1
|
Jia S, Shen H, Wang D, Liu S, Ding Y, Zhou X. Novel NaCl reduction technologies for dry-cured meat products and their mechanisms: A comprehensive review. Food Chem 2024; 431:137142. [PMID: 37591146 DOI: 10.1016/j.foodchem.2023.137142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Sodium chloride (NaCl) confers a unique flavor and quality in meat products, however, due to growing concerns about the adverse effects of excessive NaCl consumption, how to reduce NaCl content while ensuring quality and safety has become a research hotspot in this field. This review mainly discusses the role of NaCl in dry-cured meat, as well as novel salt-reducing substances that can substitute for the effects of NaCl to achieve sodium reduction objectives. New technologies, such as vacuum curing, ultrahigh pressure curing, ultrasonic curing, pulsed electric field curing, and gamma irradiation, to facilitate the development of low-sodium products are also introduced. The majority of current salt reduction technologies function to enhance salt diffusion and decrease curing time, resulting in a decrease in NaCl content. Notably, future studies should focus on implementing multiple strategies to compensate for the deficiencies in flavor and safety caused by NaCl reduction.
Collapse
Affiliation(s)
- Shiliang Jia
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hanrui Shen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Dong Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Lu H, Wang Z, Cao B, Cong F, Wang X, Wei W. Dietary sources of branched-chain fatty acids and their biosynthesis, distribution, and nutritional properties. Food Chem 2024; 431:137158. [PMID: 37604010 DOI: 10.1016/j.foodchem.2023.137158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/05/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
Branched-chain fatty acids (BCFAs) consist of a wide variety of fatty acids with alkyl branching of methyl group. The most common BCFAs are the types with one methyl group (mmBCFA) on the penultimate carbon (iBCFA) or the antepenultimate carbon (aiBCFA). Long-chain mmBCFAs are widely existing in animal fats, milks and are mostly derived from bacteria in the diet or animal digestive system. Recent studies show that BCFAs benefit human intestinal health and immune homeostasis, but the connection between their content, distribution in the human and their nutritional functions are not well established. In this paper, we reviewed BCFAs from various dietary sources focused on their molecular species. The BCFAs biosynthesis in bacteria, Caenorhabditis elegans, mammals and their distribution in human tissues are summarized. This paper also discusses the nutritional properties of BCFAs including influences on intestinal health, immunoregulatory effects, anti-carcinoma, and anti-obesity activities, by highlighting the most recent research progress.
Collapse
Affiliation(s)
- Huijia Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhen Wang
- Wilmar (Shanghai) Biotechnology Research & Development Center, Shanghai 200137, China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Bo Cao
- Wilmar (Shanghai) Biotechnology Research & Development Center, Shanghai 200137, China
| | - Fang Cong
- Wilmar (Shanghai) Biotechnology Research & Development Center, Shanghai 200137, China.
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Yang W, Peng Z, Wang G. An overview: metal-based inhibitors of urease. J Enzyme Inhib Med Chem 2023; 38:361-375. [DOI: 10.1080/14756366.2022.2150182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Wei Yang
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Silvestre AM, Souza JM, Millen DD. Adoption of adaptation protocols and feed additives to improve performance of feedlot cattle. Journal of Applied Animal Research 2023. [DOI: 10.1080/09712119.2023.2191679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Antonio M. Silvestre
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Johnny M. Souza
- College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, São Paulo, Brazil
| | - Danilo D. Millen
- College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, São Paulo, Brazil
| |
Collapse
|
5
|
Cornejo Ulloa P, van der Veen MH, Brandt BW, Buijs MJ, Krom BP. The effect of sex steroid hormones on the ecology of in vitro oral biofilms. Biofilm 2023; 6:100139. [PMID: 37621393 PMCID: PMC10447177 DOI: 10.1016/j.bioflm.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 08/26/2023] Open
Abstract
Sex steroid hormones (SSH) such as oestrogen, progesterone and testosterone are cholesterol derived molecules that regulate various physiological processes. They are present in both blood and saliva, where they come in contact with oral tissues and oral microorganisms. Several studies have confirmed the effect of these hormones on different periodontal-disease-associated bacteria, using single-species models. Bacteria can metabolize SSH, use them as alternative for vitamin K and also use them to induce the expression of virulence factors. However, it is still unclear what the effects of SSH are on the oral microbiome. In this study, we investigated the effects of four SSH on commensal in vitro oral biofilms. Saliva-derived oral biofilms were grown in Mc Bain medium without serum or menadione using the Amsterdam Active-Attachment model. After initial attachment in absence of SSH, the biofilms were grown in medium containing either oestradiol, oestriol, progesterone or testosterone at a 100-fold physiological concentration. Menadione or ethanol were included as positive control and negative control, respectively. After 12 days with daily medium refreshments, biofilm formation, biofilm red fluorescence and microbial composition were determined. The supernatants were tested for proteolytic activity using the Fluorescence Resonance Energy Transfer Analysis (FRET). No significant differences were found in biofilm formation, red fluorescence or microbial composition in any of the tested groups. Samples grown in presence of progesterone and oestradiol showed proteolytic activity comparable to biofilms supplemented with menadione. In contrast, testosterone and oestriol showed a decreased proteolytic activity compared to biofilms grown in presence of menadione. None of the tested SSH had large effects on the ecology of in vitro oral biofilms, therefore a direct translation of our results into in vivo effects is not possible. Future experiments should include other host factors such as oral tissues, immune cells and combinations of SSH as present in saliva, in order to have a more accurate picture of the phenomena taking place in both males and females.
Collapse
Affiliation(s)
- Pilar Cornejo Ulloa
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Monique H. van der Veen
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Mark J. Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Strawn M, Safranski TJ, Behura SK. Does DNA methylation in the fetal brain leave an epigenetic memory in the blood? Gene 2023; 887:147788. [PMID: 37696423 DOI: 10.1016/j.gene.2023.147788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Epigenetic memory is an emerging concept that refers to the process in which epigenetic changes occurring early-in life can lead to long-term programs of gene regulation in time and space. By leveraging neural network regression modeling of DNA methylation data in pigs, we show that specific methylations in the adult blood can reliably predict methylation changes that occurred in the fetal brain. Genes associated with these methylations represented known markers of specific cell types of blood including bone marrow hematopoietic progenitor cells, and ependymal and oligodendrocyte cells of brain. This suggested that methylation changes that occurred in the developing brain were maintained as an epigenetic memory in the blood through the adult life.
Collapse
Affiliation(s)
- Monica Strawn
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Timothy J Safranski
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States; MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, United States; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
7
|
Chen S, Wang J, Li X, Lv H, Wang Q, Dong E, Yang X, Liu R, Liu B. Hydrogen-bonded structures and low temperature transitions of the confined water in subnano channels. Spectrochim Acta A Mol Biomol Spectrosc 2023; 302:122912. [PMID: 37348273 DOI: 10.1016/j.saa.2023.122912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
The interfacial and confined water have long been attractive objects due to their crucial roles in biological, geological processes, etc. In this paper, we investigate the hydrogen-bonded structures of water and their low temperature transitions in the subnano channels of AlPO4-11 for the first time on the basis of infrared spectroscopy. The number of the adsorbed water molecules is estimated to be 8.45 per channel in one unit cell by thermogravimetric analysis. It is found that the confined water molecules are involved in saturated and unsaturated coordination with different hydrogen bond strengths at ambient temperature. The former refers to ice-like four-coordinated water and the latter includes liquid-like structures, Al-coordinated and relatively free water molecules. Unique coordination between water molecules and framework Al sites is responsible for the ice-like structures in the channels above the ice melting point. The appearance of liquid-like structures is closely related to the strong channel confinement, which does not allow the formation of extensive tetrahedral hydrogen-bonded configuration. As temperature decreases, a structural transformation of confined water happens in the channels of AlPO4-11. Isolated small water oligomers and two new components with stronger hydrogen bonds, such as low-density amorphous ice-like structures and a kind of low-density liquid-like structures are preferred. Our results provide important insights into the structural organizations and thermal-dynamic behaviors of confined water in extreme narrow channels.
Collapse
Affiliation(s)
- Shuanglong Chen
- College of Physical Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Jianwen Wang
- College of Physical Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Xin Li
- College of Physical Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Hang Lv
- College of Physical Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Qiushi Wang
- College of Physical Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Enlai Dong
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Xibao Yang
- Laboratory Management Center, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ran Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, Jilin 130012, China
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, Jilin 130012, China.
| |
Collapse
|
8
|
Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445. [PMID: 36419235 DOI: 10.1080/21505594.2022.2150445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mabel D Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Salomon J, Sambado SB, Crews A, Sidhu S, Seredian E, Almarinez A, Grgich R, Swei A. Macro-parasites and micro-parasites co-exist in rodent communities but are associated with different community-level parameters. Int J Parasitol Parasites Wildl 2023; 22:51-59. [PMID: 37680651 PMCID: PMC10481151 DOI: 10.1016/j.ijppaw.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Wildlife species are often heavily parasitized by multiple infections simultaneously. Yet research on sylvatic transmission cycles, tend to focus on host interactions with a single parasite and neglects the influence of co-infections by other pathogens and parasites. Co-infections between macro-parasites and micro-parasites can alter mechanisms that regulate pathogenesis and are important for understanding disease emergence and dynamics. Wildlife rodent hosts in the Lyme disease system are infected with macro-parasites (i.e., ticks and helminths) and micro-parasites (i.e., Borrelia spp.), however, there has not been a study that investigates the interaction of all three parasites (i.e., I. pacificus, Borrelia spp., and helminths) and how these co-infections impact prevalence of micro-parasites. We live-trapped rodents in ten sites in northern California to collect feces, blood, ear tissue, and attached ticks. These samples were used to test for infection status of Borrelia species (i.e., micro-parasite), and describe the burden of ticks and helminths (i.e., macro-parasites). We found that some rodent hosts were co-infected with all three parasites, however, the burden or presence of concurrent macro-parasites were not associated with Borrelia infections. For macro-parasites, we found that tick burdens were positively associated with rodent Shannon diversity while negatively associated with predator diversity, whereas helminth burdens were not significantly associated with any host community metric. Ticks and tick-borne pathogens are associated with rodent host diversity, predator diversity, and abiotic factors. However, it is still unknown what factors helminths are associated with on the community level. Understanding the mechanisms that influence co-infections of multiple types of parasites within and across hosts is an increasingly critical component of characterizing zoonotic disease transmission and maintenance.
Collapse
Affiliation(s)
- Jordan Salomon
- Ecology & Evolutionary Biology Program at Texas A&M University, College Station, TX, USA
| | - Samantha B. Sambado
- Ecology, Evolution, & Marine Biology Department at University of California Santa Barbara, CA, USA
| | - Arielle Crews
- San Mateo County Mosquito and Vector Control, Burlingame, CA, USA
| | - Sukhman Sidhu
- Biology Department at San Francisco State University, San Francisco, CA, USA
| | - Eric Seredian
- Biology Department at San Francisco State University, San Francisco, CA, USA
| | - Adrienne Almarinez
- Biology Department at San Francisco State University, San Francisco, CA, USA
| | - Rachel Grgich
- Biology Department at San Francisco State University, San Francisco, CA, USA
| | - Andrea Swei
- Biology Department at San Francisco State University, San Francisco, CA, USA
| |
Collapse
|
10
|
Diaz A, Dixit AR, Khodadad CL, Hummerick ME, Justiano-Velez YA, Li W, O'Rourke A. Biofilm formation is correlated with low nutrient and simulated microgravity conditions in a Burkholderia isolate from the ISS water processor assembly. Biofilm 2023; 5:100110. [PMID: 36922940 PMCID: PMC10009688 DOI: 10.1016/j.bioflm.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 02/18/2023] [Indexed: 03/05/2023] Open
Abstract
The International Space Station (ISS) Water Processor Assembly (WPA) experiences intermittent dormancy in the WPA wastewater tank during water recycling events which promotes biofilm formation within the system. In this work we aimed to gain a deeper understanding of the impact of nutrient limitation on bacterial growth and biofilm formation under microgravity in support of biofilm mitigation efforts in exploration water recovery systems. A representative species of bacteria that is commonly cultured from the ISS WPA was cultured in an WPA influent water ersatz formulation tailored for microbiological studies. An isolate of Burkholderia contaminans was cultured under a simulated microgravity (SμG) treatment in a vertically rotating high-aspect rotating vessel (HARV) to create the low shear modeled microgravity (LSMMG) environment on a rotating wall vessel (RWV), with a rotating control (R) in the horizontal plane at the predetermined optimal rotation per minute (rpm) speed of 20. Over the course of the growth curve, the bacterial culture in ersatz media was harvested for bacterial counts, and transcriptomic and nutrient content analyses. The cultures under SμG treatment showed a transcriptomic signature indicative of nutrient stress and biofilm formation as compared to the R control treatment. Further analysis of the WPA ersatz over the course of the growth curve suggests that the essential nutrients of the media were consumed faster in the early stages of growth for the SμG treatment and thus approached a nutrient limited growth condition earlier than in the R control culture. The observed limited nutrient response may serve as one element to explain a moderate enhancement of adherent biofilm formation in the SμG treatment after 24 h. While nutrients levels can be modulated, one implication of this investigation is that biofilm mitigation in the ISS environment could benefit from methods such as mixing or the maintenance of minimum flow within a dormant water system in order to force convection and offset the response of microbes to the secondary effects of microgravity.
Collapse
Affiliation(s)
- Angie Diaz
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | - Anirudha R Dixit
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | | | - Mary E Hummerick
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | | | - Wenyan Li
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | - Aubrie O'Rourke
- Exploration Research and Technology, NASA Kennedy Space Center, Merritt Island, FL, USA
| |
Collapse
|
11
|
Cebrián R, Lucas R, Fernández-Cantos MV, Slot K, Peñalver P, Martínez-García M, Párraga-Leo A, de Paz MV, García F, Kuipers OP, Morales JC. Synthesis and antimicrobial activity of aminoalkyl resveratrol derivatives inspired by cationic peptides. J Enzyme Inhib Med Chem 2023; 38:267-281. [PMID: 36600674 PMCID: PMC9828810 DOI: 10.1080/14756366.2022.2146685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial resistance is a global concern, far from being resolved. The need of new drugs against new targets is imminent. In this work, we present a family of aminoalkyl resveratrol derivatives with antibacterial activity inspired by the properties of cationic amphipathic antimicrobial peptides. Surprisingly, the newly designed molecules display modest activity against aerobically growing bacteria but show surprisingly good antimicrobial activity against anaerobic bacteria (Gram-negative and Gram-positive) suggesting specificity towards this bacterial group. Preliminary studies into the action mechanism suggest that activity takes place at the membrane level, while no cross-resistance with traditional antibiotics is observed. Actually, some good synergistic relations with existing antibiotics were found against Gram-negative pathogens. However, some cytotoxicity was observed, despite their low haemolytic activity. Our results show the importance of the balance between positively charged moieties and hydrophobicity to improve antimicrobial activity, setting the stage for the design of new drugs based on these molecules.
Collapse
Affiliation(s)
- Rubén Cebrián
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands,Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital Clínico San Cecilio, Granada, Spain,CONTACT Rubén Cebrián University Hospital San Cecilio,Clinical Microbiology Department, Av. de la Innovación s/n, 18061, Granada, Spain
| | - Ricardo Lucas
- Department of Organic and Pharmaceutical Chemistry, School of Pharmacy, University of Seville, Seville, Spain
| | - María Victoria Fernández-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Koen Slot
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Armilla, Granada, Spain
| | - Marta Martínez-García
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Antonio Párraga-Leo
- Department of Organic and Pharmaceutical Chemistry, School of Pharmacy, University of Seville, Seville, Spain
| | - María Violante de Paz
- Department of Organic and Pharmaceutical Chemistry, School of Pharmacy, University of Seville, Seville, Spain
| | - Federico García
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital Clínico San Cecilio, Granada, Spain
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands,Oscar P. Kuipers University of Groningen, Faculty of Science and Engineering, Department of Genetics, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Armilla, Granada, Spain,Juan Carlos Morales Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento 17, Armilla, 18016Granada, Spain
| |
Collapse
|
12
|
Li S, You X, Rani A, Özcan E, Sela DA. Bifidobacterium infantis utilizes N-acetylglucosamine-containing human milk oligosaccharides as a nitrogen source. Gut Microbes 2023; 15:2244721. [PMID: 37609905 PMCID: PMC10448974 DOI: 10.1080/19490976.2023.2244721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Bifidobacterium longum subsp. infantis (B. infantis) utilizes oligosaccharides secreted in human milk as a carbohydrate source. These human milk oligosaccharides (HMOs) integrate the nitrogenous residue N-acetylglucosamine (NAG), although HMO nitrogen utilization has not been described to date. Herein, we characterize the B. infantis nitrogen utilization phenotype on two NAG-containing HMO species, LNT and LNnT. This was characterized through in vitro growth kinetics, incorporation of isotopically labeled NAG nitrogen into the proteome, as well as modulation of intracellular 2-oxoglutarate levels while utilizing HMO nitrogen. Further support is provided by comparative transcriptomics and proteomics that identified global regulatory networks deployed during HMO nitrogen utilization. The aggregate data demonstrate that B. infantis strains utilize HMO nitrogen with the potential to significantly impact fundamental and clinical studies, as well as enable applications.
Collapse
Affiliation(s)
- Shuqi Li
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Xiaomeng You
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Asha Rani
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Ezgi Özcan
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - David A. Sela
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Nutrition, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Microbiology & Physiological Systems and Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
13
|
Guo D, Zhang Y, Dong X, Liu X, Pei Y, Duan J, Guan F. Accelerated deterioration corrosion of X70 steel by oxidation acid-producing process catalyzed by Acinetobacter soli in oil-water environment. Bioelectrochemistry 2023; 154:108539. [PMID: 37579554 DOI: 10.1016/j.bioelechem.2023.108539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Deterioration corrosion occurs between the external surface of oil pipelines and aerobic oil-degrading microorganisms in oil fields. Microorganisms with aerobic oil pollution remediation capabilities may catalyze more serious anaerobic microbial corrosion due to the carbon source supply. In this study, Acinetobacter soli strains were isolated from oil-contaminated environments, and their role in the deterioration corrosion behavior of X70 steel in an oil-water environment was investigated using the EDS multipoint scanning method. The presence of oil controls the deposition of carbon and phosphorus and diffusion of oxygen, leading to significant adhesion attraction and initial growth inhibition of biofilm on the metal surface. A. soli facilitates oxygen transfer and iron ion dissolution, thereby accelerating the pitting corrosion of X70 steel. This corrosion of the X70 steel, in turn, further accelerates the microbial degradation of oil, inhibiting the appearance of calcareous scale in the later stage of corrosion. The corrosion of X70 steel is influenced by microbial degradation, and the specific corrosion behaviors are related to the activity of A. soli in the petroleum environment. This study sheds light on the corrosion mechanisms of X70 steel by A. soli at different stages, providing insights into the interactions between microorganisms, oil pollution, and metal corrosion in oil fields.
Collapse
Affiliation(s)
- Ding Guo
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yimeng Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Xucheng Dong
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiangju Liu
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yingying Pei
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Fang Guan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
14
|
Yin F, Hu Y, Bu Z, Liu Y, Zhang H, Hu Y, Xue Y, Li S, Tan C, Chen X, Li L, Zhou R, Huang Q. Genome-wide identification of genes critical for in vivo fitness of multi-drug resistant porcine extraintestinal pathogenic Escherichia coli by transposon-directed insertion site sequencing using a mouse infection model. Virulence 2023; 14:2158708. [PMID: 36537189 PMCID: PMC9828833 DOI: 10.1080/21505594.2022.2158708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is an important zoonotic pathogen. Recently, ExPEC has been reported to be an emerging problem in pig farming. However, the mechanism of pathogenicity of porcine ExPEC remains to be revealed. In this study, we constructed a transposon (Tn) mutagenesis library covering Tn insertion in over 72% of the chromosome-encoded genes of a virulent and multi-drug resistant porcine ExPEC strain PCN033. By using a mouse infection model, a transposon-directed insertion site sequencing (TraDIS) assay was performed to identify in vivo fitness factors. By comparing the Tn insertion frequencies between the input Tn library and the recovered library from different organs, 64 genes were identified to be involved in fitness during systemic infection. 15 genes were selected and individual gene deletion mutants were constructed. The in vivo fitness was evaluated by using a competitive infection assay. Among them, ΔfimG was significantly outcompeted by the WT strain in vivo and showed defective adhesion to host cells. rfa which was involved in lipopolysaccharide biosynthesis was shown to be critical for in vivo fitness which may have resulted from its role in the resistance to serum killing. In addition, several metabolic genes including fepB, sdhC, fepG, gltS, dcuA, ccmH, ddpD, narU, glpD, malM, and yabL and two regulatory genes metJ and baeS were shown as important determinants of in vivo fitness of porcine ExPEC. Collectively, this study performed a genome-wide screening for in vivo fitness factors which will be important for understanding the pathogenicity of porcine ExPEC.
Collapse
Affiliation(s)
- Fan Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yan Hu
- College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Zixuan Bu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuying Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yawen Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ying Xue
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Ministry of Science and Technology, International Research Center for Animal Disease, Wuhan, China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Ministry of Science and Technology, International Research Center for Animal Disease, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Ministry of Science and Technology, International Research Center for Animal Disease, Wuhan, China,The HZAU-HVSEN Institute, Wuhan, China,CONTACT Rui Zhou
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Ministry of Science and Technology, International Research Center for Animal Disease, Wuhan, China,Qi Huang
| |
Collapse
|
15
|
Tenore A, Wu Y, Jacob J, Bittermann D, Villa F, Buttaro B, Klapper I. Water activity in subaerial microbial biofilms on stone monuments. Sci Total Environ 2023; 900:165790. [PMID: 37517730 DOI: 10.1016/j.scitotenv.2023.165790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/30/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Stone monuments can be difficult environments for life, particularly with respect to liquid water access. Nevertheless, microbial communities are found on them with apparent ubiquity. A variety of strategies for access to liquid water have been proposed. Regardless of their water-retention mechanisms details, though, we argue that water activity (a key indicator for cell viability) is constrained by environmental conditions, largely independently of community structure, and is predicted by the local temperature and relative humidity. However, direct measurement of water activity in SABs, particularly those growing on stone surfaces, is difficult. A method for estimating water activity within SABs is presented that uses a minimally invasive combination of conservative sampling, weather data, confocal imaging, and mathematical modeling. Applying the methodology to measurements from the marble roofs of the Federal Hall National Memorial and of the Thomas Jefferson Memorial, estimations are made for water activity in their subaerial stone communities over the course of an approximately one year period.
Collapse
Affiliation(s)
- A Tenore
- Department of Mathematics, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Y Wu
- Department of Mathematics, Temple University, Philadelphia, PA, United States of America
| | - J Jacob
- U.S. National Park Service, North Atlantic-Appalachian Region, Historic Architecture, Conservation, and Engineering Program, United States of America
| | - D Bittermann
- U.S. National Park Service, North Atlantic-Appalachian Region, Historic Architecture, Conservation, and Engineering Program, United States of America
| | - F Villa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - B Buttaro
- Sol Sherry Thrombosis Research Center, Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - I Klapper
- Department of Mathematics, Temple University, Philadelphia, PA, United States of America.
| |
Collapse
|
16
|
Deshpande AS, Muraoka W, Wait J, Çolak A, Andreescu S. Direct real-time measurements of superoxide release from skeletal muscles in rat limbs and human blood platelets using an implantable Cytochrome C microbiosensor. Biosens Bioelectron 2023; 240:115664. [PMID: 37689016 DOI: 10.1016/j.bios.2023.115664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Oxidative stress and excessive accumulation of the superoxide (O2.-) anion are at the genesis of many pathological conditions and the onset of several diseases. The real time monitoring of (O2.-) release is important to assess the extent of oxidative stress in these conditions. Herein, we present the design, fabrication and characterization of a robust (O2.-) biosensor using a simple and straightforward procedure involving deposition of a uniform layer of L-Cysteine on a gold wire electrode to which Cytochrome C (Cyt c) was conjugated. The immobilized layers, studied using conductive Atomic Force Microscopy (c-AFM) revealed a stable and uniformly distributed redox protein on the gold surface, visualized as conductivity and surface topographical plots. The biosensor enabled detection of (O2.-) at an applied potential of 0.15 V with a sensitivity of 42.4 nA/μM and a detection limit of 2.4 nM. Utility of the biosensor was demonstrated in measurements of real time (O2.-) release in activated human blood platelets and skeletal rat limb muscles following ischemia reperfusion injury (IRI), confirming the biosensor's stability and robustness for measurements in complex biological systems. The results demonstrate the ability of these biosensors to monitor real time release of (O2.-) and estimate the extent of oxidative injury in models that could easily be translated to human pathologies.
Collapse
Affiliation(s)
- Aaditya S Deshpande
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Wayne Muraoka
- U.S. Army Institute of Surgical Research, Blood and Shock Resuscitation, Fort Sam Houston, TX, 78234, USA
| | - James Wait
- Department of Physics, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
| | - Arzu Çolak
- Department of Physics, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA.
| |
Collapse
|
17
|
Luo H, Tu C, He D, Zhang A, Sun J, Li J, Xu J, Pan X. Interactions between microplastics and contaminants: A review focusing on the effect of aging process. Sci Total Environ 2023; 899:165615. [PMID: 37481081 DOI: 10.1016/j.scitotenv.2023.165615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Microplastics (MPs) in the environment are a major global concern due to their persistent nature and wide distribution. The aging of MPs is influenced by several processes including photodegradation, thermal degradation, biodegradation and mechanical fragmentation, which affect their interaction with contaminants. This comprehensive review aims to summarize the aging process of MPs and the factors that impact their aging, and to discuss the effects of aging on the interaction of MPs with contaminants. A range of characterization methods that can effectively elucidate the mechanistic processes of these interactions are outlined. The rate and extent of MPs aging are influenced by their physicochemical properties and other environmental factors, which ultimately affect the adsorption and aggregation of aged MPs with environmental contaminants. Pollutants such as heavy metals, organic matter and microorganisms have a tendency to accumulate on MPs through adsorption and the interactions between them impact their environmental behavior. Aging enhances the specific surface area and oxygen-containing functional groups of MPs, thereby affecting the mechanism of interaction between MPs and contaminants. To obtain a more comprehensive understanding of how aging affects the interactions, this review also provides an overview of the mechanisms by which MPs interact with contaminants. In the future, there should be further in-depth studies of the potential hazards of aged MPs in different environments e.g., soil, sediment, aquatic environment, and effects of their interaction with environmental pollutants on human health and ecology.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Chaolin Tu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
18
|
Jiang Z, Shi D, Chen Y, Li H, Wang J, Lv X, Zi Y, Wang D, Xu Z, Huang J, Liu J, Duan H. Discovery of novel isopropanolamine inhibitors against MoTPS1 as potential fungicides with unique mechanisms. Eur J Med Chem 2023; 260:115755. [PMID: 37672934 DOI: 10.1016/j.ejmech.2023.115755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
The resistance and ecotoxicity of fungicides seriously restrict our ability to effectively control Magnaporthe oryzae. Discovering fungicidal agents based on novel targets, including MoTPS1, could efficiently address this situation. Here, we identified a hit VS-10 containing an isopropanolamine fragment as a novel MoTPS1 inhibitor through virtual screening, and forty-four analogs were synthesized by optimizing the structure of VS-10. Utilizing our newly established ion-pair chromatography (IPC) and leaf inoculation methods, we found that compared to VS-10, its analog j11 exhibited substantially greater inhibitory activity against both MoTPS1 and the pathogenicity of M. oryzae. Molecular simulations clarified that the electrostatic interactions between the bridging moiety of isopropanolamine and residue Glu396 of contributed significantly to the binding of j11 and MoTPS1. We preliminarily revealed the unique fungicidal mechanism of j11, which mainly impeded the infection of M. oryzae by decreasing sporulation, killing a small portion of conidia and interfering with the accumulation of turgor pressure in appressoria. Thus, in this study, a novel fungicide candidate with a unique mechanism targeting MoTPS1 was screened and discovered.
Collapse
Affiliation(s)
- Zhiyang Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Yitong Chen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Huilin Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Jin'e Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Xinrui Lv
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Yunjiang Zi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Dongli Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxing Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Junfeng Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Gaspary A, Laureau R, Dyatel A, Dursuk G, Simon Y, Berchowitz LE. Rie1 and Sgn1 form an RNA-binding complex that enforces the meiotic entry cell fate decision. J Cell Biol 2023; 222:e202302074. [PMID: 37638885 PMCID: PMC10460998 DOI: 10.1083/jcb.202302074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/28/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Budding yeast cells have the capacity to adopt few but distinct physiological states depending on environmental conditions. Vegetative cells proliferate rapidly by budding while spores can survive prolonged periods of nutrient deprivation and/or desiccation. Whether or not a yeast cell will enter meiosis and sporulate represents a critical decision that could be lethal if made in error. Most cell fate decisions, including those of yeast, are understood as being triggered by the activation of master transcription factors. However, mechanisms that enforce cell fates posttranscriptionally have been more difficult to attain. Here, we perform a forward genetic screen to determine RNA-binding proteins that affect meiotic entry at the posttranscriptional level. Our screen revealed several candidates with meiotic entry phenotypes, the most significant being RIE1, which encodes an RRM-containing protein. We demonstrate that Rie1 binds RNA, is associated with the translational machinery, and acts posttranscriptionally to enhance protein levels of the master transcription factor Ime1 in sporulation conditions. We also identified a physical binding partner of Rie1, Sgn1, which is another RRM-containing protein that plays a role in timely Ime1 expression. We demonstrate that these proteins act independently of cell size regulation pathways to promote meiotic entry. We propose a model explaining how constitutively expressed RNA-binding proteins, such as Rie1 and Sgn1, can act in cell fate decisions both as switch-like enforcers and as repressors of spurious cell fate activation.
Collapse
Affiliation(s)
- Alec Gaspary
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Raphaelle Laureau
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Annie Dyatel
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Gizem Dursuk
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Yael Simon
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer’s and the Aging Brain, New York, NY, USA
| |
Collapse
|
20
|
Zhou R, Zhang Y, Hao D, Zhang Y, Luo J, Li T. Effects of different remediation methods on phosphorus transformation and availability. Chemosphere 2023; 340:139902. [PMID: 37607600 DOI: 10.1016/j.chemosphere.2023.139902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] |