticide resistance and olfaction. Comparing variations in allele frequencies among populations for outlier SNPs suggests that BMSB invasion success has probably evolved from standing genetic variation. In addition to being a major nuisance of households, BMSB has caused significant economic losses to agriculture in recent years and continues to expand its range. Despite no record of BMSB insecticide resistance to date, our results show high capacity for potential evolution of such traits, highlighting the need for future sustainable and targeted management strategies.
Collapse
Affiliation(s)
- Elahe Parvizi
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Manpreet K Dhami
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Juncong Yan
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| | - Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
44
|
Li L, Milesi P, Tiret M, Chen J, Sendrowski J, Baison J, Chen Z, Zhou L, Karlsson B, Berlin M, Westin J, Garcia‐Gil MR, Wu HX, Lascoux M. Teasing apart the joint effect of demography and natural selection in the birth of a contact zone. THE NEW PHYTOLOGIST 2022; 236:1976-1987. [PMID: 36093739 PMCID: PMC9828440 DOI: 10.1111/nph.18480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/23/2022] [Indexed: 05/26/2023]
Abstract
Vast population movements induced by recurrent climatic cycles have shaped the genetic structure of plant species. During glacial periods species were confined to low-latitude refugia from which they recolonized higher latitudes as the climate improved. This multipronged recolonization led to many lineages that later met and formed large contact zones. We utilize genomic data from 5000 Picea abies trees to test for the presence of natural selection during recolonization and establishment of a contact zone in Scandinavia. Scandinavian P. abies is today made up of a southern genetic cluster originating from the Baltics, and a northern one originating from Northern Russia. The contact zone delineating them closely matches the limit between two major climatic regions. We show that natural selection contributed to its establishment and maintenance. First, an isolation-with-migration model with genome-wide linked selection fits the data better than a purely neutral one. Second, many loci show signatures of selection or are associated with environmental variables. These loci, regrouped in clusters on chromosomes, are often related to phenology. Altogether, our results illustrate how climatic cycles, recolonization and selection can establish strong local adaptation along contact zones and affect the genetic architecture of adaptive traits.
Collapse
Affiliation(s)
- Lili Li
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
| | - Pascal Milesi
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
| | - Mathieu Tiret
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
| | - Jun Chen
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
- College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Janek Sendrowski
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
| | - John Baison
- Department Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSE‐90183Sweden
| | - Zhi‐qiang Chen
- Department Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSE‐90183Sweden
| | - Linghua Zhou
- Department Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSE‐90183Sweden
| | | | - Mats Berlin
- SkogforskUppsala Science Park751 83UppsalaSweden
| | - Johan Westin
- Unit for Field‐Based Forest ResearchSwedish University of Agricultural SciencesSE‐922 91VindelnSweden
| | - Maria Rosario Garcia‐Gil
- Department Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSE‐90183Sweden
| | - Harry X. Wu
- Department Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSE‐90183Sweden
- CSIRO National Collection Research AustraliaBlack Mountain LaboratoryCanberraACT2601Australia
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
| |
Collapse
|
45
|
Burny C, Nolte V, Dolezal M, Schlötterer C. Genome-wide selection signatures reveal widespread synergistic effects of two different stressors in Drosophila melanogaster. Proc Biol Sci 2022; 289:20221857. [PMID: 36259211 PMCID: PMC9579754 DOI: 10.1098/rspb.2022.1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Experimental evolution combined with whole-genome sequencing (evolve and resequence (E&R)) is a powerful approach to study the adaptive architecture of selected traits. Nevertheless, so far the focus has been on the selective response triggered by a single stressor. Building on the highly parallel selection response of founder populations with reduced variation, we evaluated how the presence of a second stressor affects the genomic selection response. After 20 generations of adaptation to laboratory conditions at either 18°C or 29°C, strong genome-wide selection signatures were observed. Only 38% of the selection signatures can be attributed to laboratory adaptation (no difference between temperature regimes). The remaining selection responses are either caused by temperature-specific effects, or reflect the joint effects of temperature and laboratory adaptation (same direction, but the magnitude differs between temperatures). The allele frequency changes resulting from the combined effects of temperature and laboratory adaptation were more extreme in the hot environment for 83% of the affected genomic regions-indicating widespread synergistic effects of the two stressors. We conclude that E&R with reduced genetic variation is a powerful approach to study genome-wide fitness consequences driven by the combined effects of multiple environmental factors.
Collapse
Affiliation(s)
- Claire Burny
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria.,Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna 1210, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Marlies Dolezal
- Plattform Bioinformatik und Biostatistik, Vetmeduni Vienna, Vienna 1210, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| |
Collapse
|
46
|
Liénard MA, Valencia-Montoya WA, Pierce NE. Molecular advances to study the function, evolution and spectral tuning of arthropod visual opsins. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210279. [PMID: 36058235 PMCID: PMC9450095 DOI: 10.1098/rstb.2021.0279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Visual opsins of vertebrates and invertebrates diversified independently and converged to detect ultraviolet to long wavelengths (LW) of green or red light. In both groups, colour vision largely derives from opsin number, expression patterns and changes in amino acids interacting with the chromophore. Functional insights regarding invertebrate opsin evolution have lagged behind those for vertebrates because of the disparity in genomic resources and the lack of robust in vitro systems to characterize spectral sensitivities. Here, we review bioinformatic approaches to identify and model functional variation in opsins as well as recently developed assays to measure spectral phenotypes. In particular, we discuss how transgenic lines, cAMP-spectroscopy and sensitive heterologous expression platforms are starting to decouple genotype-phenotype relationships of LW opsins to complement the classical physiological-behavioural-phylogenetic toolbox of invertebrate visual sensory studies. We illustrate the use of one heterologous method by characterizing novel LW Gq opsins from 10 species, including diurnal and nocturnal Lepidoptera, a terrestrial dragonfly and an aquatic crustacean, expressing them in HEK293T cells, and showing that their maximum absorbance spectra (λmax) range from 518 to 611 nm. We discuss the advantages of molecular approaches for arthropods with complications such as restricted availability, lateral filters, specialized photochemistry and/or electrophysiological constraints. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Marjorie A. Liénard
- Department of Biology, Lund University, 22362 Lund, Sweden
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Wendy A. Valencia-Montoya
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
47
|
Neyhart JL, Kantar MB, Zalapa J, Vorsa N. Genomic-environmental associations in wild cranberry (Vaccinium macrocarpon Ait.). G3 (BETHESDA, MD.) 2022; 12:jkac203. [PMID: 35944211 PMCID: PMC9526045 DOI: 10.1093/g3journal/jkac203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 06/01/2023]
Abstract
Understanding the genetic basis of local adaptation in natural plant populations, particularly crop wild relatives, may be highly useful for plant breeding. By characterizing genetic variation for adaptation to potentially stressful environmental conditions, breeders can make targeted use of crop wild relatives to develop cultivars for novel or changing environments. This is especially appealing for improving long-lived woody perennial crops such as the American cranberry (Vaccinium macrocarpon Ait.), the cultivation of which is challenged by biotic and abiotic stresses. In this study, we used environmental association analyses in a collection of 111 wild cranberry accessions to identify potentially adaptive genomic regions for a range of bioclimatic and soil conditions. We detected 126 significant associations between SNP marker loci and environmental variables describing temperature, precipitation, and soil attributes. Many of these markers tagged genes with functional annotations strongly suggesting a role in adaptation to biotic or abiotic conditions. Despite relatively low genetic variation in cranberry, our results suggest that local adaptation to divergent environments is indeed present, and the identification of potentially adaptive genetic variation may enable a selective use of this germplasm for breeding more stress-tolerant cultivars.
Collapse
Affiliation(s)
- Jeffrey L Neyhart
- USDA, Agricultural Research Service, Genetic Improvement for Fruits & Vegetables Laboratory, Chatsworth, NJ 08019, USA
| | - Michael B Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Juan Zalapa
- USDA, Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706, USA
- Department of Horticulture, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Nicholi Vorsa
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
48
|
Qin X, Chiang CWK, Gaggiotti OE. Deciphering signatures of natural selection via deep learning. Brief Bioinform 2022; 23:6686736. [PMID: 36056746 PMCID: PMC9487700 DOI: 10.1093/bib/bbac354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022] Open
Abstract
Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when applied to the same dataset.
Collapse
Affiliation(s)
- Xinghu Qin
- Centre for Biological Diversity, Sir Harold Mitchell Building, University of St Andrews, Fife, KY16 9TF, UK
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine & Department of Quantitative and Computational Biology, University of Southern California, USA
| | - Oscar E Gaggiotti
- Centre for Biological Diversity, Sir Harold Mitchell Building, University of St Andrews, Fife, KY16 9TF, UK
| |
Collapse
|
49
|
Jin L, Li Z, Wang C, Wang Y, Li X, Yang J, Zhao Y, Guo B. Contrasting population differentiation in two sympatric Triplophysa loaches on the Qinghai-Tibet Plateau. Front Genet 2022; 13:958076. [PMID: 36092882 PMCID: PMC9452750 DOI: 10.3389/fgene.2022.958076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Genetic differentiation in aquatic organisms is usually shaped by drainage connectivity. Sympatric aquatic species are thus expected to show similar population differentiation patterns and similar genetic responses to their habitats. Water bodies on the Qinghai-Tibet Plateau (QTP) have recently experienced dramatic physicochemical changes, threatening the biodiversity of aquatic organisms on the "roof of the world." To uncover ecological genetics in Tibetan loaches (Triplophysa)-the largest component of the QTP ichthyofauna-we characterized population differentiation patterns and adaptive mechanisms to salinity change in two sympatric and phylogenetically closely related Tibetan loaches, T. stewarti and T. stenura, by integrating population genomic, transcriptomic, and electron probe microanalysis approaches. Based on millions of genome-wide SNPs, the two Tibetan loach species show contrasting population differentiation patterns, with highly geographically structured and clear genetic differentiation among T. stewarti populations, whereas there is no such observation in T. stenura, which is also supported by otolith microchemistry mapping. While limited genetic signals of parallel adaption to salinity changes between the two species are found from either genetic or gene expression variation perspective, a catalog of genes involved in ion transport, energy metabolism, structural reorganization, immune response, detoxification, and signal transduction is identified to be related to adaptation to salinity change in Triplophysa loaches. Together, our findings broaden our understanding of the population characteristics and adaptive mechanisms in sympatric Tibetan loach species and would contribute to biodiversity conservation and management of aquatic organisms on the QTP.
Collapse
Affiliation(s)
- Ling Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zitong Li
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Chongnv Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yingnan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinxin Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian Yang
- Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yahui Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baocheng Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| |
Collapse
|
50
|
Yu Y, Aitken SN, Rieseberg LH, Wang T. Using landscape genomics to delineate seed and breeding zones for lodgepole pine. THE NEW PHYTOLOGIST 2022; 235:1653-1664. [PMID: 35569109 PMCID: PMC9545436 DOI: 10.1111/nph.18223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Seed and breeding zones traditionally are delineated based on local adaptation of phenotypic traits associated with climate variables, an approach requiring long-term field experiments. In this study, we applied a landscape genomics approach to delineate seed and breeding zones for lodgepole pine. We used a gradient forest (GF) model to select environment-associated single nucleotide polymorphisms (SNPs) using three SNP datasets (full, neutral and candidate) and 20 climate variables for 1906 lodgepole pine (Pinus contorta) individuals in British Columbia and Alberta, Canada. The two GF models built with the full (28 954) and candidate (982) SNPs were compared. The GF models identified winter-related climate as major climatic factors driving genomic patterns of lodgepole pine's local adaptation. Based on the genomic gradients predicted by the full and candidate GF models, lodgepole pine distribution range in British Columbia and Alberta was delineated into six seed and breeding zones. Our approach is a novel and effective alternative to traditional common garden approaches for delineating seed and breeding zone, and could be applied to tree species lacking data from provenance trials or common garden experiments.
Collapse
Affiliation(s)
- Yue Yu
- Department of Forest Sciences, Centre for Forest Conservation GeneticsUniversity of British Columbia3041‐2424 Main MallVancouverBCV6T 1Z4Canada
| | - Sally N. Aitken
- Department of Forest Sciences, Centre for Forest Conservation GeneticsUniversity of British Columbia3041‐2424 Main MallVancouverBCV6T 1Z4Canada
| | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research CentreUniversity of British Columbia6270 University BoulevardVancouverBCV6T 1Z4Canada
| | - Tongli Wang
- Department of Forest Sciences, Centre for Forest Conservation GeneticsUniversity of British Columbia3041‐2424 Main MallVancouverBCV6T 1Z4Canada
| |
Collapse
|