51
|
Ziegler-Waldkirch S, Meyer-Luehmann M. The Role of Glial Cells and Synapse Loss in Mouse Models of Alzheimer's Disease. Front Cell Neurosci 2018; 12:473. [PMID: 30618627 PMCID: PMC6297249 DOI: 10.3389/fncel.2018.00473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/20/2018] [Indexed: 11/13/2022] Open
Abstract
Synapse loss has detrimental effects on cellular communication, leading to network disruptions within the central nervous system (CNS) such as in Alzheimer’s disease (AD). AD is characterized by a progressive decline of memory function, cognition, neuronal and synapse loss. The two main neuropathological hallmarks are amyloid-β (Aβ) plaques and neurofibrillary tangles. In the brain of AD patients and in mouse models of AD several morphological and functional changes, such as microgliosis and astrogliosis around Aβ plaques, as well as dendritic and synaptic alterations, are associated with these lesions. In this review article, we will summarize the current literature on synapse loss in mouse models of AD and discuss current and prospective treatments for AD.
Collapse
Affiliation(s)
- Stephanie Ziegler-Waldkirch
- Department of Neurology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
52
|
Hanganu A, Houde JC, Fonov VS, Degroot C, Mejia-Constain B, Lafontaine AL, Soland V, Chouinard S, Collins LD, Descoteaux M, Monchi O. White matter degeneration profile in the cognitive cortico-subcortical tracts in Parkinson's disease. Mov Disord 2018; 33:1139-1150. [PMID: 29683523 DOI: 10.1002/mds.27364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In Parkinson's disease cognitive impairment is an early nonmotor feature, but it is still unclear why some patients are able to maintain their cognitive performance at normal levels, as quantified by neuropsychological tests, whereas others cannot. The objectives of this study were to perform a cross-sectional study and analyze the white matter changes in the cognitive and motor bundles in patients with Parkinson's disease. METHODS Sixteen Parkinson's disease patients with normal cognitive performance, 19 with mild cognitive impairment (based on their performance of 1.5 standard deviations below the healthy population mean), and 16 healthy controls were compared with respect to their tractography patterns between the cortical cognitive / motor regions and subcortical structures, using high angular resolution diffusion imaging and constrained spherical deconvolution computation. RESULTS Motor bundles showed decreased apparent fiber density in both PD groups, associated with a significant increase in diffusivity metrics, number of reconstructed streamlines, and track volumes, compared with healthy controls. By contrast, in the cognitive bundles, decreased fiber density in both Parkinson's groups was compounded by the absence of changes in diffusivity in patients with normal cognition, whereas patients with cognitive impairment had increased diffusivity metrics, lower numbers of reconstructed streamlines, and lower track volumes. CONCLUSIONS Both PD groups showed similar patterns of white matter neurodegeneration in the motor bundles, whereas cognitive bundles showed a distinct pattern: Parkinson's patients with normal cognition had white matter diffusivity metrics similar to healthy controls, whereas in patients with cognitive impairment white matter showed a neurodegeneration pattern. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexandru Hanganu
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Jean-Christophe Houde
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vladimir S Fonov
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Clotilde Degroot
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Beatriz Mejia-Constain
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
| | - Anne-Louise Lafontaine
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.,Movement Disorders Unit, McGill University Health Center, Montréal, Quebec, Canada
| | - Valérie Soland
- Unité des Troubles du Mouvement André Barbeau, Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Sylvain Chouinard
- Unité des Troubles du Mouvement André Barbeau, Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Louis D Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Oury Monchi
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.,Department of Radiology, Faculty of Medicine, University of Montréal, Montréal, Quebec, Canada
| |
Collapse
|
53
|
Adams KL, Gallo V. The diversity and disparity of the glial scar. Nat Neurosci 2017; 21:9-15. [PMID: 29269757 DOI: 10.1038/s41593-017-0033-9] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023]
Abstract
Injury or disease to the CNS results in multifaceted cellular and molecular responses. One such response, the glial scar, is a structural formation of reactive glia around an area of severe tissue damage. While traditionally viewed as a barrier to axon regeneration, beneficial functions of the glial scar have also been recently identified. In this Perspective, we discuss the divergent roles of the glial scar during CNS regeneration and explore the possibility that these disparities are due to functional heterogeneity within the cells of the glial scar-specifically, astrocytes, NG2 glia and microglia.
Collapse
Affiliation(s)
- Katrina L Adams
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, USA.
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
54
|
Heterogeneity and function of hippocampal macroglia. Cell Tissue Res 2017; 373:653-670. [PMID: 29204745 DOI: 10.1007/s00441-017-2746-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022]
Abstract
The contribution of glial cells to normal and impaired hippocampal function is increasingly being recognized, although important questions as to the mechanisms that these cells use for their crosstalk with neurons and capillaries are still unanswered or lead to controversy. Astrocytes in the hippocampus are morphologically variable and a single cell contacts with its processes more than 100,000 synapses. They predominantly express inward rectifier K+ channels and transporters serving homeostatic function but may also release gliotransmitters to modify neuronal signaling and brain circulation. Intracellular Ca2+ transients are key events in the interaction of astrocytes with neurons and the vasculature. Hippocampal NG2 glia represent a population of cells with proliferative capacity throughout adulthood. Intriguingly, they receive direct synaptic input from pyramidal neurons and interneurons and express a multitude of ion channels and receptors. Despite in-depth knowledge about the features of these transmembrane proteins, the physiological impact of NG2 glial cells and their synaptic input remain nebulous. Because of the low abundance of oligodendrocytes in the hippocampus, limited information is available about their specific properties. Given the multitude of signaling molecules expressed by the various types of hippocampal glial cells (and because of space constraints), we focus, in this review, on those properties that are considered key for the interaction of the respective cell type with its neighborhood.
Collapse
|
55
|
Platelet Endothelial Cell Adhesion Molecule-1 and Oligodendrogenesis: Significance in Alcohol Use Disorders. Brain Sci 2017; 7:brainsci7100131. [PMID: 29035306 PMCID: PMC5664058 DOI: 10.3390/brainsci7100131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/01/2017] [Accepted: 10/07/2017] [Indexed: 12/11/2022] Open
Abstract
Alcoholism is a chronic relapsing disorder with few therapeutic strategies that address the core pathophysiology. Brain tissue loss and oxidative damage are key components of alcoholism, such that reversal of these phenomena may help break the addictive cycle in alcohol use disorder (AUD). The current review focuses on platelet endothelial cell adhesion molecule 1 (PECAM-1), a key modulator of the cerebral endothelial integrity and neuroinflammation, and a targetable transmembrane protein whose interaction within AUD has not been well explored. The current review will elaborate on the function of PECAM-1 in physiology and pathology and infer its contribution in AUD neuropathology. Recent research reveals that oligodendrocytes, whose primary function is myelination of neurons in the brain, are a key component in new learning and adaptation to environmental challenges. The current review briefly introduces the role of oligodendrocytes in healthy physiology and neuropathology. Importantly, we will highlight the recent evidence of dysregulation of oligodendrocytes in the context of AUD and then discuss their potential interaction with PECAM-1 on the cerebral endothelium.
Collapse
|
56
|
Multipotency and therapeutic potential of NG2 cells. Biochem Pharmacol 2017; 141:42-55. [DOI: 10.1016/j.bcp.2017.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
|
57
|
Suárez-Pozos E, Martínez-Lozada Z, Méndez-Flores OG, Guillem AM, Hernández-Kelly LC, Castelán F, Olivares-Bañuelos TN, Chi-Castañeda D, Najimi M, Ortega A. Characterization of the cystine/glutamate antiporter in cultured Bergmann glia cells. Neurochem Int 2017; 108:52-59. [DOI: 10.1016/j.neuint.2017.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 01/18/2023]
|
58
|
Mount CW, Monje M. Wrapped to Adapt: Experience-Dependent Myelination. Neuron 2017; 95:743-756. [PMID: 28817797 PMCID: PMC5667660 DOI: 10.1016/j.neuron.2017.07.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 02/03/2023]
Abstract
Activity of the nervous system has long been recognized as a critical modulator of brain structure and function. Influences of experience on the cytoarchitecture and functional connectivity of neurons have been appreciated since the classic work of Hubel and Wiesel (1963; Wiesel and Hubel, 1963a, 1963b). In recent years, a similar structural plasticity has come to light for the myelinated infrastructure of the nervous system. While an innate program of myelin development proceeds independently of nervous system activity, increasing evidence supports a role for activity-dependent, plastic changes in myelin-forming cells that influence myelin structure and neurological function. Accumulating evidence of complementary and likely temporally overlapping activity-independent and activity-dependent modes of myelination are beginning to crystallize in a model of myelin plasticity, with broad implications for neurological function in health and disease.
Collapse
Affiliation(s)
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
59
|
Windrem MS, Osipovitch M, Liu Z, Bates J, Chandler-Militello D, Zou L, Munir J, Schanz S, McCoy K, Miller RH, Wang S, Nedergaard M, Findling RL, Tesar PJ, Goldman SA. Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia. Cell Stem Cell 2017; 21:195-208.e6. [PMID: 28736215 PMCID: PMC5576346 DOI: 10.1016/j.stem.2017.06.012] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/02/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023]
Abstract
In this study, we investigated whether intrinsic glial dysfunction contributes to the pathogenesis of schizophrenia (SCZ). Our approach was to establish humanized glial chimeric mice using glial progenitor cells (GPCs) produced from induced pluripotent stem cells derived from patients with childhood-onset SCZ. After neonatal implantation into myelin-deficient shiverer mice, SCZ GPCs showed premature migration into the cortex, leading to reduced white matter expansion and hypomyelination relative to controls. The SCZ glial chimeras also showed delayed astrocytic differentiation and abnormal astrocytic morphologies. When established in myelin wild-type hosts, SCZ glial mice showed reduced prepulse inhibition and abnormal behavior, including excessive anxiety, antisocial traits, and disturbed sleep. RNA-seq of cultured SCZ human glial progenitor cells (hGPCs) revealed disrupted glial differentiation-associated and synaptic gene expression, indicating that glial pathology was cell autonomous. Our data therefore suggest a causal role for impaired glial maturation in the development of schizophrenia and provide a humanized model for its in vivo assessment.
Collapse
Affiliation(s)
- Martha S Windrem
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mikhail Osipovitch
- Center for Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, 2200 Copenhagen N, Denmark
| | - Zhengshan Liu
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Janna Bates
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Devin Chandler-Militello
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lisa Zou
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jared Munir
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven Schanz
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katherine McCoy
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Robert H Miller
- Department of Neuroscience, George Washington University School of Medicine, Washington, D.C. 20037, USA
| | - Su Wang
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, 2200 Copenhagen N, Denmark
| | - Robert L Findling
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul J Tesar
- Department of Genetics, Case Western University Medical School, Cleveland, OH 44106, USA
| | - Steven A Goldman
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, 2200 Copenhagen N, Denmark; Neuroscience Center, Rigshospitalet, 2100 Copenhagen, Denmark.
| |
Collapse
|
60
|
Theofilas P, Steinhäuser C, Theis M, Derouiche A. Morphological study of a connexin 43-GFP reporter mouse highlights glial heterogeneity, amacrine cells, and olfactory ensheathing cells. J Neurosci Res 2017; 95:2182-2194. [PMID: 28370142 DOI: 10.1002/jnr.24055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 11/09/2022]
Abstract
Connexin 43 (Cx43) is the main astrocytic connexin and forms the basis of the glial syncytium. The morphology of connexin-expressing cells can be best studied in transgenic mouse lines expressing cytoplasmic fluorescent reporters, since immunolabeling the plaques can obscure the shapes of the individual cells. The Cx43kiECFP mouse generated by Degen et al. (FASEBJ 26:4576, 2012) expresses cytosolic ECFP and has previously been used to establish that Cx43 may not be expressed by all astrocytes within a population, and this can vary in a region-dependent way. To establish this mouse line as a tool for future astrocyte and connexin research, we sought to consolidate reporter authenticity, studying cell types and within-region population heterogeneity. Applying anti-GFP, all cell types related to astroglia were positive-namely, protoplasmic astrocytes in the hippocampus, cortex, thalamus, spinal cord, olfactory bulb, cerebellum with Bergmann glia and astrocytes also in the molecular layer, and retinal Müller cells and astrocytes. Labeled cell types further comprise white matter astrocytes, olfactory ensheathing cells, radial glia-like stem cells, retinal pigment epithelium cells, ependymal cells, and meningeal cells. We furthermore describe a retinal Cx43-expressing amacrine cell morphologically reminiscent of ON-OFF wide-field amacrine cells, representing the first example of a mammalian CNS neuron-expressing Cx43 protein. In double staining with cell type-specific markers (GFAP, S100ß, glutamine synthetase), Cx43 reporter expression in the hippocampus and cortex was restricted to GFAP+ astrocytes. Altogether, this mouse line is a highly reliable tool for studies of Cx43-expressing CNS cells and astroglial cell morphology. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Panos Theofilas
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany.,Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Martin Theis
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Amin Derouiche
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany.,Dr. Senckenbergische Anatomie, Institute for Anatomy II, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
61
|
Ca 2+-permeable AMPA receptors in mouse olfactory bulb astrocytes. Sci Rep 2017; 7:44817. [PMID: 28322255 PMCID: PMC5359673 DOI: 10.1038/srep44817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023] Open
Abstract
Ca2+ signaling in astrocytes is considered to be mainly mediated by metabotropic receptors linked to intracellular Ca2+ release. However, recent studies demonstrate a significant contribution of Ca2+ influx to spontaneous and evoked Ca2+ signaling in astrocytes, suggesting that Ca2+ influx might account for astrocytic Ca2+ signaling to a greater extent than previously thought. Here, we investigated AMPA-evoked Ca2+ influx into olfactory bulb astrocytes in mouse brain slices using Fluo-4 and GCaMP6s, respectively. Bath application of AMPA evoked Ca2+ transients in periglomerular astrocytes that persisted after neuronal transmitter release was inhibited by tetrodotoxin and bafilomycin A1. Withdrawal of external Ca2+ suppressed AMPA-evoked Ca2+ transients, whereas depletion of Ca2+ stores had no effect. Both Ca2+ transients and inward currents induced by AMPA receptor activation were partly reduced by Naspm, a blocker of Ca2+-permeable AMPA receptors lacking the GluA2 subunit. Antibody staining revealed a strong expression of GluA1 and GluA4 and a weak expression of GluA2 in periglomerular astrocytes. Our results indicate that Naspm-sensitive, Ca2+-permeable AMPA receptors contribute to Ca2+ signaling in periglomerular astrocytes in the olfactory bulb.
Collapse
|
62
|
Maki T. Novel roles of oligodendrocyte precursor cells in the developing and damaged brain. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/cen3.12358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Takakuni Maki
- Department of Neurology; Graduate School of Medicine; Kyoto University; Kyoto Japan
| |
Collapse
|
63
|
Seifert G, Henneberger C, Steinhäuser C. Diversity of astrocyte potassium channels: An update. Brain Res Bull 2016; 136:26-36. [PMID: 27965079 DOI: 10.1016/j.brainresbull.2016.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 01/08/2023]
Abstract
Astrocyte K+ channels and the K+ currents they mediate dwarf all other transmembrane conductances in these cells. This defining feature of astrocytes and its functional implications have been investigated intensely over the past decades. Nonetheless, many aspects of astrocyte K+ handling and signaling remain incompletely understood. In this review, we provide an update on the diversity of K+ channels expressed by astrocytes and new functional implications. We focus on inwardly-rectifying K+ channels (particularly Kir4.1), two-pore K+ channels and voltage and Ca2+-dependent K+ channels. We further discuss new insights into the involvement of these K+ channels in K+ buffering, control of synaptic transmission, regulation of the vasculature and in diseases of the central nervous system.
Collapse
Affiliation(s)
- Gerald Seifert
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany; German Center of Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute of Neurology, University College London, London, United Kingdom
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.
| |
Collapse
|
64
|
Recovery from Toxic-Induced Demyelination Does Not Require the NG2 Proteoglycan. PLoS One 2016; 11:e0163841. [PMID: 27755537 PMCID: PMC5068753 DOI: 10.1371/journal.pone.0163841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/15/2016] [Indexed: 12/24/2022] Open
|
65
|
Hadzic M, Jack A, Wahle P. Ionotropic glutamate receptors: Which ones, when, and where in the mammalian neocortex. J Comp Neurol 2016; 525:976-1033. [PMID: 27560295 DOI: 10.1002/cne.24103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
A multitude of 18 iGluR receptor subunits, many of which are diversified by splicing and RNA editing, localize to >20 excitatory and inhibitory neocortical neuron types defined by physiology, morphology, and transcriptome in addition to various types of glial, endothelial, and blood cells. Here we have compiled the published expression of iGluR subunits in the areas and cell types of developing and adult cortex of rat, mouse, carnivore, bovine, monkey, and human as determined with antibody- and mRNA-based techniques. iGluRs are differentially expressed in the cortical areas and in the species, and all have a unique developmental pattern. Differences are quantitative rather than a mere absence/presence of expression. iGluR are too ubiquitously expressed and of limited use as markers for areas or layers. A focus has been the iGluR profile of cortical interneuron types. For instance, GluK1 and GluN3A are enriched in, but not specific for, interneurons; moreover, the interneurons expressing these subunits belong to different types. Adressing the types is still a major hurdle because type-specific markers are lacking, and the frequently used neuropeptide/CaBP signatures are subject to regulation by age and activity and vary as well between species and areas. RNA-seq reveals almost all subunits in the two morphofunctionally characterized interneuron types of adult cortical layer I, suggesting a fairly broad expression at the RNA level. It remains to be determined whether all proteins are synthesized, to which pre- or postsynaptic subdomains in a given neuron type they localize, and whether all are involved in synaptic transmission. J. Comp. Neurol. 525:976-1033, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minela Hadzic
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
66
|
Tang Y, Illes P. Regulation of adult neural progenitor cell functions by purinergic signaling. Glia 2016; 65:213-230. [PMID: 27629990 DOI: 10.1002/glia.23056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 01/30/2023]
Abstract
Extracellular purines are signaling molecules in the neurogenic niches of the brain and spinal cord, where they activate cell surface purinoceptors at embryonic neural stem cells (NSCs) and adult neural progenitor cells (NPCs). Although mRNA and protein are expressed at NSCs/NPCs for almost all subtypes of the nucleotide-sensitive P2X/P2Y, and the nucleoside-sensitive adenosine receptors, only a few of those have acquired functional significance. ATP is sequentially degraded by ecto-nucleotidases to ADP, AMP, and adenosine with agonistic properties for distinct receptor-classes. Nucleotides/nucleosides facilitate or inhibit NSC/NPC proliferation, migration and differentiation. The most ubiquitous effect of all agonists (especially of ATP and ADP) appears to be the facilitation of cell proliferation, usually through P2Y1Rs and sometimes through P2X7Rs. However, usually P2X7R activation causes necrosis/apoptosis of NPCs. Differentiation can be initiated by P2Y2R-activation or P2X7R-blockade. A key element in the transduction mechanism of either receptor is the increase of the intracellular free Ca2+ concentration, which may arise due to its release from intracellular storage sites (G protein-coupling; P2Y) or due to its passage through the receptor-channel itself from the extracellular space (ATP-gated ion channel; P2X). Further research is needed to clarify how purinergic signaling controls NSC/NPC fate and how the balance between the quiescent and activated states is established with fine and dynamic regulation. GLIA 2017;65:213-230.
Collapse
Affiliation(s)
- Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, 04107, Germany
| |
Collapse
|
67
|
Wheeler NA, Fuss B. Extracellular cues influencing oligodendrocyte differentiation and (re)myelination. Exp Neurol 2016; 283:512-30. [PMID: 27016069 PMCID: PMC5010977 DOI: 10.1016/j.expneurol.2016.03.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/03/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
There is an increasing number of neurologic disorders found to be associated with loss and/or dysfunction of the CNS myelin sheath, ranging from the classic demyelinating disease, multiple sclerosis, through CNS injury, to neuropsychiatric diseases. The disabling burden of these diseases has sparked a growing interest in gaining a better understanding of the molecular mechanisms regulating the differentiation of the myelinating cells of the CNS, oligodendrocytes (OLGs), and the process of (re)myelination. In this context, the importance of the extracellular milieu is becoming increasingly recognized. Under pathological conditions, changes in inhibitory as well as permissive/promotional cues are thought to lead to an overall extracellular environment that is obstructive for the regeneration of the myelin sheath. Given the general view that remyelination is, even though limited in human, a natural response to demyelination, targeting pathologically 'dysregulated' extracellular cues and their downstream pathways is regarded as a promising approach toward the enhancement of remyelination by endogenous (or if necessary transplanted) OLG progenitor cells. In this review, we will introduce the extracellular cues that have been implicated in the modulation of (re)myelination. These cues can be soluble, part of the extracellular matrix (ECM) or mediators of cell-cell interactions. Their inhibitory and permissive/promotional roles with regard to remyelination as well as their potential for therapeutic intervention will be discussed.
Collapse
Affiliation(s)
- Natalie A Wheeler
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
68
|
Adermark L, Bowers MS. Disentangling the Role of Astrocytes in Alcohol Use Disorder. Alcohol Clin Exp Res 2016; 40:1802-16. [PMID: 27476876 PMCID: PMC5407469 DOI: 10.1111/acer.13168] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/02/2016] [Indexed: 01/29/2023]
Abstract
Several laboratories recently identified that astrocytes are critical regulators of addiction machinery. It is now known that astrocyte pathology is a common feature of ethanol (EtOH) exposure in both humans and animal models, as even brief EtOH exposure is sufficient to elicit long-lasting perturbations in astrocyte gene expression, activity, and proliferation. Astrocytes were also recently shown to modulate the motivational properties of EtOH and other strongly reinforcing stimuli. Given the role of astrocytes in regulating glutamate homeostasis, a crucial component of alcohol use disorder (AUD), astrocytes might be an important target for the development of next-generation alcoholism treatments. This review will outline some of the more prominent features displayed by astrocytes, how these properties are influenced by acute and long-term EtOH exposure, and future directions that may help to disentangle astrocytic from neuronal functions in the etiology of AUD.
Collapse
Affiliation(s)
- Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Box 410, SE-405 30 Gothenburg, Sweden
| | - M. Scott Bowers
- Department of Psychiatry, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298, USA
- Faulk Center for Molecular Therapeutics, Northwestern University; Aptinyx,, Evanston, Il 60201, USA
| |
Collapse
|
69
|
Grealish S, Drouin-Ouellet J, Parmar M. Brain repair and reprogramming: the route to clinical translation. J Intern Med 2016; 280:265-75. [PMID: 27539906 DOI: 10.1111/joim.12475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The adult brain has a very limited capacity for generation of new neurons, and neurogenesis only takes place in restricted regions. Some evidence for neurogenesis after injury has been reported, but few, if any, neurons are replaced after brain injury or degeneration, and the permanent loss of neurons leads to long-term disability and loss of brain function. For decades, researchers have been developing cell transplantation using exogenous cell sources for brain repair, and this method has now been shown to successfully restore lost function in experimental and clinical trials. Here, we review the development of cell-replacement strategies for brain repair in Parkinson's disease using the example of human foetal brain cells being successfully translated from preclinical findings to clinical trials. These trials demonstrate that cell-replacement therapy is a viable option for patients with Parkinson's disease, but more importantly also show how the limited availability of foetal cells calls for development of novel cell sources and methods for generating new neurons for brain repair. We focus on new stem cell sources that are on the threshold of clinical application for brain repair and discuss emerging cellular reprogramming technologies. Reviewing the current status of direct neural conversion, both in vitro and in vivo, where somatic cells are directly reprogrammed into functional neurons without passing through a stem cell intermediate, we conclude that both methods result in the successful replacement of new neurons that mature and integrate into the host brain. Thus, this new field shows great promise for future brain repair, although much work is still needed in preclinical animal models before it can be seriously considered for clinical applications.
Collapse
Affiliation(s)
- S Grealish
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - J Drouin-Ouellet
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - M Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
70
|
Serwanski DR, Jukkola P, Nishiyama A. Heterogeneity of astrocyte and NG2 cell insertion at the node of ranvier. J Comp Neurol 2016; 525:535-552. [PMID: 27448245 DOI: 10.1002/cne.24083] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 01/06/2023]
Abstract
The node of Ranvier is a functionally important site on the myelinated axon where sodium channels are clustered and regeneration of action potentials occurs, allowing fast saltatory conduction of action potentials. Early ultrastructural studies have revealed the presence of "glia" or "astrocytes" at the nodes. NG2 cells, also known as oligodendrocyte precursor cells or polydendrocytes, which are a resident glial cell population in the mature mammalian central nervous system that is distinct from astrocytes, have also been shown to extend processes that contact the nodes. However, the prevalence of the two types of glia at the node has remained unknown. We have used specific cell surface markers to examine the association of NG2 cells and astrocytes with the nodes of Ranvier in the optic nerve, corpus callosum, and spinal cord of young adult mice or rats. We show that more than 95% of the nodes in all three regions contained astrocyte processes, while 33-49% of nodes contained NG2 cell processes. NG2 cell processes were associated more frequently with larger nodes. A few nodes were devoid of glial apposition. Electron microscopy and stimulated emission depletion (STED) super-resolution microscopy confirmed the presence of dual glial insertion at some nodes and further revealed that NG2 cell processes contacted the nodal membrane at discrete points, while astrocytes had broader processes that surrounded the nodes. The study provides the first systematic quantitative analysis of glial cell insertions at central nodes of Ranvier. J. Comp. Neurol. 525:535-552, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David R Serwanski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Peter Jukkola
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| |
Collapse
|
71
|
Baraban M, Mensch S, Lyons DA. Adaptive myelination from fish to man. Brain Res 2016; 1641:149-161. [PMID: 26498877 PMCID: PMC4907128 DOI: 10.1016/j.brainres.2015.10.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 01/06/2023]
Abstract
Myelinated axons with nodes of Ranvier are an evolutionary elaboration common to essentially all jawed vertebrates. Myelin made by Schwann cells in our peripheral nervous system and oligodendrocytes in our central nervous system has been long known to facilitate rapid energy efficient nerve impulse propagation. However, it is now also clear, particularly in the central nervous system, that myelin is not a simple static insulator but that it is dynamically regulated throughout development and life. New myelin sheaths can be made by newly differentiating oligodendrocytes, and mature myelin sheaths can be stimulated to grow again in the adult. Furthermore, numerous studies in models from fish to man indicate that neuronal activity can affect distinct stages of oligodendrocyte development and the process of myelination itself. This begs questions as to how these effects of activity are mediated at a cellular and molecular level and whether activity-driven adaptive myelination is a feature common to all myelinated axons, or indeed all oligodendrocytes, or is specific to cells or circuits with particular functions. Here we review the recent literature on this topic, elaborate on the key outstanding questions in the field, and look forward to future studies that incorporate investigations in systems from fish to man that will provide further insight into this fundamental aspect of nervous system plasticity. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Marion Baraban
- Centre for Neuroregeneration, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Sigrid Mensch
- Centre for Neuroregeneration, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - David A Lyons
- Centre for Neuroregeneration, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK.
| |
Collapse
|
72
|
Moshrefi-Ravasdjani B, Dublin P, Seifert G, Jennissen K, Steinhäuser C, Kafitz KW, Rose CR. Changes in the proliferative capacity of NG2 cell subpopulations during postnatal development of the mouse hippocampus. Brain Struct Funct 2016; 222:831-847. [PMID: 27306788 DOI: 10.1007/s00429-016-1249-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/05/2016] [Indexed: 12/29/2022]
Abstract
Besides astrocytes and oligodendrocytes, NG2 proteoglycan-expressing cells (NG2 glia) represent a third subtype of macroglia in the brain. Originally described as oligodendrocyte precursor cells, they feature several characteristics not expected from mere progenitor cells, including synaptic connections with neurons. There is accumulating evidence that the properties of NG2 glia differ between different brain regions and developmental stages. To further analyze this proposed heterogeneity, we studied electrophysiological properties, transcript and protein expression, distribution and proliferative capacity of NG2 glia during postnatal development, focusing on the hippocampus and corpus callosum. All NG2 glia displayed a 'complex' current pattern consisting of voltage- and time-dependent in- and outward currents. In juvenile mice, Kir current densities and rectification index were highly variable and on average significantly lower than in adult animals. Single cell RT-PCR analyses of electrophysiologically characterized cells demonstrated that different glial genes were expressed at variable extent, independent of developmental stage and genetic background. In the hippocampus proper and the corpus callosum, the density of NG2 glia was highest at postnatal days (P)10-12, decreased by ~50 % at P25-35 and then remained stable in adults (P80-90). Interestingly, co-expression of NG2 and S100β, a marker for mature astrocytes, increased from 7 % at P10-12 to 27 % at P25-35 in the hippocampus proper, and then dropped again in the stratum radiatum at P80-90. In the dentate gyrus and corpus callosum, co-expression of NG2 and S100β was very low (3 %) and constant throughout development. Age-related differences were also observed with Ki-67, a proliferation marker. In NG2 glia of the CA1 region, its expression decreased from 16 % at P10-12 to 9 % (P25-35) and then 3 % (P80-90). Triple-stainings revealed that Ki-67 was also expressed in 2-3 % of NG2/S100β-positive cells in the juvenile and mature stratum radiatum, indicating that the latter, in contrast to S100β-positive astrocytes, still host proliferative potential. Taken together, we found significant differences in transcript and protein expression, electrophysiological properties and proliferative capacity of NG2 glia in the mouse forebrain, suggesting the co-existence of several subpopulations of NG2 glia. Our data thus support the idea of a substantial regional and developmental heterogeneity in this subtype of macroglia.
Collapse
Affiliation(s)
| | - Pavel Dublin
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105, Bonn, Germany
| | - Katja Jennissen
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105, Bonn, Germany
| | - Karl W Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
73
|
Lopez Juarez A, He D, Richard Lu Q. Oligodendrocyte progenitor programming and reprogramming: Toward myelin regeneration. Brain Res 2016; 1638:209-220. [PMID: 26546966 PMCID: PMC5119932 DOI: 10.1016/j.brainres.2015.10.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 01/26/2023]
Abstract
Demyelinating diseases such as multiple sclerosis (MS) are among the most disabling and cost-intensive neurological disorders. The loss of myelin in the central nervous system, produced by oligodendrocytes (OLs), impairs saltatory nerve conduction, leading to motor and cognitive deficits. Immunosuppression therapy has a limited efficacy in MS patients, arguing for a paradigm shift to strategies that target OL lineage cells to achieve myelin repair. The inhibitory microenvironment in MS lesions abrogates the expansion and differentiation of resident OL precursor cells (OPCs) into mature myelin-forming OLs. Recent studies indicate that OPCs display a highly plastic ability to differentiate into alternative cell lineages under certain circumstances. Thus, understanding the mechanisms that maintain and control OPC fate and differentiation into mature OLs in a hostile, non-permissive lesion environment may open new opportunities for regenerative therapies. In this review, we will focus on 1) the plasticity of OPCs in terms of their developmental origins, distribution, and differentiation potentials in the normal and injured brain; 2) recent discoveries of extrinsic and intrinsic factors and small molecule compounds that control OPC specification and differentiation; and 3) therapeutic potential for motivation of neural progenitor cells and reprogramming of differentiated cells into OPCs and their likely impacts on remyelination. OL-based therapies through activating regenerative potentials of OPCs or cell replacement offer exciting opportunities for innovative strategies to promote remyelination and neuroprotection in devastating demyelinating diseases like MS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Alejandro Lopez Juarez
- Department of Pediatrics, Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Cincinnati Children׳s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Danyang He
- Department of Pediatrics, Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Cincinnati Children׳s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Q Richard Lu
- Department of Pediatrics, Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Cincinnati Children׳s Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
74
|
Li Y, Dunphy JM, Pedraza CE, Lynch CR, Cardona SM, Macklin WB, Lynch WP. Ecotropic Murine Leukemia Virus Infection of Glial Progenitors Interferes with Oligodendrocyte Differentiation: Implications for Neurovirulence. J Virol 2016; 90:3385-99. [PMID: 26764005 PMCID: PMC4794655 DOI: 10.1128/jvi.03156-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Certain murine leukemia viruses (MLVs) are capable of inducing fatal progressive spongiform motor neuron disease in mice that is largely mediated by viral Env glycoprotein expression within central nervous system (CNS) glia. While the etiologic mechanisms and the glial subtypes involved remain unresolved, infection of NG2 glia was recently observed to correlate spatially and temporally with altered neuronal physiology and spongiogenesis. Since one role of NG2 cells is to serve as oligodendrocyte (OL) progenitor cells (OPCs), we examined here whether their infection by neurovirulent (FrCasE) or nonneurovirulent (Fr57E) ecotropic MLVs influenced their viability and/or differentiation. Here, we demonstrate that OPCs, but not OLs, are major CNS targets of both FrCasE and Fr57E. We also show that MLV infection of neural progenitor cells (NPCs) in culture did not affect survival, proliferation, or OPC progenitor marker expression but suppressed certain glial differentiation markers. Assessment of glial differentiation in vivo using transplanted transgenic NPCs showed that, while MLVs did not affect cellular engraftment or survival, they did inhibit OL differentiation, irrespective of MLV neurovirulence. In addition, in chimeric brains, where FrCasE-infected NPC transplants caused neurodegeneration, the transplanted NPCs proliferated. These results suggest that MLV infection is not directly cytotoxic to OPCs but rather acts to interfere with OL differentiation. Since both FrCasE and Fr57E viruses restrict OL differentiation but only FrCasE induces overt neurodegeneration, restriction of OL maturation alone cannot account for neuropathogenesis. Instead neurodegeneration may involve a two-hit scenario where interference with OPC differentiation combined with glial Env-induced neuronal hyperexcitability precipitates disease. IMPORTANCE A variety of human and animal retroviruses are capable of causing central nervous system (CNS) neurodegeneration manifested as motor and cognitive deficits. These retroviruses infect a variety of CNS cell types; however, the specific role each cell type plays in neuropathogenesis remains to be established. The NG2 glia, whose CNS functions are only now emerging, are a newly appreciated viral target in murine leukemia virus (MLV)-induced neurodegeneration. Since one role of NG2 glia is that of oligodendrocyte progenitor cells (OPCs), we investigated here whether their infection by the neurovirulent MLV FrCasE contributed to neurodegeneration by affecting OPC viability and/or development. Our results show that both neurovirulent and nonneurovirulent MLVs interfere with oligodendrocyte differentiation. Thus, NG2 glial infection could contribute to neurodegeneration by preventing myelin formation and/or repair and by suspending OPCs in a state of persistent susceptibility to excitotoxic insult mediated by neurovirulent virus effects on other glial subtypes.
Collapse
Affiliation(s)
- Ying Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Jaclyn M Dunphy
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA Programs in Neurosciences, and Cell and Molecular Biology, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Carlos E Pedraza
- EMD Serono Research and Development Institute, Inc., Billerica, Massachusetts, USA
| | - Connor R Lynch
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Sandra M Cardona
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA Programs in Neurosciences, and Cell and Molecular Biology, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - William P Lynch
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA Programs in Neurosciences, and Cell and Molecular Biology, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
75
|
Neuron-Glia Interactions in Neural Plasticity: Contributions of Neural Extracellular Matrix and Perineuronal Nets. Neural Plast 2016; 2016:5214961. [PMID: 26881114 PMCID: PMC4736403 DOI: 10.1155/2016/5214961] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/10/2015] [Indexed: 11/17/2022] Open
Abstract
Synapses are specialized structures that mediate rapid and efficient signal transmission between neurons and are surrounded by glial cells. Astrocytes develop an intimate association with synapses in the central nervous system (CNS) and contribute to the regulation of ion and neurotransmitter concentrations. Together with neurons, they shape intercellular space to provide a stable milieu for neuronal activity. Extracellular matrix (ECM) components are synthesized by both neurons and astrocytes and play an important role in the formation, maintenance, and function of synapses in the CNS. The components of the ECM have been detected near glial processes, which abut onto the CNS synaptic unit, where they are part of the specialized macromolecular assemblies, termed perineuronal nets (PNNs). PNNs have originally been discovered by Golgi and represent a molecular scaffold deposited in the interface between the astrocyte and subsets of neurons in the vicinity of the synapse. Recent reports strongly suggest that PNNs are tightly involved in the regulation of synaptic plasticity. Moreover, several studies have implicated PNNs and the neural ECM in neuropsychiatric diseases. Here, we highlight current concepts relating to neural ECM and PNNs and describe an in vitro approach that allows for the investigation of ECM functions for synaptogenesis.
Collapse
|
76
|
Verkhratsky A, Nedergaard M. Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130595. [PMID: 25225089 DOI: 10.1098/rstb.2013.0595] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Astroglial perisynaptic sheath covers the majority of synapses in the central nervous system. This glial coverage evolved as a part of the synaptic structure in which elements directly responsible for neurotransmission (exocytotic machinery and appropriate receptors) concentrate in neuronal membranes, whereas multiple molecules imperative for homeostatic maintenance of the synapse (transporters for neurotransmitters, ions, amino acids, etc.) are shifted to glial membranes that have substantially larger surface area. The astrocytic perisynaptic processes act as an 'astroglial cradle' essential for synaptogenesis, maturation, isolation and maintenance of synapses, representing the fundamental mechanism contributing to synaptic connectivity, synaptic plasticity and information processing in the nervous system.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Maiken Nedergaard
- Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14580, USA
| |
Collapse
|
77
|
Gautier HOB, Evans KA, Volbracht K, James R, Sitnikov S, Lundgaard I, James F, Lao-Peregrin C, Reynolds R, Franklin RJM, Káradóttir RT. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat Commun 2015; 6:8518. [PMID: 26439639 PMCID: PMC4600759 DOI: 10.1038/ncomms9518] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/30/2015] [Indexed: 12/20/2022] Open
Abstract
Myelin regeneration can occur spontaneously in demyelinating diseases such as multiple sclerosis (MS). However, the underlying mechanisms and causes of its frequent failure remain incompletely understood. Here we show, using an in-vivo remyelination model, that demyelinated axons are electrically active and generate de novo synapses with recruited oligodendrocyte progenitor cells (OPCs), which, early after lesion induction, sense neuronal activity by expressing AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate receptors. Blocking neuronal activity, axonal vesicular release or AMPA receptors in demyelinated lesions results in reduced remyelination. In the absence of neuronal activity there is a ∼6-fold increase in OPC number within the lesions and a reduced proportion of differentiated oligodendrocytes. These findings reveal that neuronal activity and release of glutamate instruct OPCs to differentiate into new myelinating oligodendrocytes that recover lost function. Co-localization of OPCs with the presynaptic protein VGluT2 in MS lesions implies that this mechanism may provide novel targets to therapeutically enhance remyelination.
Collapse
Affiliation(s)
- Hélène O. B. Gautier
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Kimberley A. Evans
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Katrin Volbracht
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Rachel James
- Faculty of Medicine, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Sergey Sitnikov
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Iben Lundgaard
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Fiona James
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Cristina Lao-Peregrin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Richard Reynolds
- Faculty of Medicine, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Robin J. M. Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
| | - Ragnhildur T Káradóttir
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
78
|
Back SA. Brain Injury in the Preterm Infant: New Horizons for Pathogenesis and Prevention. Pediatr Neurol 2015; 53:185-92. [PMID: 26302698 PMCID: PMC4550810 DOI: 10.1016/j.pediatrneurol.2015.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/24/2015] [Accepted: 04/12/2015] [Indexed: 10/23/2022]
Abstract
Preterm neonates are surviving with a milder spectrum of motor and cognitive disabilities that appear to be related to widespread disturbances in cell maturation that target cerebral gray and white matter. Whereas the preterm brain was previously at high risk for destructive lesions, preterm survivors now commonly display less severe injury that is associated with aberrant regeneration and repair responses that result in reduced cerebral growth. Impaired cerebral white matter growth is related to myelination disturbances that are initiated by acute death of premyelinating oligodendrocytes, but are followed by rapid regeneration of premyelinating oligodendrocytes that fail to normally mature to myelinating cells. Although immature neurons are more resistant to cell death than mature neurons, they display widespread disturbances in maturation of their dendritic arbors and synapses, which further contributes to impaired cerebral growth. Thus, even more mild cerebral injury involves disrupted repair mechanisms in which neurons and premyelinating oligodendrocytes fail to fully mature during a critical window in development of neural circuitry. These recently recognized distinct forms of cerebral gray and white matter dysmaturation raise new diagnostic challenges and suggest new therapeutic strategies to promote brain growth and repair.
Collapse
Affiliation(s)
- Stephen A. Back
- Departments of Pediatrics and Neurology, Oregon Health & Science University, Portland, Oregon, U.S.A
| |
Collapse
|
79
|
PDGFRβ(+) cells in human and experimental neuro-vascular dysplasia and seizures. Neuroscience 2015; 306:18-27. [PMID: 26283024 DOI: 10.1016/j.neuroscience.2015.07.090] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/19/2015] [Accepted: 07/23/2015] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Neuro-vascular rearrangement occurs in brain disorders, including epilepsy. Platelet-derived growth factor receptor beta (PDGFRβ) is used as a marker of perivascular pericytes. Whether PDGFRβ(+) cell reorganization occurs in regions of neuro-vascular dysplasia associated with seizures is unknown. METHODS We used brain specimens derived from epileptic subjects affected by intractable seizures associated with focal cortical dysplasia (FCD) or temporal lobe epilepsy with hippocampal sclerosis (TLE-HS). Tissues from cryptogenic epilepsy, non-sclerotic hippocampi or peritumoral were used for comparison. An in vivo rat model of neuro-vascular dysplasia was obtained by pre-natal exposure to methyl-axozy methanoic acid (MAM). Status epilepticus (SE) was induced in adult MAM rats by intraperitoneal pilocarpine. MAM tissues were also used to establish organotypic hippocampal cultures (OHC) to further assess pericytes positioning at the dysplastic microvasculature. PDGFRβ and its colocalization with RECA-1 or CD34 were used to segregate perivascular pericytes. PDGFRβ and NG2 or IBA1 colocalization were performed. Rat cortices and hippocampi were used for PDGFRβ western blot analysis. RESULTS Human FCD displayed the highest perivascular PDGFRβ immunoreactivity, indicating pericytes, and presence of ramified PDGFRβ(+) cells in the parenchyma and proximal to microvessels. Tissues deriving from human cryptogenic epilepsy displayed a similar pattern of immunoreactivity, although to a lesser extent compared to FCD. In TLE-HS, CD34 vascular proliferation was paralleled by increased perivascular PDGFRβ(+) pericytes, as compared to non-HS. Parenchymal PDGFRβ immunoreactivity co-localized with NG2 but was distinct from IBA1(+) microglia. In MAM rats, we found pericyte-vascular changes in regions characterized by neuronal heterotopias. PDGFRβ immunoreactivity was differentially distributed in the heterotopic and adjacent normal CA1 region. The use of MAM OHC revealed microvascular-pericyte dysplasia at the capillary tree lining the dentate gyrus (DG) molecular layer as compared to control OHC. Severe SE induced PDGFRβ(+) immunoreactivity mostly in the CA1 region of MAM rats. CONCLUSION Our descriptive study points to microvascular-pericyte changes in the epileptic pathology. The possible link between PDGFRβ(+) cells, neuro-vascular dysplasia and remodeling during seizures is discussed.
Collapse
|
80
|
Czopka T. Insights into mechanisms of central nervous system myelination using zebrafish. Glia 2015; 64:333-49. [PMID: 26250418 DOI: 10.1002/glia.22897] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022]
Abstract
Myelin is the multi-layered membrane that surrounds most axons and is produced by oligodendrocytes in the central nervous system (CNS). In addition to its important role in enabling rapid nerve conduction, it has become clear in recent years that myelin plays additional vital roles in CNS function. Myelinating oligodendrocytes provide metabolic support to axons and active myelination is even involved in regulating forms of learning and memory formation. However, there are still large gaps in our understanding of how myelination by oligodendrocytes is regulated. The small tropical zebrafish has become an increasingly popular model organism to investigate many aspects of nervous system formation, function, and regeneration. This is mainly due to two approaches for which the zebrafish is an ideally suited vertebrate model--(1) in vivo live cell imaging using vital dyes and genetically encoded reporters, and (2) gene and target discovery using unbiased screens. This review summarizes how the use of zebrafish has helped understand mechanisms of oligodendrocyte behavior and myelination in vivo and discusses the potential use of zebrafish to shed light on important future questions relating to myelination in the context of CNS development, function and repair.
Collapse
Affiliation(s)
- Tim Czopka
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| |
Collapse
|
81
|
Neuron–glia synapses in the brain: properties, diversity and functions of NG2 glia. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13295-015-0010-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
82
|
Sakry D, Trotter J. The role of the NG2 proteoglycan in OPC and CNS network function. Brain Res 2015; 1638:161-166. [PMID: 26100334 DOI: 10.1016/j.brainres.2015.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 01/13/2023]
Abstract
In the normal mammalian CNS, the NG2 proteoglycan is expressed by oligodendrocyte precursor cells (OPC) but not by any other neural cell-type. NG2 is a type-1 membrane protein, exerting multiple roles in the CNS including intracellular signaling within the OPC, with effects on migration, cytoskeleton interaction and target gene regulation. It has been recently shown that the extracellular region of NG2, in addition to an adhesive function, acts as a soluble ECM component with the capacity to alter defined neuronal network properties. This region of NG2 is thus endowed with neuromodulatory properties. In order to generate biologically active fragments yielding these properties, the sequential cleavage of the NG2 protein by α- and γ-secretases occurs. The basal level of constitutive cleavage is stimulated by neuronal network activity. This processing leads to 4 major NG2 fragments which all have been associated with distinct biological functions. Here we summarize these functions, focusing on recent discoveries and their implications for the CNS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Dominik Sakry
- Institute of Molecular Cell Biology; Johannes Gutenberg University of Mainz, Mainz, Germany.
| | - Jacqueline Trotter
- Institute of Molecular Cell Biology; Johannes Gutenberg University of Mainz, Mainz, Germany.
| |
Collapse
|
83
|
Dimou L, Gallo V. NG2-glia and their functions in the central nervous system. Glia 2015; 63:1429-51. [PMID: 26010717 DOI: 10.1002/glia.22859] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022]
Abstract
In the central nervous system, NG2-glia represent a neural cell population that is distinct from neurons, astrocytes, and oligodendrocytes. While in the past the main role ascribed to these cells was that of progenitors for oligodendrocytes, in the last years it has become more obvious that they have further functions in the brain. Here, we will discuss some of the most current and highly debated issues regarding NG2-glia: Do these cells represent a heterogeneous population? Can they give rise to different progenies, and does this change under pathological conditions? How do they respond to injury or pathology? What is the role of neurotransmitter signaling between neurons and NG2-glia? We will first give an overview on the developmental origin of NG2-glia, and then discuss whether their distinct properties in different brain regions are the result of environmental influences, or due to intrinsic differences. We will then review and discuss their in vitro differentiation potential and in vivo lineage under physiological and pathological conditions, together with their electrophysiological properties in distinct brain regions and at different developmental stages. Finally, we will focus on their potential to be used as therapeutic targets in demyelinating and neurodegenerative diseases. Therefore, this review article will highlight the importance of NG2-glia not only in the healthy, but also in the diseased brain.
Collapse
Affiliation(s)
- L Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University, Munich, 80336, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, 85764, Germany
| | - V Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, District of Columbia
| |
Collapse
|
84
|
Sakry D, Yigit H, Dimou L, Trotter J. Oligodendrocyte precursor cells synthesize neuromodulatory factors. PLoS One 2015; 10:e0127222. [PMID: 25966014 PMCID: PMC4429067 DOI: 10.1371/journal.pone.0127222] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 04/13/2015] [Indexed: 12/20/2022] Open
Abstract
NG2 protein-expressing oligodendrocyte progenitor cells (OPC) are a persisting and major glial cell population in the adult mammalian brain. Direct synaptic innervation of OPC by neurons throughout the brain together with their ability to sense neuronal network activity raises the question of additional physiological roles of OPC, supplementary to generating myelinating oligodendrocytes. In this study we investigated whether OPC express neuromodulatory factors, typically synthesized by other CNS cell types. Our results show that OPC express two well-characterized neuromodulatory proteins: Prostaglandin D2 synthase (PTGDS) and neuronal Pentraxin 2 (Nptx2/Narp). Expression levels of the enzyme PTGDS are influenced in cultured OPC by the NG2 intracellular region which can be released by cleavage and localizes to glial nuclei upon transfection. Furthermore PTGDS mRNA levels are reduced in OPC from NG2-KO mouse brain compared to WT cells after isolation by cell sorting and direct analysis. These results show that OPC can contribute to the expression of these proteins within the CNS and suggest PTGDS expression as a downstream target of NG2 signaling.
Collapse
Affiliation(s)
- Dominik Sakry
- Molecular Cell Biology, Department of Biology, Johannes Gutenberg University Mainz, D-55122 Mainz, Germany
- * E-mail: (JT); (DS)
| | - Hatice Yigit
- Molecular Cell Biology, Department of Biology, Johannes Gutenberg University Mainz, D-55122 Mainz, Germany
| | - Leda Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, D-80336 Munich, Germany
| | - Jacqueline Trotter
- Molecular Cell Biology, Department of Biology, Johannes Gutenberg University Mainz, D-55122 Mainz, Germany
- * E-mail: (JT); (DS)
| |
Collapse
|
85
|
Alghamdi B, Fern R. Phenotype overlap in glial cell populations: astroglia, oligodendroglia and NG-2(+) cells. Front Neuroanat 2015; 9:49. [PMID: 26106302 PMCID: PMC4460730 DOI: 10.3389/fnana.2015.00049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/02/2015] [Indexed: 12/02/2022] Open
Abstract
The extent to which NG-2(+) cells form a distinct population separate from astrocytes is central to understanding whether this important cell class is wholly an oligodendrocyte precursor cell (OPC) or has additional functions akin to those classically ascribed to astrocytes. Early immuno-staining studies indicate that NG-2(+) cells do not express the astrocyte marker GFAP, but orthogonal reconstructions of double-labeled confocal image stacks here reveal a significant degree of co-expression in individual cells within post-natal day 10 (P10) and adult rat optic nerve (RON) and rat cortex. Extensive scanning of various antibody/fixation/embedding approaches identified a protocol for selective post-embedded immuno-gold labeling. This first ultrastructural characterization of identified NG-2(+) cells revealed populations of both OPCs and astrocytes in P10 RON. NG-2(+) astrocytes had classic features including the presence of glial filaments but low levels of glial filament expression were also found in OPCs and myelinating oligodendrocytes. P0 RONs contained few OPCs but positively identified astrocytes were observed to ensheath pre-myelinated axons in a fashion previously described as a definitive marker of the oligodendrocyte lineage. Astrocyte ensheathment was also apparent in P10 RONs, was absent from developing nodes of Ranvier and was never associated with compact myelin. Astrocyte processes were also shown to encapsulate some oligodendrocyte somata. The data indicate that common criteria for delineating astrocytes and oligodendroglia are insufficiently robust and that astrocyte features ascribed to OPCs may arise from misidentification.
Collapse
Affiliation(s)
- Badrah Alghamdi
- Department of Cell Physiology and Pharmacology, University of Leicester Leicester, UK
| | - Robert Fern
- Peninsula School of Medicine and Dentistry, University of Plymouth Plymouth, UK
| |
Collapse
|
86
|
Armstrong RC, Mierzwa AJ, Sullivan GM, Sanchez MA. Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury. Neuropharmacology 2015; 110:654-659. [PMID: 25963414 DOI: 10.1016/j.neuropharm.2015.04.029] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/13/2015] [Accepted: 04/27/2015] [Indexed: 12/14/2022]
Abstract
Impact to the head or rapid head acceleration-deceleration can cause traumatic brain injury (TBI) with a characteristic pathology of traumatic axonal injury (TAI) and secondary damage in white matter tracts. Myelin and oligodendrocyte lineage cells have significant roles in the progression of white matter pathology after TBI and in the potential for plasticity and subsequent recovery. The myelination pattern of specific brain regions, such as frontal cortex, may also increase susceptibility to neurodegeneration and psychiatric symptoms after TBI. White matter pathology after TBI depends on the extent and distribution of axon damage, microhemorrhages and/or neuroinflammation. TAI occurs in a pattern of damaged axons dispersed among intact axons in white matter tracts. TAI accompanied by bleeding and/or inflammation produces focal regions of overt tissue destruction, resulting in loss of both axons and myelin. White matter regions with TAI may also exhibit demyelination of intact axons. Demyelinated axons that remain viable have the potential for remyelination and recovery of function. Indeed, animal models of TBI have demonstrated demyelination that is associated with evidence of remyelination, including oligodendrocyte progenitor cell proliferation, generation of new oligodendrocytes, and formation of thinner myelin. Changes in neuronal activity that accompany TBI may also involve myelin remodeling, which modifies conduction efficiency along intact myelinated fibers. Thus, effective remyelination and myelin remodeling may be neurobiological substrates of plasticity in neuronal circuits that require long-distance communication. This perspective integrates findings from multiple contexts to propose a model of myelin and oligodendrocyte lineage cell relevance in white matter injury after TBI. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Regina C Armstrong
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Amanda J Mierzwa
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Genevieve M Sullivan
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Maria A Sanchez
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
87
|
Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, Gibson EM, Mount CW, Polepalli J, Mitra SS, Woo PJ, Malenka RC, Vogel H, Bredel M, Mallick P, Monje M. Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion. Cell 2015; 161:803-16. [PMID: 25913192 DOI: 10.1016/j.cell.2015.04.012] [Citation(s) in RCA: 488] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/24/2015] [Accepted: 03/03/2015] [Indexed: 12/18/2022]
Abstract
Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth.
Collapse
Affiliation(s)
- Humsa S Venkatesh
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tessa B Johung
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Viola Caretti
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alyssa Noll
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yujie Tang
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Surya Nagaraja
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erin M Gibson
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher W Mount
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jai Polepalli
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Siddhartha S Mitra
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pamelyn J Woo
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannes Vogel
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Markus Bredel
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Parag Mallick
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
88
|
Son YJ. Synapsing with NG2 cells (polydendrocytes), unappreciated barrier to axon regeneration? Neural Regen Res 2015; 10:346-8. [PMID: 25878571 PMCID: PMC4396085 DOI: 10.4103/1673-5374.153672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 11/20/2022] Open
Affiliation(s)
- Young-Jin Son
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
89
|
Bedner P, Dupper A, Hüttmann K, Müller J, Herde MK, Dublin P, Deshpande T, Schramm J, Häussler U, Haas CA, Henneberger C, Theis M, Steinhäuser C. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 2015; 138:1208-22. [PMID: 25765328 DOI: 10.1093/brain/awv067] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/13/2015] [Indexed: 12/20/2022] Open
Abstract
Glial cells are now recognized as active communication partners in the central nervous system, and this new perspective has rekindled the question of their role in pathology. In the present study we analysed functional properties of astrocytes in hippocampal specimens from patients with mesial temporal lobe epilepsy without (n = 44) and with sclerosis (n = 75) combining patch clamp recording, K(+) concentration analysis, electroencephalography/video-monitoring, and fate mapping analysis. We found that the hippocampus of patients with mesial temporal lobe epilepsy with sclerosis is completely devoid of bona fide astrocytes and gap junction coupling, whereas coupled astrocytes were abundantly present in non-sclerotic specimens. To decide whether these glial changes represent cause or effect of mesial temporal lobe epilepsy with sclerosis, we developed a mouse model that reproduced key features of human mesial temporal lobe epilepsy with sclerosis. In this model, uncoupling impaired K(+) buffering and temporally preceded apoptotic neuronal death and the generation of spontaneous seizures. Uncoupling was induced through intraperitoneal injection of lipopolysaccharide, prevented in Toll-like receptor4 knockout mice and reproduced in situ through acute cytokine or lipopolysaccharide incubation. Fate mapping confirmed that in the course of mesial temporal lobe epilepsy with sclerosis, astrocytes acquire an atypical functional phenotype and lose coupling. These data suggest that astrocyte dysfunction might be a prime cause of mesial temporal lobe epilepsy with sclerosis and identify novel targets for anti-epileptogenic therapeutic intervention.
Collapse
Affiliation(s)
- Peter Bedner
- 1 Institute of Cellular Neurosciences and Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Alexander Dupper
- 1 Institute of Cellular Neurosciences and Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Kerstin Hüttmann
- 1 Institute of Cellular Neurosciences and Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Julia Müller
- 1 Institute of Cellular Neurosciences and Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Michel K Herde
- 1 Institute of Cellular Neurosciences and Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Pavel Dublin
- 1 Institute of Cellular Neurosciences and Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany Current address: Institute of Neurobiology, University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tushar Deshpande
- 1 Institute of Cellular Neurosciences and Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Johannes Schramm
- 2 Department of Neurosurgery, Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Ute Häussler
- 3 Experimental Epilepsy Research, Department of Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Carola A Haas
- 3 Experimental Epilepsy Research, Department of Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Christian Henneberger
- 1 Institute of Cellular Neurosciences and Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany 4 UCL Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Martin Theis
- 1 Institute of Cellular Neurosciences and Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Christian Steinhäuser
- 1 Institute of Cellular Neurosciences and Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| |
Collapse
|
90
|
Abstract
Glia are starting to be accepted as the equal of neurons. Their impact on intelligence, environmental enrichment, and cerebral dominance forms the basis for understanding the role of glia in stress. Along with neurons, astrocytes, microglia, NG2 cells, and oligodendrocytes all contribute. Glia can even be protective against drug abuse. Glial effects on depression, mood disorders and schizophrenia are reviewed.
Collapse
|
91
|
Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol 2014; 12:e1001993. [PMID: 25387269 PMCID: PMC4227637 DOI: 10.1371/journal.pbio.1001993] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 09/29/2014] [Indexed: 01/09/2023] Open
Abstract
This study shows that the activity of neurons can trigger shedding of a protein, NG2, from the surface of oligodendrocyte precursor cells; this protein in turn modulates synaptic transmission, revealing a two-way conversation between neurons and glia. The role of glia in modulating neuronal network activity is an important question. Oligodendrocyte precursor cells (OPC) characteristically express the transmembrane proteoglycan nerve-glia antigen 2 (NG2) and are unique glial cells receiving synaptic input from neurons. The development of NG2+ OPC into myelinating oligodendrocytes has been well studied, yet the retention of a large population of synapse-bearing OPC in the adult brain poses the question as to additional functional roles of OPC in the neuronal network. Here we report that activity-dependent processing of NG2 by OPC-expressed secretases functionally regulates the neuronal network. NG2 cleavage by the α-secretase ADAM10 yields an ectodomain present in the extracellular matrix and a C-terminal fragment that is subsequently further processed by the γ-secretase to release an intracellular domain. ADAM10-dependent NG2 ectodomain cleavage and release (shedding) in acute brain slices or isolated OPC is increased by distinct activity-increasing stimuli. Lack of NG2 expression in OPC (NG2-knockout mice), or pharmacological inhibition of NG2 ectodomain shedding in wild-type OPC, results in a striking reduction of N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) in pyramidal neurons of the somatosensory cortex and alterations in the subunit composition of their α-amino-3-hydroxy-5-methyl-4-isoxazolepr opionicacid (AMPA) receptors. In NG2-knockout mice these neurons exhibit diminished AMPA and NMDA receptor-dependent current amplitudes; strikingly AMPA receptor currents can be rescued by application of conserved LNS protein domains of the NG2 ectodomain. Furthermore, NG2-knockout mice exhibit altered behavior in tests measuring sensorimotor function. These results demonstrate for the first time a bidirectional cross-talk between OPC and the surrounding neuronal network and demonstrate a novel physiological role for OPC in regulating information processing at neuronal synapses. Although glial cells substantially outnumber neurons in the mammalian brain, much remains to be discovered regarding their functions. Among glial cells, oligodendrocyte precursors differentiate into oligodendrocytes, whose function is to enwrap nerves with myelin to ensure proper impulse conduction. However, oligodendrocyte precursors also comprise a stable population in all major regions of the adult brain, making up around 5% of the total number of neurons and glia. Synapses are classically formed between neurons. Nonetheless, oligodendrocyte precursors are unique among glial cells in that they receive direct synaptic input from different types of neurons; whether OPC also send signals to neurons is still unknown. Here we show a bidirectional communication between neurons and oligodendrocyte precursors: neuronal activity regulates the cleavage of a glial membrane protein and the release of an extracellular domain that in turn modulates synaptic transmission between neurons. Our data thus show that a particular subtype of glial cells, oligodendrocyte precursors, functionally integrate into the neuronal network and we link this bidirectional signaling to mouse behavior and disease.
Collapse
|
92
|
McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, Richardson WD. Motor skill learning requires active central myelination. Science 2014; 346:318-22. [PMID: 25324381 PMCID: PMC6324726 DOI: 10.1126/science.1254960] [Citation(s) in RCA: 789] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myelin-forming oligodendrocytes (OLs) are formed continuously in the healthy adult brain. In this work, we study the function of these late-forming cells and the myelin they produce. Learning a new motor skill (such as juggling) alters the structure of the brain's white matter, which contains many OLs, suggesting that late-born OLs might contribute to motor learning. Consistent with this idea, we show that production of newly formed OLs is briefly accelerated in mice that learn a new skill (running on a "complex wheel" with irregularly spaced rungs). By genetically manipulating the transcription factor myelin regulatory factor in OL precursors, we blocked production of new OLs during adulthood without affecting preexisting OLs or myelin. This prevented the mice from mastering the complex wheel. Thus, generation of new OLs and myelin is important for learning motor skills.
Collapse
Affiliation(s)
- Ian A McKenzie
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - David Ohayon
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Huiliang Li
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Joana Paes de Faria
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Ben Emery
- Department of Anatomy and Neuroscience and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Koujiro Tohyama
- The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, 19-1 Uchimuru, Morioka, Iwate 020-8505, Japan
| | - William D Richardson
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
93
|
Dimou L, Götz M. Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev 2014; 94:709-37. [PMID: 24987003 DOI: 10.1152/physrev.00036.2013] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The diverse functions of glial cells prompt the question to which extent specific subtypes may be devoted to a specific function. We discuss this by reviewing one of the most recently discovered roles of glial cells, their function as neural stem cells (NSCs) and progenitor cells. First we give an overview of glial stem and progenitor cells during development; these are the radial glial cells that act as NSCs and other glial progenitors, highlighting the distinction between the lineage of cells in vivo and their potential when exposed to a different environment, e.g., in vitro. We then proceed to the adult stage and discuss the glial cells that continue to act as NSCs across vertebrates and others that are more lineage-restricted, such as the adult NG2-glia, the most frequent progenitor type in the adult mammalian brain, that remain within the oligodendrocyte lineage. Upon certain injury conditions, a distinct subset of quiescent astrocytes reactivates proliferation and a larger potential, clearly demonstrating the concept of heterogeneity with distinct subtypes of, e.g., astrocytes or NG2-glia performing rather different roles after brain injury. These new insights not only highlight the importance of glial cells for brain repair but also their great potential in various aspects of regeneration.
Collapse
Affiliation(s)
- Leda Dimou
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University, Munich, Germany; Institute for Stem Cell Research, HelmholtzZentrum, Neuherberg, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Magdalena Götz
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University, Munich, Germany; Institute for Stem Cell Research, HelmholtzZentrum, Neuherberg, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
94
|
Passlick S, Trotter J, Seifert G, Steinhäuser C, Jabs R. The NG2 Protein Is Not Required for Glutamatergic Neuron-NG2 Cell Synaptic Signaling. Cereb Cortex 2014; 26:51-7. [PMID: 25100858 DOI: 10.1093/cercor/bhu171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
NG2 glial cells (as from now NG2 cells) are unique in receiving synaptic input from neurons. However, the components regulating formation and maintenance of these neuron-glia synapses remain elusive. The transmembrane protein NG2 has been considered a potential mediator of synapse formation and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering, because it contains 2 extracellular Laminin G/Neurexin/Sex Hormone-Binding Globulin domains, which in neurons are crucial for formation of transsynaptic neuroligin-neurexin complexes. NG2 is connected via Glutamate Receptor-Interacting Protein with GluA2/3-containing AMPARs, thereby possibly mediating receptor clustering in glial postsynaptic density. To elucidate the role of NG2 in neuron-glia communication, we investigated glutamatergic synaptic transmission in juvenile and aged hippocampal NG2 cells of heterozygous and homozygous NG2 knockout mice. Neuron-NG2 cell synapses readily formed in the absence of NG2. Short-term plasticity, synaptic connectivity, postsynaptic AMPAR current kinetics, and density were not affected by NG2 deletion. During development, an NG2-independent acceleration of AMPAR current kinetics and decreased synaptic connectivity were observed. Our results indicate that the lack of NG2 does not interfere with genesis and basic properties of neuron-glia synapses. In addition, we demonstrate frequent expression of neuroligins 1-3 in juvenile and aged NG2 cells, suggesting a role of these molecules in synapse formation between NG2 glia and neurons.
Collapse
Affiliation(s)
- Stefan Passlick
- Institute of Cellular Neurosciences, University of Bonn, Bonn 53105, Germany
| | | | - Gerald Seifert
- Institute of Cellular Neurosciences, University of Bonn, Bonn 53105, Germany
| | | | - Ronald Jabs
- Institute of Cellular Neurosciences, University of Bonn, Bonn 53105, Germany
| |
Collapse
|
95
|
Tomassy GS, Fossati V. How big is the myelinating orchestra? Cellular diversity within the oligodendrocyte lineage: facts and hypotheses. Front Cell Neurosci 2014; 8:201. [PMID: 25120430 PMCID: PMC4112809 DOI: 10.3389/fncel.2014.00201] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/03/2014] [Indexed: 11/13/2022] Open
Abstract
Since monumental studies from scientists like His, Ramón y Cajal, Lorente de Nó and many others have put down roots for modern neuroscience, the scientific community has spent a considerable amount of time, and money, investigating any possible aspect of the evolution, development and function of neurons. Today, the complexity and diversity of myriads of neuronal populations, and their progenitors, is still focus of extensive studies in hundreds of laboratories around the world. However, our prevalent neuron-centric perspective has dampened the efforts in understanding glial cells, even though their active participation in the brain physiology and pathophysiology has been increasingly recognized over the years. Among all glial cells of the central nervous system (CNS), oligodendrocytes (OLs) are a particularly specialized type of cells that provide fundamental support to neuronal activity by producing the myelin sheath. Despite their functional relevance, the developmental mechanisms regulating the generation of OLs are still poorly understood. In particular, it is still not known whether these cells share the same degree of heterogeneity of their neuronal companions and whether multiple subtypes exist within the lineage. Here, we will review and discuss current knowledge about OL development and function in the brain and spinal cord. We will try to address some specific questions: do multiple OL subtypes exist in the CNS? What is the evidence for their existence and those against them? What are the functional features that define an oligodendrocyte? We will end our journey by reviewing recent advances in human pluripotent stem cell differentiation towards OLs. This exciting field is still at its earliest days, but it is quickly evolving with improved protocols to generate functional OLs from different spatial origins. As stem cells constitute now an unprecedented source of human OLs, we believe that they will become an increasingly valuable tool for deciphering the complexity of human OL identity.
Collapse
Affiliation(s)
- Giulio Srubek Tomassy
- Department of Stem Cell and Regenerative Biology, Harvard University Cambridge, MA, USA
| | | |
Collapse
|
96
|
O’Rourke M, Gasperini R, Young KM. Adult myelination: wrapping up neuronal plasticity. Neural Regen Res 2014; 9:1261-4. [PMID: 25221576 PMCID: PMC4160850 DOI: 10.4103/1673-5374.137571] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 12/31/2022] Open
Abstract
In this review, we outline the major neural plasticity mechanisms that have been identified in the adult central nervous system (CNS), and offer a perspective on how they regulate CNS function. In particular we examine how myelin plasticity can operate alongside neurogenesis and synaptic plasticity to influence information processing and transfer in the mature CNS.
Collapse
Affiliation(s)
- Megan O’Rourke
- Menzies Research Institute Tasmania, University of Tasmania, Hobart 7000, Australia
| | - Robert Gasperini
- Menzies Research Institute Tasmania, University of Tasmania, Hobart 7000, Australia
- The School of Medicine, University of Tasmania, Hobart 7000, Australia
| | - Kaylene M. Young
- Menzies Research Institute Tasmania, University of Tasmania, Hobart 7000, Australia
| |
Collapse
|
97
|
Nonneman A, Robberecht W, Den Bosch LV. The role of oligodendroglial dysfunction in amyotrophic lateral sclerosis. Neurodegener Dis Manag 2014; 4:223-39. [DOI: 10.2217/nmt.14.21] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SUMMARY Healthy oligodendrocytes are crucial for neurons and abnormal functioning of these cells is involved in several neurodegenerative diseases. We will focus on oligodendroglial pathology in amyotrophic lateral sclerosis (ALS), an adult-onset progressive neurodegenerative disease characterized by selective motor neuron loss. Recent discoveries shed new light on the crucial role of oligodendrocytes in this fatal disease. We will first give an overview of the importance of good-functioning oligodendrocytes for neuronal health, in particular for motor neurons. Subsequently, we will discuss the recent data on oligodendroglial abnormalities in ALS. We conclude that oligodendrocytes should be considered as important contributors to motor neuron degeneration. As a consequence, oligodendrocytes are a promising new therapeutic target for ALS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Annelies Nonneman
- KU Leuven – University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium
- VIB, Vesalius Research Center, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | - Wim Robberecht
- KU Leuven – University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium
- VIB, Vesalius Research Center, Laboratory of Neurobiology, B-3000 Leuven, Belgium
- University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven – University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium
- VIB, Vesalius Research Center, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| |
Collapse
|
98
|
Butt AM, Fern RF, Matute C. Neurotransmitter signaling in white matter. Glia 2014; 62:1762-79. [PMID: 24753049 DOI: 10.1002/glia.22674] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/04/2014] [Accepted: 03/31/2014] [Indexed: 12/16/2022]
Abstract
White matter (WM) tracts are bundles of myelinated axons that provide for rapid communication throughout the CNS and integration in grey matter (GM). The main cells in myelinated tracts are oligodendrocytes and astrocytes, with small populations of microglia and oligodendrocyte precursor cells. The prominence of neurotransmitter signaling in WM, which largely exclude neuronal cell bodies, indicates it must have physiological functions other than neuron-to-neuron communication. A surprising aspect is the diversity of neurotransmitter signaling in WM, with evidence for glutamatergic, purinergic (ATP and adenosine), GABAergic, glycinergic, adrenergic, cholinergic, dopaminergic and serotonergic signaling, acting via a wide range of ionotropic and metabotropic receptors. Both axons and glia are potential sources of neurotransmitters and may express the respective receptors. The physiological functions of neurotransmitter signaling in WM are subject to debate, but glutamate and ATP-mediated signaling have been shown to evoke Ca(2+) signals in glia and modulate axonal conduction. Experimental findings support a model of neurotransmitters being released from axons during action potential propagation acting on glial receptors to regulate the homeostatic functions of astrocytes and myelination by oligodendrocytes. Astrocytes also release neurotransmitters, which act on axonal receptors to strengthen action potential propagation, maintaining signaling along potentially long axon tracts. The co-existence of multiple neurotransmitters in WM tracts suggests they may have diverse functions that are important for information processing. Furthermore, the neurotransmitter signaling phenomena described in WM most likely apply to myelinated axons of the cerebral cortex and GM areas, where they are doubtless important for higher cognitive function.
Collapse
Affiliation(s)
- Arthur M Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, United Kingdom
| | | | | |
Collapse
|
99
|
Hill RA, Nishiyama A. NG2 cells (polydendrocytes): listeners to the neural network with diverse properties. Glia 2014; 62:1195-210. [PMID: 24753030 PMCID: PMC4282324 DOI: 10.1002/glia.22664] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/18/2014] [Accepted: 03/11/2014] [Indexed: 01/23/2023]
Abstract
NG2 cells (polydendrocytes) are the fourth major non-neuronal cell type in the central nervous system parenchyma. They exhibit diverse properties, ranging from their well-established role as oligodendrocyte precursors to their ability to respond to neurotransmitters released by synaptic and non-synaptic mechanisms. The functional diversity of NG2 cells has prompted the question of whether they represent a single cellular entity or multiple distinct cell populations. This review first summarizes recent findings on the nature and mechanism underlying the diversity of NG2 cells with regard to their proliferative and differentiation behavior. This will be followed by a synopsis of observations on how their microenvironment, particularly neuronal activity, influences their dynamic behavior, and how these changes in NG2 cells could in turn influence neural function and animal behavior.
Collapse
Affiliation(s)
- Robert A Hill
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
100
|
Xapelli S, Agasse F, Grade S, Bernardino L, Ribeiro FF, Schitine CS, Heimann AS, Ferro ES, Sebastião AM, De Melo Reis RA, Malva JO. Modulation of subventricular zone oligodendrogenesis: a role for hemopressin? Front Cell Neurosci 2014; 8:59. [PMID: 24578683 PMCID: PMC3936357 DOI: 10.3389/fncel.2014.00059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/07/2014] [Indexed: 11/13/2022] Open
Abstract
Neural stem cells (NSCs) from the subventricular zone (SVZ) have been indicated as a source of new oligodendrocytes to use in regenerative medicine for myelin pathologies. Indeed, NSCs are multipotent cells that can self-renew and differentiate into all neural cell types of the central nervous system. In normal conditions, SVZ cells are poorly oligodendrogenic, nevertheless their oligodendrogenic potential is boosted following demyelination. Importantly, progressive restriction into the oligodendrocyte fate is specified by extrinsic and intrinsic factors, endocannabinoids being one of these factors. Although a role for endocannabinoids in oligodendrogenesis has already been foreseen, selective agonists and antagonists of cannabinoids receptors produce severe adverse side effects. Herein, we show that hemopressin (Hp), a modulator of CB1 receptors, increased oligodendroglial differentiation in SVZ neural stem/progenitor cell cultures derived from neonatal mice. The original results presented in this work suggest that Hp and derivates may be of potential interest for the development of future strategies to treat demyelinating diseases.
Collapse
Affiliation(s)
- Sara Xapelli
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra Coimbra, Portugal ; Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon Lisboa, Portugal ; Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon Lisboa, Portugal
| | - Fabienne Agasse
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra Coimbra, Portugal
| | - Sofia Grade
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra Coimbra, Portugal ; Institute for Stem Cell Research, Helmholtz Centre Munich, German Research Centre for Environmental Health Neuherberg, Germany ; Department of Physiological Genomics, Faculty of Medicine, Ludwig-Maximilians University of Munich Munich, Germany
| | - Liliana Bernardino
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra Coimbra, Portugal ; Health Sciences Research Center, University of Beira Interior Covilhã, Portugal
| | - Filipa F Ribeiro
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon Lisboa, Portugal ; Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon Lisboa, Portugal
| | - Clarissa S Schitine
- Neurochemistry Laboratory, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | | | - Emer S Ferro
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas São Paulo, Brazil
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon Lisboa, Portugal ; Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon Lisboa, Portugal
| | - Ricardo A De Melo Reis
- Neurochemistry Laboratory, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - João O Malva
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra Coimbra, Portugal ; Center of Investigation in Environment, Genetics and Oncobiology, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra Coimbra, Portugal
| |
Collapse
|