651
|
Yan J, Zhang H, Yin Y, Li J, Tang Y, Purkayastha S, Li L, Cai D. Obesity- and aging-induced excess of central transforming growth factor-β potentiates diabetic development via an RNA stress response. Nat Med 2014; 20:1001-1008. [PMID: 25086906 PMCID: PMC4167789 DOI: 10.1038/nm.3616] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/28/2014] [Indexed: 12/12/2022]
Abstract
The brain, in particular the hypothalamus, plays a role in regulating glucose homeostasis; however, it remains unclear whether this organ is causally and etiologically involved in the development of diabetes. Here, we found that hypothalamic transforming growth factor-β (TGF-β) production is excessive under conditions of not only obesity but also aging, which are two general etiological factors of type 2 diabetes. Pharmacological and genetic approaches revealed that central TGF-β excess caused hyperglycemia and glucose intolerance independent of a change in body weight. Further, using cell-specific genetic analyses in vivo, we found that astrocytes and proopiomelanocortin neurons are responsible for the production and prodiabetic effect of central TGF-β, respectively. Mechanistically, TGF-β excess induced a hypothalamic RNA stress response, resulting in accelerated mRNA decay of IκBα, an inhibitor of proinflammatory nuclear factor-κB. These results reveal an atypical, mRNA metabolism-driven hypothalamic nuclear factor-κB activation, a mechanism that links obesity as well as aging to hypothalamic inflammation and ultimately to type 2 diabetes.
Collapse
Affiliation(s)
- Jingqi Yan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Hai Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ye Yin
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Juxue Li
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Yizhe Tang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Sudarshana Purkayastha
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Lianxi Li
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
652
|
Rajasekar N, Dwivedi S, Nath C, Hanif K, Shukla R. Protection of streptozotocin induced insulin receptor dysfunction, neuroinflammation and amyloidogenesis in astrocytes by insulin. Neuropharmacology 2014; 86:337-52. [PMID: 25158313 DOI: 10.1016/j.neuropharm.2014.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 01/04/2023]
Abstract
Impaired insulin signaling, amyloid pathology and neuroinflammation are closely associated with neurodegenerative disorder like Alzheimer's disease (AD). Our earlier studies showed that intracerebroventricular streptozotocin (STZ) induces insulin receptor (IR) signaling defect in the hippocampus, which is associated with memory impairment in rats. Astrocytes are the most abundant cells in the brain and play a major role in neuroinflammation. However, involvement of astrocytes in STZ induced IR dysfunction has not received much attention. Therefore, the present study was planned to explore the effect of STZ on IR signaling, proinflammatory markers and amyloidogenesis in rat astrocytoma cell line, (C6). STZ (100 μM) treatment in astrocytes (n = 3) for 24 h, resulted significant decrease in IR mRNA and protein expression, phosphorylation of IRS-1, Akt, GSK-3α and GSK-3β (p < 0.01). Further STZ induced amyloidogenic protein expression as evidenced by the increase in APP, BACE-1 and Aβ1-42 expression (p < 0.05) in astrocytes. STZ also significantly induced astrocytes activation as evidenced by increased expression of GFAP and p-P38 MAPK (p < 0.05). STZ treatment caused enhanced translocation of p65 NF-kB, triggered over expression of TNF-α, IL-1β, COX-2, oxidative/nitrosative stress and caspase activation (p < 0.05) in astrocytes. Insulin (25-100 nM) pretreatment (n = 3) significantly prevented changes in IR signaling, amyloidogenic protein expression and levels of proinflammatory markers (p < 0.05) in STZ treated astroglial cells. In the present study, the protective effect of insulin suggests that, IR dysfunction along with amyloidogenesis and neuroinflammation may have played a major role in STZ induced toxicity in astrocytes which are relevant to AD pathology.
Collapse
Affiliation(s)
- N Rajasekar
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Subhash Dwivedi
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Chandishwar Nath
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Kashif Hanif
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Rakesh Shukla
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), India.
| |
Collapse
|
653
|
Yu Y, Li X, Blanchard J, Li Y, Iqbal K, Liu F, Gong CX. Insulin sensitizers improve learning and attenuate tau hyperphosphorylation and neuroinflammation in 3xTg-AD mice. J Neural Transm (Vienna) 2014; 122:593-606. [PMID: 25113171 DOI: 10.1007/s00702-014-1294-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/06/2014] [Indexed: 12/13/2022]
Abstract
Sporadic Alzheimer's disease (AD) is a multifactorial metabolic brain disorder characterized by progressive neurodegeneration. Decreased brain energy and glucose metabolism occurs before the appearance of AD symptoms and worsens while the disease progresses. Deregulated brain insulin signaling has also been found in AD recently. To restore brain insulin sensitivity and glucose metabolism, pioglitazone and rosiglitazone, two insulin sensitizers commonly used for treating type 2 diabetes, have been studied and shown to have some beneficial effects in AD mouse models. However, the molecular mechanisms of the beneficial effects remain elusive. In the present study, we treated the 3xTg-AD mice, a widely used mouse model of AD, with pioglitazone and rosiglitazone for 4 months and studied the effects of the treatments on cognitive performance and AD-related brain alterations. We found that the chronic treatment improved spatial learning, enhanced AKT signaling, and attenuated tau hyperphosphorylation and neuroinflammation. These findings shed new light on the possible mechanisms by which these two insulin sensitizers might be useful for treating AD and support further clinical trials evaluating the efficacy of these drugs.
Collapse
Affiliation(s)
- Yang Yu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314-6399, USA
| | | | | | | | | | | | | |
Collapse
|
654
|
Is Alzheimer's disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol 2014; 121:125-46. [PMID: 25084549 DOI: 10.1016/j.pneurobio.2014.07.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting more than 36 million people worldwide. AD is characterized by a progressive loss of cognitive functions. For years, it has been thought that age is the main risk factor for AD. Recent studies suggest that life style factors, including nutritional behaviors, play a critical role in the onset of dementia. Evidence about the relationship between nutritional behavior and AD includes the role of conditions such as obesity, hypertension, dyslipidemia and elevated glucose levels. The coexistence of some of these cardio-metabolic risk factors is generally known as metabolic syndrome (MS). Some clinical studies support the role of MS in the onset of AD. However, the cross-talk between the molecular signaling implicated in these disorders is unknown. In the present review, we focus on the molecular correlates that support the relationship between MS and the onset of AD. We also discuss relevant issues such as the role of leptin, insulin and renin-angiotensin signaling in the brain and the possible role of Wnt signaling in both MS and AD. We discuss the evidence supporting the use of ob/ob mice, high-fructose diets, aortic coarctation-induced hypertension and Octodon degus, which spontaneously develops β-amyloid deposits and metabolic derangements, as suitable animal models to address the relationships between MS and AD. Finally, we examine emergent data supporting the role of Wnt signaling in the modulation of AD and MS, implicating this pathway as a therapeutic target in both conditions.
Collapse
|
655
|
Tao QQ, Chen Y, Liu ZJ, Sun YM, Yang P, Lu SJ, Xu M, Dong QY, Yang JJ, Wu ZY. Associations between apolipoprotein E genotypes and serum levels of glucose, cholesterol, and triglycerides in a cognitively normal aging Han Chinese population. Clin Interv Aging 2014; 9:1063-7. [PMID: 25031531 PMCID: PMC4096455 DOI: 10.2147/cia.s62554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose To determine the associations between apolipoprotein E (APOE) genotypes and serum levels of glucose, total cholesterol, and triglycerides in a cognitively normal aging Han Chinese population. Methods There were 1,003 cognitively normal aging subjects included in this study. APOE genotypes were analyzed and biochemical parameters were tested. All the subjects were divided into three groups according to APOE genotypes: (1) E2/2 or E2/3 (APOE E2); (2) E3/3 (APOE E3); and (3) E2/4, E3/4, or E4/4 (APOE E4). Correlations of serum levels of glucose, total cholesterol, and triglycerides with APOE genotypes were assessed. Results E2, E3, and E4 allele frequencies were found to be 6.2%, 82.1%, and 11.7%, respectively. Serum levels of total cholesterol were higher in the APOE E4 group (P<0.05). A higher level of total cholesterol was associated with the E4 allele (adjusted odds ratio 1.689, 95% confidence interval 1.223–2.334, P<0.01). However, no association was found between APOE status and serum levels of glucose (adjusted odds ratio 0.981, 95% confidence interval 0.720–1.336, P=0.903) or total triglycerides (adjusted odds ratio 1.042, 95% confidence interval 0.759–1.429, P=0.800). Conclusion A higher serum level of total cholesterol was significantly correlated with APOE E4 status in a cognitively normal, nondiabetic aging population. However, there was no correlation between APOE genotypes and serum levels of glucose or total triglycerides.
Collapse
Affiliation(s)
- Qing-Qing Tao
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yan Chen
- Department of Neurology, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China ; Department of Medicine, Shanghai Fengxian District Central Hospital, Shanghai, People's Republic of China
| | - Zhi-Jun Liu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yi-Min Sun
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ping Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Shen-Ji Lu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Miao Xu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qin-Yun Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jia-Jun Yang
- Department of Neurology, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhi-Ying Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
656
|
Meusel LAC, Kansal N, Tchistiakova E, Yuen W, MacIntosh BJ, Greenwood CE, Anderson ND. A systematic review of type 2 diabetes mellitus and hypertension in imaging studies of cognitive aging: time to establish new norms. Front Aging Neurosci 2014; 6:148. [PMID: 25071557 PMCID: PMC4085499 DOI: 10.3389/fnagi.2014.00148] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022] Open
Abstract
The rising prevalence of type 2 diabetes (T2DM) and hypertension in older adults, and the deleterious effect of these conditions on cerebrovascular and brain health, is creating a growing discrepancy between the "typical" cognitive aging trajectory and a "healthy" cognitive aging trajectory. These changing health demographics make T2DM and hypertension important topics of study in their own right, and warrant attention from the perspective of cognitive aging neuroimaging research. Specifically, interpretation of individual or group differences in blood oxygenation level dependent magnetic resonance imaging (BOLD MRI) or positron emission tomography (PET H2O(15)) signals as reflective of differences in neural activation underlying a cognitive operation of interest requires assumptions of intact vascular health amongst the study participants. Without adequate screening, inclusion of individuals with T2DM or hypertension in "healthy" samples may introduce unwanted variability and bias to brain and/or cognitive measures, and increase potential for error. We conducted a systematic review of the cognitive aging neuroimaging literature to document the extent to which researchers account for these conditions. Of the 232 studies selected for review, few explicitly excluded individuals with T2DM (9%) or hypertension (13%). A large portion had exclusion criteria that made it difficult to determine whether T2DM or hypertension were excluded (44 and 37%), and many did not mention any selection criteria related to T2DM or hypertension (34 and 22%). Of all the surveyed studies, only 29% acknowledged or addressed the potential influence of intersubject vascular variability on the measured BOLD or PET signals. To reinforce the notion that individuals with T2DM and hypertension should not be overlooked as a potential source of bias, we also provide an overview of metabolic and vascular changes associated with T2DM and hypertension, as they relate to cerebrovascular and brain health.
Collapse
Affiliation(s)
| | - Nisha Kansal
- Baycrest Centre, Rotman Research Institute Toronto, ON, Canada
| | - Ekaterina Tchistiakova
- Sunnybrook Research Institute, Heart and Stroke Foundation Canadian Partnership for Stroke Recovery Toronto, ON, Canada ; Department of Medical Biophysics, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - William Yuen
- Baycrest Centre, Rotman Research Institute Toronto, ON, Canada ; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Bradley J MacIntosh
- Sunnybrook Research Institute, Heart and Stroke Foundation Canadian Partnership for Stroke Recovery Toronto, ON, Canada ; Department of Medical Biophysics, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Carol E Greenwood
- Baycrest Centre, Rotman Research Institute Toronto, ON, Canada ; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Nicole D Anderson
- Baycrest Centre, Rotman Research Institute Toronto, ON, Canada ; Departments of Psychology and Psychiatry, University of Toronto Toronto, ON, Canada
| |
Collapse
|
657
|
Abstract
A growing body of clinical and epidemiological research suggests that two of the most common diseases of aging, type 2 diabetes (T2DM) and Alzheimer disease (AD), are linked. The nature of the association is not known, but this observation has led to the notion that drugs developed for the treatment of T2DM may be beneficial in modifying the pathophysiology of AD and maintaining cognitive function. Recent advances in the understanding of the biology of T2DM have resulted in a growing number of therapies that are approved or in clinical development for this disease. This review summarizes the evidence that T2DM and AD are linked, with a focus on the cellular and molecular mechanisms in common, and then assesses the various clinical-stage diabetes drugs for their potential activity in AD. At a time when existing therapies for AD offer only limited symptomatic benefit for some patients, additional clinical trials of diabetes drugs are needed to at least advance the care of T2DM patients at risk for or with comorbid AD and also to determine their value for AD in general.
Collapse
Affiliation(s)
- Mark Yarchoan
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Steven E Arnold
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PADepartment of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
658
|
Menard CE, Durston M, Zherebitskaya E, Smith DR, Freed D, Glazner GW, Tian G, Fernyhough P, Arora RC. Temporal dystrophic remodeling within the intrinsic cardiac nervous system of the streptozotocin-induced diabetic rat model. Acta Neuropathol Commun 2014; 2:60. [PMID: 24894521 PMCID: PMC4229951 DOI: 10.1186/2051-5960-2-60] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/19/2014] [Indexed: 01/20/2023] Open
Abstract
Introduction The pathogenesis of heart failure (HF) in diabetic individuals, called “diabetic cardiomyopathy”, is only partially understood. Alterations in the cardiac autonomic nervous system due to oxidative stress have been implicated. The intrinsic cardiac nervous system (ICNS) is an important regulatory pathway of cardiac autonomic function, however, little is known about the alterations that occur in the ICNS in diabetes. We sought to characterize morphologic changes and the role of oxidative stress within the ICNS of diabetic hearts. Cultured ICNS neuronal cells from the hearts of 3- and 6-month old type 1 diabetic streptozotocin (STZ)-induced diabetic Sprague-Dawley rats and age-matched controls were examined. Confocal microscopy analysis for protein gene product 9.5 (PGP 9.5) and amino acid adducts of (E)-4-hydroxy-2-nonenal (4-HNE) using immunofluorescence was undertaken. Cell morphology was then analyzed in a blinded fashion for features of neuronal dystrophy and the presence of 4-HNE adducts. Results At 3-months, diabetic ICNS neuronal cells exhibited 30% more neurite swellings per area (p = 0.01), and had a higher proportion with dystrophic appearance (88.1% vs. 50.5%; p = <0.0001), as compared to control neurons. At 6-months, diabetic ICNS neurons exhibited more features of dystrophy as compared to controls (74.3% vs. 62.2%; p = 0.0448), with 50% more neurite branching (p = 0.0015) and 50% less neurite outgrowth (p = <0.001). Analysis of 4-HNE adducts in ICNS neurons of 6-month diabetic rats demonstrated twice the amount of reactive oxygen species (ROS) as compared to controls (p = <0.001). Conclusion Neuronal dystrophy occurs in the ICNS neurons of STZ-induced diabetic rats, and accumulates temporally within the disease process. In addition, findings implicate an increase in ROS within the neuronal processes of ICNS neurons of diabetic rats suggesting an association between oxidative stress and the development of dystrophy in cardiac autonomic neurons.
Collapse
|
659
|
Glaucoma – Diabetes of the brain: A radical hypothesis about its nature and pathogenesis. Med Hypotheses 2014; 82:535-46. [DOI: 10.1016/j.mehy.2014.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
|
660
|
Chen Y, Deng Y, Zhang B, Gong CX. Deregulation of brain insulin signaling in Alzheimer's disease. Neurosci Bull 2014; 30:282-94. [PMID: 24652456 PMCID: PMC5562654 DOI: 10.1007/s12264-013-1408-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/03/2014] [Indexed: 01/09/2023] Open
Abstract
Contrary to the previous belief that insulin does not act in the brain, studies in the last three decades have demonstrated important roles of insulin and insulin signal transduction in various functions of the central nervous system. Deregulated brain insulin signaling and its role in molecular pathogenesis have recently been reported in Alzheimer's disease (AD). In this article, we review the roles of brain insulin signaling in memory and cognition, the metabolism of amyloid β precursor protein, and tau phosphorylation. We further discuss deficiencies of brain insulin signaling and glucose metabolism, their roles in the development of AD, and recent studies that target the brain insulin signaling pathway for the treatment of AD. It is clear now that deregulation of brain insulin signaling plays an important role in the development of sporadic AD. The brain insulin signaling pathway also offers a promising therapeutic target for treating AD and probably other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Yanqiu Deng
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314 USA
| |
Collapse
|
661
|
Ma L, Zhao Z, Wang R, Zhang X, Zhang J, Dong W, Xu B, Zhang J. Caloric restriction can improve learning ability in C57/BL mice via regulation of the insulin-PI3K/Akt signaling pathway. Neurol Sci 2014; 35:1381-6. [PMID: 24651932 DOI: 10.1007/s10072-014-1717-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/10/2014] [Indexed: 01/16/2023]
Abstract
To identify the molecular mechanism underlying improved spatial learning ability of C57/BL mice on a caloric restricted (CR) diet. Seven-week-old male C57/BL mice were randomly divided into three groups: normal control group (NC group, n = 10), high energy group (n = 10), and low energy group (CR group, n = 10). Body mass and levels of blood glucose were measured every 2 weeks over the course of 30 weeks. After 30 weeks, metabolic parameters, serum total cholesterol, and insulin-like growth factor 1 (IGF-1) were measured, and learning and memory ability of animals were tested using the Morris water maze. The expression of insulin signaling pathway-related proteins in the brain tissues also were tested for molecular mechanism. When compared with the NC group, body weight, and levels of serum glucose decreased in the CR group and increased in the high energy group at all time points tested. Average escape latency and swimming distance were lower in the CR group as compared to the control group after 30 weeks. The serum cholesterol level of the high energy group was significantly higher than that of the control group. The expressions of IGF-1, IR, IRS-1, PI3K, Akt/PKB, and p-CREB protein in the CR group were significantly lower and the expressions of PI3K and Akt/PKB protein in the high energy group were significantly lower than those of the control group at post 30 weeks treatment. Our findings demonstrate that the low energy diet may improve hippocampus-dependent spatial learning ability in C57/BL mice, possibly through a regulatory mechanism of the insulin-PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Lina Ma
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, #45 Changchun Street, Beijing, 100053, Xicheng District, China
| | | | | | | | | | | | | | | |
Collapse
|
662
|
Abstract
Epidemics of obesity, diabetes, nonalcoholic fatty liver disease, and cognitive impairment/Alzheimer disease have emerged over the past 3 to 4 decades. These diseases share in common target-organ insulin resistance with a constellation of molecular and biochemical abnormalities that lead to organ/tissue degeneration over time. This article discusses the fundamental links among these diseases and how peripheral organ insulin resistance diseases contribute to cognitive impairment and neurodegeneration. A future role of endocrinologists and diabetologists could be to provide integrative diagnostic and treatment approaches for this collection of diseases that seem to share pathophysiological and pathogenetic bases.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Department of Pathology (Neuropathology), Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA; Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA; Department of Neurosurgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA; Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
663
|
Verdelho A. The Role of Cerebrovascular Disease in Cognitive Decline. NEURODEGENER DIS 2014. [DOI: 10.1007/978-1-4471-6380-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
664
|
Bloemer J, Bhattacharya S, Amin R, Suppiramaniam V. Impaired insulin signaling and mechanisms of memory loss. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:413-49. [PMID: 24373245 DOI: 10.1016/b978-0-12-800101-1.00013-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Insulin is secreted from the β-cells of the pancreas and helps maintain glucose homeostasis. Although secreted peripherally, insulin also plays a profound role in cognitive function. Increasing evidence suggests that insulin signaling in the brain is necessary to maintain health of neuronal cells, promote learning and memory, decrease oxidative stress, and ultimately increase neuronal survival. This chapter summarizes the different facets of insulin signaling necessary for learning and memory and additionally explores the association between cognitive impairment and central insulin resistance. The role of impaired insulin signaling in the advancement of cognitive dysfunction is relevant to the current debate of whether the shared pathophysiological mechanisms between diabetes and cognitive impairment implicate a direct relationship. Here, we summarize a vast amount of literature that suggests a strong association between impaired brain insulin signaling and cognitive impairment.
Collapse
Affiliation(s)
- Jenna Bloemer
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Subhrajit Bhattacharya
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Rajesh Amin
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Vishnu Suppiramaniam
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
665
|
Wang JQ, Yin J, Song YF, Zhang L, Ren YX, Wang DG, Gao LP, Jing YH. Brain aging and AD-like pathology in streptozotocin-induced diabetic rats. J Diabetes Res 2014; 2014:796840. [PMID: 25197672 PMCID: PMC4150474 DOI: 10.1155/2014/796840] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. RESEARCH DESIGN AND METHODS Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. RESULTS Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. CONCLUSIONS Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies.
Collapse
Affiliation(s)
- Jian-Qin Wang
- Nephrology Department and Blood Dialysis Center, Second Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jie Yin
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan-Feng Song
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lang Zhang
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ying-Xiang Ren
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - De-Gui Wang
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Li-Ping Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yu-Hong Jing
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
- *Yu-Hong Jing:
| |
Collapse
|
666
|
Janssens J, Etienne H, Idriss S, Azmi A, Martin B, Maudsley S. Systems-Level G Protein-Coupled Receptor Therapy Across a Neurodegenerative Continuum by the GLP-1 Receptor System. Front Endocrinol (Lausanne) 2014; 5:142. [PMID: 25225492 PMCID: PMC4150252 DOI: 10.3389/fendo.2014.00142] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022] Open
Abstract
With our increasing appreciation of the true complexity of diseases and pathophysiologies, it is clear that this knowledge needs to inform the future development of pharmacotherapeutics. For many disorders, the disease mechanism itself is a complex process spanning multiple signaling networks, tissues, and organ systems. Identifying the precise nature and locations of the pathophysiology is crucial for the creation of systemically effective drugs. Diseases once considered constrained to a limited range of organ systems, e.g., central neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington' disease (HD), the role of multiple central and peripheral organ systems in the etiology of such diseases is now widely accepted. With this knowledge, it is increasingly clear that these seemingly distinct neurodegenerative disorders (AD, PD, and HD) possess multiple pathophysiological similarities thereby demonstrating an inter-related continuum of disease-related molecular alterations. With this systems-level appreciation of neurodegenerative diseases, it is now imperative to consider that pharmacotherapeutics should be developed specifically to address the systemic imbalances that create the disorders. Identification of potential systems-level signaling axes may facilitate the generation of therapeutic agents with synergistic remedial activity across multiple tissues, organ systems, and even diseases. Here, we discuss the potentially therapeutic systems-level interaction of the glucagon-like peptide 1 (GLP-1) ligand-receptor axis with multiple aspects of the AD, PD, and HD neurodegenerative continuum.
Collapse
Affiliation(s)
- Jonathan Janssens
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
| | - Harmonie Etienne
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
| | - Sherif Idriss
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
| | - Abdelkrim Azmi
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Stuart Maudsley
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
- *Correspondence: Stuart Maudsley, Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, Building V, Antwerpen B2610, Belgium e-mail:
| |
Collapse
|
667
|
Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer's disease. Front Endocrinol (Lausanne) 2014; 5:161. [PMID: 25346723 PMCID: PMC4191295 DOI: 10.3389/fendo.2014.00161] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/21/2014] [Indexed: 12/21/2022] Open
Abstract
Although the brain has been considered an insulin-insensitive organ, recent reports on the location of insulin and its receptors in the brain have introduced new ways of considering this hormone responsible for several functions. The origin of insulin in the brain has been explained from peripheral or central sources, or both. Regardless of whether insulin is of peripheral origin or produced in the brain, this hormone may act through its own receptors present in the brain. The molecular events through which insulin functions in the brain are the same as those operating in the periphery. However, certain insulin actions are different in the central nervous system, such as hormone-induced glucose uptake due to a low insulin-sensitive GLUT-4 activity, and because of the predominant presence of GLUT-1 and GLUT-3. In addition, insulin in the brain contributes to the control of nutrient homeostasis, reproduction, cognition, and memory, as well as to neurotrophic, neuromodulatory, and neuroprotective effects. Alterations of these functional activities may contribute to the manifestation of several clinical entities, such as central insulin resistance, type 2 diabetes mellitus (T2DM), and Alzheimer's disease (AD). A close association between T2DM and AD has been reported, to the extent that AD is twice more frequent in diabetic patients, and some authors have proposed the name "type 3 diabetes" for this association. There are links between AD and T2DM through mitochondrial alterations and oxidative stress, altered energy and glucose metabolism, cholesterol modifications, dysfunctional protein O-GlcNAcylation, formation of amyloid plaques, altered Aβ metabolism, and tau hyperphosphorylation. Advances in the knowledge of preclinical AD and T2DM may be a major stimulus for the development of treatment for preventing the pathogenic events of these disorders, mainly those focused on reducing brain insulin resistance, which is seems to be a common ground for both pathological entities.
Collapse
Affiliation(s)
- Enrique Blázquez
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
- *Correspondence: Enrique Blázquez, Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Madrid 28040, Spain e-mail:
| | - Esther Velázquez
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| | - Verónica Hurtado-Carneiro
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| |
Collapse
|
668
|
de la Monte SM, Tong M. Brain metabolic dysfunction at the core of Alzheimer's disease. Biochem Pharmacol 2013; 88:548-59. [PMID: 24380887 DOI: 10.1016/j.bcp.2013.12.012] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 02/06/2023]
Abstract
Growing evidence supports the concept that Alzheimer's disease (AD) is fundamentally a metabolic disease with molecular and biochemical features that correspond with diabetes mellitus and other peripheral insulin resistance disorders. Brain insulin/IGF resistance and its consequences can readily account for most of the structural and functional abnormalities in AD. However, disease pathogenesis is complicated by the fact that AD can occur as a separate disease process, or arise in association with systemic insulin resistance diseases, including diabetes, obesity, and non-alcoholic fatty liver disease. Whether primary or secondary in origin, brain insulin/IGF resistance initiates a cascade of neurodegeneration that is propagated by metabolic dysfunction, increased oxidative and ER stress, neuro-inflammation, impaired cell survival, and dysregulated lipid metabolism. These injurious processes compromise neuronal and glial functions, reduce neurotransmitter homeostasis, and cause toxic oligomeric pTau and (amyloid beta peptide of amyloid beta precursor protein) AβPP-Aβ fibrils and insoluble aggregates (neurofibrillary tangles and plaques) to accumulate in brain. AD progresses due to: (1) activation of a harmful positive feedback loop that progressively worsens the effects of insulin resistance; and (2) the formation of ROS- and RNS-related lipid, protein, and DNA adducts that permanently damage basic cellular and molecular functions. Epidemiologic data suggest that insulin resistance diseases, including AD, are exposure-related in etiology. Furthermore, experimental and lifestyle trend data suggest chronic low-level nitrosamine exposures are responsible. These concepts offer opportunities to discover and implement new treatments and devise preventive measures to conquer the AD and other insulin resistance disease epidemics.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Pathology (Neuropathology), Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA; Departments of Neurology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA; Departments of Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA; Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Ming Tong
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
669
|
Anderson RA, Qin B, Canini F, Poulet L, Roussel AM. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes. PLoS One 2013; 8:e83243. [PMID: 24349472 PMCID: PMC3862724 DOI: 10.1371/journal.pone.0083243] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022] Open
Abstract
Insulin resistance leads to memory impairment. Cinnamon (CN) improves peripheral insulin resistance but its effects in the brain are not known. Changes in behavior, insulin signaling and Alzheimer-associated mRNA expression in the brain were measured in male Wistar rats fed a high fat/high fructose (HF/HFr) diet to induce insulin resistance, with or without CN, for 12 weeks. There was a decrease in insulin sensitivity associated with the HF/HFr diet that was reversed by CN. The CN fed rats were more active in a Y maze test than rats fed the control and HF/HFr diets. The HF/HFr diet fed rats showed greater anxiety in an elevated plus maze test that was lessened by feeding CN. The HF/HFr diet also led to a down regulation of the mRNA coding for GLUT1 and GLUT3 that was reversed by CN in the hippocampus and cortex. There were increases in Insr, Irs1 and Irs2 mRNA in the hippocampus and cortex due to the HF/HFr diet that were not reversed by CN. Increased peripheral insulin sensitivity was also associated with increased glycogen synthase in both hippocampus and cortex in the control and HF/HFr diet animals fed CN. The HF/HFr diet induced increases in mRNA associated with Alzheimers including PTEN, Tau and amyloid precursor protein (App) were also alleviated by CN. In conclusion, these data suggest that the negative effects of a HF/HFr diet on behavior, brain insulin signaling and Alzheimer-associated changes were alleviated by CN suggesting that neuroprotective effects of CN are associated with improved whole body insulin sensitivity and related changes in the brain.
Collapse
Affiliation(s)
- Richard A. Anderson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
- * E-mail:
| | - Bolin Qin
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
- Integrity Nutraceuticals International, Spring Hill, Tennessee, United States of America
| | - Frederic Canini
- Army Institute for Research in Biology, Grenoble, France
- Ecole du Val de Grâce, 1 place Laveran, Paris, France
| | - Laurent Poulet
- Army Institute for Research in Biology, Grenoble, France
- National Institute for Health, Joseph Fourier University, Grenoble, France
| | - Anne Marie Roussel
- National Institute for Health, Joseph Fourier University, Grenoble, France
| |
Collapse
|
670
|
Hipkiss AR. Aging risk factors and Parkinson's disease: contrasting roles of common dietary constituents. Neurobiol Aging 2013; 35:1469-72. [PMID: 24388766 DOI: 10.1016/j.neurobiolaging.2013.11.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
Abstract
Aging is a Parkinson's disease (PD) risk factor. It is suggested here that certain dietary components may either contribute to or ameliorate PD risk. There is evidence, which indicates that excessive carbohydrate (glucose or fructose) catabolism is a cause of mitochondrial dysfunction in PD, one consequence is increased production of methylglyoxal (MG). However, other dietary components (carnosine and certain plant extracts) not only scavenge MG but can also influence some of the biochemical events (signal transduction, stress protein synthesis, glycation, and toxin generation) associated with PD pathology. As double blind, placebo-controlled carnosine supplementation studies have revealed beneficial outcomes in humans, it is suggested that MG scavengers such as carnosine be further explored for their therapeutic potential toward PD.
Collapse
Affiliation(s)
- Alan R Hipkiss
- Aston Research Centre for Healthy Ageing (ARCHA), School of Health and Life Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
671
|
Lourenco MV, Clarke JR, Frozza RL, Bomfim TR, Forny-Germano L, Batista AF, Sathler LB, Brito-Moreira J, Amaral OB, Silva CA, Freitas-Correa L, Espírito-Santo S, Campello-Costa P, Houzel JC, Klein WL, Holscher C, Carvalheira JB, Silva AM, Velloso LA, Munoz DP, Ferreira ST, De Felice FG. TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer's β-amyloid oligomers in mice and monkeys. Cell Metab 2013; 18:831-843. [PMID: 24315369 DOI: 10.1016/j.cmet.2013.11.002] [Citation(s) in RCA: 341] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/17/2013] [Accepted: 10/18/2013] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) and type 2 diabetes appear to share similar pathogenic mechanisms. dsRNA-dependent protein kinase (PKR) underlies peripheral insulin resistance in metabolic disorders. PKR phosphorylates eukaryotic translation initiation factor 2α (eIF2α-P), and AD brains exhibit elevated phospho-PKR and eIF2α-P levels. Whether and how PKR and eIF2α-P participate in defective brain insulin signaling and cognitive impairment in AD are unknown. We report that β-amyloid oligomers, AD-associated toxins, activate PKR in a tumor necrosis factor α (TNF-α)-dependent manner, resulting in eIF2α-P, neuronal insulin receptor substrate (IRS-1) inhibition, synapse loss, and memory impairment. Brain phospho-PKR and eIF2α-P were elevated in AD animal models, including monkeys given intracerebroventricular oligomer infusions. Oligomers failed to trigger eIF2α-P and cognitive impairment in PKR(-/-) and TNFR1(-/-) mice. Bolstering insulin signaling rescued phospho-PKR and eIF2α-P. Results reveal pathogenic mechanisms shared by AD and diabetes and establish that proinflammatory signaling mediates oligomer-induced IRS-1 inhibition and PKR-dependent synapse and memory loss.
Collapse
Affiliation(s)
- Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
672
|
de la Monte SM. Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin Drug Deliv 2013; 10:1699-709. [PMID: 24215447 PMCID: PMC4551402 DOI: 10.1517/17425247.2013.856877] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Growing evidence supports the concept that insulin resistance plays an important role in the pathogenesis of cognitive impairment and neurodegeneration, including in Alzheimer's disease (AD). The metabolic hypothesis has led to the development and utilization of insulin- and insulin agonist-based treatments. Therapeutic challenges faced include the ability to provide effective treatments that do not require repeated injections and also the ability to minimize the potentially hazardous off-target effects. AREAS COVERED This review covers the role of intranasal insulin therapy for cognitive impairment and neurodegeneration, particularly AD. The literature reviewed focuses on data published within the past 5 years as this field is evolving rapidly. The review provides evidence that brain insulin resistance is an important and early abnormality in AD, and that increasing brain supply and utilization of insulin improves cognition and memory. Emphasis was placed on discussing outcomes of clinical trials and interpreting discordant results to clarify the benefits and limitations of intranasal insulin therapy. EXPERT OPINION Intranasal insulin therapy can efficiently and directly target the brain to support energy metabolism, myelin maintenance, cell survival and neuronal plasticity, which begin to fail in the early stages of neurodegeneration. Efforts must continue toward increasing the safety, efficacy and specificity of intranasal insulin therapy.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Departments of Pathology (Neuropathology), Neurology, and Neurosurgery , Pierre Galletti Research Building, Claverick Street, Room 419, Providence, RI 02903 , USA +1 401 444 7364 ; +1 401 444 2939 ;
| |
Collapse
|
673
|
Koo JH, Kwon IS, Kang EB, Lee CK, Lee NH, Kwon MG, Cho IH, Cho JY. Neuroprotective effects of treadmill exercise on BDNF and PI3-K/Akt signaling pathway in the cortex of transgenic mice model of Alzheimer's disease. J Exerc Nutrition Biochem 2013; 17:151-60. [PMID: 25566426 PMCID: PMC4241914 DOI: 10.5717/jenb.2013.17.4.151] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/01/2013] [Accepted: 11/11/2013] [Indexed: 01/30/2023] Open
Abstract
(AD). Although physical exercise and AD have received attention in the scientific literature, the mechanism through which treadmill exercise may impact the brain insulin signaling of AD has not been elucidated. This study aimed to evaluate the neuroprotective effects of treadmill exercise on apoptotic factors (Bcl-2/Bax ratio, caspase-3), HSP70, COX-2, BDNF and PI3-K/Akt signaling pathway in the cortex of NSE/hPS2m transgenic mice model of AD. Treadmill exercise ameliorated cognitive function in water maze test and significantly increased the level of Bcl-2/Bax ratio and HSP-70 in Tg-exe group compared to Tg-con group; on the other hand, it significantly decreased the expression of caspase-3 and COX-2 in Tg-exe group compared to Tg-con group. In addition, treadmill exercise significantly increased the expression of BDNF and PI3K/Akt in Tg-exe group compared to Tg-con group. Consequently, treadmill exercise improves cognitive function possibly via activating neurotrophic factor, BDNF and PI3k/Akt signaling pathway, and Aβ-induced neuronal cell death in the cortex of Tg mice was markedly suppressed following treadmill exercise. These results suggest that treadmill exercise may be beneficial in preventing or treating Alzheimer's disease.
Collapse
Affiliation(s)
- Jung Hoon Koo
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Korea
| | - In Su Kwon
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Korea
| | - Eun Bum Kang
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Korea
| | - Chang Kuk Lee
- Exercise Biochemistry Laboratory, Soon Chun Hyang University, Chungnam, Korea
| | - Nam Hee Lee
- Exercise Biochemistry Laboratory, Dan Kook University, Seoul, Korea
| | - Man Geun Kwon
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Korea
| | - In Ho Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Korea
| | - Joon yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Korea
| |
Collapse
|
674
|
Hsieh S, Chang CW, Chou HH. Gold nanoparticles as amyloid-like fibrillogenesis inhibitors. Colloids Surf B Biointerfaces 2013; 112:525-9. [DOI: 10.1016/j.colsurfb.2013.08.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/20/2013] [Indexed: 12/12/2022]
|
675
|
|
676
|
The Janus face of PAMAM dendrimers used to potentially cure nonenzymatic modifications of biomacromolecules in metabolic disorders-a critical review of the pros and cons. Molecules 2013; 18:13769-811. [PMID: 24213655 PMCID: PMC6269987 DOI: 10.3390/molecules181113769] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus, which is characterised by high blood glucose levels and the burden of various macrovascular and microvascular complications, is a cause of much human suffering across the globe. While the use of exogenous insulin and other medications can control and sometimes prevent various diabetes-associated sequelae, numerous diabetic complications are still commonly encountered in diabetic patients. Therefore, there is a strong need for safe and effective antihyperglycaemic agents that provide an alternative or compounding option for the treatment of diabetes. In recent years, amino-terminated poly(amido)amine (PAMAM) dendrimers (G2, G3 and G4) have attracted attention due to their protective value as anti-glycation and anti-carbonylation agents that can be used to limit the nonenzymatic modifications of biomacromolecules. The focus of this review is to present a detailed survey of our own data, as well as of the available literature regarding the toxicity, pharmacological properties and overall usefulness of PAMAM dendrimers. This presentation pays particular and primary attention to their therapeutic use in poorly controlled diabetes and its complications, but also in other conditions, such as Alzheimer’s disease, in which such nonenzymatic modifications may underlie the pathophysiological mechanisms. The impact of dendrimer administration on the overall survival of diabetic animals and on glycosylation, glycoxidation, the brain-blood barrier and cellular bioenergetics are demonstrated. Finally, we critically discuss the potential advantages and disadvantages accompanying the use of PAMAM dendrimers in the treatment of metabolic impairments that occur under conditions of chronic hyperglycaemia.
Collapse
|
677
|
Younesi E, Hofmann-Apitius M. From integrative disease modeling to predictive, preventive, personalized and participatory (P4) medicine. EPMA J 2013; 4:23. [PMID: 24195840 PMCID: PMC3832251 DOI: 10.1186/1878-5085-4-23] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 10/21/2013] [Indexed: 01/08/2023]
Abstract
With the significant advancement of high-throughput technologies and diagnostic techniques throughout the past decades, molecular underpinnings of many disorders have been identified. However, translation of patient-specific molecular mechanisms into tailored clinical applications remains a challenging task, which requires integration of multi-dimensional molecular and clinical data into patient-centric models. This task becomes even more challenging when dealing with complex diseases such as neurodegenerative disorders. Integrative disease modeling is an emerging knowledge-based paradigm in translational research that exploits the power of computational methods to collect, store, integrate, model and interpret accumulated disease information across different biological scales from molecules to phenotypes. We argue that integrative disease modeling will be an indispensable part of any P4 medicine research and development in the near future and that it supports the shift from descriptive to causal mechanistic diagnosis and treatment of complex diseases. For each 'P' in predictive, preventive, personalized and participatory (P4) medicine, we demonstrate how integrative disease modeling can contribute to addressing the real-world issues in development of new predictive, preventive, personalized and participatory measures. With the increasing recognition that application of integrative systems modeling is the key to all activities in P4 medicine, we envision that translational bioinformatics in general and integrative modeling in particular will continue to open up new avenues of scientific research for current challenges in P4 medicine.
Collapse
Affiliation(s)
- Erfan Younesi
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Augustin, Germany.
| | | |
Collapse
|
678
|
Fiedorowicz A, Prokopiuk S, Zendzian-Piotrowska M, Chabowski A, Car H. Sphingolipid profiles are altered in prefrontal cortex of rats under acute hyperglycemia. Neuroscience 2013; 256:282-91. [PMID: 24161280 DOI: 10.1016/j.neuroscience.2013.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/12/2013] [Accepted: 10/10/2013] [Indexed: 12/14/2022]
Abstract
Diabetes type 1 is a common autoimmune disease manifesting by insulin deficiency and hyperglycemia, which can lead to dementia-like brain dysfunctions. The factors triggering the pathological processes in hyperglycemic brain remain unknown. We reported in this study that brain areas with different susceptibility to diabetes (prefrontal cortex (PFC), hippocampus, striatum and cerebellum) revealed differential alterations in ceramide (Cer) and sphingomyelin (SM) profiles in rats with streptozotocin-induced hyperglycemia. Employing gas-liquid chromatography, we found that level of total Cer increased significantly only in the PFC of diabetic animals, which also exhibited a broad spectrum of sphingolipid (SLs) changes, such as elevations of Cer-C16:0, -C18:0, -C20:0, -C22:0, -C18:1, -C24:1 and SM-C16:0 and -C18:1. In opposite, only minor changes were noted in other examined structures. In addition, de novo synthesis pathway could play a role in generation of Cer containing monounsaturated fatty acids in PFC during hyperglycemia. In turn, simultaneous accumulation of Cers and their SM counterparts may suggest that overproduced Cers are converted to SMs to avoid excessive Cer-mediated cytotoxicity. We conclude that broad changes in SLs compositions in PFC induced by hyperglycemia may provoke membrane rearrangements in some cell populations, which can disturb cellular signaling and cause tissue damage.
Collapse
Affiliation(s)
- A Fiedorowicz
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - S Prokopiuk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - M Zendzian-Piotrowska
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - A Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - H Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland.
| |
Collapse
|
679
|
Dias IHK, Griffiths HR. Oxidative stress in diabetes - circulating advanced glycation end products, lipid oxidation and vascular disease. Ann Clin Biochem 2013; 51:125-7. [PMID: 24146184 DOI: 10.1177/0004563213508747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Irundika H K Dias
- Life and Health Sciences, Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK
| | | |
Collapse
|
680
|
Rai PK, Srivastava AK, Sharma B, Dhar P, Mishra AK, Watal G. Use of laser-induced breakdown spectroscopy for the detection of glycemic elements in Indian medicinal plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:406365. [PMID: 24228060 PMCID: PMC3818838 DOI: 10.1155/2013/406365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 08/07/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022]
Abstract
The demand for interdisciplinary research is increasing in the new millennium to help us understand complex problems and find solutions by integrating the knowledge from different disciplines. The present review is an excellent example of this and shows how unique combination of physics, chemistry, and biological techniques can be used for the evaluation of Indian medicinal herbs used for treating diabetes mellitus. Laser-induced breakdown spectroscopy (LIBS) is a sensitive optical technique that is widely used for its simplicity and versatility. This review presents the most recent application of LIBS for detection of glycemic elements in medicinal plants. The characteristics of matrices, object analysis, use of laser system, and analytical performances with respect to Indian herbs are discussed.
Collapse
Affiliation(s)
- Prashant Kumar Rai
- Department of NMR, All India Institute of Medical Sciences, New Delhi 110029, India
- UJ Nanomaterials Science Research Group, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Amrita Kumari Srivastava
- Alternative Therapeutics Unit, Drug Discovery & Development Division, Medicinal Research Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Preeti Dhar
- Department of Chemistry, State University of New York, 1 Hawk Drive, New Paltz, NY 12561, USA
| | - Ajay Kumar Mishra
- UJ Nanomaterials Science Research Group, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Geeta Watal
- Alternative Therapeutics Unit, Drug Discovery & Development Division, Medicinal Research Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India
| |
Collapse
|
681
|
Adler BL, Yarchoan M, Hwang HM, Louneva N, Blair JA, Palm R, Smith MA, Lee HG, Arnold SE, Casadesus G. Neuroprotective effects of the amylin analogue pramlintide on Alzheimer's disease pathogenesis and cognition. Neurobiol Aging 2013; 35:793-801. [PMID: 24239383 DOI: 10.1016/j.neurobiolaging.2013.10.076] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/05/2013] [Accepted: 10/06/2013] [Indexed: 12/24/2022]
Abstract
Amylin is a metabolic peptide hormone that is co-secreted with insulin from beta cells in the pancreas and activates many of the downstream targets of insulin. To investigate the relationship between this hormone and Alzheimer's disease (AD), we measured plasma human amylin levels in 206 subjects with AD, 64 subjects with mild cognitive impairment, and 111 subjects with no cognitive impairment and found significantly lower amylin levels among subjects with AD and mild cognitive impairment compared with the cognitively intact subjects. To investigate mechanisms underlying amylin's effects in the brain, we administered chronic infusions of the amylin analog pramlintide in the senescence-accelerated prone mouse, a mouse model of sporadic AD. Pramlintide administration improved performance in the novel object recognition task, a validated test of memory and cognition. The pramlintide-treated mice had increased expression of the synaptic marker synapsin I and the kinase cyclin-dependent kinase-5 in the hippocampus, as well as decreased oxidative stress and inflammatory markers in the hippocampus. A dose-dependent increase in cyclin-dependent kinase-5 and activation of extracellular-signal-regulated-kinases 1/2 by pramlintide treatment in vitro was also present indicating functionality of the amylin receptor in neurons. Together these results suggest that amylin analogs have neuroprotective properties and might be of therapeutic benefit in AD.
Collapse
Affiliation(s)
- Brittany L Adler
- Department of Neurosciences, Case Western Reserve University, Cleveland OH USA
| | - Mark Yarchoan
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hae Min Hwang
- Department of Neurosciences, Case Western Reserve University, Cleveland OH USA
| | - Natalia Louneva
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jeffrey A Blair
- Department of Neurosciences, Case Western Reserve University, Cleveland OH USA
| | - Russell Palm
- Department of Neurosciences, Case Western Reserve University, Cleveland OH USA
| | - Mark A Smith
- Department of Pathology, Case Western Reserve University, Cleveland OH USA
| | - Hyoung-Gon Lee
- Department of Pathology, Case Western Reserve University, Cleveland OH USA
| | - Steven E Arnold
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Gemma Casadesus
- Department of Neurosciences, Case Western Reserve University, Cleveland OH USA.
| |
Collapse
|
682
|
Erickson MA, Banks WA. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J Cereb Blood Flow Metab 2013; 33:1500-13. [PMID: 23921899 PMCID: PMC3790938 DOI: 10.1038/jcbfm.2013.135] [Citation(s) in RCA: 420] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) plays critical roles in the maintenance of central nervous system (CNS) homeostasis. Dysfunction of the BBB occurs in a number of CNS diseases, including Alzheimer's disease (AD). A prevailing hypothesis in the AD field is the amyloid cascade hypothesis that states that amyloid-β (Aβ) deposition in the CNS initiates a cascade of molecular events that cause neurodegeneration, leading to AD onset and progression. In this review, the participation of the BBB in the amyloid cascade and in other mechanisms of AD neurodegeneration will be discussed. We will specifically focus on three aspects of BBB dysfunction: disruption, perturbation of transporters, and secretion of neurotoxic substances by the BBB. We will also discuss the interaction of the BBB with components of the neurovascular unit in relation to AD and the potential contribution of AD risk factors to aspects of BBB dysfunction. From the results discussed herein, we conclude that BBB dysfunction contributes to AD through a number of mechanisms that could be initiated in the presence or absence of Aβ pathology.
Collapse
Affiliation(s)
- Michelle A Erickson
- 1] GRECC, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA [2] Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington, USA [3] Department of Pathology, School of Dental Medicine, University of Pennsylvania, Seattle, Washington, USA
| | | |
Collapse
|
683
|
Cholerton B, Baker LD, Craft S. Insulin, cognition, and dementia. Eur J Pharmacol 2013; 719:170-179. [PMID: 24070815 DOI: 10.1016/j.ejphar.2013.08.008] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 01/21/2023]
Abstract
Cognitive disorders of aging represent a serious threat to the social and economic welfare of current society. It is now widely recognized that pathology related to such conditions, particularly Alzheimer's disease, likely begins years or decades prior to the onset of clinical dementia symptoms. This revelation has led researchers to consider candidate mechanisms precipitating the cascade of neuropathological events that eventually lead to clinical Alzheimer's disease. Insulin, a hormone with potent effects in the brain, has recently received a great deal of attention for its potential beneficial and protective role in cognitive function. Insulin resistance, which refers to the reduced sensitivity of target tissues to the favorable effects of insulin, is related to multiple chronic conditions known to impact cognition and increase dementia risk. With insulin resistance-associated conditions reaching epidemic proportions, the prevalence of Alzheimer's disease and other cognitive disorders will continue to rise exponentially. Fortunately, these chronic insulin-related conditions are amenable to pharmacological intervention. As a result, novel therapeutic strategies that focus on increasing insulin sensitivity in the brain may be an important target for protecting or treating cognitive decline. The following review will highlight our current understanding of the role of insulin in brain, potential mechanisms underlying the link between insulin resistance and dementia, and current experimental therapeutic strategies aimed at improving cognitive function via modifying the brain's insulin sensitivity.
Collapse
Affiliation(s)
- Brenna Cholerton
- Department of Psychiatry and Behavioral Science, University of Washington School of Medicine, Seattle, WA, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Laura D Baker
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, Winston-Salem, NC 27157-1207, USA
| | - Suzanne Craft
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, Winston-Salem, NC 27157-1207, USA.
| |
Collapse
|
684
|
Wong DPK, Chu JMT, Hung VKL, Lee DKM, Cheng CHK, Yung KKL, Yue KKM. Modulation of endoplasmic reticulum chaperone GRP78 by high glucose in hippocampus of streptozotocin-induced diabetic mice and C6 astrocytic cells. Neurochem Int 2013; 63:551-60. [PMID: 24056253 DOI: 10.1016/j.neuint.2013.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/09/2013] [Accepted: 09/12/2013] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is known to increase the risk of neurodegeneration, and both diseases are reported to be linked to dysfunction of endoplasmic reticulum (ER). Astrocytes are important in the defense mechanism of central nervous system (CNS), with great ability of tolerating accumulation of toxic substances and sensitivity in Ca(2+) homeostasis which are two key functions of ER. Here, we investigated the modulation of the glucose-regulated protein 78 (GRP78) in streptozotocin (STZ)-induced diabetic mice and C6 cells cultured in high glucose condition. Our results showed that more reactive astrocytes were presented in the hippocampus of STZ-induced diabetic mice. Simultaneously, decrease of GRP78 expression was found in the astrocytes of diabetic mice hippocampus. In in vitro study, C6 cells were treated with high glucose to investigate the role of high glucose in GRP78 modulation in astrocytic cells. GRP78 as well as other chaperones like GRP94, calreticulin and calnexin, transcription levels were down-regulated after high glucose treatment. Also C6 cells challenged with 48h high glucose were activated, as indicated by increased level of glial fibrillary acidic protein (GFAP). Activated C6 cells simultaneously exhibited significant decrease of GRP78 level and was followed by reduced phosphorylation of Akt. Moreover, unfolded protein response was induced as an early event, which was marked by the induction of CHOP with high glucose treatment, followed by the reduction of GRP78 after 48h. Finally, the upsurge of ROS production was found in high glucose treated C6 cells and chelation of ROS could partially restore the GRP78 expression. Taken together, these data provide evidences that high glucose induced astrocytic activation in both in vivo and in vitro diabetic models, in which modulation of GRP78 would be an important event in this activation.
Collapse
Affiliation(s)
| | - John M T Chu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong; Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Victor K L Hung
- Department of Anaestheiology, The University of Hong Kong, Hong Kong
| | - Dicky K M Lee
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | | | - Ken K L Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Kevin K M Yue
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
685
|
Salkovic-Petrisic M, Osmanovic-Barilar J, Knezovic A, Hoyer S, Mosetter K, Reutter W. Long-term oral galactose treatment prevents cognitive deficits in male Wistar rats treated intracerebroventricularly with streptozotocin. Neuropharmacology 2013; 77:68-80. [PMID: 24055495 DOI: 10.1016/j.neuropharm.2013.09.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 08/31/2013] [Accepted: 09/05/2013] [Indexed: 01/02/2023]
Abstract
Basic and clinical research has demonstrated that dementia of sporadic Alzheimer's disease (sAD) type is associated with dysfunction of the insulin-receptor (IR) system followed by decreased glucose transport via glucose transporter GLUT4 and decreased glucose metabolism in brain cells. An alternative source of energy is d-galactose (the C-4-epimer of d-glucose) which is transported into the brain by insulin-independent GLUT3 transporter where it might be metabolized to glucose via the Leloir pathway. Exclusively parenteral daily injections of galactose induce memory deterioration in rodents and are used to generate animal aging model, but the effects of oral galactose treatment on cognitive functions have never been tested. We have investigated the effects of continuous daily oral galactose (200 mg/kg/day) treatment on cognitive deficits in streptozotocin-induced (STZ-icv) rat model of sAD, tested by Morris Water Maze and Passive Avoidance test, respectively. One month of oral galactose treatment initiated immediately after the STZ-icv administration, successfully prevented development of the STZ-icv-induced cognitive deficits. Beneficial effect of oral galactose was independent of the rat age and of the galactose dose ranging from 100 to 300 mg/kg/day. Additionally, oral galactose administration led to the appearance of galactose in the blood. The increase of galactose concentration in the cerebrospinal fluid was several times lower after oral than after parenteral administration of the same galactose dose. Oral galactose exposure might have beneficial effects on learning and memory ability and could be worth investigating for improvement of cognitive deficits associated with glucose hypometabolism in AD.
Collapse
Affiliation(s)
- Melita Salkovic-Petrisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia.
| | - Jelena Osmanovic-Barilar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Siegfried Hoyer
- Department of Pathology, University Clinic, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Kurt Mosetter
- Center for Interdisciplinary Therapies, Obere Laube 44, D-78462 Konstanz, Germany
| | - Werner Reutter
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité, D-14195 Berlin-Dahlem, Germany
| |
Collapse
|
686
|
Zhang Y, Zhang H. Microbiota associated with type 2 diabetes and its related complications. FOOD SCIENCE AND HUMAN WELLNESS 2013. [DOI: 10.1016/j.fshw.2013.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
687
|
Aguiar S, Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res 2013; 16:313-26. [PMID: 23772955 PMCID: PMC3746283 DOI: 10.1089/rej.2013.1431] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/17/2013] [Indexed: 11/13/2022] Open
Abstract
This review synthesizes behavioral research with neuromolecular mechanisms putatively involved with the low-toxicity cognitive enhancing action of Bacopa monnieri (BM), a medicinal Ayurvedic herb. BM is traditionally used for various ailments, but is best known as a neural tonic and memory enhancer. Numerous animal and in vitro studies have been conducted, with many evidencing potential medicinal properties. Several randomized, double-blind, placebo-controlled trials have substantiated BM's nootropic utility in humans. There is also evidence for potential attenuation of dementia, Parkinson's disease, and epilepsy. Current evidence suggests BM acts via the following mechanisms-anti-oxidant neuroprotection (via redox and enzyme induction), acetylcholinesterase inhibition and/or choline acetyltransferase activation, β-amyloid reduction, increased cerebral blood flow, and neurotransmitter modulation (acetylcholine [ACh], 5-hydroxytryptamine [5-HT], dopamine [DA]). BM appears to exhibit low toxicity in model organisms and humans; however, long-term studies of toxicity in humans have yet to be conducted. This review will integrate molecular neuroscience with behavioral research.
Collapse
Affiliation(s)
- Sebastian Aguiar
- Department of Neuroscience, Pitzer College, Claremont, California 91711, USA.
| | | |
Collapse
|
688
|
Younesi E, Hofmann-Apitius M. A network model of genomic hormone interactions underlying dementia and its translational validation through serendipitous off-target effect. J Transl Med 2013; 11:177. [PMID: 23885764 PMCID: PMC3733613 DOI: 10.1186/1479-5876-11-177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/03/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND While the majority of studies have focused on the association between sex hormones and dementia, emerging evidence supports the role of other hormone signals in increasing dementia risk. However, due to the lack of an integrated view on mechanistic interactions of hormone signaling pathways associated with dementia, molecular mechanisms through which hormones contribute to the increased risk of dementia has remained unclear and capacity of translating hormone signals to potential therapeutic and diagnostic applications in relation to dementia has been undervalued. METHODS Using an integrative knowledge- and data-driven approach, a global hormone interaction network in the context of dementia was constructed, which was further filtered down to a model of convergent hormone signaling pathways. This model was evaluated for its biological and clinical relevance through pathway recovery test, evidence-based analysis, and biomarker-guided analysis. Translational validation of the model was performed using the proposed novel mechanism discovery approach based on 'serendipitous off-target effects'. RESULTS Our results reveal the existence of a well-connected hormone interaction network underlying dementia. Seven hormone signaling pathways converge at the core of the hormone interaction network, which are shown to be mechanistically linked to the risk of dementia. Amongst these pathways, estrogen signaling pathway takes the major part in the model and insulin signaling pathway is analyzed for its association to learning and memory functions. Validation of the model through serendipitous off-target effects suggests that hormone signaling pathways substantially contribute to the pathogenesis of dementia. CONCLUSIONS The integrated network model of hormone interactions underlying dementia may serve as an initial translational platform for identifying potential therapeutic targets and candidate biomarkers for dementia-spectrum disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Erfan Younesi
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53754, Germany
- Bonn-Aachen International Center for Information Technology, University of Bonn, Bonn, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53754, Germany
- Bonn-Aachen International Center for Information Technology, University of Bonn, Bonn, Germany
| |
Collapse
|
689
|
Chen Z, Zhong C. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 2013; 108:21-43. [PMID: 23850509 DOI: 10.1016/j.pneurobio.2013.06.004] [Citation(s) in RCA: 489] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age-related devastating neurodegenerative disorder, which severely impacts on the global economic development and healthcare system. Though AD has been studied for more than 100 years since 1906, the exact cause(s) and pathogenic mechanism(s) remain to be clarified. Also, the efficient disease-modifying treatment and ideal diagnostic method for AD are unavailable. Perturbed cerebral glucose metabolism, an invariant pathophysiological feature of AD, may be a critical contributor to the pathogenesis of this disease. In this review, we firstly discussed the features of cerebral glucose metabolism in physiological and pathological conditions. Then, we further reviewed the contribution of glucose transportation abnormality and intracellular glucose catabolism dysfunction in AD pathophysiology, and proposed a hypothesis that multiple pathogenic cascades induced by impaired cerebral glucose metabolism could result in neuronal degeneration and consequently cognitive deficits in AD patients. Among these pathogenic processes, altered functional status of thiamine metabolism and brain insulin resistance are highly emphasized and characterized as major pathogenic mechanisms. Finally, considering the fact that AD patients exhibit cerebral glucose hypometabolism possibly due to impairments of insulin signaling and altered thiamine metabolism, we also discuss some potential possibilities to uncover diagnostic biomarkers for AD from abnormal glucose metabolism and to develop drugs targeting at repairing insulin signaling impairment and correcting thiamine metabolism abnormality. We conclude that glucose metabolism abnormality plays a critical role in AD pathophysiological alterations through the induction of multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, and so forth. To clarify the causes, pathogeneses and consequences of cerebral hypometabolism in AD will help break the bottleneck of current AD study in finding ideal diagnostic biomarker and disease-modifying therapy.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
690
|
Ríčný J. Overlooked Alzheimer's smoking gun? Neurochem Res 2013; 38:1774-6. [PMID: 23743622 DOI: 10.1007/s11064-013-1086-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 12/24/2022]
Abstract
Overview of Szutowicz et al. (Neurochem Res 38(8):1523-1542, 2013), is focusing on specific features of acetyl-CoA metabolism in the cholinergic compartment of the brain. Authors are suggesting that deficit of that metabolite can act as a trigger for several cholinergic encephalopathies, with special emphasis on Alzheimer disease (AD). Central role of acetyl-CoA and its metabolic paths in neurodegeneration are charted starting from its synthesis in mitochondria, followed by utilization in energy metabolism, as well as transport into cytoplasm and participation in the synthesis and turnover of neurotransmitter acetylcholine to emergence of diseased states. Various putative pathogenic signals are evaluated that might be responsible for acetyl-CoA deficit ending up in development of neurodegeneration, unraveling exceptional susceptibility of cholinergic system. They are discussed in context of other existing alternative hypotheses on AD etiology. Overview is thoroughly documented (178 references) and is supported by results accomplished by extensive research in Prof. Szutowicz's laboratory (approximately 25 original papers).
Collapse
Affiliation(s)
- Jan Ríčný
- Laboratory of Biochemistry and Brain Pathophysiology, Prague Psychiatric Center, Ústavní 91, 181 03, Prague, Czech Republic.
| |
Collapse
|
691
|
Tang J, Pei Y, Zhou G. When aging-onset diabetes is coming across with Alzheimer disease: comparable pathogenesis and therapy. Exp Gerontol 2013; 48:744-50. [PMID: 23648584 DOI: 10.1016/j.exger.2013.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/12/2013] [Accepted: 04/27/2013] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a metabolic disorder that is characterized by high blood glucose because of the insulin-resistance and insulin-deficiency in Type 2, while the insulin deficiency due to destruction of islet cells in the pancreas in Type 1. The development of Type 2 diabetes is caused by a combination of lifestyle and genetic factors. Aging patients with diabetes are at increased risk of developing cognitive and memory dysfunctions, which is one of the significant symptoms of Alzheimer disease (AD). Also, over 2/3 of AD patients were clinically indentified with impairment of glucose. Cognitive dysfunction would be associated with poor self-care ability in diabetes patients. This review will briefly summarize the current knowledge of the pathogenesis of these two diseases and highlight similarities in their pathophysiologies. Furthermore, we will shortly discuss recent progress in the insulin-targeted strategy, aiming to explore the inner linkage between these two diseases in aging populations.
Collapse
Affiliation(s)
- Jun Tang
- Department of Laboratory Medicine & Pathology, Kogod Center on Aging, Mayo Clinic,200 First Street SW, Rochester, MN 55905,USA
| | | | | |
Collapse
|
692
|
Hokama M, Oka S, Leon J, Ninomiya T, Honda H, Sasaki K, Iwaki T, Ohara T, Sasaki T, LaFerla FM, Kiyohara Y, Nakabeppu Y. Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study. ACTA ACUST UNITED AC 2013; 24:2476-88. [PMID: 23595620 PMCID: PMC4128707 DOI: 10.1093/cercor/bht101] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) is considered to be a risk factor for dementia including Alzheimer's disease (AD). However, the molecular mechanism underlying this risk is not well understood. We examined gene expression profiles in postmortem human brains donated for the Hisayama study. Three-way analysis of variance of microarray data from frontal cortex, temporal cortex, and hippocampus was performed with the presence/absence of AD and vascular dementia, and sex, as factors. Comparative analyses of expression changes in the brains of AD patients and a mouse model of AD were also performed. Relevant changes in gene expression identified by microarray analysis were validated by quantitative real-time reverse-transcription polymerase chain reaction and western blotting. The hippocampi of AD brains showed the most significant alteration in gene expression profile. Genes involved in noninsulin-dependent DM and obesity were significantly altered in both AD brains and the AD mouse model, as were genes related to psychiatric disorders and AD. The alterations in the expression profiles of DM-related genes in AD brains were independent of peripheral DM-related abnormalities. These results indicate that altered expression of genes related to DM in AD brains is a result of AD pathology, which may thereby be exacerbated by peripheral insulin resistance or DM.
Collapse
Affiliation(s)
- Masaaki Hokama
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Department of Neurosurgery, Graduate School of Medical Sciences
| | - Sugako Oka
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Research Center for Nucleotide Pool
| | - Julio Leon
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Toshiharu Ninomiya
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences
| | - Kensuke Sasaki
- Department of Neuropathology, Graduate School of Medical Sciences
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences
| | - Tomio Sasaki
- Department of Neurosurgery, Graduate School of Medical Sciences
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Yutaka Kiyohara
- Department of Environmental Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan and
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Research Center for Nucleotide Pool
| |
Collapse
|
693
|
Shaw K. ‘Type 3 diabetes’: linking a brain insulin-resistant state with dementia and Alzheimer's disease. PRACTICAL DIABETES 2013. [DOI: 10.1002/pdi.1752] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
694
|
Ghasemi R, Dargahi L, Haeri A, Moosavi M, Mohamed Z, Ahmadiani A. Brain insulin dysregulation: implication for neurological and neuropsychiatric disorders. Mol Neurobiol 2013; 47:1045-65. [PMID: 23335160 DOI: 10.1007/s12035-013-8404-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 01/03/2013] [Indexed: 12/18/2022]
Abstract
Arduous efforts have been made in the last three decades to elucidate the role of insulin in the brain. A growing number of evidences show that insulin is involved in several physiological function of the brain such as food intake and weight control, reproduction, learning and memory, neuromodulation and neuroprotection. In addition, it is now clear that insulin and insulin disturbances particularly diabetes mellitus may contribute or in some cases play the main role in development and progression of neurodegenerative and neuropsychiatric disorders. Focusing on the molecular mechanisms, this review summarizes the recent findings on the involvement of insulin dysfunction in neurological disorders like Alzheimer's disease, Parkinson's disease and Huntington's disease and also mental disorders like depression and psychosis sharing features of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Rasoul Ghasemi
- Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | | | |
Collapse
|
695
|
Pitt J, Thorner M, Brautigan D, Larner J, Klein WL. Protection against the synaptic targeting and toxicity of Alzheimer's-associated Aβ oligomers by insulin mimetic chiro-inositols. FASEB J 2013; 27:199-207. [PMID: 23073831 PMCID: PMC3528307 DOI: 10.1096/fj.12-211896] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/24/2012] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a progressive dementia that correlates highly with synapse loss. This loss appears due to the synaptic accumulation of toxic Aβ oligomers (ADDLs), which damages synapse structure and function. Although it has been reported that oligomer binding and toxicity can be prevented by stimulation of neuronal insulin signaling with PPARγ agonists, these agonists have problematic side effects. We therefore investigated the therapeutic potential of chiro-inositols, insulin-sensitizing compounds safe for human consumption. Chiro-inositols have been studied extensively for treatment of diseases associated with peripheral insulin resistance, but their insulin mimetic function in memory-relevant central nervous system (CNS) cells is unknown. Here we demonstrate that mature cultures of hippocampal neurons respond to d-chiro-inositol (DCI), pinitol (3-O-methyl DCI), and the inositol glycan INS-2 (pinitol β-1-4 galactosamine) with increased phosphorylation in key upstream components in the insulin-signaling pathway (insulin receptor, insulin receptor substrate-1, and Akt). Consistent with insulin stimulation, DCI treatment promotes rapid withdrawal of dendritic insulin receptors. With respect to neuroprotection, DCI greatly enhances the ability of insulin to prevent ADDL-induced synapse damage (EC(50) of 90 nM). The mechanism comprises inhibition of oligomer binding at synapses and requires insulin/IGF signaling. DCI showed no effects on Aβ oligomerization. We propose that inositol glycans and DCI, a compound already established as safe for human consumption, have potential as AD therapeutics by protecting CNS synapses against Aβ oligomers through their insulin mimetic activity.
Collapse
Affiliation(s)
- Jason Pitt
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Michael Thorner
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - David Brautigan
- Department of Microbiology
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia, USA; and
| | - Joseph Larner
- Department of Pharmacology, and
- Allomed Pharmaceuticals, Charlottesville, Virginia, USA
| | - William L. Klein
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
696
|
Abstract
This manuscript provides a brief review of current concepts in the mechanisms potentially linking type-2-diabetes (T2D) with cognitive impairment. Existing epidemiologic studies, imaging studies, autopsy studies, and clinical trials provide insights into the mechanisms linking T2D and cognitive impairment. There seems to be little dispute that T2D can cause cerebrovascular disease and thus cause vascular cognitive impairment (VCI). Whether T2D can cause late onset Alzheimer's disease (LOAD) remains to be elucidated. Many epidemiologic studies show an association between T2D and cognitive impairment, but the association with VCI seems to be stronger compared to LOAD, suggesting that cerebrovascular disease may be the main mechanism linking T2D and cognitive impairment. Imaging studies show an association between T2D and imaging markers of LOAD, but these observations could still be explained by cerebrovascular mechanisms. Autopsy studies are few and conflicting, with some suggesting a predominantly cerebrovascular mechanism, and others providing support for a neurodegenerative mechanism. Thus far, the evidence from clinical trials is mixed in supporting a causal association between T2D and cognitive impairment, and most clinical trials that can answer this question are yet to be reported or finished. Given the epidemic of T2D in the world, it is important to elucidate whether the association between T2D and cognitive impairment, particularly LOAD, is causal, and if so, what the mechanisms are.
Collapse
Affiliation(s)
- José A Luchsinger
- Division of General Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
697
|
de la Monte SM, Re E, Longato L, Tong M. Dysfunctional pro-ceramide, ER stress, and insulin/IGF signaling networks with progression of Alzheimer's disease. J Alzheimers Dis 2012; 30 Suppl 2:S217-29. [PMID: 22297646 DOI: 10.3233/jad-2012-111728] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In Alzheimer's disease (AD), brain insulin and insulin-like growth factor (IGF) resistance and deficiency begin early, and worsen with severity of disease. The factors mediating progression of brain insulin/IGF resistance in AD are not well understood. We hypothesize that AD progression is mediated via negative cross-talk that promotes toxic ceramide generation and endoplasmic reticulum (ER) stress. The rationale is that insulin resistance dysregulates lipid metabolism and promotes ceramide accumulation, and thereby increases inflammation and stress. Consequences include disruption of cytoskeletal function and AβPP-Aβ secretion. The present study correlates AD stage with activation of pro-ceramide genes, ceramide levels, and molecular indices of ER stress in postmortem human brain tissue. The results demonstrated that in AD, brain insulin/IGF resistance was associated with constitutive activation of multiple pro-ceramide genes, increased ceramide levels, and increased expression of pro-ER stress pathway genes and proteins. Expression of several pro-ceramide and pro-apoptotic ER stress pathway molecules increased with AD severity and brain insulin/IGF resistance. In contrast, ER stress molecules that help maintain homeostasis with respect to unfolded protein responses were mainly upregulated in the intermediate rather than late stage of AD. These findings support our hypothesis that in AD, a triangulated mal-signaling network initiated by brain insulin/IGF resistance is propagated by the dysregulation of ceramide and ER stress homeostasis, which themselves promote insulin resistance. Therefore, once established, this reverberating loop must be targeted using multi-pronged approaches to disrupt the AD neurodegeneration cascade.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Department of Pathology (Neuropathology), Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA. Suzanne DeLaMonte
| | | | | | | |
Collapse
|
698
|
Chen Y, Tian Z, Liang Z, Sun S, Dai CL, Lee MH, LaFerla FM, Grundke-Iqbal I, Iqbal K, Liu F, Gong CX. Brain gene expression of a sporadic (icv-STZ Mouse) and a familial mouse model (3xTg-AD mouse) of Alzheimer's disease. PLoS One 2012; 7:e51432. [PMID: 23236499 PMCID: PMC3517562 DOI: 10.1371/journal.pone.0051432] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/01/2012] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) can be divided into sporadic AD (SAD) and familial AD (FAD). Most AD cases are sporadic and may result from multiple etiologic factors, including environmental, genetic and metabolic factors, whereas FAD is caused by mutations of presenilins or amyloid-β (Aβ) precursor protein (APP). A commonly used mouse model for AD is 3xTg-AD mouse, which is generated by over-expression of mutated presenilin 1, APP and tau in the brain and thus represents a mouse model of FAD. A mouse model generated by intracerebroventricular (icv) administration of streptozocin (STZ), icv-STZ mouse, shows many aspects of SAD. Despite the wide use of these two models for AD research, differences in gene expression between them are not known. Here, we compared the expression of 84 AD-related genes in the hippocampus and the cerebral cortex between icv-STZ mice and 3xTg-AD mice using a custom-designed qPCR array. These genes are involved in APP processing, tau/cytoskeleton, synapse function, apoptosis and autophagy, AD-related protein kinases, glucose metabolism, insulin signaling, and mTOR pathway. We found altered expression of around 20 genes in both mouse models, which affected each of above categories. Many of these gene alterations were consistent with what was observed in AD brain previously. The expression of most of these altered genes was decreased or tended to be decreased in the hippocampus of both mouse models. Significant diversity in gene expression was found in the cerebral cortex between these two AD mouse models. More genes related to synaptic function were dysregulated in the 3xTg-AD mice, whereas more genes related to insulin signaling and glucose metabolism were down-regulated in the icv-STZ mice. The present study provides important fundamental knowledge of these two AD mouse models and will help guide future studies using these two mouse models for the development of AD drugs.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
699
|
Mehran AE, Templeman NM, Brigidi GS, Lim GE, Chu KY, Hu X, Botezelli JD, Asadi A, Hoffman BG, Kieffer TJ, Bamji SX, Clee SM, Johnson JD. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 2012; 16:723-37. [PMID: 23217255 DOI: 10.1016/j.cmet.2012.10.019] [Citation(s) in RCA: 378] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 08/26/2012] [Accepted: 10/31/2012] [Indexed: 12/21/2022]
Abstract
Hyperinsulinemia is associated with obesity and pancreatic islet hyperplasia, but whether insulin causes these phenomena or is a compensatory response has remained unsettled for decades. We examined the role of insulin hypersecretion in diet-induced obesity by varying the pancreas-specific Ins1 gene dosage in mice lacking Ins2 gene expression in the pancreas, thymus, and brain. Age-dependent increases in fasting insulin and β cell mass were absent in Ins1(+/-):Ins2(-/-) mice fed a high-fat diet when compared to Ins1(+/+):Ins2(-/-) littermate controls. Remarkably, Ins1(+/-):Ins2(-/-) mice were completely protected from diet-induced obesity. Genetic prevention of chronic hyperinsulinemia in this model reprogrammed white adipose tissue to express uncoupling protein 1 and increase energy expenditure. Normalization of adipocyte size and activation of energy expenditure genes in white adipose tissue was associated with reduced inflammation, reduced fatty acid spillover, and reduced hepatic steatosis. Thus, we provide genetic evidence that pathological circulating hyperinsulinemia drives diet-induced obesity and its complications.
Collapse
Affiliation(s)
- Arya E Mehran
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
700
|
Bowerman M, Swoboda KJ, Michalski JP, Wang GS, Reeks C, Beauvais A, Murphy K, Woulfe J, Screaton RA, Scott FW, Kothary R. Glucose metabolism and pancreatic defects in spinal muscular atrophy. Ann Neurol 2012; 72:256-68. [PMID: 22926856 DOI: 10.1002/ana.23582] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Spinal muscular atrophy (SMA) is the number 1 genetic killer of young children. It is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Although SMA is primarily a motor neuron disease, metabolism abnormalities such as metabolic acidosis, abnormal fatty acid metabolism, hyperlipidemia, and hyperglycemia have been reported in SMA patients. We thus initiated an in-depth analysis of glucose metabolism in SMA. METHODS Glucose metabolism and pancreas development were investigated in the Smn(2B/-) intermediate SMA mouse model and type I SMA patients. RESULTS Here, we demonstrate in an SMA mouse model a dramatic cell fate imbalance within pancreatic islets, with a predominance of glucagon-producing α cells at the expense of insulin-producing β cells. These SMA mice display fasting hyperglycemia, hyperglucagonemia, and glucose resistance. We demonstrate similar abnormalities in pancreatic islets from deceased children with the severe infantile form of SMA in association with supportive evidence of glucose intolerance in at least a subset of such children. INTERPRETATION Our results indicate that defects in glucose metabolism may play an important contributory role in SMA pathogenesis.
Collapse
|