551
|
Vaicik MK, Morse M, Blagajcevic A, Rios J, Larson J, Yang F, Cohen RN, Papavasiliou G, Brey EM. Hydrogel-Based Engineering of Beige Adipose Tissue. J Mater Chem B 2015; 3:7903-7911. [PMID: 26693015 PMCID: PMC4675174 DOI: 10.1039/c5tb00952a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brown and beige adipose tissues have a significant capacity for energy expenditure that may be exploited as a treatment for obesity and metabolic disease. However, the limited volumes of these tissues in adults hinders realization of this potential. Engineering beige adipose tissue may provide an alternative source of this tissue. In this paper we describe the preparation of poly(ethylene glycol) (PEGDA) hydrogels with mechanical properties similar to native adipose tissue. Adipose derived stem cells (ASC) were cultured in hydrogels without adhesive sequences or degradable monomers. Cells were able to differentiate, independent of scaffold properties and were maintained as a viable and functioning adipose tissue mass. The cells expressed their own basement membrane proteins consistent with the composition of adipose tissue. The ASCs could be induced to express uncoupling protein-1 (UCP-1) and cIDEA, makers of beige adipocytes with expression level varying with hydrogel stiffness. This hydrogel-based culture system serves as a first step in engineering beige adipose tissue.
Collapse
Affiliation(s)
- M K Vaicik
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL ; Research Service, Veteran Affairs Hospital, Hines, IL
| | - M Morse
- Section of Endocrinology, Department of Medicine, University of Chicago, Chicago, IL
| | - A Blagajcevic
- Section of Endocrinology, Department of Medicine, University of Chicago, Chicago, IL
| | - J Rios
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - J Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - F Yang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - R N Cohen
- Section of Endocrinology, Department of Medicine, University of Chicago, Chicago, IL
| | - G Papavasiliou
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - E M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL ; Research Service, Veteran Affairs Hospital, Hines, IL
| |
Collapse
|
552
|
Gillis J, Gebremeskel S, Phipps KD, MacNeil LA, Sinal CJ, Johnston B, Hong P, Bezuhly M. Effect of N-Acetylcysteine on Adipose-Derived Stem Cell and Autologous Fat Graft Survival in a Mouse Model. Plast Reconstr Surg 2015. [PMID: 26218392 DOI: 10.1097/prs.0000000000001443] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Autologous fat grafting is a popular reconstructive technique, but is limited by inconsistent graft retention. The authors examined whether a widely available, clinically safe antioxidant, N-acetylcysteine, could improve adipose-derived stem cell survival and graft take when added to tumescent solution during fat harvest. METHODS Inguinal fat pads were harvested from C57BL/6 mice using tumescent solution with or without N-acetylcysteine. Flow cytometric, proliferation, and differentiation assays were performed on isolated primary adipose-derived stem cells and 3T3-L1 preadipocytes treated with or without hydrogen peroxide and/or N-acetylcysteine. N-Acetylcysteine-treated or control grafts were injected under recipient mouse scalps and assessed by serial micro-computed tomographic volumetric analysis. Explanted grafts underwent immunohistochemical analysis. RESULTS In culture, N-acetylcysteine protected adipose-derived stem cells from oxidative stress and improved cell survival following hydrogen peroxide treatment. Combined exposure to both N-acetylcysteine and hydrogen peroxide led to a 200-fold increase in adipose-derived stem cell proliferation, significantly higher than with either agent alone. N-Acetylcysteine decreased differentiation of adipose-derived stem cells into mature adipocytes, as evidenced by decreased transcription of adipocyte differentiation markers and reduced Oil Red-O staining. In vivo, N-acetylcysteine treatment resulted in improved graft retention at 3 months compared with control (46 versus 17 percent; p = 0.027). N-Acetylcysteine-treated grafts demonstrated less fibrosis and inflammation, and a 33 percent increase in adipocyte density compared with controls (p < 0.001) that was not associated with increased vascularity. CONCLUSION These findings provide proof of principle for the addition of N-acetylcysteine to tumescent harvest solution in the clinical setting to optimize fat graft yields.
Collapse
Affiliation(s)
- Joshua Gillis
- Halifax, Nova Scotia, Canada From the Divisions of Plastic and Reconstructive Surgery and Otolaryngology, IWK Health Centre, the Departments of Microbiology and Immunology, Pharmacology, and Pediatrics, and the Faculty of Medicine, Dalhousie University
| | | | | | | | | | | | | | | |
Collapse
|
553
|
Rodríguez A, Ezquerro S, Méndez-Giménez L, Becerril S, Frühbeck G. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. Am J Physiol Endocrinol Metab 2015; 309:E691-714. [PMID: 26330344 DOI: 10.1152/ajpendo.00297.2015] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/24/2015] [Indexed: 02/08/2023]
Abstract
Adipose tissue constitutes an extremely active endocrine organ with a network of signaling pathways enabling the organism to adapt to a wide range of different metabolic challenges, such as starvation, stress, infection, and short periods of gross energy excess. The functional pleiotropism of adipose tissue relies on its ability to synthesize and release a huge variety of hormones, cytokines, complement and growth factors, extracellular matrix proteins, and vasoactive factors, collectively termed adipokines. Obesity is associated with adipose tissue dysfunction leading to the onset of several pathologies including type 2 diabetes, dyslipidemia, nonalcoholic fatty liver, or hypertension, among others. The mechanisms underlying the development of obesity and its associated comorbidities include the hypertrophy and/or hyperplasia of adipocytes, adipose tissue inflammation, impaired extracellular matrix remodeling, and fibrosis together with an altered secretion of adipokines. Recently, the potential role of brown and beige adipose tissue in the protection against obesity has been also recognized. In contrast to white adipocytes, which store energy in the form of fat, brown and beige fat cells display energy-dissipating capacity through the promotion of triacylglycerol clearance, glucose disposal, and generation of heat for thermogenesis. Identification of the morphological and molecular changes in white, beige, and brown adipose tissue during weight gain is of utmost relevance for the identification of pharmacological targets for the treatment of obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; and Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Silvia Ezquerro
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Leire Méndez-Giménez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; and Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; and Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; and Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
554
|
Gyllenhammer LE, Alderete TL, Toledo-Corral CM, Weigensberg M, Goran MI. Saturation of subcutaneous adipose tissue expansion and accumulation of ectopic fat associated with metabolic dysfunction during late and post-pubertal growth. Int J Obes (Lond) 2015; 40:601-6. [PMID: 26443340 PMCID: PMC4821774 DOI: 10.1038/ijo.2015.207] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/04/2015] [Accepted: 09/21/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND/OBJECTIVE Puberty is a period defined by large changes in adipose tissue accumulation and distribution; however, longitudinal patterns of ectopic fat development have not been shown. We have previously shown significant declines in beta-cell function (BCF) across puberty and hypothesize that accumulation of ectopic fat deposition, particularly hepatic fat, will predict this fall. SUBJECT/METHODS We conducted a longitudinal study and examined 2-year change in abdominal fat distribution and type 2 diabetes risk markers in 76 Hispanic children and young adults (16.1±0.5 years, 66% obese, 52% male, 51% post-pubertal). Subcutaneous abdominal adipose tissue (SAAT), visceral adipose tissue (VAT), hepatic fat fraction (HFF) and pancreatic fat fraction (PFF) were measured by 3-Tesla magnetic resonance imaging, and markers of type 2 diabetes risk were collected at fasting and during an oral glucose tolerance test (OGTT). RESULTS Baseline pubertal status significantly moderated the 2-year change in ectopic fat deposition, such that VAT, HFF and PFF increased in individuals during late and post-pubertal growth, whereas children earlier in their pubertal development decreased ectopic accumulation and had less VAT accumulation (VAT: pTanner*time=0.044, 0.31±0.08 l vs 0.03±0.10 l; HFF: pTanner*time=0.007, 1.34±0.87% vs -2.61±1.11%; PFF: pTanner*time<0.001, 1.61±0.39% vs -0.96±0.50%). Independent of pubertal status, the 2-year increase in HFF and VAT significantly associated with a decline in BCF (ß=-1.04, P=0.038; ß=-1.81, P=0.020) and metabolic function, while accumulation of SAAT significantly associated with BCF (ß=1.36, P=0.012) and metabolic improvement. HFF accumulation was the only depot to significantly predict clinical markers of type 2 diabetes risk, fasting glucose and HbA1c, and circulating free fatty acid levels (ß=1.00, P=0.034; ß=1.00, P=0.015; ß=01.01, P=0.024). CONCLUSIONS The accumulation of SAAT defends against type 2 diabetes risk and potentially ectopic fat accumulation. Intra-abdominal VAT and HFF accumulation both associate with metabolic decline and BCF, while HFF predicts an even greater number of metabolic risk features.
Collapse
Affiliation(s)
- L E Gyllenhammer
- Department of Preventive Medicine, Diabetes and Obesity Research Institute, University of Southern California, Los Angeles, CA, USA
| | - T L Alderete
- Department of Preventive Medicine, Diabetes and Obesity Research Institute, University of Southern California, Los Angeles, CA, USA
| | - C M Toledo-Corral
- Department of Public Health, California State University Los Angeles, Los Angeles, CA, USA
| | - M Weigensberg
- Department of Preventive Medicine, Diabetes and Obesity Research Institute, University of Southern California, Los Angeles, CA, USA
| | - M I Goran
- Department of Preventive Medicine, Diabetes and Obesity Research Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
555
|
Martinez-Santibanez G, Singer K, Cho KW, DelProposto JL, Mergian T, Lumeng CN. Obesity-induced remodeling of the adipose tissue elastin network is independent of the metalloelastase MMP-12. Adipocyte 2015; 4:264-72. [PMID: 26451282 DOI: 10.1080/21623945.2015.1027848] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 01/24/2023] Open
Abstract
The extracellular matrix (ECM) plays important roles in maintaining adequate adipose tissue function and in metabolic regulation. Here we have examined the organization of a relatively unexplored adipose tissue ECM component, elastin and its response to diet induced obesity in mice. Additionally, we have explored the regulation and requirement of macrophage metalloelastase, MMP-12, in adipose tissue ECM remodeling in obesity. In visceral fat depots, elastin fibers form a mesh-like net that becomes denser with diet-induced obesity. In contrast, the elastin fibers in subcutaneous adipose depots are more linear in organization, and are tightly associated with adipose tissue macrophages (ATMs). We found that Mmp12 is produced predominantly by ATMs and can be induced with both short- and long-term high fat diet challenge and rapid remodeling induced by lipolysis. This contrasts with Mmp14 and Timp1 which are further induced only after chronic obesity in non-ATM populations. We examined obese transgenic Mmp12 (-/-) mice and found an increase in gene expression of ECM genes with diet-induced obesity, but showed few significant differences in metabolic parameters, elastin matrix density, or in adipose tissue inflammation. Together, these studies reveal the architecture and diet-induced regulation of the elastin matrix and suggest that MMP-12 is not required for elastin matrix remodeling or for the metabolic dysfunction that occurs with obesity.
Collapse
|
556
|
Wensveen FM, Valentić S, Šestan M, Turk Wensveen T, Polić B. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur J Immunol 2015. [DOI: 10.1002/eji.201545502] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Felix M. Wensveen
- Department of Histology & Embryology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
- Department of Experimental Immunology; Amsterdam Medical Centre; Amsterdam The Netherlands
| | - Sonja Valentić
- Department of Histology & Embryology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| | - Marko Šestan
- Department of Histology & Embryology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| | | | - Bojan Polić
- Department of Histology & Embryology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| |
Collapse
|
557
|
Guglielmi V, Cardellini M, Cinti F, Corgosinho F, Cardolini I, D'Adamo M, Zingaretti MC, Bellia A, Lauro D, Gentileschi P, Federici M, Cinti S, Sbraccia P. Omental adipose tissue fibrosis and insulin resistance in severe obesity. Nutr Diabetes 2015; 5:e175. [PMID: 26258766 PMCID: PMC4558556 DOI: 10.1038/nutd.2015.22] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/13/2015] [Accepted: 05/31/2015] [Indexed: 02/06/2023] Open
Abstract
Background/Objectives: The unresolved chronic inflammation of white adipose tissue (WAT) in obesity leads to interstitial deposition of fibrogenic proteins as reparative process. The contribution of omental adipose tissue (oWAT) fibrosis to obesity-related complications remains controversial. The aim of our study was to investigate whether oWAT fibrosis may be related to insulin resistance in severely obese population. Subjects/Methods: Forty obese subjects were studied by glucose clamp before undergoing bariatric surgery and thus stratified according to insulin resistance severity (M-value). From the first (Group B: n=13; M=1.9±0.7 mg kg−1 min−1) and the highest (Group A: n=14; M=4.5±1.4 mg kg−1 min−1) M-value tertiles, which were age-, waist- and body mass index-matched, oWAT samples were then obtained. Gene expression of collagen type I, III and VI, interleukin-6, profibrotic mediators (transforming growth factor (TGF)-β1, activin A, connective tissue growth factor), hypoxia inducible factor-1α (HIF-1α) and macrophage (CD68, monocyte chemotactic protein (MCP)-1, CD86, CD206, CD150) markers were analyzed by quantitative reverse transcription PCR. Adipocyte size and total fibrosis were assessed by histomorphometry techniques. Results: Fibrosis at morphological level resulted significantly greater in Group B compared with Group A, although collagens gene expression did not differ. Notably, collagen VI messenger RNA significantly correlated with collagen I, collagen III, HIF-1α, TGF-β1, CD68, MCP-1 and CD86 transcription levels, supporting their relation with fibrosis development. Conclusions: In conclusion, we show for the first time that human oWAT fibrosis in severe obesity is consistent with a higher degree of insulin resistance measured by glucose clamp. Therefore, collagen deposition could represent a maladaptive mechanism contributing to obesity-related metabolic complications.
Collapse
Affiliation(s)
- V Guglielmi
- 1] Department of Systems Medicine, Laboratory of Molecular Medicine, University of Rome 'Tor Vergata', Rome, Italy [2] Obesity Center (EASO accredited COM), Policlinico Tor Vergata, Rome, Italy
| | - M Cardellini
- Department of Systems Medicine, Laboratory of Molecular Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - F Cinti
- 1] Department of Systems Medicine, Laboratory of Molecular Medicine, University of Rome 'Tor Vergata', Rome, Italy [2] Department of Experimental and Clinical Medicine, Obesity Center, University of Ancona (Politecnica delle Marche), Ancona, Italy
| | - F Corgosinho
- 1] Department of Experimental and Clinical Medicine, Obesity Center, University of Ancona (Politecnica delle Marche), Ancona, Italy [2] CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - I Cardolini
- Department of Systems Medicine, Laboratory of Molecular Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - M D'Adamo
- 1] Department of Systems Medicine, Laboratory of Molecular Medicine, University of Rome 'Tor Vergata', Rome, Italy [2] Obesity Center (EASO accredited COM), Policlinico Tor Vergata, Rome, Italy
| | - M C Zingaretti
- Department of Experimental and Clinical Medicine, Obesity Center, University of Ancona (Politecnica delle Marche), Ancona, Italy
| | - A Bellia
- Department of Systems Medicine, Laboratory of Molecular Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - D Lauro
- Department of Systems Medicine, Laboratory of Molecular Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - P Gentileschi
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - M Federici
- Department of Systems Medicine, Laboratory of Molecular Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - S Cinti
- Department of Experimental and Clinical Medicine, Obesity Center, University of Ancona (Politecnica delle Marche), Ancona, Italy
| | - P Sbraccia
- 1] Department of Systems Medicine, Laboratory of Molecular Medicine, University of Rome 'Tor Vergata', Rome, Italy [2] Obesity Center (EASO accredited COM), Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
558
|
N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit. BIOMED RESEARCH INTERNATIONAL 2015; 2015:581469. [PMID: 26339623 PMCID: PMC4538411 DOI: 10.1155/2015/581469] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/11/2015] [Indexed: 12/19/2022]
Abstract
Overwhelming consensus emerges among countless evidences that obesity is characterized by a chronic low-grade inflammation in the adipose tissue (AT), which subsequently develops into a systemic inflammatory state contributing to obesity-associated diseases. N-3 Polyunsaturated fatty acids (n-3 PUFA), known as important modulators participating in inflammatory process, turn out to be an effective mitigating strategy dealing with local and systemic inflammation observed in obesity. Some of the effects of n-3 PUFA are brought about by regulation of gene expression through interacting with nuclear receptors and transcription factors; other effects are elicited by modulation of the amount and type of mediator derived from PUFAs. The metabolic effects of n-3 PUFA mainly result from their interactions with several organ systems, not limited to AT. Notably, the attenuation of inflammation in hard-hit AT, in turn, contributes to reducing circulating concentrations of proinflammatory cytokines and detrimental metabolic derivatives, which is beneficial for the function of other involved organs. The present review highlights a bridging mechanism between n-3 PUFA-mediated inflammation relief in AT and systemic benefits.
Collapse
|
559
|
Obesity and kidney disease: differential effects of obesity on adipose tissue and kidney inflammation and fibrosis. Curr Opin Nephrol Hypertens 2015; 24:28-36. [PMID: 25470014 DOI: 10.1097/mnh.0000000000000087] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To provide a perspective by investigating the potential cross-talk between the adipose tissue and the kidney during obesity. RECENT FINDINGS It is well established that excessive caloric intake contributes to organ injury. The associated increased adiposity initiates a cascade of cellular events that leads to progressive obesity-associated diseases such as kidney disease. Recent evidence has indicated that adipose tissue produces bioactive substances that contribute to obesity-related kidney disease, altering the renal function and structure. In parallel, proinflammatory processes within the adipose tissue can also lead to pathophysiological changes in the kidney during the obese state. SUMMARY Despite considerable efforts to better characterize the pathophysiology of obesity-related metabolic disease, there are still a lack of efficient therapeutic strategies. New strategies focused on regulating adipose function with respect to AMP-activated protein kinase activation, NADPH oxidase function, and TGF-β may contribute to reducing adipose inflammation that may also provide renoprotection.
Collapse
|
560
|
Alcalá M, Sánchez-Vera I, Sevillano J, Herrero L, Serra D, Ramos MP, Viana M. Vitamin E reduces adipose tissue fibrosis, inflammation, and oxidative stress and improves metabolic profile in obesity. Obesity (Silver Spring) 2015; 23:1598-606. [PMID: 26148343 DOI: 10.1002/oby.21135] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To test whether enhancing the capability of adipose tissue to store lipids using antioxidant supplementation may prevent the lipotoxic effects and improve the metabolic profile of long-term obesity. METHODS C57BL/6J mice were randomized into three experimental groups for 28 weeks: control group (n = 10) fed chow diet (10% kcal from fat), obese group (O, n = 12) fed high-fat (HF) diet (45% kcal from fat), and obese group fed HF diet and supplemented twice a week with 150 mg of α-tocopherol (vitamin E) by oral gavage (OE, n = 12). RESULTS HF diet resulted in an obese phenotype with a marked insulin resistance, hypertriglyceridemia, and hepatic steatosis in O mice. Histological analysis of obese visceral adipose tissue (VAT) revealed smaller adipocytes surrounded by a fibrotic extracellular matrix and an increased macrophage infiltration, with the consequent release of proinflammatory cytokines. Vitamin E supplementation decreased oxidative stress and reduced collagen deposition in the VAT of OE mice, allowing a further expansion of the adipocytes and increasing the storage capability. As a result, circulating cytokines were reduced and hepatic steasosis, hypertriglyceridemia, and insulin sensitivity were improved. CONCLUSIONS Our results suggest that oxidative stress is implicated in extracellular matrix remodeling and may play an important role in metabolic regulation.
Collapse
Affiliation(s)
- Martín Alcalá
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Isabel Sánchez-Vera
- Department of Basic Sciences, Facultad de Medicina, Universidad CEU San Pablo, Madrid, Spain
| | - Julio Sevillano
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Molecular Biology, Institut de Biomedicina de la Universitat De Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Molecular Biology, Institut de Biomedicina de la Universitat De Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - M Pilar Ramos
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Marta Viana
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| |
Collapse
|
561
|
Yeoh AJ, Pedley A, Rosenquist KJ, Hoffmann U, Fox CS. The Association Between Subcutaneous Fat Density and the Propensity to Store Fat Viscerally. J Clin Endocrinol Metab 2015; 100:E1056-64. [PMID: 26062015 PMCID: PMC4525002 DOI: 10.1210/jc.2014-4032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alterations in the cellular characteristics of subcutaneous adipose tissue (SAT) may reduce its ability to expand in times of caloric excess, increasing the propensity to store excess calories viscerally (visceral adipose tissue [VAT]). We hypothesized (1) that increased SAT density, an indirect marker of fat quality, would be associated with an increased VAT/SAT ratio and increased cardiovascular disease (CVD) risk and (2) that these associations would be independent of the absolute volume of SAT. METHODS We investigated the association of SAT density with the VAT/SAT ratio and CVD risk in 3212 participants (48% women, mean age, 50.7 years) from the Framingham Heart Study. Adipose tissue depot density and volume were quantified by computed tomography; traditional CVD risk factors were quantified. RESULTS Higher SAT density was correlated with a higher VAT/SAT ratio in men (r = 0.17; P < .0001) but not in women (r = 0.04; P ≥ .05). More adverse levels of CVD risk factors were observed in the high SAT density/high VAT/SAT ratio group than in the referent group (low density/low ratio). For example, women had an increased risk of diabetes (odds ratio [OR], 6.7; 95% confidence interval [CI], 2.6-17.6; P = .0001) and hypertension (OR, 1.6; 95% CI, 1.1-2.4; P = .009). Additional adjustment for SAT volume generally strengthened these associations (diabetes OR, 10.8; 95% CI, 4.1-29.0; hypertension OR, 2.5; 95% CI, 1.7-3.7; all P < .0001). These trends were similar but generally weaker in men. CONCLUSION High fat density, an indirect marker of fat quality, is associated with the propensity to store fat viscerally vs subcutaneously and is jointly characterized by an increased burden of CVD risk factors.
Collapse
Affiliation(s)
- Aaron J Yeoh
- National Heart, Lung, and Blood Institute Framingham Heart Study (A.J.Y., A.P., K.J.R., C.S.F.), Framingham, Massachusetts 01702-5827; Division of Endocrinology and Metabolism (C.S.F.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115; and Department of Radiology (U.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Alison Pedley
- National Heart, Lung, and Blood Institute Framingham Heart Study (A.J.Y., A.P., K.J.R., C.S.F.), Framingham, Massachusetts 01702-5827; Division of Endocrinology and Metabolism (C.S.F.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115; and Department of Radiology (U.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Klara J Rosenquist
- National Heart, Lung, and Blood Institute Framingham Heart Study (A.J.Y., A.P., K.J.R., C.S.F.), Framingham, Massachusetts 01702-5827; Division of Endocrinology and Metabolism (C.S.F.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115; and Department of Radiology (U.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Udo Hoffmann
- National Heart, Lung, and Blood Institute Framingham Heart Study (A.J.Y., A.P., K.J.R., C.S.F.), Framingham, Massachusetts 01702-5827; Division of Endocrinology and Metabolism (C.S.F.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115; and Department of Radiology (U.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Caroline S Fox
- National Heart, Lung, and Blood Institute Framingham Heart Study (A.J.Y., A.P., K.J.R., C.S.F.), Framingham, Massachusetts 01702-5827; Division of Endocrinology and Metabolism (C.S.F.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115; and Department of Radiology (U.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
562
|
Grant RW, Stephens JM. Fat in flames: influence of cytokines and pattern recognition receptors on adipocyte lipolysis. Am J Physiol Endocrinol Metab 2015; 309:E205-13. [PMID: 26058863 DOI: 10.1152/ajpendo.00053.2015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/03/2015] [Indexed: 12/26/2022]
Abstract
Adipose tissue has the largest capacity to store energy in the body and provides energy through the release of free fatty acids during times of energy need. Different types of immune cells are recruited to adipose tissue under various physiological conditions, indicating that these cells contribute to the regulation of adipose tissue. One major pathway influenced by a number of immune cells is the release of free fatty acids through lipolysis during both physiological (e.g., cold stress) and pathophysiological processes (e.g., obesity, type 2 diabetes). Adipose tissue expansion during obesity leads to immune cell infiltration and adipose tissue remodeling, a homeostatic process that promotes inflammation in adipose tissue. The release of proinflammatory cytokines stimulates lipolysis and causes insulin resistance, leading to adipose tissue dysfunction and systemic disruptions of metabolism. This review focuses on the interactions of cytokines and other inflammatory molecules that regulate adipose tissue lipolysis during physiological and pathophysiological states.
Collapse
Affiliation(s)
- Ryan W Grant
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| | - Jacqueline M Stephens
- Adipocyte Biology Lab, Pennington Biomedical Research Center, Baton Rouge, Louisiana; and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
563
|
Heilbronn LK, Liu B. Do adipose tissue macrophages promote insulin resistance or adipose tissue remodelling in humans? Horm Mol Biol Clin Investig 2015; 20:3-13. [PMID: 25460290 DOI: 10.1515/hmbci-2014-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/31/2022]
Abstract
In diet induced and genetically obese rodent models, adipose tissue is associated with macrophage infiltration, which promotes a low grade inflammatory state and the development of insulin resistance. In humans, obesity is also closely linked with macrophage infiltration in adipose tissue, a pro-inflammatory phenotype and insulin resistance. However, whether macrophage infiltration is a direct contributor to the development of insulin resistance that occurs in response to weight gain, or is a later consequence of the obese state is unclear. There are a number of concomitant changes that occur during adipose tissue expansion, including the number and size of adipocytes, the vasculature and the extracellular matrix. In this review, we will examine evidence for and against the role of macrophage recruitment into adipose tissue in promoting the development of insulin resistance in rodents and humans, as well as discuss the emerging role of macrophages in mediating healthy adipose tissue expansion during periods of caloric excess.
Collapse
|
564
|
Regulation of white adipogenesis and its relation to ectopic fat accumulation and cardiovascular risk. Atherosclerosis 2015; 241:27-35. [DOI: 10.1016/j.atherosclerosis.2015.04.812] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 02/08/2023]
|
565
|
Vaittinen M, Kolehmainen M, Rydén M, Eskelinen M, Wabitsch M, Pihlajamäki J, Uusitupa M, Pulkkinen L. MFAP5 is related to obesity-associated adipose tissue and extracellular matrix remodeling and inflammation. Obesity (Silver Spring) 2015; 23:1371-8. [PMID: 26054006 DOI: 10.1002/oby.21103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/03/2015] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Low-grade inflammation is involved in adipose tissue (AT) and extracellular matrix (ECM) remodeling and induces deposition of ECM proteins in AT. We have previously shown that MFAP5 (microfibrillar-associated protein 5) expression decreases in AT after weight loss. The aim of this study was to investigate MFAP5 localization in human AT and gene expression in adipocytes and the role of MFAP5 in adipocyte metabolism and inflammation. METHODS MFAP5 protein localization and gene expression were studied with immunohistochemistry and quantitative reverse transcriptase PCR (RT-qPCR) in human subcutaneous AT and cultured Simpson-Golabi-Behmel syndrome (SGBS) adipocytes, respectively. The effect of MFAP5 knock-down by siRNA on gene expression and insulin action was examined with RT-qPCR, western blot, and insulin-stimulated glucose uptake. The effect of different cytokines on MFAP5 gene and protein expression was investigated in cultured human SGBS preadipocytes. RESULTS MFAP5 protein was highly expressed in AT, and gene expression decreased during adipocyte differentiation in SGBS cells. Treatment of preadipocytes with TNFα and TGFβ1 increased MFAP5 gene and protein expression. Furthermore, MFAP5 knock-down decreased the expression of genes involved in inflammation. CONCLUSIONS Our results demonstrate that factors involving low-grade inflammation modulate MFAP5 expression and that the modified expression of MFAP5 may further regulate AT inflammation.
Collapse
Affiliation(s)
- Maija Vaittinen
- Department of Clinical Nutrition, University of Eastern Finland, Institute of Public Health and Clinical Nutrition, Kuopio, Finland
| | - Marjukka Kolehmainen
- Department of Clinical Nutrition, University of Eastern Finland, Institute of Public Health and Clinical Nutrition, Kuopio, Finland
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institute, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Matti Eskelinen
- Department of Surgery, Kuopio University Hospital, Kuopio, Finland
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Jussi Pihlajamäki
- Department of Clinical Nutrition, University of Eastern Finland, Institute of Public Health and Clinical Nutrition, Kuopio, Finland
- Departments of Medicine and Clinical Nutrition, Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Matti Uusitupa
- Department of Clinical Nutrition, University of Eastern Finland, Institute of Public Health and Clinical Nutrition, Kuopio, Finland
- Research Unit, Kuopio University Hospital, Kuopio, Finland
| | - Leena Pulkkinen
- Department of Clinical Nutrition, University of Eastern Finland, Institute of Public Health and Clinical Nutrition, Kuopio, Finland
| |
Collapse
|
566
|
Williams AS, Kang L, Wasserman DH. The extracellular matrix and insulin resistance. Trends Endocrinol Metab 2015; 26:357-66. [PMID: 26059707 PMCID: PMC4490038 DOI: 10.1016/j.tem.2015.05.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) is a highly-dynamic compartment that undergoes remodeling as a result of injury and repair. Over the past decade, mounting evidence in humans and rodents suggests that ECM remodeling is associated with diet-induced insulin resistance in several metabolic tissues. In addition, integrin receptors for the ECM have also been implicated in the regulation of insulin action. This review addresses what is currently known about the ECM, integrins, and insulin action in the muscle, liver, and adipose tissue. Understanding how ECM remodeling and integrin signaling regulate insulin action may aid in the development of new therapeutic targets for the treatment of insulin resistance and type 2 diabetes (T2D).
Collapse
Affiliation(s)
- Ashley S Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Li Kang
- Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
567
|
Cidea improves the metabolic profile through expansion of adipose tissue. Nat Commun 2015; 6:7433. [PMID: 26118629 DOI: 10.1038/ncomms8433] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/08/2015] [Indexed: 02/06/2023] Open
Abstract
In humans, Cidea (cell death-inducing DNA fragmentation factor alpha-like effector A) is highly but variably expressed in white fat, and expression correlates with metabolic health. Here we generate transgenic mice expressing human Cidea in adipose tissues (aP2-hCidea mice) and show that Cidea is mechanistically associated with a robust increase in adipose tissue expandability. Under humanized conditions (thermoneutrality, mature age and prolonged exposure to high-fat diet), aP2-hCidea mice develop a much more pronounced obesity than their wild-type littermates. Remarkably, the malfunctioning of visceral fat normally caused by massive obesity is fully overcome-perilipin 1 and Akt expression are preserved, tissue degradation is prevented, macrophage accumulation is decreased and adiponectin expression remains high. Importantly, the aP2-hCidea mice display enhanced insulin sensitivity. Our data establish a functional role for Cidea and suggest that, in humans, the association between Cidea levels in white fat and metabolic health is not only correlative but also causative.
Collapse
|
568
|
Abstract
Different animal cell types have distinctive and characteristic sizes. How a particular cell size is specified by differentiation programs and physiology remains one of the fundamental unknowns in cell biology. In this Review, we explore the evidence that individual cells autonomously sense and specify their own size. We discuss possible mechanisms by which size-sensing and size-specification may take place. Last, we explore the physiological implications of size control: Why is it important that particular cell types maintain a particular size? We develop these questions through examination of the current literature and pose the questions that we anticipate will guide this field in the upcoming years.
Collapse
Affiliation(s)
- Miriam B Ginzberg
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ran Kafri
- The Hospital for Sick Children, Toronto, Canada
| | - Marc Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
569
|
Iwayama T, Steele C, Yao L, Dozmorov MG, Karamichos D, Wren JD, Olson LE. PDGFRα signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity. Genes Dev 2015; 29:1106-19. [PMID: 26019175 PMCID: PMC4470280 DOI: 10.1101/gad.260554.115] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/07/2015] [Indexed: 12/19/2022]
Abstract
Adipose tissue fibrosis occurs during obesity and is associated with metabolic dysfunction. Iwayama et al. identify perivascular cells as fibro/adipogenic progenitors in white adipose tissue and show that PDGFRα targets progenitor cell plasticity as a profibrotic mechanism. Fibrosis is a common disease process in which profibrotic cells disturb organ function by secreting disorganized extracellular matrix (ECM). Adipose tissue fibrosis occurs during obesity and is associated with metabolic dysfunction, but how profibrotic cells originate is still being elucidated. Here, we use a developmental model to investigate perivascular cells in white adipose tissue (WAT) and their potential to cause organ fibrosis. We show that a Nestin-Cre transgene targets perivascular cells (adventitial cells and pericyte-like cells) in WAT, and Nestin-GFP specifically labels pericyte-like cells. Activation of PDGFRα signaling in perivascular cells causes them to transition into ECM-synthesizing profibrotic cells. Before this transition occurs, PDGFRα signaling up-regulates mTOR signaling and ribosome biogenesis pathways and perturbs the expression of a network of epigenetically imprinted genes that have been implicated in cell growth and tissue homeostasis. Isolated Nestin-GFP+ cells differentiate into adipocytes ex vivo and form WAT when transplanted into recipient mice. However, PDGFRα signaling opposes adipogenesis and generates profibrotic cells instead, which leads to fibrotic WAT in transplant experiments. These results identify perivascular cells as fibro/adipogenic progenitors in WAT and show that PDGFRα targets progenitor cell plasticity as a profibrotic mechanism.
Collapse
Affiliation(s)
- Tomoaki Iwayama
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Cameron Steele
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Longbiao Yao
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Mikhail G Dozmorov
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Dimitris Karamichos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA; Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Lorin E Olson
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA;
| |
Collapse
|
570
|
Mest and Sfrp5 are biomarkers for healthy adipose tissue. Biochimie 2015; 124:124-133. [PMID: 26001362 DOI: 10.1016/j.biochi.2015.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/09/2015] [Indexed: 01/17/2023]
Abstract
Obesity depends on a close interplay between genetic and environmental factors. However, it is unknown how these factors interact to cause changes in the obese condition during the progression of obesity from the neonatal to the aged individual. We have utilized Mest and Sfrp5 genes, two genes highly correlated with adipose tissue expansion in diet-induced obesity, to characterize the obese condition during development of 2 genetic models of obesity. A model for the early onset of obesity was presented by leptin-deficient mice (ob/ob), whereas late onset of obesity was induced with high-fat diet (HFD) consumption in C57BL/6J mice with inherent risk of obesity (DIO). We correlated obese and diabetic phenotypes with Mest and Sfrp5 gene expression profiles in subcutaneous fat during pre-weaning, pre-adulthood and adulthood. A rapid development of obesity began in ob/ob mice immediately after weaning at 21 days of age, whereas the obesity of DIO mice was not evident until after 2 months of age. Even after 5 months of HFD treatment, the adiposity index of DIO mice was lower than in ob/ob mice at 2 months of age. In both obesity models, the expression of Mest and Sfrp5 genes increased in parallel with fat mass expansion; however, gene expression proceeded to decrease when the adiposity reached a plateau. The reduction in the expression of genes of caveolae structure and glucose metabolism were also suppressed in the aging adipose tissue. The analysis of fat mass and adipocyte size suggests that reduction in Mest and Sfrp5 is more sensitive to the age of the fat than its morphology. The balance of factors controlling fat deposition can be evaluated in part by the differential expression profiles of Mest and Sfrp5 genes with functions linked to fat deposition as long as there is an active accumulation of fat mass.
Collapse
|
571
|
Buechler C, Krautbauer S, Eisinger K. Adipose tissue fibrosis. World J Diabetes 2015; 6:548-553. [PMID: 25987952 PMCID: PMC4434075 DOI: 10.4239/wjd.v6.i4.548] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/12/2015] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
The increasing prevalence of obesity causes a major interest in white adipose tissue biology. Adipose tissue cells are surrounded by extracellular matrix proteins whose composition and remodeling is of crucial importance for cell function. The expansion of adipose tissue in obesity is linked to an inappropriate supply with oxygen and hypoxia development. Subsequent activation of hypoxia inducible factor 1 (HIF-1) inhibits preadipocyte differentiation and initiates adipose tissue fibrosis. Thereby adipose tissue growth is limited and excess triglycerides are stored in ectopic tissues. Stressed adipocytes and hypoxia contribute to immune cell immigration and activation which further aggravates adipose tissue fibrosis. There is substantial evidence that adipose tissue fibrosis is linked to metabolic dysfunction, both in rodent models and in the clinical setting. Peroxisome proliferator activated receptor gamma agonists and adiponectin both reduce adipose tissue fibrosis, inflammation and insulin resistance. Current knowledge suggests that antifibrotic drugs, increasing adipose tissue oxygen supply or HIF-1 antagonists will improve adipose tissue function and thereby ameliorate metabolic diseases.
Collapse
|
572
|
Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nat Med 2015; 21:610-8. [PMID: 25939064 DOI: 10.1038/nm.3829] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
Accumulation of visceral adipose tissue correlates with elevated inflammation and increased risk of metabolic diseases. However, little is known about the molecular mechanisms that control its pathological expansion. Transcription factor interferon regulatory factor 5 (IRF5) has been implicated in polarizing macrophages towards an inflammatory phenotype. Here we demonstrate that mice lacking Irf5, when placed on a high-fat diet, show no difference in the growth of their epididymal white adipose tissue (epiWAT) but they show expansion of their subcutaneous white adipose tissue, as compared to wild-type (WT) mice on the same diet. EpiWAT from Irf5-deficient mice is marked by accumulation of alternatively activated macrophages, higher collagen deposition that restricts adipocyte size, and enhanced insulin sensitivity compared to epiWAT from WT mice. In obese individuals, IRF5 expression is negatively associated with insulin sensitivity and collagen deposition in visceral adipose tissue. Genome-wide analysis of gene expression in adipose tissue macrophages highlights the transforming growth factor β1 (TGFB1) gene itself as a direct target of IRF5-mediated inhibition. This study uncovers a new function for IRF5 in controlling the relative mass of different adipose tissue depots and thus insulin sensitivity in obesity, and it suggests that inhibition of IRF5 may promote a healthy metabolic state during this condition.
Collapse
|
573
|
Lei X, Li Q, Rodriguez S, Tan SY, Seldin MM, McLenithan JC, Jia W, Wong GW. Thromboxane synthase deficiency improves insulin action and attenuates adipose tissue fibrosis. Am J Physiol Endocrinol Metab 2015; 308:E792-804. [PMID: 25738781 PMCID: PMC4420899 DOI: 10.1152/ajpendo.00383.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/20/2015] [Indexed: 12/14/2022]
Abstract
Thromboxane A2, an arachidonic acid-derived eicosanoid generated by thromboxane synthase (TBXAS), plays critical roles in hemostasis and inflammation. However, the contribution of thromboxane A2 to obesity-linked metabolic dysfunction remains incompletely understood. Here, we used in vitro and mouse models to better define the role of TBXAS in metabolic homeostasis. We found that adipose expression of Tbxas and thromboxane A2 receptor (Tbxa2r) was significantly upregulated in genetic and dietary mouse models of obesity and diabetes. Expression of Tbxas and Tbxa2r was detected in adipose stromal cells, including macrophages. Furthermore, stimulation of macrophages with interferon-γ or resistin factors known to be upregulated in obesity induced Tbxas and Tbxa2r expression. Mice lacking Tbxas had similar weight gain, food intake, and energy expenditure. However, loss of Tbxas markedly enhanced insulin sensitivity in mice fed a low-fat diet. Improvement in glucose homeostasis was correlated with the upregulated expression of multiple secreted metabolic regulators (Ctrp3, Ctrp9, and Ctrp12) in the visceral fat depot. Following a challenge with a high-fat diet, Tbxas deficiency led to attenuated adipose tissue fibrosis and reduced circulating IL-6 levels without adipose tissue macrophages being affected; however, these changes were not sufficient to improve whole body insulin action. Together, our results highlight a novel, diet-dependent role for thromboxane A2 in modulating peripheral tissue insulin sensitivity and adipose tissue fibrosis.
Collapse
Affiliation(s)
- Xia Lei
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qing Li
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China; and
| | - Susana Rodriguez
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefanie Y Tan
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marcus M Seldin
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John C McLenithan
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China; and
| | - G William Wong
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
574
|
Abstract
Adipose tissue is a complex, multicellular organ that profoundly influences the function of nearly all other organ systems through its diverse metabolite and adipokine secretome. Adipocytes are the primary cell type of adipose tissue and play a key role in maintaining energy homeostasis. The efficiency with which adipose tissue responds to whole-body energetic demands reflects the ability of adipocytes to adapt to an altered nutrient environment, and has profound systemic implications. Deciphering adipocyte cell biology is an important component of understanding how the aberrant physiology of expanding adipose tissue contributes to the metabolic dysregulation associated with obesity.
Collapse
Affiliation(s)
- Joseph M Rutkowski
- Touchstone Diabetes Center, Department of Internal Medicine, and Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jennifer H Stern
- Touchstone Diabetes Center, Department of Internal Medicine, and Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, and Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390 Touchstone Diabetes Center, Department of Internal Medicine, and Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
575
|
Miana M, Galán M, Martínez-Martínez E, Varona S, Jurado-López R, Bausa-Miranda B, Antequera A, Luaces M, Martínez-González J, Rodríguez C, Cachofeiro V. The lysyl oxidase inhibitor β-aminopropionitrile reduces body weight gain and improves the metabolic profile in diet-induced obesity in rats. Dis Model Mech 2015; 8:543-51. [PMID: 26035864 PMCID: PMC4457038 DOI: 10.1242/dmm.020107] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/28/2015] [Indexed: 12/31/2022] Open
Abstract
Extracellular matrix (ECM) remodelling of the adipose tissue plays a pivotal role in the pathophysiology of obesity. The lysyl oxidase (LOX) family of amine oxidases, including LOX and LOX-like (LOXL) isoenzymes, controls ECM maturation, and upregulation of LOX activity is essential in fibrosis; however, its involvement in adipose tissue dysfunction in obesity is unclear. In this study, we observed that LOX is the main isoenzyme expressed in human adipose tissue and that its expression is strongly upregulated in samples from obese individuals that had been referred to bariatric surgery. LOX expression was also induced in the adipose tissue from male Wistar rats fed a high-fat diet (HFD). Interestingly, treatment with β-aminopropionitrile (BAPN), a specific and irreversible inhibitor of LOX activity, attenuated the increase in body weight and fat mass that was observed in obese animals and shifted adipocyte size toward smaller adipocytes. BAPN also ameliorated the increase in collagen content that was observed in adipose tissue from obese animals and improved several metabolic parameters – it ameliorated glucose and insulin levels, decreased homeostasis model assessment (HOMA) index and reduced plasma triglyceride levels. Furthermore, in white adipose tissue from obese animals, BAPN prevented the downregulation of adiponectin and glucose transporter 4 (GLUT4), as well as the increase in suppressor of cytokine signaling 3 (SOCS3) and dipeptidyl peptidase 4 (DPP4) levels, triggered by the HFD. Likewise, in the TNFα-induced insulin-resistant 3T3-L1 adipocyte model, BAPN prevented the downregulation of adiponectin and GLUT4 and the increase in SOCS3 levels, and consequently normalised insulin-stimulated glucose uptake. Therefore, our data provide evidence that LOX plays a pathologically relevant role in the metabolic dysfunction induced by obesity and emphasise the interest of novel pharmacological interventions that target adipose tissue fibrosis and LOX activity for the clinical management of this disease. Highlighted Article: Lysyl oxidase (LOX) could play a role in the metabolic dysfunction induced by obesity, and consequently the inhibition of LOX activity could be a valuable strategy to ameliorate obesity-related metabolic disturbances.
Collapse
Affiliation(s)
- María Miana
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain
| | - María Galán
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona 08025, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain Cardiovascular Translational Research, NavarraBiomed (Fundación Miguel Servet), Pamplona 31008, Spain
| | - Saray Varona
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona 08025, Spain
| | - Raquel Jurado-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain
| | - Belén Bausa-Miranda
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain
| | - Alfonso Antequera
- Upper Gastroenterology & Bariatric Surgery Department, Fuenlabrada University Hospital, Madrid 28942, Spain
| | - María Luaces
- Cardiology Department, Cardiovascular Institute, Hospital Clínico San Carlos, Madrid 28040, Spain
| | - José Martínez-González
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona 08025, Spain
| | - Cristina Rodríguez
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona 08025, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain
| |
Collapse
|
576
|
Adegunsoye A, Balachandran J. Inflammatory response mechanisms exacerbating hypoxemia in coexistent pulmonary fibrosis and sleep apnea. Mediators Inflamm 2015; 2015:510105. [PMID: 25944985 PMCID: PMC4402194 DOI: 10.1155/2015/510105] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/17/2015] [Indexed: 01/02/2023] Open
Abstract
Mediators of inflammation, oxidative stress, and chemoattractants drive the hypoxemic mechanisms that accompany pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis commonly have obstructive sleep apnea, which potentiates the hypoxic stimuli for oxidative stress, culminating in systemic inflammation and generalized vascular endothelial damage. Comorbidities like pulmonary hypertension, obesity, gastroesophageal reflux disease, and hypoxic pulmonary vasoconstriction contribute to chronic hypoxemia leading to the release of proinflammatory cytokines that may propagate clinical deterioration and alter the pulmonary fibrotic pathway. Tissue inhibitor of metalloproteinase (TIMP-1), interleukin- (IL-) 1α, cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β), lipopolysaccharide induced CXC chemokine (LIX), monokine induced by gamma interferon (MIG-1), macrophage inflammatory protein- (MIP-) 1α, MIP-3α, and nuclear factor- (NF-) κB appear to mediate disease progression. Adipocytes may induce hypoxia inducible factor (HIF) 1α production; GERD is associated with increased levels of lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and tumor necrosis factor alpha (TNF-α); pulmonary artery myocytes often exhibit increased cytosolic free Ca2+. Protein kinase C (PKC) mediated upregulation of TNF-α and IL-1β also occurs in the pulmonary arteries. Increased understanding of the inflammatory mechanisms driving hypoxemia in pulmonary fibrosis and obstructive sleep apnea may potentiate the identification of appropriate therapeutic targets for developing effective therapies.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Section of Pulmonary & Critical Care, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jay Balachandran
- Section of Pulmonary & Critical Care, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
577
|
Wollina U. Midfacial rejuvenation by hyaluronic acid fillers and subcutaneous adipose tissue – A new concept. Med Hypotheses 2015; 84:327-30. [DOI: 10.1016/j.mehy.2015.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 11/27/2022]
|
578
|
Microstructural inhomogeneity of electrical conductivity in subcutaneous fat tissue. PLoS One 2015; 10:e0117072. [PMID: 25734656 PMCID: PMC4348477 DOI: 10.1371/journal.pone.0117072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022] Open
Abstract
Microscopic peculiarities stemming from a temperature increase in subcutaneous adipose tissue (sWAT) after applying a radio-frequency (RF) current, must be strongly dependent on the type of sWAT. This effect is connected with different electrical conductivities of pathways inside (triglycerides in adipocytes) and outside (extra-cellular matrix) the cells and to the different weighting of these pathways in hypertrophic and hyperplastic types of sWAT. The application of the RF current to hypertrophic sWAT, which normally has a strongly developed extracellular matrix with high concentrations of hyaluronan and collagen in a peri-cellular space of adipocytes, can produce, micro-structurally, a highly inhomogeneous temperature distribution, characterized by strong temperature gradients between the peri-cellular sheath of the extra-cellular matrix around the hypertrophic adipocytes and their volumes. In addition to normal temperature effects, which are generally considered in body contouring, these temperature gradients can produce thermo-mechanical stresses on the cells’ surfaces. Whereas these stresses are relatively small under normal conditions and cannot cause any direct fracturing or damage of the cell structure, these stresses can, under some supportive conditions, be theoretically increased by several orders of magnitude, causing the thermo-mechanical cell damage. This effect cannot be realized in sWAT of normal or hyperplastic types where the peri-cellular structures are under-developed. It is concluded that the results of RF application in body contouring procedures must be strongly dependent on the morphological structure of sWAT.
Collapse
|
579
|
Wensveen FM, Jelenčić V, Valentić S, Šestan M, Wensveen TT, Theurich S, Glasner A, Mendrila D, Štimac D, Wunderlich FT, Brüning JC, Mandelboim O, Polić B. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol 2015; 16:376-85. [PMID: 25729921 DOI: 10.1038/ni.3120] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/09/2015] [Indexed: 12/13/2022]
Abstract
An important cause of obesity-induced insulin resistance is chronic systemic inflammation originating in visceral adipose tissue (VAT). VAT inflammation is associated with the accumulation of proinflammatory macrophages in adipose tissue, but the immunological signals that trigger their accumulation remain unknown. We found that a phenotypically distinct population of tissue-resident natural killer (NK) cells represented a crucial link between obesity-induced adipose stress and VAT inflammation. Obesity drove the upregulation of ligands of the NK cell-activating receptor NCR1 on adipocytes; this stimulated NK cell proliferation and interferon-γ (IFN-γ) production, which in turn triggered the differentiation of proinflammatory macrophages and promoted insulin resistance. Deficiency of NK cells, NCR1 or IFN-γ prevented the accumulation of proinflammatory macrophages in VAT and greatly ameliorated insulin sensitivity. Thus NK cells are key regulators of macrophage polarization and insulin resistance in response to obesity-induced adipocyte stress.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sonja Valentić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marko Šestan
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | | - Ariella Glasner
- The Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Davor Mendrila
- Department of Surgery, University Hospital Rijeka, Rijeka, Croatia
| | - Davor Štimac
- Department of Internal Medicine, University Hospital Rijeka, Rijeka, Croatia
| | | | - Jens C Brüning
- Max Planck Institute for Metabolism Research Cologne, Cologne, Germany
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
580
|
Abstract
OBJECTIVE This review will focus on the immunological aspects of adipose tissue and its potential role in development of chronic inflammation that instigates obesity-associated comorbidities. METHODS The review used PubMed searches of current literature to examine adipose tissue leukocytosis. RESULTS AND CONCLUSIONS The adipose tissue of obese subjects becomes inflamed and contributes to the development of insulin resistance, type 2 diabetes, and metabolic syndrome. Numerous immune cells including B cells, T cells, macrophages, and neutrophils have been identified in adipose tissue, and obesity influences both the quantity and the nature of immune cell subtypes, which emerges as an active immunological organ capable of modifying whole-body metabolism through paracrine and endocrine mechanisms. Adipose tissue is a large immunologically active organ during obesity and displays hallmarks of both and innate and adaptive immune response. Despite the presence of hematopoietic lineage cells in adipose tissue, it is unclear whether the adipose compartment has a direct role in immune surveillance or host defense. Understanding the interactions between leukocytes and adipocytes may reveal the clinically relevant pathways that control adipose tissue inflammation and is likely to reveal mechanisms by which obesity contributes to increased susceptibility to both metabolic and certain infectious diseases.
Collapse
Affiliation(s)
- Ryan W. Grant
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Vishwa Deep Dixit
- Section of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
581
|
Abstract
Inflammation regulates energy metabolism in both physiological and pathological conditions. Pro-inflammatory cytokines involves in energy regulation in several conditions, such as obesity, aging (calorie restriction), sports (exercise), and cancer (cachexia). Here, we introduce a view of integrative physiology to understand pro-inflammatory cytokines in the control of energy expenditure. In obesity, chronic inflammation is derived from energy surplus that induces adipose tissue expansion and adipose tissue hypoxia. In addition to the detrimental effect on insulin sensitivity, pro-inflammatory cytokines also stimulate energy expenditure and facilitate adipose tissue remodeling. In caloric restriction (CR), inflammatory status is decreased by low energy intake that results in less energy supply to immune cells to favor energy saving under caloric restriction. During physical exercise, inflammatory status is elevated due to muscle production of pro-inflammatory cytokines, which promote fatty acid mobilization from adipose tissue to meet the muscle energy demand. In cancer cachexia, chronic inflammation is elevated by the immune response in the fight against cancer. The energy expenditure from chronic inflammation contributes to weight loss. Immune tolerant cancer cells gains more nutrients during the inflammation. In these conditions, inflammation coordinates energy distribution and energy demand between tissues. If the body lacks response to the pro-inflammatory cytokines (Inflammation Resistance), the energy metabolism will be impaired leading to an increased risk for obesity. In contrast, super-induction of the inflammation activity leads to weight loss and malnutrition in cancer cachexia. In summary, inflammation is a critical component in the maintenance of energy balance in the body. Literature is reviewed in above fields to support this view.
Collapse
Affiliation(s)
- Hui Wang
- Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine in Henan Province, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Jianping Ye
- Pennington Biomedical Research Center, Louisiana State University System
- Correspondence:
| |
Collapse
|
582
|
Cescon M, Gattazzo F, Chen P, Bonaldo P. Collagen VI at a glance. J Cell Sci 2015; 128:3525-31. [DOI: 10.1242/jcs.169748] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022] Open
Abstract
Collagen VI represents a remarkable extracellular matrix molecule, and in the past few years, studies of this molecule have revealed its involvement in a wide range of tissues and pathological conditions. In addition to its complex multi-step pathway of biosynthesis and assembly that leads to the formation of a characteristic and distinctive network of beaded microfilaments in the extracellular matrix, collagen VI exerts several key roles in different tissues. These range from unique biomechanical roles to cytoprotective functions in different cells, including myofibers, chondrocytes, neurons, fibroblasts and cardiomyocytes. Indeed, collagen VI has been shown to exert a surprisingly broad range of cytoprotective effects, which include counteracting apoptosis and oxidative damage, favoring tumor growth and progression, regulating autophagy and cell differentiation, and even contributing to the maintenance of stemness. In this Cell Science at a Glance article and the accompanying poster, we present the current knowledge of collagen VI, and in particular, discuss its relevance in stemness and in preserving the mechanical properties of tissues, as well as its links with human disorders.
Collapse
Affiliation(s)
- Matilde Cescon
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Francesca Gattazzo
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Peiwen Chen
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| |
Collapse
|
583
|
Craft CS. MAGP1, the extracellular matrix, and metabolism. Adipocyte 2015; 4:60-4. [PMID: 26167404 DOI: 10.4161/adip.32209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/23/2014] [Accepted: 07/29/2014] [Indexed: 01/11/2023] Open
Abstract
Adipose tissue and the extracellular matrix were once considered passive players in regulating physiological processes. Now, both entities are acknowledged for their capacity to engage signal transduction pathways, and for their involvement in maintaining normal tissue homeostasis. We recently published a series of studies that identified a novel mechanism whereby an extracellular matrix molecule, MAGP1 (microfibril associated glycoprotein 1), can regulate energy metabolism in adipose tissue. MAGP1 is a component of extracellular microfibrils and plays a supportive role in maintaining thermoregulation by indirectly regulating expression of the thermogenic uncoupling proteins (UCPs). The focus of this commentary is to draw attention to the role of the extracellular matrix in regulating the bioavailability of signaling molecules, like transforming growth factor β (TGFβ), and exemplify that a better understanding of the extracellular matrix's biological properties could unveil a new source of therapeutic targets for metabolic diseases.
Collapse
|
584
|
Tharp KM, Stahl A. Bioengineering Beige Adipose Tissue Therapeutics. Front Endocrinol (Lausanne) 2015; 6:164. [PMID: 26539163 PMCID: PMC4611961 DOI: 10.3389/fendo.2015.00164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023] Open
Abstract
Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and their potential for the metabolic therapies.
Collapse
Affiliation(s)
- Kevin M. Tharp
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Andreas Stahl
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- *Correspondence: Andreas Stahl,
| |
Collapse
|
585
|
Amable PR, Teixeira MVT, Carias RBV, Granjeiro JM, Borojevic R. Gene expression and protein secretion during human mesenchymal cell differentiation into adipogenic cells. BMC Cell Biol 2014; 15:46. [PMID: 25526965 PMCID: PMC4293810 DOI: 10.1186/s12860-014-0046-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022] Open
Abstract
Background Mesenchymal stromal cells (MSC) can be obtained from potentially any tissue from the human body, but cells purified from different sources are undoubtedly different, and for each medical application, the MSC with the best regenerative potential should be chosen. Results Bone marrow-derived mesenchymal stromal cells (BM-MSC), adipose tissue-derived mesenchymal stromal cells (AT-MSC) and Wharton’s Jelly-derived mesenchymal stromal cells (WJ-MSC) were isolated from human tissues and were cultured under differentiation media supplemented with fetal bovine serum. We quantified the expression of stem cell and adipocyte genetic markers using quantitative real time PCR, as well as the secretion of cytokines, extracellular matrix components and growth factors using Luminex and ELISA. All three MSC differentiated into adipogenic cells. AT-MSC showed the highest shift in ADIPOQ, CEBPA and PPARG mRNA expression. BM-MSC kept high expression levels of stem-cell markers SOX2 and POU5F1. WJ-MSC showed the lowest increase in mRNA expression when cells were induced to differentiate into adipocytes. Regarding protein secretion, adipocyte-like cells generated from WJ-MSC secreted the highest chemokine levels. AT-MSC-derived adipocyte-like cells secreted the lowest cytokine amounts and the highest quantity of collagen types I and III. Adipocyte-like cells obtained from BM-MSC secreted high amounts of most angiogenic factors, growth factors TGF-β1 and TGF-β2, collagens type II and IV, heparan sulfate, laminin and aggrecan. Conclusion Mesenchymal stromal cells purified from different tissues have a different behavior when induced to differentiate into adipocyte-like cells.
Collapse
Affiliation(s)
- Paola Romina Amable
- Excellion Biomedical Services S.A., Rua Afrânio de Mello Franco 333, Quitandinha, Petrópolis, Rio de Janeiro, Brazil.
| | | | | | - José Mauro Granjeiro
- National Institute of Metrology, Quality and Technology (Inmetro), Xerém, Rio de Janeiro, Brazil.
| | - Radovan Borojevic
- National Institute of Metrology, Quality and Technology (Inmetro), Xerém, Rio de Janeiro, Brazil. .,Faculdade de Medicina de Petrópolis, Faculdades Arthur Sá Earp Neto, Petrópolis, Rio de Janeiro, Brazil.
| |
Collapse
|
586
|
Adipose tissue dysregulation and metabolic consequences in childhood and adolescent obesity: potential impact of dietary fat quality. Proc Nutr Soc 2014; 74:67-82. [PMID: 25497038 DOI: 10.1017/s002966511400158x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence suggests that at a population level, childhood and adolescent obesity increase the long-term risk of chronic diseases such as type 2 diabetes and CVD. At an individual level, however, the metabolic consequences of obesity in youth vary immensely. Despite comparable BMI, some adolescents develop impaired glucose tolerance while others maintain normal glucose homeostasis. It has been proposed that the variation in the capacity to store lipid in the subcutaneous adipose tissue (SAT) may partially discriminate metabolically healthy from unhealthy obesity. In positive energy balance, a decreased capacity to expand SAT may drive lipid accumulation to visceral adipose tissue, liver and skeletal muscle. This state of lipotoxicity is associated with chronic low-grade inflammation, insulin resistance and dyslipidaemia. The present review examines the differential adipose tissue development and function in children and adolescents who exhibit metabolic dysregulation compared with those who are protected. Additionally, the role of manipulating dietary fat quality to potentially prevent and treat metabolic dysfunction in obesity will be discussed. The findings of the present review highlight the need for further randomised controlled trials to establish the effect of dietary n-3 PUFA on the metabolic phenotype of obese children and adolescents. Furthermore, using a personalised nutrition approach to target interventions to those at risk of, or those with established metabolic dysregulation may optimise the efficacy of modifying dietary fat quality.
Collapse
|
587
|
Reddy MA, Chen Z, Park JT, Wang M, Lanting L, Zhang Q, Bhatt K, Leung A, Wu X, Putta S, Sætrom P, Devaraj S, Natarajan R. Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA. Diabetes 2014; 63:4249-61. [PMID: 25008173 PMCID: PMC4238007 DOI: 10.2337/db14-0298] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mechanisms by which macrophages mediate the enhanced inflammation associated with diabetes complications are not completely understood. We used RNA sequencing to profile the transcriptome of bone marrow macrophages isolated from diabetic db/db mice and identified 1,648 differentially expressed genes compared with control db/+ mice. Data analyses revealed that diabetes promoted a proinflammatory, profibrotic, and dysfunctional alternatively activated macrophage phenotype possibly via transcription factors involved in macrophage function. Notably, diabetes altered levels of several long noncoding RNAs (lncRNAs). Because the role of lncRNAs in diabetes complications is unknown, we further characterized the function of lncRNA E330013P06, which was upregulated in macrophages from db/db and diet-induced insulin-resistant type 2 diabetic (T2D) mice, but not from type 1 diabetic mice. It was also upregulated in monocytes from T2D patients. E330013P06 was also increased along with inflammatory genes in mouse macrophages treated with high glucose and palmitic acid. E330013P06 overexpression in macrophages induced inflammatory genes, enhanced responses to inflammatory signals, and increased foam cell formation. In contrast, small interfering RNA-mediated E330013P06 gene silencing inhibited inflammatory genes induced by the diabetic stimuli. These results define the diabetic macrophage transcriptome and novel functional roles for lncRNAs in macrophages that could lead to lncRNA-based therapies for inflammatory diabetes complications.
Collapse
Affiliation(s)
- Marpadga A Reddy
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Zhuo Chen
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Jung Tak Park
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Mei Wang
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Linda Lanting
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Qiang Zhang
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Kirti Bhatt
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Amy Leung
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Xiwei Wu
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Sumanth Putta
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Pål Sætrom
- Departments of Computer and Information Science and Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Rama Natarajan
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
588
|
Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM, Messi ML, Mintz A, Delbono O. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 2014; 5:122. [PMID: 25376879 PMCID: PMC4445991 DOI: 10.1186/scrt512] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
Introduction Fibrosis, or scar formation, is a pathological condition characterized by excessive production and accumulation of collagen, loss of tissue architecture, and organ failure in response to uncontrolled wound healing. Several cellular populations have been implicated, including bone marrow-derived circulating fibrocytes, endothelial cells, resident fibroblasts, epithelial cells, and recently, perivascular cells called pericytes. We previously demonstrated pericyte functional heterogeneity in skeletal muscle. Whether pericyte subtypes are present in other tissues and whether a specific pericyte subset contributes to organ fibrosis are unknown. Methods Here, we report the presence of two pericyte subtypes, type-1 (Nestin-GFP-/NG2-DsRed+) and type-2 (Nestin-GFP+/NG2-DsRed+), surrounding blood vessels in lungs, kidneys, heart, spinal cord, and brain. Using Nestin-GFP/NG2-DsRed transgenic mice, we induced pulmonary, renal, cardiac, spinal cord, and cortical injuries to investigate the contributions of pericyte subtypes to fibrous tissue formation in vivo. Results A fraction of the lung’s collagen-producing cells corresponds to type-1 pericytes and kidney and heart pericytes do not produce collagen in pathological fibrosis. Note that type-1, but not type-2, pericytes increase and accumulate near the fibrotic tissue in all organs analyzed. Surprisingly, after CNS injury, type-1 pericytes differ from scar-forming PDGFRβ + cells. Conclusions Pericyte subpopulations respond differentially to tissue injury, and the production of collagen by type-1 pericytes is organ-dependent. Characterization of the mechanisms underlying scar formation generates cellular targets for future anti-fibrotic therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/scrt512) contains supplementary material, which is available to authorized users.
Collapse
|
589
|
Wang X, Yang P, Liu J, Wu H, Yu W, Zhang T, Fu H, Liu Y, Hai C. RARγ-C-Fos-PPARγ2 signaling rather than ROS generation is critical for all-trans retinoic acid-inhibited adipocyte differentiation. Biochimie 2014; 106:121-30. [PMID: 25173565 DOI: 10.1016/j.biochi.2014.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/19/2014] [Indexed: 11/18/2022]
Abstract
Obesity has become a worldwide public health problem, which is mainly determined by excess energy intake and adipose tissue expansion. Adipose tissue expansion can occur through hyperplasia (adipocyte differentiation) or hypertrophy. Retinoic acid was shown to inhibit adipocyte differentiation. However, the molecular mechanism is unclear. In the study, we found that all-trans-retinoic acid (ATRA) inhibited 3T3-L1 adipocyte differentiation. We did not observe significant apoptosis in differentiated adipocytes treated by ATRA. ATRA increased ROS generation and disturbed redox balance. However, antioxidant treatment did not ameliorate the reduction of lipid accumulation induced by ATRA, indicating that ROS generation was not involved in ATRA-inhibited adipocyte differentiation. ATRA reduced C/EBPα, PPARγ and its target gene expression. In the presence of ATRA, retinoic acid receptor (RAR) α/γ expression was increased. Inhibition of RARγ, but not RARα, blocked ATRA-induced reduction of PPARγ2 expression. ATRA induced a profound interaction between RARγ and C-Fos protein, reflected by Co-IP results. C-Fos was found to exhibit a differentiation-dependent DNA binding activity to PPARγ2 promoter. RARγ inhibitor significantly suppressed ATRA-inhibited DNA binding activity of C-Fos to PPARγ2 promoter, indicating that downregulation of C-Fos activity mediated activation of RARγ-exerted reduction of PPARγ2 expression and thus inhibition of adipocyte differentiation induced by ATRA. Taken together, these data demonstrates that RARγ-C-Fos-PPARγ2 signaling rather than ROS generation is critical for ATRA-inhibited adipocyte differentiation.
Collapse
Affiliation(s)
- Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Peng Yang
- Department of Health Statistics, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jiangzheng Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Hao Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Weihua Yu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Tao Zhang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Han Fu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Ying Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
590
|
Bohan AE, Purvis KN, Bartosh JL, Brandebourg TD. The proliferation and differentiation of primary pig preadipocytes is suppressed when cultures are incubated at 37°Celsius compared to euthermic conditions in pigs. Adipocyte 2014; 3:322-32. [PMID: 26317057 DOI: 10.4161/21623945.2014.981434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022] Open
Abstract
Given similarities in metabolic parameters and cardiovascular physiology, the pig is well positioned as a biomedical model for metabolic disease and obesity in humans. Better understanding molecular mechanisms governing porcine adipocyte hyperplasia may provide insight into the regulation of adipose tissue development that is useful both when considering the pig as a commodity and when extrapolating porcine data to human disease. Primary cultures of pig stromal-vascular cells have served as a useful tool for investigating factors that regulate preadipocyte proliferation and differentiation. However, such cultures have generally been maintained at 37°C in vitro despite euthermia being 39°C in pigs. To address potential concerns about the physiological relevance of culturing primary pig preadipocytes under what would be hypothermic conditions in vivo, the objective of this study was to investigate the effect of culture temperature on the proliferation and differentiation of pig preadipocytes in primary culture. Culturing primary preadipocytes at 37 rather than 39°C decreases their proliferation rates based upon cleavage of the tetrazolium salt, MTT (P < 0.001), reduction of resazurin (P < 0.001), and daily cell counts (P < 0.001). Likewise, culturing primary porcine preadipocytes at 37°C suppressed their adipogenic potential based upon monitoring adipogenesis morphologically, biochemically, and via the expression of mRNA encoding adipogenic marker genes. Collectively, these data indicate the proliferation and differentiation of primary pig preadipocytes is suppressed when cultures are incubated at 37°C compared to normal body temperature of pigs. This may confound investigation of factors that impact adipocyte hyperplasia in the pig.
Collapse
|
591
|
Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis. Nat Commun 2014; 5:4982. [PMID: 25236782 DOI: 10.1038/ncomms5982] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022] Open
Abstract
In obesity, a paracrine loop between adipocytes and macrophages augments chronic inflammation of adipose tissue, thereby inducing systemic insulin resistance and ectopic lipid accumulation. Obese adipose tissue contains a unique histological structure termed crown-like structure (CLS), where adipocyte-macrophage crosstalk is known to occur in close proximity. Here we show that Macrophage-inducible C-type lectin (Mincle), a pathogen sensor for Mycobacterium tuberculosis, is localized to macrophages in CLS, the number of which correlates with the extent of interstitial fibrosis. Mincle induces obesity-induced adipose tissue fibrosis, thereby leading to steatosis and insulin resistance in liver. We further show that Mincle in macrophages is crucial for CLS formation, expression of fibrosis-related genes and myofibroblast activation. This study indicates that Mincle, when activated by an endogenous ligand released from dying adipocytes, is involved in adipose tissue remodelling, thereby suggesting that sustained interactions between adipocytes and macrophages within CLS could be a therapeutic target for obesity-induced ectopic lipid accumulation.
Collapse
|
592
|
Abstract
Adipose tissue (AT) lies at the crossroad of nutrition, metabolism, and immunity; AT inflammation was proposed as a central mechanism connecting obesity with its metabolic and vascular complications. Resident immune cells constitute the second largest AT cellular component after adipocytes and as such play important roles in the maintenance of AT homeostasis. Obesity-induced changes in their number and activity result in the activation of local and later systemic inflammatory response, marking the transition from simple adiposity to diseases such as type 2 diabetes mellitus, arterial hypertension, and ischemic heart disease. This review has focused on the various subsets of immune cells in AT and their role in the development of AT inflammation and obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Milos Mraz
- Third Department of Medicine - Department of Endocrinology and MetabolismGeneral University Hospital, First Faculty of Medicine of Charles University in Prague, U nemocnice 1, 128 00 Prague 2, Czech Republic
| | - Martin Haluzik
- Third Department of Medicine - Department of Endocrinology and MetabolismGeneral University Hospital, First Faculty of Medicine of Charles University in Prague, U nemocnice 1, 128 00 Prague 2, Czech Republic
| |
Collapse
|
593
|
Samocha-Bonet D, Dixit VD, Kahn CR, Leibel RL, Lin X, Nieuwdorp M, Pietiläinen KH, Rabasa-Lhoret R, Roden M, Scherer PE, Klein S, Ravussin E. Metabolically healthy and unhealthy obese--the 2013 Stock Conference report. Obes Rev 2014; 15:697-708. [PMID: 25059108 PMCID: PMC4519075 DOI: 10.1111/obr.12199] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 05/16/2014] [Accepted: 05/18/2014] [Indexed: 12/12/2022]
Abstract
Obesity is closely associated with cardiovascular diseases and type 2 diabetes, but some obese individuals, despite having excessive body fat, exhibit metabolic health that is comparable with that of lean individuals. The 'healthy obese' phenotype was described in the 1980s, but major advancements in its characterization were only made in the past five years. During this time, several new mechanisms that may be involved in health preservation in obesity were proposed through the use of transgenic animal models, use of sophisticated imaging techniques and in vivo measurements of insulin sensitivity. However, the main obstacle in advancing our understanding of the metabolically healthy obese phenotype and its related long-term health risks is the lack of a standardized definition. Here, we summarize the proceedings of the 13th Stock Conference of the International Association of the Study of Obesity. We describe the current research and highlight the unanswered questions and gaps in the field. Better understanding of metabolic health in obesity will assist in therapeutic decision-making and help identify therapeutic targets to improve metabolic health in obesity.
Collapse
Affiliation(s)
- D Samocha-Bonet
- Garvan Institute of Medical Research, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
594
|
White adipose tissue resilience to insulin deprivation and replacement. PLoS One 2014; 9:e106214. [PMID: 25170835 PMCID: PMC4149534 DOI: 10.1371/journal.pone.0106214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 08/04/2014] [Indexed: 11/19/2022] Open
Abstract
Introduction Adipocyte size and body fat distribution are strongly linked to the metabolic complications of obesity. The aim of the present study was to test the plasticity of white adipose tissue in response to insulin deprivation and replacement. We have characterized the changes of adipose cell size repartition and gene expressions in type 1 diabetes Sprague-Dawley rats and type 1 diabetic supplemented with insulin. Methods Using streptozotocin (STZ)-induced diabetes, we induced rapid changes in rat adipose tissue weights to study the changes in the distribution of adipose cell sizes in retroperitoneal (rWAT), epididymal (eWAT) and subcutaneous adipose tissues (scWAT). Adipose tissue weights of type 1 diabetic rats were then rapidly restored by insulin supplementation. Cell size distributions were analyzed using multisizer IV (Beckman Coulter). Cell size changes were correlated to transcriptional regulation of genes coding for proteins involved in lipid and glucose metabolisms and adipocytokines. Results The initial body weight of the rats was 465±5.2 g. Insulin privation was stopped when rats lost 100 g which induced reductions in fat mass of 68% for rWAT, 42% for eWAT and 59% for scWAT corresponding to decreased mode cell diameters by 31.1%, 20%, 25.3%, respectively. The most affected size distribution by insulin deprivation was observed in rWAT. The bimodal distribution of adipose cell sizes disappeared in response to insulin deprivation in rWAT and scWAT. The most important observation is that cell size distribution returned close to control values in response to insulin treatment. mRNAs coding for adiponectin, leptin and apelin were more stimulated in scWAT compared to other depots in diabetic plus insulin group. Conclusion Fat depots have specific responses to insulin deprivation and supplementation. The results show that insulin is a major determinant of bimodal cell repartition in adipose tissues.
Collapse
|
595
|
Alvey NJ, Pedley A, Rosenquist KJ, Massaro JM, O'Donnell CJ, Hoffmann U, Fox CS. Association of fat density with subclinical atherosclerosis. J Am Heart Assoc 2014; 3:jah3669. [PMID: 25169793 PMCID: PMC4310364 DOI: 10.1161/jaha.114.000788] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Ectopic fat density is associated with cardiovascular disease (CVD) risk factors above and beyond fat volume. Volumetric measures of ectopic fat have been associated with CVD risk factors and subclinical atherosclerosis. The aim of this study was to investigate the association between fat density and subclinical atherosclerosis. Methods and Results Participants were drawn from the Multi‐Detector Computed Tomography (MDCT) substudy of the Framingham Heart Study (n=3079; mean age, 50.1 years; 49.2% women). Fat density was indirectly estimated by computed tomography attenuation (Hounsfield Units [HU]) on abdominal scan slices. Visceral fat (VAT), subcutaneous fat (SAT), and pericardial fat HU and volumes were quantified using standard protocols; coronary and abdominal aortic calcium (CAC and AAC, respectively) were measured radiographically. Multivariable‐adjusted logistic regression models were used to evaluate the association between adipose tissue HU and the presence of CAC and AAC. Overall, 17.1% of the participants had elevated CAC (Agatston score [AS]>100), and 23.3% had elevated AAC (AS>age‐/sex‐specific cutoffs). Per 5‐unit decrement in VAT HU, the odds ratio (OR) for elevated CAC was 0.76 (95% confidence interval [CI], 0.65 to 0.89; P=0.0005), even after adjustment for body mass index or VAT volume. Results were similar for SAT HU. With decreasing VAT HU, we also observed an OR of 0.79 (95% CI, 0.67 to 0.92; P=0.004) for elevated AAC after multivariable adjustment. We found no significant associations between SAT HU and AAC. There was no significant association between pericardial fat HU and either CAC or AAC. Conclusions Lower VAT and SAT HU, indirect estimates of fat quality, are associated with a lower risk of subclinical atherosclerosis.
Collapse
Affiliation(s)
- Nicholas J Alvey
- Harvard Medical School, Boston, MA (N.J.A.) National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA (N.J.A., A.P., K.J.R., C.J.D., C.S.F.)
| | - Alison Pedley
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA (N.J.A., A.P., K.J.R., C.J.D., C.S.F.)
| | - Klara J Rosenquist
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA (N.J.A., A.P., K.J.R., C.J.D., C.S.F.) Division of Endocrinology and Metabolism, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (K.J.R., C.S.F.) NHLBI Division of Intramural Research and the Center for Population Studies, Framingham, MA (K.J.R., C.S.F.)
| | - Joseph M Massaro
- Department of Biostatistics, Boston University School of Public Health, Boston, MA (J.M.M.)
| | - Christopher J O'Donnell
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA (N.J.A., A.P., K.J.R., C.J.D., C.S.F.) Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA (C.J.D.) NHLBI Division of Intramural Research, Cardiovascular Epidemiology and Human Genomics Research, Bethesda, MD (C.J.D.)
| | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (U.H.)
| | - Caroline S Fox
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA (N.J.A., A.P., K.J.R., C.J.D., C.S.F.) Division of Endocrinology and Metabolism, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (K.J.R., C.S.F.) NHLBI Division of Intramural Research and the Center for Population Studies, Framingham, MA (K.J.R., C.S.F.)
| |
Collapse
|
596
|
Lettmann S, Bloch W, Maaß T, Niehoff A, Schulz JN, Eckes B, Eming SA, Bonaldo P, Paulsson M, Wagener R. Col6a1 null mice as a model to study skin phenotypes in patients with collagen VI related myopathies: expression of classical and novel collagen VI variants during wound healing. PLoS One 2014; 9:e105686. [PMID: 25158062 PMCID: PMC4144880 DOI: 10.1371/journal.pone.0105686] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/22/2014] [Indexed: 12/02/2022] Open
Abstract
Patients suffering from collagen VI related myopathies caused by mutations in COL6A1, COL6A2 and COL6A3 often also display skin abnormalities, like formation of keloids or "cigarette paper" scars, dry skin, striae rubrae and keratosis pilaris (follicular keratosis). Here we evaluated if Col6a1 null mice, an established animal model for the muscle changes in collagen VI related myopathies, are also suitable for the study of mechanisms leading to the skin pathology. We performed a comprehensive study of the expression of all six collagen VI chains in unwounded and challenged skin of wild type and Col6a1 null mice. Expression of collagen VI chains is regulated in both skin wounds and bleomycin-induced fibrosis and the collagen VI α3 chain is proteolytically processed in both wild type and Col6a1 null mice. Interestingly, we detected a decreased tensile strength of the skin and an altered collagen fibril and basement membrane architecture in Col6a1 null mice, the latter being features that are also found in collagen VI myopathy patients. Although Col6a1 null mice do not display an overt wound healing defect, these mice are a relevant animal model to study the skin pathology in collagen VI related disease.
Collapse
Affiliation(s)
- Sandra Lettmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, German Sport University, Cologne, Germany
| | - Tobias Maaß
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Beate Eckes
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Sabine A. Eming
- Department of Dermatology, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
597
|
Dankel SN, Svärd J, Matthä S, Claussnitzer M, Klöting N, Glunk V, Fandalyuk Z, Grytten E, Solsvik MH, Nielsen HJ, Busch C, Hauner H, Blüher M, Skurk T, Sagen JV, Mellgren G. COL6A3 expression in adipocytes associates with insulin resistance and depends on PPARγ and adipocyte size. Obesity (Silver Spring) 2014; 22:1807-13. [PMID: 24719315 DOI: 10.1002/oby.20758] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/09/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE COL6A3 may modulate adipose tissue function in obesity and insulin resistance. A role for human adipocytes linking COL6A3 with insulin resistance warrants exploration. METHODS COL6A3 mRNA in abdominal subcutaneous adipose samples was compared between (1) BMI-matched obese subjects resistant or sensitive to insulin (surgical whole tissue biopsies, n = 30/group), (2) lean/overweight and obese subjects (isolated adipocytes from collagenase-treated surgical biopsies, n = 11/group), (3) developing primary human adipocytes with/without knockdown of the insulin-sensitizing adipogenic gene PPARG (collagenase-treated lipoaspirate, n = 5), and (4) small and large adipocytes from lean/overweight subjects (collagenase-treated surgical biopsies or lipoaspirate, n = 10). Insulin resistance and sensitivity were assessed by euglycemic-hyperinsulinemic clamp (glucose infusion rate <60 and >70 μmol kg(-1) min(-1) , respectively) (1), or by HOMA-IR and TG/HDL ratio (2). RESULTS Whole tissue COL6A3 mRNA was 2.6-fold higher in insulin resistant compared to sensitive subjects (P < 0.001). In isolated adipocytes, COL6A3 mRNA correlated positively with BMI (P = 0.007), HOMA-IR (P = 0.039), and TG/HDL (P = 0.004). PPARG knockdown in developing adipocytes increased COL6A3 mRNA 1.5-fold (P = 0.043). The inverse relationship with adipocyte development was further supported by 2.8-fold higher COL6A3 mRNA in small compared to large adipocytes (P = 0.004). CONCLUSION Increased adipocyte COL6A3 expression associates with insulin resistance in humans, which may involve impaired PPARγ-mediated adipocyte development.
Collapse
Affiliation(s)
- Simon N Dankel
- Department of Clinical Science, University of Bergen, Bergen, Norway; KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
598
|
Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and cancer--mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol 2014; 10:455-465. [PMID: 24935119 PMCID: PMC4374431 DOI: 10.1038/nrendo.2014.94] [Citation(s) in RCA: 551] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past several years, the field of cancer research has directed increased interest towards subsets of obesity-associated tumours, which include mammary, renal, oesophageal, gastrointestinal and reproductive cancers in both men and women. The increased risk of breast cancer that is associated with obesity has been widely reported; this has drawn much attention and as such, warrants investigation of the key mechanisms that link the obese state with cancer aetiology. For instance, the obese setting provides a unique adipose tissue microenvironment with concomitant systemic endocrine alterations that favour both tumour initiation and progression. Major metabolic differences exist within tumours that distinguish them from non-transformed healthy tissues. Importantly, considerable metabolic differences are induced by tumour cells in the stromal vascular fraction that surrounds them. The precise mechanisms that underlie the association of obesity with cancer and the accompanying metabolic changes that occur in the surrounding microenvironment remain elusive. Nonetheless, specific therapeutic agents designed for patients with obesity who develop tumours are clearly needed. This Review discusses recent advances in understanding the contributions of obesity to cancer and their implications for tumour treatment.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea (J.P.). Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA (T.S.M., M.K., D.J.C., P.E.S.)
| | - Thomas S Morley
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea (J.P.). Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA (T.S.M., M.K., D.J.C., P.E.S.)
| | - Min Kim
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea (J.P.). Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA (T.S.M., M.K., D.J.C., P.E.S.)
| | - Deborah J Clegg
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea (J.P.). Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA (T.S.M., M.K., D.J.C., P.E.S.)
| | - Philipp E Scherer
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea (J.P.). Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA (T.S.M., M.K., D.J.C., P.E.S.)
| |
Collapse
|
599
|
Donato AJ, Henson GD, Hart CR, Layec G, Trinity JD, Bramwell RC, Enz RA, Morgan RG, Reihl KD, Hazra S, Walker AE, Richardson RS, Lesniewski LA. The impact of ageing on adipose structure, function and vasculature in the B6D2F1 mouse: evidence of significant multisystem dysfunction. J Physiol 2014; 592:4083-96. [PMID: 25038241 DOI: 10.1113/jphysiol.2014.274175] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The critical influence of the white adipose tissue (WAT) on metabolism is well-appreciated in obesity, but adipose tissue dysfunction as a mechanism underlying age-associated metabolic dysfunction requires elucidation. To explore this possibility, we assessed metabolism and measures of epididymal (e)WAT mitochondria and artery function in young (6.1 ± 0.4 months) and old (29.6 ± 0.2 months) B6D2F1 mice. There were no group differences in average daily oxygen consumption, fasted blood glucose or plasma free fatty acids, but fasted plasma insulin and the homeostatic model assessment of insulin resistance (HOMA-IR%) were higher in the old (∼50-85%, P < 0.05). Tissue mass (P < 0.05) and adipocyte area were lower (∼60%) (P < 0.01) and fibrosis was greater (sevenfold, P < 0.01) in eWAT with older age. The old also exhibited greater liver triglycerides (∼60%, P < 0.05). The mitochondrial respiratory oxygen flux after the addition of glutamate and malate (GM), adenosine diphosphate (d), succinate (S) and octanoyl carnitine (O) were one- to twofold higher in eWAT of old mice (P < 0.05). Despite no change in the respiratory control ratio, substrate control ratios of GMOd/GMd and GMOSd/GMd were ∼30-40% lower in old mice (P < 0.05) and were concomitant with increased nitrotyrosine (P < 0.05) and reduced expression of brown adipose markers (P < 0.05). Ageing reduced vascularity (∼50%, P < 0.01), angiogenic capacity (twofold, P < 0.05) and expression of vascular endothelial growth factor (∼50%, P < 0.05) in eWAT. Finally, endothelium-dependent dilation was lower (P < 0.01) in isolated arteries from eWAT arteries of the old mice. Thus, metabolic dysfunction with advancing age occurs in concert with dysfunction in the adipose tissue characterized by both mitochondrial and arterial dysfunction.
Collapse
Affiliation(s)
- Anthony J Donato
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, UT, USA Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT, USA
| | - Grant D Henson
- Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT, USA
| | - Corey R Hart
- Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT, USA
| | - Gwenael Layec
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joel D Trinity
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - R Colton Bramwell
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ryley A Enz
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - R Garrett Morgan
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kelly D Reihl
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sugata Hazra
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ashley E Walker
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Russell S Richardson
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, UT, USA Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT, USA
| | - Lisa A Lesniewski
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, UT, USA Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
600
|
Pellegrinelli V, Heuvingh J, du Roure O, Rouault C, Devulder A, Klein C, Lacasa M, Clément E, Lacasa D, Clément K. Human adipocyte function is impacted by mechanical cues. J Pathol 2014; 233:183-95. [PMID: 24623048 DOI: 10.1002/path.4347] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 02/21/2014] [Accepted: 02/27/2014] [Indexed: 12/22/2022]
Abstract
Fibrosis is a hallmark of human white adipose tissue (WAT) during obesity-induced chronic inflammation. The functional impact of increased interstitial fibrosis (peri-adipocyte fibrosis) on adjacent adipocytes remains unknown. Here we developed a novel in vitro 3D culture system in which human adipocytes and decellularized material of adipose tissue (dMAT) from obese subjects are embedded in a peptide hydrogel. When cultured with dMAT, adipocytes showed decreased lipolysis and adipokine secretion and increased expression/production of cytokines (IL-6, G-CSF) and fibrotic mediators (LOXL2 and the matricellular proteins THSB2 and CTGF). Moreover, some alterations including lipolytic activity and fibro-inflammation also occurred when the adipocyte/hydrogel culture was mechanically compressed. Notably, CTGF expression levels correlated with the amount of peri-adipocyte fibrosis in WAT from obese individuals. Moreover, dMAT-dependent CTGF promoter activity, which depends on β1-integrin/cytoskeleton pathways, was enhanced in the presence of YAP, a mechanosensitive co-activator of TEAD transcription factors. Mutation of TEAD binding sites abolished the dMAT-induced promoter activity. In conclusion, fibrosis may negatively affect human adipocyte function via mechanosensitive molecules, in part stimulated by cell deformation.
Collapse
Affiliation(s)
- V Pellegrinelli
- INSERM, UMR S 1166, Nutriomics Team, Paris, France; Sorbonne Universités, UPMC University of Paris 06, UMR S 1166, ICAN, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|