51
|
Swaffer MP, Jones AW, Flynn HR, Snijders AP, Nurse P. Quantitative Phosphoproteomics Reveals the Signaling Dynamics of Cell-Cycle Kinases in the Fission Yeast Schizosaccharomyces pombe. Cell Rep 2019; 24:503-514. [PMID: 29996109 PMCID: PMC6057490 DOI: 10.1016/j.celrep.2018.06.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/16/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022] Open
Abstract
Multiple protein kinases regulate cell-cycle progression, of which the cyclin-dependent kinases (CDKs) are thought to act as upstream master regulators. We have used quantitative phosphoproteomics to analyze the fission yeast cell cycle at sufficiently high temporal resolution to distinguish fine-grain differences in substrate phosphorylation dynamics on a proteome-wide scale. This dataset provides a useful resource for investigating the regulatory dynamics of cell-cycle kinases and their substrates. For example, our analysis indicates that the substrates of different mitotic kinases (CDK, NIMA-related, Polo-like, and Aurora) are phosphorylated in sequential, kinase-specific waves during mitosis. Phosphoproteomics analysis after chemical-genetic manipulation of CDK activity suggests that the timing of these waves is established by the differential dependency of the downstream kinases on upstream CDK. We have also examined the temporal organization of phosphorylation during G1/S, as well as the coordination between the NDR-related kinase Orb6, which controls polarized growth, and other cell-cycle kinases. Global analysis of phosphorylation dynamics during the fission yeast cell cycle Reveals kinase-specific waves of phosphorylation throughout interphase and mitosis Mitotic kinases show significantly different dependencies on upstream CDK activity Kinases directly downstream of CDK mediate earlier waves of mitotic phosphorylation
Collapse
Affiliation(s)
- Matthew P Swaffer
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Andrew W Jones
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Helen R Flynn
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
52
|
Song X, Du R, Gui H, Zhou M, Zhong W, Mao C, Ma J. Identification of potential hub genes related to the progression and prognosis of hepatocellular carcinoma through integrated bioinformatics analysis. Oncol Rep 2019; 43:133-146. [PMID: 31746405 PMCID: PMC6908929 DOI: 10.3892/or.2019.7400] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths among cancer patients. Genes correlated with the progression and prognosis of HCC are critically needed to be identified. In the present study, 3 Gene Expression Omnibus (GEO) datasets (GSE46408, GSE65372 and GSE84402) were used to analyze the differentially expressed genes (DEGs) between HCC and non-tumor liver tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to clarify the functional roles of DEGs. A protein-protein interaction network was established to screen the hub genes associated with HCC. The prognostic values of hub genes in HCC patients were analyzed using The Cancer Genome Atlas (TCGA) database. The expression levels of hub genes were validated based on ONCOMINE, TCGA and Human Protein Atlas (HPA) databases. Notably, 56 upregulated and 33 downregulated DEGs were markedly enriched under various GO terms and four KEGG terms. Among these DEGs, 10 hub genes with high connectivity degree were identified, including cyclin B1, cyclin A2, cyclin B2, condensin complex subunit 3, PDZ binding kinase, nucleolar and spindle-associated protein 1, aurora kinase A, ZW10 interacting kinetochore protein, protein regulator of cytokinesis 1 and kinesin family member 4A. The upregulated expression levels of these hub genes in HCC tissues were further confirmed by ONCOMINE, TCGA, and HPA databases. Additionally, the increased mRNA expression of each hub gene was related to the unfavorable disease-free survival and overall survival of HCC patients. The present study identified ten genes associated with HCC, which may help to provide candidate targets for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xiudao Song
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Rao Du
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Huan Gui
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Mi Zhou
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Wen Zhong
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Chenmei Mao
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Jin Ma
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| |
Collapse
|
53
|
Chiu SC, Chen KC, Hsia JY, Chuang CY, Wan CX, Wei TYW, Huang YRJ, Chen JMM, Liao YTA, Yu CTR. Overexpression of Aurora-A bypasses cytokinesis through phosphorylation of suppressed in lung cancer. Am J Physiol Cell Physiol 2019; 317:C600-C612. [PMID: 31314582 DOI: 10.1152/ajpcell.00032.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitosis is a complicated process by which eukaryotic cells segregate duplicated genomes into two daughter cells. To achieve the goal, numerous regulators have been revealed to control mitosis. The oncogenic Aurora-A is a versatile kinase responsible for the regulation of mitosis including chromosome condensation, spindle assembly, and centrosome maturation through phosphorylating a range of substrates. However, overexpression of Aurora-A bypasses cytokinesis, thereby generating multiple nuclei by unknown the mechanisms. To explore the underlying mechanisms, we found that SLAN, a potential tumor suppressor, served as a substrate of Aurora-A and knockdown of SLAN induced immature cytokinesis. Aurora-A phosphorylates SLAN at T573 under the help of the scaffold protein 14-3-3η. The SLAN phosphorylation-mimicking mutants T573D or T573E, in contrast to the phosphorylation-deficiency mutant T573A, induced higher level of multinucleated cells, and the endogenous SLAN p573 resided at spindle midzone and midbody with the help of the microtubule motor MKLP1. The Aurora-A- or SLAN-induced multiple nuclei was prevented by the knockdown of 14-3-3η or Aurora-A respectively, thereby revealing a 14-3-3η/Aurora-A/SLAN cascade negatively controlling cytokinesis. Intriguingly, SLAN T573D or T573E inactivated and T573A activated the key cytokinesis regulator RhoA. RhoA interacted with SLAN np573, i.e., the nonphosphorylated form of SLAN at T573, which localized to the spindle midzone dictated by RhoA and ECT2. Therefore, we report here that SLAN mediates the Aurora-A-triggered cytokinesis bypass and SLAN plays dual roles in that process depending on its phosphorylation status.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Center for Cell Therapy, China Medical University Hospital, Taichung, Taiwan, Republic of China.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, Republic of China
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Jiun-Yi Hsia
- Department of Surgery, Chung Shan Hospital, Taichung, Taiwan, Republic of China.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Cheng-Yen Chuang
- Division of Thoracic Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China.,Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Chang-Xin Wan
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Tong-You Wade Wei
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan, Republic of China.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yun-Ru Jaoying Huang
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Yu-Ting Amber Liao
- Center for Cell Therapy, China Medical University Hospital, Taichung, Taiwan, Republic of China.,Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China.,Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan, Republic of China
| |
Collapse
|
54
|
Cilibrasi C, Guzzi A, Bazzoni R, Riva G, Cadamuro M, Hochegger H, Bentivegna A. A Ploidy Increase Promotes Sensitivity of Glioma Stem Cells to Aurora Kinases Inhibition. JOURNAL OF ONCOLOGY 2019; 2019:9014045. [PMID: 31531022 PMCID: PMC6720056 DOI: 10.1155/2019/9014045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 12/02/2022]
Abstract
Glioma stem cells account for glioblastoma relapse and resistance to conventional therapies, and protein kinases, involved in the regulation of the mitotic machinery (i.e., Aurora kinases), have recently emerged as attractive therapeutic targets. In this study, we investigated the effect of Aurora kinases inhibition in five glioma stem cell lines isolated from glioblastoma patients. As expected, cell lines responded to the loss of Aurora kinases with cytokinesis failure and mitotic exit without cell division. Surprisingly, this resulted in a proliferative arrest in only two of the five cell lines. These sensitive cell lines entered a senescent/autophagic state following aberrant mitotic exit, while the non-sensitive cell lines continued to proliferate. This senescence response did not correlate with TP53 mutation status but only occurred in the cell lines with the highest chromosome content. Repeated rounds of Aurora kinases inhibition caused a gradual increase in chromosome content in the resistant cell lines and eventually caused a similar senescence response and proliferative arrest. Our results suggest that a ploidy threshold is the main determinant of Aurora kinases sensitivity in TP53 mutant glioma stem cells. Thus, ploidy could be used as a biomarker for treating glioma patients with Aurora kinases inhibitors.
Collapse
Affiliation(s)
- Chiara Cilibrasi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Ph.D. Program in Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
- NeuroMI, Milan Center of Neuroscience, University of Milano-Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, 20900 Monza, Italy
| | - Andrèe Guzzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Riccardo Bazzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- NeuroMI, Milan Center of Neuroscience, University of Milano-Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, 20900 Monza, Italy
| | - Gabriele Riva
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- NeuroMI, Milan Center of Neuroscience, University of Milano-Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, 20900 Monza, Italy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Massimiliano Cadamuro
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- International Center for Digestive Health (ICDH), University of Milano-Bicocca, 20900 Monza, Italy
| | - Helfrid Hochegger
- Genome Damage and Stability Center, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- NeuroMI, Milan Center of Neuroscience, University of Milano-Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, 20900 Monza, Italy
| |
Collapse
|
55
|
Salivary glands require Aurora Kinase B for regeneration after transient innate immune-mediated injury. Sci Rep 2019; 9:11339. [PMID: 31383943 PMCID: PMC6683207 DOI: 10.1038/s41598-019-47762-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 07/24/2019] [Indexed: 11/18/2022] Open
Abstract
Severe, irreversible salivary gland disease and oral dryness is experienced by sufferers of Sjögren’s syndrome and those treated with irradiation for head and neck cancer. Therefore, major efforts have been made in the last decade to unravel key molecular signals that can drive salivary gland (SG) regeneration and functional restoration. However, the earliest molecular determinants that accompany SG regeneration remain incompletely defined. The present study examined the initial mitogenic events marking the regenerative response of the murine submandibular gland (SMG), following innate immune-mediated injury. Local intraductal administration of the synthetic double stranded (ds) RNA polyinosinic-polycytidylic acid (poly (I:C)) widely, but transiently, depleted the acinar and progenitor cells, 24 hours post poly (I:C) introduction. While the progenitor and duct cells started to proliferate and expand at 72 hours, the Mist1-positve acinar cells did not re-appear until 96 hours post poly (I:C) injury. The cellular replenishment during regeneration involved significant upregulation of the cell cycle promoter Aurora kinase B (AURKB). AURKB, which is expressed in healthy proliferating and cancerous cells, is a serine/threonine protein kinase, well known to orchestrate key events in cell division and cytokinesis. However, the expression and role of AURKB in regeneration of post mitotic salivary gland cells has not been previously explored. In vivo inhibition of AURKB using the selective inhibitor Barasertib (AZD1152-HQPA) interfered with SMG recovery from the transient, but severe poly (I:C)-mediated injury and cellular depletion. AURKB deficiency during regeneration of the injured tissues: disrupted cell cycle progression, repressed renewal of Mist1-positive acinar cells and prevented recovery of salivary secretion. The knowledge gained in this study may be utilized in the development of therapeutic targets for irreversible salivary gland disease.
Collapse
|
56
|
Structural mechanism of synergistic activation of Aurora kinase B/C by phosphorylated INCENP. Nat Commun 2019; 10:3166. [PMID: 31320618 PMCID: PMC6639382 DOI: 10.1038/s41467-019-11085-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/19/2019] [Indexed: 12/27/2022] Open
Abstract
Aurora kinases B and C (AURKB/AURKC) are activated by binding to the C-terminal domain of INCENP. Full activation requires phosphorylation of two serine residues of INCENP that are conserved through evolution, although the mechanism of this activation has not been explained. Here we present crystal structures of the fully active complex of AURKC bound to INCENP, consisting of phosphorylated, activated, AURKC and INCENP phosphorylated on its TSS motif, revealing the structural and biochemical mechanism of synergistic activation of AURKC:INCENP. The structures show that TSS motif phosphorylation stabilises the kinase activation loop of AURKC. The TSS motif phosphorylations alter the substrate-binding surface consistent with a mechanism of altered kinase substrate selectivity and stabilisation of the protein complex against unfolding. We also analyse the binding of the most specific available AURKB inhibitor, BRD-7880, and demonstrate that the well-known Aurora kinase inhibitor VX-680 disrupts binding of the phosphorylated INCENP TSS motif.
Collapse
|
57
|
Cheng Z, Liu F, Tian H, Xu Z, Chai X, Luo D, Wang Y. Impairing the maintenance of germinative cells in Echinococcus multilocularis by targeting Aurora kinase. PLoS Negl Trop Dis 2019; 13:e0007425. [PMID: 31095613 PMCID: PMC6541280 DOI: 10.1371/journal.pntd.0007425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/29/2019] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
Background The tumor-like growth of the metacestode larvae of the tapeworm E. multilocularis causes human alveolar echinococcosis, a severe disease mainly affecting the liver. The germinative cells, a population of adult stem cells, are crucial for the larval growth and development of the parasite within the hosts. Maintenance of the germinative cell pools relies on their abilities of extensive proliferation and self-renewal, which requires accurate control of the cell division cycle. Targeting regulators of the cell division progression may impair germinative cell populations, leading to impeded parasite growth. Methodology/Principal findings In this study, we describe the characterization of EmAURKA and EmAURKB, which display significant similarity to the members of Aurora kinases that are essential mitotic kinases and play key roles in cell division. Our data suggest that EmAURKA and EmAURKB are actively expressed in the germinative cells of E. multilocularis. Treatment with low concentrations of MLN8237, a dual inhibitor of Aurora A and B, resulted in chromosomal defects in the germinative cells during mitosis, while higher concentrations of MLN8237 caused a failure in cytokinesis of the germinative cells, leading to multinucleated cells. Inhibition of the activities of Aurora kinases eventually resulted in depletion of the germinative cell populations in E. multilocularis, which in turn caused larval growth inhibition of the parasite. Conclusions/Significance Our data demonstrate the vital roles of Aurora kinases in the regulation of mitotic progression and maintenance of the germinative cells in E. multilocularis, and suggest Aurora kinases as promising druggable targets for the development of novel chemotherapeutics against human alveolar echinococcosis. Alveolar echinococcosis (AE), caused by infection with the metacestode larvae of the tapeworm E. multilocularis, is a lethal disease in humans. A population of adult stem cells, called germinative cells, drive the cancer-like growth of the parasite within their host and are considered responsible for disease recurrence after therapy termination. Nevertheless, benzimidazoles, the current drugs of choice against AE, show limited effects on killing these cells. Here, we describe EmAURKA and EmAURKB, two Aurora kinase members that play essential roles in regulating E. multilocularis germinative cell mitosis, as promising drug targets for eliminating the population of germinative cells. We show that targeting E. multilocularis Aurora kinases by small molecular inhibitor MLN8237 causes severe mitotic defects and eventually impairs the viability of germinative cells, leading to larval growth inhibition of the parasite in vitro. Our study suggests that targeting mitosis by MLN8237 or related compounds offers possibilities for germinative cell killing and we hope this will help in exploring novel therapeutic strategies against the disease.
Collapse
Affiliation(s)
- Zhe Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fan Liu
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Huimin Tian
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Zhijian Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoli Chai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Damin Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yanhai Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
58
|
Zhang X, Hooykaas PJJ. The Agrobacterium VirD5 protein hyperactivates the mitotic Aurora kinase in host cells. THE NEW PHYTOLOGIST 2019; 222:1551-1560. [PMID: 30667529 PMCID: PMC6667905 DOI: 10.1111/nph.15700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/13/2019] [Indexed: 06/08/2023]
Abstract
Aided by translocated virulence proteins, Agrobacterium tumefaciens transforms plant cells with oncogenic T-DNA. In the host cells the virulence protein VirD5 moves to the nucleus, where it becomes localized at the kinetochores, and disturbs faithful chromosome segregation, but the molecular mechanism underlying this remains unknown. To gain more insight, we screened amongst the kinetochore proteins for VirD5 interactors using bimolecular fluorescence complementation assays, and tested chromosome segregation in yeast cells. We found that VirD5 interacts with the conserved mitotic Aurora kinase Ipl1 in yeast and likewise with plant Aurora kinases. In vitro VirD5 was found to stimulate the activity of Ipl1. Phosphorylation of substrates by Ipl1 in vivo is known to result in the detachment between kinetochore and spindle microtubule. This is necessary for error correction, but increased Ipl1/Aurora kinase activity is known to cause spindle instability, explaining enhanced chromosome mis-segregation seen in the presence of VirD5. That activation of the Ipl1/Aurora kinase at least partially underlies the toxicity of VirD5 became apparent by artificial boosting the activity of the specific counteracting phosphatase Glc7 in vivo, which relieved the toxicity. These findings reveal a novel mechanism by which a pathogenic bacterium manipulates host cells.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Molecular and Developmental GeneticsInstitute of BiologyLeiden UniversitySylviusweg 72Leiden2333BEthe Netherlands
| | - Paul J. J. Hooykaas
- Department of Molecular and Developmental GeneticsInstitute of BiologyLeiden UniversitySylviusweg 72Leiden2333BEthe Netherlands
| |
Collapse
|
59
|
Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur J Med Chem 2019; 170:55-72. [DOI: 10.1016/j.ejmech.2019.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 12/30/2022]
|
60
|
A new role for Drosophila Aurora-A in maintaining chromosome integrity. Chromosoma 2019; 128:41-52. [PMID: 30612150 DOI: 10.1007/s00412-018-00687-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
Abstract
Aurora-A is a conserved mitotic kinase overexpressed in many types of cancer. Growing evidence shows that Aurora-A plays a crucial role in DNA damage response (DDR) although this aspect has been less characterized. We isolated a new aur-A mutation, named aur-A949, in Drosophila, and we showed that it causes chromosome aberrations (CABs). In addition, aur-A949 mutants were sensitive to X-ray treatment and showed impaired γ-H2Av foci dissolution kinetics. To identify the pathway in which Aur-A works, we conducted an epistasis analysis by evaluating CAB frequencies in double mutants carrying aur-A949 mutation combined to mutations in genes related to DNA damage response (DDR). We found that mutations in tefu (ATM) and in the histone variant H2Av were epistatic over aur-A949 indicating that Aur-A works in DDR and that it is required for γ-H2Av foci dissolution. More interestingly, we found that a mutation in lig4, a gene belonging to the non-homologous end joining (NHEJ) repair pathway, was epistatic over aur-A949. Based on studies in other systems, which show that phosphorylation is important to target Lig4 for degradation, we hypothesized that in aur-A949 mutant cells, there is a persistence of Lig4 that could be, in the end, responsible for CABs. Finally, we observed a synergistic interaction between Aur-A and the homologous recombination (HR) repair system component Rad 51 in the process that converts chromatid deletions into isochromatid deletions. Altogether, these data indicate that Aur-A depletion can elicit chromosome damage. This conclusion should be taken into consideration, since some anticancer therapies are aimed at reducing Aurora-A expression.
Collapse
|
61
|
Hendriks LEL, Menis J, Reck M. Prospects of targeted and immune therapies in SCLC. Expert Rev Anticancer Ther 2018; 19:151-167. [DOI: 10.1080/14737140.2019.1559057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lizza E. L. Hendriks
- Department of Pulmonary Diseases, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Medical Oncology, Gustave Roussy, Institut d’Oncologie Thoracique (IOT), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jessica Menis
- Medical Oncology, University of Padua and Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Martin Reck
- Airway Research Center North (ARCN), German Center for Lung Research, LungenClinic, Grosshansdorf, Germany
| |
Collapse
|
62
|
Liu M, Qiu YL, Jin T, Zhou Y, Mao ZY, Zhang YJ. Meta-analysis of microarray datasets identify several chromosome segregation-related cancer/testis genes potentially contributing to anaplastic thyroid carcinoma. PeerJ 2018; 6:e5822. [PMID: 30386706 PMCID: PMC6203939 DOI: 10.7717/peerj.5822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023] Open
Abstract
AIM Anaplastic thyroid carcinoma (ATC) is the most lethal thyroid malignancy. Identification of novel drug targets is urgently needed. MATERIALS & METHODS We re-analyzed several GEO datasets by systematic retrieval and data merging. Differentially expressed genes (DEGs) were filtered out. We also performed pathway enrichment analysis to interpret the data. We predicted key genes based on protein-protein interaction networks, weighted gene co-expression network analysis and genes' cancer/testis expression pattern. We also further characterized these genes using data from the Cancer Genome Atlas (TCGA) project and gene ontology annotation. RESULTS Cell cycle-related pathways were significantly enriched in upregulated genes in ATC. We identified TRIP13, DLGAP5, HJURP, CDKN3, NEK2, KIF15, TTK, KIF2C, AURKA and TPX2 as cell cycle-related key genes with cancer/testis expression pattern. We further uncovered that most of these putative key genes were critical components during chromosome segregation. CONCLUSION We predicted several key genes harboring potential therapeutic value in ATC. Cell cycle-related processes, especially chromosome segregation, may be the key to tumorigenesis and treatment of ATC.
Collapse
Affiliation(s)
- Mu Liu
- The First Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Lu Qiu
- The First Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tong Jin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yin Zhou
- The First Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi-Yuan Mao
- Department of Human Anatomy, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong-Jie Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
63
|
SAC3D1: a novel prognostic marker in hepatocellular carcinoma. Sci Rep 2018; 8:15608. [PMID: 30353105 PMCID: PMC6199250 DOI: 10.1038/s41598-018-34129-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023] Open
Abstract
Centrosome-associated proteins are recognized as prognostic factors in many cancers because centrosomes are critical structures for the cell cycle progression and genomic stability. SAC3D1, however, is associated with centrosome abnormality, although its prognostic potential has not been evaluated in hepatocellular carcinoma (HCC). In this study, 3 independent cohorts (GSE10186, n = 80; TCGA, n = 330 and ICGC, n = 237) were used to assess SAC3D1 as a biomarker, which demonstrated SAC3D1 overexpression in HCC tissues when compared to the matched normal tissues. Kaplan-Meier survival analysis also showed that its overexpression was associated with poor prognosis of HCC with good discriminative ability in 3 independent cohorts (GSE10186, P = 0.00469; TCGA, P = 0.0000413 and ICGC, P = 0.0000114). Analysis of the C-indices and AUC values further supported its discriminative ability. Finally, multivariate analysis confirmed its prognostic significance (GSE10186, P = 0.00695; TCGA, P = 0.0000289 and ICGC, P = 0.0000651). These results suggest a potential of SAC3D1 as a biomarker for HCC.
Collapse
|
64
|
Willems E, Dedobbeleer M, Digregorio M, Lombard A, Lumapat PN, Rogister B. The functional diversity of Aurora kinases: a comprehensive review. Cell Div 2018; 13:7. [PMID: 30250494 PMCID: PMC6146527 DOI: 10.1186/s13008-018-0040-6] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Aurora kinases are serine/threonine kinases essential for the onset and progression of mitosis. Aurora members share a similar protein structure and kinase activity, but exhibit distinct cellular and subcellular localization. AurA favors the G2/M transition by promoting centrosome maturation and mitotic spindle assembly. AurB and AurC are chromosome-passenger complex proteins, crucial for chromosome binding to kinetochores and segregation of chromosomes. Cellular distribution of AurB is ubiquitous, while AurC expression is mainly restricted to meiotically-active germ cells. In human tumors, all Aurora kinase members play oncogenic roles related to their mitotic activity and promote cancer cell survival and proliferation. Furthermore, AurA plays tumor-promoting roles unrelated to mitosis, including tumor stemness, epithelial-to-mesenchymal transition and invasion. In this review, we aim to understand the functional interplay of Aurora kinases in various types of human cells, including tumor cells. The understanding of the functional diversity of Aurora kinases could help to evaluate their relevance as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Estelle Willems
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Matthias Dedobbeleer
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Marina Digregorio
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Arnaud Lombard
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,2Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Paul Noel Lumapat
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| | - Bernard Rogister
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| |
Collapse
|
65
|
Sun B, Lin G, Ji D, Li S, Chi G, Jin X. Dysfunction of Sister Chromatids Separation Promotes Progression of Hepatocellular Carcinoma According to Analysis of Gene Expression Profiling. Front Physiol 2018; 9:1019. [PMID: 30100882 PMCID: PMC6072861 DOI: 10.3389/fphys.2018.01019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Despite studying the various molecular mechanisms of hepatocellular carcinoma (HCC), effective drugs and biomarkers in HCC therapy are still scarce. The present study was designed to investigate dysregulated pathways, novel biomarkers and therapeutic targets for HCC. The gene expression dataset of GSE14520, which included 362 tumor and their paired non-tumor tissues of HCC, was extracted for processing by the Robust multi-array average (RMA) algorithm in the R environment. SAM methods were leveraged to identify differentially expressed genes (DEGs). Functional analysis of DEGs was performed using DAVID. The GeneMania and Cytohubba were used to construct the PPI network. To avoid individual bias, GSEA and survival analysis were employed to verify the results. The results of these analyses indicated that separation of sister chromatids was the most aberrant phase in the progression of HCC, and the most frequently involved genes, EZH2, GINS1, TPX2, CENPF, and BUB1B, require further study to be used as drug targets or biomarkers in diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Baozhen Sun
- Department of Hepatopancreatobiliary, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guibo Lin
- First Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Degang Ji
- Department of Hepatopancreatobiliary, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuo Li
- Department of Hepatopancreatobiliary, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guonan Chi
- First Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xingyi Jin
- First Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
66
|
Moura DS, Campillo-Marcos I, Vázquez-Cedeira M, Lazo PA. VRK1 and AURKB form a complex that cross inhibit their kinase activity and the phosphorylation of histone H3 in the progression of mitosis. Cell Mol Life Sci 2018; 75:2591-2611. [PMID: 29340707 PMCID: PMC6003988 DOI: 10.1007/s00018-018-2746-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
Regulation of cell division requires the integration of signals implicated in chromatin reorganization and coordination of its sequential changes in mitosis. Vaccinia-related kinase 1 (VRK1) and Aurora B (AURKB) are two nuclear kinases involved in different steps of cell division. We have studied whether there is any functional connection between these two nuclear kinases, which phosphorylate histone H3 in Thr3 and Ser10, respectively. VRK1 and AURKB are able to form a stable protein complex, which represents only a minor subpopulation of each kinase within the cell and is detected following nocodazole release. Each kinase is able to inhibit the kinase activity of the other kinase, as well as inhibit their specific phosphorylation of histone H3. In locations where the two kinases interact, there is a different pattern of histone modifications, indicating that there is a local difference in chromatin during mitosis because of the local complexes formed by these kinases and their asymmetric intracellular distribution. Depletion of VRK1 downregulates the gene expression of BIRC5 (survivin) that recognizes H3-T3ph, both are dependent on the activity of VRK1, and is recovered with kinase active murine VRK1, but not with a kinase-dead protein. The H3-Thr3ph-survivin complex is required for AURB recruitment, and their loss prevents the localization of ACA and AURKB in centromeres. The cross inhibition of the kinases at the end of mitosis might facilitate the formation of daughter cells. A sequential role for VRK1, AURKB, and haspin in the progression of mitosis is proposed.
Collapse
Affiliation(s)
- David S Moura
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer-Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Ignacio Campillo-Marcos
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer-Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Marta Vázquez-Cedeira
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer-Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer-Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
67
|
Inchanalkar S, Deshpande NU, Kasherwal V, Jayakannan M, Balasubramanian N. Polymer Nanovesicle-Mediated Delivery of MLN8237 Preferentially Inhibits Aurora Kinase A To Target RalA and Anchorage-Independent Growth in Breast Cancer Cells. Mol Pharm 2018; 15:3046-3059. [PMID: 29863884 DOI: 10.1021/acs.molpharmaceut.8b00163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small GTPase RalA is a known mediator of anchorage-independent growth in cancers and is differentially regulated by adhesion and aurora kinase A (AURKA). Hence, inhibiting AURKA offers a means of specifically targeting RalA (over RalB) in cancer cells. MLN8237 (alisertib) is a known inhibitor of aurora kinases; its specificity for AURKA, however, is compromised by its poor solubility and transport across the cell membrane. A polymer nanovesicle platform is used for the first time to deliver and differentially inhibit AURKA in cancer cells. For this purpose, polysaccharide nanovesicles made from amphiphilic dextran were used as nanocarriers to successfully administer MLN8237 (VMLN) in cancer cells in 2D and 3D microenvironments. These nanovesicles (<200 nm) carry the drug in their intermembrane space with up to 85% of it released by the action of esterase enzyme(s). Lysotracker experiments reveal the polymer nanovesicles localize in the lysosomal compartment of the cell, where they are enzymatically targeted and MLN released in a controlled manner. Rhodamine B fluorophore trapped in the nanovesicles hydrophilic core (VMLN+RhB) allows us to visualize its uptake and localization in cells in a 2D and 3D microenvironment. In breast cancer, MCF-7 cells VMLN inhibits AURKA significantly better than the free drug at low concentrations (0.02-0.04 μM). This ensures that the drug in VMLN at these concentrations can specifically inhibit up to 94% of endogenous AURKA without affecting AURKB. This targeting of AURKA causes the downstream differential inhibition of active RalA (but not RalB). Free MLN8237 at similar concentrations and conditions failed to affect RalA activation. VMLN-mediated inhibition of RalA, in turn, disrupts the anchorage-independent growth of MCF-7 cells supporting a role for the AURKA-RalA crosstalk in mediating the same. These studies not only identify the polysaccharide nanovesicle to be an improved way to efficiently deliver low concentrations of MLN8237 to inhibit AURKA but, in doing so, also help reveal a role for AURKA and its crosstalk with RalA in anchorage-independent growth of MCF-7 cells.
Collapse
|
68
|
DeLuca JG. Aurora A Kinase Function at Kinetochores. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:91-99. [PMID: 29700233 DOI: 10.1101/sqb.2017.82.034991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the most important regulatory aspects of chromosome segregation is the ability of kinetochores to precisely control their attachment strength to spindle microtubules. Central to this regulation is Aurora B, a mitotic kinase that phosphorylates kinetochore substrates to promote microtubule turnover. A critical target of Aurora B is the kinetochore protein Ndc80/Hec1, which is a component of the NDC80 complex, the primary force-transducing link between kinetochores and microtubules. Although Aurora B is regarded as the "master regulator" of kinetochore-microtubule attachment, it is becoming clear that this kinase is not solely responsible for phosphorylating Hec1 and other kinetochore substrates to facilitate microtubule turnover. In particular, there is growing evidence that Aurora A kinase, whose activities at spindle poles have been extensively described, has additional roles at kinetochores in regulating the kinetochore-microtubule interface.
Collapse
Affiliation(s)
- Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| |
Collapse
|
69
|
Evans EL, Becker JT, Fricke SL, Patel K, Sherer NM. HIV-1 Vif's Capacity To Manipulate the Cell Cycle Is Species Specific. J Virol 2018; 92:e02102-17. [PMID: 29321323 PMCID: PMC5972884 DOI: 10.1128/jvi.02102-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Cells derived from mice and other rodents exhibit profound blocks to HIV-1 virion production, reflecting species-specific incompatibilities between viral Tat and Rev proteins and essential host factors cyclin T1 (CCNT1) and exportin-1 (XPO1, also known as CRM1), respectively. To determine if mouse cell blocks other than CCNT1 and XPO1 affect HIV's postintegration stages, we studied HIV-1NL4-3 gene expression in mouse NIH 3T3 cells modified to constitutively express HIV-1-compatible versions of CCNT1 and XPO1 (3T3.CX cells). 3T3.CX cells supported both Rev-independent and Rev-dependent viral gene expression and produced relatively robust levels of virus particles, confirming that CCNT1 and XPO1 represent the predominant blocks to these stages. Unexpectedly, however, 3T3.CX cells were remarkably resistant to virus-induced cytopathic effects observed in human cell lines, which we mapped to the viral protein Vif and its apparent species-specific capacity to induce G2/M cell cycle arrest. Vif was able to mediate rapid degradation of human APOBEC3G and the PPP2R5D regulatory B56 subunit of the PP2A phosphatase holoenzyme in mouse cells, thus demonstrating that VifNL4-3's modulation of the cell cycle can be functionally uncoupled from some of its other defined roles in CUL5-dependent protein degradation. Vif was also unable to induce G2/M cell cycle arrest in other nonhuman cell types, including cells derived from nonhuman primates, leading us to propose that one or more human-specific cofactors underpin Vif's ability to modulate the cell cycle.IMPORTANCE Cells derived from mice and other rodents exhibit profound blocks to HIV-1 replication, thus hindering the development of a low-cost small-animal model for studying HIV/AIDS. Here, we engineered otherwise-nonpermissive mouse cells to express HIV-1-compatible versions of two species-specific host dependency factors, cyclin T1 (CCNT1) and exportin-1 (XPO1) (3T3.CX cells). We show that 3T3.CX cells rescue HIV-1 particle production but, unexpectedly, are completely resistant to virus-induced cytopathic effects. We mapped these effects to the viral accessory protein Vif, which induces a prolonged G2/M cell cycle arrest followed by apoptosis in human cells. Combined, our results indicate that one or more additional human-specific cofactors govern HIV-1's capacity to modulate the cell cycle, with potential relevance to viral pathogenesis in people and existing animal models.
Collapse
Affiliation(s)
- Edward L Evans
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jordan T Becker
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephanie L Fricke
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kishan Patel
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
70
|
Gavriilidis P, Poutahidis T, Giakoustidis A, Makedou K, Angelopoulou K, Hardas A, Andreani P, Zacharioudaki A, Saridis G, Gargavanis A, Louri E, Antoniadis N, Karampela E, Psychalakis N, Michalopoulos A, Papalois A, Iliadis S, Mudan S, Azoulay D, Giakoustidis D. Targeting hepatocarcinogenesis model in C56BL6 mice with pan-aurora kinase inhibitor Danusertib. J Cancer 2018; 9:914-922. [PMID: 29581770 PMCID: PMC5868156 DOI: 10.7150/jca.22329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/29/2018] [Indexed: 12/23/2022] Open
Abstract
Background: To elucidate the expression of Aurora kinases (AURK) and the anticancer effects of pan-aurora kinase inhibitor Danusertib in hepatocarcinogenesis model in C56Bl6 mice. Methods: Thirty mice C56Bl6 were randomly divided into Group A or control, Group B animals who underwent experimental hepatocarcinogenesis with diethylnitrosamine (DEN), and Group C animals with DEN-induced hepatocarcinogenenesis that treated with pan-aurora kinase inhibitor Danusertib. Primary antibodies for immunochistochemistry (IHC) included rabbit antibodies against Ki-67, DKK1, INCENP, cleaved caspase-3, NF-κB p65, c-Jun, β-catenin. Hepatocyte growth factor receptor (C-MET/HGFR) and Bcl-2 antagonist of cell death (BAD) serum levels were determined using a quantitative sandwich enzyme immunoassay technique. Results: Inhibition of AURK reduced the number of DEN-induced liver tumours. Apoptosis and proliferation was very low in both DEN-induced and anti- AURK groups respectively. The hepatocellular adenoma cells of DEN-treated mice uniformly had ample nuclear INCENP whereas in anti- AURK markedly decreased. Expression of β-catenin, NF-kB and c-Jun did not differ in liver tumors of both AURK -depleted and non-depleted mice. Conclusions: Depletion of AURK reduced the number of DEN-induced hepatic tumours. However, their size did not differ significantly between the groups.
Collapse
Affiliation(s)
- Paschalis Gavriilidis
- Department of Hepato-Pancreato-Biliary and Liver Transplant surgery, Queen Elizabeth University Hospitals Birmingham NHS Foundation Trust, B15 1NU, UK.,Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki, Greece
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | | | - Kali Makedou
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | - Katerina Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | - Alexander Hardas
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | - Paola Andreani
- Service de Chirurgie Digestive et Hépatobiliaire, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris-Université Paris-Est, Créteil, France
| | | | - George Saridis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | - Athanasios Gargavanis
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki, Greece
| | - Eleni Louri
- Academic Department of Surgery, The Royal Marsden Hospital, London, UK
| | - Nikolaos Antoniadis
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki, Greece
| | | | | | - Antonios Michalopoulos
- Propaedeutic Division of Surgery, Department of Surgery School of Medicine, Faculty of Health Sciences, Aristotle University and AHEPA University Hospital, Thessaloniki, Greece
| | | | - Stavros Iliadis
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | - Satvinder Mudan
- Academic Department of Surgery, The Royal Marsden Hospital, London, UK
| | - Daniel Azoulay
- Service de Chirurgie Digestive et Hépatobiliaire, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris-Université Paris-Est, Créteil, France
| | - Dimitrios Giakoustidis
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
71
|
Pitts TM, Bradshaw-Pierce EL, Bagby SM, Hyatt SL, Selby HM, Spreafico A, Tentler JJ, McPhillips K, Klauck PJ, Capasso A, Diamond JR, Davis SL, Tan AC, Arcaroli JJ, Purkey A, Messersmith WA, Ecsedy JA, Eckhardt SG. Antitumor activity of the aurora a selective kinase inhibitor, alisertib, against preclinical models of colorectal cancer. Oncotarget 2018; 7:50290-50301. [PMID: 27385211 PMCID: PMC5226583 DOI: 10.18632/oncotarget.10366] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022] Open
Abstract
Background The Aurora kinases are a family of serine/threonine kinases comprised of Aurora A, B, and C which execute critical steps in mitotic and meiotic progression. Alisertib (MLN8237) is an investigational Aurora A selective inhibitor that has demonstrated activity against a wide variety of tumor types in vitro and in vivo, including CRC. Results CRC cell lines demonstrated varying sensitivity to alisertib with IC50 values ranging from 0.06 to > 5 umol/L. Following exposure to alisertib we observed a decrease in pAurora A, B and C in four CRC cell lines. We also observed an increase in p53 and p21 in a sensitive p53 wildtype cell line in contrast to the p53 mutant cell line or the resistant cell lines. The addition of alisertib to standard CRC treatments demonstrated improvement over single agent arms; however, the benefit was largely less than additive, but not antagonistic. Methods Forty-seven CRC cell lines were exposed to alisertib and IC50s were calculated. Twenty-one PDX models were treated with alisertib and the Tumor Growth Inhibition Index was assessed. Additionally, 5 KRAS wildtype and mutant PDX models were treated with alisertib as single agent or in combination with cetuximab or irinotecan, respectively. Conclusion Alisertib demonstrated anti-proliferative effects against CRC cell lines and PDX models. Our data suggest that the addition of alisertib to standard therapies in colorectal cancer if pursued clinically, will require further investigation of patient selection strategies and these combinations may facilitate future clinical studies.
Collapse
Affiliation(s)
- Todd M Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erica L Bradshaw-Pierce
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Takeda California, San Diego, CA, USA
| | - Stacey M Bagby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie L Hyatt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Heather M Selby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Spreafico
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - John J Tentler
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly McPhillips
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Peter J Klauck
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Capasso
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer R Diamond
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Lindsey Davis
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aik Choon Tan
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John J Arcaroli
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alicia Purkey
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Wells A Messersmith
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffery A Ecsedy
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - S Gail Eckhardt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
72
|
Phan NN, Wang CY, Li KL, Chen CF, Chiao CC, Yu HG, Huang PL, Lin YC. Distinct expression of CDCA3, CDCA5, and CDCA8 leads to shorter relapse free survival in breast cancer patient. Oncotarget 2018; 9:6977-6992. [PMID: 29467944 PMCID: PMC5805530 DOI: 10.18632/oncotarget.24059] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/03/2018] [Indexed: 11/25/2022] Open
Abstract
Breast cancer is a dangerous disease that results in high mortality rates for cancer patients. Many methods have been developed for the treatment and prevention of this disease. Determining the expression patterns of certain target genes in specific subtypes of breast cancer is important for developing new therapies for breast cancer. In the present study, we performed a holistic approach to screening the mRNA expression of six members of the cell division cycle-associated gene family (CDCA) with a focus on breast cancer using the Oncomine and The Cancer Cell Line Encyclopedia (CCLE) databases. Furthermore, Gene Expression-Based Outcome for Breast Cancer Online (GOBO) was also used to deeply mine the expression of each CDCA gene in clinical breast cancer tissue and breast cancer cell lines. Finally, the mRNA expression of the CDCA genes as related to breast cancer patient survival were analyzed using a Kaplan-Meier plot. CDCA3, CDCA5, and CDCA8 mRNA expression levels were significantly higher than the control sample in both clinical tumor sample and cancer cell lines. These highly expressed genes in the tumors of breast cancer patients dramatically reduced patient survival. The interaction network of CDCA3, CDCA5, and CDCA8 with their co-expressed genes also revealed that CDCA3 expression was highly correlated with cell cycle related genes such as CCNB2, CDC20, CDKN3, and CCNB1. CDCA5 expression was correlated with BUB1 and TRIP13, while CDCA8 expression was correlated with BUB1 and CCNB1. Altogether, these findings suggested CDCA3, CDCA5, and CDCA8 could have a high potency as targeted breast cancer therapies.
Collapse
Affiliation(s)
- Nam Nhut Phan
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan.,NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Chih-Yang Wang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Lun Li
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Chien-Fu Chen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Han-Gang Yu
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Pung-Ling Huang
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan.,Department of Horticulture & Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
73
|
Wang B, Hsu CJ, Chou CH, Lee HL, Chiang WL, Su CM, Tsai HC, Yang SF, Tang CH. Variations in the AURKA Gene: Biomarkers for the Development and Progression of Hepatocellular Carcinoma. Int J Med Sci 2018; 15:170-175. [PMID: 29333101 PMCID: PMC5765730 DOI: 10.7150/ijms.22513] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a liver malignancy and a major cause of cancer mortality worldwide. AURKA (aurora kinase A) is a mitotic serine/threonine kinase that functions as an oncogene and plays a critical role in hepatocarcinogenesis. We report on the association between 4 single nucleotide polymorphisms (SNPs) of the AURKA gene (rs1047972, rs2273535, rs2064836, and rs6024836) and HCC susceptibility as well as clinical outcomes in 312 patients with HCC and in 624 cancer-free controls. We found that carriers of the TT allele of the variant rs1047972 were at greater risk of HCC compared with wild-type (CC) carriers. Moreover, carriers of at least one A allele in rs2273535 were less likely to progress to stage III/IV disease, develop large tumors or be classified into Child-Pugh class B or C. Individuals with at least one G allele at AURKA SNP rs2064863 were at lower risk of developing large tumors or progressing to Child-Pugh grade B or C. Our results indicate that genetic variations in the AURKA gene may serve as an important predictor of early-stage HCC and be a reliable biomarker for the development of HCC.
Collapse
Affiliation(s)
- Bin Wang
- Department of Hepatobiliary Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chin-Jung Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hsuan Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Lin Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Whei-Ling Chiang
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Hsiao-Chi Tsai
- Department of Scientific Education, Qinghai Red Cross Hospital, Xining City, Qinghai, China
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
74
|
Ding Y, Lian HF, Du Y. Clinicopathological significance of CHFR promoter methylation in gastric cancer: a meta-analysis. Oncotarget 2017. [PMID: 29515792 PMCID: PMC5839373 DOI: 10.18632/oncotarget.23394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mitotic checkpoint gene (CHFR) (Checkpoint with Forkhead-associated and Ring finger domains is a G2 phase/mitosis checkpoint and tumor-suppressor gene. Recent studies have reported the relationship of CHFR promoter methylation with clinicopathological significance of gastric cancer. However, the results remain unclear due to small size of sample. We pooled 15 studies including 827 gastric cancer patients and conducted a meta-analysis to investigate the clinicopathological significance of CHFR promoter methylation in gastric cancer. Our data revealed that the frequency of CHFR promoter methylation was higher in gastric cancer than in normal gastric tissue, Odd Ratio (OR) was 10.12 with 95% CI 5.17–19.79, p < 0.00001. Additionally, the rate of CHFR promoter methylation was significantly increased in high grade of gastric cancer compared to low grade, OR was 1.64 with 95% CI 1.00–2.68, p = 0.05. CHFR methylation was significantly associated with the positive lymph node metastasis, OR was 1.56 with 95% CI 1.05–2.32, p = 0.03. We concluded that CHFR could serve as a biomarker for diagnosis of gastric cancer, and a drug target for development of gene therapy in gastric cancer. CHFR promoter methylation is associated with tumor poor differentiation and lymph node metastasis.
Collapse
Affiliation(s)
- Yong Ding
- School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Hai-Feng Lian
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, 256600, China
| | - Yaowu Du
- Laboratory for Nanomedicine, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| |
Collapse
|
75
|
Wang C, Ma W, Wei R, Zhang X, Shen N, Shang L, E L, Wang Y, Gao L, Li X, Wang B, Zhang Y, Du A. Clinicopathological significance of CHFR methylation in non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget 2017; 8:109732-109739. [PMID: 29312643 PMCID: PMC5752556 DOI: 10.18632/oncotarget.21962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/25/2017] [Indexed: 11/25/2022] Open
Abstract
Checkpoint with Forkhead-associated and Ring finger domains (CHFR) is a G2/M checkpoint and tumor-suppressor gene. Recent publications showed the correlation of CHFR promoter methylation with clinicopathological significance of non-small cell lung cancer (NSCLC), however, the results remain inconsistent. The aim of this study is to investigate the Clinicopathological significance of CHFR promoter methylation in NSCLC with a meta-analysis. A total of nine studies were included in the meta-analysis that 816 patients were involved. Our data indicated that the frequency of CHFR promoter methylation was higher in NSCLC than in normal lung tissue, Odd Ratios (OR) was 9.92 with 95% corresponding confidence interval (CI) 2.17-45.23, p = 0.003. Further subgroup analysis revealed that CHFR promoter was more frequently methylated in squamous cell carcinoma (SCC) than in adenocarcinoma (ADC), OR was 4.46 with 95% CI 1.65-12.05, p = 0.003, suggesting the mechanism of SCC pathogenesis is different from ADC. Notably, CHFR promoter methylation was correlated with smoking behavior in NSCLC. In conclusion, CHFR could be a biomarker for diagnosis of NSCLC, and a promising drug target for development of gene therapy in SCC. CHFR promoter methylation is potentially associated with poor overall survival, additional studies need to be carried out for confirmation in future.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Wenxia Ma
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Rong Wei
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Xiaoqin Zhang
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Ningning Shen
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Lifang Shang
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Li E
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Ying Wang
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Lifang Gao
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Xin Li
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Bin Wang
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Yaping Zhang
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Aiping Du
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| |
Collapse
|
76
|
Moghadam AR, Patrad E, Tafsiri E, Peng W, Fangman B, Pluard TJ, Accurso A, Salacz M, Shah K, Ricke B, Bi D, Kimura K, Graves L, Najad MK, Dolatkhah R, Sanaat Z, Yazdi M, Tavakolinia N, Mazani M, Amani M, Ghavami S, Gartell R, Reilly C, Naima Z, Esfandyari T, Farassati F. Ral signaling pathway in health and cancer. Cancer Med 2017; 6:2998-3013. [PMID: 29047224 PMCID: PMC5727330 DOI: 10.1002/cam4.1105] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022] Open
Abstract
The Ral (Ras-Like) signaling pathway plays an important role in the biology of cells. A plethora of effects is regulated by this signaling pathway and its prooncogenic effectors. Our team has demonstrated the overactivation of the RalA signaling pathway in a number of human malignancies including cancers of the liver, ovary, lung, brain, and malignant peripheral nerve sheath tumors. Additionally, we have shown that the activation of RalA in cancer stem cells is higher in comparison with differentiated cancer cells. In this article, we review the role of Ral signaling in health and disease with a focus on the role of this multifunctional protein in the generation of therapies for cancer. An improved understanding of this pathway can lead to development of a novel class of anticancer therapies that functions on the basis of intervention with RalA or its downstream effectors.
Collapse
Affiliation(s)
- Adel Rezaei Moghadam
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
| | - Elham Patrad
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Elham Tafsiri
- Department of Pediatrics, Columbia Presbyterian Medical CenterNew YorkNew York
| | - Warner Peng
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Benjamin Fangman
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Timothy J Pluard
- Saint Luke's HospitalUniversity of Missouri at Kansas CityKansas CityMissouri
| | - Anthony Accurso
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Michael Salacz
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Kushal Shah
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Brandon Ricke
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Danse Bi
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Kyle Kimura
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Leland Graves
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Marzieh Khajoie Najad
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Roya Dolatkhah
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Zohreh Sanaat
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Mina Yazdi
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Naeimeh Tavakolinia
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Mohammad Mazani
- Pasteur Institute of IranTehranIran
- Ardabil University of Medical Sciences, BiochemistryArdabilIran
| | - Mojtaba Amani
- Pasteur Institute of IranTehranIran
- Ardabil University of Medical Sciences, BiochemistryArdabilIran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
| | - Robyn Gartell
- Department of Pediatrics, Columbia Presbyterian Medical CenterNew YorkNew York
| | - Colleen Reilly
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Zaid Naima
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Tuba Esfandyari
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Faris Farassati
- Research Service (151)Kansas City Veteran Affairs Medical Center & Midwest Biomedical Research Foundation4801 E Linwood BlvdKansas CityMissouri64128‐2226
| |
Collapse
|
77
|
Nair JS, Schwartz GK. MLN-8237: A dual inhibitor of aurora A and B in soft tissue sarcomas. Oncotarget 2017; 7:12893-903. [PMID: 26887042 PMCID: PMC4914329 DOI: 10.18632/oncotarget.7335] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/19/2016] [Indexed: 11/25/2022] Open
Abstract
Aurora kinases have become an attractive target in cancer therapy due to their deregulated expression in human tumors. Liposarcoma, a type of soft tissue sarcoma in adults, account for approximately 20% of all adult soft tissue sarcomas. There are no effective chemotherapies for majority of these tumors. Efforts made to define the molecular basis of liposarcomas lead to the finding that besides the amplifications of CDK4 and MDM2, Aurora Kinase A, also was shown to be overexpressed. Based on these as well as mathematic modeling, we have carried out a successful preclinical study using CDK4 and IGF1R inhibitors in liposarcoma. MLN8237 has been shown to be a potent and selective inhibitor of Aurora A. MLN-8237, as per our results, induces a differential inhibition of Aurora A and B in a dose dependent manner. At a low nanomolar dose, cellular effects such as induction of phospho-Histone H3 (Ser10) mimicked as that of the inhibition of Aurora kinase A followed by apoptosis. However, micromolar dose of MLN-8237 induced polyploidy, a hallmark effect of Aurora B inhibition. The dose dependent selectivity of inhibition was further confirmed by using siRNA specific inhibition of Aurora A and B. This was further tested by time lapse microscopy of GFP-H2B labelled cells treated with MLN-8237. LS141 xenograft model at a dose of 30 mg/kg also showed efficient growth suppression by selective inhibition of Aurora Kinase A. Based on our data, a dose that can target only Aurora A will be more beneficial in tumor suppression.
Collapse
Affiliation(s)
- Jayasree S Nair
- Jennifer Goodman Linn Laboratory of New Drug Development, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Gary K Schwartz
- Jennifer Goodman Linn Laboratory of New Drug Development, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
78
|
Shang YY, Yao M, Zhou ZW, Jian-Cui, Li-Xia, Hu RY, Yu YY, Qiong-Gao, Biao-Yang, Liu YX, Dang J, Zhou SF, Nan-Yu. Alisertib promotes apoptosis and autophagy in melanoma through p38 MAPK-mediated aurora a signaling. Oncotarget 2017; 8:107076-107088. [PMID: 29291012 PMCID: PMC5739797 DOI: 10.18632/oncotarget.22328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022] Open
Abstract
We investigated the efficacy of Alisertib (ALS), a selective Aurora kinase A (AURKA) inhibitor, in melanoma. We found that ALS exerts anti-proliferative, pro-apoptotic, and pro-autophagic effects on A375 and skmel-5 melanoma cells by inhibiting p38 MAPK signaling. SB202190, a p38 MAPK-selective inhibitor, enhanced ALS-induced apoptosis and autophagy in both cell lines. ALS induced cell cycle arrest in melanoma cells through activation of the p53/p21/cyclin B1 pathway. Knockdown of p38 MAPK enhanced ALS-induced apoptosis and reduced ALS-induced autophagy. Inhibition of autophagy sensitized melanoma cells to ALS-induced apoptosis. These data indicate ALS is a potential therapeutic agent for melanoma.
Collapse
Affiliation(s)
- Yuan-Yuan Shang
- Department of Dermatology, General Hospital of NingXia Medical University, Yinchuan, P.R.China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Ming Yao
- Department of Burns and Plastic Surgery, General Hospital of NingXia Medical University, Yinchuan, P.R.China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Jian-Cui
- Department of Anesthesia, General Hospital of NingXia Medical University, Yinchuan, P.R.China
| | - Li-Xia
- Department of Dermatology, General Hospital of NingXia Medical University, Yinchuan, P.R.China
| | - Rong-Ying Hu
- Department of Dermatology, General Hospital of NingXia Medical University, Yinchuan, P.R.China
| | - Ying-Yao Yu
- Department of Dermatology, General Hospital of NingXia Medical University, Yinchuan, P.R.China
| | - Qiong-Gao
- Department of Dermatology, General Hospital of NingXia Medical University, Yinchuan, P.R.China
| | - Biao-Yang
- Department of Dermatology, General Hospital of NingXia Medical University, Yinchuan, P.R.China
| | - Yu-Xi Liu
- Department of Dermatology, General Hospital of NingXia Medical University, Yinchuan, P.R.China
| | - Jie Dang
- Department of Medical Genetics and Cell Biology, Ningxia Medical University, Yinchuan, P.R.China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Nan-Yu
- Department of Dermatology, General Hospital of NingXia Medical University, Yinchuan, P.R.China
| |
Collapse
|
79
|
Huang M, Ma X, Shi H, Hu L, Fan Z, Pang L, Zhu F, Yang X, Xu W, Liu B, Zhu Z, Li C. FAM83D, a microtubule-associated protein, promotes tumor growth and progression of human gastric cancer. Oncotarget 2017; 8:74479-74493. [PMID: 29088801 PMCID: PMC5650356 DOI: 10.18632/oncotarget.20157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 06/02/2017] [Indexed: 01/16/2023] Open
Abstract
FAM83D, a microtubule-associated protein (MAP), is overexpressed in diverse types of human cancer. The expression and critical role of FAM83D in human gastric cancer (GC), however, remains largely unknown. Here, we conducted molecular, cellular and clinical analyses to evaluate the functional link of FAM83D to GC. FAM83D expression was elevated in gastric tumors, and its expression strongly correlated with lymph node metastasis and TNM stage. In addition, over-expression of FAM83D in GC cell lines enhanced cell proliferation, cycle progression, migration, invasion, as well as tumor growth and metastatic dissemination in vivo. Furthermore, FAM83D exhibited a strong cell cycle correlated expression. The knockdown of FAM83D inhibited the regrowth of microtubules in GC cells. FAM83D was co-immunoprecipitated with HMMR, TPX2, and AURKA, a set of drivers of mitosis progression. Taken together, our results demonstrate FAM83D as an important player in the development of human gastric cancer, and as a potential therapeutic target for the treatment of cancer.
Collapse
Affiliation(s)
- Minlu Huang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Xinjie Ma
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Hongpeng Shi
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Lei Hu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Zhiyuan Fan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Li Pang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Fan Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Xiao Yang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Wei Xu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Binya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Chen Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| |
Collapse
|
80
|
APIO-EE-9 is a novel Aurora A and B antagonist that suppresses esophageal cancer growth in a PDX mouse model. Oncotarget 2017; 8:53387-53404. [PMID: 28881819 PMCID: PMC5581118 DOI: 10.18632/oncotarget.18508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/10/2017] [Indexed: 12/14/2022] Open
Abstract
Esophageal cancer (EC) is one of the most aggressive malignancies of the upper aerodigestive tract. Over the past three decades, with advances in surgical techniques and treatment, the prognosis of esophageal cancer has only slowly improved. Thus identifying novel molecular targets and developing therapeutic agents are critical. Aurora kinases play a crucial role in mitosis and selective inhibitors might provide an effective therapeutic treatment for cancer. However, the role of Aurora kinases in EC is still inadequately studied. Here, we identified a novel compound, referred to as APIO-EE-9, which inhibits growth and colony formation and induces apoptosis of esophageal cancer cells. Using computer modeling, we found that APIO-EE-9 interacted with both Aurora A and B in the ATP-binding pocket. APIO-EE-9 inhibited both Aurora A and B kinase activities in a dose-dependent manner. Treatment with APIO-EE-9 substantially reduced the downstream Aurora kinase phosphorylation of histone H3 (Ser10), resulting in formation of multiple nuclei and centrosomes. Additionally, esophageal cancer cells expressing shAurora A or shAurora B kinase exhibited a dramatic reduction in proliferation and colony formation. Injection of these cells as xenografts in mice reduced tumor formation compared to wildtype cells. Importantly, APIO-EE-9 significantly decreased the size of esophageal patient-derived xenograft (PDX) tumors implanted in SCID mice. These results demonstrated that APIO-EE-9 is a specific Aurora kinase inhibitor that could be developed as a therapeutic agent against esophageal cancer.
Collapse
|
81
|
Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies. Nat Commun 2017; 8:15045. [PMID: 28429794 PMCID: PMC5413944 DOI: 10.1038/ncomms15045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/21/2017] [Indexed: 12/17/2022] Open
Abstract
The majority of breast cancer models for drug discovery are based on orthotopic or subcutaneous tumours. Therapeutic responses of metastases, especially microscopic metastases, are likely to differ from these tumours due to distinct cancer-microenvironment crosstalk in distant organs. Here, to recapitulate such differences, we established an ex vivo bone metastasis model, termed bone-in-culture array or BICA, by fragmenting mouse bones preloaded with breast cancer cells via intra-iliac artery injection. Cancer cells in BICA maintain features of in vivo bone micrometastases regarding the microenvironmental niche, gene expression profile, metastatic growth kinetics and therapeutic responses. Through a proof-of-principle drug screening using BICA, we found that danusertib, an inhibitor of the Aurora kinase family, preferentially inhibits bone micrometastases. In contrast, certain histone methyltransferase inhibitors stimulate metastatic outgrowth of indolent cancer cells, specifically in the bone. Thus, BICA can be used to investigate mechanisms involved in bone colonization and to rapidly test drug efficacies on bone micrometastases.
Collapse
|
82
|
Kao YT, Wu CH, Wu SY, Lan SH, Liu HS, Tseng YS. Arsenic treatment increase Aurora-A overexpression through E2F1 activation in bladder cells. BMC Cancer 2017; 17:277. [PMID: 28420331 PMCID: PMC5394624 DOI: 10.1186/s12885-017-3253-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/01/2017] [Indexed: 12/17/2022] Open
Abstract
Background Arsenic is a widely distributed metalloid compound that has biphasic effects on cultured cells. In large doses, arsenic can be toxic enough to trigger cell death. In smaller amounts, non-toxic doses may promote cell proliferation and induces carcinogenesis. Aberration of chromosome is frequently detected in epithelial cells and lymphocytes of individuals from arsenic contaminated areas. Overexpression of Aurora-A, a mitotic kinase, results in chromosomal instability and cell transformation. We have reported that low concentration (≦1 μM) of arsenic treatment increases Aurora-A expression in immortalized bladder urothelial E7 cells. However, how arsenic induces carcinogenesis through Aurora-A activation remaining unclear. Methods Bromodeoxyuridine (BrdU) staining, MTT assay, and flow cytometry assay were conducted to determine cell proliferation. Messenger RNA and protein expression levels of Aurora-A were detected by reverse transcriptional-PCR and Western blotting, respectively. Centrosome of cells was observed by immunofluorescent staining. The transcription factor of Aurora-A was investigated by promoter activity, chromosome immunoprecipitation (ChIP), and small interfering RNA (shRNA) assays. Mouse model was utilized to confirm the relationship between arsenic and Aurora-A. Results We reveal that low dosage of arsenic treatment increased cell proliferation is associated with accumulated cell population at S phase. We also detected increased Aurora-A expression at mRNA and protein levels in immortalized bladder urothelial E7 cells exposed to low doses of arsenic. Arsenic-treated cells displayed increased multiple centrosome which is resulted from overexpressed Aurora-A. Furthermore, the transcription factor, E2F1, is responsible for Aurora-A overexpression after arsenic treatment. We further disclosed that Aurora-A expression and cell proliferation were increased in bladder and uterus tissues of the BALB/c mice after long-term arsenic (1 mg/L) exposure for 2 months. Conclusion We reveal that low dose of arsenic induced cell proliferation is through Aurora-A overexpression, which is transcriptionally regulated by E2F1 both in vitro and in vivo. Our findings disclose a new possibility that arsenic at low concentration activates Aurora-A to induce carcinogenesis.
Collapse
Affiliation(s)
- Yu-Ting Kao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Han Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shan-Ying Wu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Hui Lan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Ya-Shih Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical technology, Tainan, Taiwan.
| |
Collapse
|
83
|
Al-Khafaji ASK, Marcus MW, Davies MPA, Risk JM, Shaw RJ, Field JK, Liloglou T. AURKA mRNA expression is an independent predictor of poor prognosis in patients with non-small cell lung cancer. Oncol Lett 2017; 13:4463-4468. [PMID: 28588715 DOI: 10.3892/ol.2017.6012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/17/2017] [Indexed: 12/16/2022] Open
Abstract
Deregulation of mitotic spindle genes has been reported to contribute to the development and progression of malignant tumours. The aim of the present study was to explore the association between the expression profiles of Aurora kinases (AURKA, AURKB and AURKC), cytoskeleton-associated protein 5 (CKAP5), discs large-associated protein 5 (DLGAP5), kinesin-like protein 11 (KIF11), microtubule nucleation factor (TPX2), monopolar spindle 1 kinase (TTK), and β-tubulins (TUBB) and (TUBB3) genes and clinicopathological characteristics in human non-small cell lung carcinoma (NSCLC). Reverse transcription-quantitative polymerase chain reaction-based RNA gene expression profiles of 132 NSCLC and 44 adjacent wild-type tissues were generated, and Cox's proportional hazard regression was used to examine associations. With the exception of AURKC, all genes exhibited increased expression in NSCLC tissues. Of the 10 genes examined, only AURKA was significantly associated with prognosis in NSCLC. Multivariate Cox's regression analysis demonstrated that AURKA mRNA expression [hazard ratio (HR), 1.81; 95% confidence interval (CI), 1.16-2.84; P=0.009], age (HR, 1.03; 95% CI, 1.00-1.06; P=0.020), pathological tumour stage 2 (HR, 2.43; 95% CI, 1.16-5.10; P=0.019) and involvement of distal nodes (pathological node stage 2) (HR, 3.14; 95% CI, 1.24-7.99; P=0.016) were independent predictors of poor prognosis in patients with NSCLC. Poor prognosis of patients with increased AURKA expression suggests that those patients may benefit from surrogate therapy with AURKA inhibitors.
Collapse
Affiliation(s)
- Ahmed S K Al-Khafaji
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L7 8TX, UK.,Department of Biology, College of Science, University of Baghdad, Al-Jadriya, Baghdad 10070, Iraq
| | - Michael W Marcus
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L7 8TX, UK
| | - Michael P A Davies
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L7 8TX, UK
| | - Janet M Risk
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L7 8TX, UK
| | - Richard J Shaw
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L7 8TX, UK
| | - John K Field
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L7 8TX, UK
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
84
|
Ferraz Nogueira Filho MA, Peer CJ, Nguyen J, McCalla A, Helman L, Figg WD. A simple and rapid UHPLC-MS/MS method for the quantitation of the dual aurora kinase A/B inhibitor SCH-1473759 in murine plasma. J Pharm Biomed Anal 2017; 132:223-226. [PMID: 27768921 DOI: 10.1016/j.jpba.2016.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 11/18/2022]
Abstract
The Aurora kinase family facilitates cell division through various processes and is overexpressed in a wide variety of human cancers, leading to aneuploidy. For that reason, these enzymes are currently targets of a rising class of anticancer drugs, with some molecules already in therapeutic use. In this study, a new UHPLC-MS/MS method was developed and validated to quantitate a new pan Aurora kinase inhibitor still in preclinical development, SCH-1473759. This bioanalytical method employed a liquid-liquid extraction from plasma using ethyl acetate before evaporation. Calibration range encompassed 0.5-2500ng/mL. The inter- and intra-day accuracy and precision were assessed over five quality control levels; all within limits required by the FDA guidelines. Assay applicability was demonstrated in a first-in-animals study with oral administration, where the maximum plasma concentration (34ng/mL) occurred at 1h, the half-life (1h) was consistent with a previous IV study, and oral bioavailability was poor (F=0.002).
Collapse
Affiliation(s)
- Marco A Ferraz Nogueira Filho
- Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, USA; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Cody J Peer
- Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, USA
| | - Jeffers Nguyen
- Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, USA
| | - Amy McCalla
- Molecular Oncology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Lee Helman
- Molecular Oncology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - William D Figg
- Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
85
|
Costa R, Carneiro B, Wainwright D, Santa-Maria C, Kumthekar P, Chae Y, Gradishar W, Cristofanilli M, Giles F. Developmental therapeutics for patients with breast cancer and central nervous system metastasis: current landscape and future perspectives. Ann Oncol 2017; 28:44-56. [PMID: 28177431 PMCID: PMC7360139 DOI: 10.1093/annonc/mdw532] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the second-leading cause of metastatic disease in the central nervous system (CNS). Recent advances in the biological understanding of breast cancer have facilitated an unprecedented increase of survival in a subset of patients presenting with metastatic breast cancer. Patients with HER2 positive (HER2+) or triple negative breast cancer are at highest risk of developing CNS metastasis, and typically experience a poor prognosis despite treatment with local and systemic therapies. Among the obstacles ahead in the realm of developmental therapeutics for breast cancer CNS metastasis is the improvement of our knowledge on its biological nuances and on the interaction of the blood–brain barrier with new compounds. This article reviews recent discoveries related to the underlying biology of breast cancer brain metastases, clinical progress to date and suggests rational approaches for investigational therapies.
Collapse
Affiliation(s)
- R. Costa
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - B.A. Carneiro
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - D.A. Wainwright
- Department of Pathology
- Department of Neurology
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - C.A. Santa-Maria
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | | | - Y.K. Chae
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - W.J. Gradishar
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - M. Cristofanilli
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - F.J. Giles
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| |
Collapse
|
86
|
Fathi AT, Wander SA, Blonquist TM, Brunner AM, Amrein PC, Supko J, Hermance NM, Manning AL, Sadrzadeh H, Ballen KK, Attar EC, Graubert TA, Hobbs G, Joseph C, Perry AM, Burke M, Silver R, Foster J, Bergeron M, Ramos AY, Som TT, Fishman KM, McGregor KL, Connolly C, Neuberg DS, Chen YB. Phase I study of the aurora A kinase inhibitor alisertib with induction chemotherapy in patients with acute myeloid leukemia. Haematologica 2016; 102:719-727. [PMID: 28034990 PMCID: PMC5395112 DOI: 10.3324/haematol.2016.158394] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/26/2016] [Indexed: 12/17/2022] Open
Abstract
Aberrant expression of aurora kinase A is implicated in the genesis of various
neoplasms, including acute myeloid leukemia. Alisertib, an aurora A kinase
inhibitor, has demonstrated efficacy as monotherapy in trials of myeloid
malignancy, and this efficacy appears enhanced in combination with conventional
chemotherapies. In this phase I, dose-escalation study, newly diagnosed patients
received conventional induction with cytarabine and idarubicin, after which
alisertib was administered for 7 days. Dose escalation occurred
via cohorts. Patients could then receive up to four cycles
of consolidation, incorporating alisertib, and thereafter alisertib maintenance
for up to 12 months. Twenty-two patients were enrolled. One dose limiting
toxicity occurred at dose level 2 (prolonged thrombocytopenia), and the
recommended phase 2 dose was established at 30mg twice daily. Common
therapy-related toxicities included cytopenias and mucositis. Only three
(14%) patients had persistent disease at mid-cycle, requiring
“5+2” reinduction. The composite remission rate (complete
remission and complete remission with incomplete neutrophil recovery) was
86% (nineteen of twenty-two patients; 90% CI
68–96%). Among those over age 65 and those with high-risk
disease (secondary acute leukemia or cytogenetically high-risk disease), the
composite remission rate was 88% and 100%, respectively. The
median follow up was 13.5 months. Of those treated at the recommended phase 2
dose, the 12-month overall survival and progression-free survival were
62% (90% CI 33–81%) and 42% (90%
CI 17–65%), respectively. Alisertib is well tolerated when
combined with induction chemotherapy in acute myeloid leukemia, with a promising
suggestion of efficacy. (clinicaltrials.gov Identifier:01779843).
Collapse
Affiliation(s)
- Amir T Fathi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Seth A Wander
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | | | - Andrew M Brunner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Philip C Amrein
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Jeffrey Supko
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Nicole M Hermance
- Worcester Polytechnic Institute, Department of Biology, Worcester, MA, USA
| | - Amity L Manning
- Worcester Polytechnic Institute, Department of Biology, Worcester, MA, USA
| | - Hossein Sadrzadeh
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Karen K Ballen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Eyal C Attar
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Timothy A Graubert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Gabriela Hobbs
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Christelle Joseph
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Ashley M Perry
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Meghan Burke
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Regina Silver
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Julia Foster
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Meghan Bergeron
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Aura Y Ramos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Tina T Som
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Kaitlyn M Fishman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Kristin L McGregor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Christine Connolly
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Donna S Neuberg
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Yi-Bin Chen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| |
Collapse
|
87
|
Fell VL, Walden EA, Hoffer SM, Rogers SR, Aitken AS, Salemi LM, Schild-Poulter C. Ku70 Serine 155 mediates Aurora B inhibition and activation of the DNA damage response. Sci Rep 2016; 6:37194. [PMID: 27849008 PMCID: PMC5111114 DOI: 10.1038/srep37194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022] Open
Abstract
The Ku heterodimer (Ku70/Ku80) is the central DNA binding component of the classical non-homologous end joining (NHEJ) pathway that repairs DNA double-stranded breaks (DSBs), serving as the scaffold for the formation of the NHEJ complex. Here we show that Ku70 is phosphorylated on Serine 155 in response to DNA damage. Expression of Ku70 bearing a S155 phosphomimetic substitution (Ku70 S155D) in Ku70-deficient mouse embryonic fibroblasts (MEFs) triggered cell cycle arrest at multiple checkpoints and altered expression of several cell cycle regulators in absence of DNA damage. Cells expressing Ku70 S155D exhibited a constitutive DNA damage response, including ATM activation, H2AX phosphorylation and 53BP1 foci formation. Ku70 S155D was found to interact with Aurora B and to have an inhibitory effect on Aurora B kinase activity. Lastly, we demonstrate that Ku and Aurora B interact following ionizing radiation treatment and that Aurora B inhibition in response to DNA damage is dependent upon Ku70 S155 phosphorylation. This uncovers a new pathway where Ku may relay signaling to Aurora B to enforce cell cycle arrest in response to DNA damage.
Collapse
Affiliation(s)
- Victoria L Fell
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Elizabeth A Walden
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Sarah M Hoffer
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Stephanie R Rogers
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Amelia S Aitken
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Louisa M Salemi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
88
|
Imai Y, Maru Y, Tanaka J. Action mechanisms of histone deacetylase inhibitors in the treatment of hematological malignancies. Cancer Sci 2016; 107:1543-1549. [PMID: 27554046 PMCID: PMC5132279 DOI: 10.1111/cas.13062] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022] Open
Abstract
Histone deacetylases (HDACs) critically regulate gene expression by determining the acetylation status of histones. Studies have increasingly focused on the activities of HDACs, especially involving non-histone proteins, and their various biological effects. Aberrant HDAC expression observed in several kinds of human tumors makes HDACs potential targets for cancer treatment. Several preclinical studies have suggested that HDAC inhibitors show some efficacy in the treatment of acute myelogenous leukemia with AML1-ETO, which mediates transcriptional repression through its interaction with a complex including HDAC1. Recurrent mutations in epigenetic regulators are found in T-cell lymphomas (TCLs), and HDAC inhibitors and hypomethylating agents were shown to act cooperatively in the treatment of TCLs. Preclinical modeling has suggested that persistent activation of the signal transducer and activator of transcription signaling pathway could serve as a useful biomarker of resistance to HDAC inhibitor in patients with cutaneous TCL. Panobinostat, a pan-HDAC inhibitor, in combination with bortezomib and dexamethasone, has achieved longer progression-free survival in patients with relapsed/refractory multiple myeloma (MM) than the placebo in combination with bortezomib and dexamethasone. Panobinostat inhibited MM cell growth by degrading protein phosphatase 3 catalytic subunit α (PPP3CA), a catalytic subunit of calcineurin. This degradation was suggested to be mediated by the blockade of the chaperone function of heat shock protein 90 due to HDAC6 inhibition. Aberrant PPP3CA expression in advanced MM indicated a possible correlation between high PPP3CA expression and the pathogenesis of MM. Furthermore, PPP3CA was suggested as a common target of panobinostat and bortezomib.
Collapse
Affiliation(s)
- Yoichi Imai
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, Tokyo, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
89
|
A phase 2 study of alisertib (MLN8237) in recurrent or persistent uterine leiomyosarcoma: An NRG Oncology/Gynecologic Oncology Group study 0231D. Gynecol Oncol 2016; 144:96-100. [PMID: 28094040 DOI: 10.1016/j.ygyno.2016.10.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/13/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This two-stage Phase II study assessed the activity of single agent alisertib in patients with recurrent/persistent uterine leiomyosarcoma (uLMS). METHODS Eligibility criteria included histologically-confirmed, recurrent or persistent uLMS, age≥18, 1-2 prior cytotoxic regimens, and RECIST version 1.1 measurable disease. The primary objective of the study was to evaluate the efficacy of alisertib through the frequency of patients with objective tumor responses and the frequency who survived event-free for at least 6months (EFS6). The endpoints for EFS were RECIST progression, death, or beginning a subsequent therapy. The null hypothesis jointly specified the probability of a patient experiencing a tumor response to less than or equal to 5% and the probability of a patient surviving event-free for at least 6months to less than or equal to 20%. A two-stage design was used with a target accrual of 23 patients for stage 1 and 47 pts. cumulative for stage 2. Confidence intervals do not correct for multiplicity. RESULTS Twenty-three patients were enrolled with two patients excluded on central histology review, yielding 21 eligible patients. Median age was 61years. Prior treatment was either 1 cytotoxic regimen (71.4%) or 2 (28.6%). The most common treatment related AEs (grade 3 or worse) were anemia Hensley et al. (2008a) , leukopenia Hensley et al. (2008b) , neutropenia Maki et al. (2007) , thrombocytopenia Huang et al. (2012) , mucositis Hensley et al. (2008a) , diarrhea Huang et al. (2012) , and palmer-planter syndrome Zivanovic et al. (2012) . There were no objective responses (0%; 90% CI: 0-10.4%). Best response was stable disease (38.1%); 12 patients had progressive disease (57.1%). EFS6 was 0% (90% CI: 0-10.4%). Median PFS and OS were 1.7 (90% CI: 1.4-3.2) and 14.5months (90% CI: 7.6 - NA), respectively. CONCLUSION Alisertib did not demonstrate clinically meaningful single agent activity in previously treated uLMS.
Collapse
|
90
|
Willems E, Lombard A, Dedobbeleer M, Goffart N, Rogister B. The Unexpected Roles of Aurora A Kinase in Gliobastoma Recurrences. Target Oncol 2016; 12:11-18. [DOI: 10.1007/s11523-016-0457-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
91
|
Hu Z, Mao JH, Curtis C, Huang G, Gu S, Heiser L, Lenburg ME, Korkola JE, Bayani N, Samarajiwa S, Seoane JA, A. Dane M, Esch A, Feiler HS, Wang NJ, Hardwicke MA, Laquerre S, Jackson J, W. Wood K, Weber B, Spellman PT, Aparicio S, Wooster R, Caldas C, Gray JW. Genome co-amplification upregulates a mitotic gene network activity that predicts outcome and response to mitotic protein inhibitors in breast cancer. Breast Cancer Res 2016; 18:70. [PMID: 27368372 PMCID: PMC4930593 DOI: 10.1186/s13058-016-0728-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High mitotic activity is associated with the genesis and progression of many cancers. Small molecule inhibitors of mitotic apparatus proteins are now being developed and evaluated clinically as anticancer agents. With clinical trials of several of these experimental compounds underway, it is important to understand the molecular mechanisms that determine high mitotic activity, identify tumor subtypes that carry molecular aberrations that confer high mitotic activity, and to develop molecular markers that distinguish which tumors will be most responsive to mitotic apparatus inhibitors. METHODS We identified a coordinately regulated mitotic apparatus network by analyzing gene expression profiles for 53 malignant and non-malignant human breast cancer cell lines and two separate primary breast tumor datasets. We defined the mitotic network activity index (MNAI) as the sum of the transcriptional levels of the 54 coordinately regulated mitotic apparatus genes. The effect of those genes on cell growth was evaluated by small interfering RNA (siRNA). RESULTS High MNAI was enriched in basal-like breast tumors and was associated with reduced survival duration and preferential sensitivity to inhibitors of the mitotic apparatus proteins, polo-like kinase, centromere associated protein E and aurora kinase designated GSK462364, GSK923295 and GSK1070916, respectively. Co-amplification of regions of chromosomes 8q24, 10p15-p12, 12p13, and 17q24-q25 was associated with the transcriptional upregulation of this network of 54 mitotic apparatus genes, and we identify transcription factors that localize to these regions and putatively regulate mitotic activity. Knockdown of the mitotic network by siRNA identified 22 genes that might be considered as additional therapeutic targets for this clinically relevant patient subgroup. CONCLUSIONS We define a molecular signature which may guide therapeutic approaches for tumors with high mitotic network activity.
Collapse
Affiliation(s)
- Zhi Hu
- />Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., CH13B, Portland, OR 97239 USA
| | - Jian-Hua Mao
- />Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94127 USA
| | - Christina Curtis
- />Department of Medicine, Division of Oncology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Ge Huang
- />Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., CH13B, Portland, OR 97239 USA
| | - Shenda Gu
- />Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., CH13B, Portland, OR 97239 USA
| | - Laura Heiser
- />Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., CH13B, Portland, OR 97239 USA
| | - Marc E. Lenburg
- />Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02215 USA
| | - James E. Korkola
- />Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., CH13B, Portland, OR 97239 USA
| | - Nora Bayani
- />Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94127 USA
| | | | - Jose A. Seoane
- />Department of Medicine, Division of Oncology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Mark A. Dane
- />Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., CH13B, Portland, OR 97239 USA
| | - Amanda Esch
- />Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., CH13B, Portland, OR 97239 USA
| | - Heidi S. Feiler
- />Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., CH13B, Portland, OR 97239 USA
| | - Nicholas J. Wang
- />Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., CH13B, Portland, OR 97239 USA
| | | | | | | | | | | | - Paul T. Spellman
- />Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., CH13B, Portland, OR 97239 USA
| | - Samuel Aparicio
- />Molecular Oncology, BC Cancer Research Centre, Vancouver, Canada
| | | | - Carlos Caldas
- />Cancer Research UK, Cambridge Institute, Cambridge, UK
| | - Joe W. Gray
- />Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., CH13B, Portland, OR 97239 USA
| |
Collapse
|
92
|
Duhamel S, Girondel C, Dorn JF, Tanguay PL, Voisin L, Smits R, Maddox PS, Meloche S. Deregulated ERK1/2 MAP kinase signaling promotes aneuploidy by a Fbxw7β-Aurora A pathway. Cell Cycle 2016; 15:1631-42. [PMID: 27152455 DOI: 10.1080/15384101.2016.1183851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aneuploidy is a common feature of human solid tumors and is often associated with poor prognosis. There is growing evidence that oncogenic signaling pathways, which are universally dysregulated in cancer, contribute to the promotion of aneuploidy. However, the mechanisms connecting signaling pathways to the execution of mitosis and cytokinesis are not well understood. Here, we show that hyperactivation of the ERK1/2 MAP kinase pathway in epithelial cells impairs cytokinesis, leading to polyploidization and aneuploidy. Mechanistically, deregulated ERK1/2 signaling specifically downregulates expression of the F-box protein Fbxw7β, a substrate-binding subunit of the SCF(Fbxw7) ubiquitin ligase, resulting in the accumulation of the mitotic kinase Aurora A. Reduction of Aurora A levels by RNA interference or pharmacological inhibition of MEK1/2 reverts the defect in cytokinesis and decreases the frequency of abnormal cell divisions induced by oncogenic H-Ras(V12). Reciprocally, overexpression of Aurora A or silencing of Fbxw7β phenocopies the effect of H-Ras(V12) on cell division. In vivo, conditional activation of MEK2 in the mouse intestine lowers Fbxw7β expression, resulting in the accumulation of cells with enlarged nuclei. We propose that the ERK1/2/ Fbxw7β/Aurora A axis identified in this study contributes to genomic instability and tumor progression.
Collapse
Affiliation(s)
- Stéphanie Duhamel
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,b Program of Molecular Biology, Université de Montréal , Montreal , Quebec , Canada
| | - Charlotte Girondel
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,c Department of Pharmacology , Université de Montréal , Montreal , Quebec , Canada
| | - Jonas F Dorn
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada
| | - Pierre-Luc Tanguay
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada
| | - Laure Voisin
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada
| | - Ron Smits
- d Department of Gastroenterology and Hepatology , Erasmus MC , Rotterdam , The Netherlands
| | - Paul S Maddox
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,e Department of Pathology and Cell Biology , Université de Montréal , Montreal , Quebec , Canada
| | - Sylvain Meloche
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,b Program of Molecular Biology, Université de Montréal , Montreal , Quebec , Canada.,c Department of Pharmacology , Université de Montréal , Montreal , Quebec , Canada
| |
Collapse
|
93
|
Garrido G, Vernos I. Non-centrosomal TPX2-Dependent Regulation of the Aurora A Kinase: Functional Implications for Healthy and Pathological Cell Division. Front Oncol 2016; 6:88. [PMID: 27148480 PMCID: PMC4831974 DOI: 10.3389/fonc.2016.00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 01/09/2023] Open
Abstract
Aurora A has been extensively characterized as a centrosomal kinase with essential functions during cell division including centrosome maturation and separation and spindle assembly. However, Aurora A localization is not restricted to the centrosomes and compelling evidence support the existence of specific mechanisms of activation and functions for non-centrosomal Aurora A in the dividing cell. It has been now well established that spindle assembly involves an acentrosomal RanGTP-dependent pathway that triggers microtubule assembly and organization in the proximity of the chromosomes whether centrosomes are present or not. The mechanism involves the regulation of a number of NLS-containing proteins, generically called SAFS (Spindle Assembly Factors) that exert their functions upon release from karyopherins by RanGTP. One of them, the nuclear protein TPX2 interacts with and activates Aurora A upon release from importins by RanGTP. This basic mechanism triggers the activation of Aurora A in the proximity of the chromosomes potentially translating the RanGTP signaling gradient centered on the chromosome into an Aurora A phosphorylation network. Here, we will review our current knowledge on the RanGTP-dependent TPX2 activation of Aurora A away from centrosomes: from the mechanism of activation and its functional consequences on the kinase stability and regulation to its roles in spindle assembly and cell division. We will then focus on the substrates of the TPX2-activated Aurora A having a role in microtubule nucleation, stabilization, and organization. Finally, we will briefly discuss the implications of the use of Aurora A inhibitors in anti-tumor therapies in the light of its functional interaction with TPX2.
Collapse
Affiliation(s)
- Georgina Garrido
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
94
|
Fan Y, Lu H, An L, Wang C, Zhou Z, Feng F, Ma H, Xu Y, Zhao Q. Effect of active fraction of Eriocaulon sieboldianum on human leukemia K562 cells via proliferation inhibition, cell cycle arrest and apoptosis induction. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:13-20. [PMID: 26923230 DOI: 10.1016/j.etap.2015.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/26/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Eriocaulon sieboldianum (Sieb. & Zucc. ex Steud.), a genus of Eriocaulon in the Eriocaulaceae family, is an edible and medicinal plant used in traditional Chinese medicine. It was processed into healthcare beverages for expelling wind-heat, protecting eyes, and reducing blood fat. Also, it has been used with other herbs as Traditional Chinese herbal compound to treat cancer as adjuvants in tumor therapy in China. However, the active fractions and precise cellular mechanisms of E. sieboldianum extract remain to be illustrated. The goal of this study was to investigate the effects of the active fraction of E. sieboldianum on the growth of K562 cells and understand the possible mechanisms of its action. Our findings suggested that the fraction E3 of E. sieboldianum could effectively inhibit the activity of Aurora kinase and induce apoptosis via blocking cell cycle, up-regulating the expression of proapoptotic proteins including p53 and Bax and reducing the expression of Bcl-2. The levels of Cytochrome C, cleaved caspase-9, cleaved caspase-3 and cleaved PARP were also found to be increased after treatment with fraction E3 of E. sieboldianum. This study could improve the development of E. sieboldianum and raise its application value in cancer adjuvant therapy. Considering it is both a dietary supplement and a traditional Chinese herbal medicine which exhibits anticancer activities, it can be developed into functional food.
Collapse
Affiliation(s)
- Yanhua Fan
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongyuan Lu
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li An
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Changli Wang
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China
| | - Zhipeng Zhou
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fan Feng
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China
| | - Hongda Ma
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China
| | - Yongnan Xu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| |
Collapse
|
95
|
Mahankali M, Henkels KM, Speranza F, Gomez-Cambronero J. A non-mitotic role for Aurora kinase A as a direct activator of cell migration upon interaction with PLD, FAK and Src. J Cell Sci 2016; 128:516-26. [PMID: 25501815 PMCID: PMC4311130 DOI: 10.1242/jcs.157339] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Timely activation of Aurora kinase A (AURA, also known as AURKA) is vital for centrosome formation and the progression of mitosis. Nonetheless, it is still unclear if and when other cellular functions are activated by AURA. We report here that Src phosphorylates and activates AURA at T288, and AURA also activates focal adhesion kinase (FAK, also known as PTK2), leading to initiation of cell movement. An additional and new way by which AURA is regulated, is by phospholipase D2 (PLD2), which causes AURA activation. In addition, AURA phosphorylates PLD, so both proteins engage in a positive reinforcement loop. AURA and PLD2 form a protein–protein complex and colocalize to cytoplasmic regions in cells. The reason why PLD activates AURA is because of the production of phosphatidic acid by the lipase, which binds directly to AURA, with the region E171–E211 projected to be a phosphatidic-acid-binding pocket. Furthermore, this direct interaction with phosphatidic acid enhances tubulin polymerization and cooperates synergistically with AURA, FAK and Src in yielding a fully effectual cellular migration. Thus, Src and FAK, and PLD and phosphatidic acid are new upstream regulators of AURA that mediate its role in the non-mitotic cellular function of cell migration.
Collapse
|
96
|
D'Assoro AB, Haddad T, Galanis E. Aurora-A Kinase as a Promising Therapeutic Target in Cancer. Front Oncol 2016; 5:295. [PMID: 26779440 PMCID: PMC4701905 DOI: 10.3389/fonc.2015.00295] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/11/2015] [Indexed: 12/14/2022] Open
Abstract
Mammalian Aurora family of serine/threonine kinases are master regulators of mitotic progression and are frequently overexpressed in human cancers. Among the three members of the Aurora kinase family (Aurora-A, -B, and -C), Aurora-A and Aurora-B are expressed at detectable levels in somatic cells undergoing mitotic cell division. Aberrant Aurora-A kinase activity has been implicated in oncogenic transformation through the development of chromosomal instability and tumor cell heterogeneity. Recent studies also reveal a novel non-mitotic role of Aurora-A activity in promoting tumor progression through activation of epithelial-mesenchymal transition reprograming resulting in the genesis of tumor-initiating cells. Therefore, Aurora-A kinase represents an attractive target for cancer therapeutics, and the development of small molecule inhibitors of Aurora-A oncogenic activity may improve the clinical outcomes of cancer patients. In the present review, we will discuss mitotic and non-mitotic functions of Aurora-A activity in oncogenic transformation and tumor progression. We will also review the current clinical studies, evaluating small molecule inhibitors of Aurora-A activity and their efficacy in the management of cancer patients.
Collapse
Affiliation(s)
- Antonino B D'Assoro
- Department of Medical Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tufia Haddad
- Department of Medical Oncology, Mayo Clinic College of Medicine , Rochester, MN , USA
| | - Evanthia Galanis
- Department of Medical Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
97
|
Hsu JF, Hsieh PY, Hsu HY, Shigeto S. When cells divide: Label-free multimodal spectral imaging for exploratory molecular investigation of living cells during cytokinesis. Sci Rep 2015; 5:17541. [PMID: 26632877 PMCID: PMC4668386 DOI: 10.1038/srep17541] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022] Open
Abstract
In vivo, molecular-level investigation of cytokinesis, the climax of the cell cycle, not only deepens our understanding of how life continues, but it will also open up new possibilities of diagnosis/prognosis of cancer cells. Although fluorescence-based methods have been widely employed to address this challenge, they require a fluorophore to be designed for a specific known biomolecule and introduced into the cell. Here, we present a label-free spectral imaging approach based on multivariate curve resolution analysis of Raman hyperspectral data that enables exploratory untargeted studies of mammalian cell cytokinesis. We derived intrinsic vibrational spectra and intracellular distributions of major biomolecular components (lipids and proteins) in dividing and nondividing human colon cancer cells. In addition, we discovered an unusual autofluorescent lipid component that appears predominantly in the vicinity of the cleavage furrow during cytokinesis. This autofluorescence signal could be utilized as an endogenous probe for monitoring and visualizing cytokinesis in vivo.
Collapse
Affiliation(s)
- Jen-Fang Hsu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Pei-Ying Hsieh
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Hsin-Yun Hsu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Shinsuke Shigeto
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| |
Collapse
|
98
|
Karachaliou N, Pilotto S, Teixidó C, Viteri S, González-Cao M, Riso A, Morales-Espinosa D, Molina MA, Chaib I, Santarpia M, Richardet E, Bria E, Rosell R. Melanoma: oncogenic drivers and the immune system. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:265. [PMID: 26605311 PMCID: PMC4630557 DOI: 10.3978/j.issn.2305-5839.2015.08.06] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 12/19/2022]
Abstract
Advances and in-depth understanding of the biology of melanoma over the past 30 years have contributed to a change in the consideration of melanoma as one of the most therapy-resistant malignancies. The finding that oncogenic BRAF mutations drive tumor growth in up to 50% of melanomas led to a molecular therapy revolution for unresectable and metastatic disease. Moving beyond BRAF, inactivation of immune regulatory checkpoints that limit T cell responses to melanoma has provided targets for cancer immunotherapy. In this review, we discuss the molecular biology of melanoma and we focus on the recent advances of molecularly targeted and immunotherapeutic approaches.
Collapse
|
99
|
Zullo KM, Guo Y, Cooke L, Jirau-Serrano X, Mangone M, Scotto L, Amengual JE, Mao Y, Nandakumar R, Cremers S, Duong J, Mahadevan D, O'Connor OA. Aurora A Kinase Inhibition Selectively Synergizes with Histone Deacetylase Inhibitor through Cytokinesis Failure in T-cell Lymphoma. Clin Cancer Res 2015; 21:4097-109. [PMID: 25878331 PMCID: PMC4581881 DOI: 10.1158/1078-0432.ccr-15-0033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/24/2015] [Indexed: 01/23/2023]
Abstract
PURPOSE Aurora A kinase (AAK) is expressed exclusively during mitosis, and plays a critical role in centrosome duplication and spindle formation. Alisertib is a highly selective AAK inhibitor that has demonstrated marked clinical activity of alisertib across a spectrum of lymphomas, though particularly in patients with T-cell lymphoma (TCL). We sought to compare and contrast the activity of alisertib in preclinical models of B-cell lymphoma (BCL) and TCL, and identify combinations worthy of clinical study. High-throughput screening of pralatrexate, the proteasome inhibitor (ixazomib), and the histone deacetylase (HDAC) inhibitor (romidepsin) revealed that only romidepsin synergized with alisertib, and only in models of TCL. We discovered that the mechanism of synergy between AAK inhibitors and HDAC inhibitors appears to be mediated through cytokinesis failure. EXPERIMENTAL DESIGN A high-throughput screening approach was used to identify drugs that were potentially synergistic in combination with alisertib. Live-cell imaging was used to explore the mechanistic basis for the drug: drug interaction between alisertib and romidepsin. An in vivo xenograft TCL model was used to confirm in vitro results. RESULTS In vitro, alisertib exhibited concentration-dependent cytotoxicity in BCL and TCL cell lines. Alisertib was synergistic with romidepsin in a T-cell-specific fashion that was confirmed in vivo. Live-cell imaging demonstrated that the combination treatment resulted in profound cytokinesis failure. CONCLUSIONS These data strongly suggest that the combination of alisertib and romidepsin is highly synergistic in TCL through modulation of cytokinesis and merits clinical development.
Collapse
Affiliation(s)
- Kelly M Zullo
- Department of Medicine, Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Yige Guo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Laurence Cooke
- University of Tennessee Health Science Center, West Cancer Center, Memphis, Tennessee
| | - Xavier Jirau-Serrano
- Department of Medicine, Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Michael Mangone
- Department of Medicine, Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Luigi Scotto
- Department of Medicine, Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Jennifer E Amengual
- Department of Medicine, Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Yinghui Mao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Renu Nandakumar
- Irving Institute for Clinical and Translational Research, Columbia University Medical Center, New York, New York
| | - Serge Cremers
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York. Irving Institute for Clinical and Translational Research, Columbia University Medical Center, New York, New York
| | - Jimmy Duong
- Mailman School of Public Health, Columbia University, New York, New York
| | - Daruka Mahadevan
- University of Tennessee Health Science Center, West Cancer Center, Memphis, Tennessee
| | - Owen A O'Connor
- Department of Medicine, Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York.
| |
Collapse
|
100
|
Xing Z, Gao S, Duan Y, Han H, Li L, Yang Y, Li Q. Delivery of DNAzyme targeting aurora kinase A to inhibit the proliferation and migration of human prostate cancer. Int J Nanomedicine 2015; 10:5715-27. [PMID: 26425080 PMCID: PMC4583550 DOI: 10.2147/ijn.s90559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Herein, a polyethylenimine derivative N-acetyl-l-leucine-polyethylenimine (N-Ac-l-Leu-PEI) was employed as a carrier to achieve the delivery of DNAzyme targeting aurora kinase A using PC-3 cell as a model. Flow cytometry and confocal laser scanning microscopy demonstrated that the derivative could realize the cellular uptake of nanoparticles in an energy-dependent and clathrin-mediated pathway and obtain a high DNAzyme concentration in the cytoplasm through further endosomal escape. After DNAzyme transfection, expression level of aurora kinase A would be downregulated at the protein level. Meanwhile, the inhibition of cell proliferation was observed through 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell colony formation assay, attributing to the activation of apoptosis and cell cycle arrest. Through flow cytometric analysis, an early apoptotic ratio of 25.93% and G2 phase of 22.58% has been detected after N-Ac-l-Leu-PEI-mediated DNAzyme transfection. Finally, wound healing and Transwell migration assay showed that DNAzyme transfection could efficiently inhibit the cell migration. These results demonstrated that N-Ac-l-Leu-PEI could successfully mediate the DNAzyme delivery and downregulate the expression level of aurora kinase A, triggering a significant inhibitory effect of excessive proliferation and migration of tumor cells.
Collapse
Affiliation(s)
- Zhen Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Sai Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Yan Duan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Li Li
- Department of Clinic Library, Changchun Women and Children's Health, Changchun, People's Republic of China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| |
Collapse
|