51
|
Liu X, Duan J, Huo D, Li Q, Wang Q, Zhang Y, Niu L, Luo J. The Paeonia qiui R2R3-MYB Transcription Factor PqMYB113 Positively Regulates Anthocyanin Accumulation in Arabidopsis thaliana and Tobacco. FRONTIERS IN PLANT SCIENCE 2022; 12:810990. [PMID: 35095984 PMCID: PMC8789887 DOI: 10.3389/fpls.2021.810990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Paeonia qiui is a wild species of tree peony native to China. Its leaves are purplish red from the bud germination to the flowering stage, and anthocyanin is the main pigment in purplish red leaves. However, the anthocyanin synthesis regulation mechanism in tree peony leaves remains unclear. In this study, an R2R3-MYB, PqMYB113 was identified from the leaves of P. qiui. Phylogenetic analysis revealed that PqMYB113 clustered with Liquidambar LfMYB113 and grape VvMYBA6. Subcellular location analysis showed that PqMYB113 was located in the cell nucleus. The transient reporter assay suggested that PqMYB113 was a transcriptional activator. The overexpression of PqMYB113 in Arabidopsis thaliana and tobacco (Nicotiana tabacum) resulted in increased anthocyanin accumulation and the upregulation of CHS, F3H, F3'H, DFR, and ANS. The dual luciferase reporter assay showed that PqMYB113 could activate the promoters of PqDFR and PqANS. Bimolecular fluorescence complementation assays and yeast two-hybrid assays suggested that PqMYB113 could form a ternary MBW complex with PqbHLH1 and PqWD40 cofactors. These results provide insight into the regulation of anthocyanin biosynthesis in tree peony leaves.
Collapse
Affiliation(s)
- Xiaokun Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resource, Shanghai, China
| | - Jingjing Duan
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
- College of Plant Science, Tarim University, Alar, China
| | - Dan Huo
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| | - Qinqin Li
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| | - Qiaoyun Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| | - Jianrang Luo
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| |
Collapse
|
52
|
Yuan Z, Dong F, Pang Z, Fallah N, Zhou Y, Li Z, Hu C. Integrated Metabolomics and Transcriptome Analyses Unveil Pathways Involved in Sugar Content and Rind Color of Two Sugarcane Varieties. FRONTIERS IN PLANT SCIENCE 2022; 13:921536. [PMID: 35783968 PMCID: PMC9244704 DOI: 10.3389/fpls.2022.921536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/18/2022] [Indexed: 05/02/2023]
Abstract
Metabolic composition can have potential impact on several vital agronomic traits, and metabolomics, which represents the bioactive compounds in plant tissues, is widely considered as a powerful approach for linking phenotype-genotype interactions. However, metabolites related to cane traits such as sugar content, rind color, and texture differences in different sugarcane cultivars using metabolome integrated with transcriptome remain largely inconclusive. In this study, metabolome integrated with transcriptome analyses were performed to identify and quantify metabolites composition, and have better insight into the molecular mechanisms underpinning the different cane traits, namely, brix, rind color, and textures in the stems (S) and leaves (L) of sugarcane varieties FN41 and 165402. We also identified metabolites and associated genes in the phenylpropanoid and flavonoid biosynthesis pathways, starch and sucrose metabolism. A total of 512 metabolites from 11 classes, with the vast majority (122) belonging to flavonoids were identified. Moreover, the relatively high amount of D-fructose 6-p, D-glucose6-p and glucose1-p detected in FN41L may have been transported and distributed by source and sink of the cane, and a majority of them reached the stem of sugarcane FN41L, thereby promoting the high accumulation of sugar in FN41S. Observations also revealed that genes such as C4H, CHS, F3H, F3'H, DFR, and FG2 in phenylpropanoid and flavonoid biosynthesis pathways were the major factors impacting the rind color and contrasting texture of FN41 and 165204. Further analysis revealed that weighted gene co-expression network analysis (WGCNA) hub genes and six transcription factors, namely, Tify and NAC, MYB-related, C2C2-Dof, WRKY, and bHLH play a key role in phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, starch and sucrose metabolism. Additionally, metabolites such as L-phenylalanine, tyrosine, sinapaldehyde, pinobanksin, kaempferin, and nictoflorin were the potential drivers of phenotypic differences. Our finding also demonstrated that genes and metabolites in the starch and sucrose metabolism had a significant effect on cane sugar content. Overall, this study provided valuable insight into the molecular mechanisms underpinning high sugar accumulation and rind color in sugarcane, which we believe is important for future sugarcane breeding programs and the selection of high biomass varieties.
Collapse
Affiliation(s)
- Zhaonian Yuan
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugar Industry, Nanning, China
- *Correspondence: Zhaonian Yuan,
| | - Fei Dong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ziqin Pang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nyumah Fallah
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongmei Zhou
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaohua Hu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
53
|
He B, Zhang Y, Wang L, Guo D, Jia X, Wu J, Qi S, Wu H, Gao Y, Guo M. Both Two CtACO3 Transcripts Promoting the Accumulation of the Flavonoid Profiles in Overexpressed Transgenic Safflower. FRONTIERS IN PLANT SCIENCE 2022; 13:833811. [PMID: 35463446 PMCID: PMC9019494 DOI: 10.3389/fpls.2022.833811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/23/2022] [Indexed: 05/10/2023]
Abstract
The unique flavonoids, quinochalcones, such as hydroxysafflor yellow A (HSYA) and carthamin, in the floret of safflower showed an excellent pharmacological effect in treating cardiocerebral vascular disease, yet the regulating mechanisms governing the flavonoid biosynthesis are largely unknown. In this study, CtACO3, the key enzyme genes required for the ethylene signaling pathway, were found positively related to the flavonoid biosynthesis at different floret development periods in safflower and has two CtACO3 transcripts, CtACO3-1 and CtACO3-2, and the latter was a splice variant of CtACO3 that lacked 5' coding sequences. The functions and underlying probable mechanisms of the two transcripts have been explored. The quantitative PCR data showed that CtACO3-1 and CtACO3-2 were predominantly expressed in the floret and increased with floret development. Subcellular localization results indicated that CtACO3-1 was localized in the cytoplasm, whereas CtACO3-2 was localized in the cytoplasm and nucleus. Furthermore, the overexpression of CtACO3-1 or CtACO3-2 in transgenic safflower lines significantly increased the accumulation of quinochalcones and flavonols. The expression of the flavonoid pathway genes showed an upward trend, with CtCHS1, CtF3H1, CtFLS1, and CtDFR1 was considerably induced in the overexpression of CtACO3-1 or CtACO3-2 lines. An interesting phenomenon for CtACO3-2 protein suppressing the transcription of CtACO3-1 might be related to the nucleus location of CtACO3-2. Yeast two-hybrid (Y2H), glutathione S-transferase (GST) pull-down, and BiFC experiments revealed that CtACO3-2 interacted with CtCSN5a. In addition, the interactions between CtCSN5a and CtCOI1, CtCOI1 and CtJAZ1, CtJAZ1 and CtbHLH3 were observed by Y2H and GST pull-down methods, respectively. The above results suggested that the CtACO3-2 promoting flavonoid accumulation might be attributed to the transcriptional activation of flavonoid biosynthesis genes by CtbHLH3, whereas the CtbHLH3 might be regulated through CtCSN5-CtCOI1-CtJAZ1 signal molecules. Our study provided a novel insight of CtACO3 affected the flavonoid biosynthesis in safflower.
Collapse
Affiliation(s)
- Beixuan He
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yanjie Zhang
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lunuan Wang
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Dandan Guo
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xinlei Jia
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jianhui Wu
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shuyi Qi
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hong Wu
- Department of Cardiology, Changhai Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- *Correspondence: Hong Wu,
| | - Yue Gao
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
- Yue Gao,
| | - Meili Guo
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
- Meili Guo,
| |
Collapse
|
54
|
Wang N, Shu X, Zhang F, Zhuang W, Wang T, Wang Z. Comparative Transcriptome Analysis Identifies Key Regulatory Genes Involved in Anthocyanin Metabolism During Flower Development in Lycoris radiata. FRONTIERS IN PLANT SCIENCE 2021; 12:761862. [PMID: 34975946 PMCID: PMC8715008 DOI: 10.3389/fpls.2021.761862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Lycoris is used as a garden flower due to the colorful and its special flowers. Floral coloration of Lycoris is a vital trait that is mainly regulated via the anthocyanin biosynthetic pathway. In this study, we performed a comparative transcriptome analysis of Lycoris radiata petals at four different flower development stages. A total of 38,798 differentially expressed genes (DEGs) were identified by RNA sequencing, and the correlation between the expression level of the DEGs and the anthocyanin content was explored. The identified DEGs are significantly categorized into 'flavonoid biosynthesis,' 'phenylpropanoid biosynthesis,' 'Tropane, piperidine and pyridine alkaloid biosynthesis,' 'terpenoid backbone biosynthesis' and 'plant hormone signal transduction' by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The candidate genes involved in anthocyanin accumulation in L. radiata petals during flower development stages were also identified, which included 56 structural genes (especially LrDFR1 and LrFLS) as well as 27 key transcription factor DEGs (such as C3H, GATA, MYB, and NAC). In addition, a key structural gene namely LrDFR1 of anthocyanin biosynthesis pathway was identified as a hub gene in anthocyanin metabolism network. During flower development stages, the expression level of LrDFR1 was positively correlated with the anthocyanin content. Subcellular localization revealed that LrDFR1 is majorly localized in the nucleus, cytoplasm and cell membrane. Overexpression of LrDFR1 increased the anthocyanin accumulation in tobacco leaves and Lycoris petals, suggesting that LrDFR1 acts as a positively regulator of anthocyanin biosynthesis. Our results provide new insights for elucidating the function of anthocyanins in L. radiata petal coloring during flower development.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Weibing Zhuang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Tao Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
55
|
Li X, Cheng Y, Wang M, Cui S, Guan J. Weighted gene coexpression correlation network analysis reveals a potential molecular regulatory mechanism of anthocyanin accumulation under different storage temperatures in 'Friar' plum. BMC PLANT BIOLOGY 2021; 21:576. [PMID: 34872513 PMCID: PMC8647467 DOI: 10.1186/s12870-021-03354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Flesh is prone to accumulate more anthocyanin in postharvest 'Friar' plum (Prunus salicina Lindl.) fruit stored at an intermediate temperature. However, little is known about the molecular mechanism of anthocyanin accumulation regulated by storage temperature in postharvest plum fruit. RESULTS To reveal the potential molecular regulation mechanism of anthocyanin accumulation in postharvest 'Friar' plum fruit stored at different temperatures (0 °C, 10 °C and 25 °C), the fruit quality, metabolite profile and transcriptome of its flesh were investigated. Compared to the plum fruit stored at 0 °C and 25 °C, the fruit stored at 10 °C showed lower fruit firmness after 14 days and reduced the soluble solids content after 21 days of storage. The metabolite analysis indicated that the fruit stored at 10 °C had higher contents of anthocyanins (pelargonidin-3-O-glucoside, cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside and quercetin-3-O-rutinose), quercetin and sucrose in the flesh. According to the results of weighted gene coexpression correlation network analysis (WGCNA), the turquoise module was positively correlated with the content of anthocyanin components, and flavanone 3-hydroxylase (F3H) and chalcone synthase (CHS) were considered hub genes. Moreover, MYB family transcription factor APL (APL), MYB10 transcription factor (MYB10), ethylene-responsive transcription factor WIN1 (WIN1), basic leucine zipper 43-like (bZIP43) and transcription factor bHLH111-like isoform X2 (bHLH111) were closely related to these hub genes. Further qRT-PCR analysis verified that these transcription factors were specifically more highly expressed in plum flesh stored at 10 °C, and their expression profiles were significantly positively correlated with the structural genes of anthocyanin synthesis as well as the content of anthocyanin components. In addition, the sucrose biosynthesis-associated gene sucrose synthase (SS) was upregulated at 10 °C, which was also closely related to the anthocyanin content of plum fruit stored at 10 °C. CONCLUSIONS The present results suggest that the transcription factors APL, MYB10, WIN1, bZIP43 and bHLH111 may participate in the accumulation of anthocyanin in 'Friar' plum flesh during intermediate storage temperatures by regulating the expression of anthocyanin biosynthetic structural genes. In addition, the SS gene may play a role in anthocyanin accumulation in plum flesh by regulating sucrose biosynthesis.
Collapse
Affiliation(s)
- Xueling Li
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, 050024, People's Republic of China
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050051, People's Republic of China
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, Hebei Province, 050051, People's Republic of China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050051, People's Republic of China
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, Hebei Province, 050051, People's Republic of China
| | - Meng Wang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, People's Republic of China
| | - Sujuan Cui
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, 050024, People's Republic of China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050051, People's Republic of China.
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, Hebei Province, 050051, People's Republic of China.
| |
Collapse
|
56
|
Cui Y, Fan J, Lu C, Ren J, Qi F, Huang H, Dai S. ScGST3 and multiple R2R3-MYB transcription factors function in anthocyanin accumulation in Senecio cruentus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111094. [PMID: 34763879 DOI: 10.1016/j.plantsci.2021.111094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Anthocyanins are important flavonoid pigments involved in the colouring of flowers and fruits. They are synthesized on the cytoplasmic surface of the endoplasmic reticulum and transported into the vacuole for storage. Previous reports have suggested that glutathione S-transferase (GST) is involved in anthocyanin transport. However, due to the limitation of plant materials, most GSTs only participate in the cyanidin or delphinidin transport pathway. Here, an anthocyanin-related GST, ScGST3, was identified from the transcriptome of cineraria. The expression pattern of ScGST3 was highly consistent with anthocyanin accumulation in ray florets. Molecular complementation of Arabidopsis tt19 indicated that the overexpression of ScGST3 restores the anthocyanin-deficient phenotype of the mutant. Virus-induced gene silencing (VIGS) of ScGST3 in carmine and blue cineraria leaves could inhibit anthocyanin accumulation, further confirming the function of ScGST3 in anthocyanin accumulation. In vitro assays showed that ScGST3 increases the water solubility of cyanidin-3-O-glucoside (C3G) and delphinidin-3-O-glucosid (D3G). In addition, we also identified two anthocyanin-related MYB transcription factors, ScMYB3 and ScMYB6. The expression pattern of these two genes was also highly consistent with anthocyanin accumulation. Faded abaxial leaf phenotypes were observed after the silencing of ScMYB3 and ScMYB6, and the expression levels of partial structural genes were repressed. Based on the results from dual-luciferase assays and yeast one-hybrid assays, ScMYB3 can activate the promoter of ScGST3. Collectively, the transcription of ScGST3 is regulated by ScMYB3, which plays an important role in the transport of C3G and D3G in cineraria.
Collapse
Affiliation(s)
- Yumeng Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jiawei Fan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jiangshan Ren
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Fangting Qi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Silan Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
57
|
Chen P, Li Z, Zhang D, Shen W, Xie Y, Zhang J, Jiang L, Li X, Shen X, Geng D, Wang L, Niu C, Bao C, Yan M, Li H, Li C, Yan Y, Zou Y, Micheletti D, Koot E, Ma F, Guan Q. Insights into the effect of human civilization on Malus evolution and domestication. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2206-2220. [PMID: 34161653 PMCID: PMC8541786 DOI: 10.1111/pbi.13648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 05/09/2023]
Abstract
The evolutionary history of the Malus genus has not been well studied. In the current study, we presented genetic evidence on the origin of the Malus genus based on genome sequencing of 297 Malus accessions, revealing the genetic relationship between wild species and cultivated apples. Our results demonstrated that North American and East Asian wild species are closer to the outgroup (pear) than Central Asian species, and hybrid species including natural (separated before the Pleistocene, about 2.5 Mya) and artificial hybrids (including ornamental trees and rootstocks) are between East and Central Asian wild species. Introgressions from M. sylvestris in cultivated apples appeared to be more extensive than those from M. sieversii, whose genetic background flowed westward across Eurasia and eastward to wild species including M. prunifolia, M. × asiatica, M. × micromalus, and M. × robust. Our results suggested that the loss of ancestral gene flow from M. sieversii in cultivated apples accompanied the movement of European traders around the world since the Age of Discovery. Natural SNP variations showed that cultivated apples had higher nucleotide diversity than wild species and more unique SNPs than other apple groups. An apple ERECTA-like gene that underwent selection during domestication on 15th chromosome was identified as a likely major determinant of fruit length and diameter, and an NB-ARC domain-containing gene was found to strongly affect anthocyanin accumulation using a genome-wide association approach. Our results provide new insights into the origin and domestication of apples and will be useful in new breeding programmes and efforts to increase fruit crop productivity.
Collapse
Affiliation(s)
- Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jing Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Liping Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Mingjia Yan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Haiyan Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yan Yan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yangjun Zou
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | | | - Emily Koot
- The New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
58
|
Yang H, Wu Y, Wu W, Lyu L, Li W. Transcriptomic analysis of blackberry plant (Rubus spp.) reveals a comprehensive metabolic network involved in fruit ripening process. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00896-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
59
|
Analysis of Light-Independent Anthocyanin Accumulation in Mango (Mangifera indica L.). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light dependent anthocyanin accumulation contributes to the red pigmentation of the fruit skin of mango (Mangifera indica L.). Light-independent pigmentation has also been reported, but remains poorly characterized. In this study, the pigmentation patterns in the skin of two red mango cultivars, ‘Ruby’ and ‘Sensation’, were evaluated. Metabolomic profiling revealed that quercetin-3-O-glucoside, cyanidin-3-O-galactoside, procyanidin B1, and procyanidin B3 are the predominant flavonoid compounds in the skin of ‘Ruby’ and ‘Sensation’ fruit. Young fruit skin mainly accumulates flavonol and proanthocyanidin, while anthocyanin is mainly accumulated in the skin of mature fruit. Bagging treatment inhibited the biosynthesis of flovonol and anthocyanin, but promoted the accumulation of proanthocyanidin. Compared with ‘Sensation’, matured ‘Ruby’ fruit skin showed light red pigmentation at 120 days after full bloom (DAFB), showing a light-independent anthocyanin accumulation pattern. However, the increase of anthocyanin concentration, and the expression of key anthocyanin structural and regulatory genes MiUFGT1, MiUFGT3, and MiMYB1 in the skin of bagged ‘Ruby’ fruit versus ‘Sensation’ at 120 DAFB was very limited. There was no mutation in the crucial elements of MiMYB1 promoter between ‘Ruby’ and ‘Sensation’. We hypothesize that the light-independent anthocyanin accumulation in the skin of mature ‘Ruby’ fruit is regulated by plant hormones, and that ‘Ruby’ can be used for breeding of new more easily pigmented red mango cultivars.
Collapse
|
60
|
Lu Z, Cao H, Pan L, Niu L, Wei B, Cui G, Wang L, Yao JL, Zeng W, Wang Z. Two loss-of-function alleles of the glutathione S-transferase (GST) gene cause anthocyanin deficiency in flower and fruit skin of peach (Prunus persica). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1320-1331. [PMID: 33964100 DOI: 10.1111/tpj.15312] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Flower and fruit colors are important agronomic traits. To date, there is no forward genetic evidence that the glutathione S-transferase (GST) gene is responsible for the white flower color in peach (Prunus persica). In this study, genetic analysis indicated that the white-flower trait is monogenetic, is recessive to the non-white allele, and shows pleiotropic effects with non-white-flowered types. The genetic locus underpinning this trait was mapped onto chromosome 3 between 0.421951 and 3.227115 Mb by using bulked segregant analysis in conjunction with whole-genome sequencing, and was further mapped between 0 and 1.178149 Mb by using the backcross 1 (BC1 ) population. Finally, the locus was fine-mapped within 535.974- and 552.027-kb intervals by using 151 F2 individuals and 75 individuals from a BC1 self-pollinated (BC1 S1 ) population, respectively. Pp3G013600, encoding a GST that is known to transport anthocyanin, was identified within the mapping interval. The analysis of genome sequence data showed Pp3G013600 in white flowers has a 2-bp insertion or a 5-bp deletion in the third exon. These variants likely render the GST non-functional because of early stop codons that reduce the protein length from 215 amino acids to 167 and 175 amino acids, respectively. Genetic markers based on these variants validated a complete correlation between the GST loss-of-function alleles and white flower in 128 peach accessions. This correlation was further confirmed by silencing of Pp3G013600 using virus-induced gene silencing technology, which reduced anthocyanin accumulation in peach fruit. The new knowledge from this study is useful for designing peach breeding programs to generate cultivars with white flower and fruit skin.
Collapse
Affiliation(s)
- Zhenhua Lu
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Huihui Cao
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan, China
| | - Lei Pan
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Liang Niu
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Bin Wei
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - GuoChao Cui
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Luwei Wang
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Long Yao
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Wenfang Zeng
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiqiang Wang
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
61
|
Zhao J, Li H, Huang J, Shi T, Meng Z, Chen Q, Deng J. Genome-wide analysis of BBX gene family in Tartary buckwheat ( Fagopyrum tataricum). PeerJ 2021; 9:e11939. [PMID: 34447629 PMCID: PMC8364324 DOI: 10.7717/peerj.11939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
BBX (B-box), a zinc finger transcription factor with one or two B-box domains, plays an important role in plant photomorphogenesis, growth, and development as well as response to environmental changes. In this study, 28 Tartary buckwheat BBX (FtBBX) genes were identified and screened using a comparison program. Their physicochemical properties, gene structures, conserved motifs, distribution in chromosomal, and phylogeny of the coding proteins, as well as their expression patterns, were analyzed. In addition, multiple collinearity analysis in three monocots and three dicot species illustrated that the BBX proteins identified from monocots clustered separately from those of dicots. Moreover, the expression of 11 candidate BBX genes with probable involvement in the regulation of anthocyanin biosynthesis was analyzed in the sprouts of Tartary buckwheat during light treatment. The results of gene structure analysis showed that all the 28 BBX genes contained B-box domain, three genes lacked introns, and these genes were unevenly distributed on the other seven chromosomes except for chromosome 6. The 28 proteins contained 10 conserved motifs and could be divided into five subfamilies. BBX genes of Tartary buckwheat showed varying expression under different conditions demonstrating that FtBBXs might play important roles in Tartary buckwheat growth and development. This study lays a foundation for further understanding of Tartary buckwheat BBX genes and their functions in growth and development as well as regulation of pigmentation in Tartary buckwheat.
Collapse
Affiliation(s)
- Jiali Zhao
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Hongyou Li
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Juan Huang
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Taoxiong Shi
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Ziye Meng
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Qingfu Chen
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Jiao Deng
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| |
Collapse
|
62
|
Chen Q, Wang J, Danzeng P, Danzeng C, Song S, Wang L, Zhao L, Xu W, Zhang C, Ma C, Wang S. VvMYB114 mediated by miR828 negatively regulates trichome development of Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110936. [PMID: 34134843 DOI: 10.1016/j.plantsci.2021.110936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Trichome is a specialized structure differentiated during the morphogenesis of plant leaf epidermal cells. In recent years, with the continuous researches on trichome development of Arabidopsis and other plants, more and more genes related to trichome morphogenesis have been discovered, including R2R3-type MYB genes. In this study, we cloned a R2R3-type MYB family gene from grape, VvMYB114, a target gene of vvi-miR828. qRT-PCR showed that VvMYB114 mRNA accumulated during grape fruit ripening, and VvMYB114 protein had transcriptional activation activity. Heterologous overexpression of VvMYB114 in Arabidopsis reduced the number of trichome on leaves and stems. Mutating the miR828-binding site in VvMYB114 without altering amino-acid sequence had no effect on trichome development in Arabidopsis. The results showed a different role of the regulation of miR828 to VvMYB114 in Arabidopsis from in grape, which indicated the functional divergence of miRNA targeting homoeologous genes in different species played an important roles in evolution and useful trait selection.
Collapse
Affiliation(s)
- Qiuju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pingcuo Danzeng
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ciren Danzeng
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liping Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Agro-food Science and Technology/Key Laboratory of Agro-products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
63
|
Xie H, Hou J, Fu N, Wei M, Li Y, Yu K, Song H, Li S, Liu J. Identification of QTL related to anther color and hull color by RAD sequencing in a RIL population of Setaria italica. BMC Genomics 2021; 22:556. [PMID: 34281524 PMCID: PMC8290542 DOI: 10.1186/s12864-021-07882-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background Foxtail millet (Setaria italica) is one of the oldest domesticated crops and has been considered as an ideal model plant for C4 grasses. It has abundant type of anther and hull colors which is not only a most intuitive morphological marker for color selection in seed production, but also has very important biological significance for the study of molecular mechanism of regulating the synthesis and metabolism of flavonoids and lignin. However, only a few genetic studies have been reported for anther color and hull color in foxtail millet. Results Quantitative trait loci (QTL) analysis for anther color and hull color was conducted using 400 F6 and F7 recombinant inbreed lines (RILs) derived from a cross between parents Yugu18 and Jigu19. Using restriction-site associated DNA sequencing, 43,001 single-nucleotide polymorphisms (SNPs) and 3,022 indels were identified between both the parents and the RILs. A total of 1,304 bin markers developed from the SNPs and indels were used to construct a genetic map that spanned 2196 cM of the foxtail millet genome with an average of 1.68 cM/bin. Combined with this genetic map and the phenotypic data observed in two locations for two years, two QTL located on chromosome 6 (Chr6) in a 1.215-Mb interval (33,627,819–34,877,940 bp) for anther color (yellow - white) and three QTL located on Chr1 in a 6.23-Mb interval (1–6,229,734 bp) for hull color (gold-reddish brown) were detected. To narrow the QTL regions identified from the genetic map and QTL analysis, we developed a new method named “inconsistent rate analysis” and efficiently narrowed the QTL regions of anther color into a 60-kb interval (34.13–34.19 Mb) in Chr6, and narrowed the QTL regions of hull color into 70-kb (5.43–5.50 Mb) and 30-kb (5.69–5.72 Mb) intervals in Chr1. Two genes (Seita.6G228600.v2.2 and Seita.6G228700.v2.2) and a cinnamyl alcohol dehydrogenase (CAD) gene (Seita.1G057300.v2.2) with amino acid changes between the parents detected by whole-genome resequencing were identified as candidate genes for anther and hull color, respectively. Conclusions This work presents the related QTL and candidate genes of anther and hull color in foxtail millet and developed a new method named inconsistent rate analysis to detect the chromosome fragments linked with the quality trait in RILs. This is the first study of the QTL related to hull color in foxtail millet and clarifying that the CAD gene (Seita.1G057300.v2.2) is the key gene responsible for this trait. It lays the foundation for further cloning of the functional genes and provides a powerful tool to detect the chromosome fragments linked with quality traits in RILs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07882-x.
Collapse
Affiliation(s)
- Huifang Xie
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Junliang Hou
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China
| | - Nan Fu
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Menghan Wei
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Yunfei Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China
| | - Kang Yu
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China
| | - Hui Song
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Shiming Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China.
| | - Jinrong Liu
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China.
| |
Collapse
|
64
|
Fang ZZ, Lin-Wang K, Zhou DR, Lin YJ, Jiang CC, Pan SL, Espley RV, Andre CM, Ye XF. Activation of PsMYB10.2 Transcription Causes Anthocyanin Accumulation in Flesh of the Red-Fleshed Mutant of 'Sanyueli' ( Prunus salicina Lindl.). FRONTIERS IN PLANT SCIENCE 2021; 12:680469. [PMID: 34239526 PMCID: PMC8259629 DOI: 10.3389/fpls.2021.680469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/21/2021] [Indexed: 05/31/2023]
Abstract
Plum is one of the most important stone fruits in the world and anthocyanin-rich plums are increasingly popular due to their health-promoting potential. In this study, we investigated the mechanisms of anthocyanin accumulation in the flesh of the red-fleshed mutant of the yellow-fleshed plum 'Sanyueli'. RNA-Seq and qRT-PCR showed that anthocyanin biosynthetic genes and the transcription factor PsMYB10.2 were upregulated in the flesh of the mutant. Functional testing in tobacco leaves indicated that PsMYB10.2 was an anthocyanin pathway activator and can activate the promoter of the anthocyanin biosynthetic genes PsUFGT and PsGST. The role of PsMYB10.2 in anthocyanin accumulation in the flesh of plum was further confirmed by virus-induced gene silencing. These results provide information for further elucidating the underlying mechanisms of anthocyanin accumulation in the flesh of plum and for the breeding of new red-fleshed plum cultivars.
Collapse
Affiliation(s)
- Zhi-Zhen Fang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Dan-Rong Zhou
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yan-Juan Lin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Cui-Cui Jiang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shao-Lin Pan
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Christelle M. Andre
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Xin-Fu Ye
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
65
|
Fiol A, García-Gómez BE, Jurado-Ruiz F, Alexiou K, Howad W, Aranzana MJ. Characterization of Japanese Plum ( Prunus salicina) PsMYB10 Alleles Reveals Structural Variation and Polymorphisms Correlating With Fruit Skin Color. FRONTIERS IN PLANT SCIENCE 2021; 12:655267. [PMID: 34168666 PMCID: PMC8217863 DOI: 10.3389/fpls.2021.655267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/10/2021] [Indexed: 05/07/2023]
Abstract
The red to blue hue of plant organs is caused due to anthocyanins, which are water-soluble flavonoid pigments. The accumulation of these pigments is regulated by a complex of R2R3-MYB transcription factors (TFs), basic-helix-loop-helix (bHLH), and WD-repeat (WDR) proteins (MBW complex). In Rosaceae species, R2R3-MYBs, particularly MYB10 genes, are responsible for part of the natural variation in anthocyanin colors. Japanese plum cultivars, which are hybrids of Prunus salicina, have high variability in the color hue and pattern, going from yellow-green to red and purple-blue, probably as a result of the interspecific hybridization origin of the crop. Because of such variability, Japanese plum can be considered as an excellent model to study the color determination in Rosaceae fruit tree species. Here, we cloned and characterized the alleles of the PsMYB10 genes in the linkage group LG3 region where quantitative trait loci (QTLs) for the organ color have been mapped to other Prunus species. Allele segregation in biparental populations as well as in a panel of varieties, combined with the whole-genome sequence of two varieties with contrasting fruit color, allowed the organization of the MYB10 alleles into haplotypes. With the help of this strategy, alleles were assigned to genes and at least three copies of PsMYB10.1 were identified in some varieties. In total, we observed six haplotypes, which were able to characterize 91.36% of the cultivars. In addition, two alleles of PsMYB10.1 were found to be highly associated with anthocyanin and anthocyanin-less skin. Their expression during the fruit development confirms their role in the fruit skin coloration. Here, we provide a highly efficient molecular marker for the early selection of colored or non-colored fruits in Japanese plum breeding programs.
Collapse
Affiliation(s)
- Arnau Fiol
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Beatriz E. García-Gómez
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Federico Jurado-Ruiz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Konstantinos Alexiou
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Werner Howad
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Maria José Aranzana
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| |
Collapse
|
66
|
Lu J, Zhang Q, Lang L, Jiang C, Wang X, Sun H. Integrated metabolome and transcriptome analysis of the anthocyanin biosynthetic pathway in relation to color mutation in miniature roses. BMC PLANT BIOLOGY 2021; 21:257. [PMID: 34088264 PMCID: PMC8176584 DOI: 10.1186/s12870-021-03063-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/24/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Roses are famous ornamental plants worldwide. Floral coloration is one of the most prominent traits in roses and is mainly regulated through the anthocyanin biosynthetic pathway. In this study, we investigated the key genes and metabolites of the anthocyanin biosynthetic pathway involved in color mutation in miniature roses. A comparative metabolome and transcriptome analysis was carried out on the Neptune King rose and its color mutant, Queen rose, at the blooming stage. Neptune King rose has light pink colored petals while Queen rose has deep pink colored petals. RESULT A total of 190 flavonoid-related metabolites and 38,551 unique genes were identified. The contents of 45 flavonoid-related metabolites, and the expression of 15 genes participating in the flavonoid pathway, varied significantly between the two cultivars. Seven anthocyanins (cyanidin 3-O-glucosyl-malonylglucoside, cyanidin O-syringic acid, cyanidin 3-O-rutinoside, cyanidin 3-O-galactoside, cyanidin 3-O-glucoside, peonidin 3-O-glucoside chloride, and pelargonidin 3-O-glucoside) were found to be the major metabolites, with higher abundance in the Queen rose. Thirteen anthocyanin biosynthetic related genes showed an upregulation trend in the mutant flower, which may favor the higher levels of anthocyanins in the mutant. Besides, eight TRANSPARENT TESTA 12 genes were found upregulated in Queen rose, probably contributing to a high vacuolar sequestration of anthocyanins. Thirty transcription factors, including two MYB and one bHLH, were differentially expressed between the two cultivars. CONCLUSIONS This study provides important insights into major genes and metabolites of the anthocyanin biosynthetic pathway modulating flower coloration in miniature rose. The results will be conducive for manipulating the anthocyanin pathways in order to engineer novel miniature rose cultivars with specific colors.
Collapse
Affiliation(s)
- Jiaojiao Lu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Qing Zhang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Lixin Lang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Chuang Jiang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Xiaofeng Wang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
67
|
Yang T, Ma H, Li Y, Zhang Y, Zhang J, Wu T, Song T, Yao Y, Tian J. Apple MPK4 mediates phosphorylation of MYB1 to enhance light-induced anthocyanin accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1728-1745. [PMID: 33835607 DOI: 10.1111/tpj.15267] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 05/04/2023]
Abstract
Anthocyanins are plant pigments with diverse biological functions that contribute to fruit quality and are beneficial to human health. Anthocyanin accumulation can be influenced by environmental signals, such as light, and plants have developed sophisticated systems to receive and transduce these signals. However, the associated molecular mechanisms are not well understood. In this study, we investigated the potential function of mitogen-activated protein kinases, which are members of the light signaling pathway, during light-induced anthocyanin accumulation in apple (Malus domestica) fruit peels. An antibody array and yeast two-hybrid screen indicated that proteins encoded by two MdMPK4 genes are light-activated and interact with the transcription factor and anthocyanin biosynthesis regulator MdMYB1. A phosphorylation assay showed that the MdMPK4 proteins phosphorylate MdMYB1, thereby increasing its stability under light conditions. Transient MdMPK4 and MdMYB1 overexpression assays further revealed that light-induced anthocyanin accumulation relies on MdMPK4 kinase activity, which is required for maximum MdMYB1 activity. Based on the expression of the chromosome 6 allele MdMPK4-06G under light conditions and the presence of light response elements in the MdMPK4-06G promoter, we concluded that it is more responsive to light than the chromosome 14 allele MdMPK4-14G. These results suggest a potential biotechnological strategy for increasing fruit anthocyanin content via light induction.
Collapse
Affiliation(s)
- Tuo Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Huaying Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Tingting Song
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
68
|
Liu Y, Ma K, Qi Y, Lv G, Ren X, Liu Z, Ma F. Transcriptional Regulation of Anthocyanin Synthesis by MYB-bHLH-WDR Complexes in Kiwifruit ( Actinidia chinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3677-3691. [PMID: 33749265 DOI: 10.1021/acs.jafc.0c07037] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The anthocyanin synthetic pathway is regulated centrally by an MYB-bHLH-WD40 (MBW) complex. Anthocyanin pigmentation is an important fruit quality trait in red-fleshed kiwifruit; however, the underlying regulatory mechanisms involving the MBW complex are not well understood. In this study, one R2R3MYB (AcMYBF110 expressed in fruit characteristically), one bHLH (AcbHLH1), two upstream regulators of AcbHLH1 (AcbHLH4 and AcbHLH5), and one WDR (AcWDR1) are characterized as being involved in the regulation of anthocyanin synthesis in kiwifruit. AcMYBF110 plays an important role in the regulation of anthocyanin accumulation by specifically activating the promoters of several anthocyanin pathway genes including AcCHS, AcF3'H, AcANS, AcUFGT3a, AcUFGT6b, and AcGST1. Coexpression of AcbHLH1, AcbHLH4, or AcbHLH5 together with AcMYBF110 induces much greater anthocyanin accumulation in both tobacco leaves and in Actinidia arguta fruit compared with AcMYBF110 alone. Moreover, this activation is further enhanced by adding AcWDR1. We found that both AcMYBF110 and AcWDR1 interact with all three AcbHLH factors, while AcMYBF110 also interacts with AcWDR1 to form three different MBW complexes that have different regulatory roles in anthocyanin accumulation of kiwifruit. The AcMYBF110-AcbHLH1-AcWDR1 complex directly targets the promoters of anthocyanin synthetic genes. Other features of the regulatory pathways identified include promotion of AcMYBF110, AcbHLH1,and AcWDR1 activities by this MBW complex, providing for both reinforcement and feedback regulation, whereas the AcMYBF110-AcbHLH4/5-AcWDR1 complex is indirectly involved in the regulation of anthocyanin synthesis by activating the promoters of AcbHLH1 and AcWDR1 to amplify the regulation signals of the first MBW complex.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
- College of Life Science, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Kangxun Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Yingwei Qi
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610 Guangdong, China
| | - Guowen Lv
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| |
Collapse
|
69
|
Zeng B, Li T, Wang W, Dai Z, Li J, Xi Z, Jia K, Xing Y, Li B, Yan J, Jia W. An effector-reporter system to study cellular signal transduction in strawberry fruit (Fragaria ananassa). HORTICULTURE RESEARCH 2021; 8:60. [PMID: 33750770 PMCID: PMC7943591 DOI: 10.1038/s41438-021-00493-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 05/08/2023]
Abstract
An effector-reporter system is a powerful tool used to study cellular signal transduction, but this technique has been traditionally used in protoplasts. A similar system to study cellular signal transduction in fruits has not yet been established. In this study, we aimed to establish an effector-reporter system for strawberry fruit, a model nonclimacteric fruit. We first investigated the characteristics of transient gene expression in strawberry fruits and found marked variation in gene expression levels among individual fruits, and this variation has complicated the establishment of a technical system. To overcome this difficulty, we investigated a sampling strategy based on a statistical analysis of the activity pattern of four different reporters (GUS, GFP, FLuc, and RLuc) among individual fruits and combinations of pairs of reporters (GUS/GFP and RLuc/FLuc). Based on an optimized sampling strategy, we finally established a step-by step protocol for the effector/reporter assay. Using FaMYB10 and FaWRKY71 as the effectors and GUS driven by the FaCHS promoter as the reporter, we demonstrated that this effector/reporter system was practical and reliable. This effector/reporter technique will contribute to an in-depth exploration of the signaling mechanism for the regulation of strawberry fruit ripening.
Collapse
Affiliation(s)
- Baozhen Zeng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianyu Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wei Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhengrong Dai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jie Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Xi
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kenan Jia
- College of International Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Xing
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Bingbing Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiaqi Yan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
70
|
Ding T, Zhang R, Zhang H, Zhou Z, Liu C, Wu M, Wang H, Dong H, Liu J, Yao JL, Yan Z. Identification of gene co-expression networks and key genes regulating flavonoid accumulation in apple (Malus × domestica) fruit skin. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110747. [PMID: 33568292 DOI: 10.1016/j.plantsci.2020.110747] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Anthocyanin provides a red color for apple and health benefit for human. To better understand the molecular mechanisms of regulating apple color formation, we analyzed 27 transcriptomes of fruit skin from three cultivars 'Huashuo' (red-skinned), 'Hongcuibao' (red-skinned), and 'Golden Delicious' (yellow-skinned) at 0, 2, and 6 days after bag removal. Using pairwise comparisons and weighted gene co-expression network analyses (WGCNA), we constructed 17 co-expression modules. Among them, a specific module was negatively correlated to anthocyanin accumulation. The genes in the module are enriched in flavonoid biosynthesis pathways. These pathway genes were used to construct gene co-expression network of anthocyanin accumulation. Finally, a R2R3-MYB repressor designated MdMYB28 was identified as a key hub gene in the anthocyanin metabolism network. During the anthocyanin accumulation of apple fruit skin reaching a peak, MdMYB28 expression level was negatively correlated with the anthocyanin content. MdMYB28 was shown to directly bind to the promoter of MdMYB10 in yeast one-hybrid analyses. Over-expression of MdMYB28 decreased the anthocyanin biosynthesis in tobacco flower petals, suggesting that MdMYB28 acts as a negatively regulator of anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Tiyu Ding
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruiping Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China
| | - Zhe Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China
| | - Mengmeng Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China
| | - Huan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China
| | - Haiqing Dong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China
| | - Jihong Liu
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China; The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.
| | - Zhenli Yan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
71
|
Jiang S, Sun Q, Zhang T, Liu W, Wang N, Chen X. MdMYB114 regulates anthocyanin biosynthesis and functions downstream of MdbZIP4-like in apple fruit. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153353. [PMID: 33352460 DOI: 10.1016/j.jplph.2020.153353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 05/27/2023]
Abstract
Anthocyanins, a major class of compounds derived from the flavonoid pathway, are important pigments of apple fruit. They can also prevent certain diseases and are beneficial to human health. Fruit pigmentation is a key quality trait that influences consumer preference; therefore, it is of great importance to investigate its regulatory mechanism. Here, we identified a MYB transcription factor (TF), MdMYB114, whose transcript level increased in the skin of the deep red apple fruit. It was determined to belong to the R2R3-MYB TF family and was localized in the nucleus. MdMYB114 overexpression led to anthocyanin accumulation in apple calli. MdMYB114 was not able to form an MBW complex but could enhance anthocyanin biosynthesis and transport by directly binding to the promoters of MdANS, MdUFGT, and MdGST to promote their expression. In addition, multiple assays revealed that MdbZIP4-like, a basic leucine-zipper TF, could directly bind to the MdMYB114 promoter to enhance its expression. Taken collectively, our results provide evidence that MdMYB114 is a positive regulator of anthocyanin biosynthesis and transport and it functions downstream of MdbZIP4-like in apple fruit.
Collapse
Affiliation(s)
- Shenghui Jiang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, College of Horticulture, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China.
| | - Qingguo Sun
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| | - Tianliang Zhang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| | - Wenjun Liu
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| | - Nan Wang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| | - Xuesen Chen
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
72
|
Zhao Y, Min T, Chen M, Wang H, Zhu C, Jin R, Allan AC, Lin-Wang K, Xu C. The Photomorphogenic Transcription Factor PpHY5 Regulates Anthocyanin Accumulation in Response to UVA and UVB Irradiation. FRONTIERS IN PLANT SCIENCE 2021; 11:603178. [PMID: 33537042 PMCID: PMC7847898 DOI: 10.3389/fpls.2020.603178] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/28/2020] [Indexed: 05/25/2023]
Abstract
Red coloration contributes to fruit quality and is determined by anthocyanin content in peach (Prunus persica). Our previous study illustrated that anthocyanin accumulation is strongly regulated by light, and the effect of induction differs according to light quality. Here we showed that both ultraviolet-A (UVA) and ultraviolet-B (UVB) irradiation promoted anthocyanin biosynthesis in "Hujingmilu" peach fruit, and a combination of UVA and UVB had additional effects. The expression of anthocyanin biosynthesis and light signaling related genes, including transcription factor genes and light signaling elements, were induced following UV irradiation as early as 6 h post-treatment, earlier than apparent change in coloration which occurred at 72 h. To investigate the molecular mechanisms for UVA- and UVB-induced anthocyanin accumulation, the genes encoding ELONGATED HYPOCOTYL 5 (HY5), CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), Cryptochrome (CRY), and UV RESISTANCE LOCUS 8 (UVR8) in peach were isolated and characterized through functional complementation in corresponding Arabidopsis (Arabidopsis thaliana) mutants. PpHY5 and PpCOP1.1 restored hypocotyl length and anthocyanin content in Arabidopsis mutants under white light; while PpCRY1 and PpUVR8.1 restored AtHY5 expression in Arabidopsis mutants in response to UV irradiation. Arabidopsis PpHY5/hy5 transgenic lines accumulated higher amounts of anthocyanin under UV supplementation (compared with weak white light only), especially when UVA and UVB were applied together. These data indicated that PpHY5, acting as AtHY5 counterpart, was a vital regulator in UVA and UVB signaling pathway. In peach, the expression of PpHY5 was up-regulated by UVA and UVB, and PpHY5 positively regulated both its own transcription by interacting with an E-box in its own promoter, and the transcription of the downstream anthocyanin biosynthetic genes chalcone synthase 1 (PpCHS1), chalcone synthase 2 (PpCHS2), and dihydroflavonol 4-reductase (PpDFR1) as well as the transcription factor gene PpMYB10.1. In summary, functional evidence supports the role of PpHY5 in UVA and UVB light transduction pathway controlling anthocyanin biosynthesis. In peach this is via up-regulation of expression of genes encoding biosynthetic enzymes, as well as the transcription factor PpMYB10.1 and PpHY5 itself.
Collapse
Affiliation(s)
- Yun Zhao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Ting Min
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Miaojin Chen
- Fenghua Institute of Honey Peach, Fenghua, China
| | - Hongxun Wang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Changqing Zhu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Rong Jin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Andrew C. Allan
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kui Lin-Wang
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
73
|
Cao Y, Jia H, Xing M, Jin R, Grierson D, Gao Z, Sun C, Chen K, Xu C, Li X. Genome-Wide Analysis of MYB Gene Family in Chinese Bayberry ( Morella rubra) and Identification of Members Regulating Flavonoid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:691384. [PMID: 34249063 PMCID: PMC8264421 DOI: 10.3389/fpls.2021.691384] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/31/2021] [Indexed: 05/05/2023]
Abstract
Chinese bayberry (Morella rubra), the most economically important fruit tree in the Myricaceae family, is a rich source of natural flavonoids. Recently the Chinese bayberry genome has been sequenced, and this provides an opportunity to investigate the organization and evolutionary characteristics of MrMYB genes from a whole genome view. In the present study, we performed the genome-wide analysis of MYB genes in Chinese bayberry and identified 174 MrMYB transcription factors (TFs), including 122 R2R3-MYBs, 43 1R-MYBs, two 3R-MYBs, one 4R-MYB, and six atypical MYBs. Collinearity analysis indicated that both syntenic and tandem duplications contributed to expansion of the MrMYB gene family. Analysis of transcript levels revealed the distinct expression patterns of different MrMYB genes, and those which may play important roles in leaf and flower development. Through phylogenetic analysis and correlation analyses, nine MrMYB TFs were selected as candidates regulating flavonoid biosynthesis. By using dual-luciferase assays, MrMYB12 was shown to trans-activate the MrFLS1 promoter, and MrMYB39 and MrMYB58a trans-activated the MrLAR1 promoter. In addition, overexpression of 35S:MrMYB12 caused a significant increase in flavonol contents and induced the expression of NtCHS, NtF3H, and NtFLS in transgenic tobacco leaves and flowers and significantly reduced anthocyanin accumulation, resulting in pale-pink or pure white flowers. This indicates that MrMYB12 redirected the flux away from anthocyanin biosynthesis resulting in higher flavonol content. The present study provides valuable information for understanding the classification, gene and motif structure, evolution and predicted functions of the MrMYB gene family and identifies MYBs regulating different aspects of flavonoid biosynthesis in Chinese bayberry.
Collapse
Affiliation(s)
- Yunlin Cao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Huimin Jia
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengyun Xing
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Rong Jin
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Zhongshan Gao
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Xian Li,
| |
Collapse
|
74
|
Shi L, Chen X, Wang K, Yang M, Chen W, Yang Z, Cao S. MrMYB6 From Chinese Bayberry ( Myrica rubra) Negatively Regulates Anthocyanin and Proanthocyanidin Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:685654. [PMID: 34220906 PMCID: PMC8253226 DOI: 10.3389/fpls.2021.685654] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/27/2021] [Indexed: 05/06/2023]
Abstract
Anthocyanins and proanthocyanidins (PAs) are important flavonoids in Chinese bayberry (Morella rubra), which functions in fruit color and exhibits multiple health promoting and disease-preventing effects. To investigate the regulation of their biosynthesis in Chinese bayberries, we isolated and identified a subgroup 4 MYB transcription factor (TF), MrMYB6, and found MrMYB6 shared similar repressor domains with other MYB co-repressors of anthocyanin and PA biosynthesis after sequence analysis. Gene expression results revealed the transcripts of MrMYB6 were negatively correlated with the anthocyanin and insoluble PA contents and also with the gene expressions involved in anthocyanin biosynthesis and PA specific genes such as MrLAR and MrANR during the late ripening stages of bayberries. In addition, overexpression of MrMYB6 in tobacco inhibited the transcript levels of NtCHI, NtLAR, and NtANR2, resulting into a decline in the levels of anthocyanins and PAs in tobacco flowers. We further found that MrMYB6 interacted with MrbHLH1 and MrWD40-1 to form functional complexes that acted to directly repress the promoter activities of the PA-specific gene MrLAR and MrANR and the anthocyanin-specific gene MrANS and MrUFGT. Taken together, our results suggested that MrMYB6 might negatively regulate anthocyanin and PA accumulation in Chinese bayberry.
Collapse
|
75
|
García-Gómez BE, Salazar JA, Nicolás-Almansa M, Razi M, Rubio M, Ruiz D, Martínez-Gómez P. Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and Metabolic Review with a Breeding Perspective. Int J Mol Sci 2020; 22:E333. [PMID: 33396946 PMCID: PMC7794732 DOI: 10.3390/ijms22010333] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
In plants, fruit ripening is a coordinated developmental process that requires the change in expression of hundreds to thousands of genes to modify many biochemical and physiological signal cascades such as carbohydrate and organic acid metabolism, cell wall restructuring, ethylene production, stress response, and organoleptic compound formation. In Prunus species (including peaches, apricots, plums, and cherries), fruit ripening leads to the breakdown of complex carbohydrates into sugars, fruit firmness reductions (softening by cell wall degradation and cuticle properties alteration), color changes (loss of green color by chlorophylls degradation and increase in non-photosynthetic pigments like anthocyanins and carotenoids), acidity decreases, and aroma increases (the production and release of organic volatile compounds). Actually, the level of information of molecular events at the transcriptional, biochemical, hormonal, and metabolite levels underlying ripening in Prunus fruits has increased considerably. However, we still poorly understand the molecular switch that occurs during the transition from unripe to ripe fruits. The objective of this review was to analyze of the molecular bases of fruit quality in Prunus species through an integrated metabolic, genomic, transcriptomic, and epigenetic approach to better understand the molecular switch involved in the ripening process with important consequences from a breeding point of view.
Collapse
Affiliation(s)
- Beatriz E. García-Gómez
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - Juan A. Salazar
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - María Nicolás-Almansa
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - Mitra Razi
- Department of Horticulture, Faculty of Agriculture, University of Zajan, Zanjan 45371-38791, Iran;
| | - Manuel Rubio
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - David Ruiz
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| |
Collapse
|
76
|
Shi Q, Du J, Zhu D, Li X, Li X. Metabolomic and Transcriptomic Analyses of Anthocyanin Biosynthesis Mechanisms in the Color Mutant Ziziphus jujuba cv. Tailihong. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15186-15198. [PMID: 33300333 DOI: 10.1021/acs.jafc.0c05334] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The purplish-red color of "Tailihong" jujube fruit skins is caused primarily by anthocyanin accumulation, but the mechanisms that underlie anthocyanin biosynthesis in jujube fruit have rarely been studied. We performed metabolomic and transcriptomic analyses of jujube fruit skins at different developmental stages and identified a total of 158 flavonoids, among which cyanidin-3-O-rutinoside and peonidin-3,5-O-diglucoside were the primary anthocyanins. During fruit development and maturation, the anthocyanin content was strongly correlated with the expression of ZjANS and ZjUGT79B1, suggesting that these are key genes in the anthocyanin biosynthesis process. Transcriptomic analysis indicated that the transcription factors ZjMYB5, ZjTT8, and ZjWDR3 regulated anthocyanin biosynthesis in jujube fruit skins. Subcellular localization experiments confirmed that ZjANS and ZjUGT79B1 were localized to the nucleus and the endoplasmic reticulum. ZjMYB5 and ZjTT8 were found only in the nucleus, whereas strong fluorescence signals from ZjWDR3 were observed in the nucleus and cytoplasm. Prokaryotic expression and in vitro enzyme activity assays showed that the recombinant ZjANS protein catalyzed the formation of cyanidin from (+)-catechin. Secondary glycosylation by ZjUFGT79B1 modified cyanidin-3-O-glucoside to produce cyanidin-3-O-rutinoside, and ZjCCoAOMT readily catalyzed the production of the methylated anthocyanin peonidin-3,5-O-diglucoside from cyanidin 3,5-O-glucoside. Dual-Luciferase and GUS activity assays showed that the ZjANS and ZjUGT79B1 promoters were activated by ZjMYB5, ZjTT8, and ZjWDR3. All data indicated that these three transcription factors played important roles in anthocyanin biosynthesis in the color mutant Ziziphus jujuba cv. Tailihong, contributing to anthocyanin accumulation by enhancing the expression of ZjANS and ZjUGT79B1.
Collapse
Affiliation(s)
- Qianqian Shi
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Jiangtao Du
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Dajun Zhu
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Xi Li
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Research Center for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| |
Collapse
|
77
|
Dong Q, Zhao H, Huang Y, Chen Y, Wan M, Zeng Z, Yao P, Li C, Wang X, Chen H, Wu Q. FtMYB18 acts as a negative regulator of anthocyanin/proanthocyanidin biosynthesis in Tartary buckwheat. PLANT MOLECULAR BIOLOGY 2020; 104:309-325. [PMID: 32833148 DOI: 10.1007/s11103-020-01044-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 07/31/2020] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE FtMYB18 plays a role in the repression of anthocyanins and proanthocyanidins accumulation by strongly down-regulating the CHS and DFR genes in Tartary buckwheat, and the C5 motif plays an important role in this process. Anthocyanins and proanthocyanidins (PAs) are important flavonoids in Tartary buckwheat (Fagopyrum tataricum Gaertn.), which provides various vibrant color and stronge abiotic stress resistance. Their synthesis is generally regulated by MYB transcription factors at transcription level. However, the negative regulations of MYB and their effects on flavonol metabolism are poorly understood. A SG4-like MYB subfamily TF, FtMYB18, containing C5 motif was identified from Tartary buckwheat. The expression of FtMYB18 was not only showed a negative correlation with anthocyanins and PAs content but also strongly respond to MeJA and ABA. As far as the transgenic lines with FtMYB18 overexpression, anthocyanins and PAs accumulations were decreased through down-regulating expression levels of NtCHS and NtDFR in tobacco, AtDFR and AtTT12 in Arabidopsis, FtCHS, FtDFR and FtANS in Tartary buckwheat hairy roots, respectively. However, FtMYB18 showed no effect on the FLS gene expression and the metabolites content in flavonol synthesis branch. The further molecular interaction analysis indicated FtMYB18 could mediate the inhibition of anthocyanins and PAs synthesis by forming MBW transcriptional complex with FtTT8 and FtTTG1, or MYB-JAZ complex with FtJAZ1/-3/-4/-7. Importantly, in FtMYB18 mutant lines with C5 motif deletion (FtMYB18-C), both of anthocyanins and PAs accumulations had recovered to the similar level as that in wild type, which was attributed to the weakened MBW complex activity or the deficient molecular interaction between FtMYB18ΔC5 with FtJAZ3/-4. The results showed that FtMYB18 could suppress anthocyanins and PAs synthesis at transcription level through the specific interaction of C5 motif with other proteins in Tartary buckwheat.
Collapse
Affiliation(s)
- Qixin Dong
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Yunji Huang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Ying Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Min Wan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Zixian Zeng
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Panfeng Yao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Xiaoli Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China.
| |
Collapse
|
78
|
Jin S, Hyun TK. Ectopic Expression of Production of Anthocyanin Pigment 1 ( PAP1) Improves the Antioxidant and Anti-Melanogenic Properties of Ginseng ( Panax ginseng C.A. Meyer) Hairy Roots. Antioxidants (Basel) 2020; 9:antiox9100922. [PMID: 32993165 PMCID: PMC7601150 DOI: 10.3390/antiox9100922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/20/2023] Open
Abstract
The development of genetically engineered cell cultures has been suggested as a potential approach for the production of target compounds from medicinal plants. In this study, we generated PAP1 (production of anthocyanin pigment 1)-overexpressing ginseng (Panax ginseng C.A. Meyer) hairy roots to improve the production of anthocyanins, as well as the bioactivity (e.g., antioxidant and whitening activities) of ginseng. Based on differentially expressed gene analysis, we found that ectopic expression of PAP1 induced the expression of genes involved in the ‘phenylpropanoid biosynthesis’ (24 genes), and ‘flavonoid biosynthesis’ (17 genes) pathways, resulting in 191- to 341-fold increases in anthocyanin production compared to transgenic control (TC) hairy roots. Additionally, PAP1-overexpressing ginseng hairy roots exhibited an approximately seven-fold higher DPPH-free radical scavenging activity and 10-fold higher ORAC value compared to the TC. In α-melanocyte-stimulating hormone-stimulated B16F10 cells, PAP1-overexpressing ginseng hairy roots strongly inhibited the accumulation of melanin by 50 to 59% compared to mock-control. Furthermore, results obtained by quantitative real-time PCR, western blot, and tyrosinase inhibition assay suggested that the anti-melanogenic activity of PAP1-overexpressing ginseng hairy roots is mediated by tyrosinase activity inhibition. Taken together, our results suggested that the ectopic expression of PAP1 is an effective strategy for the enhancement of anthocyanin production, which improves the biological activities of ginseng root cultures.
Collapse
Affiliation(s)
| | - Tae Kyung Hyun
- Correspondence: ; Tel.: +82-43-261-2520; Fax: +82-43-271-0413
| |
Collapse
|
79
|
Lara MV, Bonghi C, Famiani F, Vizzotto G, Walker RP, Drincovich MF. Stone Fruit as Biofactories of Phytochemicals With Potential Roles in Human Nutrition and Health. FRONTIERS IN PLANT SCIENCE 2020; 11:562252. [PMID: 32983215 PMCID: PMC7492728 DOI: 10.3389/fpls.2020.562252] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 05/07/2023]
Abstract
Phytochemicals or secondary metabolites present in fruit are key components contributing to sensory attributes like aroma, taste, and color. In addition, these compounds improve human nutrition and health. Stone fruits are an important source of an array of secondary metabolites that may reduce the risk of different diseases. The first part of this review is dedicated to the description of the main secondary organic compounds found in plants which include (a) phenolic compounds, (b) terpenoids/isoprenoids, and (c) nitrogen or sulfur containing compounds, and their principal biosynthetic pathways and their regulation in stone fruit. Then, the type and levels of bioactive compounds in different stone fruits of the Rosaceae family such as peach (Prunus persica), plum (P. domestica, P. salicina and P. cerasifera), sweet cherries (P. avium), almond kernels (P. dulcis, syn. P. amygdalus), and apricot (P. armeniaca) are presented. The last part of this review encompasses pre- and postharvest treatments affecting the phytochemical composition in stone fruit. Appropriate management of these factors during pre- and postharvest handling, along with further characterization of phytochemicals and the regulation of their synthesis in different cultivars, could help to increase the levels of these compounds, leading to the future improvement of stone fruit not only to enhance organoleptic characteristics but also to benefit human health.
Collapse
Affiliation(s)
- María Valeria Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Giannina Vizzotto
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
80
|
Arlotta C, Puglia GD, Genovese C, Toscano V, Karlova R, Beekwilder J, De Vos RCH, Raccuia SA. MYB5-like and bHLH influence flavonoid composition in pomegranate. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110563. [PMID: 32771164 DOI: 10.1016/j.plantsci.2020.110563] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 05/28/2023]
Abstract
The fruit of the pomegranate (Punica granatum L.) is an important nutraceutical food rich in polyphenolic compounds, including hydrolysable tannins, anthocyanins and flavonols. Their composition varies according to cultivar, tissue and fruit development stage and is probably regulated by a combination of MYB and bHLH type transcription factors (TFs). In this study, metabolomics analysis during fruit developmental stages in the main pomegranate cultivars, Wonderful and Valenciana with contrasting colour of their ripe fruits, showed that flavonols were mostly present in flowers while catechins were highest in unripe fruits and anthocyanins in late fruit maturation stages. A novel MYB TF, PgMYB5-like, was identified, which differs from previously isolated pomegranate TFs by unique C-terminal protein motifs and lack of the amino-acid residues conserved among anthocyanins promoting MYBs. In both pomegranate cultivars the expression of PgMYB5-like was high at flowering stage, while it decreased during fruit ripening. A previously identified bHLH-type TF, PgbHLH, also showed high transcript levels at flowering stage in both cultivars, while it showed a decrease in expression during fruit ripening in cv. Valenciana, but not in cv. Wonderful. Functional analysis of both TFs was performed by agro-infiltration into Nicotiana benthamiana leaves. Plants infiltrated with the PgMYB5-like+PgbHLH combined construct showed a specific and significant accumulation of intermediates of the flavonoid pathway, especially dihydroflavonols, while anthocyanins were not produced. Thus, we propose a role for PgMYB5-like and PgbHLH in the first steps of flavonoid production in flowers and in unripe fruits. The expression patterns of these two TFs may be key in determining the differential flavonoid composition in both flowers and fruits of the pomegranate varieties Wonderful and Valenciana.
Collapse
Affiliation(s)
- Carmen Arlotta
- Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy
| | - Giuseppe D Puglia
- Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy.
| | - Claudia Genovese
- Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy
| | - Valeria Toscano
- Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy
| | - Rumyana Karlova
- Wageningen Plant Research, Bioscience, 6700 AA, Wageningen, the Netherlands
| | - Jules Beekwilder
- Wageningen Plant Research, Bioscience, 6700 AA, Wageningen, the Netherlands
| | - Ric C H De Vos
- Wageningen Plant Research, Bioscience, 6700 AA, Wageningen, the Netherlands
| | - Salvatore A Raccuia
- Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy
| |
Collapse
|
81
|
Lama K, Harlev G, Shafran H, Peer R, Flaishman MA. Anthocyanin accumulation is initiated by abscisic acid to enhance fruit color during fig (Ficus carica L.) ripening. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153192. [PMID: 32554070 DOI: 10.1016/j.jplph.2020.153192] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Fig fruit is well-known for its attractive flavor, color, and nutritional and medicinal value. Anthocyanin contributes to the fruit's color and constitutes a high percentage of the total antioxidant content of the fig fruit. We quantified the major anthocyanins and characterized the expression levels of anthocyanin-biosynthesis and transcription factor genes in fruit treated on-tree with exogenous abscisic acid (ABA) or ethephon, or the ABA inhibitors nordihydroguaiaretic acid (NDGA) or fluridone. The major anthocyanins cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside were found in significantly higher quantities in exogenous ABA- and ethephon-treated fruit, with early dark purple color compared to the controls. On the other hand, NDGA- and fluridone-treated fruit had significantly lower amounts of anthocyanins, with less purple color coverage than controls. Expression levels of the anthocyanin-biosynthesis genes FcPAL, FcCHS2, FcCHI, FcF3H, FcDFR, FcANS, FcUFGT and Fc3RT were upregulated by exogenous ABA and ethephon treatment, and downregulated by NDGA and fluridone treatment. The MYB-bHLH-WD40 complex-related genes of ripe fig fruit were identified. In particular, FcMYB113 was strongly upregulated by exogenous ABA and ethephon, and strongly downregulated by NDGA and fluridone. In addition, moderate upregulation of FcGL3 and FcWD40 was observed with exogenous ABA and ethephon treatment, and moderate downregulation in NDGA- and fluridone-treated fruit. These results indicate that ABA can initiate anthocyanin biosynthesis, which ultimately improves the color and nutritional value of fig fruit, enhancing their attractiveness to consumers.
Collapse
Affiliation(s)
- Kumar Lama
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel; The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel.
| | - Guy Harlev
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel.
| | - Hadas Shafran
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel.
| | - Reut Peer
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel.
| | - Moshe A Flaishman
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel.
| |
Collapse
|
82
|
Wei ZZ, Hu KD, Zhao DL, Tang J, Huang ZQ, Jin P, Li YH, Han Z, Hu LY, Yao GF, Zhang H. MYB44 competitively inhibits the formation of the MYB340-bHLH2-NAC56 complex to regulate anthocyanin biosynthesis in purple-fleshed sweet potato. BMC PLANT BIOLOGY 2020; 20:258. [PMID: 32503504 PMCID: PMC7275474 DOI: 10.1186/s12870-020-02451-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/19/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Anthocyanins, which have important biological functions and have a beneficial effect on human health, notably account for pigmentation in purple-fleshed sweet potato tuberous roots. Individual regulatory factors of anthocyanin biosynthesis have been identified; however, the regulatory network of anthocyanin biosynthesis in purple-fleshed sweet potato is unclear. RESULTS We functionally determined that IbMYB340 cotransformed with IbbHLH2 in tobacco and strawberry receptacles induced anthocyanin accumulation, and the addition of IbNAC56a or IbNAC56b caused increased pigmentation. Furthermore, we confirmed the interaction of IbMYB340 with IbbHLH2 and IbNAC56a or IbNAC56b via yeast two-hybrid and firefly luciferase complementation assays; these proteins could form a MYB340-bHLH2-NAC56a or MYB340-bHLH2-NAC56b transcriptional complex to regulate anthocyanin biosynthesis by binding to the IbANS promoter rather than the IbUFGT promoter. Furthermore, it was found by a transient expression system in tobacco leaves that IbMYB44 could decrease anthocyanin accumulation. Moreover, the interaction of IbMYB44 with IbMYB340 and IbNAC56a or IbNAC56b was verified. This result suggested that IbMYB44 acts as a repressor of anthocyanin in sweet potato. CONCLUSIONS The repressor IbMYB44 affected anthocyanin biosynthesis by competitively inhibiting the IbMYB340-IbbHLH2-IbNAC56a or IbMYB340-IbbHLH2-IbNAC56b regulatory complex formation. Overall, the present study proposed a novel regulatory network whereby several vital TFs play key roles in regulating anthocyanin biosynthesis, and it provides strong insight into the potential mechanism underlying anthocyanin biosynthesis in sweet potato tuberous roots with purple color.
Collapse
Affiliation(s)
- Zeng-Zheng Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Dong-Lan Zhao
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, 221131 China
| | - Jun Tang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, 221131 China
| | - Zhong-Qin Huang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, 221131 China
| | - Peng Jin
- Department of Ecology and Environment of Anhui Province, Hefei, 230061 China
| | - Yan-Hong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Zhuo Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Lan-Ying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| |
Collapse
|
83
|
Zhu YC, Zhang B, Allan AC, Lin-Wang K, Zhao Y, Wang K, Chen KS, Xu CJ. DNA demethylation is involved in the regulation of temperature-dependent anthocyanin accumulation in peach. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:965-976. [PMID: 31923329 DOI: 10.1111/tpj.14680] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/03/2020] [Indexed: 05/10/2023]
Abstract
Anthocyanin biosynthesis is induced by low temperatures in a number of plants. However, in peach (cv Zhonghuashoutao), anthocyanin accumulation was observed in fruit stored at 16°C but not at or below 12°C. Fruit stored at 16°C showed elevated transcript levels of genes encoding anthocyanin biosynthetic enzymes, the transport protein glutathione S-transferase and key transcription factors. Higher transcript levels of PpPAL1/2, PpC4H, Pp4CL4/5/8, PpF3H, PpF3'H, PpDFR1/2/3 and PpANS, as well as transcription factor gene PpbHLH3, were associated with lower methylation levels in the promoter of these genes. The DNA methylation level was further highly correlated with the expression of the DNA methyltransferase genes and DNA demethylase genes. The application of DNA methylation inhibitor 5-azacytidine induced anthocyanin accumulation in peach flesh, further implicating a critical role for DNA demethylation in regulating anthocyanin accumulation in peach flesh. Our data reveal that temperature-dependent DNA demethylation is a key factor to the post-harvest temperature-dependent anthocyanin accumulation in peach flesh.
Collapse
Affiliation(s)
- Yong-Chao Zhu
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Bo Zhang
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Andrew C Allan
- Plant and Food Research, Auckland, New Zealand
- School of Biology Science, University of Auckland, Auckland, New Zealand
| | | | - Yun Zhao
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Ke Wang
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kun-Song Chen
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Chang-Jie Xu
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
84
|
Zhao Y, Dong W, Zhu Y, Allan AC, Lin‐Wang K, Xu C. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1284-1295. [PMID: 31693790 PMCID: PMC7152611 DOI: 10.1111/pbi.13291] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/14/2019] [Accepted: 10/27/2019] [Indexed: 05/09/2023]
Abstract
Anthocyanins have crucial biological functions and affect quality of horticultural produce. Anthocyanins accumulate in ripe peach fruit; differential accumulation is observed in deep coloured cultivar 'Hujingmilu' and lightly pigmented cultivar 'Yulu'. The difference was not fully explained by accumulation of total flavonoids and expression of anthocyanin biosynthetic genes. Expression analysis was conducted on a glutathione S-transferase gene (PpGST1), and it was found that the expression correlated well with anthocyanin accumulation in peach fruit tissues. Functional complementation of the Arabidopsis tt19 mutant indicated that PpGST1 was responsible for transport of anthocyanins but not proanthocyanidins. PpGST1 was localized in nuclei and the tonoplast, including the sites at which anthocyanin vacuolar sequestration occurred. Transient overexpression of PpGST1 together with PpMYB10.1 in tobacco leaves and peach fruit significantly increased anthocyanin accumulation as compared with PpMYB10.1 alone. Furthermore, virus-induced gene silencing of PpGST1 in a blood-fleshed peach not only resulted in a reduction in anthocyanin accumulation but also a decline in expression of anthocyanin biosynthetic and regulatory genes. Cis-element analysis of the PpGST1 promoter revealed the presence of four MYB binding sites (MBSs). Dual-luciferase assays indicated that PpMYB10.1 bound to the promoter and activated the transcription of PpGST1 by recognizing MBS1, the one closest to the ATG start codon, with this trans-activation being stronger against the promoter of deep coloured 'Hujingmilu' compared with lightly coloured cultivar 'Yulu'. Altogether, our data provided molecular evidence supporting coordinative regulatory roles of PpGST1 and PpMYB10.1 in anthocyanin accumulation in peach.
Collapse
Affiliation(s)
- Yun Zhao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
| | - Weiqi Dong
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
| | - Yongchao Zhu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
| | - Andrew C. Allan
- New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Kui Lin‐Wang
- New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
| |
Collapse
|
85
|
Qi Y, Gu C, Wang X, Gao S, Li C, Zhao C, Li C, Ma C, Zhang Q. Identification of the Eutrema salsugineum EsMYB90 gene important for anthocyanin biosynthesis. BMC PLANT BIOLOGY 2020; 20:186. [PMID: 32345216 PMCID: PMC7189703 DOI: 10.1186/s12870-020-02391-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/12/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Anthocyanins contribute to coloration and antioxidation effects in different plant tissues. MYB transcription factors have been demonstrated to be a key regulator for anthocyanin synthesis in many plants. However, little information was available about the MYB genes in the halophyte species Eutrema salsugineum. RESULT Here we report the identification of an important anthocyanin biosynthesis regulator EsMYB90 from Eutrema salsugineum, which is a halophyte tolerant to multiple abiotic stresses. Our phylogenetic and localization analyses supported that EsMYB90 is an R2R3 type of MYB transcription factor. Ectopic expression of EsMYB90 in tobacco and Arabidopsis enhanced pigmentation and anthocyanin accumulation in various organs. The transcriptome analysis revealed that 42 genes upregulated by EsMYB90 in 35S:EsMYB90 tobacco transgenic plants are required for anthocyanin biosynthesis. Moreover, our qRT-PCR results showed that EsMYB90 promoted expression of early (PAL, CHS, and CHI) and late (DFR, ANS, and UFGT) anthocyanin biosynthesis genes in stems, leaves, and flowers of 35S:EsMYB90 tobacco transgenic plants. CONCLUSIONS Our results indicated that EsMYB90 is a MYB transcription factor, which regulates anthocyanin biosynthesis genes to control anthocyanin biosynthesis. Our work provides a new tool to enhance anthocyanin production in various plants.
Collapse
Affiliation(s)
- Yuting Qi
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Caihong Gu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Xingjun Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Shiqing Gao
- Beijing Engineering Research Center for Hybrid Wheat, The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Changsheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Chuanzhi Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
86
|
Qi Y, Gu C, Wang X, Gao S, Li C, Zhao C, Li C, Ma C, Zhang Q. Identification of the Eutrema salsugineum EsMYB90 gene important for anthocyanin biosynthesis. BMC PLANT BIOLOGY 2020; 20:186. [PMID: 32345216 DOI: 10.21203/rs.2.18301/v3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/12/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Anthocyanins contribute to coloration and antioxidation effects in different plant tissues. MYB transcription factors have been demonstrated to be a key regulator for anthocyanin synthesis in many plants. However, little information was available about the MYB genes in the halophyte species Eutrema salsugineum. RESULT Here we report the identification of an important anthocyanin biosynthesis regulator EsMYB90 from Eutrema salsugineum, which is a halophyte tolerant to multiple abiotic stresses. Our phylogenetic and localization analyses supported that EsMYB90 is an R2R3 type of MYB transcription factor. Ectopic expression of EsMYB90 in tobacco and Arabidopsis enhanced pigmentation and anthocyanin accumulation in various organs. The transcriptome analysis revealed that 42 genes upregulated by EsMYB90 in 35S:EsMYB90 tobacco transgenic plants are required for anthocyanin biosynthesis. Moreover, our qRT-PCR results showed that EsMYB90 promoted expression of early (PAL, CHS, and CHI) and late (DFR, ANS, and UFGT) anthocyanin biosynthesis genes in stems, leaves, and flowers of 35S:EsMYB90 tobacco transgenic plants. CONCLUSIONS Our results indicated that EsMYB90 is a MYB transcription factor, which regulates anthocyanin biosynthesis genes to control anthocyanin biosynthesis. Our work provides a new tool to enhance anthocyanin production in various plants.
Collapse
Affiliation(s)
- Yuting Qi
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Caihong Gu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Xingjun Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Shiqing Gao
- Beijing Engineering Research Center for Hybrid Wheat, The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Changsheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Chuanzhi Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
87
|
Zhou D, Li R, Zhang H, Chen S, Tu K. Hot air and UV-C treatments promote anthocyanin accumulation in peach fruit through their regulations of sugars and organic acids. Food Chem 2020; 309:125726. [DOI: 10.1016/j.foodchem.2019.125726] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 01/08/2023]
|
88
|
Xu S, Lai E, Zhao L, Cai Y, Ogutu C, Cherono S, Han Y, Zheng B. Development of a fast and efficient root transgenic system for functional genomics and genetic engineering in peach. Sci Rep 2020; 10:2836. [PMID: 32071340 PMCID: PMC7029003 DOI: 10.1038/s41598-020-59626-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 01/30/2023] Open
Abstract
Peach is an economically import fruit crop worldwide, and serves as a model species of the Rosaceae family as well. However, peach functional genomics studies are severely hampered due to its recalcitrance to regeneration and stable transformation. Here, we report a fast and efficient Agrobacterium rhizogenes-mediated transformation system in peach. Various explants, including leaf, hypocotyl and shoot, were all able to induce transgenic hairy roots, with a transformation efficiency of over 50% for hypocotyl. Composite plants were generated by infecting shoots with A. rhizogenes to induce transgenic adventitious hairy roots. The composite plant system was successfully used to validate function of an anthocyanin-related regulatory gene PpMYB10.1 in transgenic hairy roots, and two downstream genes, PpUFGT and PpGST, were strongly activated. Our stable and reproductive A. rhizogenes-mediated transformation system provides an avenue for gene function assay, genetic engineering, and investigation of root-rhizosphere microorganism interaction in peach.
Collapse
Affiliation(s)
- Shengli Xu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Enhui Lai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Lei Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yaming Cai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Collins Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Sylvia Cherono
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China. .,Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
89
|
Jasmonate and Ethylene-Regulated Ethylene Response Factor 22 Promotes Lanolin-Induced Anthocyanin Biosynthesis in 'Zaosu' Pear ( Pyrus bretschneideri Rehd.) Fruit. Biomolecules 2020; 10:biom10020278. [PMID: 32054132 PMCID: PMC7072184 DOI: 10.3390/biom10020278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/02/2022] Open
Abstract
Anthocyanin contributes to the coloration of pear fruit and enhances plant defenses. Members of the ethylene response factor (ERF) family play vital roles in hormone and stress signaling and are involved in anthocyanin biosynthesis. Here, PbERF22 was identified from the lanolin-induced red fruit of ‘Zaosu’ pear (Pyrus bretschneideri Rehd.) using a comparative transcriptome analysis. Its expression level was up- and down-regulated by methyl jasmonate and 1-methylcyclopropene plus lanolin treatments, respectively, which indicated that PbERF22 responded to the jasmonate- and ethylene-signaling pathways. In addition, transiently overexpressed PbERF22 induced anthocyanin biosynthesis in ‘Zaosu’ fruit, and a quantitative PCR analysis further confirmed that PbERF22 facilitated the expression of anthocyanin biosynthetic structural and regulatory genes. Moreover, a dual luciferase assay showed that PbERF22 enhanced the activation effects of PbMYB10 and PbMYB10b on the PbUFGT promoter. Therefore, PbERF22 responses to jasmonate and ethylene signals and regulates anthocyanin biosynthesis. This provides a new perspective on the correlation between jasmonate–ethylene crosstalk and anthocyanin biosynthesis.
Collapse
|
90
|
Thole V, Bassard JE, Ramírez-González R, Trick M, Ghasemi Afshar B, Breitel D, Hill L, Foito A, Shepherd L, Freitag S, Nunes dos Santos C, Menezes R, Bañados P, Naesby M, Wang L, Sorokin A, Tikhonova O, Shelenga T, Stewart D, Vain P, Martin C. RNA-seq, de novo transcriptome assembly and flavonoid gene analysis in 13 wild and cultivated berry fruit species with high content of phenolics. BMC Genomics 2019; 20:995. [PMID: 31856735 PMCID: PMC6924045 DOI: 10.1186/s12864-019-6183-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Flavonoids are produced in all flowering plants in a wide range of tissues including in berry fruits. These compounds are of considerable interest for their biological activities, health benefits and potential pharmacological applications. However, transcriptomic and genomic resources for wild and cultivated berry fruit species are often limited, despite their value in underpinning the in-depth study of metabolic pathways, fruit ripening as well as in the identification of genotypes rich in bioactive compounds. RESULTS To access the genetic diversity of wild and cultivated berry fruit species that accumulate high levels of phenolic compounds in their fleshy berry(-like) fruits, we selected 13 species from Europe, South America and Asia representing eight genera, seven families and seven orders within three clades of the kingdom Plantae. RNA from either ripe fruits (ten species) or three ripening stages (two species) as well as leaf RNA (one species) were used to construct, assemble and analyse de novo transcriptomes. The transcriptome sequences are deposited in the BacHBerryGEN database (http://jicbio.nbi.ac.uk/berries) and were used, as a proof of concept, via its BLAST portal (http://jicbio.nbi.ac.uk/berries/blast.html) to identify candidate genes involved in the biosynthesis of phenylpropanoid compounds. Genes encoding regulatory proteins of the anthocyanin biosynthetic pathway (MYB and basic helix-loop-helix (bHLH) transcription factors and WD40 repeat proteins) were isolated using the transcriptomic resources of wild blackberry (Rubus genevieri) and cultivated red raspberry (Rubus idaeus cv. Prestige) and were shown to activate anthocyanin synthesis in Nicotiana benthamiana. Expression patterns of candidate flavonoid gene transcripts were also studied across three fruit developmental stages via the BacHBerryEXP gene expression browser (http://www.bachberryexp.com) in R. genevieri and R. idaeus cv. Prestige. CONCLUSIONS We report a transcriptome resource that includes data for a wide range of berry(-like) fruit species that has been developed for gene identification and functional analysis to assist in berry fruit improvement. These resources will enable investigations of metabolic processes in berries beyond the phenylpropanoid biosynthetic pathway analysed in this study. The RNA-seq data will be useful for studies of berry fruit development and to select wild plant species useful for plant breeding purposes.
Collapse
Affiliation(s)
- Vera Thole
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Jean-Etienne Bassard
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg, Denmark
- Present address: Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 Rue General Zimmer, 67084 Strasbourg, France
| | | | - Martin Trick
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Bijan Ghasemi Afshar
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Dario Breitel
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
- Present address: Tropic Biosciences UK LTD, Norwich Research Park, Norwich, NR4 7UG UK
| | - Lionel Hill
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | | | | | - Sabine Freitag
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| | - Cláudia Nunes dos Santos
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Rua Câmara Pestana 6, 1150-082 Lisbon, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Regina Menezes
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Rua Câmara Pestana 6, 1150-082 Lisbon, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Pilar Bañados
- Facultad De Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna Ote, 4860 Macul, Chile
| | | | - Liangsheng Wang
- Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093 China
| | - Artem Sorokin
- Fruit Crops Genetic Resources Department, N. I. Vavilov Research Institute of Plant Industry, B. Morskaya Street 42-44, St. Petersburg, 190000 Russia
| | - Olga Tikhonova
- Fruit Crops Genetic Resources Department, N. I. Vavilov Research Institute of Plant Industry, B. Morskaya Street 42-44, St. Petersburg, 190000 Russia
| | - Tatiana Shelenga
- Fruit Crops Genetic Resources Department, N. I. Vavilov Research Institute of Plant Industry, B. Morskaya Street 42-44, St. Petersburg, 190000 Russia
| | - Derek Stewart
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Philippe Vain
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
91
|
Bendokas V, Skemiene K, Trumbeckaite S, Stanys V, Passamonti S, Borutaite V, Liobikas J. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Crit Rev Food Sci Nutr 2019; 60:3352-3365. [PMID: 31718251 DOI: 10.1080/10408398.2019.1687421] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anthocyanins are water-soluble pigments providing certain color for various plant parts, especially in edible berries. Earlier these compounds were only known as natural food colorants, the stability of which depended on pH, light, storage temperature and chemical structure. However, due to the increase of the in vitro, in vivo experimental data, as well as of the epidemiological studies, today anthocyanins and their metabolites are also regarded as potential pharmaceutical compounds providing various beneficial health effects on either human or animal cardiovascular system, brain, liver, pancreas and kidney. Many of these effects are shown to be related to the free-radical scavenging and antioxidant properties of anthocyanins, or to their ability to modulate the intracellular antioxidant systems. However, it is generally overlooked that instead of acting exclusively as antioxidants certain anthocyanins affect the activity of mitochondria that are the main source of energy in cells. Therefore, the aim of the present review is to summarize the major knowledge about the chemistry and regulation of biosynthesis of anthocyanins in plants, to overview the facts on bioavailability, and to discuss the most recent experimental findings related to the beneficial health effects emphasizing mitochondria.
Collapse
Affiliation(s)
- Vidmantas Bendokas
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Kristina Skemiene
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Sonata Trumbeckaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vidmantas Stanys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | | | - Vilmante Borutaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
92
|
Ying H, Shi J, Zhang S, Pingcuo G, Wang S, Zhao F, Cui Y, Zeng X. Transcriptomic and metabolomic profiling provide novel insights into fruit development and flesh coloration in Prunus mira Koehne, a special wild peach species. BMC PLANT BIOLOGY 2019; 19:463. [PMID: 31675926 PMCID: PMC6825364 DOI: 10.1186/s12870-019-2074-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 10/14/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Flesh color is one of the most important traits for the commercial value of peach fruit. To unravel the underlying regulatory network in Prunus mira, we performed an integrated analysis of the transcriptome and metabolome of 3 fruit types with various flesh pigmentations (milk-white, yellow and blood) at 3 developmental stages (pit-hardening, cell enlargement and fruit ripening). RESULTS Transcriptome analysis showed that an intense transcriptional adjustment is required for the transition from the pit-hardening to the cell enlargement stage. In contrast, few genes were differentially expressed (DEGs) from the cell enlargement to the fruit ripening stage and importantly, the 3 fruits displayed diverse transcriptional activities, indicating that difference in fruit flesh pigmentations mainly occurred during the ripening stage. We further investigated the DEGs between pairs of fruit types during the ripening stage and identified 563 DEGs representing the 'core transcriptome' associated with major differentiations between the 3 fruit types, including flesh pigmentation. Meanwhile, we analyzed the metabolome, particularly, at the ripening stage and uncovered 40 differential metabolites ('core metabolome') between the 3 fruit types including 5 anthocyanins, which may be the key molecules associated with flesh coloration. Finally, we constructed the regulatory network depicting the interactions between anthocyanins and important transcripts involved in fruit flesh coloration. CONCLUSIONS The major metabolites and transcripts involved in fruit flesh coloration in P. mira were unraveled in this study providing valuable information which will undoubtedly assist in breeding towards improved fruit quality in peach.
Collapse
Affiliation(s)
- Hong Ying
- The ministry of agriculture of Qinghai-Tibet plateau fruit trees scientific observation test station, Lhasa, 850032, Tibet, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002, Tibet, China
| | - Jian Shi
- Wuhan Metware Biotechnology Co., Ltd, Wuhan, 430070, China
| | - Shanshan Zhang
- The ministry of agriculture of Qinghai-Tibet plateau fruit trees scientific observation test station, Lhasa, 850032, Tibet, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002, Tibet, China
| | - Gesang Pingcuo
- The ministry of agriculture of Qinghai-Tibet plateau fruit trees scientific observation test station, Lhasa, 850032, Tibet, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002, Tibet, China
| | - Shuo Wang
- The ministry of agriculture of Qinghai-Tibet plateau fruit trees scientific observation test station, Lhasa, 850032, Tibet, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002, Tibet, China
| | - Fan Zhao
- The ministry of agriculture of Qinghai-Tibet plateau fruit trees scientific observation test station, Lhasa, 850032, Tibet, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002, Tibet, China
| | - Yongning Cui
- The ministry of agriculture of Qinghai-Tibet plateau fruit trees scientific observation test station, Lhasa, 850032, Tibet, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002, Tibet, China
| | - Xiuli Zeng
- The ministry of agriculture of Qinghai-Tibet plateau fruit trees scientific observation test station, Lhasa, 850032, Tibet, China.
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002, Tibet, China.
| |
Collapse
|
93
|
Rahim MA, Resentini F, Dalla Vecchia F, Trainotti L. Effects on Plant Growth and Reproduction of a Peach R2R3-MYB Transcription Factor Overexpressed in Tobacco. FRONTIERS IN PLANT SCIENCE 2019; 10:1143. [PMID: 31681342 PMCID: PMC6813659 DOI: 10.3389/fpls.2019.01143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/21/2019] [Indexed: 05/27/2023]
Abstract
In plants, anthocyanin production is controlled by MYB and bHLH transcription factors. In peach, among the members of these families, MYB10.1 and bHLH3 have been shown to be the most important genes for production of these pigments during fruit ripening. Anthocyanins are valuable molecules, and the overexpression of regulatory genes in annual fast-growing plants has been explored for their biotechnological production. The overexpression of peach MYB10.1 in tobacco plants induced anthocyanin pigmentation, which was particularly strong in the reproductive parts. Pigment production was the result of an up-regulation of the expression level of key genes of the flavonoid biosynthetic pathway, such as NtCHS, NtCHI, NtF3H, NtDFR, NtANS, and NtUFGT, as well as of the proanthocyanidin biosynthetic pathway such as NtLAR. Nevertheless, phenotypic alterations in transgenic tobacco lines were not only limited to anthocyanin production. Lines showing a strong phenotype (type I) exhibited irregular leaf shape and size and reduced plant height. Moreover, flowers had reduced length of anther's filament, nondehiscent anthers, reduced pistil length, aborted nectary glands, and impaired capsule development, but the reproductive parts including androecium, gynoecium, and petals were more pigmented that in wild type. Surprisingly, overexpression of peach MYB10.1 led to suppression of NtMYB305, which is required for floral development and, of one of its target genes, NECTARIN1 (NtNCE1), involved in the nectary gland formation. MYB10.1 overexpression up-regulated JA biosynthetic (NtAOS) and signaling (NtJAZd) genes, as well as 1-aminocyclopropane-1-carboxylate oxidase (NtACO) in flowers. The alteration of these hormonal pathways might be among the causes of the observed floral abnormalities with defects in both male and female gametophyte development. In particular, approximately only 30% of pollen grains of type I lines were viable, while during megaspore formation, there was a block during FG1 (St3-II). This block seemed to be associated to an excessive accumulation of callose. It can be concluded that the overexpression of peach MYB10.1 in tobacco not only regulates flavonoid biosynthesis (anthocyanin and proanthocyanidin) in the reproductive parts but also plays a role in other processes such as vegetative and reproductive development.
Collapse
Affiliation(s)
- Md Abdur Rahim
- Department of Biology, University of Padova, Padova, Italy
| | | | - Francesca Dalla Vecchia
- Department of Biology, University of Padova, Padova, Italy
- Orto Botanico, University of Padova, Padova, Italy
| | - Livio Trainotti
- Department of Biology, University of Padova, Padova, Italy
- Orto Botanico, University of Padova, Padova, Italy
| |
Collapse
|
94
|
Molecular characterization of PgUFGT gene and R2R3-PgMYB transcription factor involved in flavonoid biosynthesis in four tissues of wild pomegranate (Punica granatum L.). J Genet 2019. [DOI: 10.1007/s12041-019-1141-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
95
|
Tirumalai V, Swetha C, Nair A, Pandit A, Shivaprasad PV. miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4775-4792. [PMID: 31145783 PMCID: PMC6760283 DOI: 10.1093/jxb/erz264] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/21/2019] [Indexed: 05/20/2023]
Abstract
MicroRNAs are a class of non-coding small RNAs involved in the negative regulation of gene expression, which play critical roles in developmental and metabolic pathways. Studies in several plants have identified a few microRNAs and other small RNAs that target regulators of the phenylpropanoid metabolic pathway called the MYB transcription factors. However, it is not well understood how sRNA-mediated regulation of MYBs influences the accumulation of specific secondary metabolites. Using sRNA sequencing, degradome analysis, mRNA sequencing, and proteomic analysis, we establish that grape lines with high anthocyanin content express two MYB-targeting microRNAs abundantly, resulting in the differential expression of specific MYB proteins. miR828 and miR858 target coding sequences of specific helix motifs in the mRNA sequences of MYB proteins. Targeting by miR828 caused MYB RNA decay and the production of a cascade of secondary siRNAs that depend on RNA-dependent RNA polymerase 6. MYB suppression and cascade silencing was more robust in grape lines with high anthocyanin content than in a flavonol-rich grape line. We establish that microRNA-mediated silencing targeted the repressor class of MYBs to promote anthocyanin biosynthesis in grape lines with high anthocyanins. We propose that this process regulates the expression of appropriate MYBs in grape lines to produce specific secondary metabolites.
Collapse
Affiliation(s)
- Varsha Tirumalai
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Chenna Swetha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Ashwin Nair
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Awadhesh Pandit
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- Correspondence:
| |
Collapse
|
96
|
Zhuang H, Lou Q, Liu H, Han H, Wang Q, Tang Z, Ma Y, Wang H. Differential Regulation of Anthocyanins in Green and Purple Turnips Revealed by Combined De Novo Transcriptome and Metabolome Analysis. Int J Mol Sci 2019; 20:E4387. [PMID: 31500111 PMCID: PMC6769466 DOI: 10.3390/ijms20184387] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 01/20/2023] Open
Abstract
Purple turnip Brassica rapa ssp. rapa is highly appreciated by consumers but the metabolites and molecular mechanisms underlying the root skin pigmentation remain open to study. Herein, we analyzed the anthocyanin composition in purple turnip (PT) and green turnip (GT) at five developmental stages. A total of 21 anthocyanins were detected and classified into the six major anthocynanin aglycones. Distinctly, PT contains 20 times higher levels of anthocyanins than GT, which explain the difference in the root skin pigmentation. We further sequenced the transcriptomes and analyzed the differentially expressed genes between the two turnips. We found that PT essentially diverts dihydroflavonols to the biosynthesis of anthocyanins over flavonols biosynthesis by strongly down-regulating one flavonol synthase gene, while strikingly up-regulating dihydroflavonol 4-reductase (DFR), anthocyanidin synthase and UDP-glucose: flavonoid-3-O-glucosyltransferase genes as compared to GT. Moreover, a nonsense mutation identified in the coding sequence of the DFR gene may lead to a nonfunctional protein, adding another hurdle to the accumulation of anthocyanin in GT. We also uncovered several key members of MYB, bHLH and WRKY families as the putative main drivers of transcriptional changes between the two turnips. Overall, this study provides new tools for modifying anthocyanin content and improving turnip nutritional quality.
Collapse
Affiliation(s)
- Hongmei Zhuang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Qian Lou
- College of Horticulture, Northwest A & F University, Yangling 712100, China.
| | - Huifang Liu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Hongwei Han
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Qiang Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Zhonghua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China.
- Institute of Genetic Resources, Xinjiang Academy of Agricultural Science, Urumqi 830091, China.
| | - Yanming Ma
- Institute of Genetic Resources, Xinjiang Academy of Agricultural Science, Urumqi 830091, China.
| | - Hao Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| |
Collapse
|
97
|
Lv LL, Feng XF, Li W, Li K. High temperature reduces peel color in eggplant (Solanum melongena) as revealed by RNA-seq analysis. Genome 2019; 62:503-512. [DOI: 10.1139/gen-2019-0021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To acquire the eggplant transcriptome under high temperature stress, 18 cDNA libraries were constructed and sequenced. A total of 136.31 Gb of clean data was obtained, and 88.86%–92.35% of the clean reads were mapped to the eggplant reference genome. Under high temperature, the number of down-regulated genes was more than that of up-regulated genes and there were more differentially expressed genes on the 10th day after flowering than on the 15th and 20th days after flowering. On the 10th day after flowering, the key genes CHI, 3GT, F3′5′H, DFR2, ANS, and F3H in anthocyanin synthetic pathway and most ERF, WRKY, bHLH, and MYB transcription factors were all down-regulated. High temperature significantly decreased the total anthocyanin content in peels. The results showed that at the early stage of peel coloring, high temperature inhibited the expressions of key genes in anthocyanin biosynthetic pathways through the regulation of transcription factors, leading to a significant decrease in total anthocyanin content, which might reduce the peel color in eggplant.
Collapse
Affiliation(s)
- Ling Ling Lv
- South Subtropical Crops Research Institute, CATAS, Zhanjiang, Guangdong 524091, China; Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong 524091, China
| | | | - Wei Li
- South Subtropical Crops Research Institute, CATAS, Zhanjiang, Guangdong 524091, China; Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong 524091, China
| | - Ke Li
- South Subtropical Crops Research Institute, CATAS, Zhanjiang, Guangdong 524091, China; Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong 524091, China
| |
Collapse
|
98
|
Xi W, Feng J, Liu Y, Zhang S, Zhao G. The R2R3-MYB transcription factor PaMYB10 is involved in anthocyanin biosynthesis in apricots and determines red blushed skin. BMC PLANT BIOLOGY 2019; 19:287. [PMID: 31262258 PMCID: PMC6604168 DOI: 10.1186/s12870-019-1898-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/19/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND The majority of apricot (Prunus armeniaca L.) cultivars display orange or yellow background skin, whereas some cultivars are particularly preferred by consumers because of their red blushed skin on the background. RESULTS In this study, two blushed ('Jianali' and 'Hongyu') and two nonblushed ('Baixing' and 'Luntaixiaobaixing') cultivars were used to investigate the formation mechanism of blushed skin in apricots. High-performance liquid chromatography (HPLC) analysis showed that the blushed cultivars accumulated higher cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside and peonidin-3-O-rutinoside levels during fruit ripening than the nonblushed cultivars. Based on coexpression network analysis (WGCNA), a putative anthocyanin-related R2R3-MYB, PaMYB10, and seven structural genes were identified from transcriptome data. The phylogenetic analysis indicated that PaMYB10 clustered in the anthocyanin-related MYB clade. Sequence alignments revealed that PaMYB10 contained a bHLH-interaction motif ([DE]Lx2[RK]x3Lx6Lx3R) and an ANDV motif. Subcellular localization analysis showed that PaMYB10 was a nuclear protein. Real-time qRT-PCR analysis demonstrated that the transcript levels of PaMYB10 and seven genes responsible for anthocyanin synthesis were significantly higher in blushed than in nonblushed apricots, which was consistent with the accumulation of anthocyanin. In addition, bagging significantly inhibited the transcript levels of PaMYB10 and the structural genes in 'Jianali' and blocked the red coloration and anthocyanin accumulation. Transient PaMYB10 overexpression in 'Luntaixiaobaixing' fruits resulted in the red blushed skin at the maturation stage. CONCLUSIONS Taken together, these data reveal that three anthocyanins are responsible for the blushed skin of apricots, identify PaMYB10 as a positive regulator of anthocyanin biosynthesis in apricots, and demonstrate that blush formation depends on light.
Collapse
Affiliation(s)
- Wanpeng Xi
- College of Food Science, Southwest University, Chongqing, 400715, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jing Feng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Yu Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Shikui Zhang
- Agriculture National Fruit Tree Germplasm Repository, Xinjiang Academy of Agricultural Sciences, Luntai, Xinjiang, 841600, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
99
|
Jin SW, Rahim MA, Jung HJ, Afrin KS, Kim HT, Park JI, Kang JG, Nou IS. Abscisic acid and ethylene biosynthesis-related genes are associated with anthocyanin accumulation in purple ornamental cabbage ( Brassica oleracea var. acephala). Genome 2019; 62:513-526. [PMID: 31132326 DOI: 10.1139/gen-2019-0038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Purple ornamental cabbage (Brassica oleracea var. acephala) is a popular decorative plant, cultivated for its colorful leaf rosettes that persist in cool weather. It is characterized by green outer leaves and purple inner leaves, whose purple pigmentation is due to the accumulation of anthocyanin pigments. Phytohormones play important roles in anthocyanin biosynthesis in other species. Here, we identified 14 and 19 candidate genes putatively involved in abscisic acid (ABA) and ethylene (ET) biosynthesis, respectively, in B. oleracea. We determined the expression patterns of these candidate genes by reverse-transcription quantitative PCR (RT-qPCR). Among candidate ABA biosynthesis-related genes, the expressions of BoNCED2.1, BoNCED2.2, BoNCED6, BoNCED9.1, and BoAAO3.2 were significantly higher in purple compared to green leaves. Likewise, most of the ET biosynthetic genes (BoACS6, BoACS9.1, BoACS11, BoACO1.1, BoACO1.2, BoACO3.1, BoACO4, and BoACO5) had significantly higher expression in purple compared to green leaves. Among these genes, BoNCED2.1, BoNCED2.2, BoACS11, and BoACO4 showed particularly strong associations with total anthocyanin content of the purple inner leaves. Our results suggest that ABA and ET might promote the intense purple pigmentation of the inner leaves of purple ornamental cabbage.
Collapse
Affiliation(s)
- Si-Won Jin
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Md Abdur Rahim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Khandker Shazia Afrin
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong-Goo Kang
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
100
|
Differences among the Anthocyanin Accumulation Patterns and Related Gene Expression Levels in Red Pears. PLANTS 2019; 8:plants8040100. [PMID: 30995732 PMCID: PMC6524040 DOI: 10.3390/plants8040100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/30/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022]
Abstract
Differences in coloration exist among red pear cultivars. Here, we selected six red pear cultivars with different genetic backgrounds to elucidate the characteristics of fruit pigmentation. We detected anthocyanin contents and the expression levels of anthocyanin synthesis-related genes in these cultivars at different stages of fruit development. The anthocyanin contents of all six cultivars showed a rise-drop tendency. Principal component and hierarchical cluster analyses were used to distinguish the types of cultivars and the genes crucial to each anthocyanin accumulation pattern. The six cultivars were divided into three groups. Red Zaosu were clustered into one group, Red Sichou and Starkrimson into another group, and Palacer, Red Bartlett, and 5 Hao clustered into a third group. The expression levels of F3H, UFGT2, MYB10, and bHLH3 were similar among the differential coloration patterns of the six cultivars, suggesting a critical and coordinated mechanism for anthocyanin synthesis. Anthocyanin transporters (GST) and light-responsive genes, such as COP1, PIF3.1, and PIF3.2 played limited roles in the regulation of anthocyanin accumulation. This study provides novel insights into the regulation of anthocyanins synthesis and accumulation in red pears.
Collapse
|