1
|
|
Jiang Y, Zhang R, Guo JQ, Qian LL, Ji JJ, Wu Y, Ji ZJ, Yang ZW, Zhang Y, Chen X, Ma GS, Yao YY. Identification of major hub genes involved in high-fat diet-induced obese visceral adipose tissue based on bioinformatics approach. Adipocyte 2023;12:2169227. [PMID: 36654490 DOI: 10.1080/21623945.2023.2169227] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/20/2023] Open
Abstract
High-fat diet (HFD) can cause obesity, inducing dysregulation of the visceral adipose tissue (VAT). This study aimed to explore potential biological pathways and hub genes involved in obese VAT, and for that, bioinformatic analysis of multiple datasets was performed. The expression profiles (GSE30247, GSE167311 and GSE79434) were downloaded from Gene Expression Omnibus. Overlapping differentially expressed genes (ODEGs) between normal diet and HFD groups in GSE30247 and GSE167311 were selected to run protein-protein interaction network, GO and KEGG analysis. The hub genes in ODEGs were screened by Cytoscape software and further verified in GSE79434 and obese mouse model. A total of 747 ODEGs (599 up-regulated and 148 down-regulated) were screened, and the GO and KEGG analysis showed that the up-regulated ODEGs were significantly enriched in inflammatory response and extracellular matrix receptor interaction pathways. On the other hand, the down-regulated ODEGs were involved in metabolic pathways; however, there were no significant KEGG pathways. Furthermore, six hub genes, Mki67, Rac2, Itgb2, Emr1, Tyrobp and Csf1r were acquired. These pathways and genes were verified in GSE79434 and VAT of obese mice. This study revealed that HFD induced VAT expansion, inflammation and fibrosis, and the hub genes could be used as therapeutic biomarkers in obesity.
Collapse
|
2
|
|
Richards BJ, Slavin M, Oliveira AN, Sanfrancesco VC, Hood DA. Mitochondrial protein import and UPR(mt) in skeletal muscle remodeling and adaptation. Semin Cell Dev Biol 2023;143:28-36. [PMID: 35063351 DOI: 10.1016/j.semcdb.2022.01.002] [Cited by in Crossref: 3] [Cited by in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/03/2023]
Abstract
The biogenesis of mitochondria requires the coordinated expression of the nuclear and the mitochondrial genomes. However, the vast majority of gene products within the organelle are encoded in the nucleus, synthesized in the cytosol, and imported into mitochondria via the protein import machinery, which permit the entry of proteins to expand the mitochondrial network. Once inside, proteins undergo a maturation and folding process brought about by enzymes comprising the unfolded protein response (UPRmt). Protein import and UPRmt activity must be synchronized and matched with mtDNA-encoded subunit synthesis for proper assembly of electron transport chain complexes to avoid proteotoxicity. This review discusses the functions of the import and UPRmt systems in mammalian skeletal muscle, as well as how exercise alters the equilibrium of these pathways in a time-dependent manner, leading to a new steady state of mitochondrial content resulting in enhanced oxidative capacity and improved muscle health.
Collapse
|
3
|
|
Gurd BJ, Menezes ES, Arhen BB, Islam H. Impacts of altered exercise volume, intensity, and duration on the activation of AMPK and CaMKII and increases in PGC-1α mRNA. Semin Cell Dev Biol 2023;143:17-27. [PMID: 35680515 DOI: 10.1016/j.semcdb.2022.05.016] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 10/18/2022]
Abstract
The purpose of this review is to explore and discuss the impacts of augmented training volume, intensity, and duration on the phosphorylation/activation of key signaling protein - AMPK, CaMKII and PGC-1α - involved in the initiation of mitochondrial biogenesis. Specifically, we explore the impacts of augmented exercise protocols on AMP/ADP and Ca2+ signaling and changes in post exercise PGC - 1α gene expression. Although AMP/ADP concentrations appear to increase with increasing intensity and during extended durations of higher intensity exercise AMPK activation results are varied with some results supporting and intensity/duration effect and others not. Similarly, CaMKII activation and signaling results following exercise of different intensities and durations are inconsistent. The PGC-1α literature is equally inconsistent with only some studies demonstrating an effect of intensity on post exercise mRNA expression. We present a novel meta-analysis that suggests that the inconsistency in the PGC-1α literature may be due to sample size and statistical power limitations owing to the effect of intensity on PGC-1α expression being small. There is little data available regarding the impact of exercise duration on PGC-1α expression. We highlight the need for future well designed, adequately statistically powered, studies to clarify our understanding of the effects of volume, intensity, and duration on the induction of mitochondrial biogenesis by exercise.
Collapse
|
4
|
|
Bourgeois BL, Levitt DE, Molina PE, Simon L. Differential expression of adipocyte and myotube extracellular vesicle miRNA cargo in chronic binge alcohol-administered SIV-infected male macaques. Alcohol 2023;108:1-9. [PMID: 36351490 DOI: 10.1016/j.alcohol.2022.11.001] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/08/2022]
Abstract
Our studies in chronic binge alcohol (CBA) -treated simian immunodeficiency virus (SIV)-infected macaques and in people living with HIV (PLWH) show significant alterations in metabolic homeostasis. CBA promotes a profibrotic phenotype in adipose tissue and skeletal muscle (SKM) and decreases adipose-derived stem cell and myoblast differentiation, making adipose and SKM potential drivers in metabolic dysregulation. Furthermore, we have shown that the differential expression of microRNAs (miRs) in SKM contributes to impaired myoblast differentiation potential. Beyond modulation of intracellular responses, miRs can be transported in extracellular vesicles (EVs) to mediate numerous cellular responses through intercellular and interorgan communication. This study tested the hypothesis that CBA alters concentration and miR cargo of EVs derived from adipocytes and myotubes isolated from SIV-infected male macaques. Fourteen male rhesus macaques received either CBA (2.5 g/kg/day) or sucrose (VEH) for 14.5 months. Three months following the initiation of CBA/VEH, all animals were infected with SIVmac251 and 2.5 months later were initiated on antiretroviral therapy. SKM and adipose tissue samples were collected at the study endpoint (blood alcohol concentration = 0 mM). EVs were isolated by ultracentrifugation of myotube and adipocyte cell culture supernatant. Nanoparticle tracking revealed no differences in concentration or size of particles between VEH and CBA groups. Adipocyte-derived EVs from CBA animals showed decreased miR-let-7a expression (p = 0.03). Myotube-derived EVs from CBA animals had decreased miR-16 (p = 0.04) and increased miR-133a and miR-133b (both p = 0.04) expression. These results indicate that CBA administration differentially regulates EV miR content but does not alter the number of EVs from adipocytes or myotubes. Future studies are warranted to determine the functional relevance of CBA-altered EV miR cargo and their role in intercellular and interorgan communication and metabolic dysregulation.
Collapse
|
5
|
|
Zhao S, Hu S, Sun K, Luo L, Zeng L. Pu-erh tea intake enhances the anti-obesity effect of intermittent fasting via modulating follicle-stimulating hormone and gut dysbacteriosis in female high-fat-diet mice. J Funct Foods 2023;104:105495. [DOI: 10.1016/j.jff.2023.105495] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/17/2023] Open
|
6
|
|
Adam AH, Verdegem M, Soliman AA, Zaki M, Khalil RH, Nour AM, Khaled AA, El Basuini MF, Khalil HS. Effect of dietary bile acids: Growth performance, immune response, genes expression of fatty acid metabolism, intestinal, and liver morphology of striped catfish (Pangasianodon hypophthalmus). AQUACULT REP 2023;29:101510. [DOI: 10.1016/j.aqrep.2023.101510] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/25/2023] Open
|
7
|
|
Us Altay D, Onder S, Etgu F, Uner A, Noyan T. A newly identified myokine: irisin, and its relationship with chronic spontaneous urticaria and inflammation. Arch Dermatol Res 2023;315:437-42. [PMID: 35948647 DOI: 10.1007/s00403-022-02378-4] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/12/2022]
Abstract
Chronic spontaneous urticaria (CSU) is an important dermatological disease involving severe itchy urticaria lesions and/or angioedema. Urticaria and angioedema occur in the community at a rate of 25-30%. Many factors, such as inflammation, have been implicated in the etiology of CSU. Irisin is a newly identified adipocytokine shown by research to exhibit anti-inflammatory properties in addition to its many other effects. The aim of the study was to investigate, for the first time in the literature, the significance of serum irisin levels in patients with CSU. Seventy-eight individuals were evaluated. The study group included 44 patients diagnosed with CSU, and the control group consisted of 34 healthy individuals. Serum samples were collected, and serum irisin, Interleukin-2 (IL-2), Interleukin-3 (IL-3), Tumor Necrosis Factor-alpha (TNF-α), and Interferon-ɣ (IF-ɣ) levels were determined using the enzyme-linked immunosorbent assay (ELISA) method. Irisin was studied for the first time in patients with CSU and exhibited a significantly higher level in the control group than in the patient group (p = 0.020). IL-2, IL-3, and IF-ɣ levels were higher in the CSU group than in the control group, although the results were not statistically significant. Only TNF-α results increased significantly. Correlation analysis was applied to determine the relationships between irisin and IF-ɣ and IL-3 levels. This revealed that the irisin parameter was significantly and positively correlated with IF-ɣ and IL-3 in patients with CSU (r = 0.518, p = 0.016 and r = 0.536, p = 0.022, respectively). This is the first report to evaluate irisin as an inflammatory biomarker in CSU. Irisin levels in patients with CSU were low, suggesting that irisin may pay a role in the pathogenesis of CSU and may be a marker showing the severity of the disease.
Collapse
|
8
|
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023;160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
|
9
|
|
Sokolova IM. Ectotherm mitochondrial economy and responses to global warming. Acta Physiol (Oxf) 2023;237:e13950. [PMID: 36790303 DOI: 10.1111/apha.13950] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/16/2023]
Abstract
Temperature is a key abiotic factor affecting ecology, biogeography, and evolution of species. Alterations of energy metabolism play an important role in adaptations and plastic responses to temperature shifts on different time scales. Mitochondrial metabolism affects cellular bioenergetics and redox balance making these organelles an important determinant of organismal performances such as growth, locomotion, or development. Here I analyze the impacts of environmental temperature on the mitochondrial functions (including oxidative phosphorylation, proton leak, production of reactive oxygen species(ROS), and ATP synthesis) of ectotherms and discuss the mechanisms underlying negative shifts in the mitochondrial energy economy caused by supraoptimal temperatures. Owing to the differences in the thermal sensitivity of different mitochondrial processes, elevated temperatures (beyond the species- and population-specific optimal range) cause reallocation of the electron flux and the protonmotive force (Δp) in a way that decreases ATP synthesis efficiency, elevates the relative cost of the mitochondrial maintenance, causes excessive production of ROS and raises energy cost for antioxidant defense. These shifts in the mitochondrial energy economy might have negative consequences for the organismal fitness traits such as the thermal tolerance or growth. Correlation between the thermal sensitivity indices of the mitochondria and the whole organism indicate that these traits experience similar selective pressures but further investigations are needed to establish whether there is a cause-effect relationship between the mitochondrial failure and loss of organismal performance during temperature change.
Collapse
|
10
|
|
Langhans W, Watts AG, Spector AC. The elusive cephalic phase insulin response: triggers, mechanisms, and functions. Physiol Rev 2023;103:1423-85. [PMID: 36422994 DOI: 10.1152/physrev.00025.2022] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/25/2022] Open
Abstract
The cephalic phase insulin response (CPIR) is classically defined as a head receptor-induced early release of insulin during eating that precedes a postabsorptive rise in blood glucose. Here we discuss, first, the various stimuli that elicit the CPIR and the sensory signaling pathways (sensory limb) involved; second, the efferent pathways that control the various endocrine events associated with eating (motor limb); and third, what is known about the central integrative processes linking the sensory and motor limbs. Fourth, in doing so, we identify open questions and problems with respect to the CPIR in general. Specifically, we consider test conditions that allow, or may not allow, the stimulus to reach the potentially relevant taste receptors and to trigger a CPIR. The possible significance of sweetness and palatability as crucial stimulus features and whether conditioning plays a role in the CPIR are also discussed. Moreover, we ponder the utility of the strict classical CPIR definition based on what is known about the effects of vagal motor neuron activation and thereby acetylcholine on the β-cells, together with the difficulties of the accurate assessment of insulin release. Finally, we weigh the evidence of the physiological and clinical relevance of the cephalic contribution to the release of insulin that occurs during and after a meal. These points are critical for the interpretation of the existing data, and they support a sharper focus on the role of head receptors in the overall insulin response to eating rather than relying solely on the classical CPIR definition.
Collapse
|
11
|
|
Pinos I, Yu J, Pilli N, Kane MA, Amengual J. Functional characterization of interleukin 4 and retinoic acid signaling crosstalk during alternative macrophage activation. Biochim Biophys Acta Mol Cell Biol Lipids 2023;1868:159291. [PMID: 36754230 DOI: 10.1016/j.bbalip.2023.159291] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/09/2023]
Abstract
Retinoic acid possesses potent immunomodulatory properties in various cell types, including macrophages. In this study, we first investigated the effects at the transcriptional and functional levels of exogenous retinoic acid in murine bone marrow-derived macrophages (BMDMs) in the presence or absence of interleukin 4 (IL4), a cytokine with potent anti-inflammatory properties. We examined the effect of IL4 on vitamin A homeostasis in macrophages by quantifying retinoid synthesis and secretion. Our RNAseq data show that exogenous retinoic acid synergizes with IL4 to regulate anti-inflammatory pathways such as oxidative phosphorylation and phagocytosis. Efferocytosis and lysosomal degradation assays validated gene expression changes at the functional level. IL4 treatment altered the expression of several genes involved in vitamin A transport and conversion to retinoic acid. Radiolabeling experiments and mass spectrometry assays revealed that IL4 stimulates retinoic acid production and secretion in a signal transducer and activator of transcription 6 (STAT6)-dependent manner. In summary, our studies highlight the key role of exogenous and endogenous retinoic acid in shaping the anti-inflammatory response of macrophages.
Collapse
|
12
|
|
Benefield D, Abdelmageed Y, Fowler J, Smith S, Arias-Parbul K, Dunning C, Rowe GC. Adult skeletal muscle peroxisome proliferator-activated receptor γ -related coactivator 1 is involved in maintaining mitochondrial content. Am J Physiol Regul Integr Comp Physiol 2023;324:R470-9. [PMID: 36717166 DOI: 10.1152/ajpregu.00241.2022] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/01/2023]
Abstract
The peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family of transcriptional coactivators are regulators of mitochondrial oxidative capacity and content in skeletal muscle. Many of these conclusions are based primarily on gain-of-function studies using muscle-specific overexpression of PGC1s. We have previously reported that genetic deletion of both PGC-1α and PGC-1β in adult skeletal muscle resulted in a significant reduction in oxidative capacity with no effect on mitochondrial content. However, the contribution of PGC-1-related coactivator (PRC), the third PGC-1 family member, in regulating skeletal muscle mitochondria is unknown. Therefore, we generated an inducible skeletal muscle-specific PRC knockout mouse (iMS-PRC-KO) to assess the contribution of PRC in skeletal muscle mitochondrial function. We measured mRNA expression of electron transport chain (ETC) subunits as well as markers of mitochondrial content in the iMS-PRC-KO animals and observed an increase in ETC gene expression and mitochondrial content. Furthermore, the increase in ETC gene expression and mitochondrial content was associated with increased expression of PGC-1α and PGC-1β. We therefore generated an adult-inducible PGC-1 knockout mouse in which all PGC-1 family members are deleted (iMS-PGC-1TKO). The iMS-PGC-1TKO animals exhibited a reduction in ETC mRNA expression and mitochondrial content. These data suggest that in the absence of PRC alone, compensation occurs by increasing PGC-1α and PGC-1β to maintain mitochondrial content. Moreover, the removal of all three PGC-1s in skeletal muscle results in a reduction in both ETC mRNA expression and mitochondrial content. Taken together, these results suggest that PRC plays a role in maintaining baseline mitochondrial content in skeletal muscle.
Collapse
|
13
|
|
Boscolo-Berto R, Porzionato A, Stecco C, Macchi V, De Caro R. Reference centers for tissue and body donations: Compulsory requirements in Italy. Clin Anat 2023;36:465-70. [PMID: 36514860 DOI: 10.1002/ca.23990] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/15/2022]
Abstract
Recent Italian legislation (Law No. 10/2020) establishes the legal, ethical and technical requirements governing how individuals can donate their bodies or tissues post-mortem for study, training, and scientific research purposes. A ministerial working group has recently approved some of the law's implementing rules relating to technical issues. The rules for implementing the new legislation, retrieved from the legal databases and translated into English, are discussed. For the first time in Italy, the law establishes compulsory requirements and minimum characteristics-in terms of logistics, safety, availability of staff, space, and equipment-for institutions to be recognized as reference centers for the conservation and use of bodies and tissues donated post-mortem for study, training and scientific research purposes. This makes it possible to standardize the features of such reference centers nationwide, and to coordinate their activities and potential future development, while ensuring basic operational efficiency and workplace safety, the provision of adequate facilities, buildings and equipment, and staff training. The law and its implementing rules discussed here are the first to establish criteria and compulsory requirements for centers receiving body and tissue donations in Italy. This is a step forward for the whole anatomy community, providing practical guidelines for body donation programs and related facilities in other countries too.
Collapse
|
14
|
|
Shams S, Amirinejad M, Amani-Shalamzari S, Rajabi H, Suzuki K. Swimming in cold water upregulates genes involved in thermogenesis and the browning of white adipose tissues. Comp Biochem Physiol B Biochem Mol Biol 2023;265:110834. [PMID: 36740139 DOI: 10.1016/j.cbpb.2023.110834] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to investigate whether there is an interacting effect of six weeks of swimming in cold water on the gene expression of browning markers in adipose tissue in rodents. Twenty male Wistar rats were randomly divided into four groups: Control (C, 25 °C), Cold Exposure (CE, 4 °C), Swimming in tepid Water (STW, 30 °C), and Swimming in Cold Water (SCW, 15 °C). The swimming included 2-3 min intervals, 1 min rest, until exhaustion, three days a week for six weeks, with 3 to 6% of bodyweight overload. Rats from CE were exposed to cold for 2 h per day, five days per week. After the experimental protocol, interscapular brown (BAT) and inguinal subcutaneous white (WAT) fat tissues were excised, weighed, and processed for beiging and mitochondrial biogenesis markers gene expression. The experimental protocols resulted in an apparent increase in the number of brown adipocytes (per mm2) in the adipose deposits compared to the C group; substantial changes were observed in the SCW group. Compared to other groups, cold exposure alone increased significantly serum norepinephrine, and also β2-adrenergic receptor expression was upregulated in the adipocytes compared to the C group. The STW group increased the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) coactivator-1 alpha (PGC-1α), β2-adrenergic receptor, and CCAAT/enhancer-binding proteins-α(c/EBP-α) in WAT in comparison with the C group(p < 0.05). In both adipocytes, the SCW intervention significantly upregulated the expression of PGC-1α, PPAR-γ, and c/EBP-α genes in comparison with the C and CE groups. In addition, the expression of TFAM and UCP1 was upregulated substantially in the SCW group compared to other groups. Our data demonstrate that swim training and cold exposure present additive effects in the expression of genes involved in the beiging process and mitochondrial biogenesis markers in BAT and WAT. In addition, it seems that the upregulation of these genes is related to the activation of β2-adrenergic receptors.
Collapse
|
15
|
|
Palmioli E, Dall'Aglio C, Fagotti A, Simoncelli F, Dobrzyn K, Di Rosa I, Maranesi M, De Felice E, Scocco P, Mercati F. Leptin system is not affected by different diets in the abomasum of the sheep reared in semi-natural pastures of the Central Apennines. Ann Anat 2023;247:152069. [PMID: 36754242 DOI: 10.1016/j.aanat.2023.152069] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/09/2023]
Abstract
The growing summer drought stress is affecting the nutritional value of pastures, no longer sufficient to support the nutritional status of sheep in extensive rearing. Adipokines affect organ and tissue functionality can be useful to evaluate animal welfare and prompt an improvement in the management of the grazing animals. Leptin (Lep) is an adipokine mainly produced by adipose tissue that regulates food intake by an anorexigenic action. Lep has also been detected in the human and rat gastrointestinal tract, where it regulates the rate of gastric emptying. In this study, Lep system was evaluated in the abomasum of 15 adult sheep reared on Apennine pastures and subjected to different diets. Until the maximum pasture flowering (MxF group), the sheep fed on fresh forage; from that moment until the maximum pasture dryness (MxD group), the experimental group (Exp group) received a feed supplementation in addition to MxD group feeding. The Lep system was investigated in the abomasum samples by immunohistochemistry (IHC) and RT-qPCR. Double-label localisation of Lep and leptin receptor (LepR) with neuroendocrine hormones was conducted to distinguish the gland cell types. The analysis performed revealed the presence of Lep and LepR in the chief and neuroendocrine cells of the fundic glands of the abomasum. RT-qPCR evidenced the transcript for Lep and LepR also identifying the long isoform (LepRb). No significant differences were observed among the three groups of sheep subjected to different diets. The abundant immunostaining observed in the fundic glands suggests that the Lep intervenes in the regulation of abomasum in sheep with a similar pattern to monogastric species while long term food supplementation seems do not influence the local function of the Lep system. A better understanding of the gastrointestinal system can contribute to improving sheep management and optimising the sustainability of livestock production.
Collapse
|
16
|
|
Motahari Rad M, Bijeh N, Attarzadeh Hosseini SR, Raouf Saeb A. The effect of two concurrent exercise modalities on serum concentrations of FGF21, irisin, follistatin, and myostatin in men with type 2 diabetes mellitus. Arch Physiol Biochem 2023;129:424-33. [PMID: 33044849 DOI: 10.1080/13813455.2020.1829649] [Cited by in Crossref: 11] [Cited by in RCA: 4] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/13/2023]
Abstract
This study investigated the effect of concurrent training (CT) sequences on fibroblast growth factor 21 (FGF21), irisin, myostatin (MSTN), and follistatin (FST) among adults with type 2 diabetes mellitus (T2DM). Fifty-one diabetic men were randomly selected and assigned to concurrent aerobic-resistance (A-R) training and concurrent resistance-aerobic (R-A) training, and non-exercise control (CON) groups. The training protocols consisted of three sessions per week for 12 weeks. The A-R and R-A groups received the same CT protocols and performed with different sequences. The subjects' blood samples were obtained at baseline and 48 hours after the last session of the intervention. The results showed that the concentration of FGF21 did not change significantly after the 12 weeks of CT with different sequences (p > .05, η2 = 0.123), but the serum concentration of irisin (A-R = 2.93 μg.L-1 (95% CI = 1.45-4.42, d = -0.57) and R-A = 3.31 μg.L-1 (95% CI = 1.13-5.49, d = -0.68)) and FST (A-R = 4.96 ng.mL-1 (95% CI = 3.41-6.5, d = -0.39) and R-A = 4.19 ng.mL-1 (95% CI = 2.82-5.56, d = -0.55)) significantly increased while the serum MSTN concentration (A-R = 152.32 ng.L-1 (95% CI = 61.83-242.82, d = 1.31) and R-A = 173 ng.L-1 (95% CI = 35.89-227.5, d = 0.83)) of both A-R and R-A groups mainly decreased (p < .01). There was no significant difference between A-R and R-A groups' irisin, FST, and MSTN concentration (p > .05), though the CT improved the body compositions, strength, and peak oxygen uptake in both groups (p < .01). Regardless of the CT sequences, it was found that CT acted as a therapeutic modality of training for T2DM patients by increasing their irisin and FST and decreasing their MSTN concentrations.
Collapse
|
17
|
|
Guilherme A, Rowland LA, Wang H, Czech MP. The adipocyte supersystem of insulin and cAMP signaling. Trends Cell Biol 2023;33:340-54. [PMID: 35989245 DOI: 10.1016/j.tcb.2022.07.009] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/28/2023]
Abstract
Adipose tissue signals to brain, liver, and muscles to control whole body metabolism through secreted lipid and protein factors as well as neurotransmission, but the mechanisms involved are incompletely understood. Adipocytes sequester triglyceride (TG) in fed conditions stimulated by insulin, while in fasting catecholamines trigger TG hydrolysis, releasing glycerol and fatty acids (FAs). These antagonistic hormone actions result in part from insulin's ability to inhibit cAMP levels generated through such G-protein-coupled receptors as catecholamine-activated β-adrenergic receptors. Consistent with these antagonistic signaling modes, acute actions of catecholamines cause insulin resistance. Yet, paradoxically, chronically activating adipocytes by catecholamines cause increased glucose tolerance, as does insulin. Recent results have helped to unravel this conundrum by revealing enhanced complexities of these hormones' signaling networks, including identification of unexpected common signaling nodes between these canonically antagonistic hormones.
Collapse
|
18
|
|
Della Guardia L, Wang L. Fine particulate matter induces adipose tissue expansion and weight gain: Pathophysiology. Obes Rev 2023;24:e13552. [PMID: 36700515 DOI: 10.1111/obr.13552] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/27/2023]
Abstract
Dysregulations in energy balance represent a major driver of obesity. Recent evidence suggests that environmental factors also play a pivotal role in inducing weight gain. Chronic exposure to fine particulate matter (PM2.5 ) is associated with white adipose tissue (WAT) expansion in animals and higher rates of obesity in humans. This review discusses metabolic adaptions in central and peripheral tissues that promote energy storage and WAT accumulation in PM2.5 -exposed animals and humans. Chronic PM2.5 exposure produces inflammation and leptin resistance in the hypothalamus, decreasing energy expenditure and increasing food intake. PM2.5 promotes the conversion of brown adipocytes toward the white phenotype, resulting in decreased energy expenditure. The development of inflammation in WAT can stimulate adipogenesis and hampers catecholamine-induced lipolysis. PM2.5 exposure affects the thyroid, reducing the release of thyroxine and tetraiodothyronine. In addition, PM2.5 exposure compromises skeletal muscle fitness by inhibiting Nitric oxide (NO)-dependent microvessel dilation and impairing mitochondrial oxidative capacity, with negative effects on energy expenditure. This evidence suggests that pathological alterations in the hypothalamus, brown adipose tissue, WAT, thyroid, and skeletal muscle can alter energy homeostasis, increasing lipid storage and weight gain in PM2.5 -exposed animals and humans. Further studies will enrich this pathophysiological model.
Collapse
|
19
|
|
Zhang W, Kong L, Zhong Z, Lin L, Li J, Zheng G. Short chain fatty acids increase fat oxidation and promote browning through β3-adrenergic receptor/AMP-activated protein kinase α signaling pathway in 3T3-L1 adipocytes. J Funct Foods 2023;103:105488. [DOI: 10.1016/j.jff.2023.105488] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/11/2023] Open
|
20
|
|
Li X, Yao Y, Yu C, Wei T, Xi Q, Li J, Chen F, Deng ZY, Luo T. Modulation of PPARα-thermogenesis gut microbiota interactions in obese mice administrated with zingerone. J Sci Food Agric 2023;103:3065-76. [PMID: 36424723 DOI: 10.1002/jsfa.12352] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/27/2022]
Abstract
BACKGROUND This study aimed to uncover the potential effects of zingerone (ZIN), one of the bioactive compounds in ginger, on the development of obesity as well as the mechanisms responsible for these effects in C57BL/6J mice fed with a high-fat diet (HFD). RESULTS Supplementation with 0.2% (wt/wt) zingerone for 16 weeks significantly reduced the final body weight, liver weight, and epididymal white adipose tissue (eWAT) weight without changing the food intake of the mice when compared with the HFD group. The hyperlipidemia of HFD-fed mice was ameliorated after zingerone administration, including decreased plasma triacylglycerol (TG) and total cholesterol (TC) level. The lipid content in liver was lower and the adipocyte size in eWAT and inguinal white adipose tissue (iWAT) was smaller in HFD + ZIN-fed mice compared with HFD group. Zingerone also binds with nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARα) with an optimal docking energy of -7.31 kJ/mol. Uncoupling protein 1 (UCP1), PPAR-γ coactivator-1α (PGC-1α), and PR domain containing 16 (PRDM16), the downstream genes of PPAR which are related to thermogenic function of adipocytes, were significantly increased in both brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) after zingerone administration, in comparison with HFD fed mice. Zingerone intake also restructured the community composition of gut microbiota. The ratio of Firmicutes to Bacteroidetes was decreased, and the relative abundance of Akkermansia_mucinphila was increased. CONCLUSION Zingerone can attenuate obesity and related symptoms in HFD-fed mice, probably through the modulation of PPARα-thermogenesis-gut microbiota interactions. © 2022 Society of Chemical Industry.
Collapse
|
21
|
|
He T, Wang S, Li S, Shen H, Hou L, Liu Y, Wei Y, Xie F, Zhang Z, Zhao Z, Mo C, Guo H, Huang Q, Zhang R, Shen D, Li B. Suppression of preadipocyte determination by SOX4 limits white adipocyte hyperplasia in obesity. iScience 2023;26:106289. [DOI: 10.1016/j.isci.2023.106289] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/18/2023] Open
|
22
|
|
Yin X, Xu Z, Zhang X, Wu J, Lu W. Deficiency of lipopolysaccharide binding protein facilitates adipose browning, glucose uptake and oxygen consumption in mouse embryonic fibroblasts via activating PI3K/Akt/mTOR pathway and inhibiting autophagy. Cell Cycle 2023;22:967-85. [PMID: 36710409 DOI: 10.1080/15384101.2023.2169521] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/31/2023] Open
Abstract
This study aimed to explore the role of lipopolysaccharide-binding protein (LBP) in adipose browning. Mouse embryonic fibroblasts (MEFs) were treated with differentiation induction reagents and Perifosine (Akt inhibitor), with the transfection of Atg5, short hairpin RNA targeting LBP (shLBP), and Atg5 (shAtg5). The expression levels of LBP, inflammatory markers , brown fat markers, lipid metabolism marker, autophagy markers, insulin signaling-related molecules , p-mTOR, mTOR, p-Akt, Akt, p-PI3K, and PI3K were quantified or determined by Western blot, qRT-PCR, and immunofluorescence assay. The formation of lipid was examined through Oil red O staining assay. The consumption of oxygen was assessed using a Seahorse XF96 analyzer, and the uptake of glucose was evaluated by [3H]-2-deoxy-D-glucose uptake assay. Deficiency of LBP promoted adipose browning, oxygen consumption, glucose uptake, and insulin sensitivity in differentiated MEFs, where it inhibited inflammation and autophagy. All of the effects above were reversed by Atg5 overexpression. Meanwhile, the knockdown of Atg5 strengthened the activation of PI3K/Akt/mTOR pathway induced by the depletion of LBP, while Perifosine partly reversed the activation of differentiated MEFs. The knockdown of LBP facilitated adipose browning, glucose uptake, and oxygen consumption in MEFs via the activation of PI3K/Akt/mTOR pathway and the inhibition of autophagy.
Collapse
|
23
|
|
Ali M, Farwa U, Park SS, Kim YS, Lee BT. Physico-biological and in vivo evaluation of irisin loaded 45S5 porous bioglass granules for bone regeneration. Biomater Adv 2023;147:213326. [PMID: 36758281 DOI: 10.1016/j.bioadv.2023.213326] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/05/2023]
Abstract
In this study, we investigated the physico-biological and in-vivo evaluation of irisin loaded 45S5 bioglass bone graft for enhancing osteoblastic differentiation and bone regeneration in rat femur head defect model. Highly porous structure was obtained in the bioglass by burn-out process with varying the concentration of poly (methyl methacrylate) (PMMA) spheres. 10 % polyvinyl alcohol (PVA) was used as a binder for the sustain releasing of irisin on porous bioglass. Different concentrations of irisin were loaded on the selected bioglass samples and these were further evaluated for the biocompatibility and osteoblastic differentiation properties. The in vitro results demonstrated not only its biocompatibility but also that it stimulated pre-osteoblast differentiation. The in vivo data showed new bone formation as well as expression of osteogenic proteins like alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx-2), osteopontin (OPN), and collagen-1 (Col-1). Our results support the use of irisin loaded bioglass for the use of early bone regeneration.
Collapse
|
24
|
|
Bizanti A, Zhang Y, Harden SW, Chen J, Hoover DB, Gozal D, Shivkumar K, Cheng ZJ. Catecholaminergic axon innervation and morphology in flat-mounts of atria and ventricles of mice. J Comp Neurol 2023;531:596-617. [PMID: 36591925 DOI: 10.1002/cne.25444] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/03/2023]
Abstract
Sympathetic efferent axons regulate cardiac functions. However, the topographical distribution and morphology of cardiac sympathetic efferent axons remain insufficiently characterized due to the technical challenges involved in immunohistochemical labeling of the thick walls of the whole heart. In this study, flat-mounts of the left and right atria and ventricles of FVB mice were immunolabeled for tyrosine hydroxylase (TH), a marker of sympathetic nerves. Atrial and ventricular flat-mounts were scanned using a confocal microscope to construct montages. We found (1) In the atria: A few large TH-immunoreactive (IR) axon bundles entered both atria, branched into small bundles and then single axons that eventually formed very dense terminal networks in the epicardium, myocardium and inlet regions of great vessels to the atria. Varicose TH-IR axons formed close contact with cardiomyocytes, vessels, and adipocytes. Multiple intrinsic cardiac ganglia (ICG) were identified in the epicardium of both atria, and a subpopulation of the neurons in the ICG were TH-IR. Most TH-IR axons in bundles traveled through ICG before forming dense varicose terminal networks in cardiomyocytes. We did not observe varicose TH-IR terminals encircling ICG neurons. (2) In the left and right ventricles and interventricular septum: TH-IR axons formed dense terminal networks in the epicardium, myocardium, and vasculature. Collectively, TH labeling is achievable in flat-mounts of thick cardiac walls, enabling detailed mapping of catecholaminergic axons and terminal structures in the whole heart at single-cell/axon/varicosity scale. This approach provides a foundation for future quantification of the topographical organization of the cardiac sympathetic innervation in different pathological conditions.
Collapse
|
25
|
|
da Cunha LL, Feter N, Alt R, Rombaldi AJ. Effects of exercise training on inflammatory, neurotrophic and immunological markers and neurotransmitters in people with depression: A systematic review and meta-analysis. J Affect Disord 2023;326:73-82. [PMID: 36709828 DOI: 10.1016/j.jad.2023.01.086] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/28/2023]
Abstract
BACKGROUND Major depressive disorder is the most common type of mental disorder. The biological pathway by which exercise promotes its antidepressant effects remains uncleared. This study aimed to systematically review the chronic effect of exercise on blood biomarkers and its association with changes in depressive symptoms in adults with major depressive disorder. METHODS Randomized controlled trials (RCT) published until February 2020 were screened in seven databases. Studies were systematically reviewed by two independent reviewers. Random effect meta-analysis was performed and reported as standardized mean differences (SMD) and 95 % confidence interval (CI). The meta- analysis protocol was registered with PROSPERO (CRD42021221177). RESULTS From 3865 records, 12 studies (N = 757 participants, mean age [SD]: 43.0 [11.0], 66.2 % women) were included in this review. Exercise training resulted in superior increase in circulating BDNF (SMD: 0.44, 95%CI: 0.15, 0.73) and kynurenine (SMD: 0.29, 95%CI: 0.04, 0.54), and decrease depressive symptoms (SMD: -0.72, 95%CI: -1.08, -0.37) in adults with major depression disorder compared to control groups. Multivariate meta-regression analysis showed that improvements in circulating levels of BDNF, kynurenine and interleukyn-6 were associated with decreases in depressive symptoms. LIMITATIONS Results were not stratified by the type of medication used by participants due to the lack of reporting of the included studies. Few studies provided data on other biomarkers (e.g., TNF-α and IL-10) besides BNDF and kynurenine. CONCLUSIONS Antidepressant effect of exercise may be triggered by improved circulating levels of BNDF, kynurenine, and interleukine-6 in adults with major depressive disorder.
Collapse
|
26
|
|
Yang Y, Geng T, Samara A, Olstad OK, He J, Agger AE, Skallerud BH, Landin MA, Heyward CA, Pullisaar H, Reseland JE. Recombinant irisin enhances the extracellular matrix formation, remodeling potential, and differentiation of human periodontal ligament cells cultured in 3D. J Periodontal Res 2023;58:336-49. [PMID: 36625247 DOI: 10.1111/jre.13094] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/11/2023]
Abstract
BACKGROUND Irisin is expressed in human periodontal ligament (hPDL), and its administration enhances growth, migration and matrix deposition in hPDL cells cultured in monolayers in vitro. OBJECTIVES To identify whether irisin affects the gene expression patterns directing the morphology, mechanical properties, extracellular matrix (ECM) formation, osteogenic activity and angiogenic potential in hPDL cell spheroids cultured in 3D. MATERIALS AND METHODS Spheroids of primary human hPDL cells were generated in a rotational 3D culture system and treated with or without irisin. The gene expression patterns were evaluated by Affymetrix microarrays. The morphology of the spheroids was characterized using histological staining. Mechanical properties were quantified by nanoindentation. The osteogenic and angiogenic potential of spheroids were assessed through immunofluorescence staining for collagen type I, periostin fibronectin and von Willebrand factor (vWF), and mRNA expression of osteogenic markers. The secretion of multiple myokines was evaluated using Luminex immunoassays. RESULTS Approximately 1000 genes were differentially expressed between control and irisin-treated groups by Affymetrix. Several genes related to ECM organization were differentially expressed, and multiple deubiquitinating enzymes were upregulated in the irisin-exposed samples analyzed. These represent cellular and molecular mechanisms indicative of a role for irisin in tissue remodeling. Irisin induced a rim-like structure on the outer region of the hPDL spheroids, ECM-related protein expression and the stiffness of the spheroids were enhanced by irisin. The expression of osteogenic and angiogenetic markers was increased by irisin. CONCLUSIONS Irisin altered the morphology in primary hPDL cell-derived spheroids, enhanced its ECM deposition, mechanical properties, differentiation and remodeling potential.
Collapse
|
27
|
|
Afonso MB, Islam T, Magusto J, Amorim R, Lenoir V, Simões RF, Teixeira J, Silva LC, Wendum D, Jéru I, Vigouroux C, Castro RE, Oliveira PJ, Prip-Buus C, Ratziu V, Gautheron J, Rodrigues CMP. RIPK3 dampens mitochondrial bioenergetics and lipid droplet dynamics in metabolic liver disease. Hepatology 2023;77:1319-34. [PMID: 36029129 DOI: 10.1002/hep.32756] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Receptor-interacting protein kinase 3 (RIPK3) mediates NAFLD progression, but its metabolic function is unclear. Here, we aimed to investigate the role of RIPK3 in modulating mitochondria function, coupled with lipid droplet (LD) architecture in NAFLD. APPROACH AND RESULTS Functional studies evaluating mitochondria and LD biology were performed in wild-type (WT) and Ripk3-/- mice fed a choline-deficient, amino acid-defined (CDAA) diet for 32 and 66 weeks and in CRISPR-Cas9 Ripk3 -null fat-loaded immortalized hepatocytes. The association between hepatic perilipin (PLIN) 1 and 5, RIPK3, and disease severity was also addressed in a cohort of patients with NAFLD and in PLIN1 -associated familial partial lipodystrophy. Ripk3 deficiency rescued impairment in mitochondrial biogenesis, bioenergetics, and function in CDAA diet-fed mice and fat-loaded hepatocytes. Ripk3 deficiency was accompanied by a strong upregulation of antioxidant systems, leading to diminished oxidative stress upon fat loading both in vivo and in vitro. Strikingly, Ripk3-/- hepatocytes displayed smaller size LD in higher numbers than WT cells after incubation with free fatty acids. Ripk3 deficiency upregulated adipocyte and hepatic levels of LD-associated proteins PLIN1 and PLIN5. PLIN1 upregulation controlled LD structure and diminished mitochondrial stress upon free fatty acid overload in Ripk3-/- hepatocytes and was associated with diminished human NAFLD severity. Conversely, a pathogenic PLIN1 frameshift variant was associated with NAFLD and fibrosis, as well as with increased hepatic RIPK3 levels in familial partial lipodystrophy. CONCLUSIONS Ripk3 deficiency restores mitochondria bioenergetics and impacts LD dynamics. RIPK3 inhibition is promising in ameliorating NAFLD.
Collapse
|
28
|
|
Vadalà G, Di Giacomo G, Ambrosio L, Cicione C, Tilotta V, Russo F, Papalia R, Denaro V. Effect of Irisin on Human Nucleus Pulposus Cells: New Insights into the Biological Cross-talk Between Muscle and Intervertebral Disk. Spine (Phila Pa 1976) 2023;48:468-75. [PMID: 36149858 DOI: 10.1097/BRS.0000000000004488] [Cited by in Crossref: 2] [Cited by in RCA: 1] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vitro study. OBJECTIVE To investigate the effect of irisin on human nucleus pulposus cells (hNPCs) in vitro. SUMMARY OF BACKGROUND DATA Physical exercise (PE) favours weight loss and ameliorates function in patients with low back pain. Although there is no biological evidence that the intervertebral disk (IVD) can respond to PE, recent studies have shown that running is associated with increased IVD hydration and hypertrophy. Irisin, a myokine released upon muscle contraction, has demonstrated anabolic effects on different cell types, including chondrocytes. MATERIALS AND METHODS hNPCs were exposed to 5, 10, and 25 ng/mL irisin. Cell proliferation, glycosaminoglycan (GAG) content, metabolic activity, gene expression of collagen type II (COL2), matrix metalloproteinase (MMP)-13, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and TIMP-3, aggrecan (ACAN), interleukin (IL)-1β, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 were assessed. In addition, MTT assay and ADAMTS-5, COL2, TIMP-1, and IL-1β gene expression were evaluated following incubation with irisin for 24 hours and subsequent culture with 10 ng/mL IL-1β and vice versa (incubation for 24 hours with IL-1β and subsequent culture with irisin). RESULTS Irisin increased hNPC proliferation, metabolic activity, and GAG content, as well as COL2, ACAN, TIMP-1 and TIMP-3 gene expression, while decreasing MMP-13 and IL-1β mRNA levels. Irisin pretreatment of hNPCs cultured in proinflammatory conditions resulted in a rescue of metabolic activity and a decrease of IL-1β levels. Similarly, incubation of hNPCs with IL-1β and subsequent exposure to irisin led to an increment of metabolic activity, COL2 gene expression, and a reduction of IL-1β and ADAMTS-5 levels. CONCLUSIONS Irisin increases hNPC proliferation, GAG content, metabolic activity, and promotes anabolic gene expression while reducing catabolic markers. Irisin may be one of the mediators by which PE and muscle tissues modulate IVD metabolism, suggesting the existence of a biological cross-talk between the muscle and IVD.
Collapse
|
29
|
|
Mathias LS, Herman-de-Sousa C, Cury SS, Nogueira CR, Correia-de-Sá P, de Oliveira M. RNA-seq reveals that anti-obesity irisin and triiodothyronine (T3) hormones differentially affect the purinergic signaling transcriptomics in differentiated human adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2023;1868:159276. [PMID: 36642213 DOI: 10.1016/j.bbalip.2022.159276] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/15/2023]
Abstract
The anti-obesity thyroid hormone, triiodothyronine (T3), and irisin, an exercise- and/or cold-induced myokine, stimulate thermogenesis and energy consumption while decreasing lipid accumulation. The involvement of ATP signaling in adipocyte cell function and obesity has attracted increasing attention, but the crosstalk between the purinergic signaling cascade and anti-obesity hormones lacks experimental evidence. In this study, we investigated the effects of T3 and irisin in the transcriptomics of membrane-bound purinoceptors, ectonucleotidase enzymes and nucleoside transporters participating in the purinergic signaling in cultured human adipocytes. The RNA-seq analysis revealed that differentiated adipocytes express high amounts of ADORA1, P2RY11, P2RY12, and P2RX6 gene transcripts, along with abundant levels of transcriptional products encoding to purine metabolizing enzymes (ENPP2, ENPP1, NT5E, ADA and ADK) and transporters (SLC29A1, SCL29A2). The transcriptomics of purinergic signaling markers changed in parallel to the upsurge of "browning" adipocyte markers, like UCP1 and P2RX5, after treatment with T3 and irisin. Upregulation of ADORA1, ADORA2A and P2RX4 gene transcription was obtained with irisin, whereas T3 preferentially upregulated NT5E, SLC29A2 and P2RY11 genes. Irisin was more powerful than T3 towards inhibition of the leptin gene transcription, the SCL29A1 gene encoding for the ENT1 transporter, the E-NPP2 (autotaxin) gene, and genes that encode for two ADP-sensitive P2Y receptors, P2RY1 and P2RY12. These findings indicate that anti-obesity irisin and T3 hormones differentially affect the purinergic signaling transcriptomics, which might point towards new directions for the treatment of obesity and related metabolic disorders that are worth to be pursued in future functional studies.
Collapse
|
30
|
|
Wang Y, Chen X, Baker JS, Davison GW, Xu S, Zhou Y, Bao X. Astaxanthin promotes mitochondrial biogenesis and antioxidant capacity in chronic high-intensity interval training. Eur J Nutr 2023;62:1453-66. [PMID: 36650315 DOI: 10.1007/s00394-023-03083-2] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/18/2023]
Abstract
PURPOSE Reactive oxygen and nitrogen species are required for exercise-induced molecular adaptations; however, excessive exercise may cause cellular oxidative distress. We postulate that astaxanthin (ASX) can neutralize oxidative distress and stimulate mitochondrial biogenesis in high-intensity exercise-trained mice. METHODS Six-week-old mice (n = 8/group) were treated with ASX (10 mg/kg BW) or placebo. Training groups participated in 30 min/day high-intensity interval training (HIIT) for 6 weeks. Gastrocnemius muscle was collected and assayed following the exercise training period. RESULTS Compared to the HIIT control mice, the ASX-treated HIIT mice reduced malonaldehyde levels and upregulated the expression of Nrf2 and FOXO3a. Meanwhile, the genes NQO1 and GCLC, modulated by Nrf2, and SOD2, regulated by FOXO3a, and GPx4, were transcriptionally upregulated in the ASX-treated HIIT group. Meanwhile, the expression of energy sensors, AMPK, SIRT1, and SIRT3, increased in the ASX-treated HIIT group compared to the HIIT control group. Additionally, PGC-1α, regulated by AMPK and SIRT1, was upregulated in the ASX-treated HIIT group. Further, the increased PGC-1α stimulated the transcript of NRF1 and Tfam and mitochondrial proteins IDH2 and ATP50. Finally, the ASX-treated HIIT mice had upregulations in the transcript level of mitochondrial fusion factors, including Mfn1, Mfn2, and OPA1. However, the protein level of AMPK, SIRT1, and FOXO3a, and the transcript level of Nrf2, NQO1, PGC-1α, NRF1, Mfn1, Mfn2, and OPA1 decreased in the HIIT control group compared to the sedentary control group. CONCLUSION Supplementation with ASX can reduce oxidative stress and promote antioxidant capacity and mitochondrial biogenesis during strenuous HIIT exercise in mice.
Collapse
|
31
|
|
Guria S, Hoory A, Das S, Chattopadhyay D, Mukherjee S. Adipose tissue macrophages and their role in obesity-associated insulin resistance: an overview of the complex dynamics at play. Biosci Rep 2023;43. [PMID: 36718668 DOI: 10.1042/BSR20220200] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/01/2023] Open
Abstract
Obesity, a major global health concern, is characterized by serious imbalance between energy intake and expenditure leading to excess accumulation of fat in adipose tissue (AT). A state of chronic low-grade AT inflammation is prevalent during obesity. The adipose tissue macrophages (ATM) with astounding heterogeneity and complex regulation play a decisive role in mediating obesity-induced insulin resistance. Adipose-derived macrophages were broadly classified as proinflammatory M1 and anti-inflammatory M2 subtypes but recent reports have proclaimed several novel and intermediate profiles, which are crucial in understanding the dynamics of macrophage phenotypes during development of obesity. Lipid-laden hypertrophic adipocytes release various chemotactic signals that aggravate macrophage infiltration into AT skewing toward mostly proinflammatory status. The ratio of M1-like to M2-like macrophages is increased substantially resulting in copious secretion of proinflammatory mediators such as TNFα, IL-6, IL-1β, MCP-1, fetuin-A (FetA), etc. further worsening insulin resistance. Several AT-derived factors could influence ATM content and activation. Apart from being detrimental, ATM exerts beneficial effects during obesity. Recent studies have highlighted the prime role of AT-resident macrophage subpopulations in not only effective clearance of excess fat and dying adipocytes but also in controlling vascular integrity, adipocyte secretions, and fibrosis within obese AT. The role of ATM subpopulations as friend or foe is determined by an intricate interplay of such factors arising within hyperlipidemic microenvironment of obese AT. The present review article highlights some of the key research advances in ATM function and regulation, and appreciates the complex dynamics of ATM in the pathophysiologic scenario of obesity-associated insulin resistance.
Collapse
|
32
|
|
Muzyka I, Revenko O, Kovalchuk I, Savytska M, Bekesevych A, Kasko R, Zayachkivska O. What is the role of brown adipose tissue in metabolic health: lessons learned and future perspectives in the long COVID? Inflammopharmacology 2023. [PMID: 36964859 DOI: 10.1007/s10787-023-01188-y] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Indexed: 03/26/2023]
Abstract
Metabolic physiology plays a key role in maintaining our health and resilience. Metabolic disorders can lead to serious illnesses, including obesity. The pathogenesis of the new long COVID syndrome in individuals with long-term recovery after SARS-Co-2 infection is still incomplete. Thus there is growing attention in the study of adipose tissue activities, especially brown adipose tissue (BAT) and associated resilience which plays a crucial role in different types of obesity as potential targets for pharmacologic and nutritional interventions in the context of obesity and long COVID. The number of studies examining mechanisms underlying BAT has grown rapidly in the last 10 years despite of role of BAT in individuals with COVID-19 and long COVID is modest. Therefore, this review aims to sum up data examining BAT activities, its resilience in health, obesity, and the possible link to long COVID. The search was conducted on studies published in English mostly between 2004 and 2022 in adult humans and animal models. Database searches were conducted using PubMed, Scopus, and Google Scholar for key terms including adipose tissue, BAT, adipokines, obesity, VPF/VEGF, and pathogenesis. From the initial search through the database were identified relevant articles that met inclusion and exclusion criteria and our data regarding adipose tissues were presented in this review. It will discuss adiposity tissue activities. Current literature suggests that there are BAT integral effects to whitening and browning fat phenomena which reflect the homeostatic metabolic adaptive ability for environmental demand or survival/adaptive mechanisms. We also review neural and vascular impacts in BAT that play a role in resilience and obesity. Finally, we discuss the role of BAT in the context of long COVID in basic research and clinical research.
Collapse
|
33
|
|
Xin N, Gao D, Su B, Zhou T, Zhu Y, Wu C, Wei D, Sun J, Fan H. Orange-Emissive Carbon Dots with High Photostability for Mitochondrial Dynamics Tracking in Living Cells. ACS Sens 2023;8:1161-72. [PMID: 36795996 DOI: 10.1021/acssensors.2c02451] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/18/2023]
Abstract
Mitochondria play significant roles in maintaining a stable internal environment for cell metabolism. Hence, real-time monitoring of the dynamics of mitochondria is essential for further understanding mitochondria-related diseases. Fluorescent probes provide powerful tools for visualizing dynamic processes. However, most mitochondria-targeted probes are derived from organic molecules with poor photostability, making long-term dynamic monitoring challenging. Herein, we design a novel mitochondria-targeted probe based on carbon dots with high performance for long-term tracking. Considering that the targeting ability of CDs is related to surface functional groups, which are generally determined by the reaction precursors, we successfully constructed mitochondria-targeted O-CDs with emission at 565 nm through solvothermal treatment of m-diethylaminophenol. The O-CDs are bright with a high quantum yield of 12.61%, high mitochondria-targeting ability, and good stability. The O-CDs possess a high quantum yield (12.61%), specific mitochondria-targeting ability, and outstanding optical stability. Owing to the abundant hydroxyl and ammonium cations on the surface, O-CDs showed obvious accumulation in mitochondria with a high colocalization coefficient of up to 0.90 and remained steady even after fixation. Besides, O-CDs showed outstanding compatibility and photostability under various interruptions or long-time irradiation. Therefore, O-CDs are preferable for the long-term tracking of dynamic mitochondrial behavior in live cells. We first observed the mitochondrial fission and fusion behaviors in HeLa cells, and then, the size, morphology, and distribution of mitochondria in physiological or pathological conditions were clearly recorded. More importantly, we observed different dynamics interactions between mitochondria and lipid droplets during the apoptosis and mitophagy processes. This study provides a potential tool for exploring interactions between mitochondria and other organelles, further promoting the research on mitochondria-related diseases.
Collapse
|
34
|
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023;8:139. [PMID: 36964133 DOI: 10.1038/s41392-023-01376-w] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
|
35
|
|
Holman CD, Sakers AP, Calhoun RP, Cheng L, Fein EC, Jacobs C, Tsai L, Rosen ED, Seale P. Aging impairs cold-induced beige adipogenesis and adipocyte metabolic reprogramming.. [DOI: 10.1101/2023.03.20.533514] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/28/2023]
Abstract
AbstractThe energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process. We found that aging increases the expression ofCd9and other fibrogenic genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiationin vitro, suggesting that environmental factors suppress adipogenesisin vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with age and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels ofde novolipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified natriuretic peptide clearance receptorNpr3, a beige fat repressor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a unique resource for identifying cold and/or aging-regulated pathways in adipose tissue.
Collapse
|
36
|
|
Mi Y, Qi G, Vitali F, Shang Y, Raikes AC, Wang T, Jin Y, Brinton RD, Gu H, Yin F. Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nat Metab 2023. [PMID: 36959514 DOI: 10.1038/s42255-023-00756-4] [Cited by in Crossref: 0] [Cited by in RCA: 1] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/25/2023]
Abstract
Astrocytes provide key neuronal support, and their phenotypic transformation is implicated in neurodegenerative diseases. Metabolically, astrocytes possess low mitochondrial oxidative phosphorylation (OxPhos) activity, but its pathophysiological role in neurodegeneration remains unclear. Here, we show that the brain critically depends on astrocytic OxPhos to degrade fatty acids (FAs) and maintain lipid homeostasis. Aberrant astrocytic OxPhos induces lipid droplet (LD) accumulation followed by neurodegeneration that recapitulates key features of Alzheimer's disease (AD), including synaptic loss, neuroinflammation, demyelination and cognitive impairment. Mechanistically, when FA load overwhelms astrocytic OxPhos capacity, elevated acetyl-CoA levels induce astrocyte reactivity by enhancing STAT3 acetylation and activation. Intercellularly, lipid-laden reactive astrocytes stimulate neuronal FA oxidation and oxidative stress, activate microglia through IL-3 signalling, and inhibit the biosynthesis of FAs and phospholipids required for myelin replenishment. Along with LD accumulation and impaired FA degradation manifested in an AD mouse model, we reveal a lipid-centric, AD-resembling mechanism by which astrocytic mitochondrial dysfunction progressively induces neuroinflammation and neurodegeneration.
Collapse
|
37
|
|
Wang Y, Ye L. Somatosensory Innervation of Adipose Tissues. Physiol Behav 2023;:114174. [PMID: 36965573 DOI: 10.1016/j.physbeh.2023.114174] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/27/2023]
Abstract
The increasing prevalence of obesity and type 2 diabetes has led to a greater interest in adipose tissue physiology. Adipose tissue is now understood as an organ with endocrine and thermogenic capacities in addition to its role in fat storage. It plays a critical role in systemic metabolism and energy regulation, and its activity is tightly regulated by the nervous system. Fat is now recognized to receive sympathetic innervation, which transmits information from the brain, as well as sensory innervation, which sends information into the brain. The role of sympathetic innervation in adipose tissue has been extensively studied. However, the extent and the functional significance of sensory innervation have long been unclear. Recent studies have started to reveal that sensory neurons robustly innervate adipose tissue and play an important role in regulating fat activity. This brief review will discuss both historical evidence and recent advances, as well as important remaining questions about the sensory innervation of adipose tissue.
Collapse
|
38
|
|
Jiang X, Yan Q, Lao W, Lin Q, Cao H, Chen L, Chen J, Yu X, Liu F. Irisin attenuates ethanol-induced behavioral deficits in mice through activation of Nrf2 and inhibition of NF-κB pathways. Metab Brain Dis 2023. [PMID: 36947333 DOI: 10.1007/s11011-023-01202-w] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Indexed: 03/23/2023]
Abstract
This study aims to investigate the effect of irisin on ethanol-induced behavioral deficits and explore the underlying mechanisms. A mouse model of ethanol addiction/withdrawal was constructed through chronic ethanol administration. Depressive-like behaviors were evaluated by the tail suspension test and forced swimming test, and anxiety-like behaviors were evaluated by the marble-burying test and elevated plus maze test. The expression of Nrf2 was measured by western blotting. Levels of inflammatory mediators (NF-κB, TNF-α, IL-1β and IL-6) and oxidative stress factors (ROS, MDA, GSH and SOD) were detected by ELISA. The ethanol-induced PC12/BV2 cell injury model was used to elucidate whether the effect of irisin on ethanol-induced neurological injury was related to anti-inflammatory and antioxidant mechanisms. Ethanol-induced ethanol preference and emotional deficits were improved by chronic irisin treatment; however, these improvements were partly reversed by cotreatment with the Nrf2 inhibitor ML385. Further results implied that the improvement effect of irisin on behavioral abnormalities may be related to its anti-inflammatory and antioxidant effects. In detail, irisin inhibited ethanol-induced abnormal expression of ROS and MDA and upregulated the expression of GSH and SOD. Meanwhile, irisin treatment inhibited ethanol-induced overexpression of NF-κB, TNF-α, IL-1β and IL-6 in the hippocampus and cerebral cortex. The regulation of oxidative stress factors by irisin was reversed after ML385 treatment. In the in vitro study, overexpression of oxidative stress factors in ethanol-treated PC12 cells was inhibited by irisin treatment; however, the prevention was reversed after the knockdown of Nrf2 siRNA. Moreover, ethanol-induced overexpression of inflammatory mediators in BV2 cells was also inhibited by irisin treatment. Irisin improved depressive and anxiety-like behaviors induced by ethanol addiction/withdrawal in mice, and this protection was greatly associated with the NF-κB-mediated anti-inflammatory signaling pathway and Nrf2-mediated antioxidative stress signaling pathway.
Collapse
|
39
|
|
Muzyka I, Revenko O, Kovalchuk I, Savytska M, Bekesevych A, Zayachkivska O. What is the role of brown adipose tissue in metabolic health: lessons learned and future perspectives in the long COVID? Inflammopharmacology 2023;:1-9. [PMID: 36943540 DOI: 10.1007/s10787-023-01195-z] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/23/2023]
Abstract
Metabolic physiology plays a key role in maintaining our health and resilience. Metabolic disorders can lead to serious illnesses, including obesity. The pathogenesis of the new long COVID syndrome in individuals with long-term recovery after SARS-Co-2 infection is still incomplete. Thus there is growing attention in the study of adipose tissue activities, especially brown adipose tissue (BAT) and associated resilience which plays a crucial role in different types of obesity as potential targets for pharmacologic and nutritional interventions in the context of obesity and long COVID. The number of studies examining mechanisms underlying BAT has grown rapidly in the last 10 years despite of role of BAT in individuals with COVID-19 and long COVID is modest. Therefore, this review aims to sum up data examining BAT activities, its resilience in health, obesity, and the possible link to long COVID. The search was conducted on studies published in English mostly between 2004 and 2022 in adult humans and animal models. Database searches were conducted using PubMed, Scopus, and Google Scholar for key terms including adipose tissue, BAT, adipokinins, obesity, VPF/VEGF, and pathogenesis. From the initial search through the database were identified relevant articles that met inclusion and exclusion criteria and our data regarding adipose tissues were presented in this review. It will discuss adiposity tissue activities. Current literature suggests that there are BAT integral effects to whitening and browning fat phenomenons which reflect the homeostatic metabolic adaptive ability for environmental demand or survival/adaptive mechanisms. We also review neural and vascular impacts in BAT that play a role in resilience and obesity. Finally, we discuss the role of BAT in the context of long COVID in basic research and clinical research.
Collapse
|
40
|
|
Choi M, Yun JW. β-Carotene induces UCP1-independent thermogenesis via ATP-consuming futile cycles in 3T3-L1 white adipocytes. Arch Biochem Biophys 2023;:109581. [PMID: 36948352 DOI: 10.1016/j.abb.2023.109581] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/24/2023]
Abstract
The activation of brown fat and induction of beige adipocytes, so-called non-shivering thermogenesis, is emerging as a promising target for therapeutic intervention in obesity management. Our previous report demonstrated that β-carotene (BC) induces beige adipocytes to increase UCP1-dependent thermogenic activity. However, the UCP1-independent thermogenic effect of BC on adipose tissues remains unexplored. In this study, we examined the effects of BC on UCP1-independent thermogenic activity with a focus on the ATP-consuming futile cycles in 3T3-L1 adipocytes. BC increased intracellular calcium levels and stimulated the expression of calcium cycling-related proteins, including sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) 2b, ryanodine receptor 2 (RyR2), voltage-dependent anion channel (VDAC), mitochondrial calcium uniporter (MCU), and Ca2+/calmodulin-dependent protein kinase 2 (CaMK2) in 3T3-L1 white adipocytes. In addition, BC stimulated thermogenesis by activating the creatine metabolism-related thermogenic pathway. Moreover, BC activated β-carotene oxygenase 1 (BCO1), which efficiently cleaved BC to retinal and consequently converted to its transcriptionally active form retinoic acid. These BC conversion products also exhibited thermogenic effects comparable to a similar level of BC. The mechanistic study revealed that retinal exhibited thermogenic activity independently of retinoic acid and retinoic acid-mediated thermogenesis was resulted partly from conversion of retinal. Moreover, BC activated α1-AR and UCP1-independent thermogenic effectors independently of UCP1 expression. In conclusion, the thermogenic response to BC and its conversion products in 3T3-L1 white adipocytes involves two interacting pathways, one mediated via β3-adrenergic receptors (β3-AR) and cyclic adenosine monophosphate (cAMP) and the other via α1-AR and increases in cytosolic Ca2+ levels activated by calcium regulatory proteins.
Collapse
|
41
|
|
Xiong P, Zhang F, Liu F, Zhao J, Huang X, Luo D, Guo J. Metaflammation in glucolipid metabolic disorders: Pathogenesis and treatment. Biomed Pharmacother 2023;161:114545. [PMID: 36948135 DOI: 10.1016/j.biopha.2023.114545] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/22/2023] Open
Abstract
The public health issue of glucolipid metabolic disorders (GLMD) has grown significantly, posing a grave threat to human wellness. Its prevalence is rising yearly and tends to affect younger people. Metaflammation is an important mechanism regulating body metabolism. Through a complicated multi-organ crosstalk network involving numerous signaling pathways such as NLRP3/caspase-1/IL-1, NF-B, p38 MAPK, IL-6/STAT3, and PI3K/AKT, it influences systemic metabolic regulation. Numerous inflammatory mediators are essential for preserving metabolic balance, but more research is needed to determine how they contribute to the co-morbidities of numerous metabolic diseases. Whether controlling the inflammatory response can influence the progression of GLMD determines the therapeutic strategy for such diseases. This review thoroughly examines the role of metaflammation in GLMD and combs the research progress of related therapeutic approaches, including inflammatory factor-targeting drugs, traditional Chinese medicine (TCM), and exercise therapy. Multiple metabolic diseases, including diabetes, non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, and others, respond therapeutically to anti-inflammatory therapy on the whole. Moreover, we emphasize the value and open question of anti-inflammatory-based means for treating GLMD.
Collapse
|
42
|
|
Cheng CK, Ding H, Jiang M, Yin H, Gollasch M, Huang Y. Perivascular adipose tissue: Fine-tuner of vascular redox status and inflammation. Redox Biol 2023;62:102683. [PMID: 36958248 DOI: 10.1016/j.redox.2023.102683] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/22/2023] Open
Abstract
Perivascular adipose tissue (PVAT) refers to the aggregate of adipose tissue surrounding the vasculature, exhibiting the phenotypes of white, beige and brown adipocytes. PVAT has emerged as an active modulator of vascular homeostasis and pathogenesis of cardiovascular diseases in addition to its structural role to provide mechanical support to blood vessels. More specifically, PVAT is closely involved in the regulation of reactive oxygen species (ROS) homeostasis and inflammation along the vascular tree, through the tight interaction between PVAT and cellular components of the vascular wall. Furthermore, the phenotype-genotype of PVAT at different regions of vasculature varies corresponding to different cardiovascular risks. During ageing and obesity, the cellular proportions and signaling pathways of PVAT vary in favor of cardiovascular pathogenesis by promoting ROS generation and inflammation. Physiological means and drugs that alter PVAT mass, components and signaling may provide new therapeutic insights in the treatment of cardiovascular diseases. In this review, we aim to provide an updated understanding towards PVAT in the context of redox regulation, and to highlight the therapeutic potential of targeting PVAT against cardiovascular complications.
Collapse
|
43
|
|
He H, Pan L, Wang D, Liu F, Du J, Pa L, Wang X, Cui Z, Ren X, Wang H, Peng X, Zhao J, Shan G. The association between muscle-to-fat ratio and cardiometabolic risks: The China National Health Survey. Exp Gerontol 2023;175:112155. [PMID: 36940562 DOI: 10.1016/j.exger.2023.112155] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/23/2023]
Abstract
BACKGROUND The relationship between muscle mass and fat mass might be an indicator to assess the cardiometabolic risk independently from overweight/obesity, but evidence from a representative general Chinese population is lacking. OBJECTIVE To understand the age- and sex-specific associations between muscle-to-fat ratio (MFR) and cardiometabolic risks in Chinese population. METHODS 31,178 (12,526 men and 18,652 women) subjects from the China National Health Survey were included. Muscle mass and fat mass were assessed by a bioelectrical impedance device. MFR was calculated as muscle mass divided by fat mass. Systolic blood pressure (SBP) and diastolic blood pressure (DBP), serum lipids, fasting plasma glucose and serum uric acid were measured. General linear regressions, quantile regressions and restricted cubic-spline (RCS) regressions were applied to assess the effect of MFR on cardiometabolic profiles. RESULTS Per unit increase of MFR was associated with a 0.631 (0.759-0.502) mmHg SBP decrease in men, 2.648 (3.073-2.223) in women; 0.480 (0.568-0.392) mmHg DBP decrease in men, 2.049 (2.325-1.774) in women; a 0.054 (0.062-0.046) mmol/L total cholesterol decrease in men, 0.147 (0.172-0.122) in women; 0.084 (0.098-0.070) mmol/L triglycerides decrease in men, 0.225 (0.256-0.194) in women; a 0.045 (0.054-0.037) mmol/L low-density lipoprotein decrease in men, 0.183 (0.209-0.157) in women; a 2.870 (2.235-3.506) μmol/L serum uric acid decrease in men, 13.352 (14.967-11.737) in women; and a 0.027 (0.020-0.033) mmol/L high-density lipoprotein increase in men, 0.112 (0.098-0.126) mmol/L in women. The effect in overweight/obese people was much significant than in under/normal weight counterparts. The RCS curves revealed both linear and non-linear relationships between increased MFR and lower cardiometabolic risk. CONCLUSIONS Muscle-to-fat ratio is independently associated with multiple cardiometabolic parameters among Chinese adults. Higher MFR is related with better cardiometabolic health, and the effect is much significant in overweight/obese people and women.
Collapse
|
44
|
|
Tu Y, Liu J, Kong D, Guo X, Li J, Long Z, Peng J, Wang Z, Wu H, Liu P, Liu R, Yu W, Li W. Irisin drives macrophage anti-inflammatory differentiation via JAK2-STAT6-dependent activation of PPARγ and Nrf2 signaling. Free Radic Biol Med 2023:S0891-5849(23)00121-1. [PMID: 36940733 DOI: 10.1016/j.freeradbiomed.2023.03.014] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/23/2023]
Abstract
Irisin is an exercise-induced myokine that alleviates inflammation and obesity. The induction of anti-inflammatory (M2) macrophage is facilitated for treatment of sepsis and associated lung damage. However, whether irisin drives macrophage M2 polarization remains unclear. Here, we found that irisin induced-macrophage anti-inflammatory differentiation in vivo using an LPS-induced septic mice model and in vitro using RAW64.7 cells and bone marrow-derived macrophages (BMDMs). Irisin also promoted the expression, phosphorylation, and nuclear translocation of peroxisome proliferator-activated receptor gamma (PPAR-γ) and nuclear factor-erythroid 2-related factor 2 (Nrf2). Inhibition or knockdown of PPAR-γ and Nrf2 abolished irisin-induced accumulation of M2 macrophage markers, such as interleukin (IL)-10 and Arginase 1. Furthermore, dual-luciferase reporter and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assays confirmed that STAT6 boosts PPAR-γ and Nrf2 transcription by binding to their DNA promoters in irisin-stimulated macrophages. In contrast, STAT6 shRNA blocked the irisin-induced activation of Pparγ, Nrf2, and related downstream genes. Moreover, the interaction of irisin with its ligand integrin αVβ5 remarkably promoted Janus kinase 2 (JAK2) phosphorylation, while inhibition or knockdown of integrin αVβ5 and JAK2 attenuated the activation of STAT6, PPAR-γ, and Nrf2 signaling. Interestingly, co-immunoprecipitation (Co-IP) assay also revealed that the binding between JAK2 and integrin αVβ5 is critical for irisin-induced macrophage anti-inflammatory differentiation by enhancing the activation of the JAK2-STAT6 pathway. In conclusion, irisin boosted M2 macrophage differentiation by inducing JAK2-STAT6-dependent transcriptional activation of the PPAR-γ-related anti-inflammatory system and Nrf2-related antioxidant genes. The findings of this study suggest that the administration of irisin is a novel and promising therapeutic strategy for infectious and inflammatory diseases.
Collapse
|
45
|
|
Kwon J, Yeh YS, Kawarasaki S, Minamino H, Fujita Y, Okamatsu-Ogura Y, Takahashi H, Nomura W, Matsumura S, Yu R, Kimura K, Saito M, Inagaki N, Inoue K, Kawada T, Goto T. Mevalonate biosynthesis pathway regulates the development and survival of brown adipocytes. iScience 2023;26:106161. [PMID: 36895651 DOI: 10.1016/j.isci.2023.106161] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/11/2023] Open
Abstract
The high thermogenic activity of brown adipose tissue (BAT) has received considerable attention. Here, we demonstrated the role of the mevalonate (MVA) biosynthesis pathway in the regulation of brown adipocyte development and survival. The inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme in the MVA pathway and the molecular target of statins, suppressed brown adipocyte differentiation by suppressing protein geranylgeranylation-mediated mitotic clonal expansion. The development of BAT in neonatal mice exposed to statins during the fetal period was severely impaired. Moreover, statin-induced geranylgeranyl pyrophosphate (GGPP) deficiency led to the apoptosis of mature brown adipocytes. Brown adipocyte-specific Hmgcr knockout induced BAT atrophy and disrupted thermogenesis. Importantly, both genetic and pharmacological inhibition of HMGCR in adult mice induced morphological changes in BAT accompanied by an increase in apoptosis, and statin-treated diabetic mice showed worsened hyperglycemia. These findings revealed that MVA pathway-generated GGPP is indispensable for BAT development and survival.
Collapse
|
46
|
|
Zerihun M, Sukumaran S, Qvit N. The Drp1-Mediated Mitochondrial Fission Protein Interactome as an Emerging Core Player in Mitochondrial Dynamics and Cardiovascular Disease Therapy. Int J Mol Sci 2023;24:5785. [DOI: 10.3390/ijms24065785] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/22/2023] Open
Abstract
Mitochondria, the membrane-bound cell organelles that supply most of the energy needed for cell function, are highly regulated, dynamic organelles bearing the ability to alter both form and functionality rapidly to maintain normal physiological events and challenge stress to the cell. This amazingly vibrant movement and distribution of mitochondria within cells is controlled by the highly coordinated interplay between mitochondrial dynamic processes and fission and fusion events, as well as mitochondrial quality-control processes, mainly mitochondrial autophagy (also known as mitophagy). Fusion connects and unites neighboring depolarized mitochondria to derive a healthy and distinct mitochondrion. In contrast, fission segregates damaged mitochondria from intact and healthy counterparts and is followed by selective clearance of the damaged mitochondria via mitochondrial specific autophagy, i.e., mitophagy. Hence, the mitochondrial processes encompass all coordinated events of fusion, fission, mitophagy, and biogenesis for sustaining mitochondrial homeostasis. Accumulated evidence strongly suggests that mitochondrial impairment has already emerged as a core player in the pathogenesis, progression, and development of various human diseases, including cardiovascular ailments, the leading causes of death globally, which take an estimated 17.9 million lives each year. The crucial factor governing the fission process is the recruitment of dynamin-related protein 1 (Drp1), a GTPase that regulates mitochondrial fission, from the cytosol to the outer mitochondrial membrane in a guanosine triphosphate (GTP)-dependent manner, where it is oligomerized and self-assembles into spiral structures. In this review, we first aim to describe the structural elements, functionality, and regulatory mechanisms of the key mitochondrial fission protein, Drp1, and other mitochondrial fission adaptor proteins, including mitochondrial fission 1 (Fis1), mitochondrial fission factor (Mff), mitochondrial dynamics 49 (Mid49), and mitochondrial dynamics 51 (Mid51). The core area of the review focuses on the recent advances in understanding the role of the Drp1-mediated mitochondrial fission adaptor protein interactome to unravel the missing links of mitochondrial fission events. Lastly, we discuss the promising mitochondria-targeted therapeutic approaches that involve fission, as well as current evidence on Drp1-mediated fission protein interactions and their critical roles in the pathogeneses of cardiovascular diseases (CVDs).
Collapse
|
47
|
|
Labella R, Vujačić M, Trivanović D. Bone Marrow Adipose Tissue: Regulation of Osteoblastic Niche, Hematopoiesis and Hematological Malignancies. Stem Cell Rev Rep 2023. [PMID: 36930385 DOI: 10.1007/s12015-023-10531-3] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Indexed: 03/18/2023]
Abstract
Bone marrow adipose tissue (BMAT) creates a specific microniche within multifunctional bone marrow (BM) ecosystem which imposes changes in surrounding cells and at systemic level. Moreover, BMAT contributes to spatial and temporal separation and metabolic compartmentalization of BM, thus regulating BM homeostasis and diseases. Recent findings have identified novel progenitor subsets of bone marrow adipocytes (BMAd)s recruited during the BM adipogenesis within different skeletal and hematopoietic stem cell niches. Potential of certain mesenchymal BM cells to differentiate into both osteogenic and adipogenic lineages, contributes to the complex interplay of BMAT with endosteal (osteoblastic) niche compartments as an important cellular player in bone tissue homeostasis. Targeting and ablation of BMAT cells at certain states might be an optional and promising strategy for improvement of bone health. Additionally, recent findings demonstrated spatial distribution of BMAds related to hematopoietic cells and pointed out important functional roles in the vital processes such as long-term hematopoiesis. BM adipogenesis appears to be an emergency phenomenon that follows the production of hematopoietic stem and progenitor cell niche factors, thus regulating physiological, stressed, and malignant hematopoiesis. Lipolytic and secretory activity of BMAds can influence survival and proliferation of hematopoietic cells at different maturation stages. Due to their different lipid status, constitutive and regulated BMAds are important determinants of normal and malignant hematopoietic cells. Further elucidation of cellular and molecular players involved in BMAT expansion and crosstalk with malignant cells is of paramount importance for conceiving the new therapies for improvement of BM health.
Collapse
|
48
|
|
Chou T, Lu C, Lin L, Hsu Y, Huang C, Huang K. Proteomic Analysis of Skeletal Muscle and White Adipose Tissue after Aerobic Exercise Training in High Fat Diet Induced Obese Mice. Int J Mol Sci 2023;24:5743. [DOI: 10.3390/ijms24065743] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/19/2023] Open
Abstract
Obesity is associated with excessive fat accumulation in adipose tissue and other organs, such as skeletal muscle, whereas aerobic exercise (AE) plays an important role in managing obesity through profound protein regulation. Our study aimed to investigate the impact of AE on proteomic changes in both the skeletal muscle and the epididymal fat pad (EFP) of high-fat-diet-induced obese mice. Bioinformatic analyses were performed on differentially regulated proteins using gene ontology enrichment analysis and ingenuity pathway analysis. Eight weeks of AE significantly reduced body weight, increased the serum FNDC5 level, and improved the homeostatic model assessment of insulin resistance. A high-fat diet caused alterations in a subset of proteins involved in the sirtuin signaling pathway and the production of reactive oxygen species in both skeletal muscle and EFP, leading to insulin resistance, mitochondrial dysfunction, and inflammation. On the other hand, AE upregulated skeletal muscle proteins (NDUFB5, NDUFS2, NDUFS7, ETFD, FRDA, and MKNK1) that enhance mitochondrial function and insulin sensitivity. Additionally, the upregulation of LDHC and PRKACA and the downregulation of CTBP1 in EFP can promote the browning of white adipose tissue with the involvement of FNDC5/irisin in the canonical pathway. Our study provides insights into AE-induced molecular responses and may help further develop exercise-mimicking therapeutic targets.
Collapse
|
49
|
|
Dasgupta D, Mahadev Bhat S, Price AL, Delmotte P, Sieck GC. Molecular Mechanisms Underlying TNFα-Induced Mitochondrial Biogenesis in Human Airway Smooth Muscle. Int J Mol Sci 2023;24:5788. [DOI: 10.3390/ijms24065788] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/22/2023] Open
Abstract
Proinflammatory cytokines such as TNFα mediate airway inflammation. Previously, we showed that TNFα increases mitochondrial biogenesis in human ASM (hASM) cells, which is associated with increased PGC1α expression. We hypothesized that TNFα induces CREB and ATF1 phosphorylation (pCREBS133 and pATF1S63), which transcriptionally co-activate PGC1α expression. Primary hASM cells were dissociated from bronchiolar tissue obtained from patients undergoing lung resection, cultured (one–three passages), and then differentiated by serum deprivation (48 h). hASM cells from the same patient were divided into two groups: TNFα (20 ng/mL) treated for 6 h and untreated controls. Mitochondria were labeled using MitoTracker green and imaged using 3D confocal microscopy to determine mitochondrial volume density. Mitochondrial biogenesis was assessed based on relative mitochondrial DNA (mtDNA) copy number determined by quantitative real-time PCR (qPCR). Gene and/or protein expression of pCREBS133, pATF1S63, PCG1α, and downstream signaling molecules (NRFs, TFAM) that regulate transcription and replication of the mitochondrial genome, were determined by qPCR and/or Western blot. TNFα increased mitochondrial volume density and mitochondrial biogenesis in hASM cells, which was associated with an increase in pCREBS133, pATF1S63 and PCG1α expression, with downstream transcriptional activation of NRF1, NRF2, and TFAM. We conclude that TNFα increases mitochondrial volume density in hASM cells via a pCREBS133/pATF1S63/PCG1α-mediated pathway.
Collapse
|
50
|
|
Willows JW, Gunsch G, Paradie E, Blaszkiewicz M, Tonniges JR, Pino MF, Smith SR, Sparks LM, Townsend KL. Schwann cells contribute to demyelinating diabetic neuropathy and nerve terminal structures in white adipose tissue. iScience 2023;26:106189. [PMID: 36895649 DOI: 10.1016/j.isci.2023.106189] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/15/2023] Open
Abstract
Peripheral neuropathy, which can include axonal degeneration and/or demyelination, impacts adipose tissues with obesity, diabetes, and aging. However, the presence of demyelinating neuropathy had not yet been explored in adipose. Both demyelinating neuropathies and axonopathies implicate Schwann cells (SCs), a glial support cell that myelinates axons and contributes to nerve regeneration after injury. We performed a comprehensive assessment of SCs and myelination patterns of subcutaneous white adipose tissue (scWAT) nerves, and changes across altered energy balance states. We found that mouse scWAT contains both myelinated and unmyelinated nerves and is populated by SCs, including SCs that were associated with synaptic vesicle-containing nerve terminals. BTBR ob/ob mice, a model of diabetic peripheral neuropathy, exhibited small fiber demyelinating neuropathy and alterations in SC marker gene expression in adipose that were similar to obese human adipose. These data indicate that adipose SCs regulate the plasticity of tissue nerves and become dysregulated in diabetes.
Collapse
|