1
|
Abbasi Dezfouli S, Rajendran AP, Claerhout J, Uludag H. Designing Nanomedicines for Breast Cancer Therapy. Biomolecules 2023; 13:1559. [PMID: 37892241 PMCID: PMC10605068 DOI: 10.3390/biom13101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
In 2020, breast cancer became the most diagnosed cancer worldwide. Conventional chemotherapies have major side effects due to their non-specific activities. Alternatively, short interfering RNA(siRNA)-carrying nanoparticles (NPs) have a high potential to overcome this non-specificity. Lipid-substituted polyethyleneimine (PEI) polymers (lipopolymers) have been reported as efficient non-viral carriers of siRNA. This study aims to engineer novel siRNA/lipopolymer nanocomplexes by incorporating anionic additives to obtain gene silencing through siRNA activity with minimal nonspecific toxicity. We first optimized our polyplexes in GFP+ MDA-MB-231 cells to effectively silence the GFP gene. Inclusion of phosphate buffer with pH 8.0 as complex preparation media and N-Lauroylsarcosine Sodium Salt as additive, achieved ~80% silencing with the least amount of undesired cytotoxicity, which was persistent for at least 6 days. The survivin gene was then selected as a target in MDA-MB-231 cells since there is no strong drug (i.e., small organic molecule) for inhibition of its oncogenic activity. The qRT-PCR, flow cytometry analysis and MTT assay revealed >80% silencing, ~95% cell uptake and >70% cell killing by the same formulation. We conclude that our lipopolymer can be further investigated as a lead non-viral carrier for breast cancer gene therapy.
Collapse
Affiliation(s)
- Saba Abbasi Dezfouli
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2V2, Canada;
| | - Amarnath P. Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada;
| | - Jillian Claerhout
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2V2, Canada;
| | - Hasan Uludag
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2V2, Canada;
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada;
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2V2, Canada
| |
Collapse
|
2
|
Zhang X, Xia H, Wang Q, Cui M, Zhang C, Wang Q, Liu X, Chen K. SOCSs: important regulators of host cell susceptibility or resistance to viral infection. Z NATURFORSCH C 2023; 78:327-335. [PMID: 37233326 DOI: 10.1515/znc-2023-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Suppressors of cytokine signaling (SOCSs) are implicated in viral infection and host antiviral innate immune response. Recent studies demonstrate that viruses can hijack SOCSs to inhibit Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathway, block the production and signaling of interferons (IFNs). At the same time, viruses can hijack SOCS to regulate non-IFN factors to evade antiviral response. Host cells can also regulate SOCSs to resist viral infection. The competition of the control of SOCSs may largely determine the fate of viral infection and the susceptibility or resistance of host cells, which is of significance for development of novel antiviral therapies targeting SOCSs. Accumulating evidence reveal that the regulation and function of SOCSs by viruses and host cells are very complicated, which is determined by characteristics of both viruses and host cell types. This report presents a systematic review to evaluate the roles of SOCSs in viral infection and host antiviral responses. One of messages worth attention is that all eight SOCS members should be investigated to accurately characterize their roles and relative contribution in each viral infection, which may help identify the most effective SOCS to be used in "individualized" antiviral therapy.
Collapse
Affiliation(s)
- Xin Zhang
- Jiangsu University, Zhenjiang, 212013, China
| | - Hengchuan Xia
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qian Wang
- Jiangsu University, Zhenjiang, China
| | - Miao Cui
- Jiangsu University, Zhenjiang, Jiangsu, China
| | - Cong Zhang
- Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | | | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Yuan Z, Huang Y, Sadikot RT. Long Noncoding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 Promotes HIV-1 Replication through Modulating microRNAs in Macrophages. J Virol 2023; 97:e0005323. [PMID: 37255470 PMCID: PMC10308927 DOI: 10.1128/jvi.00053-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
Macrophages can serve as a reservoir for human immunodeficiency-1 (HIV-1) virus in host cells, constituting a barrier to eradication, even in patients who are receiving antiretroviral therapy. Although many noncoding RNAs have been characterized as regulators in HIV-1/AIDS-induced immune response and pathogenesis, only a few long noncoding RNAs (lncRNAs) have demonstrated a close association with HIV-1 replication, and the molecular mechanisms remain unknown. In this study, we investigated how lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), related microRNAs, and key inflammatory genes alter HIV-1 replication in macrophages. Our data show that HIV-1 infection modulates the expression of miR-155 and miR-150-5p in a time-dependent manner, which is regulated by MALAT1. MALAT1 induced suppressor of cytokine signaling 1 (SOCS1) expression by sponging miR-150-5p in HIV-1-infected macrophages and stimulated inflammatory mediators triggering receptor expressed on myeloid cells/cold inducible RNA binding protein (TREM 1/CIRP) ligand/receptor. The RNA immunoprecipitation (RIP) assay validated the direct interaction within the MALAT1/miR-150-5p/SOCS1 axis. HIV-1 infection-mediated upregulation of MALAT1, SOCS1, and HIV-1 Gag was attenuated by SN50 (an NF-кB p50 inhibitor). MALAT1 antisense oligonucleotides (ASOs) suppressed HIV-1 p24 production and HIV-1 Gag gene expression and decreased expression of miR-155 and SOCS1, as well as the production of proinflammatory cytokines by HIV-1-infected macrophages. In conclusion, HIV-1 infection induces MALAT1, which attenuates miR-150-5p expression and increases SOCS1 expression, promoting HIV-1 replication and reactivation. These data provide new insights into how MALAT1 alters the macrophage microenvironment and subsequently promotes viral replication and suggest a potential role for targeting MALAT1 as a therapeutic approach to eliminate HIV-1 reservoirs. IMPORTANCE Viral reservoirs constitute an obstacle to curing HIV-1 diseases, despite antiretroviral therapy. Macrophages serve as viral reservoirs in HIV infection by promoting long-term replication and latency. Recent studies have shown that lncRNAs can modulate virus-host interactions, but the underlying mechanisms are not fully understood. In this study, we demonstrate how lncRNA MALAT1 contributes to HIV-1 replication through modulation of the miR-150/SOCS1 axis in human macrophages. Our findings have the potential to identify new therapies for eliminating HIV-1 reservoirs in immune cells.
Collapse
Affiliation(s)
- Zhihong Yuan
- VA Nebraska Western Iowa Health Care System, Omaha, Nebraska, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of 0Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yunlong Huang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ruxana T. Sadikot
- VA Nebraska Western Iowa Health Care System, Omaha, Nebraska, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of 0Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Oliveira FBCD, Freire VPASDS, Coelho SVA, Meuren LM, Palmeira JDF, Cardoso AL, Neves FDAR, Ribeiro BM, Argañaraz GA, Arruda LBD, Argañaraz ER. ZIKV Strains Elicit Different Inflammatory and Anti-Viral Responses in Microglia Cells. Viruses 2023; 15:1250. [PMID: 37376550 DOI: 10.3390/v15061250] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, the Zika Virus (ZIKV) has caused pandemic outbreaks associated with a high rate of congenital ZIKV syndrome (CZS). Although all strains associated with worldwide outbreaks derive from the Asian lineage, the reasons for their enhanced spread and severity are not fully understood. In this study, we conducted a comparative analysis of miRNAs (miRNA-155/146a/124) and their cellular targets (SOCS1/3, SHP1, TRAF6, IRAK1), as well as pro- and anti-inflammatory and anti-viral cytokines (IL-6, TNF-α, IFN-γ, IL-10, and IFN-β) and peroxisome proliferator-activated receptor γ (PPAR-γ) expression in BV2 microglia cells infected with ZIKV strains derived from African and Asian lineages (ZIKVMR766 and ZIKVPE243). BV2 cells were susceptible to both ZIKV strains, and showed discrete levels of viral replication, with delayed release of viral particles without inducing significant cytopathogenic effects. However, the ZIKVMR766 strain showed higher infectivity and replicative capacity, inducing a higher expression of microglial activation markers than the ZIKVPE243 strain. Moreover, infection with the ZIKVMR766 strain promoted both a higher inflammatory response and a lower expression of anti-viral factors compared to the ZIKVPE243 strain. Remarkably, the ZIKKPE243 strain induced significantly higher levels of the anti-inflammatory nuclear receptor-PPAR-γ. These findings improve our understanding of ZIKV-mediated modulation of inflammatory and anti-viral innate immune responses and open a new avenue to explore underlining mechanisms involved in the pathogenesis of ZIKV-associated diseases.
Collapse
Affiliation(s)
| | | | - Sharton Vinicius Antunes Coelho
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Lana Monteiro Meuren
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Julys da Fonseca Palmeira
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Ana Luísa Cardoso
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | - Bergmann Morais Ribeiro
- Laboratory of Bacuolovirus, Cell Biology Department, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Gustavo Adolfo Argañaraz
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Luciana Barros de Arruda
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Enrique Roberto Argañaraz
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasília 70910-900, DF, Brazil
| |
Collapse
|
5
|
Kao YS, Wang LC, Chang PC, Lin HM, Lin YS, Yu CY, Chen CC, Lin CF, Yeh TM, Wan SW, Wang JR, Ho TS, Chu CC, Zhang BC, Chang CP. Negative regulation of type I interferon signaling by integrin-linked kinase permits dengue virus replication. PLoS Pathog 2023; 19:e1011241. [PMID: 36930690 PMCID: PMC10057834 DOI: 10.1371/journal.ppat.1011241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/29/2023] [Accepted: 02/25/2023] [Indexed: 03/18/2023] Open
Abstract
Dengue virus (DENV) infection can induce life-threatening dengue hemorrhagic fever/dengue shock syndrome in infected patients. DENV is a threat to global health due to its growing numbers and incidence of infection in the last 50 years. During infection, DENV expresses ten structural and nonstructural proteins modulating cell responses to benefit viral replication. However, the lack of knowledge regarding the cellular proteins and their functions in enhancing DENV pathogenesis impedes the development of antiviral drugs and therapies against fatal DENV infection. Here, we identified that integrin-linked kinase (ILK) is a novel enhancing factor for DENV infection by suppressing type I interferon (IFN) responses. Mechanistically, ILK binds DENV NS1 and NS3, activates Akt and Erk, and induces NF-κB-driven suppressor of cytokine signaling 3 (SOCS3) expression. Elevated SOCS3 in DENV-infected cells inhibits phosphorylation of STAT1/2 and expression of interferon-stimulated genes (ISGs). Inhibiting ILK, Akt, or Erk activation abrogates SOCS3 expression. In DENV-infected mice, the treatment of an ILK inhibitor significantly reduces viral loads in the brains, disease severity, and mortality rate. Collectively, our results show that ILK is a potential therapeutic target against DENV infection.
Collapse
Affiliation(s)
- Yi-Sheng Kao
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chiu Wang
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Po-Chun Chang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Heng-Ming Lin
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yi Yu
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chiou-Feng Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Trai-Ming Yeh
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wen Wan
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Shiann Ho
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chou Chu
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Cheng Zhang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
6
|
Scanlan A, Zhang Z, Koneru R, Reece M, Gavegnano C, Anderson AM, Tyor W. A Rationale and Approach to the Development of Specific Treatments for HIV Associated Neurocognitive Impairment. Microorganisms 2022; 10:2244. [PMID: 36422314 PMCID: PMC9699382 DOI: 10.3390/microorganisms10112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/22/2024] Open
Abstract
Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.
Collapse
Affiliation(s)
- Aaron Scanlan
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhan Zhang
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajeth Koneru
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Monica Reece
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Christina Gavegnano
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022; 477:1155-1193. [PMID: 35084674 PMCID: PMC8793096 DOI: 10.1007/s11010-022-04356-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
A growing amount of epidemiological data from multiple countries indicate an increased prevalence of obesity, more importantly central obesity, among hospitalized subjects with COVID-19. This suggests that obesity is a major factor contributing to adverse outcome of the disease. As it is a metabolic disorder with dysregulated immune and endocrine function, it is logical that dysfunctional metabolism contributes to the mechanisms behind obesity being a risk factor for adverse outcome in COVID-19. Emerging data suggest that in obese subjects, (a) the molecular mechanisms of viral entry and spread mediated through ACE2 receptor, a multifunctional host cell protein which links to cellular homeostasis mechanisms, are affected. This includes perturbation of the physiological renin-angiotensin system pathway causing pro-inflammatory and pro-thrombotic challenges (b) existent metabolic overload and ER stress-induced UPR pathway make obese subjects vulnerable to severe COVID-19, (c) host cell response is altered involving reprogramming of metabolism and epigenetic mechanisms involving microRNAs in line with changes in obesity, and (d) adiposopathy with altered endocrine, adipokine, and cytokine profile contributes to altered immune cell metabolism, systemic inflammation, and vascular endothelial dysfunction, exacerbating COVID-19 pathology. In this review, we have examined the available literature on the underlying mechanisms contributing to obesity being a risk for adverse outcome in COVID-19.
Collapse
|
8
|
Deater M, Tamhankar M, Lloyd RE. TDRD3 is an antiviral restriction factor that promotes IFN signaling with G3BP1. PLoS Pathog 2022; 18:e1010249. [PMID: 35085371 PMCID: PMC8824378 DOI: 10.1371/journal.ppat.1010249] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/08/2022] [Accepted: 01/05/2022] [Indexed: 12/19/2022] Open
Abstract
Stress granules (SGs) are highly dynamic cytoplasmic foci that form in response to activation of the integrated stress response (ISR) that results in eIF2α phosphorylation and global translation shutdown. Stress granules, which are largely nucleated by G3BP1, serve as hubs for mRNA triage, but there is mounting evidence that they also perform cell signaling functions that are vital to cell survival, particularly during viral infection. We previously showed that SG formation leads to NFκB activation and JNK signaling and that this association may be due in part to G3BP1-dependent recruitment of PKR to SGs. Others have reported close associations between G3BP1 and various innate immune PRRs of the type 1 interferon signaling system, including RIG-I. We also reported SG assembly dynamics is dependent on the arginine-methylation status of G3BP1. Another protein that rapidly localizes to SGs, TDRD3, is a methyl reader protein that performs transcriptional activation and adaptor functions within the nucleus, but neither the mechanism nor its function in SGs is clear. Here, we present evidence that TDRD3 localizes to SGs partly based upon methylation potential of G3BP1. We also characterize granules that TDRD3 forms during overexpression and show that these granules can form in the absence of G3BP but also contain translation components found in canonical SGs. We also show for the first time that SGs recruit additional interferon effectors IRF3, IRF7, TBK1, and Sting, and provide evidence that TDRD3 may play a role in recruitment of these factors. We also present evidence that TDRD3 is a novel antiviral protein that is cleaved by enteroviral 2A proteinase. G3BP1 and TDRD3 knockdown in cells results in altered transcriptional regulation of numerous IFN effectors in complex modulatory patterns that are distinctive for G3BP1 and TDRD3. Overall, we describe a novel role of TDRD3 in innate immunity in which G3BP1 and TDRD3 may coordinate to play important roles in regulation of innate antiviral defenses. When cells are exposed to environmental stresses, such as oxidative stress and viral infection, it induces a cellular response leading to the formation of Stress Granules (SGs) composed of stalled translation initiation complexes (RNA-binding proteins and mRNA) and many other cellular proteins. SGs are also considered to be antiviral structures when they form during viral infection, but viruses can block SG formation to facilitate their survival, often by targeting the essential SG protein G3BP1. Here, we show that a methyl reader protein, TDRD3, localizes to SGs partly based on the methylation potential of G3BP1, and may play a role in the recruitment of innate immune factors to SGs. Further, when overexpressed, TDRD3 can also form SG-like structures independently of G3BP1. We also present evidence that TDRD3 is a novel antiviral protein. Virus replication is enhanced in the absence of both TDRD3 and G3BP1, and virus infection leads to cleavage of TDRD3 by the enterovirus proteinase 2A. Finally, we also show that depletion of TDRD3 and G3BP1 together in cells leads to restriction of transcriptional activation of numerous IFN effectors in response to dsRNA. The patterns of transcriptional activation are distinctive for G3BP1 and TDRD3. We conclude that TDRD3 may play a novel and important role in the regulation of the host antiviral response.
Collapse
Affiliation(s)
- Matthew Deater
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Manasi Tamhankar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard E. Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Dai L, Li Z, Liang W, Hu W, Zhou S, Yang Z, Tao Y, Hou X, Xing Z, Mao J, Shi Z, Wang X. SOCS proteins and their roles in the development of glioblastoma. Oncol Lett 2021; 23:5. [PMID: 34820004 PMCID: PMC8607235 DOI: 10.3892/ol.2021.13123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of primary brain tumor in adults. GBM is characterized by a high degree of malignancy and aggressiveness, as well as high morbidity and mortality rates. GBM is currently treatable via surgical resection, chemotherapy and radiotherapy, but the prognosis of patients with GBM is poor. The suppressor of cytokine signaling (SOCS) protein family comprises eight members, including SOCS1-SOCS7 and cytokine-inducible SH2-containing protein. SOCS proteins regulate the biogenesis of GBM via the JAK/STAT and NF-κB signaling pathways. Driven by NF-κB, the expression of SOCS proteins can serve as a negative regulator of the JAK/STAT signaling pathway and exerts a potential inhibitory effect on GBM. In GBM, E3 ubiquitin ligase is involved in the regulation of cellular functions, such as the receptor tyrosine kinase (RTK) survival signal, in which SOCS proteins negatively regulate RTK signaling, and kinase overexpression or mutation can lead to the development of malignancies. Moreover, SOCS proteins affect the proliferation and differentiation of GBM cells by regulating the tumor microenvironment. SOCS proteins also serve specific roles in GBM of different grades and different isocitrate dehydrogenase mutation status. The aim of the present review was to describe the biogenesis and function of the SOCS protein family, the roles of SOCS proteins in the microenvironment of GBM, as well as the role of this protein family and E3 ubiquitin ligases in GBM. Furthermore, the role of SOCS proteins as diagnostic and prognostic markers in GBM and their potential role as GBM therapeutics were explored.
Collapse
Affiliation(s)
- Lirui Dai
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zian Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Wulong Liang
- Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Weihua Hu
- Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Shaolong Zhou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zhuo Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Yiran Tao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Xuelei Hou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Jianchao Mao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zimin Shi
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
10
|
Wang T, Zhou P, Xie X, Tomita Y, Cho S, Tsirukis D, Lam E, Luo HR, Sun Y. Myeloid lineage contributes to pathological choroidal neovascularization formation via SOCS3. EBioMedicine 2021; 73:103632. [PMID: 34688035 PMCID: PMC8546367 DOI: 10.1016/j.ebiom.2021.103632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
Background Pathological neovascularization in neovascular age-related macular degeneration (nAMD) is the leading cause of vision loss in the elderly. Increasing evidence shows that cells of myeloid lineage play important roles in controlling pathological endothelium formation. Suppressor of cytokine signaling 3 (SOCS3) pathway has been linked to neovascularization. Methods We utilised a laser-induced choroidal neovascularization (CNV) mouse model to investigate the neovascular aspect of human AMD. In several cell lineage reporter mice, bone marrow chimeric mice and Socs3 loss-of-function (knockout) and gain-of-function (overexpression) mice, immunohistochemistry, confocal, and choroidal explant co-culture with bone marrow-derived macrophage medium were used to study the mechanisms underlying pathological CNV formation via myeloid SOCS3. Findings SOCS3 was significantly induced in myeloid lineage cells, which were recruited into the CNV lesion area. Myeloid Socs3 overexpression inhibited laser-induced CNV, reduced myeloid lineage-derived macrophage/microglia recruitment onsite, and attenuated pro-inflammatory factor expression. Moreover, SOCS3 in myeloid regulated vascular sprouting ex vivo in choroid explants and SOCS3 agonist reduced in vivo CNV. Interpretation These findings suggest that myeloid lineage cells contributed to pathological CNV formation regulated by SOCS3. Funding This project was funded by NIH/NEI (R01EY030140, R01EY029238), BrightFocus Foundation, American Health Assistance Foundation (AHAF), and Boston Children's Hospital Ophthalmology Foundation for YS and the National Institutes of Health/National Heart, Lung and Blood Institute (U01HL098166) for PZ.
Collapse
Affiliation(s)
- Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Pingzhu Zhou
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Xuemei Xie
- Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Yohei Tomita
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Steve Cho
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Demetrios Tsirukis
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hongbo Robert Luo
- Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School, Boston, MA, USA; Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Mo G, Fu H, Hu B, Zhang Q, Xian M, Zhang Z, Lin L, Shi M, Nie Q, Zhang X. SOCS3 Promotes ALV-J Virus Replication via Inhibiting JAK2/STAT3 Phosphorylation During Infection. Front Cell Infect Microbiol 2021; 11:748795. [PMID: 34568100 PMCID: PMC8461107 DOI: 10.3389/fcimb.2021.748795] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an oncogenic retrovirus that causes immunosuppression and neoplastic diseases in poultry. Cytokine signal-transduction inhibitor molecule 3 (SOCS3) is an important negative regulator of the JAK2/STAT3 signaling pathway and plays certain roles in ALV-J infection. It is of significance to confirm the roles of SOCS3 in ALV-J infection and study how this gene affects ALV-J infection. In this study, we assessed the expression of the SOCS3 gene in vivo and in vitro, and investigated the roles of SOCS3 in ALV-J infection using overexpressed or interfered assays with the SOCS3 in DF-1 cells. The results showed that the SOCS3 expression of ALV-J infected chickens was different from uninfected chickens in the spleen, thymus and cecal tonsil. Further, SOCS3 is mainly expressed in the nucleus as determined by immunofluorescence assay. Overexpression of SOCS3 in DF-1 cells promoted the replication of ALV-J virus, and the expression of interferons (IFNα and INFβ), inflammatory factors (IL-6 and TNFα) along with interferon-stimulating genes (CH25H, MX1, OASL, and ZAP). Conversely, interference of SOCS3 showed the opposite results. We also observed that SOCS3 promoted ALV-J virus replication by inhibiting JAK2/STAT3 phosphorylation. In conclusion, SOCS3 promotes ALV-J replication via inhibiting the phosphorylation of the JAK2/STAT3 signaling pathway. These results would advance further understanding of the persistent infection and the viral immune evasion of the ALV-J virus.
Collapse
Affiliation(s)
- Guodong Mo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Huali Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Bowen Hu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qihong Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Mingjian Xian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Zihao Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Ling Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
12
|
Salazar C, Galaz M, Ojeda N, Marshall SH. Expression of ssa-miR-155 during ISAV infection in vitro: Putative role as a modulator of the immune response in Salmo salar. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104109. [PMID: 33930457 DOI: 10.1016/j.dci.2021.104109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Multiple cellular components are involved in pathogen-host interaction during viral infection; in this context, the role of miRNAs have become highly relevant. We assessed the expression of selected miRNAs during an in vitro infection of a Salmo salar cell line with Infectious Salmon Anemia Virus (ISAV), the causative agent of a severe disease by the same name. Salmon orthologs for miRNAs that regulate antiviral responses were measured using RT-qPCR in an in vitro time-course assay. We observed a modulation of specific miRNAs expression, where ssa-miR-155-5p was differentially over-expressed. Using in silico analysis, we identified the putative mRNA targets for ssa-miR-155-5p, finding a high prevalence of hosts immune response-related genes; moreover, several mRNAs involved in the viral infective process were also identified as targets for this miRNA. Our results suggest a relevant role for miR-155-5p in Salmo salar during an ISAV infection as a regulator of the immune response to the virus.
Collapse
Affiliation(s)
- Carolina Salazar
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Martín Galaz
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Nicolás Ojeda
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Sergio H Marshall
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile.
| |
Collapse
|
13
|
Meng FZ, Liu JB, Wang X, Wang P, Hu WH, Hou W, Ho WZ. TLR7 Activation of Macrophages by Imiquimod Inhibits HIV Infection through Modulation of Viral Entry Cellular Factors. BIOLOGY 2021; 10:661. [PMID: 34356516 PMCID: PMC8301371 DOI: 10.3390/biology10070661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023]
Abstract
The Toll-like receptor (TLR) 7 is a viral sensor for detecting single-stranded ribonucleic acid (ssRNA), the activation of which can induce intracellular innate immunity against viral infections. Imiquimod, a synthetic ligand for TLR7, has been successfully used for the topical treatment of genital/perianal warts in immunocompetent individuals. We studied the effect of imiquimod on the human immunodeficiency virus (HIV) infection of primary human macrophages and demonstrated that the treatment of cells with imiquimod effectively inhibited infection with multiple strains (Bal, YU2, and Jago) of HIV. This anti-HIV activity of imiquimod was the most potent when macrophages were treated prior to infection. Infection of macrophages with pseudotyped HIV NL4-3-ΔEnv-eGFP-Bal showed that imiquimod could block the viral entry. Further mechanistic studies revealed that while imiquimod had little effect on the interferons (IFNs) expression, its treatment of macrophages resulted in the increased production of the CC chemokines (human macrophage inflammatory protein-1 alpha (MIP-1α), MIP-1β, and upon activation regulated normal T cells expressed and secreted (RANTES)), the natural ligands of HIV entry co-receptor CCR5, and decreased the expression of CD4 and CCR5. The addition of the antibodies against the CC chemokines to macrophage cultures could block imiquimod-mediated HIV inhibition. These findings provide experimental evidence to support the notion that TLR7 participates in the intracellular immunity against HIV in macrophages, suggesting the further clinical evaluation of imiquimod for its additional benefit of treating genital/perianal warts in people infected with HIV.
Collapse
Affiliation(s)
- Feng-Zhen Meng
- School of Basic Medical Sciences, Wuhan University, Wuhan 430000, China;
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; (J.-B.L.); (X.W.); (P.W.); (W.-H.H.)
| | - Jin-Biao Liu
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; (J.-B.L.); (X.W.); (P.W.); (W.-H.H.)
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; (J.-B.L.); (X.W.); (P.W.); (W.-H.H.)
| | - Peng Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; (J.-B.L.); (X.W.); (P.W.); (W.-H.H.)
| | - Wen-Hui Hu
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; (J.-B.L.); (X.W.); (P.W.); (W.-H.H.)
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan 430000, China;
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; (J.-B.L.); (X.W.); (P.W.); (W.-H.H.)
| |
Collapse
|
14
|
Klein K, Witalisz-Siepracka A, Gotthardt D, Agerer B, Locker F, Grausenburger R, Knab VM, Bergthaler A, Sexl V. T Cell-Intrinsic CDK6 Is Dispensable for Anti-Viral and Anti-Tumor Responses In Vivo. Front Immunol 2021; 12:650977. [PMID: 34248938 PMCID: PMC8264666 DOI: 10.3389/fimmu.2021.650977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
The cyclin-dependent kinase 6 (CDK6) regulates the transition through the G1-phase of the cell cycle, but also acts as a transcriptional regulator. As such CDK6 regulates cell survival or cytokine secretion together with STATs, AP-1 or NF-κB. In the hematopoietic system, CDK6 regulates T cell development and promotes leukemia and lymphoma. CDK4/6 kinase inhibitors are FDA approved for treatment of breast cancer patients and have been reported to enhance T cell-mediated anti-tumor immunity. The involvement of CDK6 in T cell functions remains enigmatic. We here investigated the role of CDK6 in CD8+ T cells, using previously generated CDK6 knockout (Cdk6-/-) and kinase-dead mutant CDK6 (Cdk6K43M) knock-in mice. RNA-seq analysis indicated a role of CDK6 in T cell metabolism and interferon (IFN) signaling. To investigate whether these CDK6 functions are T cell-intrinsic, we generated a T cell-specific CDK6 knockout mouse model (Cdk6fl/fl CD4-Cre). T cell-intrinsic loss of CDK6 enhanced mitochondrial respiration in CD8+ T cells, but did not impact on cytotoxicity and production of the effector cytokines IFN-γ and TNF-α by CD8+ T cells in vitro. Loss of CDK6 in peripheral T cells did not affect tumor surveillance of MC38 tumors in vivo. Similarly, while we observed an impaired induction of early responses to type I IFN in CDK6-deficient CD8+ T cells, we failed to observe any differences in the response to LCMV infection upon T cell-intrinsic loss of CDK6 in vivo. This apparent contradiction might at least partially be explained by the reduced expression of Socs1, a negative regulator of IFN signaling, in CDK6-deficient CD8+ T cells. Therefore, our data are in line with a dual role of CDK6 in IFN signaling; while CDK6 promotes early IFN responses, it is also involved in the induction of a negative feedback loop. These data assign CDK6 a role in the fine-tuning of cytokine responses.
Collapse
Affiliation(s)
- Klara Klein
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix Locker
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard Grausenburger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Vanessa Maria Knab
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
15
|
HIV-Infected Macrophages Are Infected and Killed by the Interferon-Sensitive Rhabdovirus MG1. J Virol 2021; 95:JVI.01953-20. [PMID: 33568507 PMCID: PMC8104113 DOI: 10.1128/jvi.01953-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) remains a treatable, but incurable, viral infection. The establishment of viral reservoirs containing latently infected cells remains the main obstacle in the search for a cure. The use of unique cell surface markers to target and eradicate HIV-infected cells has been a longstanding objective of HIV-1 cure research. This approach, however, overlooks the possibility that intracellular changes present within HIV-infected cells may serve as valuable therapeutic targets. For example, the identification of dysregulated antiviral signaling in cancer has led to the characterization of oncolytic viruses capable of preferentially killing cancer cells. Since impairment of cellular antiviral machinery has been proposed as a mechanism by which HIV-1 evades immune clearance, we hypothesized that HIV-infected macrophages (an important viral reservoir in vivo) would be preferentially killed by the interferon-sensitive oncolytic Maraba virus MG1. We first showed that HIV-infected monocyte-derived macrophages (MDM) were more susceptible to MG1 infection and killing than HIV-uninfected cells. As MG1 is highly sensitive to type I interferons (IFN-I), we then investigated whether we could identify IFN-I signaling differences between HIV-infected and uninfected MDM and found evidence of impaired IFN-α responsiveness within HIV-infected cells. Finally, to assess whether MG1 could target a relevant, primary cell reservoir of HIV-1, we investigated its effects in alveolar macrophages (AM) obtained from effectively treated individuals living with HIV-1. As observed with in vitro-infected MDM, we found that HIV-infected AM were preferentially eliminated by MG1. In summary, the oncolytic rhabdovirus MG1 appears to preferentially target and kill HIV-infected cells via impairment of antiviral signaling pathways and may therefore provide a novel approach to an HIV-1 cure. IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) remains a treatable, but incurable, viral infection. The establishment of viral reservoirs containing latently infected cells remains the main obstacle in the search for a cure. Cure research has also focused on only one cellular target of HIV-1 (the CD4+ T cell) while largely overlooking others (such as macrophages) that contribute to HIV-1 persistence. In this study, we address these challenges by describing a potential strategy for the eradication of HIV-infected macrophages. Specifically, we show that an engineered rhabdovirus—initially developed as a cancer therapy—is capable of preferential infection and killing of HIV-infected macrophages, possibly via the same altered antiviral signaling seen in cancer cells. As this rhabdovirus is currently being explored in phase I/II clinical trials, there is potential for this approach to be readily adapted for use within the HIV-1 cure field.
Collapse
|
16
|
Ruan Z, Chen G, Xie T, Mo G, Wang G, Luo W, Li H, Shi M, Liu WS, Zhang X. Cytokine inducible SH2-containing protein potentiate J subgroup avian leukosis virus replication and suppress antiviral responses in DF-1 chicken fibroblast cells. Virus Res 2021; 296:198344. [PMID: 33636239 DOI: 10.1016/j.virusres.2021.198344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/26/2022]
Abstract
Cytokine-inducible Srchomology2 (SH2)-containing protein (CIS) belongs to the suppressors of cytokine signaling (SOCS) protein family function as a negative feedback loop inhibiting cytokine signal transduction. J subgroup avian leukosis virus (ALV-J), a commonly-seen avian virus with a feature of immunosuppression, poses an unmeasurable threat to the poultry industry across the world. However, commercial medicines or vaccines are still no available for this virus. This study aims to evaluate the potential effect of chicken CIS in antiviral response and its role on ALV-J replication. The results showed that ALV-J strain SCAU-HN06 infection induced CIS expression in DF-1 cells, which was derived from chicken embryo free of endogenous avian sarcoma-leukosis virus (ASLV) like sequences. By overexpressing CIS, the expression of chicken type I interferon (IFN-I) and interferon-stimulated genes (ISGs; PKR, ZAP, CH25H, CCL4, IFIT5, and ISG12) were both suppressed. Meanwhile, data showed that CIS overexpression also increased viral yield. Interestingly, knockdown of CIS enhanced induction of IFN-I and ISGs and inhibited viral replication. Collectively, we proved that modulation of CIS expression not only affected SCAU-HN06 replication in vitro but also altered the expression of IFN-I and ISGs that act as an essential part of antiviral innate immune system. Our data provide a potential target for developing antiviral agents for ALV-J.
Collapse
Affiliation(s)
- Zhuohao Ruan
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Genghua Chen
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Guiyan Wang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Wen Luo
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Hongmei Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MA, 20742, USA.
| | - Wen-Sheng Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China.
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Abstract
OBJECTIVES Immune activation, among others driven by interferon (IFN)-α and IFN-γ activation, is a main feature of progressive HIV infection. Suppressor of cytokine signaling (SOCS) 1 and 3 are negative feedback regulators of the IFN-α and IFN-γ axis. Here, we analyzed the role of 9 single-nucleotide polymorphisms (SNPs) within SOCS-1 and SOCS-3 genes for their association with an HIV progression rate in a cohort of 318 rapid vs 376 slow progressors from the Swiss HIV Cohort Study. DESIGN AND METHODS We analyzed 9 SNPs, which we have identified in Swiss blood donors, in a cohort of HIV-infected patients (n = 1144), which have been categorized according to the decline in CD4 T-cell counts. In all the conducted analyses, we focused on the comparison between rapid and slow progressors with regard to SNPs in SOCS-1 and SOCS-3 and with regard to haplotypes using multivariate logistic regression models. RESULTS Three SOCS-1 SNPs (rs193779, rs33989964, and rs4780355) are associated with a risk reduction for rapid progression. Two of these SNPs, rs33989964 and rs4780355, are in strong linkage disequilibrium, forming a frequent haplotype. Homozygous carriers of this haplotype are also associated with a risk reduction for rapid progression. By contrast, the minor TT genotype of rs33977706 is associated with twice the risk for rapid progression. No associations have been observed for the 4 SOCS-3 SNPs or the major SOCS-3 haplotypes. CONCLUSIONS Our data suggest that SNPs in SOCS-1 are associated with HIV disease progression and speak in favor that immune activation is causal for the progressive immunodeficiency.
Collapse
|
18
|
Aghbash PS, Hemmat N, Nahand JS, Shamekh A, Memar MY, Babaei A, Baghi HB. The role of Th17 cells in viral infections. Int Immunopharmacol 2021; 91:107331. [PMID: 33418239 DOI: 10.1016/j.intimp.2020.107331] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
The present review provides an overview of recent advances regarding the function of Th17 cells and their produced cytokines in the progression of viral diseases. Viral infections alone do not lead to virus-induced malignancies, as both genetic and host safety factors are also involved in the occurrence of malignancies. Acquired immune responses, through the differentiation of Th17 cells, form the novel components of the Th17 cell pathway when reacting with viral infections all the way from the beginning to its final stages. As a result, instead of inducing the right immune responses, these events lead to the suppression of the immune system. In fact, the responses from Th17 cells during persistent viral infections causes chronic inflammation through the production of IL-17 and other cytokines which provide a favorable environment for tumor growth and its development. Additionally, during the past decade, these cells have been understood to be involved in tumor progression and metastasis. However, further research is required to understand Th17 cells' immune mechanisms in the vast variety of viral diseases. This review aims to determine the roles and effects of the immune system, especially Th17 cells, in the progression of viral diseases; which can be highly beneficial for the diagnosis and treatment of these infections.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Drug Applied Research Centre, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, ZIP Code 14155 Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, ZIP Code 14155 Tehran, Iran
| | - Ali Shamekh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Abouzar Babaei
- Department of Virology, Faculty of Medicine, Tarbiat Modares University, ZIP Code 14155 Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran.
| |
Collapse
|
19
|
Huang S, Liu K, Cheng A, Wang M, Cui M, Huang J, Zhu D, Chen S, Liu M, Zhao X, Wu Y, Yang Q, Zhang S, Ou X, Mao S, Gao Q, Yu Y, Tian B, Liu Y, Zhang L, Yin Z, Jing B, Chen X, Jia R. SOCS Proteins Participate in the Regulation of Innate Immune Response Caused by Viruses. Front Immunol 2020; 11:558341. [PMID: 33072096 PMCID: PMC7544739 DOI: 10.3389/fimmu.2020.558341] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
The host immune system has multiple innate immune receptors that can identify, distinguish and react to viral infections. In innate immune response, the host recognizes pathogen-associated molecular patterns (PAMP) in nucleic acids or viral proteins through pathogen recognition receptors (PRRs), especially toll-like receptors (TLRs) and induces immune cells or infected cells to produce type I Interferons (IFN-I) and pro-inflammatory cytokines, thus when the virus invades the host, innate immunity is the earliest immune mechanism. Besides, cytokine-mediated cell communication is necessary for the proper regulation of immune responses. Therefore, the appropriate activation of innate immunity is necessary for the normal life activities of cells. The suppressor of the cytokine signaling proteins (SOCS) family is one of the main regulators of the innate immune response induced by microbial pathogens. They mainly participate in the negative feedback regulation of cytokine signal transduction through Janus kinase signal transducer and transcriptional activator (JAK/STAT) and other signal pathways. Taken together, this paper reviews the SOCS proteins structures and the function of each domain, as well as the latest knowledge of the role of SOCS proteins in innate immune caused by viral infections and the mechanisms by which SOCS proteins assist viruses to escape host innate immunity. Finally, we discuss potential values of these proteins in future targeted therapies.
Collapse
Affiliation(s)
- Shanzhi Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ke Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Yellow Fever Virus Down-Regulates mRNA Expression of SOCS1 in the Initial Phase of Infection in Human Cell Lines. Viruses 2020; 12:v12080802. [PMID: 32722523 PMCID: PMC7472022 DOI: 10.3390/v12080802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses are constantly evolving diverse immune evasion strategies, and the exploitation of the functions of suppressors of cytokine signalling (SOCS) and protein inhibitors of activated STATs (PIAS) to favour virus replication has been described for Dengue and Japanese encephalitis viruses but not for yellow fever virus (YFV), which is still of global importance despite the existence of an effective vaccine. Some mechanisms that YFV employs to evade host immune defence has been reported, but the expression patterns of SOCS and PIAS in infected cells is yet to be determined. Here, we show that SOCS1 is down-regulated early in YFV-infected HeLa and HEK 293T cells, while SOCS3 and SOCS5 are not significantly altered, and PIAS mRNA expression appears to follow a rise-dip pattern akin to circadian-controlled genes. We also demonstrate that YFV evades interferon-β application to produce comparable viral titres. This report provides initial insight into the in vitro expression dynamics of SOCS and PIAS upon YFV infection and a basis for further investigation into SOCS/PIAS expression and how these modulate the immune response in animal models.
Collapse
|
21
|
Jiang Y, Rosborough BR, Chen J, Das S, Kitsios GD, McVerry BJ, Mallampalli RK, Lee JS, Ray A, Chen W, Ray P. Single cell RNA sequencing identifies an early monocyte gene signature in acute respiratory distress syndrome. JCI Insight 2020; 5:135678. [PMID: 32554932 PMCID: PMC7406263 DOI: 10.1172/jci.insight.135678] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/03/2020] [Indexed: 01/16/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) results from overwhelming pulmonary inflammation. Prior bulk RNA sequencing provided limited insights into ARDS pathogenesis. We used single cell RNA sequencing to probe ARDS at a higher resolution. PBMCs of patients with pneumonia and sepsis with early ARDS were compared with those of sepsis patients who did not develop ARDS. Monocyte clusters from ARDS patients revealed multiple distinguishing characteristics in comparison with monocytes from patients without ARDS, including downregulation of SOCS3 expression, accompanied by a proinflammatory signature with upregulation of multiple type I IFN-induced genes, especially in CD16+ cells. To generate an ARDS risk score, we identified upregulation of 29 genes in the monocytes of these patients, and 17 showed a similar profile in cells of patients in independent cohorts. Monocytes had increased expression of RAB11A, known to inhibit neutrophil efferocytosis; ATP2B1, a calcium pump that exports Ca2+ implicated in endothelial barrier disruption; and SPARC, associated with processing of procollagen to collagen. These data show that monocytes of ARDS patients upregulate expression of genes not just restricted to those associated with inflammation. Together, our findings identify molecules that are likely involved in ARDS pathogenesis that may inform biomarker and therapeutic development.
Collapse
Affiliation(s)
- Yale Jiang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,School of Medicine, Tsinghua University, Beijing, China
| | - Brian R. Rosborough
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Jie Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Sudipta Das
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Rama K. Mallampalli
- Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart Lung Research Institute, Columbus, Ohio
| | - Janet S. Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Anuradha Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wei Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Oh SJ, Gim JA, Lee JK, Park H, Shin OS. Coxsackievirus B3 Infection of Human Neural Progenitor Cells Results in Distinct Expression Patterns of Innate Immune Genes. Viruses 2020; 12:v12030325. [PMID: 32192194 PMCID: PMC7150933 DOI: 10.3390/v12030325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Coxsackievirus B3 (CVB3), a member of Picornaviridae family, is an important human pathogen that causes a wide range of diseases, including myocarditis, pancreatitis, and meningitis. Although CVB3 has been well demonstrated to target murine neural progenitor cells (NPCs), gene expression profiles of CVB3-infected human NPCs (hNPCs) has not been fully explored. To characterize the molecular signatures and complexity of CVB3-mediated host cellular responses in hNPCs, we performed QuantSeq 3′ mRNA sequencing. Increased expression levels of viral RNA sensors (RIG-I, MDA5) and interferon-stimulated genes, such as IFN-β, IP-10, ISG15, OAS1, OAS2, Mx2, were detected in response to CVB3 infection, while IFN-γ expression level was significantly downregulated in hNPCs. Consistent with the gene expression profile, CVB3 infection led to enhanced secretion of inflammatory cytokines and chemokines, such as interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1). Furthermore, we show that type I interferon (IFN) treatment in hNPCs leads to significant attenuation of CVB3 RNA copy numbers, whereas, type II IFN (IFN-γ) treatment enhances CVB3 replication and upregulates suppressor of cytokine signaling 1/3 (SOCS) expression levels. Taken together, our results demonstrate the distinct molecular patterns of cellular responses to CVB3 infection in hNPCs and the pro-viral function of IFN-γ via the modulation of SOCS expression.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Department of Biomedical Sciences, BK21 PLUS program, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (S.-J.O.); (J.K.L.)
| | - Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Jae Kyung Lee
- Department of Biomedical Sciences, BK21 PLUS program, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (S.-J.O.); (J.K.L.)
| | - Hosun Park
- Department of Microbiology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Namgu, Daegu 42415, Korea
- Correspondence: (H.P.); (O.S.S.); Tel.: +82-53-640-6943 (H.P.); +82-2-2626-3280 (O.S.S.)
| | - Ok Sarah Shin
- Department of Biomedical Sciences, BK21 PLUS program, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (S.-J.O.); (J.K.L.)
- Correspondence: (H.P.); (O.S.S.); Tel.: +82-53-640-6943 (H.P.); +82-2-2626-3280 (O.S.S.)
| |
Collapse
|
23
|
Sesti-Costa R, Cervantes-Barragan L, Swiecki MK, Fachi JL, Cella M, Gilfillan S, Silva JS, Colonna M. Leukemia Inhibitory Factor Inhibits Plasmacytoid Dendritic Cell Function and Development. THE JOURNAL OF IMMUNOLOGY 2020; 204:2257-2268. [PMID: 32169845 DOI: 10.4049/jimmunol.1900604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) produce abundant type I IFNs (IFN-I) in response to viral nucleic acids. Generation of pDCs from bone marrow dendritic cell (DC) progenitors and their maintenance is driven by the transcription factor E2-2 and inhibited by its repressor Id2. In this study, we find that mouse pDCs selectively express the receptor for LIF that signals through STAT3. Stimulation of pDCs with LIF inhibited IFN-I, TNF, and IL-6 responses to CpG and induced expression of the STAT3 targets SOCS3 and Bcl3, which inhibit IFN-I and NF-κB signaling. Moreover, although STAT3 has been also reported to induce E2-2, LIF paradoxically induced its repressor Id2. A late-stage bone marrow DC progenitor expressed low amounts of LIFR and developed into pDCs less efficiently after being exposed to LIF, consistent with the induction of Id2. Conversely, pDC development and serum IFN-I responses to lymphocytic choriomeningitis virus infection were augmented in newly generated mice lacking LIFR in either CD11c+ or hematopoietic cells. Thus, an LIF-driven STAT3 pathway induces SOCS3, Bcl3, and Id2, which render pDCs and late DC progenitors refractory to physiological stimuli controlling pDC functions and development. This pathway can be potentially exploited to prevent inappropriate secretion of IFN-I in autoimmune diseases or promote IFN-I secretion during viral infections.
Collapse
Affiliation(s)
- Renata Sesti-Costa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil 14049-900
| | - Luisa Cervantes-Barragan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Melissa K Swiecki
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - José Luís Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil 14049-900
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| |
Collapse
|
24
|
Zika Virus-Induction of the Suppressor of Cytokine Signaling 1/3 Contributes to the Modulation of Viral Replication. Pathogens 2020; 9:pathogens9030163. [PMID: 32120897 PMCID: PMC7157194 DOI: 10.3390/pathogens9030163] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that has emerged and caused global outbreaks since 2007. Although ZIKV proteins have been shown to suppress early anti-viral innate immune responses, little is known about the exact mechanisms. This study demonstrates that infection with either the African or Asian lineage of ZIKV leads to a modulated expression of suppressor of cytokine signaling (SOCS) genes encoding SOCS1 and SOCS3 in the following cell models: A549 human lung adenocarcinoma cells; JAr human choriocarcinoma cells; human neural progenitor cells. Studies of viral gene expression in response to SOCS1 or SOCS3 demonstrated that the knockdown of these SOCS proteins inhibited viral NS5 or ZIKV RNA expression, whereas overexpression resulted in an increased expression. Moreover, the overexpression of SOCS1 or SOCS3 inhibited the retinoic acid-inducible gene-I-like receptor-mediated activation of both type I and III interferon pathways. These results imply that SOCS upregulation following ZIKV infection modulates viral replication, possibly via the regulation of anti-viral innate immune responses.
Collapse
|
25
|
Thapa B, KC R, Bahniuk M, Schmitke J, Hitt M, Lavasanifar A, Kutsch O, Seol DW, Uludag H. Breathing New Life into TRAIL for Breast Cancer Therapy: Co-Delivery of pTRAIL and Complementary siRNAs Using Lipopolymers. Hum Gene Ther 2019; 30:1531-1546. [DOI: 10.1089/hum.2019.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Bindu Thapa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Remant KC
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Markian Bahniuk
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Janine Schmitke
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Mary Hitt
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Olaf Kutsch
- Department of Medicine, University of Alabama, Birmingham, Alabama
| | - Dai-Wu Seol
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Hasan Uludag
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
26
|
Yakass MB, Franco D, Quaye O. Suppressors of Cytokine Signaling and Protein Inhibitors of Activated Signal Transducer and Activator of Transcriptions As Therapeutic Targets in Flavivirus Infections. J Interferon Cytokine Res 2019; 40:1-18. [PMID: 31436502 DOI: 10.1089/jir.2019.0097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Flaviviruses cause significant human diseases putting more than 400 million people at risk annually worldwide. Because of migration and improved transportation, these viruses can be found on all continents (except Antarctica). Although a majority of the viruses are endemic in the tropics, a few [West Nile virus (WNV) and tick-borne encephalitis virus (TBEV)] have shown endemicity in Europe and North America. Currently, there are vaccines for the Yellow fever virus, Japanese encephalitis virus, and TBEV, but there is no effective vaccine and/or therapy against all other flaviviruses. Although there are intensive efforts to develop vaccines for Zika viruses, dengue viruses, and WNVs, there is the need for alternative or parallel antiviral therapeutic approaches. Suppressors of cytokine signaling (SOCS) and protein inhibitors of activated signal transducer and activator of transcription (STATs; PIAS), both regulatory proteins of the Janus kinase/STAT signaling pathway, have been explored as therapeutic targets in herpes simplex and vaccinia viruses, as well as in cancer therapy. In this review, we briefly describe the function of SOCS and PIAS and their therapeutic potential in flaviviral infections. [Figure: see text].
Collapse
Affiliation(s)
- Michael Bright Yakass
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | | | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
27
|
Rashid K, Akhtar-Schaefer I, Langmann T. Microglia in Retinal Degeneration. Front Immunol 2019; 10:1975. [PMID: 31481963 PMCID: PMC6710350 DOI: 10.3389/fimmu.2019.01975] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
The retina is a complex tissue with multiple cell layers that are highly ordered. Its sophisticated structure makes it especially sensitive to external or internal perturbations that exceed the homeostatic range. This necessitates the continuous surveillance of the retina for the detection of noxious stimuli. This task is mainly performed by microglia cells, the resident tissue macrophages which confer neuroprotection against transient pathophysiological insults. However, under sustained pathological stimuli, microglial inflammatory responses become dysregulated, often worsening disease pathology. In this review, we provide an overview of recent studies that depict microglial responses in diverse retinal pathologies that have degeneration and chronic immune reactions as key pathophysiological components. We also discuss innovative immunomodulatory therapy strategies that dampen the detrimental immunological responses to improve disease outcome.
Collapse
Affiliation(s)
- Khalid Rashid
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Isha Akhtar-Schaefer
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
28
|
Liu S, Yan R, Chen B, Pan Q, Chen Y, Hong J, Zhang L, Liu W, Wang S, Chen JL. Influenza Virus-Induced Robust Expression of SOCS3 Contributes to Excessive Production of IL-6. Front Immunol 2019; 10:1843. [PMID: 31474976 PMCID: PMC6706793 DOI: 10.3389/fimmu.2019.01843] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus (IAV) remains a major public health threat in the world, as indicated by the severe pneumonia caused by its infection annually. Interleukin-6 (IL-6) involved excessive inflammatory response to IAV infection profoundly contributes to the virus pathogenesis. However, the precise mechanisms underlying such a response are poorly understood. Here we found from both in vivo and in vitro studies that IAV not only induced a surge of IL-6 release, but also greatly upregulated expression of suppressor of cytokine signaling-3 (SOCS3), the potent suppressor of IL-6-associated signal transducer and activator of transcription 3 (STAT3) signaling. Interestingly, there existed a cytokine-independent mechanism of the robust induction of SOCS3 by IAV at early stages of the infection. Furthermore, we employed SOCS3-knockdown transgenic mice (TG), and surprisingly observed from virus challenge experiments using these mice that disruption of SOCS3 expression provided significant protection against IAV infection, as evidenced by attenuated acute lung injury, a higher survival rate of infected animals and lower viral load in infected tissues as compared with those of wild-type littermates under the same condition. The activity of nuclear factor-kappa B (NFκB) and the expression of its target gene IL-6 were suppressed in SOCS3-knockdown A549 cells and the TG mice after infection with IAV. Moreover, we defined that enhanced STAT3 activity caused by SOCS3 silencing was important for the regulation of NFκB and IL-6. These findings establish a critical role for IL-6-STAT3-SOCS3 axis in the pathogenesis of IAV and suggest that influenza virus may have evolved a strategy to circumvent IL-6/STAT3-mediated immune response through upregulating SOCS3.
Collapse
Affiliation(s)
- Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruoxiang Yan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qidong Pan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinxuan Hong
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Song Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
29
|
Alston CI, Dix RD. SOCS and Herpesviruses, With Emphasis on Cytomegalovirus Retinitis. Front Immunol 2019; 10:732. [PMID: 31031749 PMCID: PMC6470272 DOI: 10.3389/fimmu.2019.00732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
Suppressor of cytokine signaling (SOCS) proteins provide selective negative feedback to prevent pathogeneses caused by overstimulation of the immune system. Of the eight known SOCS proteins, SOCS1 and SOCS3 are the best studied, and systemic deletion of either gene causes early lethality in mice. Many viruses, including herpesviruses such as herpes simplex virus and cytomegalovirus, can manipulate expression of these host proteins, with overstimulation of SOCS1 and/or SOCS3 putatively facilitating viral evasion of immune surveillance, and SOCS suppression generally exacerbating immunopathogenesis. This is particularly poignant within the eye, which contains a diverse assortment of specialized cell types working together in a tightly controlled microenvironment of immune privilege. When the immune privilege of the ocular compartment fails, inflammation causing severe immunopathogenesis and permanent, sight-threatening damage may occur, as in the case of AIDS-related human cytomegalovirus (HCMV) retinitis. Herein we review how SOCS1 and SOCS3 impact the virologic, immunologic, and/or pathologic outcomes of herpesvirus infection with particular emphasis on retinitis caused by HCMV or its mouse model experimental counterpart, murine cytomegalovirus (MCMV). The accumulated data suggests that SOCS1 and/or SOCS3 can differentially affect the severity of viral diseases in a highly cell-type-specific manner, reflecting the diversity and complexity of herpesvirus infection and the ocular compartment.
Collapse
Affiliation(s)
- Christine I Alston
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| | - Richard D Dix
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
30
|
Devalraju KP, Neela VSK, Chintala S, Krovvidi SS, Valluri VL. Transforming Growth Factor-β Suppresses Interleukin (IL)-2 and IL-1β Production in HIV-Tuberculosis Co-Infection. J Interferon Cytokine Res 2019; 39:355-363. [PMID: 30939065 DOI: 10.1089/jir.2018.0164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interleukin (IL)-1β and IL-2 play important roles in protective immune responses against Mycobacterium tuberculosis (Mtb) infection. Information on the factors that regulate the production of these cytokines in the context of human immunodeficiency virus and latent tuberculosis infection (LTBI) or active tuberculosis (TB) disease is limited. In this study, we compared the production of these cytokines by peripheral blood mononuclear cells (PBMCs) from HIV- and HIV+ individuals with latent and active Tuberculosis infection in response to Mtb Antigen 85A. PBMCs from HIV+ LTBI+ and HIV+ active TB patients produced low IL-1β, IL-2 but high transforming growth factor beta (TGF-β) compared to healthy controls. CD4+ T cells from HIV patients expressed low retinoic acid-related orphan receptor gamma (RORγ), and high suppressors of cytokine signaling-3 (SOCS-3). Active TB infection in HIV+ individuals further inhibited antigen-specific IL-1β and IL-2 production compared with those with LTBI. Neutralization of TGF-β restored IL-1β and IL-2 levels and lowered SOCS-3 production by CD4+ T cells. We hypothesize that high TGF-β in HIV patients could be a reason for defective Mtb-specific IL-1β, IL-2 production and activation of latent TB in HIV. Coupling anti-TGF-β antibodies with antiretroviral therapy treatment might increase T cell function to boost the immune system for effective clearance of Mtb.
Collapse
Affiliation(s)
| | | | - Sreedhar Chintala
- 2 Division of Clinical and Epidemiology, Blue Peter Public Health and Research Centre, LEPRA Society, Hyderabad, India
| | - Siva Sai Krovvidi
- 3 Department of Biotechnology, Sreenidhi Institute of Science and Technology, Hyderabad, India
| | - Vijaya Lakshmi Valluri
- 1 Department of Immunology and Molecular Biology, Bhagwan Mahavir Medical Research Centre, Hyderabad, India
| |
Collapse
|
31
|
Feng M, Xie T, Li Y, Zhang N, Lu Q, Zhou Y, Shi M, Sun J, Zhang X. A balanced game: chicken macrophage response to ALV-J infection. Vet Res 2019; 50:20. [PMID: 30841905 PMCID: PMC6404279 DOI: 10.1186/s13567-019-0638-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) infection can cause tumors and immunosuppression in infected chickens. Macrophages play a central role in host defense against invading pathogens. In this study, we discovered an interesting phenomenon: ALV-J replication is weakened from 3 hours post-infection (hpi) to 36 hpi, which was verified using Western blotting and RT-PCR. To further investigate the interaction between ALV-J and macrophages, transcriptome analysis was performed to analyze the host genes’ function in chicken primary monocyte-derived macrophages (MDM). Compared to the uninfected control, 624 up-regulated differentially expressed genes (DEG) and 341 down-regulated DEG at 3 hpi, and 174 up-regulated DEG and 87 down-regulated DEG at 36 hpi were identified in chicken MDM, respectively. ALV-J infection induced strong innate immune responses in chicken MDM at 3 hpi, instead of 36 hpi, according to the analysis results of Gene Ontology and KEGG pathway. Importantly, the host factors, such as up-regulated MIP-3α, IL-1β, iNOS, K60, IRG1, CH25H, NFKBIZ, lysozyme and OASL were involved in the host defense response during the course of ALV-J infection. On the contrary, up-regulated EX-FABP, IL4I1, COX-2, NFKBIA, TNFAIP3 and the Jak STAT pathway inhibitors including CISH, SOCS1 and SOCS3 are beneficial to ALV-J survival in chicken macrophages. We speculated that ALV-J tropism for macrophages helps to establish a latent infection in chicken MDM from 6 to 36 hpi. The present study provides a comprehensive view of the interactions between macrophages and ALV-J. It suggests the mechanisms of defense of chicken macrophages against ALV-J invasion and how ALV-J escape the host innate immune responses.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Yuanfang Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Nan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qiuyuan Lu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaohong Zhou
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China. .,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China.
| |
Collapse
|
32
|
Sood V, Lata S, Ramachandran VG, Banerjea AC. Suppressor of Cytokine Signaling 3 (SOCS3) Degrades p65 and Regulate HIV-1 Replication. Front Microbiol 2019; 10:114. [PMID: 30766526 PMCID: PMC6365456 DOI: 10.3389/fmicb.2019.00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/18/2019] [Indexed: 01/11/2023] Open
Abstract
Human Immunodeficiency Virus-1 (HIV-1) is known to induce the expression of SOCS3 which is a negative feed-back regulator of inflammatory responses. Here, we demonstrate that reactivation of latent HIV-1 leads to degradation of SOCS3 at early time points. Interestingly, SOCS3 degradation following transfection of HIV-1 RNA as well as polyIC in THP-1 cells further confirmed the role of viral RNA signaling in SOCS3 biology. Degradation of SOCS3 contributes toward viral RNA induced inflammatory responses. NF-κB signaling is also induced upon HIV-1 infection which leads to the production of pro-inflammatory cytokines to control the viral spread. Further investigations revealed that SOCS3 inhibits the expression and activity of p65 by interacting with it and inducing its ubiquitin-dependent proteasomal degradation. SH2 domain was critical for SOCS3-p65 interaction and p65 degradation. We also found that expression of SOCS3 promotes HIV-1 replication. Thus, HIV-1 downregulates SOCS3 in early phase of infection to promote inflammatory responses for large production of activated cells which are suitable for viral spread and induces SOCS3 later on to limit inflammatory responses and ensure viral survival.
Collapse
Affiliation(s)
- Vikas Sood
- Department of Microbiology, University College of Medical Sciences and GTB Hospital, New Delhi, India.,Virology Lab II, National Institute of Immunology, New Delhi, India
| | - Sneh Lata
- Department of Microbiology, University College of Medical Sciences and GTB Hospital, New Delhi, India.,Virology Lab II, National Institute of Immunology, New Delhi, India
| | | | - Akhil C Banerjea
- Virology Lab II, National Institute of Immunology, New Delhi, India
| |
Collapse
|
33
|
Maurya R, Bhattacharya P, Dey R, Nakhasi HL. Leptin Functions in Infectious Diseases. Front Immunol 2018; 9:2741. [PMID: 30534129 PMCID: PMC6275238 DOI: 10.3389/fimmu.2018.02741] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/07/2018] [Indexed: 01/26/2023] Open
Abstract
Leptin, a pleiotropic protein has long been recognized to play an important role in the regulation of energy homeostasis, metabolism, neuroendocrine function, and other physiological functions through its effects on the central nervous system (CNS) and peripheral tissues. Leptin is secreted by adipose tissue and encoded by the obese (ob) gene. Leptin acts as a central mediator which regulates immunity as well as nutrition. Importantly, leptin can modulate both innate and adaptive immune responses. Leptin deficiency/resistance is associated with dysregulation of cytokine production, increased susceptibility toward infectious diseases, autoimmune disorders, malnutrition and inflammatory responses. Malnutrition induces a state of immunodeficiency and an inclination to death from communicable diseases. Infectious diseases are the disease of poor who invariably suffer from malnutrition that could result from reduced serum leptin levels. Thus, leptin has been placed at the center of many interrelated functions in various pathogenic conditions, such as bacterial, viruses and parasitic infections. We review herein, the recent advances on the role of leptin in malnutrition in pathogenesis of infectious diseases with a particular emphasis on parasitic diseases such as Leishmaniasis, Trypanosomiasis, Amoebiasis, and Malaria.
Collapse
Affiliation(s)
- Radheshyam Maurya
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
34
|
Pulmonary phagocyte-derived NPY controls the pathology of severe influenza virus infection. Nat Microbiol 2018; 4:258-268. [PMID: 30455472 DOI: 10.1038/s41564-018-0289-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 10/10/2018] [Indexed: 01/21/2023]
Abstract
Crosstalk between the autonomic nervous system and the immune system by means of the sympathetic and parasympathetic pathways is a critical process in host defence. Activation of the sympathetic nervous system results in the release of catecholamines as well as neuropeptide Y (NPY). Here, we investigated whether phagocytes are capable of the de novo production of NPY, as has been described for catecholamines. We show that the synthesis of NPY and its Y1 receptor (Y1R) is increased in phagocytes in lungs following severe influenza virus infection. The genetic deletion of Npy or Y1r specifically in phagocytes greatly improves the pathology of severe influenza virus infection, which is characterized by excessive virus replication and pulmonary inflammation. Mechanistically, it is the induction of suppressor of cytokine signalling 3 (SOCS3) via NPY-Y1R activation that is responsible for impaired antiviral response and promoting pro-inflammatory cytokine production, thereby enhancing the pathology of influenza virus infection. Thus, direct regulation of the NPY-Y1R-SOCS3 pathway on phagocytes may act as a fine-tuner of an innate immune response to virus infection, which could be a therapeutic target for lethal influenza virus infection.
Collapse
|
35
|
Abstract
Infection with Human Immunodeficiency Virus (HIV)-1 continues to cause HIV-associated neurocognitive disorders despite combined antiretroviral therapy. Interferons (IFNs) are important for any antiviral immune response, but the lasting production of IFNα causes exhaustive activation leading eventually to progression to AIDS. Expression of IFNα in the HIV-exposed central nervous system has been linked to cognitive impairment and inflammatory neuropathology. In contrast, IFNβ exerts anti-inflammatory effects, appears to control, at least temporarily, lentiviral infection in the brain and provides neuroprotection. The dichotomy of type I IFN effects on HIV-1 infection and the associated brain injury will be discussed in this review, because the underlying mechanisms require further investigation to allow harnessing these innate immune factors for therapeutic purposes.
Collapse
Affiliation(s)
- Victoria E Thaney
- 1 Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California
| | - Marcus Kaul
- 1 Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California.,2 Division of Biomedical Sciences, School of Medicine, University of California , Riverside, Riverside, California
| |
Collapse
|
36
|
Suppressor of Cytokine Signaling 1 (SOCS1) and SOCS3 Are Stimulated within the Eye during Experimental Murine Cytomegalovirus Retinitis in Mice with Retrovirus-Induced Immunosuppression. J Virol 2018; 92:JVI.00526-18. [PMID: 29976680 DOI: 10.1128/jvi.00526-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022] Open
Abstract
AIDS-related human cytomegalovirus retinitis remains the leading cause of blindness among untreated HIV/AIDS patients worldwide. To study mechanisms of this disease, we used a clinically relevant animal model of murine cytomegalovirus (MCMV) retinitis with retrovirus-induced murine AIDS (MAIDS) that mimics the progression of AIDS in humans. We found in this model that MCMV infection significantly stimulates ocular suppressor of cytokine signaling 1 (SOCS1) and SOCS3, host proteins which hinder immune-related signaling by cytokines, including antiviral type I and type II interferons. The present study demonstrates that in the absence of retinal disease, systemic MCMV infection of mice without MAIDS, but not in mice with MAIDS, leads to mild stimulation of splenic SOCS1 mRNA. In sharp contrast, when MCMV is directly inoculated into the eyes of retinitis-susceptible MAIDS mice, high levels of intraocular SOCS1 and SOCS3 mRNA and protein are produced which are associated with significant intraocular upregulation of gamma interferon (IFN-γ) and interleukin-6 (IL-6) mRNA expression. We also show that infiltrating macrophages, granulocytes, and resident retinal cells are sources of intraocular SOCS1 and SOCS3 protein production during development of MAIDS-related MCMV retinitis, and SOCS1 and SOCS3 mRNA transcripts are detected in retinal areas histologically characteristic of MCMV retinitis. Furthermore, SOCS1 and SOCS3 are found in both MCMV-infected cells and uninfected cells, suggesting that these SOCS proteins are stimulated via a bystander mechanism during MCMV retinitis. Taken together, our findings suggest a role for MCMV-related stimulation of SOCS1 and SOCS3 in the progression of retinal disease during ocular, but not systemic, MCMV infection.IMPORTANCE Cytomegalovirus infection frequently causes blindness in untreated HIV/AIDS patients. This virus manipulates host cells to dysregulate immune functions and drive disease. Here, we use an animal model of this disease to demonstrate that cytomegalovirus infection within eyes during retinitis causes massive upregulation of immunosuppressive host proteins called SOCS. As viral overexpression of SOCS proteins exacerbates infection with other viruses, they may also enhance cytomegalovirus infection. Alternatively, the immunosuppressive effect of SOCS proteins may be protective against immunopathology during cytomegalovirus retinitis, and in such a case SOCS mimetics or overexpression treatment strategies might be used to combat this disease. The results of this work therefore provide crucial basic knowledge that contributes to our understanding of the mechanisms of AIDS-related cytomegalovirus retinitis and, together with future studies, may contribute to the development of novel therapeutic targets that could improve the treatment or management of this sight-threatening disease.
Collapse
|
37
|
Alti D, Sambamurthy C, Kalangi SK. Emergence of Leptin in Infection and Immunity: Scope and Challenges in Vaccines Formulation. Front Cell Infect Microbiol 2018; 8:147. [PMID: 29868503 PMCID: PMC5954041 DOI: 10.3389/fcimb.2018.00147] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/20/2018] [Indexed: 01/01/2023] Open
Abstract
Deficiency of leptin (ob/ob) and/or desensitization of leptin signaling (db/db) and elevated expression of suppressor of cytokine signaling-3 (SOCS3) reported in obesity are also reported in a variety of pathologies including hypertriglyceridemia, insulin resistance, and malnutrition as the risk factors in host defense system. Viral infections cause the elevated SOCS3 expression, which inhibits leptin signaling. It results in immunosuppression by T-regulatory cells (Tregs). The host immunity becomes incompetent to manage pathogens' attack and invasion, which results in the accelerated infections and diminished vaccine-specific antibody response. Leptin was successfully used as mucosal vaccine adjuvant against Rhodococcus equi. Leptin induced the antibody response to Helicobacter pylori vaccination in mice. An integral leptin signaling in mucosal gut epithelial cells offered resistance against Clostridium difficile and Entameoba histolytica infections. We present in this review, the intervention of leptin in lethal diseases caused by microbial infections and propose the possible scope and challenges of leptin as an adjuvant tool in the development of effective vaccines.
Collapse
Affiliation(s)
- Dayakar Alti
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Suresh K Kalangi
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
38
|
Yu CF, Peng WM, Schlee M, Barchet W, Eis-Hübinger AM, Kolanus W, Geyer M, Schmitt S, Steinhagen F, Oldenburg J, Novak N. SOCS1 and SOCS3 Target IRF7 Degradation To Suppress TLR7-Mediated Type I IFN Production of Human Plasmacytoid Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:4024-4035. [PMID: 29712772 DOI: 10.4049/jimmunol.1700510] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/10/2018] [Indexed: 01/15/2023]
Abstract
Type I IFN production of plasmacytoid dendritic cells (pDCs) triggered by TLR-signaling is an essential part of antiviral responses and autoimmune reactions. Although it was well-documented that members of the cytokine signaling (SOCS) family regulate TLR-signaling, the mechanism of how SOCS proteins regulate TLR7-mediated type I IFN production has not been elucidated yet. In this article, we show that TLR7 activation in human pDCs induced the expression of SOCS1 and SOCS3. SOCS1 and SOCS3 strongly suppressed TLR7-mediated type I IFN production. Furthermore, we demonstrated that SOCS1- and SOCS3-bound IFN regulatory factor 7, a pivotal transcription factor of the TLR7 pathway, through the SH2 domain to promote its proteasomal degradation by lysine 48-linked polyubiquitination. Together, our results demonstrate that SOCS1/3-mediated degradation of IFN regulatory factor 7 directly regulates TLR7 signaling and type I IFN production in pDCs. This mechanism might be targeted by therapeutic approaches to either enhance type I IFN production in antiviral treatment or decrease type I IFN production in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Chun-Feng Yu
- Department of Dermatology and Allergy, University of Bonn, 53127 Bonn, Germany
| | - Wen-Ming Peng
- Department of Dermatology and Allergy, University of Bonn, 53127 Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Pharmacology, University of Bonn, 53127 Bonn, Germany
| | - Winfried Barchet
- Institute of Clinical Chemistry and Pharmacology, University of Bonn, 53127 Bonn, Germany
| | | | - Waldemar Kolanus
- Department of Molecular Immune and Cell Biology, Life and Medical Sciences Institute, University of Bonn, 53127 Bonn, Germany
| | - Matthias Geyer
- Institute of Innate Immunity, Department of Structural Immunology, University of Bonn, 53127 Bonn, Germany
| | - Sebastian Schmitt
- Institute of Innate Immunity, Department of Structural Immunology, University of Bonn, 53127 Bonn, Germany
| | - Folkert Steinhagen
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn, 53127 Bonn, Germany; and
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, 53127 Bonn, Germany
| | - Natalija Novak
- Department of Dermatology and Allergy, University of Bonn, 53127 Bonn, Germany;
| |
Collapse
|
39
|
Nan Y, Wu C, Zhang YJ. Interferon Independent Non-Canonical STAT Activation and Virus Induced Inflammation. Viruses 2018; 10:v10040196. [PMID: 29662014 PMCID: PMC5923490 DOI: 10.3390/v10040196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/07/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023] Open
Abstract
Interferons (IFNs) are a group of secreted proteins that play critical roles in antiviral immunity, antitumor activity, activation of cytotoxic T cells, and modulation of host immune responses. IFNs are cytokines, and bind receptors on cell surfaces to trigger signal transduction. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, a complex pathway involved in both viral and host survival strategies. On the one hand, viruses have evolved strategies to escape from antiviral host defenses evoked by IFN-activated JAK/STAT signaling. On the other hand, viruses have also evolved to exploit the JAK/STAT pathway to evoke activation of certain STATs that somehow promote viral pathogenesis. In this review, recent progress in our understanding of the virus-induced IFN-independent STAT signaling and its potential roles in viral induced inflammation and pathogenesis are summarized in detail, and perspectives are provided.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
40
|
Scagnolari C, Antonelli G. Type I interferon and HIV: Subtle balance between antiviral activity, immunopathogenesis and the microbiome. Cytokine Growth Factor Rev 2018; 40:19-31. [PMID: 29576284 PMCID: PMC7108411 DOI: 10.1016/j.cytogfr.2018.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/23/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
Abstract
Type I interferon (IFN) response initially limits HIV-1 spread and may delay disease progression by stimulating several immune system components. Nonetheless, persistent exposure to type I IFN in the chronic phase of HIV-1 infection is associated with desensitization and/or detrimental immune activation, thereby hindering immune recovery and fostering viral persistence. This review provides a basis for understanding the complexity and function of IFN pleiotropic activity in HIV-1 infection. In particular, the dichotomous role of the IFN response in HIV-1 immunopathogenesis will be discussed, highlighting recent advances in the dynamic modulation of IFN production in acute versus chronic infection, expression signatures of IFN subtypes, and viral and host factors affecting the magnitude of IFN response during HIV-1 infection. Lastly, the review gives a forward-looking perspective on the interplay between microbiome compositions and IFN response.
Collapse
Affiliation(s)
- Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy.
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
41
|
Morphine-potentiated cognitive deficits correlate to suppressed hippocampal iNOS RNA expression and an absent type 1 interferon response in LP-BM5 murine AIDS. J Neuroimmunol 2018. [PMID: 29526406 DOI: 10.1016/j.jneuroim.2018.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Opioid use accelerates neurocognitive impairment in HIV/AIDS patients. We assessed the effect of chronic morphine treatment and LP-BM5/murine AIDS (MAIDS) infection on cognition, cytokine production, and type 1 interferon (IFN) expression in the murine CNS. Morphine treatment decreased expression of pro-inflammatory factors (CCL5, iNOS) and reduced cognitive performance in LP-BM5-infected mice, correlating to increased hippocampal viral load and a blunted type 1 IFN response. In the striatum, morphine reduced viral load while increasing IFN-α RNA expression. Our results suggest that differentially regulated type 1 IFN responses may contribute to distinct regional outcomes in the hippocampus and striatum in LP-BM5/MAIDS.
Collapse
|
42
|
Nan Y, Wu C, Zhang YJ. Interplay between Janus Kinase/Signal Transducer and Activator of Transcription Signaling Activated by Type I Interferons and Viral Antagonism. Front Immunol 2017; 8:1758. [PMID: 29312301 PMCID: PMC5732261 DOI: 10.3389/fimmu.2017.01758] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
Interferons (IFNs), which were discovered a half century ago, are a group of secreted proteins that play key roles in innate immunity against viral infection. The major signaling pathway activated by IFNs is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, which leads to the expression of IFN-stimulated genes (ISGs), including many antiviral effectors. Viruses have evolved various strategies with which to antagonize the JAK/STAT pathway to influence viral virulence and pathogenesis. In recent years, notable progress has been made to better understand the JAK/STAT pathway activated by IFNs and antagonized by viruses. In this review, recent progress in research of the JAK/STAT pathway activated by type I IFNs, non-canonical STAT activation, viral antagonism of the JAK/STAT pathway, removing of the JAK/STAT antagonist from viral genome for attenuation, and the potential pathogenesis roles of tyrosine phosphorylation-independent non-canonical STATs activation during virus infection are discussed in detail. We expect that this review will provide new insight into the understanding the complexity of the interplay between JAK/STAT signaling and viral antagonism.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Molecular Virology Laboratory, VA-MD Regional College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD Regional College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| |
Collapse
|
43
|
Cianciulli A, Calvello R, Porro C, Trotta T, Panaro MA. Understanding the role of SOCS signaling in neurodegenerative diseases: Current and emerging concepts. Cytokine Growth Factor Rev 2017; 37:67-79. [DOI: 10.1016/j.cytogfr.2017.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/15/2022]
|
44
|
Sandstrom TS, Ranganath N, Angel JB. Impairment of the type I interferon response by HIV-1: Potential targets for HIV eradication. Cytokine Growth Factor Rev 2017; 37:1-16. [PMID: 28455216 DOI: 10.1016/j.cytogfr.2017.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
Abstract
By interfering with the type I interferon (IFN1) response, human immunodeficiency virus 1 (HIV-1) can circumvent host antiviral signalling and establish persistent viral reservoirs. HIV-1-mediated defects in the IFN pathway are numerous, and include the impairment of protein receptors involved in pathogen detection, downstream signalling cascades required for IFN1 upregulation, and expression or function of key IFN1-inducible, antiviral proteins. Despite this, the activation of IFN1-inducible, antiviral proteins has been shown to facilitate the killing of latently HIV-infected cells in vitro. Understanding how IFN1 signalling is blocked in physiologically-relevant models of HIV-1 infection, and whether these defects can be reversed, is therefore of great importance for the development of novel therapeutic strategies aimed at eradicating the HIV-1 reservoir.
Collapse
Affiliation(s)
- Teslin S Sandstrom
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Nischal Ranganath
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Jonathan B Angel
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Division of Infectious Diseases, Ottawa Hospital-General Campus, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
45
|
Thaney VE, O'Neill AM, Hoefer MM, Maung R, Sanchez AB, Kaul M. IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury. Sci Rep 2017; 7:46514. [PMID: 28425451 PMCID: PMC5397848 DOI: 10.1038/srep46514] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury.
Collapse
Affiliation(s)
- Victoria E Thaney
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.,Graduate School of Biomedical Sciences, Sanford-Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alan M O'Neill
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Melanie M Hoefer
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ricky Maung
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ana B Sanchez
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.,Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| |
Collapse
|
46
|
Hazra B, Kumawat KL, Basu A. The host microRNA miR-301a blocks the IRF1-mediated neuronal innate immune response to Japanese encephalitis virus infection. Sci Signal 2017; 10:eaaf5185. [PMID: 28196914 DOI: 10.1126/scisignal.aaf5185] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Effective recognition of viral components and the subsequent stimulation of the production of type I interferons (IFNs) is crucial for the induction of host antiviral immunity. The failure of the host to efficiently produce type I IFNs in response to infection by the Japanese encephalitis virus (JEV) is linked with an increased probability for the disease to become lethal. JEV is a neurotropic virus of the Flaviviridae family that causes encephalitis in humans. JEV infection is regulated by several host factors, including microRNAs, which are conserved noncoding RNAs that participate in various physiological and pathological processes. We showed that the JEV-induced expression of miR-301a led to inhibition of the production of type I IFN by reducing the abundances of the transcription factor IFN regulatory factor 1 (IRF1) and the signaling protein suppressor of cytokine signaling 5 (SOCS5). Mechanistically, induction of miR-301a expression during JEV infection required the transcription factor nuclear factor κB. In mouse neurons, neutralization of miR-301a restored the host innate immune response by enabling IFN-β production, thereby restricting viral propagation. Inhibition of miR-301a in mouse brain rescued the production of IRF1 and SOCS5, increased the generation of IFN-β, and reduced the extent of JEV replication, thus improving mouse survival. Thus, our study suggests that the JEV-induced expression of miR-301a assists viral pathogenesis by suppressing IFN production, which might be targeted by antiviral therapies.
Collapse
Affiliation(s)
- Bibhabasu Hazra
- National Brain Research Centre, Manesar, Haryana 122051, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122051, India.
| |
Collapse
|
47
|
Drewes JL, Croteau JD, Shirk EN, Engle EL, Zink MC, Graham DR. Distinct Patterns of Tryptophan Maintenance in Tissues during Kynurenine Pathway Activation in Simian Immunodeficiency Virus-Infected Macaques. Front Immunol 2016; 7:605. [PMID: 28066416 PMCID: PMC5165277 DOI: 10.3389/fimmu.2016.00605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/01/2016] [Indexed: 12/02/2022] Open
Abstract
Induction of the kynurenine pathway (KP) of tryptophan (TRP) catabolism has been proposed to contribute to T cell dysfunction during human/simian immunodeficiency virus (SIV) infection via depletion of local TRP levels and production of immunomodulatory KP metabolites. However, while changes in TRP and KP metabolites have been observed in plasma, their levels in lymphoid tissues and levels of enzymes downstream of indoleamine 2,3-dioxygenase (IDO1) have been relatively unexplored. We used our SIV-infected pigtailed macaque model to analyze longitudinal changes in KP metabolites and enzymes by gas chromatography/mass spectrometry and NanoString nCounter gene expression analysis, respectively, in spleen and blood compared to changes previously established in brain and CSF. We found that TRP levels were remarkably stable in tissue sites despite robust depletion in the circulating plasma and CSF. We also demonstrated that intracellular TRP reserves were maintained in cultured cells even in the presence of depleted extracellular TRP levels. Kynurenine (KYN), 3-hydroxykynurenine, quinolinic acid, and the KP enzymes all displayed highly divergent patterns in the sites examined, though IDO1 expression always correlated with local KYN/TRP ratios. Finally, we demonstrated by fluorescence-activated cell sorting that myeloid dendritic cells and cells of monocytic lineage were the highest producers of IDO1 in chronically infected spleens. Overall, our study reveals insights into the tissue-specific regulation of KP enzymes and metabolites and, in particular, highlights the multiple mechanisms by which cells and tissues seek to prevent TRP starvation during inflammation.
Collapse
Affiliation(s)
- Julia L. Drewes
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua D. Croteau
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin N. Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth L. Engle
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M. C. Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R. Graham
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
48
|
Mahony R, Ahmed S, Diskin C, Stevenson NJ. SOCS3 revisited: a broad regulator of disease, now ready for therapeutic use? Cell Mol Life Sci 2016; 73:3323-36. [PMID: 27137184 PMCID: PMC11108554 DOI: 10.1007/s00018-016-2234-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Abstract
Since their discovery, SOCS have been characterised as regulatory cornerstones of intracellular signalling. While classically controlling the JAK/STAT pathway, their inhibitory effects are documented across several cascades, underpinning their essential role in homeostatic maintenance and disease. After 20 years of extensive research, SOCS3 has emerged as arguably the most important family member, through its regulation of both cytokine- and pathogen-induced cascades. In fact, low expression of SOCS3 is associated with autoimmunity and oncogenesis, while high expression is linked to diabetes and pathogenic immune evasion. The induction of SOCS3 by both viruses and bacteria and its impact upon inflammatory disorders, underscores this protein's increasing clinical potential. Therefore, with the aim of highlighting SOCS3 as a therapeutic target for future development, this review revisits its multi-faceted immune regulatory functions and summarises its role in a broad ranges of diseases.
Collapse
Affiliation(s)
- R Mahony
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - S Ahmed
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - C Diskin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - N J Stevenson
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
49
|
JC Polyomavirus Infection of Primary Human Renal Epithelial Cells Is Controlled by a Type I IFN-Induced Response. mBio 2016; 7:mBio.00903-16. [PMID: 27381292 PMCID: PMC4958256 DOI: 10.1128/mbio.00903-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The JC and BK human polyomaviruses (JCPyV and BKPyV, respectively) establish lifelong persistent infections in the kidney. In immunosuppressed individuals, JCPyV causes progressive multifocal leukoencephalopathy (PML), a fatal neurodegenerative disease, and BKPyV causes polyomavirus-associated nephropathy (PVN). In this study, we compared JCPyV and BKPyV infections in primary human renal proximal tubule epithelial (HRPTE) cells. JCPyV established a persistent infection, but BKPyV killed the cells in 15 days. To identify the cellular factors responsible for controlling JCPyV infection and promoting viral persistence, we profiled the transcriptomes of JCPyV- and BKPyV-infected cells at several time points postinfection. We found that infection with both viruses induced interferon production but that interferon-stimulated genes (ISGs) were only activated in the JCPyV-infected cells. Phosphorylated STAT1 and IRF9, which are responsible for inducing ISGs, translocated to the nucleus of JCPyV-infected cells but did not in BKPyV-infected cells. In BKPyV-infected cells, two critical suppressors of cytokine signaling, SOCS3 and SOCS1, were induced. Infection with BKPyV but not JCPyV caused reorganization of PML bodies that are associated with inactivating antiviral responses. Blockade of the interferon receptor and neutralization of soluble interferon alpha (IFN-α) and IFN-β partially alleviated the block to JCPyV infection, leading to enhanced infectivity. Our results show that a type I IFN response contributes to the establishment of persistent infection by JCPyV in HRPTE cells. The human polyomaviruses JCPyV and BKPyV both establish lifelong persistent infection in the kidneys. In immunosuppressed patients, BKPyV causes significant pathology in the kidney, but JCPyV is only rarely associated with disease in this organ. The reasons behind this striking difference in kidney pathology are unknown. In this study, we show that infection of primary human renal tubule epithelial cells with JCPyV and BKPyV results in divergent innate immune responses that control JCPyV but fail to control BKPyV. This is the first study that directly compares JCPyV and BKPyV infection in vitro in the same cell type they naturally infect, and the significant differences that have been uncovered could in part explain the distinct disease outcomes.
Collapse
|
50
|
Cervantes CAC, Oliveira LMS, Manfrere KCG, Lima JF, Pereira NZ, Duarte AJS, Sato MN. Antiviral factors and type I/III interferon expression associated with regulatory factors in the oral epithelial cells from HIV-1-serodiscordant couples. Sci Rep 2016; 6:25875. [PMID: 27168019 PMCID: PMC4863167 DOI: 10.1038/srep25875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/22/2016] [Indexed: 12/29/2022] Open
Abstract
Individuals who remain HIV-seronegative despite repeated unprotected exposure to the virus are defined as exposed seronegative (ESN) individuals. Innate and adaptive immunity, as well as genetic factors, provide ESNs with important advantages that allow for low infection susceptibility. The majority of HIV-1-infected individuals undergo antiretroviral therapy, which can decrease the level of HIV-1 exposure in ESNs. We analyzed type I interferon (IFN)-related antiviral and regulatory factors in peripheral blood mononuclear cells (PBMCs) and oral epithelial cells from serodiscordant couples. Our findings revealed that ESNs did not induce the expression of antiviral factors (APOBEC-3G, TRIM5-α, SAMDH1, STING, TBk1) or regulatory factors (Trex, Foxo3, Socs3, IL-10) in PBMCs, unlike their HIV-1-infected partners. In contrast, ESNs upregulated APOBEC-3G and type I/III IFNs (IFNs-α,-β/-λ) in oral mucosal epithelial cells similar to their HIV-infected partners. The serodiscordant groups exhibited an increased expression of type I IFN-induced regulators, such as Trex and Foxo3, in oral epithelial cells. TLR7, TLR8 and TLR9 were expressed in oral epithelial cells of both ESNs and HIV-1-infected subjects. These findings revealed evidence of antiviral factors, type I/III interferon and regulatory factor expression only in the oral mucosal compartment of ESNs, while HIV-1-infected partners systemically and oral mucosal expressed the antiviral profile.
Collapse
Affiliation(s)
- Cesar A C Cervantes
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Luanda M S Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Kelly C G Manfrere
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Josenilson F Lima
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Natalli Z Pereira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Alberto J S Duarte
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria N Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|