1
|
Wojtaczka P, Ciarkowska A, Krawczak M, Kęsy J, Castellanos JF, Fettke J, Ostrowski M. Biochemical and proteomic approaches to investigating effects of IAA-aspartate in pea (Pisum sativum L.) seedlings during osmotic shock. PHYTOCHEMISTRY 2024:114332. [PMID: 39547494 DOI: 10.1016/j.phytochem.2024.114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Osmotic shock is the first step of high salt or drought action that involves biochemical and molecular changes during plant response to these unfavorable conditions. Indole-3-acetyl-aspartate (IAA-aspartate, IAA-Asp) is the main amide conjugate of auxin in pea (Pisum sativum L.) tissues. Although the exact molecular mechanism of the IAA-Asp action is unknown, this conjugate's indole-3-acetic acid (IAA)-independent biological activity has been observed during physiological and stress conditions. In this work, we investigated the effect of IAA-Asp alone, as well as in combination with NaCl or polyethylene glycol (PEG) (osmotic shock) on reduced/oxidized glutathione (GSH/GSSG) ratio, activities of enzymes modulating glutathione concentration, protein S-glutathionylation, and IAA homeostasis. We did not observe the hydrolysis of IAA-Asp to IAA in pea seedlings, which, together with other results, suggests that IAA-Asp modulates plant response to abiotic stimuli independently of IAA. Moreover, despite the effect of IAA-Asp on the enzymes responsible for IAA conjugation, no changes in this phytohormone level were visible. Furthermore, 3h plant treatment with IAA-Asp increased the activity of glutathione reductase (GR), which correlates with an elevated GSH/GSSG ratio. On the contrary, more extended (48h) incubation with IAA-Asp diminished the GSH/GSSG ratio and increased the activity of glutathione peroxidase (GPX). IAA-Asp reduced GR activity during salt treatment but did not affect the GSH/GSSG ratio. Similarly, under plant incubation with PEG, IAA-Asp did not change the GSH/GSSG ratio but increased glutathione S-transferase (GST) activity. We also analyzed the effect of IAA-Asp on pea protein S-glutathionylation. Increased S-glutathionylation of heat shock 70 kDa protein (HSP70) was observed after plant treatment with IAA-Asp, PEG, or IAA-Asp combined with PEG. The proteomic analysis also revealed that IAA-Asp diminished S-glutathionylation of lipoxygenase during plant incubation with PEG. Thus, we suggest that IAA-Asp modulates redox status in pea during oxidative stress and under normal physiological conditions.
Collapse
Affiliation(s)
- Patrycja Wojtaczka
- Department of Biochemistry, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland.
| | - Anna Ciarkowska
- Department of Biochemistry, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
| | - Marta Krawczak
- Department of Biochemistry, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
| | - Jacek Kęsy
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
| | - Junio Flores Castellanos
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, Building 20, 14476 Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, Building 20, 14476 Potsdam-Golm, Germany
| | - Maciej Ostrowski
- Department of Biochemistry, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
| |
Collapse
|
2
|
Chen Y, Sun C, Yan Y, Jiang D, Huangfu S, Tian L. Impact of arbuscular mycorrhizal fungi on maize rhizosphere microbiome stability under moderate drought conditions. Microbiol Res 2024; 290:127957. [PMID: 39486317 DOI: 10.1016/j.micres.2024.127957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
With an alarming increase in global greenhouse gas emissions, unstable weather conditions are significantly impacting agricultural production. Drought stress is one of the frequent consequences of climate change that affects crop growth and yield. Addressing this issue is critical to ensure stable crop productivity under drought conditions. Arbuscular mycorrhizal fungi (AMF) establish symbiotic relationships with plants and enhance their resistance to adverse conditions. Effects of arbuscular mycorrhizal associations on the rhizosphere microbiome and root transcriptome under drought conditions have not been explored. Here, we investigated the effects of AMF and drought stress on rhizosphere microorganisms and root transcriptome of maize plants grown in chernozem soil. We used high-throughput sequencing data of bacterial 16S rRNA and fungal internal transcribed spacer regions (ITS) to identify rhizosphere microorganisms. Transcriptomic data were used to assess gene expression in maize plants under different treatments. Our results show that AMF maintains the composition of maize rhizosphere microorganisms under drought stress. In particular, the bacterial and fungal phyla maintained were Actinomycetes and Ascomycota, respectively. Transcriptomic data indicated that AMF influenced gene expression in maize plants under drought stress. Under drought stress, the expression of SWEET13, CHIT3, and RPL23A was significantly higher in the presence of AMF than it was without AMF inoculation, indicating better sugar transport, reduced malondialdehyde accumulation, and improved water use efficiency in AMF-inoculated maize plants. These findings suggest that AMF can enhance the resistance of maize to moderate drought stress by stabilising plant physical traits, which may help maintain the structure of the rhizosphere microbial community. This study provides valuable theoretical insights that should aid the utilization of AMF in sustainable agricultural practices.
Collapse
Affiliation(s)
- Yalin Chen
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Life Science, Jilin Agricultural University, Changchun 130000, China
| | - Chunyu Sun
- College of Life Science, Jilin Agricultural University, Changchun 130000, China
| | - Yuxin Yan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Life Science, Jilin Agricultural University, Changchun 130000, China
| | - Dongxue Jiang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Life Science, Jilin Agricultural University, Changchun 130000, China
| | - Shaoqi Huangfu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Life Science, Jilin Agricultural University, Changchun 130000, China
| | - Lei Tian
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
3
|
Skrypnik L, Maslennikov P, Antipina M, Katserov D, Feduraev P. Comparative Study on the Response of Hyssop ( Hyssopus officinalis L.), Salvia ( Salvia officinalis L.), and Oregano ( Origanum vulgare L.) to Drought Stress Under Foliar Application of Selenium. PLANTS (BASEL, SWITZERLAND) 2024; 13:2986. [PMID: 39519905 PMCID: PMC11547996 DOI: 10.3390/plants13212986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Drought is one of the most important abiotic factors limiting plant productivity. Although the aromatic plants of the Lamiaceae family often grow in arid regions, drought tolerance varies greatly among the different species of this family. The effect of induced drought stress can be reduced by the application of selenium. The current study aims to compare the growth and biochemical responses of three species of the Lamiaceae family (hyssop, salvia, and oregano) to drought stress and the possibility of reducing the effect of stress in these plants by foliar treatment with selenium. Drought stress reduced the fresh and dry biomass of hyssop (by 35% and 15%), salvia (by 45% and 41%), and oregano (by 51% and 32%). Se treatment did not affect the growth of plants under drought stress, but it improved relative water content in hyssop and salvia under moderate drought conditions. A reduction in the content of chlorophyll a and chlorophyll b (in hyssop and salvia). In addition, an increase in the content of hydrogen peroxide (in oregano and salvia), malondialdehyde, and proline in plants cultivated under drought conditions was observed. Se treatment led to reduced levels of hydrogen peroxide and malondialdehyde, along with an increase in chlorophyll a content (in hyssop and oregano) and proline content. The response of the antioxidant system depended on the plant species. Hyssop exhibited a significant increase in glutathione peroxidase, superoxide dismutase, and peroxidase activities. Oregano showed enhanced catalase activity. Salvia experienced a sharp increase in ascorbic acid content. Se treatment stimulated the accumulation of phenolic compounds and increased glutathione peroxidase activity in all studied species.
Collapse
Affiliation(s)
- Liubov Skrypnik
- Laboratory of Natural Antioxidants, Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, 236040 Kaliningrad, Russia
| | - Pavel Maslennikov
- Scientific and Educational Cluster MEDBIO, Immanuel Kant Baltic Federal University, 236040 Kaliningrad, Russia (P.F.)
| | - Maria Antipina
- Scientific and Educational Cluster MEDBIO, Immanuel Kant Baltic Federal University, 236040 Kaliningrad, Russia (P.F.)
| | - Dmitriy Katserov
- Scientific and Educational Cluster MEDBIO, Immanuel Kant Baltic Federal University, 236040 Kaliningrad, Russia (P.F.)
| | - Pavel Feduraev
- Scientific and Educational Cluster MEDBIO, Immanuel Kant Baltic Federal University, 236040 Kaliningrad, Russia (P.F.)
| |
Collapse
|
4
|
Haghpanah M, Hashemipetroudi S, Arzani A, Araniti F. Drought Tolerance in Plants: Physiological and Molecular Responses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2962. [PMID: 39519881 PMCID: PMC11548289 DOI: 10.3390/plants13212962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Drought, a significant environmental challenge, presents a substantial risk to worldwide agriculture and the security of food supplies. In response, plants can perceive stimuli from their environment and activate defense pathways via various modulating networks to cope with stress. Drought tolerance, a multifaceted attribute, can be dissected into distinct contributing mechanisms and factors. Osmotic stress, dehydration stress, dysfunction of plasma and endosome membranes, loss of cellular turgidity, inhibition of metabolite synthesis, cellular energy depletion, impaired chloroplast function, and oxidative stress are among the most critical consequences of drought on plant cells. Understanding the intricate interplay of these physiological and molecular responses provides insights into the adaptive strategies plants employ to navigate through drought stress. Plant cells express various mechanisms to withstand and reverse the cellular effects of drought stress. These mechanisms include osmotic adjustment to preserve cellular turgor, synthesis of protective proteins like dehydrins, and triggering antioxidant systems to counterbalance oxidative stress. A better understanding of drought tolerance is crucial for devising specific methods to improve crop resilience and promote sustainable agricultural practices in environments with limited water resources. This review explores the physiological and molecular responses employed by plants to address the challenges of drought stress.
Collapse
Affiliation(s)
- Mostafa Haghpanah
- Kohgiluyeh and Boyer-Ahmad Agricultural and Natural Resources Research and Education Center, Dryland Agricultural Research Institute, AREEO, Gachsaran 7589172050, Iran;
| | - Seyyedhamidreza Hashemipetroudi
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, P.O. Box 578, Sari 4818166996, Iran;
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| |
Collapse
|
5
|
Awadalla RA, Sallam A, Börner A, Elshamy MM, Heikal YM. The role of salicylic acid in modulating phenotyping in spring wheat varieties for mitigating drought stress. BMC PLANT BIOLOGY 2024; 24:948. [PMID: 39394092 PMCID: PMC11468136 DOI: 10.1186/s12870-024-05620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Climate change-related droughts that recur frequently are one of the biggest obstacles to wheat (Triticum aestivum L.) productivity. Worldwide, attempts are being done to establish drought-resistant cultivars. However, progress is slow since drought tolerance is a complex trait controlled by numerous genes, and its expression is influenced by the environment. Phenotypic, biochemical physiological, and genotyping approaches are highlighted as critical research components for leveraging genetic variation in eight wheat genotypes. Treatments included eight spring wheat genotypes (IPK_040, IPK_046, IPK_050, IPK_071, IPK_105, WAS_007, WAS_024 and WAS_031), normal irrigation (NI), drought stress (D) (30% field capacity (FC)), normal irrigation with 0.5 mM SA (NSA), and drought treated with SA (DSA). The results revealed that there was a reduction in relative water content, an increase membrane leakage, and leaf chlorophyll content under drought stress. SA induced the defense responses against drought by increasing the osmolytes and the antioxidative enzymes activities. Compared to the NI group, the DSA treatment improved the water regulation, antioxidant capacity, and drought stress resistance. SA significantly reduced the deleterious effects of water stress on phenotyping more in WAS_ 024 and IPK_ 105 genotypes. The most responsive genotypes to salicylic acid were IPK_ 046 among the IPK genotypes, whereas WAS_031 genotype was amongst WAS genotypes based on the morpho-physiological traits. The findings of this study give a solid foundation for assessing drought resistance in T. aestivum and developing cultivation-specific water management methods.
Collapse
Affiliation(s)
- Rawan A Awadalla
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed Sallam
- Department Genebank, Resources Genetics and Reproduction, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D, Stadt Seeland, 06466, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Andreas Börner
- Department Genebank, Resources Genetics and Reproduction, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D, Stadt Seeland, 06466, Germany
| | - Maha M Elshamy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
6
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
7
|
Zhang Y, Lu X, Yao W, Cheng X, Wang Q, Feng Y, Shen W. Magnesium Hydride Confers Osmotic Tolerance in Mung Bean Seedlings by Promoting Ascorbate-Glutathione Cycle. PLANTS (BASEL, SWITZERLAND) 2024; 13:2819. [PMID: 39409689 PMCID: PMC11478981 DOI: 10.3390/plants13192819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024]
Abstract
Despite substantial evidence suggesting that hydrogen gas (H2) can enhance osmotic tolerance in plants, the conventional supply method of hydrogen-rich water (HRW) poses challenges for large-scale agricultural applications. Recently, magnesium hydride (MgH2), a hydrogen storage material in industry, has been reported to yield beneficial effects in plants. This study aimed to investigate the effects and underlying mechanisms of MgH2 in plants under osmotic stress. Mung bean seedlings were cultured under control conditions or with 20% polyethylene glycol (PEG)-6000, with or without MgH2 addition (0.01 g L-1). Under our experimental conditions, the MgH2 solution maintained a higher H2 content and longer retention time than HRW. Importantly, PEG-stimulated endogenous H2 production was further triggered by MgH2 application. Further results revealed that MgH2 significantly alleviated the inhibition of seedling growth and reduced oxidative damage induced by osmotic stress. Pharmacological evidence suggests the MgH2-reestablished redox homeostasis was associated with activated antioxidant systems, particularly the ascorbate-glutathione cycle. The above observations were further supported by the enhanced activities and gene transcriptional levels of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase. Overall, this study demonstrates the importance of MgH2 in mitigating osmotic stress in mung bean seedlings, providing novel insights into the potential agricultural applications of hydrogen storage materials.
Collapse
Affiliation(s)
- Yihua Zhang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Xing Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Wenrong Yao
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Xiaoqing Cheng
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Qiao Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Yu Feng
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
8
|
Liu T, Wang Y, Li X, Che H, Zhang Y. LpNAC5 positively regulates drought, salt and alkalinity tolerance of Lilium pumilum. Gene 2024; 924:148550. [PMID: 38777109 DOI: 10.1016/j.gene.2024.148550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
NACs (NAM、ATAF1/2、CUC1/2), as a large family of plant transcription factors, are widely involved in abiotic stress responses. This study aimed to isolate and clone a novel stress-responsive transcription factor LpNAC5 from Lilium pumilum bulbs. Drought, salt, alkali, and ABA stresses induced the expression of LpNAC5. Transgenic tobacco plants overexpressing LpNAC5 were generated using the Agrobacterium-mediated method to understand the role of this factor in stress response. These plants exhibited increased tolerance to drought, salt, and alkali stresses. The tobacco plants overexpressing LpNAC5 showed strong drought, salt, and alkaline tolerance. Under the three abiotic stresses, the activities of antioxidant enzymes were enhanced, the contents of proline and chlorophyll increased, and the contents of malondialdehyde decreased. The functional analysis revealed that LpNAC5 enabled plants to positively regulate drought and salt stresses. These findings not only provided valuable insights into stress tolerance mechanisms in L. pumilum but also offered a potential genetic resource for breedi.
Collapse
Affiliation(s)
- Tongfei Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Ying Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Xufei Li
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Haitao Che
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Yanni Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
9
|
Khandani Y, Sarikhani H, Gholami M, Chehregani Rad A, Shirani Bidabadi S. Alteration in certain growth, biochemical, and anatomical indices of grapevine ( Vitis vinifera) in response to the foliar application of auxin under water deficit. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24059. [PMID: 39388429 DOI: 10.1071/fp24059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Drought-induced stress represents one of the most economically detrimental natural phenomena impacting grapevine (Vitis vinifera ) development, yield, and fruit characteristics. Also, auxin is one of the most important plant growth regulators that can reduce damage caused by stress in plants. In this study, the impact of exogenously sprayed auxin (0, 50, and 200mgL-1 ) on growth, biochemical, and anatomical parameters was investigated in two grapevine varieties (cvs. 'Rashe' and 'Fakhri') under water deficit. According to our findings, water deficit led to a notable decrease in growth, protein content, and anatomical parameters; but significantly enhanced electrolyte leakage. Grapevines exposed to water deficit exhibited substantial increases in total phenolic compounds and antioxidant activity. Applying 50mgL-1 napthalene acetic acid (NAA) reduced the effects of water deficit in both grapevine cultivars by decreasing electrolyte leakage (15% in 'Rashe' and 20% in 'Fakhri'), and accumulating protein content (22% 'Rashe' and 32% 'Fakhri'), total phenolic compounds (33%'Rashe' and 40% 'Fakhri'), and antioxidant capacity (11% 'Rashe' and 39% 'Fakhri'); anantomical parameters were also improved. However, application of 200mgL-1 NAA had adverse effects on growth and biochemical traits of grapevines, with a more pronounced impact on root growth and anatomical parameters compared to other NAA concentrations. In conclusion, the application of 50mgL-1 NAA enhanced grapevine growth, enabling them to better thrive under water deficit.
Collapse
Affiliation(s)
- Yaser Khandani
- Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Hassan Sarikhani
- Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mansour Gholami
- Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | | | | |
Collapse
|
10
|
Maghrebi M, Marín-Sanz M, Miras Moreno MB, Quagliata G, Caldo F, Gatti N, Mannino G, Pesenti M, D'Alessandro S, Nocito FF, Lucini L, Sestili F, Astolfi S, Barro F, Vigani G. The drought-induced plasticity of mineral nutrients contributes to drought tolerance discrimination in durum wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109077. [PMID: 39213946 DOI: 10.1016/j.plaphy.2024.109077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Drought is a major challenge for the cultivation of durum wheat, a crucial crop for global food security. Plants respond to drought by adjusting their mineral nutrient profiles to cope with water scarcity, showing the importance of nutrient plasticity for plant acclimation and adaptation to diverse environments. Therefore, it is essential to understand the genetic basis of mineral nutrient profile plasticity in durum wheat under drought stress to select drought-tolerant varieties. The research study investigated the responses of different durum wheat genotypes to severe drought stress at the seedling stage. The study employed an ionomic, molecular, biochemical and physiological approach to shed light on distinct behaviors among different genotypes. The drought tolerance of SVEMS16, SVEVO, and BULEL was related to their capacity of maintaining or increasing nutrient's accumulation, while the limited nutrient acquisition capability of CRESO and S.CAP likely resulted in their susceptibility to drought. The study highlighted the importance of macronutrients such as SO42-, NO3-, PO43-, and K+ in stress resilience and identified variant-containing genes potentially influencing nutritional variations under drought. These findings provide valuable insights for further field studies to assess the drought tolerance of durum wheat genotypes across various growth stages, ultimately ensuring food security and sustainable production in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Moez Maghrebi
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy
| | - Miriam Marín-Sanz
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Alameda del Obispo s/n, 14004-Córdoba, Spain
| | - Maria Begona Miras Moreno
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Alameda del Obispo s/n, 14004-Córdoba, Spain
| | - Giulia Quagliata
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Viterbo, Italy
| | - Francesco Caldo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy
| | - Noemi Gatti
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy
| | - Giuseppe Mannino
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy
| | - Michele Pesenti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano D'Alessandro
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy
| | - Fabio Francesco Nocito
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, 20133 Milano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Universita Cattolica del Sacro Cuore, I-29122, Piacenza, Italy
| | - Francesco Sestili
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Viterbo, Italy
| | - Stefania Astolfi
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Viterbo, Italy
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Alameda del Obispo s/n, 14004-Córdoba, Spain
| | - Gianpiero Vigani
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy.
| |
Collapse
|
11
|
Qi J, Luo Y, Lu S, Liu H, Huang H, Qiu Y, Zhou X, Ma C. Multi-omics integration analysis reveals the molecular mechanisms of drought adaptation in homologous tetraploid alfalfa(Medicago sativa 'Xinjiang-Daye'). PHYSIOLOGIA PLANTARUM 2024; 176:e14476. [PMID: 39262125 DOI: 10.1111/ppl.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024]
Abstract
Drought stress is a predominant abiotic factor leading to decreased alfalfa yield. Genomic ploidy differences contribute to varying adaptation mechanisms of different alfalfa cultivars to drought conditions. This study employed a multi-omics approach to characterize the molecular basis of drought tolerance in a tetraploid variant of alfalfa (Medicago sativa, Xinjiang-Daye). Under drought treatment, a total of 4446 genes, 859 proteins, and 524 metabolites showed significant differences in abundance. Integrative analysis of the multi-omics data revealed that regulatory modules involved in flavonoid biosynthesis, plant hormone signalling transduction, linoleic acid metabolism, and amino acid biosynthesis play crucial roles in alfalfa adaptation to drought stress. The severity of drought led to the substantial accumulation of flavonoids, plant hormones, free fatty acids, amino acids, and their derivatives in the leaves. Genes such as PAL, 4CL, CHI, CHS, PP2C, ARF_3, and AHP_4 play pivotal regulatory roles in flavonoid biosynthesis and hormone signalling pathways. Differential expression of the LOX gene emerged as a key factor in the elevated levels of free fatty acids. Upregulation of P5CS_1 and GOT1/2 contributed significantly to the accumulation of Pro and Phe contents. ERF19 emerged as a principal positive regulator governing the synthesis of the aforementioned compounds. Furthermore, observations suggest that Xinjiang-Daye alfalfa may exhibit widespread post-transcriptional regulatory mechanisms in adapting to drought stress. The study findings unveil the critical mechanisms by which Xinjiang-Daye alfalfa adapts to drought stress, offering novel insights for the improvement of alfalfa germplasm resources.
Collapse
Affiliation(s)
- Jianwei Qi
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yongzhong Luo
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Songsong Lu
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Hui Liu
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Haixia Huang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yingde Qiu
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xiaotong Zhou
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Chao Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Caine RS, Khan MS, Brench RA, Walker HJ, Croft HL. Inside-out: Synergising leaf biochemical traits with stomatal-regulated water fluxes to enhance transpiration modelling during abiotic stress. PLANT, CELL & ENVIRONMENT 2024; 47:3494-3513. [PMID: 38533601 DOI: 10.1111/pce.14892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/17/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
As the global climate continues to change, plants will increasingly experience abiotic stress(es). Stomata on leaf surfaces are the gatekeepers to plant interiors, regulating gaseous exchanges that are crucial for both photosynthesis and outward water release. To optimise future crop productivity, accurate modelling of how stomata govern plant-environment interactions will be crucial. Here, we synergise optical and thermal imaging data to improve modelled transpiration estimates during water and/or nutrient stress (where leaf N is reduced). By utilising hyperspectral data and partial least squares regression analysis of six plant traits and fluxes in wheat (Triticum aestivum), we develop a new spectral vegetation index; the Combined Nitrogen and Drought Index (CNDI), which can be used to detect both water stress and/or nitrogen deficiency. Upon full stomatal closure during drought, CNDI shows a strong relationship with leaf water content (r2 = 0.70), with confounding changes in leaf biochemistry. By incorporating CNDI transformed with a sigmoid function into thermal-based transpiration modelling, we have increased the accuracy of modelling water fluxes during abiotic stress. These findings demonstrate the potential of using combined optical and thermal remote sensing-based modelling approaches to dynamically model water fluxes to improve both agricultural water usage and yields.
Collapse
Affiliation(s)
- Robert S Caine
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, South Yorkshire, UK
- School of Biosciences, Institute for Sustainable Food, University of Sheffield, South Yorkshire, UK
| | - Muhammad S Khan
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, South Yorkshire, UK
| | - Robert A Brench
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, South Yorkshire, UK
| | - Heather J Walker
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, South Yorkshire, UK
- School of Biosciences, Institute for Sustainable Food, University of Sheffield, South Yorkshire, UK
- biOMICS Mass Spectrometry Facility, School of Biosciences, University of Sheffield, South Yorkshire, UK
| | - Holly L Croft
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, South Yorkshire, UK
- School of Biosciences, Institute for Sustainable Food, University of Sheffield, South Yorkshire, UK
| |
Collapse
|
13
|
Cui Y, Wu K, Yao X. The CDPK-related protein kinase HvCRK2 and HvCRK4 interact with HvCML32 to negatively regulate drought tolerance in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108909. [PMID: 38971089 DOI: 10.1016/j.plaphy.2024.108909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Calcium-dependent protein kinase (CDPK) as one of calcium sensors were play important roles in stress responses. CDPK-related protein kinase (CRK) was identified as subgroup III of CDPK has been characterized in many plants, but the members and functions of CRK genes in hulless barley (Hordeum vulgare L.) has not been clarified. Here, we identified four HvCRK genes and named HvCRK1-4 according to chromosomes localization. Moreover, the physiological function of highly induced genes of HvCRK2 and HvCRK4 were investigated in drought stress tolerance by examining their overexpression transgenic lines functions generated in Arabidopsis thaliana. Under drought stress, both overexpression HvCRK2 and HvCRK4 displayed reduced drought resistance, and accompanied by higher accumulation levels of ROS. Notably, overexpression of HvCRK2 and HvCRK4 reduced sensitivity to exogenous ABA, meanwhile the expression of ABA-responsive genes in transgenic plants were down-regulated compared to the wild type in response to drought stress. Furthermore, the physically interaction of HvCRK2 and HvCRK4 with calmodulin (CaM) and calmodulin-like (CML) proteins were determined in vivo, the further results showed that HvCML32 binds to HvCRK2/4 S_TKC structural domains and negatively regulates drought tolerance. In summary, this study identified HvCRK members and indicated that HvCRK2 and HvCRK4 genes play negative roles in drought tolerance, and provide insight into potential molecular mechanism of HvCRK2 and HvCRK4 in response to drought stress.
Collapse
Affiliation(s)
- Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, 810016, Xining, China; Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China; Oinghai Hulless Barley Subcenter of National Triticeae Improvement Center, 810016, Xining, China
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, 810016, Xining, China; Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China; Oinghai Hulless Barley Subcenter of National Triticeae Improvement Center, 810016, Xining, China.
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, 810016, Xining, China; Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China; Oinghai Hulless Barley Subcenter of National Triticeae Improvement Center, 810016, Xining, China.
| |
Collapse
|
14
|
Haider S, Bibi K, Munyaneza V, Zhang H, Zhang W, Ali A, Ahmad IA, Mehran M, Xu F, Yang C, Yang J, Ding G. Drought-induced adaptive and ameliorative strategies in plants. CHEMOSPHERE 2024; 364:143134. [PMID: 39168385 DOI: 10.1016/j.chemosphere.2024.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Sharjeel Haider
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Khadija Bibi
- Department of Botany, Faculty of Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Venuste Munyaneza
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hao Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Wen Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ayaz Ali
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Iftikhar Ali Ahmad
- Key Laboratory of Soil Health Diagnostic and Green Remediation, Ministry of Ecology and Environment, College of Resource and Environment, Huazhong Agricultural University, China
| | - Muhammad Mehran
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Fangsen Xu
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Chunlei Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China.
| | - Jinpeng Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
15
|
Eskikoy G, Kutlu I. Inter-subspecies diversity of maize to drought stress with physio-biochemical, enzymatic and molecular responses. PeerJ 2024; 12:e17931. [PMID: 39184382 PMCID: PMC11345000 DOI: 10.7717/peerj.17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
Background Drought is the most significant factor limiting maize production, given that maize is a crop with a high water demand. Therefore, studies investigating the mechanisms underlying the drought tolerance of maize are of great importance. There are no studies comparing drought tolerance among economically important subspecies of maize. This study aimed to reveal the differences between the physio-biochemical, enzymatic, and molecular mechanisms of drought tolerance in dent (Zea mays indentata), popcorn (Zea mays everta), and sugar (Zea mays saccharata) maize under control (no-stress), moderate, and severe drought stress. Methods Three distinct irrigation regimes were employed to assess the impact of varying levels of drought stress on maize plants at the V14 growth stage. These included normal irrigation (80% field capacity), moderate drought (50% field capacity), and severe drought (30% field capacity). All plants were grown under controlled conditions. The following parameters were analyzed: leaf relative water content (RWC), loss of turgidity (LOT), proline (PRO) and soluble protein (SPR) contents, membrane durability index (MDI), malondialdehyde (MDA), and hydrogen peroxide (H2O2) content, the antioxidant enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT). Additionally, the expression of heat shock proteins (HSPs) was examined at the transcriptional and translational levels. Results The effects of severe drought were more pronounced in sugar maize, which had a relatively high loss of RWC and turgor, membrane damage, enzyme activities, and HSP90 gene expression. Dent maize, which is capable of maintaining its RWC and turgor in both moderate and severe droughts, and employs its defense mechanism effectively by maintaining antioxidant enzyme activities at a certain level despite less MDA and H2O2 accumulation, exhibited relatively high drought tolerance. Despite the high levels of MDA and H2O2 in popcorn maize, the up-regulation of antioxidant enzyme activities and HSP70 gene and protein expression indicated that the drought coping mechanism is activated. In particular, the positive correlation of HSP70 with PRO and HSP90 with enzyme activities is a significant result for studies examining the relationships between HSPs and other stress response systems. The discrepancies between the transcriptional and translational findings provide an opportunity for more comprehensive investigations into the role of HSPs in stress conditions.
Collapse
Affiliation(s)
- Gokhan Eskikoy
- Field Crops Department/Faculty of Agriculture, Osmangazi University, Eskişehir, Turkey
| | - Imren Kutlu
- Field Crops Department/Faculty of Agriculture, Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
16
|
Lee S, Kim JA, Song J, Choe S, Jang G, Kim Y. Plant growth-promoting rhizobacterium Bacillus megaterium modulates the expression of antioxidant-related and drought-responsive genes to protect rice ( Oryza sativa L.) from drought. Front Microbiol 2024; 15:1430546. [PMID: 39234545 PMCID: PMC11371581 DOI: 10.3389/fmicb.2024.1430546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Global climate change poses a significant threat to plant growth and crop yield and is exacerbated by environmental factors, such as drought, salinity, greenhouse gasses, and extreme temperatures. Plant growth-promoting rhizobacteria (PGPR) help plants withstand drought. However, the mechanisms underlying PGPR-plant interactions remain unclear. Thus, this study aimed to isolate PGPR, Bacillus megaterium strains CACC109 and CACC119, from a ginseng field and investigate the mechanisms underlying PGPR-stimulated tolerance to drought stress by evaluating their plant growth-promoting activities and effects on rice growth and stress tolerance through in vitro assays, pot experiments, and physiological and molecular analyses. Compared with B. megaterium type strain ATCC14581, CACC109 and CACC119 exhibited higher survival rates under osmotic stress, indicating their potential to enhance drought tolerance. Additionally, CACC109 and CACC119 strains exhibited various plant growth-promoting activities, including phosphate solubilization, nitrogen fixation, indole-3-acetic acid production, siderophore secretion, 1-aminocyclopropane-1-carboxylate deaminase activity, and exopolysaccharide production. After inoculation, CACC109 and CACC119 significantly improved the seed germination of rice (Oryza sativa L.) under osmotic stress and promoted root growth under stressed and non-stressed conditions. They also facilitated plant growth in pot experiments, as evidenced by increased shoot and root lengths, weights, and leaf widths. Furthermore, CACC109 and CACC119 improved plant physiological characteristics, such as chlorophyll levels, and production of osmolytes, such as proline. In particular, CACC109- and CACC119-treated rice plants showed better drought tolerance, as evidenced by their higher survival rates, greater chlorophyll contents, and lower water loss rates, compared with mock-treated rice plants. Application of CACC109 and CACC119 upregulated the expression of antioxidant-related genes (e.g., OsCAT, OsPOD, OsAPX, and OsSOD) and drought-responsive genes (e.g., OsWRKY47, OsZIP23, OsDREB2, OsNAC066, OsAREB1, and OsAREB2). In conclusion, CACC109 and CACC119 are promising biostimulants for enhancing plant growth and conferring resistance to abiotic stresses in crop production. Future studies should conduct field trials to validate these findings under real agricultural conditions, optimize inoculation methods for practical use, and further investigate the biochemical and physiological responses underlying the observed benefits.
Collapse
Affiliation(s)
- Sanghun Lee
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Jung-Ae Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Jeongsup Song
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Seonbong Choe
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| |
Collapse
|
17
|
Noor MMA, Tahjib-Ul-Arif M, Alim SMA, Islam MM, Hasan MT, Babar MA, Hossain MA, Jewel ZA, Murata Y, Mostofa MG. Lentil adaptation to drought stress: response, tolerance, and breeding approaches. FRONTIERS IN PLANT SCIENCE 2024; 15:1403922. [PMID: 39228838 PMCID: PMC11368723 DOI: 10.3389/fpls.2024.1403922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 09/05/2024]
Abstract
Lentil (Lens culinaris Medik.) is a cool season legume crop that plays vital roles in food and nutritional security, mostly in the least developed countries. Lentil is often cultivated in dry and semi-dry regions, where the primary abiotic factor is drought, which negatively impacts lentil growth and development, resulting in a reduction of yield. To withstand drought-induced multiple negative effects, lentil plants evolved a variety of adaptation strategies that can be classified within three broad categories of drought tolerance mechanisms (i.e., escape, avoidance, and tolerance). Lentil adapts to drought by the modulation of various traits in the root system, leaf architecture, canopy structure, branching, anatomical features, and flowering process. Furthermore, the activation of certain defensive biochemical pathways as well as the regulation of gene functions contributes to lentil drought tolerance. Plant breeders typically employ conventional and mutational breeding approaches to develop lentil varieties that can withstand drought effects; however, little progress has been made in developing drought-tolerant lentil varieties using genomics-assisted technologies. This review highlights the current understanding of morpho-physiological, biochemical, and molecular mechanisms of lentil adaptation to drought stress. We also discuss the potential application of omics-assisted breeding approaches to develop lentil varieties with superior drought tolerance traits.
Collapse
Affiliation(s)
- Md. Mahmud Al Noor
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - S. M. Abdul Alim
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Md. Mohimenul Islam
- Horticulture Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Md. Toufiq Hasan
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Ali Babar
- Agronomy Departments, University of Florida, Gainesville, FL, United States
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Zilhas Ahmed Jewel
- Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Yoshiyuki Murata
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
18
|
Tabur S, Ozmen S, Oney-Birol S. Promoter role of putrescine for molecular and biochemical processes under drought stress in barley. Sci Rep 2024; 14:19202. [PMID: 39160181 PMCID: PMC11333763 DOI: 10.1038/s41598-024-70137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Drought, which adversely affects plant growth and continuity of life and reduces product yield and quality, is one of the most common abiotic stresses at the globally. One of the polyamines that regulates plant development and reacts to abiotic stressors, including drought stress, is Putrescine (Put). This study compared the physiological and molecular effects of applying exogenous Put (10 µM) to barley (Hordeum vulgare cv. Burakbey) under drought stress (- 6.30 mPa PEG 6000). The 21-day drought stress imposed on the barley plant had a strong negative effect on plant metabolism in all experimental groups. Exogenous Put treatment under drought stress had a reformative effect on the cell cycle (transitions from G0-G1 to S and from S to G2-M), total protein content (almost 100%), endogenous polyamine content, malondialdehyde (MDA) (70%), and ascorbate peroxidase (APX) (62%) levels compared to the drought stress plants. Superoxide dismutase (SOD) (12%) and catalase (CAT) (32%) enzyme levels in the same group increased further after exogenous Put application, forming a response to drought stress. Consequently, it was discovered that the administration of exogenous Put in barley raises endogenous polyamine levels and then improves drought tolerance due to increased antioxidant capability, cell division stimulation, and total protein content.
Collapse
Affiliation(s)
- Selma Tabur
- Department of Biology, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Serkan Ozmen
- Department of Biology, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Signem Oney-Birol
- Department of Moleculer Biology and Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, 15030, Burdur, Turkey.
| |
Collapse
|
19
|
Rajkumar MS, Tembhare K, Garg R, Jain M. Genome-wide mapping of DNase I hypersensitive sites revealed differential chromatin accessibility and regulatory DNA elements under drought stress in rice cultivars. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2063-2079. [PMID: 38859561 DOI: 10.1111/tpj.16864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
Drought stress (DS) is one of the major constraints limiting yield in crop plants including rice. Gene regulation under DS is largely governed by accessibility of the transcription factors (TFs) to their cognate cis-regulatory elements (CREs). In this study, we used DNase I hypersensitive assays followed by sequencing to identify the accessible chromatin regions under DS in a drought-sensitive (IR64) and a drought-tolerant (N22) rice cultivar. Our results indicated that DNase I hypersensitive sites (DHSs) were highly enriched at transcription start sites (TSSs) and numerous DHSs were detected in the promoter regions. DHSs were concurrent with epigenetic marks and the genes harboring DHSs in their TSS and promoter regions were highly expressed. In addition, DS induced changes in DHSs (∆DHSs) in TSS and promoter regions were positively correlated with upregulation of several genes involved in drought/abiotic stress response, those encoding TFs and located within drought-associated quantitative trait loci, much preferentially in the drought-tolerant cultivar. The CREs representing the binding sites of TFs involved in DS response were detected within the ∆DHSs, suggesting differential accessibility of TFs to their cognate sites under DS in different rice cultivars, which may be further deployed for enhancing drought tolerance in rice.
Collapse
Affiliation(s)
- Mohan Singh Rajkumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kunal Tembhare
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
20
|
Heydari R, Kolahi M, Mohajel Kazemi E, Nosrati H, Movafeghi A. The role of nano-chelated iron on anatomical and biochemical characteristics and concentration of mineral nutrients in lettuce ( Lactuca sativa L.) under cadmium toxicity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1383-1400. [PMID: 39184560 PMCID: PMC11341518 DOI: 10.1007/s12298-024-01490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024]
Abstract
Cadmium is one of the most hazardous environmental pollutants for plants due to its mobility and high toxicity. One effective method that may be utilized to decrease heavy metal pollution in the soil is the use of nano-chelated iron. In the present study, lettuce plants were treated with four different concentrations of cadmium chloride, two different concentrations of nano-chelated iron, and six combinations of cadmium chloride+nano-chelated iron. Application of 0.5 and 1 g/L nano-chelated iron reduced the adverse effects of cadmium on photosynthetic pigments and growth parameters. Combined application of cadmium chloride and nano-chelated iron (90 μg CdCl2/g perlite+0.5 g/L nano-chelated iron) led to an increase in soluble sugar content compared to the control lettuce plants. Lettuce had a high capacity to absorb cadmium from the contaminated medium. Interestingly, the levels of cadmium that accumulated in the roots (1.641 mg/g DW) were much higher than in the aerial parts of the plant (0.998 mg/g DW). The results showed that there was a decline in the mineral content of lettuce treated with cadmium, while the application of nano-chelated iron led to its increase. This study suggests that the application of nano-chelated iron is a cost-effective and practical method that can be used in the agricultural soil systems to enhance crop tolerance in cadmium-polluted soil.
Collapse
Affiliation(s)
- Roghayeh Heydari
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Kolahi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Mohajel Kazemi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Houshang Nosrati
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
21
|
Abdoli M, Amerian MR, Heidari M, Ebrahimi A. Synergistic effects of melatonin and 24-epibrassinolide on chickpea water deficit tolerance. BMC PLANT BIOLOGY 2024; 24:671. [PMID: 39004702 PMCID: PMC11247889 DOI: 10.1186/s12870-024-05380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Water deficiency stress reduces yield in grain legumes, primarily due to a decrease in the pods number. Melatonin (ML) and 24-epibrassinolide (EBL) are recognized for their hormone-like properties that improve plant tolerance to abiotic stresses. This study aimed to assess the impact of different concentrations of ML (0, 100, and 200 µM) and EBL (0, 3, and 6 µM) on the growth, biochemical, and physiological characteristics of chickpea plants under water-stressed conditions. RESULTS The study's findings indicated that under water-stressed conditions, a decrease in seed (30%) and pod numbers (31%), 100-seed weight (17%), total chlorophyll content (46%), stomatal conductance (33%), as well as an increase in H2O2 (62%), malondialdehyde content (40%), and electrolyte leakage index (40%), resulted in a 40% reduction in chickpea plants grain yield. Our findings confirmed that under water-stressed conditions, seed oil, seed oil yield, and seed protein yield dropped by 20%, 55%, and 36%, respectively. The concurrent exogenous application of ML and EBL significantly reduces oxidative stress, plasma membrane damage, and reactive oxygen species (ROS) content. This treatment also leads to increased yield and its components, higher pigment content, enhanced oil and protein yield, and improved enzymatic and non-enzymatic antioxidant activities such as catalase, superoxide dismutase, polyphenol oxidase, ascorbate peroxidase, guaiacol peroxidase, flavonoid, and carotenoid. Furthermore, it promotes the accumulation of osmoprotectants such as proline, total soluble protein, and sugars. CONCLUSIONS Our study found that ML and EBL act synergistically to regulate plant growth, photosynthesis, osmoprotectants accumulation, antioxidant defense systems, and maintain ROS homeostasis, thereby mitigating the adverse effects of water deficit conditions. ML and EBL are key regulatory network components in stressful conditions, with significant potential for future research and practical applications. The regulation metabolic pathways of ML and EBL in water-stressed remains unknown. As a result, future research should aim to elucidate the molecular mechanisms by employing genome editing, RNA sequencing, microarray, transcriptomic, proteomic, and metabolomic analyses to identify the mechanisms involved in plant responses to exogenous ML and EBL under water deficit conditions. Furthermore, the economical applications of synthetic ML and EBL could be an interesting strategy for improving plant tolerance.
Collapse
Affiliation(s)
- Matin Abdoli
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Mohamad Reza Amerian
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Mostafa Heidari
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| |
Collapse
|
22
|
Wang D, Zhang X, Cao Y, Batool A, Xu Y, Qiao Y, Li Y, Wang H, Lin X, Bie X, Zhang X, Jing R, Dong B, Tong Y, Teng W, Liu X, Xiao J. TabHLH27 orchestrates root growth and drought tolerance to enhance water use efficiency in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1295-1312. [PMID: 38695649 DOI: 10.1111/jipb.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 07/12/2024]
Abstract
Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide association studies and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat. TabHLH27-A1/B1/D1 knock-out reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with polyethylene glycol (PEG) treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influence its transcriptional responses to drought stress, with TabHLH27-A1Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the excellent TabHLH27-A1Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1Hap-II allele improved drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1's role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.
Collapse
Affiliation(s)
- Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuxiu Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuan Cao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aamana Batool
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Yongxin Xu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunzhou Qiao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Yongpeng Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Hao Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaomin Bie
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiansheng Zhang
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ruilian Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baodi Dong
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Yiping Tong
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan Teng
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing, 100101, China
| |
Collapse
|
23
|
Luo D, Wang C, Mubeen S, Rehman M, Cao S, Yue J, Pan J, Jin G, Li R, Chen T, Chen P. HcLEA113, a late embryogenesis abundant protein gene, positively regulates drought-stress responses in kenaf. PHYSIOLOGIA PLANTARUM 2024; 176:e14506. [PMID: 39191701 DOI: 10.1111/ppl.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Late embryogenesis abundant (LEA) proteins have been widely recognized for their role in various abiotic stress responses in higher plants. Nevertheless, the specific mechanism responsible for the function of LEA proteins in plants has not yet been explored. This research involved the isolation and characterization of HcLEA113 from kenaf, revealing a significant increase in its expression in response to drought stress. When HcLEA113 was introduced into yeast, it resulted in an improved survival rate under drought conditions. Furthermore, the overexpression of HcLEA113 in tobacco plants led to enhanced tolerance to drought stress. Specifically, HcLEA113-OE plants exhibited higher germination rates, longer root lengths, greater chlorophyll content, and higher relative water content under drought stress compared to wild-type (WT) plants, while their relative conductivity was significantly lower than that of WT plants. Further physiological measurements revealed that the proline content, soluble sugars, and antioxidant activities of WT and HcLEA113-OE tobacco leaves increased significantly under drought stress, with greater changes in HcLEA113-OE plants than WT. The increase in hydrogen peroxide (H2O2), superoxide anions (O2 -), and malondialdehyde (MDA) content was significantly lower in HcLEA113-OE lines than in WT plants. Additionally, HcLEA113-OE plants can activate reactive oxygen species (ROS)- and osmotic-related genes in response to drought stress. On the other hand, silencing the HcLEA113 gene through virus-induced gene silencing (VIGS) in kenaf plants led to notable growth suppression when exposed to drought conditions, manifesting as decreased plant height and dry weight. Meanwhile, antioxidant enzymes' activity significantly decreased and the ROS content increased. This study offers valuable insights for future research on the genetic engineering of drought resistance in plants.
Collapse
Affiliation(s)
- Dengjie Luo
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Caijin Wang
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Samavia Mubeen
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Muzammal Rehman
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Shan Cao
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Jiao Yue
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Jiao Pan
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Peng Chen
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| |
Collapse
|
24
|
Gelaw TA, Sanan-Mishra N. Molecular priming with H 2O 2 and proline triggers antioxidant enzyme signals in maize seedlings during drought stress. Biochim Biophys Acta Gen Subj 2024; 1868:130633. [PMID: 38762030 DOI: 10.1016/j.bbagen.2024.130633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Drought and water stress impose major limitations to crops, including Maize, as they affect the plant biology at multiple levels. Drought activates the cellular signalling machinery to maintain the osmotic and ROS homeostasis for controlling plant response and adaptation to stress. Molecular priming of seeds plays a significant role in imparting stress tolerance by helping plants to remember the stress, which improves their response when they encounter stress again. METHODS In this study, we examined the effect of priming maize seeds with H2O2 and proline, individually or in combination, on response to drought stress. We investigated the role of molecular priming on the physiological, biochemical and molecular response of maize seedlings during drought stress. RESULTS We observed that seed-priming played a significant role in mediating stress tolerance of seedlings under drought stress as indicated by changes in growth, biochemical properties, pigment and osmolyte accumulation, antioxidant enzyme activities, gas exchange parameters and gene expression. Seed-priming resulted in reduced expression of specific miRNAs to increase target transcripts associated with synthesis of osmolytes and maintenance of ROS homeostasis for reducing potential damage to the cellular components. CONCLUSIONS Seed-priming induced changes in the growth, biochemical properties, pigment and osmolyte accumulation, antioxidant enzyme activities, gas exchange parameters and gene expression, though the response was dependent on the genotype, as well as concentration and combination of the priming agents.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India; Department of Biotechnology, College of Agriculture and Natural Resource Sciences, Debre Birhan University, 445 Debre Birhan, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India.
| |
Collapse
|
25
|
Veleshkolaii FR, Gerami M, Younesi-Melerdi E, Moshaei MR, Ghanbari Hassan Kiadeh S. Studying the impact of titanium dioxide nanoparticles on the expression of pivotal genes related to menthol biosynthesis and certain biochemical parameters in peppermint plants (Mentha Piperita L.). BMC PLANT BIOLOGY 2024; 24:531. [PMID: 38862885 PMCID: PMC11167829 DOI: 10.1186/s12870-024-05228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND This study examines the impact of titanium dioxide nanoparticles (TiO2NPs) on gene expression associated with menthol biosynthesis and selected biochemical parameters in peppermint plants (Mentha piperita L.). Menthol, the active ingredient in peppermint, is synthesized through various pathways involving key genes like geranyl diphosphate synthase, menthone reductase, and menthofuran synthase. Seedlings were treated with different concentrations of TiO2NPs (50, 100, 200, and 300 ppm) via foliar spray. After three weeks of treatment, leaf samples were gathered and kept at -70 °C for analysis. RESULTS According to our findings, there was a significant elevation (P ≤ 0.05) in proline content at concentrations of 200 and 300 ppm in comparison with the control. Specifically, the highest proline level was registered at 200 ppm, reaching 259.64 ± 33.33 µg/g FW. Additionally, hydrogen peroxide and malondialdehyde content exhibited a decreasing trend following nanoparticle treatments. Catalase activity was notably affected by varying TiO2NP concentrations, with a significant decrease observed at 200 and 300 ppm compared to the control (P ≤ 0.05). Conversely, at 100 ppm, catalase activity significantly increased (11.035 ± 1.12 units/mg of protein/min). Guaiacol peroxidase activity decreased across all nanoparticle concentrations. Furthermore, RT-qPCR analysis indicated increased expression of the studied genes at 300 ppm concentration. CONCLUSIONS Hence, it can be inferred that at the transcript level, this nanoparticle exhibited efficacy in influencing the biosynthetic pathway of menthol.
Collapse
Affiliation(s)
| | - Mahyar Gerami
- Department of Biology, Faculty of Sana Institute of Higher Education, Sari, Iran.
| | - Elham Younesi-Melerdi
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Masoumeh Rezaei Moshaei
- Department of Biotechnology, Amol University of Special Modern Technologies (AUSMT), Amol, Iran.
| | | |
Collapse
|
26
|
Zhang W, Wang D, Cao D, Chen J, Wei X. Exploring the potentials of Sesuvium portulacastrum L. for edibility and bioremediation of saline soils. FRONTIERS IN PLANT SCIENCE 2024; 15:1387102. [PMID: 38916037 PMCID: PMC11194377 DOI: 10.3389/fpls.2024.1387102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
Sesuvium portulacastrum L. is a flowering succulent halophyte in the ice plant family Aizoaceae. There are various ecotypes distributed in sandy coastlines and salty marshlands in tropical and subtropical regions with the common name of sea purslane. These plants are tolerant to salt, drought, and flooding stresses and have been used for the stabilization of sand dunes and the restoration of coastal areas. With the increased salinization of agricultural soils and the widespread pollution of toxic metals in the environment, as well as excessive nutrients in waterbodies, S. portulacastrum has been explored for the desalination of saline soils and the phytoremediation of metals from contaminated soils and nitrogen and phosphorus from eutrophic water. In addition, sea purslane has nutraceutical and pharmaceutical value. Tissue analysis indicates that many ecotypes are rich in carbohydrates, proteins, vitamins, and mineral nutrients. Native Americans in Florida eat it raw, pickled, or cooked. In the Philippines, it is known as atchara after being pickled. S. portulacastrum contains high levels of ecdysteroids, which possess antidiabetic, anticancer, and anti-inflammatory activities in mammals. In this review article, we present the botanical information, the physiological and molecular mechanisms underlying the tolerance of sea purslane to different stresses, its nutritional and pharmaceutical value, and the methods for its propagation and production in saline soils and waterbodies. Its adaptability to a wide range of stressful environments and its role in the production of valuable bioactive compounds suggest that S. portulacastrum can be produced in saline soils as a leafy vegetable and is a valuable genetic resource that can be used for the bioremediation of soil salinity and eutrophic water.
Collapse
Affiliation(s)
- Wenbin Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Dan Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Dingding Cao
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
27
|
Abu-Ria ME, Elghareeb EM, Shukry WM, Abo-Hamed SA, Ibraheem F. Mitigation of drought stress in maize and sorghum by humic acid: differential growth and physiological responses. BMC PLANT BIOLOGY 2024; 24:514. [PMID: 38849739 PMCID: PMC11157776 DOI: 10.1186/s12870-024-05184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Drought is a major determinant for growth and productivity of all crops, including cereals, and the drought-induced detrimental effects are anticipated to jeopardize world food security under the ongoing global warming scenario. Biostimulants such as humic acid (HA) can improve drought tolerance in many cereals, including maize and sorghum. These two plant species are genetically related; however, maize is more susceptible to drought than sorghum. The physiological and biochemical mechanisms underlying such differential responses to water shortage in the absence and presence of HA, particularly under field conditions, are not fully understood. RESULTS Herein, the effects of priming maize and sorghum seeds in 100 mg L-1 HA on their vegetative growth and physiological responses under increased levels of drought (100%, 80%, and 60% field capacity) were simultaneously monitored in the field. In the absence of HA, drought caused 37.0 and 58.7% reductions in biomass accumulation in maize compared to 21.2 and 32.3% in sorghum under low and high drought levels, respectively. These responses were associated with differential retardation in overall growth, relative water content (RWC), photosynthetic pigments and CO2 assimilation in both plants. In contrast, drought increased root traits as well as H2O2, malondialdehyde, and electrolyte leakage in both species. HA treatment significantly improved the growth of both plant species under well-watered and drought conditions, with maize being more responsive than sorghum. HA induced a 29.2% increase in the photosynthetic assimilation rate in maize compared to 15.0% in sorghum under high drought level. The HA-promotive effects were also associated with higher total chlorophyll, stomatal conductance, RWC, sucrose, total soluble sugars, total carbohydrates, proline, and total soluble proteins. HA also reduced the drought-induced oxidative stress via induction of non-enzymic and enzymic antioxidants at significantly different extents in maize and sorghum. CONCLUSION The current results identify significant quantitative differences in a set of critical physiological biomarkers underlying the differential responses of field-grown maize and sorghum plants against drought. They also reveal the potential of HA priming as a drought-alleviating biostimulant and as an effective approach for sustainable maize and sorghum production and possibly other crops in drought-affected lands.
Collapse
Affiliation(s)
- Mohamed E Abu-Ria
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Eman M Elghareeb
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Wafaa M Shukry
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Samy A Abo-Hamed
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Farag Ibraheem
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
- Biology and Chemistry Department, Al-Qunfodah University College, Umm Al-Qura University, Al-Qunfodah, 21912, Saudi Arabia
| |
Collapse
|
28
|
Buragohain K, Tamuly D, Sonowal S, Nath R. Impact of Drought Stress on Plant Growth and Its Management Using Plant Growth Promoting Rhizobacteria. Indian J Microbiol 2024; 64:287-303. [PMID: 39011023 PMCID: PMC11246373 DOI: 10.1007/s12088-024-01201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/06/2024] [Indexed: 07/17/2024] Open
Abstract
Drought stress is a significant environmental challenge affecting global agriculture, leading to substantial reductions in crop yields and overall plant productivity. It induces a cascade of physiological and biochemical changes in plants, including reduced water uptake, stomatal closure, and alterations in hormonal balance, all of which contribute to impaired growth and development. Drought stress diminishes crop production by impacting crucial plant metabolic pathways. Plants possess the ability to activate or deactivate specific sets of genes, leading to changes in their physiological and morphological characteristics. This adaptive response enables plants to evade, endure, or prevent the effects of drought stress. Drought stress triggers the activation of various genes, transcription factors, and signal transduction pathways in plants. In this context, imposing plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy. PGPR, employing diverse mechanisms such as osmotic adjustments, antioxidant activity, and phytohormone production, not only ensures the plant's survival during drought conditions but also enhances its overall growth. This comprehensive review delves into the various mechanisms through which PGPR enhances drought stress resistance, offering a thorough exploration of recent molecular and omics-based approaches to unravel the role of drought-responsive genes. The manuscript encompasses a detailed mechanistic analysis, along with the development of PGPR-based drought stress management in plants.
Collapse
Affiliation(s)
- Kabyashree Buragohain
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | | | - Sukanya Sonowal
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Ratul Nath
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
29
|
Akbari SI, Prismantoro D, Permadi N, Rossiana N, Miranti M, Mispan MS, Mohamed Z, Doni F. Bioprospecting the roles of Trichoderma in alleviating plants' drought tolerance: Principles, mechanisms of action, and prospects. Microbiol Res 2024; 283:127665. [PMID: 38452552 DOI: 10.1016/j.micres.2024.127665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/25/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Drought-induced stress represents a significant challenge to agricultural production, exerting adverse effects on both plant growth and overall productivity. Therefore, the exploration of innovative long-term approaches for addressing drought stress within agriculture constitutes a crucial objective, given its vital role in enhancing food security. This article explores the potential use of Trichoderma, a well-known genus of plant growth-promoting fungi, to enhance plant tolerance to drought stress. Trichoderma species have shown remarkable potential for enhancing plant growth, inducing systemic resistance, and ameliorating the adverse impacts of drought stress on plants through the modulation of morphological, physiological, biochemical, and molecular characteristics. In conclusion, the exploitation of Trichoderma's potential as a sustainable solution to enhance plant drought tolerance is a promising avenue for addressing the challenges posed by the changing climate. The manifold advantages of Trichoderma in promoting plant growth and alleviating the effects of drought stress underscore their pivotal role in fostering sustainable agricultural practices and enhancing food security.
Collapse
Affiliation(s)
- Sulistya Ika Akbari
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Dedat Prismantoro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Nandang Permadi
- Doctorate Program in Biotechnology, Graduate School, Universitas Padjadjaran, Bandung, West Java 40132, Indonesia
| | - Nia Rossiana
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Mia Miranti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Muhamad Shakirin Mispan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Zulqarnain Mohamed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia.
| |
Collapse
|
30
|
Kaya C, Uğurlar F, Seth CS. Sodium nitroprusside modulates oxidative and nitrosative processes in Lycopersicum esculentum L. under drought stress. PLANT CELL REPORTS 2024; 43:152. [PMID: 38806834 PMCID: PMC11133051 DOI: 10.1007/s00299-024-03238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
KEY MESSAGE Sodium nitroprusside mediates drought stress responses in tomatoes by modulating nitrosative and oxidative pathways, highlighting the interplay between nitric oxide, hydrogen sulfide, and antioxidant systems for enhanced drought tolerance. While nitric oxide (NO), a signalling molecule, enhances plant tolerance to abiotic stresses, its precise contribution to improving tomato tolerance to drought stress (DS) through modulating oxide-nitrosative processes is not yet fully understood. We aimed to examine the interaction of NO and nitrosative signaling, revealing how sodium nitroprusside (SNP) could mitigate the effects of DS on tomatoes. DS-seedlings endured 12% polyethylene glycol (PEG) in a 10% nutrient solution (NS) for 2 days, then transitioned to half-strength NS for 10 days alongside control plants. DS reduced total plant dry weight, chlorophyll a and b, Fv/Fm, leaf water potential (ΨI), and relative water content, but improved hydrogen peroxide (H2O2), proline, and NO content. The SNP reduced the DS-induced H2O2 generation by reducing thiol (-SH) and the carbonyl (-CO) groups. SNP increased not only NO but also the activity of L-cysteine desulfhydrase (L-DES), leading to the generation of H2S. Decreases in S-nitrosoglutathione reductase (GSNOR) and NADPH oxidase (NOX) suggest a potential regulatory mechanism in which S-nitrosylation [formation of S-nitrosothiol (SNO)] may influence protein function and signaling pathways during DS. Moreover, SNP improved ascorbate (AsA) and glutathione (GSH) and reduced oxidized glutathione (GSSG) levels in tomato plants under drought. Furthermore, the interaction of NO and H2S, mediated by L-DES activity, may serve as a vital cross-talk mechanism impacting plant responses to DS. Understanding these signaling interactions is crucial for developing innovative drought-tolerance strategies in crops.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Şanlıurfa, 63200, Turkey.
| | - Ferhat Uğurlar
- Soil Science and Plant Nutrition Department, Harran University, Şanlıurfa, 63200, Turkey
| | | |
Collapse
|
31
|
Yang D, Gao Z, Liu Y, Li Q, Yang J, Wang Y, Wang M, Xie T, Zhang M, Sun H. Exogenous application of 5-NGS increased osmotic stress resistance by improving leaf photosynthetic physiology and antioxidant capacity in maize. PeerJ 2024; 12:e17474. [PMID: 38818454 PMCID: PMC11138516 DOI: 10.7717/peerj.17474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Background Drought is a critical limiting factor affecting the growth and development of spring maize (Zea mays L.) seedlings in northeastern China. Sodium 5-nitroguaiacol (5-NGS) has been found to enhance plant cell metabolism and promote seedling growth, which may increase drought tolerance. Methods In the present study, we investigated the response of maize seedlings to foliar application of a 5-NGS solution under osmotic stress induced by polyethylene glycol (PEG-6000). Four treatment groups were established: foliar application of distilled water (CK), foliar application of 5-NGS (NS), osmotic stress + foliar application of distilled water (D), and osmotic stress + foliar application of 5-NGS (DN). Plant characteristics including growth and photosynthetic and antioxidant capacities under the four treatments were evaluated. Results The results showed that under osmotic stress, the growth of maize seedlings was inhibited, and both the photosynthetic and antioxidant capacities were weakened. Additionally, there were significant increases in the proline and soluble sugar contents and a decrease in seedling relative water content (RWC). However, applying 5-NGS alleviated the impact of osmotic stress on maize seedling growth parameters, particularly the belowground biomass, with a dry mass change of less than 5% and increased relative water content (RWC). Moreover, treatment with 5-NGS mitigated the inhibition of photosynthesis caused by osmotic stress by restoring the net photosynthetic rate (Pn) through an increase in chlorophyll content, photosynthetic electron transport, and intercellular CO2 concentration (Ci). Furthermore, the activity of antioxidant enzymes in the aboveground parts recovered, resulting in an approximately 25% decrease in both malondialdehyde (MDA) and H2O2. Remarkably, the activity of enzymes in the underground parts exhibited more significant changes, with the contents of MDA and H2O2 decreasing by more than 50%. Finally, 5-NGS stimulated the dual roles of soluble sugars as osmoprotectants and energy sources for metabolism under osmotic stress, and the proline content increased by more than 30%. We found that 5-NGS played a role in the accumulation of photosynthates and the effective distribution of resources in maize seedlings. Conclusions Based on these results, we determined that foliar application of 5-NGS may improve osmotic stress tolerance in maize seedlings. This study serves as a valuable reference for increasing maize yield under drought conditions.
Collapse
Affiliation(s)
- Deguang Yang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhifeng Gao
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuqi Liu
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qiao Li
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jingjing Yang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yanbo Wang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Meiyu Wang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tenglong Xie
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Meng Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hao Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
32
|
Zhang F, Rosental L, Ji B, Brotman Y, Dai M. Metabolite-mediated adaptation of crops to drought and the acquisition of tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:626-644. [PMID: 38241088 DOI: 10.1111/tpj.16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Drought is one of the major and growing threats to agriculture productivity and food security. Metabolites are involved in the regulation of plant responses to various environmental stresses, including drought stress. The complex drought tolerance can be ascribed to several simple metabolic traits. These traits could then be used for detecting the genetic architecture of drought tolerance. Plant metabolomes show dynamic differences when drought occurs during different developmental stages or upon different levels of drought stress. Here, we reviewed the major and most recent findings regarding the metabolite-mediated plant drought response. Recent progress in the development of drought-tolerant agents is also discussed. We provide an updated schematic overview of metabolome-driven solutions for increasing crop drought tolerance and thereby addressing an impending agricultural challenge.
Collapse
Affiliation(s)
- Fei Zhang
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Boming Ji
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Mingqiu Dai
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
33
|
Baba Y, Cimen A, Birinci Yildirim A, Ucar Turker A. How does water stress affect the bioaccumulation of galanthamine and lycorine, growth performance, phenolic content and defense enzyme activities in summer snowflake ( Leucojum aestivum L.)? PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:775-790. [PMID: 38846456 PMCID: PMC11150218 DOI: 10.1007/s12298-024-01451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Leucojum aestivum L. is an Amaryllidaceae bulbous plant with two alkaloids that have remarkable medicinal potential: galanthamine and lycorine. Although the presence of galanthamine in L. aestivum has commercial value for the pharmaceutical industry and the effect of water stress (WS) applications on secondary metabolite enhancement is well established in a variety of plants, no studies have been carried out to reveal the effectiveness of WS on this beneficial medicinal plant. Objective of the study was to investigate the effects of eight different WS treatments [Control, waterlogging (WL) condition, and drought stress conditions (water deficiency generated by water deficit irrigation-WDI 25%, 50%, and 75%- and polyethylene glycol-PEG 6000 15%, 30%, and 45%-)] on growth parameters, alkaloid levels (galanthamine and lycorine), non-enzymatic antioxidant activities (total phenol-flavonoid content and free radical scavenging activity), and enzymatic antioxidant activities [superoxide dismutase (SOD) and catalase (CAT)] of L. aestivum in a pot experiment. Based on the findings, maximum increases in growth parameters were obtained with PEG-induced WS treatments. Moderate water deficiency (50% WDI) produced the highest levels of galanthamine and lycorine, total phenol-flavonoid content, and antioxidant capacity, along with moderately elevated CAT activity in the bulbs. All WS treatments resulted in increased CAT activity in the bulbs. It was observed that bulbs had higher SOD and CAT activities under WL conditions had lower fresh weights and were close to control in terms of alkaloid levels, total phenol-flavonoid content, and free radical scavenging activity. When all of the outcomes were taken into account, it can be concluded that moderate water-deficit stress (50% WDI) was regarded as the most effective treatment for increasing the pharmaceutical value of L. aestivum. Graphical abstract
Collapse
Affiliation(s)
- Yavuz Baba
- Department of Biology, Faculty of Science and Art, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Ayca Cimen
- Department of Biology, Faculty of Science and Art, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Arzu Birinci Yildirim
- Department of Field Crops, Faculty of Agricultural and Environmental Science, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Arzu Ucar Turker
- Department of Biology, Faculty of Science and Art, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| |
Collapse
|
34
|
Duan H, Shao C, Zhao N, Wang D, Resco de Dios V, Tissue DT. The role of leaf superoxide dismutase and proline on intra-specific photosynthesis recovery of Schima superba following drought. Sci Rep 2024; 14:8824. [PMID: 38627563 PMCID: PMC11021533 DOI: 10.1038/s41598-024-59467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
Understanding the physiological and biochemical responses of tree seedlings under extreme drought stress, along with recovery during rewatering, and potential intra-species differences, will allow us to more accurately predict forest responses under future climate change. Here, we selected seedlings from four provenances (AH (Anhui), JX (Jiangxi), HN (Hunan) and GX (Guangxi)) of Schima superba and carried out a simulated drought-rewatering experiment in a field-based rain-out shelter. Seedlings were progressively dried until they reached 50% and 88% loss of xylem hydraulic conductivity (PLC) (i.e. P50 and P88), respectively, before they were rehydrated and maintained at field capacity for 30 days. Leaf photosynthesis (Asat), water status, activity of superoxide dismutase (SOD), and proline (Pro) concentration were monitored and their associations were determined. Increasing drought significantly reduced Asat, relative water content (RWC) and SOD activity in all provenances, and Pro concentration was increased to improve water retention; all four provenances exhibited similar response patterns, associated with similar leaf ultrastructure at pre-drought. Upon rewatering, physiological and biochemical traits were restored to well-watered control values in P50-stressed seedlings. In P88-stressed seedlings, Pro was restored to control values, while SOD was not fully recovered. The recovery pattern differed partially among provenances. There was a progression of recovery following watering, with RWC firstly recovered, followed by SOD and Pro, and then Asat, but with significant associations among these traits. Collectively, the intra-specific differences of S. superba seedlings in recovery of physiology and biochemistry following rewatering highlight the need to consider variations within a given tree species coping with future more frequent drought stress.
Collapse
Affiliation(s)
- Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China.
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, 330099, China.
| | - Changchang Shao
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Nan Zhao
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Defu Wang
- Research Center of Sichuan Old Revolutionary Areas Development, Sichuan University of Arts and Science, Dazhou, 635000, China
| | - Víctor Resco de Dios
- Department of Crop and Forest Sciences, University of Lleida, 25198, Lleida, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney University, Richmond, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Hawkesbury Campus, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
35
|
Laftouhi A, Mahraz MA, Hmamou A, Assouguem A, Ullah R, Bari A, Lahlali R, Ercisli S, Kaur S, Idrissi AM, Eloutassi N, Rais Z, Taleb A, Taleb M. Analysis of Primary and Secondary Metabolites, Physical Properties, Antioxidant and Antidiabetic Activities, and Chemical Composition of Rosmarinus officinalis Essential Oils under Differential Water Stress Conditions. ACS OMEGA 2024; 9:16656-16664. [PMID: 38617605 PMCID: PMC11007863 DOI: 10.1021/acsomega.4c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
This study investigated the effects of varying water stress levels on Rosmarinus officinalis essential oils (EO). Three samples (S1, S2, and S3) were cultivated under different stress levels (40, 60, and 80%). Increased water stress led to changes in primary and secondary metabolites, EO contents, and physical properties. Antioxidant activity varied, with S2 exhibiting the highest IC50 value. In terms of antidiabetic activity, S2 showed robust α-amylase inhibition, while S3 displayed a commendable influence. For α-galactosidase inhibition, S3 had a moderate effect, and S2 stood out with increased efficacy. Gas chromatography-mass spectrometry analysis revealed stress-induced changes in major compounds. The study enhances the understanding of plant responses to water stress, with potential applications in antioxidant therapy and diabetes management. The findings emphasize the importance of sustainable water management for optimizing the EO quality in its various uses.
Collapse
Affiliation(s)
- Abdelouahid Laftouhi
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Mohamed Adil Mahraz
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Anouar Hmamou
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Amine Assouguem
- Department
of Plant Protection and Environment, École
Nationale d’Agriculture de Meknès, Km.10, Route Haj Kaddour, B.P.S/40, Meknes 50001, Morocco
- Laboratory
of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez 30000, Morocco
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Bari
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rachid Lahlali
- Department
of Plant Protection and Environment, École
Nationale d’Agriculture de Meknès, Km.10, Route Haj Kaddour, B.P.S/40, Meknes 50001, Morocco
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - Sawinder Kaur
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Amine Mounadi Idrissi
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Noureddine Eloutassi
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Zakia Rais
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Abdslam Taleb
- Environmental
Process Engineering Laboratory-Faculty of Science and Technology Mohammedia, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Mustapha Taleb
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| |
Collapse
|
36
|
Walczak-Skierska J, Krakowska-Sieprawska A, Monedeiro F, Złoch M, Pomastowski P, Cichorek M, Olszewski J, Głowacka K, Gużewska G, Szultka-Młyńska M. Silicon's Influence on Polyphenol and Flavonoid Profiles in Pea ( Pisum sativum L.) under Cadmium Exposure in Hydroponics: A Study of Metabolomics, Extraction Efficacy, and Antimicrobial Properties of Extracts. ACS OMEGA 2024; 9:14899-14910. [PMID: 38585133 PMCID: PMC10993280 DOI: 10.1021/acsomega.3c08327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
The current study aimed to investigate the impact of silicon (Si) supplementation in the form of Na2SiO3 on the metabolome of peas under normal conditions and following exposure to cadmium (Cd) stress. Si is known for its ability to enhance stress tolerance in various plant species, including the mitigation of heavy metal toxicity. Cd, a significant contaminant, poses risks to both human health and the environment. The study focused on analyzing the levels of bioactive compounds in different plant parts, including the shoot, root, and pod, to understand the influence of Si supplementation on their biosynthesis. Metabolomic analysis of pea samples was conducted using a targeted HPLC/MS approach, enabling the identification of 15 metabolites comprising 9 flavonoids and 6 phenolic acids. Among the detected compounds, flavonoids, such as flavon and quercetin, along with phenolic acids, including chlorogenic acid and salicylic acid, were found in significant quantities. The study compared Si supplementation at concentrations of 1 and 2 mM, as well as Cd stress conditions, to evaluate their effects on the metabolomic profile. Additionally, the study explored the extraction efficiency of three different methods: accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), and maceration (MAC). The results revealed that SFE was the most efficient method for extracting polyphenolic compounds from the pea samples. Moreover, the study investigated the stability of polyphenolic compounds under different pH conditions, ranging from 4.0 to 6.0, providing insights into the influence of the pH on the extraction and stability of bioactive compounds.
Collapse
Affiliation(s)
- Justyna Walczak-Skierska
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Aneta Krakowska-Sieprawska
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Fernanda Monedeiro
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Michał Złoch
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Paweł Pomastowski
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Mateusz Cichorek
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Jacek Olszewski
- Experimental
Education Unit, University of Warmia and
Mazury in Olsztyn, Plac Łódzki 1, Olsztyn 10-721, Poland
| | - Katarzyna Głowacka
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Gaja Gużewska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| | - Małgorzata Szultka-Młyńska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| |
Collapse
|
37
|
Etesami H, Glick BR. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol Res 2024; 281:127602. [PMID: 38228017 DOI: 10.1016/j.micres.2024.127602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Indole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated. The production of bacterial IAA affects root architecture, nutrient uptake, and resistance to various abiotic stresses such as drought, salinity, and heavy metal toxicity, enhancing plant resilience and thus offering promising routes to sustainable agriculture. Bacterial IAA synthesis is regulated through complex gene networks responsive to environmental cues, impacting plant hormonal balances and symbiotic relationships. Pathogenic bacteria have adapted mechanisms to manipulate the host's IAA dynamics, influencing disease outcomes. On the other hand, beneficial bacteria utilize IAA to promote plant growth and mitigate abiotic stresses, thereby enhancing nutrient use efficiency and reducing dependency on chemical fertilizers. Advancements in analytical methods, such as liquid chromatography-tandem mass spectrometry, have improved the quantification of bacterial IAA, enabling accurate measurement and analysis. Future research focusing on molecular interactions between IAA-producing bacteria and host plants could facilitate the development of biotechnological applications that integrate beneficial bacteria to improve crop performance, which is essential for addressing the challenges posed by climate change and ensuring global food security. This integration of bacterial IAA producers into agricultural practice promises to revolutionize crop management strategies by enhancing growth, fostering resilience, and reducing environmental impact.
Collapse
Affiliation(s)
- Hassan Etesami
- Soil Science Department, University of Tehran, Tehran, Iran.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
38
|
Liu D, Zhao C, Li G, Chen Z, Wang S, Huang C, Zhang P. Shrub leaf area and leaf vein trait trade-offs in response to the light environment in a vegetation transitional zone. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24011. [PMID: 38621017 DOI: 10.1071/fp24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
The leaf is an important site for energy acquisition and material transformation in plants. Leaf functional traits and their trade-off mechanisms reflect the resource utilisation efficiency and habitat adaptation strategies of plants, and contribute to our understanding of the mechanism by which the distribution pattern of plant populations in arid and semi-arid areas influences the evolution of vegetation structure and function. We selected two natural environments, the tree-shrub community canopy area and the shrub-grass community open area in the transition zone between the Qinghai-Tibet Plateau and the Loess Plateau. We studied the trade-off relationships of leaf area with leaf midvein diameter and leaf vein density in Cotoneaster multiflorus using the standardised major axis (SMA) method. The results show that the growth pattern of C. multiflorus , which has small leaves of high density and extremely small vein diameters, in the open area. The water use efficiency and net photosynthetic rate of plants in the open area were significantly greater than those of plants growing in the canopy area. The adaptability of C. multiflorus to environments with high light and low soil water content reflects its spatial colonisation potential in arid and semiarid mountains.
Collapse
Affiliation(s)
- Dingyue Liu
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| | - Chengzhang Zhao
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| | - Geyang Li
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| | - Zhini Chen
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China; and Xinglongshan Forest Ecosystem National Positioning Observation and Research Station, Lanzhou 730100, China
| | - Suhong Wang
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| | - Chenglu Huang
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| | - Peixian Zhang
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| |
Collapse
|
39
|
Tran NHT, Hoang DV, Phan LT. Drought stress induces early flowering and the stress tolerance of offspring in Petunia hybrida. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:53-63. [PMID: 39464867 PMCID: PMC11500584 DOI: 10.5511/plantbiotechnology.23.1220a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/20/2023] [Indexed: 10/29/2024]
Abstract
Petunia hybrida (Solanaceae) exhibits high sensitivity to water scarcity, especially during flowering. This study investigated changes in the flowering time of P. hybrida in response to water deficit over a 7-week period. Various levels of water stress-i.e., light, moderate, and severe-were imposed on plants grown in a greenhouse, and these were compared to a control group grown alongside. Remarkably, early flowering was observed under severe stress in P. hybrida for the first time, occurring 5.3 days earlier than in the control group. Furthermore, seeds collected from control and treatment plants were then used to assess drought stress memory in offspring. Seedlings were cultivated in a dehydration medium containing either PEG 8000 or a control MS medium. In the PEG 8000 medium, seedlings from parents exposed to moderate and severe drought stresses exhibited higher drought tolerance than those from well-watered conditions. Moreover, they also displayed significantly longer roots, more leaves, and a lower ion leakage rate. Taken together, these findings demonstrated the presence of positive transgenerational effects on progeny. Thus, while parental drought stress during reproduction stage may affect seed quality, it can enhance drought tolerance in the next generation via induction of stress memory.
Collapse
Affiliation(s)
- Ngoc-Ha Thi Tran
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Linh Trung, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Duong Van Hoang
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Linh Trung, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Loc Tuong Phan
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Linh Trung, Thu Duc, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
40
|
Xiao F, Zhao Y, Wang X, Jian X, Yang Y. Physiological responses to drought stress of three pine species and comparative transcriptome analysis of Pinus yunnanensis var. pygmaea. BMC Genomics 2024; 25:281. [PMID: 38493093 PMCID: PMC10944613 DOI: 10.1186/s12864-024-10205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Drought stress can significantly affect plant growth, development, and yield. Fewer comparative studies have been conducted between different species of pines, particularly involving Pinus yunnanensis var. pygmaea (P. pygmaea). In this study, the physiological indices, photosynthetic pigment and related antioxidant enzyme changes in needles from P. pygmaea, P. elliottii and P. massoniana under drought at 0, 7, 14, 21, 28 and 35 d, as well as 7 days after rehydration, were measured. The PacBio single-molecule real-time (SMRT) and Illumina RNA sequencing were used to uncover the gene expression differences in P. pygmaea under drought and rehydration conditions. The results showed that the total antioxidant capacity (TAOC) of P. pygmaea was significantly higher than P. massoniana and P. elliottii. TAOC showed a continuous increase trend across all species. Soluble sugar (SS), starch content and non-structural carbohydrate (NSC) of all three pines displayed a "W" pattern, declining initially, increasing, and then decreasing again. P. pygmaea exhibits stronger drought tolerance and greater recovery ability under prolonged drought conditions. Through the PacBio SMRT-seq, a total of 50,979 high-quality transcripts were generated, and 6,521 SSR and 5,561 long non-coding RNAs (LncRNAs) were identified. A total of 2310, 1849, 5271, 5947, 7710, and 6854 differentially expressed genes (DEGs) were identified compared to the control (Pp0D) in six pair-wise comparisons of treatment versus control. bHLH, NAC, ERF, MYB_related, C3H transcription factors (TFs) play an important role in drought tolerance of P. pygmaea. KEGG enrichment analysis and Gene set enrichment analysis (GSEA) analysis showed that P. pygmaea may respond to drought by enhancing metabolic processes such as ABA signaling pathway, alpha-linolenic acid. Weighted gene co-expression network analysis (WGCNA) revealed GST, CAT, LEC14B, SEC23 were associated with antioxidant enzyme activity and TAOC. This study provides a basis for further research on drought tolerance differences among coniferous species.
Collapse
Affiliation(s)
- Feng Xiao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guizhou, 550025, China
| | - Yang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guizhou, 550025, China.
| | - Xiurong Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guizhou, 550025, China
| | - Xueyan Jian
- College of Continuing Education, Yanbian University, Jilin, 133002, China
| | - Yao Yang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guizhou, 550025, China
| |
Collapse
|
41
|
Paethaisong W, Lakhunthod P, Santanoo S, Chandarak N, Onwan S, Kaewjampa N, Dongsansuk A. Open field hardening improves leaf physiological drought tolerance in young plants of Sindora siamensis. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23102. [PMID: 38479796 DOI: 10.1071/fp23102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
The effect of drought stress on leaf physiology was studied in 10-month-old plants of Sindora siamensis . Plants were either placed in an open greenhouse (unhardening; UH) or in an open field (open field hardening; H) for 45days. Both the UH and H plants stopped receiving water (D) until the initial drought injury and then rewatered (R) until complete recovery. Results showed necrosis in the leaves of UH+D, while H+D showed wilting at Day 7 after drought. A greater degree of necrosis was found in UH+D+R but made complete recovery in H+D+R at Day 4 after rewatering. Drought stress resulted in decreased leaf area in H, and reduced leaf and stem water status, PSII efficiency, net photosynthetic rate, stomatal conductance and transpiration rate in both UH and H. It also resulted in an increase in water use efficiency in both UH and H. Electrolyte leakage and malondialdehyde contents in UH were markedly increased due to drought stress. These results suggest that unhardened young plants of Sindora exposed to drought exhibited enhanced stomata behaviour by minimising open stomata and transpiration, resulting in high efficiency of water usage. However, there was still membrane damage from lipid peroxidation, which caused necrosis. Open field hardened plants exposed to drought demonstrated reduced open stomata and transpiration, thereby preserving leaf and soil water status and enhancing water use efficiency. This may be a reduction in lipid peroxidation though an oxidative scavenging mechanism that causes a slight alteration in membrane stability and a slight necrosis.
Collapse
Affiliation(s)
- Warunya Paethaisong
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Preeyanuch Lakhunthod
- Department of Biological Sciences, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Supranee Santanoo
- Salt-tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthamon Chandarak
- Salt-tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; and Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sujittra Onwan
- Department of Forest Resource Management Office No. 7, Khon Kaen 40000, Thailand
| | - Naruemol Kaewjampa
- Department of Conservation, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Anoma Dongsansuk
- Salt-tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; and Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
42
|
Rubio-Casal AE, Ibrahim MFM. Editorial: Physiological traits and stress detection in crops during global climate change: availability and sustainable use of water resources. FRONTIERS IN PLANT SCIENCE 2024; 15:1371044. [PMID: 38371414 PMCID: PMC10869604 DOI: 10.3389/fpls.2024.1371044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Affiliation(s)
| | - Mohamed F M Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
43
|
Ben Hamed S, Lefi E, Chaieb M. Effect of drought stress and subsequent re-watering on the physiology and nutrition of Pistacia vera and Pistacia atlantica. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 37463662 DOI: 10.1071/fp23097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/25/2023] [Indexed: 07/20/2023]
Abstract
Arid and semi-arid regions are characterised by extreme conditions including drought stress and salinity. These factors profoundly affect the agricultural sector. The objective of this work is to study the effect of drought and re-watering on leaf gas exchange, chlorophyll fluorescence and mineral nutrition in Pistacia vera and Pistacia atlantica . Water stress was applied to individuals of P. vera and P. atlantica for 23days, followed by rehydration for 7days. The results showed a clear reduction in water relations, leaf gas exchange and chlorophyll content in P. vera . Compared to P. vera , P. atlantica maintained less affected water status, total chlorophyll content, leaf gas exchange and chlorophyll fluorescence, stable Zn and Fe proportion, and even elevated K and Cu. The changes in the chlorophyll fluorescence parameter were manifested particularly at the maximal fluorescence (Fm). In contrast, no change was recorded at the minimal fluorescence (F0). After re-hydration, although water status was fully recovered in both species, stomatal conductance (gs), net photosynthesis (A ) and transpiration rate (E ) remain with lower values than the well-watered seedlings. P. atlantica was better adapted to drought stress than P. vera .
Collapse
Affiliation(s)
- Samouna Ben Hamed
- Laboratory of Plant Ecophysiology, Faculty of Sciences, University of Gafsa, Gafsa, Tunisia; and LEBIOMAT: Laboratory of Arid Environment and Plant Biology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Elkadri Lefi
- Laboratory of Plant Ecophysiology, Faculty of Sciences, University of Gafsa, Gafsa, Tunisia; and LEBIOMAT: Laboratory of Arid Environment and Plant Biology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Mohamed Chaieb
- LEBIOMAT: Laboratory of Arid Environment and Plant Biology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| |
Collapse
|
44
|
Kausar A, Zahra N, Zahra H, Hafeez MB, Zafer S, Shahzadi A, Raza A, Djalovic I, Prasad PVV. Alleviation of drought stress through foliar application of thiamine in two varieties of pea ( Pisum sativum L.). PLANT SIGNALING & BEHAVIOR 2023; 18:2186045. [PMID: 37016728 PMCID: PMC10012936 DOI: 10.1080/15592324.2023.2186045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Drought stress poorly impacts many morphological and physio-biochemical processes in plants. Pea (Pisum sativum L.) plants are highly nutritious crops destined for human consumption; however, their productivity is threatened under drought stress. Thiamine (vitamin B1) is well-known essential micronutrient, acting as a cofactor in key metabolic processes. Therefore, this study was designed to examine the protective effect of foliar application of thiamine (0, 250, and 500 ppm) on two varieties of pea plants under drought stress. Here, we conducted the pot experiment at the Government College Women University, Faisalabad, to investigate the physio-biochemical and morphological traits of two pea varieties (sarsabz and metior) grown under drought stress and thiamine treatment. Drought stress was applied to plants after germination period of 1 month. Results showed that root fresh and dry weight, shoot fresh and dry weight, number of pods, leaf area, total soluble sugars, total phenolics, total protein contents, catalase, peroxidase, and mineral ions were reduced against drought stress. However, the application of thiamine (both 250 and 500 ppm) overcome the stress and also enhances these parameters, and significantly increases the antioxidant activities (catalase and peroxidase). Moreover, the performance of sarsabz was better under control and drought stress conditions than metior variety. In conclusion, the exogenous application of thiamine enabled the plants to withstand drought stress conditions by regulating several physiological and biochemical mechanisms. In agriculture, it is a great latent to alleviate the antagonistic impact of drought stress on crops through the foliar application of thiamine.
Collapse
Affiliation(s)
- Abida Kausar
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Noreen Zahra
- Department of Botany, Government College Women University, Faisalabad, Pakistan
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Hina Zahra
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | | | - Sara Zafer
- Department of Botany, GC University, Faisalabad, Pakistan
| | - Abida Shahzadi
- Department of Economics, Government College University, Faisalabad, Pakistan
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - PV Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
45
|
Sharma A, Choudhary P, Chakdar H, Shukla P. Molecular insights and omics-based understanding of plant-microbe interactions under drought stress. World J Microbiol Biotechnol 2023; 40:42. [PMID: 38105277 DOI: 10.1007/s11274-023-03837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The detrimental effects of adverse environmental conditions are always challenging and remain a major concern for plant development and production worldwide. Plants deal with such constraints by physiological, biochemical, and morphological adaptations as well as acquiring mutual support of beneficial microorganisms. As many stress-responsive traits of plants are influenced by microbial activities, plants have developed a sophisticated interaction with microbes to cope with adverse environmental conditions. The production of numerous bioactive metabolites by rhizospheric, endo-, or epiphytic microorganisms can directly or indirectly alter the root system architecture, foliage production, and defense responses. Although plant-microbe interactions have been shown to improve nutrient uptake and stress resilience in plants, the underlying mechanisms are not fully understood. "Multi-omics" application supported by genomics, transcriptomics, and metabolomics has been quite useful to investigate and understand the biochemical, physiological, and molecular aspects of plant-microbe interactions under drought stress conditions. The present review explores various microbe-mediated mechanisms for drought stress resilience in plants. In addition, plant adaptation to drought stress is discussed, and insights into the latest molecular techniques and approaches available to improve drought-stress resilience are provided.
Collapse
Affiliation(s)
- Aditya Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prassan Choudhary
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
46
|
Galicia-Campos E, García-Villaraco A, Montero-Palmero MB, Gutiérrez-Mañero FJ, Ramos-Solano B. Bacillus G7 improves adaptation to salt stress in Olea europaea L. plantlets, enhancing water use efficiency and preventing oxidative stress. Sci Rep 2023; 13:22507. [PMID: 38110443 PMCID: PMC10728083 DOI: 10.1038/s41598-023-49533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023] Open
Abstract
In addition to genetic adaptative mechanisms, plants retrieve additional help from the surrounding microbiome, especially beneficial bacterial strains (PGPB) that contribute to plant fitness by modulating plant physiology to fine-tune adaptation to environmental changes. The aim of this study was to determine the mechanisms by which the PGPB Bacillus G7 stimulates the adaptive mechanisms of Olea europaea plantlets to high-salinity conditions, exploring changes at the physiological, metabolic and gene expression levels. On the one hand, G7 prevented photosynthetic imbalance under saline stress, increasing the maximum photosynthetic efficiency of photosystem II (Fv/Fm) and energy dissipation (NPQ) and protecting against photooxidative stress. On the other hand, despite the decrease in effective PSII quantum yield (ΦPSII), net carbon fixation was significantly improved, resulting in significant increases in osmolytes and antioxidants, suggesting an improvement in the use of absorbed energy. Water use efficiency (WUE) was significantly improved. Strong genetic reprogramming was evidenced by the transcriptome that revealed involvement of the ABA-mediated pathway based on upregulation of ABA synthesis- and ABA-sensing-related genes together with a strong downregulation of the PLC2 phosphatase family, repressors of ABA-response elements and upregulation of ion homeostasis-related genes. The ion homeostasis response was activated faster in G7-treated plants, as suggested by qPCR data. All these results reveal the multitargeted improvement of plant metabolism under salt stress by Bacillus G7, which allows growth under water limitation conditions, an excellent trait to develop biofertilizers for agriculture under harsh conditions supporting the use of biofertilizers among the new farming practices to meet the increasing demand for food.
Collapse
Affiliation(s)
- Estrella Galicia-Campos
- Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain
| | - Ana García-Villaraco
- Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain
| | - Ma Belén Montero-Palmero
- Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain
| | - F Javier Gutiérrez-Mañero
- Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain
| | - Beatriz Ramos-Solano
- Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain.
| |
Collapse
|
47
|
Sánchez-Quintero Á, Fernandes SCM, Beigbeder JB. Overview of microalgae and cyanobacteria-based biostimulants produced from wastewater and CO 2 streams towards sustainable agriculture: A review. Microbiol Res 2023; 277:127505. [PMID: 37832502 DOI: 10.1016/j.micres.2023.127505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
For a long time, marine macroalgae (seaweeds) have been used to produce commercial biostimulants in order to ensure both productivity and quality of agricultural crops under abiotic stress. With similar biological properties, microalgae have slowly attracted the scientific community and the biostimulant industry, in particular because of their ability to be cultivated on non-arable lands with high biomass productivity all year long. Moreover, the recent strategies of culturing these photosynthetic microorganisms using wastewater and CO2 opens the possibility to produce large quantity of biomass at moderate costs while integrating local and circular economy approaches. This paper aims to provide a state of the art review on the development of microalgae and cyanobacteria based biostimulants, focusing on the different cultivation, extraction and application techniques available in the literature. Emphasis will be placed on microalgae and cyanobacteria cultivation using liquid and gaseous effluents as well as emerging green-extraction approaches, taking in consideration the actual European regulatory framework.
Collapse
Affiliation(s)
- Ángela Sánchez-Quintero
- Universite de Pau et des Pays de l'Adour, E2S UPPA, IPREM, CNRS, 64 600 Anglet, France; MANTA-Marine Materials Research Group, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64 600 Anglet, France; APESA, Pôle valorisation, 3 chemin de Sers, 64121 Montardon, France
| | - Susana C M Fernandes
- Universite de Pau et des Pays de l'Adour, E2S UPPA, IPREM, CNRS, 64 600 Anglet, France; MANTA-Marine Materials Research Group, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64 600 Anglet, France.
| | | |
Collapse
|
48
|
Zaib P, Ahmad HM, Attacha S, Rahman MU, Shafiq MR, Parveen K, Fiaz S, Attia KA, Ishaq S, Arif S, Abushady AM, Umer MJ. Comparative genomics of light harvesting chlorophyll (LHC) gene family and impact of chlorophyll-A contents under drought stress in Helianthus annuus. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154136. [PMID: 38007968 DOI: 10.1016/j.jplph.2023.154136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/28/2023]
Abstract
Drought is one of the main environmental stressors that can alter the water status of plants; negatively affect growth, assimilation, and photosynthesis; and eventually reduce crop yield. We explored the dependence of drought tolerance traits on chlorophyll-A content. Local sunflower cultivars (FH-01, FH-628, FH-633, FH-572, and FH-653) were grown in pots and subjected to drought by withholding water for 10, 15, or 20 d. One month after germination, the leaves of the treated and non-treated plants were collected and subjected to biochemical analyses. Under different water stress levels, the levels of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and proline increased, whereas those of chlorophyll-A decreased. Regression analysis clearly found that proline (-0.442), POD (-0.528), SOD (-0.532), and CAT (-0.814) have negative beta coefficient values. Phylogenetic analysis revealed that the LHC gene family is divided into six clades. Subcellular locations indicated that most LHC genes were located in the chloroplast; however, only few genes were present in the peroxisomes and endoplasmic reticulum. Our research found that Arabidopsis thaliana LHC genes were highly homologous to the LHC genes of Helianthus annuus. Furthermore, the LHC genes of both species are located in the chloroplasts; therefore, they play a role in photosynthesis and renewable energy production. This study opens a new horizon for discussing the role of chlorophyll-A in the drought-related traits of sunflowers.
Collapse
Affiliation(s)
- Parwsha Zaib
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Hafiz Muhammad Ahmad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Safira Attacha
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| | - Mahmood-Ur Rahman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Muhammad Rizwan Shafiq
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Sub-Campus Depalpur, Okara, Punjab, Pakistan.
| | - Kousar Parveen
- Deptarment of Environmental Sciences, The Women University Multan, Multan, 66000, Pakistan.
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, 22620, Haripur, Pakistan.
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Saira Ishaq
- Department of Food Science and Technology, University of Poonch, Rawalakot, Pakistan.
| | - Shazia Arif
- Department of Plant Breeding and Molecular Genetics, University of Poonch, Rawalakot, Pakistan.
| | - Asmaa M Abushady
- Biotechnology School, Nile University, 26th July Corridor, Sheikh Zayed City, Giza, 12588, Egypt; Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt.
| | - Muhammad Jawad Umer
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, 455000, China.
| |
Collapse
|
49
|
Kara D, Orhan E. Tolerance evaluation and genetic relationship analysis among some economically important chestnut cultivars in Türkiye using drought-associated SSR and EST-SSR markers. Sci Rep 2023; 13:20950. [PMID: 38016998 PMCID: PMC10684537 DOI: 10.1038/s41598-023-47951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
The aim of this study was to evaluate drought tolerance and genetic relationships among some important chestnut cultivars for Türkiye by using drought-related genomic simple sequence repeat (SSR) markers and genic expressed sequence tag-simple sequence repeat (EST-SSR) markers. Using five SSR markers, the average number of alleles (avNa), mean heterozygosity (Havp) and polymorphism information content (PIC) were determined to be 9.22, 0.395 and 0.375, respectively. In addition, using eight EST-SSR markers, the values of avNa, Havp and PIC were determined to be 7.75, 0.309 and 0.262, respectively. All microsatellite markers used in this study showed 100% polymorphism among chestnut cultivars. In UPGMA dendrograms obtained with both SSR and EST-SSR markers, the Erfelek and Hacıömer chestnut cultivars were determined to be the most similar cultivars. Some assessments are discussed regarding drought tolerance for specific alleles obtained from the EST-SSR markers GOT045, GOT021, GOT004, FIR094 and VIT033 in chestnut cultivars. Some preliminary results regarding drought tolerance in chestnut cultivars were obtained in our study with the help of these markers. Our study also characterized the genetic relationships among chestnut cultivars of great importance using drought-related character-specific markers.
Collapse
Affiliation(s)
- Didem Kara
- Department of Agricultural Biotechnology, Graduate School of Natural and Applied Sciences, Atatürk University, 25240, Erzurum, Türkiye
| | - Emine Orhan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
50
|
Rico-Cambron TY, Bello-Bello E, Martínez O, Herrera-Estrella L. A non-invasive method to predict drought survival in Arabidopsis using quantum yield under light conditions. PLANT METHODS 2023; 19:127. [PMID: 37968652 PMCID: PMC10647164 DOI: 10.1186/s13007-023-01107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Survival rate (SR) is frequently used to compare drought tolerance among plant genotypes. While a variety of techniques for evaluating the stress status of plants under drought stress conditions have been developed, determining the critical point for the recovery irrigation to evaluate plant SR often relies directly on a qualitative inspection by the researcher or on the employment of complex and invasive techniques that invalidate the subsequent use of the tested individuals. RESULTS Here, we present a simple, instantaneous, and non-invasive method to estimate the survival probability of Arabidopsis thaliana plants after severe drought treatments. The quantum yield (QY), or efficiency of photosystem II, was monitored in darkness (Fv/Fm) and light (Fv'/Fm') conditions in the last phase of the drought treatment before recovery irrigation. We found a high correlation between a plant's Fv'/Fm' value before recovery irrigation and its survival phenotype seven days after, allowing us to establish a threshold between alive and dead plants in a calibration stage. This correlation was maintained in the Arabidopsis accessions Col-0, Ler-0, C24, and Kondara under the same conditions. Fv'/Fm' was then applied as a survival predictor to compare the drought tolerance of transgenic lines overexpressing the transcription factors ATAF1 and PLATZ1 with the Col-0 control. CONCLUSIONS The results obtained in this work demonstrate that the chlorophyll a fluorescence parameter Fv'/Fm' can be used as a survival predictor that gives a numerical estimate of the Arabidopsis drought SR before recovery irrigation. The procedure employed to get the Fv'/Fm' measurements is fast, non-destructive, and requires inexpensive and easy-to-handle equipment. Fv'/Fm' as a survival predictor can be used to offer an overview of the photosynthetic state of the tested plants and determine more accurately the best timing for rewatering to assess the SR, especially when the symptoms of severe dehydration between genotypes are not contrasting enough to identify a difference visually.
Collapse
Affiliation(s)
- Thelma Y Rico-Cambron
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato, Guanajuato, 36824, Mexico
| | - Elohim Bello-Bello
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato, Guanajuato, 36824, Mexico
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Octavio Martínez
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato, Guanajuato, 36824, Mexico
| | - Luis Herrera-Estrella
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato, Guanajuato, 36824, Mexico.
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|