1
|
Ge Y, Gu X, Zeng Q, Mao Z, Chen H, Yang H, Luo W. Functional diversity explores the maintenance mechanism and driving factors of the invasion equilibrium state of the icefish (Neosalanx taihuensis Chen) in Lake Fuxian, China. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39434443 DOI: 10.1111/jfb.15950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024]
Abstract
Biodiversity loss caused by biological invasions is an ecological problem on a global scale, and understanding the mechanism of biological invasion is the basis for managing non-native species. The biotic resistance hypothesis proposes that species-rich native communities are less susceptible to invasion because of the limited resources available to non-native species, therefore comparing the resource utilization patterns of different communities can reveal the invasion mechanisms of specific non-native species at the community level. We selected Lake Taihu, where icefish (Neosalanx taihuensis Chen) originated, and Lake Fuxian, where icefish invaded, as the research objects. We calculated the fish functional diversity indexes, including functional richness (FRic), functional evenness (FEve), and functional divergence (FDiv), to reflect differences in ecological niche and resource utilization based on four quarterly fish survey data from two lakes. The random forests model explored the relationship between functional diversity indexes and biotic and environmental variables. Our results showed that more diverse resource utilization (high FRic), more niche space (low FEve), and less competitive pressure (high FDiv) in Lake Fuxian were identified as the critical important factors for maintaining the current equilibrium state after successful invasion of icefish. The bottom-up effects mainly affected the functional diversity indexes in Lake Fuxian. They differed from those in Lake Taihu and were primarily influenced by top-down effects. Enhancing the top-down effects in Lake Fuxian and limiting the zooplankton available to icefish are critical to controlling the invasion of icefish. This study offers a new perspective for studying the non-native fish invasion mechanism, and provides scientific guidance for managing non-native fish in Lake Fuxian.
Collapse
Affiliation(s)
- You Ge
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenlei Luo
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Fuxianhu Station of Plateau Deep Lake Field Scientific Observation and Research, Yuxi, China
| |
Collapse
|
2
|
Williams GL, Brewer JS. Naturally diverse plant communities do not resist invasion by the strong competitor, Microstegium vimineum. AMERICAN JOURNAL OF BOTANY 2024; 111:e16362. [PMID: 38943238 DOI: 10.1002/ajb2.16362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 07/01/2024]
Abstract
PREMISE Theory predicts and empirical studies have shown that ecologically manipulated communities with high species diversity are resistant to invasion, but do these predictions and results hold true when applied to highly competitive invaders in natural communities? Few studies of diversity-mediated invasion resistance have measured both invasion resistance and invader impact in the same study. METHODS We used a two-year field experiment to test: (1) diversity-mediated competitive resistance to patch expansion by the grass, Microstegium vimineum; and (2) the competitive effect of M. vimineum on resident plant diversity. We examined responses of M. vimineum to two native plant density-reduction treatments that had opposite effects on species diversity: (1) reducing species richness via the removal of rare species; and (2) reducing dominance by reducing the density of the dominant resident species. We examined the effects of M. vimineum reduction by pre-emergent herbicide on resident diversity in the second year of the study. RESULTS Neither rare species removal nor dominant species reduction significantly increased M. vimineum density (relative growth rate). The pre-emergent herbicide dramatically reduced M. vimineum in year 2 of the study, but not most resident plants, which were perennials and indirectly benefited from the herbicide at a more productive site, presumably due to reduced competition from M. vimineum. CONCLUSIONS Diversity-mediated resistance did not effectively deter invasion by a highly competitive invader. In the case of M. vimineum and at more productive sites, it would appear that nearly complete removal of this invader is necessary to preserve plant species diversity.
Collapse
Affiliation(s)
- Griffin Lee Williams
- Department of Biology, University of Mississippi, University, 38677-1848, Mississippi, USA
| | - J Stephen Brewer
- Department of Biology, University of Mississippi, University, 38677-1848, Mississippi, USA
| |
Collapse
|
3
|
Zhu Y, Momeni B. Revisiting the invasion paradox: Resistance-richness relationship is driven by augmentation and displacement trends. PLoS Comput Biol 2024; 20:e1012193. [PMID: 38865380 PMCID: PMC11198907 DOI: 10.1371/journal.pcbi.1012193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/25/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Host-associated resident microbiota can protect their host from pathogens-a community-level trait called colonization resistance. The effect of the diversity of the resident community in previous studies has shown contradictory results, with higher diversity either strengthening or weakening colonization resistance. To control the confounding factors that may lead to such contradictions, we use mathematical simulations with a focus on species interactions and their impact on colonization resistance. We use a mediator-explicit model that accounts for metabolite-mediated interactions to perform in silico invasion experiments. We show that the relationship between colonization resistance and species richness of the resident community is not monotonic because it depends on two underlying trends as the richness of the resident community increases: a decrease in instances of augmentation (invader species added, without driving out resident species) and an increase in instances of displacement (invader species added, driving out some of the resident species). These trends hold consistently under different parameters, regardless of the number of compounds that mediate interactions between species or the proportion of the facilitative versus inhibitory interactions among species. Our results show a positive correlation between resistance and diversity in low-richness communities and a negative correlation in high-richness communities, offering an explanation for the seemingly contradictory trend in the resistance-diversity relationship in previous reports.
Collapse
Affiliation(s)
- Yu Zhu
- Biology Department, Boston College, Chestnut Hill, Massachusetts, Unites States of America
| | - Babak Momeni
- Biology Department, Boston College, Chestnut Hill, Massachusetts, Unites States of America
| |
Collapse
|
4
|
Yamamoto MH, Jones CC. Comparing long-term patterns of spread of native and invasive plants in a successional forest. Oecologia 2024; 205:13-25. [PMID: 38758233 DOI: 10.1007/s00442-024-05554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
A fundamental question in invasive plant ecology is whether invasive and native plants have different ecological roles. Differences in functional traits have been explored, but we lack a comparison of the factors affecting the spread of co-occurring natives and invasives. Some have proposed that to succeed, invasives would colonize a wider variety of sites, would disperse farther, or would be better at colonizing sites with more available light and soil nutrients than natives. We examined patterns of spread over 70 years in a regenerating forest in Connecticut, USA, where both native and invasive species acted as colonizers. We compared seven invasive and 19 native species in the characteristics of colonized plots, variation in these characteristics, and the importance of site variables for colonization. We found little support for the hypotheses that invasive plants succeed by dispersing farther than native plants or by having a broader range of site tolerances. Colonization by invasives was also not more dependent on light than colonization by natives. Like native understory species, invasive plants spread into closed-canopy forest and species-rich communities despite earlier predictions that these communities would resist invasion. The biggest differences were that soil nitrate and the initial land cover being open field increased the odds of colonization for most invasives but only for some natives. In large part, though, the spread of native and invasive plants was affected by similar factors.
Collapse
Affiliation(s)
- Matthew H Yamamoto
- Connecticut College, New London, CT, 06320, USA.
- California Botanic Garden, Claremont, CA, 91711, USA.
| | | |
Collapse
|
5
|
Gao J, Wu M, Zhang H, Yuan H, Kang Y, Fei Q, Cuthbert RN, Liu Z, Jeppesen E. Native molluscs alleviate water quality impacts of invasive crayfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169039. [PMID: 38056660 DOI: 10.1016/j.scitotenv.2023.169039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Freshwaters are considered to be the most vulnerable ecosystems facing biological invasions, and the red swamp crayfish (Procambarus clarkii) is one of the most widespread aquatic invasive species in the world. P. clarkii has negative impacts on water quality in the lakes that it invades by, for instance, increasing their turbidity and nutrient concentrations and reducing macrophyte biomass. However, native taxa such as snails and mussels could potentially help to maintain a clear-water status in lakes by grazing on periphyton or by phytoplankton filtration. To examine the potential negative effects of P. clarkii on the clear-water state in lakes dominated by the macrophyte Vallisneria denseserrulata and the potential for native species to buffer these effects, we tested the crayfish impact in the absence and presence of the snail Bellamya aeruginosa and the mussel Sinanodonta woodiana at different biomasses. In the presence of crayfish, total suspended solids, total phosphorus, and chlorophyll a concentrations significantly increased compared to the control treatments without crayfish. However, when crayfish coexisted with snails or mussels, these three environmental variables all decreased in concentration compared to the crayfish-only treatment. Low (500 g/m2) and high (1500 g/m2) snail or mussel biomass had similar buffering effects. Macrophyte biomass in the crayfish and high mussel biomass treatment was 43 % higher than in the crayfish-only treatment. Native molluscs therefore alleviated the negative effects of crayfish on lake water quality and promoted native macrophyte growth. We conclude that a thriving native mollusc community may help in maintaining the clear-water state in lakes following crayfish invasion.
Collapse
Affiliation(s)
- Jian Gao
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education; Hubei Province Key Laboratory of Ecological Restoration of Lakes and Rivers and Algal Utilization; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes; Hubei University of Technology, Wuhan 430068, China.
| | - Ming Wu
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education; Hubei Province Key Laboratory of Ecological Restoration of Lakes and Rivers and Algal Utilization; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes; Hubei University of Technology, Wuhan 430068, China
| | - Hui Zhang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education; Hubei Province Key Laboratory of Ecological Restoration of Lakes and Rivers and Algal Utilization; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes; Hubei University of Technology, Wuhan 430068, China.
| | - Hong Yuan
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education; Hubei Province Key Laboratory of Ecological Restoration of Lakes and Rivers and Algal Utilization; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes; Hubei University of Technology, Wuhan 430068, China
| | - Yuhui Kang
- Hubei Water Resources Research Institute, Wuhan 430070, China
| | - Qiang Fei
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education; Hubei Province Key Laboratory of Ecological Restoration of Lakes and Rivers and Algal Utilization; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes; Hubei University of Technology, Wuhan 430068, China
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, BT9 5DL Belfast, United Kingdom of Great Britain and Northern Ireland
| | - Zhengwen Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, DK-8000 Aarhus, Denmark; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
de Souza JS, Franco ACS, Tavares MR, Guimarães TDFR, Dos Santos LN. Shipping traffic, salinity and temperature shape non-native fish richness in estuaries worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168218. [PMID: 37924895 DOI: 10.1016/j.scitotenv.2023.168218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Non-native species threaten biodiversity conservation and ecosystem functioning. Management at early-invasion stages can prevent ecological and socioeconomic impacts, but rely on the identification of drivers of non-native species occurrence at distinct scales. Here, we identify environmental and anthropogenic correlates of non-native fish richness across estuaries worldwide. We performed model selection using proxies of colonization pressure, habitat availability and connectivity, anthropogenic disturbance and climate, to assess the primary mechanisms underlying non-native species occurrence. Latitudinal and guild-related trends in non-native occurrence were also investigated using species thermal and salinity affinities. Data retrieved from a literature review revealed 147 non-native fish species in 147 estuaries worldwide. Shipping traffic, salinity (minimum and range values) and temperature (minimum value) were the main predictors of non-native fish richness. Hotspots of non-native species were under heavy levels of shipping traffic, had higher salinity (both minimum and range values) and colder waters. We also found evidence of thermal limits to species' geographic area of introduction. Latitude of invaded estuaries was negatively correlated with species' minimum, mean and maximum thermal affinities, and positively correlated with thermal affinity ranges. Most non-native species recorded in estuaries were freshwater, but their minimum salinity affinities ranged from 2 to 35 pss. Moreover, species within marine guilds were mostly stenohaline and showed affinity for minimum salinities around 20-30 pss, which may be related to the positive relationship between non-native richness and estuary's increased salinity. Our results indicate that colonization pressure, disturbance (as result of multiple shipping impacts) and habitat filtering are the primary mechanisms underlying non-native fish richness in estuaries, contributing to the development of management strategies targeting early-invasion stages. Matching climate between native and non-native ranges was particularly important for predicting introductions at the global scale, whereas local fluctuations in salinity likely drove non-native richness in response to increased habitat availability.
Collapse
Affiliation(s)
- Joice Silva de Souza
- Graduate Course in Ecology and Evolution (PPGEE), Rio de Janeiro State University (UERJ), São Francisco Xavier St, 524 - PHLC/R220, CEP 20550-900 Rio de Janeiro, RJ, Brazil; Theoretical and Applied Ichthyology Lab, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458 - R314A, 22290-240 Rio de Janeiro, Brazil.
| | - Ana Clara Sampaio Franco
- Theoretical and Applied Ichthyology Lab, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458 - R314A, 22290-240 Rio de Janeiro, Brazil; Graduate Course in Neotropical Biodiversity, Federal University of the State of Rio de Janeiro, Av. Pasteur, 458 - R506A, 22290-240 Rio de Janeiro, RJ, Brazil; Institute of Aquatic Ecology, University of Girona, 17003, Catalonia, Spain
| | - Marcela Rosa Tavares
- Graduate Course in Ecology and Evolution (PPGEE), Rio de Janeiro State University (UERJ), São Francisco Xavier St, 524 - PHLC/R220, CEP 20550-900 Rio de Janeiro, RJ, Brazil; Theoretical and Applied Ichthyology Lab, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458 - R314A, 22290-240 Rio de Janeiro, Brazil
| | - Taís de Fátima Ramos Guimarães
- Graduate Course in Animal Biology, Federal University of Viçosa, Av. Ph Rolfs, S/N, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Luciano Neves Dos Santos
- Graduate Course in Ecology and Evolution (PPGEE), Rio de Janeiro State University (UERJ), São Francisco Xavier St, 524 - PHLC/R220, CEP 20550-900 Rio de Janeiro, RJ, Brazil; Theoretical and Applied Ichthyology Lab, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458 - R314A, 22290-240 Rio de Janeiro, Brazil; Graduate Course in Neotropical Biodiversity, Federal University of the State of Rio de Janeiro, Av. Pasteur, 458 - R506A, 22290-240 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Sarkar A, McInroy CJA, Harty S, Raulo A, Ibata NGO, Valles-Colomer M, Johnson KVA, Brito IL, Henrich J, Archie EA, Barreiro LB, Gazzaniga FS, Finlay BB, Koonin EV, Carmody RN, Moeller AH. Microbial transmission in the social microbiome and host health and disease. Cell 2024; 187:17-43. [PMID: 38181740 PMCID: PMC10958648 DOI: 10.1016/j.cell.2023.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Cameron J A McInroy
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Siobhán Harty
- Independent, Tandy Court, Spitalfields, Dublin, Ireland
| | - Aura Raulo
- Department of Biology, University of Oxford, Oxford, UK; Department of Computing, University of Turku, Turku, Finland
| | - Neil G O Ibata
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mireia Valles-Colomer
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Katerina V-A Johnson
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Francesca S Gazzaniga
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Gu D, Jia T, Wei H, Fang M, Yu F, Shu L, Wang X, Li G, Cai X, Mu X, Xu M, Wang J, Hu Y. Biotic resistance to fish invasions in southern China: Evidence from biomass, habitat, and fertility limitation. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2819. [PMID: 36793187 DOI: 10.1002/eap.2819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/21/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Understanding the mechanisms underlying the invasion success or failure of alien species can help to predict future invasions and cope with the invaders. The biotic resistance hypothesis posits that diverse communities are more resistant to invasion. While many studies have examined this hypothesis, the majority of them have focused on the relationship between alien and native species richness in plant communities, and results have often been inconsistent. In southern China, many rivers have been invaded by alien fish species, providing an opportunity to test the resistance of native fish communities to alien fish invasions. Using survey data for 60,155 freshwater fish collected from five main rivers of southern China for 3 years, we assessed the relationships between native fish richness and the richness and biomass of alien fishes at river and reach spatial scales, respectively. Based on two manipulative experiments, we further examined the impact of native fish richness on habitat selection and the reproductive ability of an exotic model species Coptodon zillii. We found no apparent relationship between alien and native fish richness, whereas the biomass of alien fish significantly decreased with increasing native fish richness. In experiments, C. zillii preferred to invade those habitats that had low native fish richness, given evenly distributed food resources; reproduction of C. zillii was strongly depressed by a native carnivorous fish Channa maculata. Together, our results indicate that native fish diversity can continue to provide biotic resistance to alien fish species in terms of limiting their growth, habitat selection, and reproduction when these aliens have successfully invaded southern China. We thus advocate for fish biodiversity conservation, especially for key species, to mitigate against the population development and ecological impact of alien fish species.
Collapse
Affiliation(s)
- Dangen Gu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Alien Species and Ecological Security (CAFS), Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Tao Jia
- Rural Energy Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hui Wei
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Key Laboratory of Alien Species and Ecological Security (CAFS), Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Miao Fang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Key Laboratory of Alien Species and Ecological Security (CAFS), Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Fandong Yu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Shu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Key Laboratory of Alien Species and Ecological Security (CAFS), Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Xuejie Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Alien Species and Ecological Security (CAFS), Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Gaojun Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Xingwei Cai
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Xidong Mu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Alien Species and Ecological Security (CAFS), Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Meng Xu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Key Laboratory of Alien Species and Ecological Security (CAFS), Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Jianwei Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yinchang Hu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Key Laboratory of Alien Species and Ecological Security (CAFS), Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
9
|
Gjini E, Madec S. Towards a mathematical understanding of invasion resistance in multispecies communities. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231034. [PMID: 38026034 PMCID: PMC10646464 DOI: 10.1098/rsos.231034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Multispecies community composition and dynamics are key to health and disease across biological systems, a prominent example being microbial ecosystems. Explaining the forces that govern diversity and resilience in the microbial consortia making up our body's defences remains a challenge. In this, theoretical models are crucial, to bridge the gap between species dynamics and underlying mechanisms and to develop analytic insight. Here we propose a replicator equation framework to model multispecies dynamics where an explicit notion of invasion resistance of a system emerges and can be studied explicitly. For illustration, we derive the conceptual link between such replicator equation and N microbial species' growth and interaction traits, stemming from micro-scale environmental modification. Within this replicator framework, mean invasion fitness arises, evolves dynamically, and may undergo critical predictable shifts with global environmental changes. This mathematical approach clarifies the key role of this resident system trait for invader success, and highlights interaction principles among N species that optimize their collective resistance to invasion. We propose this model based on the replicator equation as a powerful new avenue to study, test and validate mechanisms of invasion resistance and colonization in multispecies microbial ecosystems and beyond.
Collapse
Affiliation(s)
- Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Tecnico, Lisbon, Portugal
| | - Sten Madec
- Laboratory of Mathematics, University of Tours, Tours, France
| |
Collapse
|
10
|
Halassy M, Batáry P, Csecserits A, Török K, Valkó O. Meta-analysis identifies native priority as a mechanism that supports the restoration of invasion-resistant plant communities. Commun Biol 2023; 6:1100. [PMID: 37903920 PMCID: PMC10616274 DOI: 10.1038/s42003-023-05485-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
The restoration of invasion-resistant plant communities is an important strategy to combat the negative impacts of alien invasions. Based on a systematic review and meta-analysis of seed-based ecological restoration experiments, here we demonstrate the potential of functional similarity, seeding density and priority effect in increasing invasion resistance. Our results indicate that native priority is the most promising mechanism to control invasion that can reduce the performance of invasive alien species by more than 50%. High-density seeding is effective in controlling invasive species, but threshold seeding rates may exist. Overall seeding functionally similar species do not have a significant effect. Generally, the impacts are more pronounced on perennial and grassy invaders and on the short-term. Our results suggest that biotic resistance can be best enhanced by the early introduction of native plant species during restoration. Seeding of a single species with high functional similarity to invasive alien species is unpromising, and instead, preference should be given to high-density multifunctional seed mixtures, possibly including native species favored by the priority effect. We highlight the need to integrate research across geographical regions, global invasive species and potential resistance mechanisms.
Collapse
Affiliation(s)
- Melinda Halassy
- National Laboratory for Health Security, Centre for Ecological Research, Budapest, Hungary.
- Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary.
| | - Péter Batáry
- National Laboratory for Health Security, Centre for Ecological Research, Budapest, Hungary
- 'Lendület' Landscape and Conservation Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - Anikó Csecserits
- National Laboratory for Health Security, Centre for Ecological Research, Budapest, Hungary
- Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - Katalin Török
- Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - Orsolya Valkó
- National Laboratory for Health Security, Centre for Ecological Research, Budapest, Hungary
- 'Lendület' Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| |
Collapse
|
11
|
Wyckhuys KAG, Leatemia JA, Fanani MZ, Furlong MJ, Gu B, Hadi BAR, Hasinu JV, Melo MC, Noya SH, Rauf A, Taribuka J, Gc YD. Generalist Predators Shape Biotic Resistance along a Tropical Island Chain. PLANTS (BASEL, SWITZERLAND) 2023; 12:3304. [PMID: 37765468 PMCID: PMC10536499 DOI: 10.3390/plants12183304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Islands offer exclusive prisms for an experimental investigation of biodiversity x ecosystem function interplay. Given that species in upper trophic layers, e.g., arthropod predators, experience a comparative disadvantage on small, isolated islands, such settings can help to clarify how predation features within biotic resistance equations. Here, we use observational and manipulative studies on a chain of nine Indonesian islands to quantify predator-mediated biotic resistance against the cassava mealybug Phenacoccus manihoti (Homoptera: Pseudococcidae) and the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Across island settings, a diverse set of generalist lacewing, spider and ladybeetle predators aggregates on P. manihoti infested plants, attaining max. (field-level) abundance levels of 1.0, 8.0 and 3.2 individuals per plant, respectively. Though biotic resistance-as imperfectly defined by a predator/prey ratio index-exhibits no inter-island differences, P. manihoti population regulation is primarily provided through an introduced monophagous parasitoid. Meanwhile, resident predators, such as soil-dwelling ants, inflict apparent mortality rates up to 100% for various S. frugiperda life stages, which translates into a 13- to 800-fold lower S. frugiperda survivorship on small versus large islands. While biotic resistance against S. frugiperda is ubiquitous along the island chain, its magnitude differs between island contexts, seasons and ecological realms, i.e., plant canopy vs. soil surface. Hence, under our experimental context, generalist predators determine biotic resistance and exert important levels of mortality even in biodiversity-poor settings. Given the rapid pace of biodiversity loss and alien species accumulation globally, their active conservation in farmland settings (e.g., through pesticide phasedown) is pivotal to ensuring the overall resilience of production ecosystems.
Collapse
Affiliation(s)
- Kris A G Wyckhuys
- Chrysalis Consulting, Danang 50000, Vietnam
- Institute for Plant Protection, China Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- School of the Environment, University of Queensland, Saint Lucia, QLD 4067, Australia
| | - Johanna Audrey Leatemia
- Department of Agrotechnology, Faculty of Agriculture, Universitas Pattimura, Ambon 97233, Indonesia
| | - Muhammad Zainal Fanani
- Department of Agrotechnology, Faculty of Agriculture, Universitas Djuanda, Jl. Tol Jagorawi No 1, Ciawi, Bogor 16720, West Java, Indonesia
- Department of Plant Protection, Faculty of Agriculture, Institut Pertanian Bogor, Jl. Kamper Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
| | - Michael J Furlong
- School of the Environment, University of Queensland, Saint Lucia, QLD 4067, Australia
| | - Baogen Gu
- Food and Agriculture Organization (FAO), 00153 Rome, Italy
| | | | - Jeffij Virgowat Hasinu
- Department of Agrotechnology, Faculty of Agriculture, Universitas Pattimura, Ambon 97233, Indonesia
| | - Maria C Melo
- School of the Environment, University of Queensland, Saint Lucia, QLD 4067, Australia
| | - Saartje Helena Noya
- Department of Agrotechnology, Faculty of Agriculture, Universitas Pattimura, Ambon 97233, Indonesia
| | - Aunu Rauf
- Department of Plant Protection, Faculty of Agriculture, Institut Pertanian Bogor, Jl. Kamper Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
| | - Johanna Taribuka
- Department of Agrotechnology, Faculty of Agriculture, Universitas Pattimura, Ambon 97233, Indonesia
| | - Yubak Dhoj Gc
- Food and Agriculture Organization (FAO), Bangkok 10200, Thailand
| |
Collapse
|
12
|
Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, Kuebbing S, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Gatti RC, César RG, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Cornejo Valverde F, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Fischer M, Fletcher C, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Herold M, Hillers A, Honorio Coronado EN, Hui C, Ibanez TT, Amaral I, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard DK, Kepfer-Rojas S, Keppel G, Khan ML, Killeen TJ, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Laarmann D, Lang M, Lewis SL, Lu H, Lukina NV, Maitner BS, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin EH, Martynenko O, Meave JA, Melo-Cruz O, Mendoza C, Merow C, Mendoza AM, Moreno VS, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner VJ, Nevenic RV, Ngugi MR, Niklaus PA, Oleksyn J, Ontikov P, Ortiz-Malavasi E, Pan Y, Paquette A, Parada-Gutierrez A, Parfenova EI, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Phillips OL, Picard N, Piedade MTTF, Piotto D, Pitman NCA, Polo I, Poorter L, Poulsen AD, Pretzsch H, Ramirez Arevalo F, Restrepo-Correa Z, Rodeghiero M, Rolim SG, Roopsind A, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Saner P, Schall P, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle EB, Seben V, Serra-Diaz JM, Sheil D, Shvidenko AZ, Silva-Espejo JE, Silveira M, Singh J, Sist P, Slik F, Sonké B, Souza AF, Miscicki S, Stereńczak KJ, Svenning JC, Svoboda M, Swanepoel B, Targhetta N, Tchebakova N, Ter Steege H, Thomas R, Tikhonova E, Umunay PM, Usoltsev VA, Valencia R, Valladares F, van der Plas F, Do TV, van Nuland ME, Vasquez RM, Verbeeck H, Viana H, Vibrans AC, Vieira S, von Gadow K, Wang HF, Watson JV, Werner GDA, Wiser SK, Wittmann F, Woell H, Wortel V, Zagt R, Zawiła-Niedźwiecki T, Zhang C, Zhao X, Zhou M, Zhu ZX, Zo-Bi IC, Maynard DS. Native diversity buffers against severity of non-native tree invasions. Nature 2023; 621:773-781. [PMID: 37612513 PMCID: PMC10533391 DOI: 10.1038/s41586-023-06440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
Collapse
Affiliation(s)
- Camille S Delavaux
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Niamh M Robmann
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Thomas Lauber
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Johan van den Hoogen
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Sara Kuebbing
- The Forest School at The Yale School of the Environment, Yale University, New Haven, CT, USA
| | - Jingjing Liang
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Sergio de-Miguel
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Solsona, Spain
| | | | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Institute for Global Change Biology, and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Meinrad Abegg
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Yves C Adou Yao
- UFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Giorgio Alberti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Angelica M Almeyda Zambrano
- Spatial Ecology and Conservation Laboratory, Department of Tourism, Recreation and Sport Management, University of Florida, Gainesville, FL, USA
| | | | | | | | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Clara Antón-Fernández
- Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | | | - Luzmila Arroyo
- Museo de Historia Natural Noel kempff Mercado, Santa Cruz, Bolivia
| | | | - Gerardo A Aymard
- UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Portuguesa, Venezuela
- Compensation International S. A. Ci Progress-GreenLife, Bogotá, Colombia
| | | | - Radomir Bałazy
- Department of Geomatics, Forest Research Institute, Raszyn, Poland
| | - Olaf Banki
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Jorcely G Barroso
- Centro Multidisciplinar, Universidade Federal do Acre, Rio Branco, Brazil
| | - Meredith L Bastian
- Proceedings of the National Academy of Sciences, Washington, DC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Jean-Francois Bastin
- TERRA Teach and Research Centre, Gembloux Agro Bio-Tech, University of Liege, Liege, Belgium
| | - Luca Birigazzi
- United Nation Framework Convention on Climate Change, Bonn, Germany
| | - Philippe Birnbaum
- Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
- AMAP, University of Montpellier, Montpellier, France
- CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Robert Bitariho
- Institute of Tropical Forest Conservation, Mbarara University of Sciences and Technology, Mbarara, Uganda
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Ghent University, Ghent, Belgium
| | - Frans Bongers
- Wageningen University and Research, Wageningen, The Netherlands
| | - Olivier Bouriaud
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, Suceava, Romania
| | - Pedro H S Brancalion
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | - Eben N Broadbent
- Spatial Ecology and Conservation Laboratory, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Helge Bruelheide
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-Wittenberg, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Filippo Bussotti
- Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy
| | - Roberto Cazzolla Gatti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Ricardo G César
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Goran Cesljar
- Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, Belgrade, Serbia
| | - Robin Chazdon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chelsea Chisholm
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Hyunkook Cho
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Emil Cienciala
- IFER-Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic
- Global Change Research Institute CAS, Brno, Czech Republic
| | - Connie Clark
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - David Clark
- Department of Biology, University of Missouri-St Louis, St Louis, MO, USA
| | - Gabriel D Colletta
- Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - David A Coomes
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, UK
| | | | - José J Corral-Rivas
- Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Philip M Crim
- Department of Biology, West Virginia University, Morgantown, WV, USA
- Department of Physical and Biological Sciences, The College of Saint Rose, Albany, NY, USA
| | | | - Selvadurai Dayanandan
- Biology Department, Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - André L de Gasper
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
| | - Mathieu Decuyper
- Wageningen University and Research, Wageningen, The Netherlands
- World Agroforestry (ICRAF), Nairobi, Kenya
| | - Géraldine Derroire
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE), Université des Antilles, Université de la Guyane, Campus Agronomique, Kourou, France
| | - Ben DeVries
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA
| | | | - Jiri Dolezal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aurélie Dourdain
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE), Université des Antilles, Université de la Guyane, Campus Agronomique, Kourou, France
| | | | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Teresa J Eyre
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Tom M Fayle
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Ted R Feldpausch
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Leandro V Ferreira
- Museu Paraense Emílio Goeldi. Coordenação de Ciências da Terra e Ecologia, Belém, Pará, Brazil
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Lorenzo Frizzera
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | - Javier G P Gamarra
- Forestry Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Damiano Gianelle
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | | | | | - Andrew Hector
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
| | | | - Bruno Hérault
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - John L Herbohn
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Martin Herold
- Wageningen University and Research, Wageningen, The Netherlands
| | - Annika Hillers
- Centre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, UK
- Wild Chimpanzee Foundation, Liberia Office, Monrovia, Liberia
| | | | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- Theoretical Ecology Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Thomas T Ibanez
- AMAP, University of Montpellier, Montpellier, France
- CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Iêda Amaral
- National Institute of Amazonian Research, Manaus, Brazil
| | - Nobuo Imai
- Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Poznań University of Life Sciences, Department of Game Management and Forest Protection, Poznań, Poland
| | - Bogdan Jaroszewicz
- Faculty of Biology, Białowieża Geobotanical Station, University of Warsaw, Białowieża, Poland
| | - Vivian Kvist Johannsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Carlos A Joly
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil
| | - Tommaso Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ilbin Jung
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Viktor Karminov
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | | | - Elizabeth Kearsley
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - David Kenfack
- CTFS-ForestGEO, Smithsonian Tropical Research Institute, Balboa, Panama
| | - Deborah K Kennard
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USA
| | - Sebastian Kepfer-Rojas
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Mohammed Latif Khan
- Department of Botany, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | | | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Michael Köhl
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - Henn Korjus
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Florian Kraxner
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Diana Laarmann
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Mait Lang
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Simon L Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Huicui Lu
- Faculty of Forestry, Qingdao Agricultural University, Qingdao, China
| | - Natalia V Lukina
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russia
| | - Brian S Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Eric Marcon
- AgroParisTech, UMR-AMAP, Cirad, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
| | | | - Ben Hur Marimon-Junior
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Andrew R Marshall
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Geography, University of York, York, UK
- Flamingo Land, Malton, UK
| | - Emanuel H Martin
- Department of Wildlife Management, College of African Wildlife Management, Mweka, Tanzania
| | - Olga Martynenko
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Casimiro Mendoza
- Colegio de Profesionales Forestales de Cochabamba, Cochabamba, Bolivia
| | - Cory Merow
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Abel Monteagudo Mendoza
- Jardín Botánico de Missouri, Pasco, Peru
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Vanessa S Moreno
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Sharif A Mukul
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
| | - Philip Mundhenk
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - María Guadalupe Nava-Miranda
- Laboratorio de geomática, Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
- Programa de doctorado en Ingeniería para el desarrollo rural y civil, Escuela de Doctorado Internacional de la Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
| | - David Neill
- Universidad Estatal Amazónica, Puyo, Pastaza, Ecuador
| | - Victor J Neldner
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Michael R Ngugi
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Petr Ontikov
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | | | - Yude Pan
- Climate, Fire, and Carbon Cycle Sciences, USDA Forest Service, Durham, NC, USA
| | - Alain Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montreal, Quebec, Canada
| | | | - Elena I Parfenova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Minjee Park
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Marc Parren
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Pablo L Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Río Gallegos, Argentina
| | - Sebastian Pfautsch
- School of Social Sciences (Urban Studies), Western Sydney University, Penrith, New South Wales, Australia
| | | | - Nicolas Picard
- Forestry Department, Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Daniel Piotto
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | | | - Irina Polo
- Jardín Botánico de Medellín, Medellin, Colombia
| | - Lourens Poorter
- Wageningen University and Research, Wageningen, The Netherlands
| | | | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School for Life Sciences, Technical University of Munich, Munich, Germany
| | | | - Zorayda Restrepo-Correa
- Servicios Ecosistémicos y Cambio Climático (SECC), Fundación Con Vida & Corporación COL-TREE, Medellín, Colombia
| | - Mirco Rodeghiero
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
- Centro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele All'adige, Italy
| | - Samir G Rolim
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | - Anand Roopsind
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Francesco Rovero
- Department of Biology, University of Florence, Florence, Italy
- Tropical Biodiversity, MUSE-Museo delle Scienze, Trento, Italy
| | | | - Purabi Saikia
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Christian Salas-Eljatib
- Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile
- Vicerrectoria de Investigacion y Postgrado, Universidad de La Frontera, Temuco, Chile
- Depto. de Silvicultura y Conservacion de la Naturaleza, Universidad de Chile, Temuco, Chile
| | | | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Dmitry Schepaschenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk Russian Federation, Krasnoyarsk, Russia
| | | | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
| | | | - Eric B Searle
- Centre for Forest Research, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Vladimír Seben
- National Forest Centre, Forest Research Institute Zvolen, Zvolen, Slovakia
| | - Josep M Serra-Diaz
- Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Douglas Sheil
- Forest Ecology and Forest Management, Wageningen University and Research, Wageningen, The Netherlands
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Anatoly Z Shvidenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | | | - Marcos Silveira
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil
| | - James Singh
- Guyana Forestry Commission, Georgetown, France
| | - Plinio Sist
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
| | - Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Bonaventure Sonké
- Plant Systematic and Ecology Laboratory, Department of Biology, Higher Teachers' Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Alexandre F Souza
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | | | | | - Nadja Tchebakova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Quantitative Biodiversity Dynamics, Betafaculty, Utrecht University, Utrecht, The Netherlands
| | - Raquel Thomas
- Iwokrama International Centre for Rainforest Conservation and Development (IIC), Georgetown, Guyana
| | - Elena Tikhonova
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russia
| | - Peter M Umunay
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Vladimir A Usoltsev
- Botanical Garden of Ural Branch of Russian Academy of Sciences, Ural State Forest Engineering University, Yekaterinburg, Russia
| | | | | | - Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Tran Van Do
- Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | | | | | - Hans Verbeeck
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - Helder Viana
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Viseu, Portugal
- Department of Ecology and Sustainable Agriculture, Agricultural High School, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Alexander C Vibrans
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
- Department of Forest Engineering Universidade Regional de Blumenau, Blumenau, Brazil
| | - Simone Vieira
- Environmental Studies and Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Klaus von Gadow
- Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa
| | - Hua-Feng Wang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - James V Watson
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA
| | | | - Susan K Wiser
- Manaaki Whenua-Landcare Research, Lincoln, New Zealand
| | - Florian Wittmann
- Department of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | | | - Verginia Wortel
- Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname
| | - Roderik Zagt
- Tropenbos International, Wageningen, The Netherlands
| | | | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Mo Zhou
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Zhi-Xin Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Irie C Zo-Bi
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - Daniel S Maynard
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
- Department of Genetics, Evolution, and Environment, University College London, London, UK
| |
Collapse
|
13
|
Yue L, Wang C, Meng B, Xie B, Cao H, Su H, Zhang M. The Food Niche Overlap and Interspecific Relationship between the Sympatric Tibetan Macaque and Grey Snub-Nosed Monkey. Animals (Basel) 2023; 13:2536. [PMID: 37570344 PMCID: PMC10417265 DOI: 10.3390/ani13152536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Assessing the trophic niche and interspecific relationships between related species and determining how the species maintain differences in nutritional niches while coexisting in the same area are important topics in ecological research. Therefore, exploring the mechanism of food resource utilization, competition and coexistence among species distributed in the same region is important. In this study, we used fecal samples and metagenome sequencing technology to study the plant feeding habits and coexistence mechanisms of Tibetan macaques (Macaca thibetana) and grey snub-nosed monkeys (Rhinopithecus brelichi) within the same area. In the winter of 2020, we collected a total of 40 fecal samples from Tibetan macaques and grey snub-nosed monkeys; of those, 29 samples were considered valid and were analyzed using DNA metabarcoding. The results showed that in winter, Tibetan macaques consumed plants from 117 families and 184 genera, whereas grey snub-nosed monkeys consumed plants from 109 families and 165 genera. Diversity analysis revealed that there was a significant difference in the food composition of Tibetan macaques and grey snub-nosed monkeys. Tibetan macaques had a broader food niche width than grey snub-nosed monkeys at the family and genus levels. In winter, the food niches of Tibetan macaques and grey snub-nosed monkeys almost entirely overlapped (0.99). Our research provides detailed dietary data for Tibetan macaques and grey snub-nosed monkeys and valuable information that can aid in conservation efforts targeting these species.
Collapse
Affiliation(s)
- Li Yue
- College of Forestry, Research Center for Biodiversity and Nature Conservation, Guizhou University, Guiyang 550025, China
| | - Cheng Wang
- Zhangjiajie Giant Salamander National Nature Reserve Affairs Center, Zhangjiajie 427400, China
| | - Bingshun Meng
- College of Forestry, Research Center for Biodiversity and Nature Conservation, Guizhou University, Guiyang 550025, China
| | - Bo Xie
- College of Forestry, Research Center for Biodiversity and Nature Conservation, Guizhou University, Guiyang 550025, China
| | - Heqin Cao
- College of Forestry, Research Center for Biodiversity and Nature Conservation, Guizhou University, Guiyang 550025, China
| | - Haijun Su
- College of Forestry, Research Center for Biodiversity and Nature Conservation, Guizhou University, Guiyang 550025, China
| | - Mingming Zhang
- College of Forestry, Research Center for Biodiversity and Nature Conservation, Guizhou University, Guiyang 550025, China
| |
Collapse
|
14
|
Wiens JJ. Trait-based species richness: ecology and macroevolution. Biol Rev Camb Philos Soc 2023; 98:1365-1387. [PMID: 37015839 DOI: 10.1111/brv.12957] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
Understanding the origins of species richness patterns is a fundamental goal in ecology and evolutionary biology. Much research has focused on explaining two kinds of species richness patterns: (i) spatial species richness patterns (e.g. the latitudinal diversity gradient), and (ii) clade-based species richness patterns (e.g. the predominance of angiosperm species among plants). Here, I highlight a third kind of richness pattern: trait-based species richness (e.g. the number of species with each state of a character, such as diet or body size). Trait-based richness patterns are relevant to many topics in ecology and evolution, from ecosystem function to adaptive radiation to the paradox of sex. Although many studies have described particular trait-based richness patterns, the origins of these patterns remain far less understood, and trait-based richness has not been emphasised as a general category of richness patterns. Here, I describe a conceptual framework for how trait-based richness patterns arise compared to other richness patterns. A systematic review suggests that trait-based richness patterns are most often explained by when each state originates within a group (i.e. older states generally have higher richness), and not by differences in transition rates among states or faster diversification of species with certain states. This latter result contrasts with the widespread emphasis on diversification rates in species-richness research. I show that many recent studies of spatial richness patterns are actually studies of trait-based richness patterns, potentially confounding the causes of these patterns. Finally, I describe a plethora of unanswered questions related to trait-based richness patterns.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, USA
| |
Collapse
|
15
|
Lorgen-Ritchie M, Uren Webster T, McMurtrie J, Bass D, Tyler CR, Rowley A, Martin SAM. Microbiomes in the context of developing sustainable intensified aquaculture. Front Microbiol 2023; 14:1200997. [PMID: 37426003 PMCID: PMC10327644 DOI: 10.3389/fmicb.2023.1200997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
With an ever-growing human population, the need for sustainable production of nutritional food sources has never been greater. Aquaculture is a key industry engaged in active development to increase production in line with this need while remaining sustainable in terms of environmental impact and promoting good welfare and health in farmed species. Microbiomes fundamentally underpin animal health, being a key part of their digestive, metabolic and defense systems, in the latter case protecting against opportunistic pathogens in the environment. The potential to manipulate the microbiome to the advantage of enhancing health, welfare and production is an intriguing prospect that has gained considerable traction in recent years. In this review we first set out what is known about the role of the microbiome in aquaculture production systems across the phylogenetic spectrum of cultured animals, from invertebrates to finfish. With a view to reducing environmental footprint and tightening biological and physical control, investment in "closed" aquaculture systems is on the rise, but little is known about how the microbial systems of these closed systems affect the health of cultured organisms. Through comparisons of the microbiomes and their dynamics across phylogenetically distinct animals and different aquaculture systems, we focus on microbial communities in terms of their functionality in order to identify what features within these microbiomes need to be harnessed for optimizing healthy intensified production in support of a sustainable future for aquaculture.
Collapse
Affiliation(s)
| | - Tamsyn Uren Webster
- Centre for Sustainable Aquatic Research, Swansea University, Swansea, United Kingdom
| | - Jamie McMurtrie
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - David Bass
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, United Kingdom
| | - Charles R. Tyler
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Andrew Rowley
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Samuel A. M. Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
16
|
Achmad H, Chaklader MR, Fotedar R, Foysal MJ. From waste to feed: Microbial fermented abalone waste improves the digestibility, gut health, and immunity in marron, Cherax cainii. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108748. [PMID: 37087026 DOI: 10.1016/j.fsi.2023.108748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
New aquafeed ingredients produced by a circular economy approach are the opportunity for sustainable and resilient aquaculture. In the light of this approach, the mixture of abalone waste and Sargassum spp (9:1) fermented by Saccharomyces cereviceae and Lactobacillus casei (Yakult®) (FMAS) were used to replace 0% (FMAS0), 25% (FMAS-25), 50% (FMAS-50), 75% (FMAS-75), and 100% (FMAS-100) of fishmeal (FM) protein in marron, Cherax cainii diet. The marron was fed these diets in triplicate for 90 days. Growth, feed utilization and protein efficiency ratio were unchanged in marron-fed all test diets. Improvement in apparent protein digestibility was aligned with an increase in the size and number of B-cells in the hepatopancreas. Most of the immune responses, except for haemocyte clotting time, hyaline cells and neutral red retention time (NRR time) were unchanged by 42- and 90-days feeding trials compared to those of the control group. 90 days post-feeding marron with FMAS25 showed a lower haemocyte clotting time than the post 42 days feeding marron with the same diet. Hyaline cells increased in marron fed FMAS75 for 90 days compared to marron fed the same diet for 42 days. The challenge test involved injecting marron with Vibrio mimicus resulted in a 100% survival rate after 96 h of exposure. During the challenge test, phagocytosis activity in 24 and 48-h post-challenged marron fed FMAS75 decreased which recovered after 96 h post-challenge. Marron fed FMAS50 also recorded a significantly higher proportion of granular cells after 24 h and NRR time at 96 h compared with that of other treatments. Given the above indicators of bio-growth, feed efficiency and immune responses, total replacement of FM protein of marron practical feed with FMAS are considered feasible and optimum to maintain health status and resistance to disease.
Collapse
Affiliation(s)
- Himawan Achmad
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Md Reaz Chaklader
- Department of Primary Industries and Regional Development, Fleet Street, Fremantle, Western Australia, 6160, Australia.
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Md Javed Foysal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
17
|
Kosawang C, Børja I, Herrero ML, Nagy NE, Nielsen LR, Solheim H, Timmermann V, Hietala AM. Fungal succession in decomposing ash leaves colonized by the ash dieback pathogen Hymenoscyphus fraxineus or its harmless relative Hymenoscyphus albidus. Front Microbiol 2023; 14:1154344. [PMID: 37125194 PMCID: PMC10140306 DOI: 10.3389/fmicb.2023.1154344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The ascomycete Hymenoscyphus fraxineus, originating from Asia, is currently threatening common ash (Fraxinus excelsior) in Europe, massive ascospore production from the saprotrophic phase being a key determinant of its invasiveness. Methods To consider whether fungal diversity and succession in decomposing leaf litter are affected by this invader, we used ITS-1 metabarcoding to profile changes in fungal community composition during overwintering. The subjected ash leaf petioles, collected from a diseased forest and a healthy ash stand hosting the harmless ash endophyte Hymenoscyphus albidus, were incubated in the forest floor of the diseased stand between October 2017 and June 2018 and harvested at 2-3-month intervals. Results Total fungal DNA level showed a 3-fold increase during overwintering as estimated by FungiQuant qPCR. Petioles from the healthy site showed pronounced changes during overwintering; ascomycetes of the class Dothideomycetes were predominant after leaf shed, but the basidiomycete genus Mycena (class Agaricomycetes) became predominant by April, whereas H. albidus showed low prevalence. Petioles from the diseased site showed little change during overwintering; H. fraxineus was predominant, while Mycena spp. showed increased read proportion by June. Discussion The low species richness and evenness in petioles from the diseased site in comparison to petioles from the healthy site were obviously related to tremendous infection pressure of H. fraxineus in diseased forests. Changes in leaf litter quality, owing to accumulation of host defense phenolics in the pathogen challenged leaves, and strong saprophytic competence of H. fraxineus are other factors that probably influence fungal succession. For additional comparison, we examined fungal community structure in petioles collected in the healthy stand in August 2013 and showing H. albidus ascomata. This species was similarly predominant in these petioles as H. fraxineus was in petioles from the diseased site, suggesting that both fungi have similar suppressive effects on fungal richness in petiole/rachis segments they have secured for completion of their life cycle. However, the ability of H. fraxineus to secure the entire leaf nerve system in diseased forests, in opposite to H. albidus, impacts the general diversity and successional trajectory of fungi in decomposing ash petioles.
Collapse
Affiliation(s)
- Chatchai Kosawang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Isabella Børja
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Maria-Luz Herrero
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Nina E. Nagy
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Lene R. Nielsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Halvor Solheim
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Volkmar Timmermann
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Ari M. Hietala
- Norwegian Institute of Bioeconomy Research (NIBIO), Steinkjer, Norway
| |
Collapse
|
18
|
Chaklader MR, Howieson J, Foysal MJ, Hanif MA, Abdel-Latif HM, Fotedar R. Fish waste to sustainable additives: Fish protein hydrolysates alleviate intestinal dysbiosis and muscle atrophy induced by poultry by-product meal in Lates calcarifer juvenile. Front Nutr 2023; 10:1145068. [PMID: 37057066 PMCID: PMC10086250 DOI: 10.3389/fnut.2023.1145068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Valorising waste from the processing of fishery and aquaculture products into functional additives, and subsequent use in aquafeed as supplements could be a novel approach to promoting sustainability in the aquaculture industry. The present study supplemented 10% of various fish protein hydrolysates (FPHs), obtained from the hydrolysis of kingfish (KH), carp (CH) and tuna (TH) waste, with 90% of poultry by-product meal (PBM) protein to replace fishmeal (FM) completely from the barramundi diet. At the end of the trial, intestinal mucosal barriers damage, quantified by villus area (VA), lamina propria area (LPA), LPA ratio, villus length (VL), villus width (VW), and neutral mucin (NM) in barramundi fed a PBM-based diet was repaired when PBM was supplemented with various FPHs (p < 0.05, 0.01, and 0.001). PBM-TH diet further improved these barrier functions in the intestine of fish (p < 0.05 and 0.001). Similarly, FPHs supplementation suppressed PBM-induced intestinal inflammation by controlling the expression of inflammatory cytokines (tnf-α and il-10; p < 0.05 and 0.001) and a mucin-relevant production gene (i-mucin c; p < 0.001). The 16S rRNA data showed that a PBM-based diet resulted in dysbiosis of intestinal bacteria, supported by a lower abundance of microbial diversity (p < 0.001) aligned with a prevalence of Photobacterium. PBM-FPHs restored intestine homeostasis by enhancing microbial diversity compared to those fed a PBM diet (p < 0.001). PBM-TH improved the diversity (p < 0.001) further by elevating the Firmicutes phylum and the Ruminococcus, Faecalibacterium, and Bacteroides genera. Muscle atrophy, evaluated by fiber density, hyperplasia and hypertrophy and associated genes (igf-1, myf5, and myog), occurred in barramundi fed PBM diet but was repaired after supplementation of FPHs with the PBM (p < 0.05, 0.01, and 0.001). Similarly, creatine kinase, calcium, phosphorous, and haptoglobin were impacted by PBM-based diet (p < 0.05) but were restored in barramundi fed FPHs supplemented diets (p < 0.05 and 0.01). Hence, using circular economy principles, functional FPHs could be recovered from the fish waste applied in aquafeed formulations and could prevent PBM-induced intestinal dysbiosis and muscular atrophy.GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Md Reaz Chaklader
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
- Department of Primary Industries and Regional Development, Fremantle, WA, Australia
- *Correspondence: Md Reaz Chaklader, ;
| | - Janet Howieson
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Abu Hanif
- Department of Fisheries Science, Chonnam National University, Yeosu, Republic of Korea
| | - Hany M.R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
19
|
Relationships of community diversity with distributions of rare species, non-native plants, and compositional stability in a temperate forest–open habitat landscape. COMMUNITY ECOL 2023. [DOI: 10.1007/s42974-023-00138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
20
|
Trait variation in a successful global invader: a large-scale analysis of morphological variance and integration in the brown trout. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Rocha BS, García-Berthou E, Cianciaruso MV. Non-native fishes in Brazilian freshwaters: identifying biases and gaps in ecological research. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Daly EZ, Chabrerie O, Massol F, Facon B, Hess MC, Tasiemski A, Grandjean F, Chauvat M, Viard F, Forey E, Folcher L, Buisson E, Boivin T, Baltora‐Rosset S, Ulmer R, Gibert P, Thiébaut G, Pantel JH, Heger T, Richardson DM, Renault D. A synthesis of biological invasion hypotheses associated with the introduction–naturalisation–invasion continuum. OIKOS 2023. [DOI: 10.1111/oik.09645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ella Z. Daly
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Olivier Chabrerie
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Francois Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Benoit Facon
- CBGP, INRAE, CIRAD, IRD, Montpellier Institut Agro, Univ. Montpellier Montpellier France
| | - Manon C.M. Hess
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
- Inst. de Recherche pour la Conservation des zones Humides Méditerranéennes Tour du Valat, Le Sambuc Arles France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Frédéric Grandjean
- Univ. de Poitiers, UMR CNRS 7267 EBI‐Ecologie et Biologie des Interactions, équipe EES Poitiers Cedex 09 France
| | | | | | - Estelle Forey
- Normandie Univ., UNIROUEN, INRAE, USC ECODIV Rouen France
| | - Laurent Folcher
- ANSES – Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Laboratoire de la Santé des Végétaux – Unité de Nématologie Le Rheu France
| | - Elise Buisson
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
| | - Thomas Boivin
- INRAE, UR629 Écologie des Forêts Méditerranéennes, Centre de Recherche Provence‐Alpes‐Côte d'Azur Avignon France
| | | | - Romain Ulmer
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Patricia Gibert
- UMR 5558 CNRS – Univ. Claude Bernard Lyon 1, Biométrie et Biologie Evolutive, Bât. Gregor Mendel Villeurbanne Cedex France
| | - Gabrielle Thiébaut
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Jelena H. Pantel
- Ecological Modelling, Faculty of Biology, Univ. of Duisburg‐Essen Essen Germany
| | - Tina Heger
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Technical Univ. of Munich, Restoration Ecology Freising Germany
| | - David M. Richardson
- Centre for Invasion Biology, Dept. Botany & Zoology, Stellenbosch University Stellenbosch South Africa
- Inst. of Botany, Czech Academy of Sciences Průhonice Czech Republic
| | - David Renault
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
- Inst. Universitaire de France Paris Cedex 05 France
| |
Collapse
|
23
|
Arnold MB, Back M, Crowell MD, Farooq N, Ghimire P, Obarein OA, Smart KE, Taucher T, VanderJeugdt E, Perry KI, Landis DA, Bahlai CA. Coexistence between similar invaders: The case of two cosmopolitan exotic insects. Ecology 2023; 104:e3979. [PMID: 36691998 DOI: 10.1002/ecy.3979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 01/25/2023]
Abstract
Biological invasions are usually examined in the context of their impacts on native species. However, few studies have examined the dynamics between invaders when multiple exotic species successfully coexist in a novel environment. Yet, long-term coexistence of now established exotic species has been observed in North American lady beetle communities. Exotic lady beetles Harmonia axyridis and Coccinella septempunctata were introduced for biological control in agricultural systems and have since become dominant species within these communities. In this study, we investigated coexistence via spatial and temporal niche partitioning among H. axyridis and C. septempunctata using a 31-year data set from southwestern Michigan, USA. We found evidence of long-term coexistence through a combination of small-scale environmental, habitat, and seasonal mechanisms. Across years, H. axyridis and C. septempunctata experienced patterns of cyclical dominance likely related to yearly variation in temperature and precipitation. Within years, populations of C. septempunctata peaked early in the growing season at 550 degree days, while H. axyridis populations grew in the season until 1250 degree days and continued to have high activity after this point. C. septempunctata was generally most abundant in herbaceous crops, whereas H. axyridis did not display strong habitat preferences. These findings suggest that within this region H. axyridis has broader habitat and abiotic environmental preferences, whereas C. septempunctata thrives under more specific ecological conditions. These ecological differences have contributed to the continued coexistence of these two invaders. Understanding the mechanisms that allow for the coexistence of dominant exotic species contributes to native biodiversity conservation management of invaded ecosystems.
Collapse
Affiliation(s)
- Matthew B Arnold
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Michael Back
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | | | - Nageen Farooq
- Department of Earth Sciences, Kent State University, Kent, Ohio, USA
| | - Prashant Ghimire
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Omon A Obarein
- Department of Geography, Kent State University, Kent, Ohio, USA
| | - Kyle E Smart
- Department of Earth Sciences, Kent State University, Kent, Ohio, USA
| | - Trixie Taucher
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Erin VanderJeugdt
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Kayla I Perry
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Douglas A Landis
- Department of Entomology, and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Christie A Bahlai
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA.,Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| |
Collapse
|
24
|
Fernández‐Palacios JM, Schrader J, de Nascimento L, Irl SDH, Sánchez‐Pinto L, Otto R. Are plant communities on the Canary Islands resistant to plant invasion? DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- José María Fernández‐Palacios
- Island Ecology and Biogeography Group, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC) Universidad de La Laguna (ULL) La Laguna Spain
| | - Julian Schrader
- School of Natural Sciences Macquarie University Sydney New South Wales Australia
- Department of Biodiversity, Macroecology and Biogeography University of Goettingen Goettingen Germany
| | - Lea de Nascimento
- Island Ecology and Biogeography Group, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC) Universidad de La Laguna (ULL) La Laguna Spain
| | - Severin D. H. Irl
- Biogeography and Biodiversity Lab, Institute of Physical Geography Goethe‐ University Frankfurt Frankfurt am Main Germany
| | | | - Rüdiger Otto
- Department of Botany, Ecology and Plant Physiology Universidad de La Laguna (ULL) La Laguna Spain
| |
Collapse
|
25
|
Biotic resistance or invasional meltdown? Diversity reduces invasibility but not exotic dominance in southern California epibenthic communities. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractHigh community diversity may either prevent or promote the establishment of exotic species. The biotic resistance hypothesis holds that species-rich communities are more resistant to invasion than species-poor communities due to mechanisms including greater interspecific competition. Conversely, the invasional meltdown hypothesis proposes that greater exotic diversity increases invasibility via facilitative interactions between exotic species. To evaluate the degree to which biotic resistance or invasional meltdown influences marine community structure during the assembly period, we studied the development of marine epibenthic “fouling” communities at two southern California harbors. With a focus on sessile epibenthic species, we found that fewer exotic species established as total and exotic richness increased during community assembly and that this effect remained after accounting for space availability. We also found that changes in exotic abundance decreased over time. Throughout the assembly period, gains in exotic abundance were greatest when space was abundant and richness was low. Altogether, we found greater support for biotic resistance than invasional meltdown, suggesting that both native and exotic species contribute to biotic resistance during early development of these communities. However, our results indicate that biotic resistance may not always reduce the eventual dominance of exotic species.
Collapse
|
26
|
Frost F. [Introduction to the microbiome]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2022; 63:1015-1021. [PMID: 36053301 DOI: 10.1007/s00108-022-01395-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 05/24/2023]
Abstract
The human body is colonized by a multitude of different microbes that are collectively referred to as the human microbiome. Gut microbes account for the largest proportion of these. They constitute a barrier against foreign pathogens, carry out important metabolic functions and regulate the immune system, thereby making them essential for the maintenance of health. The most important determinants of the gut microbiome structure in the general population include exocrine pancreatic function, genetics, nutrition, age, sex, and obesity. Changes in the gut microbiome have also been linked to a variety of diseases not limited to gastrointestinal disorders. Typical microbiome changes in disease include a loss of diversity and beneficial bacteria or an increase in opportunistic pathogens. This may result in a proinflammatory and unstable microbiome. Knowledge about the microbiome is rapidly increasing and microbiome modulation therapies have already been implemented in clinical practice. Therefore, basic knowledge about the microbiome is essential for all medical professionals in order for them to advise and treat their patients properly.
Collapse
Affiliation(s)
- Fabian Frost
- Klinik und Poliklinik für Innere Medizin A, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Deutschland.
| |
Collapse
|
27
|
Synergistic effects of soil nutrient level and native species identity and diversity on biotic resistance to Sicyos angulatus, an invasive species. Oecologia 2022; 200:221-230. [DOI: 10.1007/s00442-022-05265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
|
28
|
Links between host genetics, metabolism, gut microbiome and amoebic gill disease (AGD) in Atlantic salmon. Anim Microbiome 2022; 4:53. [PMID: 36109797 PMCID: PMC9479442 DOI: 10.1186/s42523-022-00203-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Background Rapidly spreading parasitic infections like amoebic gill disease (AGD) are increasingly problematic for Atlantic salmon reared in aquaculture facilities and potentially pose a risk to wild fish species in surrounding waters. Currently, it is not known whether susceptibility to AGD differs between wild and farmed salmon. Wild Atlantic salmon populations are declining and this emerging disease could represent an additional threat to their long-term viability. A better understanding of how AGD affects fish health is therefore relevant for the accurate assessment of the associated risk, both to farming and to the well-being of wild populations. In this study, we assessed the impact of natural exposure to AGD on wild, hybrid and farmed post-smolt Atlantic salmon reared in a sea farm together under common garden conditions. Results Wild fish showed substantially higher mortality levels (64%) than farmed fish (25%), with intermediate levels for hybrid fish (39%) suggesting that AGD susceptibility has an additive genetic basis. Metabolic rate measures representing physiological performance were similar among the genetic groups but were significantly lower in AGD-symptomatic fish than healthy fish. Gut microbial diversity was significantly lower in infected fish. We observed major shifts in gut microbial community composition in response to AGD infections. In symptomatic fish the relative abundance of key taxa Aliivibrio, Marinomonas and Pseudoalteromonas declined, whereas the abundance of Polaribacter and Vibrio increased compared to healthy fish. Conclusions Our results highlight the stress AGD imposes on fish physiology and suggest that low metabolic-rate fish phenotypes may be associated with better infection outcomes. We consider the role increased AGD outbreak events and a warmer future may have in driving secondary bacterial infections and in reducing performance in farmed and wild fish. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00203-x.
Collapse
|
29
|
Tamburini M, Occhipinti-Ambrogi A, Lo Vullo M, Ferrario J. Biotic resistance of native fouling communities to bioinvasions could not be demonstrated by transplant experiments in Northern Italy. MARINE POLLUTION BULLETIN 2022; 182:113961. [PMID: 35908488 DOI: 10.1016/j.marpolbul.2022.113961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Biotic resistance is considered an important driver in the establishment of non-indigenous species (NIS), but experiments in the marine environment have led to contradictory results. In this context, a transplant experiment of fouling communities was carried out over five months. Settlement panels were moved from low impact (species-rich native communities) to high impact sites by NIS in two Italian areas to test the biotic resistance hypothesis. Fouling communities displayed significant differences among treatments before and after the transplant, thus indicating the maintenance of a peculiar fouling community in transplanted panels. On the other hand, newly recruited species were similar between treatments and neither a facilitation nor a mitigation role from native fouling communities on NIS was observed. Our results highlight the importance to better investigate the factors affecting the high variability obtained in experiments testing this hypothesis, with the aim to identify potential solutions for NIS management in ports.
Collapse
Affiliation(s)
- Marco Tamburini
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | | | - Marcella Lo Vullo
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - Jasmine Ferrario
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy.
| |
Collapse
|
30
|
Paudel R, Shrestha BB, Sharma LN, Adhikari B, Siwakoti M. Diversity of naturalized and invasive plant species across land use types in an inner Tarai Valley of Central Nepal. Trop Ecol 2022. [DOI: 10.1007/s42965-022-00263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Terrin E, Cottaz C, Fort N, Van Es J, Noble V, Diadema K. Regional strategy for invasive alien plant species: towards an integrative and biogeographic approach to the territory of Provence-Alpes-Côte d’Azur, France. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Invasive alien species records are exponentially rising across the Earth. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Hietala AM, Agan A, Nagy NE, Børja I, Timmermann V, Drenkhan R, Solheim H. The Native Hymenoscyphus albidus and the Invasive Hymenoscyphus fraxineus Are Similar in Their Necrotrophic Growth Phase in Ash Leaves. Front Microbiol 2022; 13:892051. [PMID: 35711744 PMCID: PMC9196304 DOI: 10.3389/fmicb.2022.892051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The populations of European ash and its harmless fungal associate Hymenoscyphus albidus are in decline owing to ash dieback caused by the invasive Hymenoscyphus fraxineus, a fungus that in its native range in Asia is a harmless leaf endophyte of local ash species. To clarify the behavior of H. albidus and its spatial and temporal niche overlap with the invasive relative, we used light microscopy, fungal species-specific qPCR assays, and PacBio long-read amplicon sequencing of the ITS1-5.8S-ITS2 region to examine fungal growth and species composition in attached leaves of European ash. The plant material was collected from a healthy stand in central Norway, where ash saplings in late autumn showed leaflet vein necrosis like that commonly related to H. fraxineus. For reference, leaflet samples were analyzed from stands with epidemic level of ash dieback in southeastern Norway and Estonia. While H. albidus was predominant in the necrotic veins in the healthy stand, H. fraxineus was predominant in the diseased stands. Otherwise, endophytes with pathogenic potential in the genera Venturia (anamorph Fusicladium), Mycosphaerella (anamorph Ramularia), and Phoma, and basidiomycetous yeasts formed the core leaflet mycobiome both in the healthy and diseased stands. In necrotic leaf areas with high levels of either H. albidus or H. fraxineus DNA, one common feature was the high colonization of sclerenchyma and phloem, a region from which the ascomata of both species arise. Our data suggest that H. albidus can induce necrosis in ash leaves, but that owing to low infection pressure, this first takes place in tissues weakened by autumn senescence, 1-2 months later in the season than what is characteristic of H. fraxineus at an epidemic phase of ash dieback. The most striking difference between these fungi would appear to be the high fecundity of H. fraxineus. The adaptation to a host that is phylogenetically closely related to European ash, a tree species with high occurrence frequency in Europe, and the presence of environmental conditions favorable to H. fraxineus life cycle completion in most years may enable the build-up of high infection pressure and challenge of leaf defense prior to autumn senescence.
Collapse
Affiliation(s)
- Ari M Hietala
- Norwegian Institute of Bioeconomy Research, Steinkjer, Norway
| | - Ahto Agan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Nina E Nagy
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | | | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | | |
Collapse
|
34
|
Wedegärtner REM, Lembrechts JJ, Wal R, Barros A, Chauvin A, Janssens I, Graae BJ. Hiking trails shift plant species' realized climatic niches and locally increase species richness. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Jonas J. Lembrechts
- Research Group of Plants and Ecosystems (PLECO) University of Antwerp Wilrijk Belgium
| | - René Wal
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Agustina Barros
- Instituto Argentino de Nivología Glaciología y Ciencias Ambientales (IANIGLA), CONICET, CCT‐Mendoza Mendoza Argentina
| | - Aurélie Chauvin
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Ilias Janssens
- Research Group of Plants and Ecosystems (PLECO) University of Antwerp Wilrijk Belgium
| | - Bente Jessen Graae
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
35
|
Vanessa DS, Davide C, Ilaria B, Chiara B, Stefano B, Mattia I, Silvia Z, Pietro V. Non-native fish assemblages display potential competitive advantages in two protected small and shallow lakes of northern Italy. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
36
|
Wang H, Liu T, Zhao W, Liu X, Sun M, Su P, Wen J. Reduced Invasiveness of Common Ragweed ( Ambrosia artemisiifolia) Using Low-Dose Herbicide Treatments for High-Efficiency and Eco-Friendly Control. FRONTIERS IN PLANT SCIENCE 2022; 13:861806. [PMID: 35646043 PMCID: PMC9133841 DOI: 10.3389/fpls.2022.861806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Common ragweed (Ambrosia artemisiifolia) is an invasive annual weed that invades heavily disturbed habitats and natural habitats less disturbed by human activities with native plant species in need of protection. Achieving effective control of A. artemisiifolia for the protection of native organisms and the local ecological environment is an ongoing challenge. Based on the growth and development characteristics of A. artemisiifolia, we examined the effectiveness of herbicides in controlling this species and the optimal time for application in the field with the aim of reducing herbicide dosage. Additionally, we analyzed whether the efficiency of low-dose applications for controlling this species might improve with increasing native plant species richness. Our findings indicate that aminopyralid (33 g ai ha-1) was the most suitable herbicide for chemical control of A. artemisiifolia, with optimum application time being during vegetative growth (BBCH 32-35). Application of aminopyralid was found to kill approximately 52% of A. artemisiifolia plants, and more than 75% of the surviving plants did not bloom, thereby reducing seed yield of the population by more than 90%. Compared with the application of high-dose herbicide, the phytotoxicity of aminopyralid to native plants at the applied dose was substantially reduced. After 2 years of application, the relative coverage of A. artemisiifolia significantly decreased, with few plants remaining, whereas the relative coverage of native plants more than doubled, representing an eco-friendly control. Further, there was an increase in the A. artemisiifolia control rate in the plant community with higher native plant species richness at the same herbicide rates and a reduction in seed yield of A. artemisiifolia. Our findings help toward developing control measures to reduce the invasiveness of A. artemisiifolia with low-dose herbicides meanwhile protecting native plants, and then using the species richness of native plant communities to indirectly promote the effectiveness of low-dose herbicide application.
Collapse
Affiliation(s)
- Hanyue Wang
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Tong Liu
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Wenxuan Zhao
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Xuelian Liu
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Mingming Sun
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Pei Su
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Jun Wen
- Office of Locust and Rodent Control Headquarters of Ili Kazak Autonomous Prefecture, Yining, China
| |
Collapse
|
37
|
Lankau RA, George I, Miao M. Crop performance is predicted by soil microbial diversity across phylogenetic scales. Ecosphere 2022. [DOI: 10.1002/ecs2.4029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Richard A. Lankau
- Department of Plant Pathology University of Wisconsin‐Madison Madison Wisconsin USA
| | - Isabelle George
- Department of Plant Pathology University of Wisconsin‐Madison Madison Wisconsin USA
| | - Max Miao
- Department of Plant Pathology University of Wisconsin‐Madison Madison Wisconsin USA
| |
Collapse
|
38
|
Chen D, van Kleunen M. Competitive effects of plant invaders on and their responses to native species assemblages change over time. NEOBIOTA 2022. [DOI: 10.3897/neobiota.73.80410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alien plant invaders are often considered to be more competitive than natives, and species-rich plant communities are often considered to be more resistant to invaders than species-poor communities. However, the competitive interactions between invaders and assemblages of different species richness are unlikely to be static over time (e.g. during a growth season). To test this, we grew five alien and five native species as invaders in a total of 21 artificial assemblages of one, two or four native competitor species. To test for temporal changes in the reciprocal effects of invaders and the competitor assemblages on each other, and how these depend on the species richness of the assemblages, we harvested plants at three growth stages (weeks 4, 8 and 12). We found that the invaders and competitor assemblages had negative effects on each other. Aboveground biomass of invaders was reduced by the presence of a competitor assemblage, irrespective of its species richness, and this difference gradually increased over time. Alien invaders accumulated more aboveground biomass than the native invaders, but only after 12 weeks of growth. Meanwhile, the invaders also negatively affected the biomass of the competitor assemblages. For multi-species assemblages, the increase in the negative effect of the presence of the invader occurred mainly between weeks 4 and 8, whereas it happened mainly between weeks 8 and 12 for the one-species assemblages. Our results suggest that although alien invaders are more competitive than native invaders, the competitive effects of the invaders on and their responses to native competitor assemblages changed over time, irrespective of the origin of the invaders.
Collapse
|
39
|
Cacabelos E, Gestoso I, Ramalhosa P, Canning-Clode J. Role of non-indigenous species in structuring benthic communities after fragmentation events: an experimental approach. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02768-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Macêdo RL, Sousa FDR, Dumont HJ, Rietzler AC, Rocha O, Elmoor-Loureiro LMA. Climate change and niche unfilling tend to favor range expansion of Moina macrocopa Straus 1820, a potentially invasive cladoceran in temporary waters. HYDROBIOLOGIA 2022; 849:4015-4027. [PMID: 35342194 PMCID: PMC8938975 DOI: 10.1007/s10750-022-04835-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Non-native species' introductions have increased in the last decades primarily due to anthropogenic causes such as climate change and globalization of trade. Moina macrocopa, a stress-tolerant cladoceran widely used in bioassays and aquaculture, is spreading in temporary and semi-temporary natural ponds outside its natural range. Here, we characterize the variations in the climatic niche of M. macrocopa during its invasions outside the native Palearctic range following introduction into the American continent. Specifically, we examined to what extent the climatic responses of this species have diverged from those characteristics for its native range. We also made predictions for its potential distribution under current and future scenarios. We found that the environmental space occupied by this species in its native and introduced distribution areas shares more characteristics than randomly expected. However, the introduced niche has a high degree of unfilling when displacing its original space towards the extension to drier and hotter conditions. Accordingly, M. macrocopa can invade new areas where it has not yet been recorded in response to warming temperatures and decreasing winter precipitation. In particular, temporary ponds are more vulnerable environments where climatic and environmental stresses may also lower biotic resistance. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10750-022-04835-7.
Collapse
Affiliation(s)
- Rafael Lacerda Macêdo
- Núcleo de Estudos Limnológicos, Universidade Federal do Estado do Rio de Janeiro – UNIRIO, Av. 8 Pasteur, 458, Rio de Janeiro, RJ CEP 22290-240 Brazil
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Francisco Diogo R. Sousa
- Laboratório de Taxonomia Animal, Unidade Acadêmica Especial de Ciências Biológicas, Universidade Federal de Jataí – UFJ, BR 364 km 195 n°3800, Jataí, GO CEP 75801-615 Brazil
- Programa de Pós-Graduação Em Zoologia, Universidade de Brasília - UnB, Campus Universitário Darcy Ribeiro, Brasília, CEP 70910-900 Brazil
| | - Henri J. Dumont
- Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Arnola C. Rietzler
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Odete Rocha
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Lourdes M. A. Elmoor-Loureiro
- Laboratório de Taxonomia Animal, Unidade Acadêmica Especial de Ciências Biológicas, Universidade Federal de Jataí – UFJ, BR 364 km 195 n°3800, Jataí, GO CEP 75801-615 Brazil
| |
Collapse
|
41
|
Rossignaud L, Kimberley MO, Kelly D, Fei S, Brockerhoff EG. Effects of competition and habitat heterogeneity on native‐exotic plant richness relationships across spatial scales. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
| | | | - Dave Kelly
- School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - Songlin Fei
- Department of Forestry and Natural Resources Purdue University West Lafayette Indiana USA
| | - Eckehard G. Brockerhoff
- School of Biological Sciences University of Canterbury Christchurch New Zealand
- Scion (New Zealand Forest Research Institute) Christchurch New Zealand
- Swiss Federal Research Institute WSL Birmensdorf Switzerland
| |
Collapse
|
42
|
Li YX, Dong XF, Yang AL, Zhang HB. Diversity and pathogenicity of Alternaria species associated with the invasive plant Ageratina adenophora and local plants. PeerJ 2022; 10:e13012. [PMID: 35251785 PMCID: PMC8893028 DOI: 10.7717/peerj.13012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/04/2022] [Indexed: 01/11/2023] Open
Abstract
Pathogen accumulation after introduction is unavoidable for exotic plants over a long period of time. Therefore, it is important to understand whether plant invasion promotes novel pathogen emergence and increases the risk of pathogen movement among agricultural, horticultural, and wild native plants. In this study, we used multiple gene analysis to characterize the species composition of 104 isolates of Alternaria obtained from the invasive plant Ageratina adenophora and native plants from Yunnan, Hubei, Guizhou, Sichuan, and Guangxi in China. Phylogenetically, these strains were from A. alternata (88.5%), A. gossypina (10.6%) and A. steviae (0.9%). There was a high amount of sharing between strains associated with A. adenophora and with local plants. Pathogenicity tests indicated that most of these Alternaria strains are generalists; the isolates with a wider host range were more virulent to the plant. Woody plants were more resistant to these strains than herbaceous plants and vines. However, the invasive plant A. adenophora was highly sensitive to these strains. Our data are valuable for understanding how A. adenophora invasion impacts the Alternaria species composition of the native plant and whether A. adenophora invasion causes potential disease risks in invaded ecosystems.
Collapse
Affiliation(s)
- Yu-Xuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kuming, Yunnan, China
| | - Xing-Fan Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kuming, Yunnan, China
| | - Ai-Ling Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kuming, Yunnan, China,School of Ecology and Environmental Science, Yunnan University, Kuming, Yunnan, China
| | - Han-Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kuming, Yunnan, China
| |
Collapse
|
43
|
Ferreira-Rodríguez N, Gangloff M, Shafer G, Atkinson CL. Drivers of ecosystem vulnerability to Corbicula invasions in southeastern North America. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02751-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractInvasive species introduction is one of the major ongoing ecological global crises. Identifying factors responsible for the success of invasive species is key for the implementation of effective management actions. The invasive filter-feeding bivalve, Corbicula, is of particular interest because it has become ubiquitous in many river basins across North America and elsewhere. Here we sampled bivalve assemblages, environmental indicators, and land cover parameters in the Ouachita highlands in southeastern Oklahoma and southwestern Arkansas, and in the Gulf Coastal Plain of Alabama to test three working models (using structural equation modeling, SEM) based on a priori scientific knowledge regarding Corbicula invasions. Our models tested three competing hypotheses: (1) Native mussel declines are related to land use changes at the watershed level and subsequent Corbicula colonization is a result of an empty niche; (2) Corbicula abundance is one of the factors responsible for native mussel declines and has an interactive effect with land use change at the watershed level; (3) Native mussel declines and Corbicula success are both related to land use changes at the watershed level. We found no evidence for the first two hypotheses. However, we found that environmental indicators and land cover parameters at the watershed scale were robust predictors of Corbicula abundance. In particular, agricultural land cover was positively related with Corbicula density. These results suggest that further improvement of conventional agricultural practices including the optimization of fertilizer delivery systems may represent an opportunity to manage this species by limiting nutrient inputs to stream ecosystems. Preservation of extensive floodplain habitats may help buffer these inputs by providing key ecosystem services including sediment and nutrient retention.
Collapse
|
44
|
Jiang H, Tan S, Ning K, Li H, Zhao W, Zhao A, Zhu H, Wang S, Wang P, Zhang Y. Effects of Lactobacillus paracasei N1115 on dyslipidaemia: A randomized controlled study. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
45
|
Vasilescu IM, Chifiriuc MC, Pircalabioru GG, Filip R, Bolocan A, Lazăr V, Diţu LM, Bleotu C. Gut Dysbiosis and Clostridioides difficile Infection in Neonates and Adults. Front Microbiol 2022; 12:651081. [PMID: 35126320 PMCID: PMC8810811 DOI: 10.3389/fmicb.2021.651081] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we focus on gut microbiota profiles in infants and adults colonized (CDC) or infected (CDI) with Clostridioides difficile. After a short update on CDI epidemiology and pathology, we present the gut dysbiosis profiles associated with CDI in adults and infants, as well as the role of dysbiosis in C. difficile spores germination and multiplication. Both molecular and culturomic studies agree on a significant decrease of gut microbiota diversity and resilience in CDI, depletion of Firmicutes, Bacteroidetes, and Actinobacteria phyla and a high abundance of Proteobacteria, associated with low butyrogenic and high lactic acid-bacteria levels. In symptomatic cases, microbiota deviations are associated with high levels of inflammatory markers, such as calprotectin. In infants, colonization with Bifidobacteria that trigger a local anti-inflammatory response and abundance of Ruminococcus, together with lack of receptors for clostridial toxins and immunological factors (e.g., C. difficile toxins neutralizing antibodies) might explain the lack of clinical symptoms. Gut dysbiosis amelioration through administration of “biotics” or non-toxigenic C. difficile preparations and fecal microbiota transplantation proved to be very useful for the management of CDI.
Collapse
Affiliation(s)
- Iulia-Magdalena Vasilescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- INBI “Prof. Dr. Matei Balş” – National Institute for Infectious Diseases, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
- *Correspondence: Mariana-Carmen Chifiriuc,
| | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Regional County Emergency Hospital, Suceava, Romania
| | - Alexandra Bolocan
- Department of General Surgery, University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Veronica Lazăr
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Lia-Mara Diţu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
- Ştefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| |
Collapse
|
46
|
Dimitrakopoulos PG, Koukoulas S, Michelaki C, Galanidis A. Anthropogenic and environmental determinants of alien plant species spatial distribution on an island scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150314. [PMID: 34543797 DOI: 10.1016/j.scitotenv.2021.150314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Mediterranean islands are considered especially vulnerable to biological invasions by alien plants. However, there is a lack of studies on island scale regarding the factors that determine alien plant's spatial distribution, and the way they affect invasion process. A roadside survey of alien plant species was conducted on Lesvos, the 8th largest island in Mediterranean basin. Data on species counts and explanatory variables were aggregated to a 1 sq. km vector grid and brought together into a single GIS layer. Alien species counts were modelled by using a Negative-binomial model while a Generalised Additive Model was used to examine possible non-linear relationships to the predictors by using splines. A subset of significant factors, related both to human activities and the environment, shaped the spatial distribution of aliens and influenced, in various ways, their future invasion outcome. Transformed areas with high levels of anthropogenic pressures and disturbances, including high population numbers, dense road network, ports, and intensive land use, as is the case for coastal zones, promoted the presence of alien species. Contrary, modified areas, such as grazed lands, seemed to restrict alien species occurrences, possibly due to the long grazing history these areas present, a regime in which aliens are not adapted. Alien plants presence was positively associated with high levels of NPP, diversity of geological substrates, and a west-facing aspect. Anthropogenic determinants of alien spatial patterns were primarily connected to increased propagule pressure, whereas environmental factors demonstrated the preference of alien plants for resource-rich environments.
Collapse
Affiliation(s)
- Panayiotis G Dimitrakopoulos
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, 81100 Mytilene, Lesvos, Greece.
| | - Sotirios Koukoulas
- Department of Geography, University of the Aegean, 81100 Mytilene, Lesvos, Greece
| | - Chrysanthi Michelaki
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, 81100 Mytilene, Lesvos, Greece
| | - Alexandros Galanidis
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, 81100 Mytilene, Lesvos, Greece
| |
Collapse
|
47
|
Guo Q. Scale dependency in native-exotic richness relationships revisited. Ecol Evol 2022; 12:e8549. [PMID: 35127048 PMCID: PMC8794751 DOI: 10.1002/ece3.8549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
In their seminal paper, Shea and Chesson (Trends in Ecology & Evolution, 2002, 17, 170) developed a highly cited model (S&C model) showing scale dependency in the native-exotic richness relationships. Two decades later, extensive additional data have been accumulated, leading to new findings and insights. Accordingly, two updates were made here to the original S&C model: (1) changing the "negative" richness relationship between natives and exotics to "non-consistent" or "non-significant"; and (2) modifying the original diagram to correctly represent native and exotic species richness and their correlations across both small and large scales.
Collapse
Affiliation(s)
- Qinfeng Guo
- USDA FSEastern Forest Environmental Threat Assessment CenterResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
48
|
Differences in above-ground resource acquisition and niche overlap between a model invader (Phragmites australis) and resident plant species: measuring the role of fitness and niche differences in the field. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02674-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Diversity of resident plant communities could weaken their allelopathic resistance against alien and native invaders. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractElton’s classic diversity-invasibility hypothesis posits that diversity of resident communities increases resistance against invaders. We tested whether the diversity-invasibility relationsip might be mediated by allelopathic effects of the resident species. In a large germination experiment, we exposed seeds of six alien and six native test species to leachates of one, three, six or twelve species. The leachates tended to slightly delay germination, and almost all single-species leachates reduced the proportion of germinated seeds. Nevertheless, the overall effect of the plant leachate mixtures on the proportion of germinated seeds was not significant. This was because a higher diversity of the leachates increased the proportion of germinated seeds, particularly for native test species. Among the six alien test species, it was only the most invasive one that benefited from increased diversity of the leachates, just like the natives did. Overall, our findings suggest that allelopathy of diverse communities does not provide resistance but could actually facilitate the germination of invaders.
Collapse
|
50
|
Complex community responses underpin biodiversity change following invasion. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractHow do invasive species change native biodiversity? One reason why this long-standing question remains challenging to answer could be because the main focus of the invasion literature has been on shifts in species richness (a measure of α-diversity). As the underlying components of community structure—intraspecific aggregation, interspecific density and the species abundance distribution (SAD)—are potentially impacted in different ways during invasion, trends in species richness provide only limited insight into the mechanisms leading to biodiversity change. In addition, these impacts can be manifested in distinct ways at different spatial scales. Here we take advantage of the new Measurement of Biodiversity (MoB) framework to reanalyse data collected in an invasion front in the Brazilian Cerrado biodiversity hotspot. We show that, by using the MoB multi-scale approach, we are able to link reductions in species richness in invaded sites to restructuring in the SAD. This restructuring takes the form of lower evenness in sites invaded by pines relative to sites without pines. Shifts in aggregation also occur. There is a clear signature of spatial scale in biodiversity change linked to the presence of an invasive species. These results demonstrate how the MoB approach can play an important role in helping invasion ecologists, field biologists and conservation managers move towards a more mechanistic approach to detecting and interpreting changes in ecological systems following invasion.
Collapse
|