51
|
Maruta N, Trusov Y, Chakravorty D, Urano D, Assmann SM, Botella JR. Nucleotide exchange-dependent and nucleotide exchange-independent functions of plant heterotrimeric GTP-binding proteins. Sci Signal 2019; 12:12/606/eaav9526. [PMID: 31690635 DOI: 10.1126/scisignal.aav9526] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins), which are composed of α, β, and γ subunits, are versatile, guanine nucleotide-dependent, molecular on-off switches. In animals and fungi, the exchange of GDP for GTP on Gα controls G protein activation and is crucial for normal cellular responses to diverse extracellular signals. The model plant Arabidopsis thaliana has a single canonical Gα subunit, AtGPA1. We found that, in planta, the constitutively active, GTP-bound AtGPA1(Q222L) mutant and the nucleotide-free AtGPA1(S52C) mutant interacted with Gβγ1 and Gβγ2 dimers with similar affinities, suggesting that G protein heterotrimer formation occurred independently of nucleotide exchange. In contrast, AtGPA1(Q222L) had a greater affinity than that of AtGPA1(S52C) for Gβγ3, suggesting that the GTP-bound conformation of AtGPA1(Q222L) is distinct and tightly associated with Gβγ3. Functional analysis of transgenic lines expressing either AtGPA1(S52C) or AtGPA1(Q222L) in the gpa1-null mutant background revealed various mutant phenotypes that were complemented by either AtGPA1(S52C) or AtGPA1(Q222L). We conclude that, in addition to the canonical GDP-GTP exchange-dependent mechanism, plant G proteins can function independently of nucleotide exchange.
Collapse
Affiliation(s)
- Natsumi Maruta
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - David Chakravorty
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jose R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia. .,State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| |
Collapse
|
52
|
Maheshwari P, Du H, Sheen J, Assmann SM, Albert R. Model-driven discovery of calcium-related protein-phosphatase inhibition in plant guard cell signaling. PLoS Comput Biol 2019; 15:e1007429. [PMID: 31658257 PMCID: PMC6837631 DOI: 10.1371/journal.pcbi.1007429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 11/07/2019] [Accepted: 09/21/2019] [Indexed: 11/19/2022] Open
Abstract
The plant hormone abscisic acid (ABA) promotes stomatal closure via multifarious cellular signaling cascades. Our previous comprehensive reconstruction of the stomatal closure network resulted in an 81-node network with 153 edges. Discrete dynamic modeling utilizing this network reproduced over 75% of experimental observations but a few experimentally supported results were not recapitulated. Here we identify predictions that improve the agreement between model and experiment. We performed dynamics-preserving network reduction, resulting in a condensed 49 node and 113 edge stomatal closure network that preserved all dynamics-determining network motifs and reproduced the predictions of the original model. We then utilized the reduced network to explore cases in which experimental activation of internal nodes in the absence of ABA elicited stomatal closure in wet bench experiments, but not in our in silico model. Our simulations revealed that addition of a single edge, which allows indirect inhibition of any one of three PP2C protein phosphatases (ABI2, PP2CA, HAB1) by cytosolic Ca2+ elevation, resolves the majority of the discrepancies. Consistent with this hypothesis, we experimentally show that Ca2+ application to cellular lysates at physiological concentrations inhibits PP2C activity. The model augmented with this new edge provides new insights into the role of cytosolic Ca2+ oscillations in stomatal closure, revealing a mutual reinforcement between repeated increases in cytosolic Ca2+ concentration and a self-sustaining feedback circuit inside the signaling network. These results illustrate how iteration between model and experiment can improve predictions of highly complex cellular dynamics.
Collapse
Affiliation(s)
- Parul Maheshwari
- Department of Physics, Penn State University, University Park, Pennsylvania, United States of America
| | - Hao Du
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sarah M. Assmann
- Biology Department, Penn State University, University Park, Pennsylvania, United States of America
| | - Reka Albert
- Department of Physics, Penn State University, University Park, Pennsylvania, United States of America
- Biology Department, Penn State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
53
|
Rojas F, Matthews KR. Quorum sensing in African trypanosomes. Curr Opin Microbiol 2019; 52:124-129. [PMID: 31442903 DOI: 10.1016/j.mib.2019.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 01/17/2023]
Abstract
Many microbial eukaryotes exhibit cell-cell communication to co-ordinate group behaviours as a strategy to exploit a changed environment, adapt to adverse conditions or regulate developmental responses. Although best characterised in bacteria, eukaryotic microbes have also been revealed to cooperate to optimise their survival or dissemination. An excellent model for these processes are African trypanosomes, protozoa responsible for important human and animal disease in sub Saharan Africa. These unicellular parasites use density sensing in their mammalian host to prepare for transmission. Recently, the signal and signal transduction pathway underlying this activity have been elucidated, revealing that the parasite exploits oligopeptide signals generated by released peptidases to monitor cell density and so generate transmission stages. Here we review the evidence for this elegant quorum sensing mechanism and its parallels with similar mechanisms in other microbial systems. We also discuss its implications for disease spread in the context of coinfections involving different trypanosome species.
Collapse
Affiliation(s)
- Federico Rojas
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.
| |
Collapse
|
54
|
Al-Hijab L, Gregg A, Davies R, Macdonald H, Ladomery M, Wilson I. Abscisic acid induced a negative geotropic response in dark-incubated Chlamydomonas reinhardtii. Sci Rep 2019; 9:12063. [PMID: 31427663 PMCID: PMC6700132 DOI: 10.1038/s41598-019-48632-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/06/2019] [Indexed: 12/27/2022] Open
Abstract
The phytohormone abscisic acid (ABA) plays a role in stresses that alter plant water status and may also regulate root gravitropism and hydrotropism. ABA also exists in the aquatic algal progenitors of land plants, but other than its involvement in stress responses, its physiological role in these microorganisms remains elusive. We show that exogenous ABA significantly altered the HCO3- uptake of Chamydomonas reinhardtii in a light-intensity-dependent manner. In high light ABA enhanced HCO3- uptake, while under low light uptake was diminished. In the dark, ABA induced a negative geotropic movement of the algae to an extent dependent on the time of sampling during the light/dark cycle. The algae also showed a differential, light-dependent directional taxis response to a fixed ABA source, moving horizontally towards the source in the light and away in the dark. We conclude that light and ABA signal competitively in order for algae to position themselves in the water column to minimise photo-oxidative stress and optimise photosynthetic efficiency. We suggest that the development of this response mechanism in motile algae may have been an important step in the evolution of terrestrial plants and that its retention therein strongly implicates ABA in the regulation of their relevant tropisms.
Collapse
Affiliation(s)
- Layla Al-Hijab
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Adam Gregg
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Rhiannon Davies
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Heather Macdonald
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Michael Ladomery
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Ian Wilson
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom.
| |
Collapse
|
55
|
Lu P, Magwanga RO, Kirungu JN, Dong Q, Cai X, Zhou Z, Wang X, Xu Y, Hou Y, Peng R, Wang K, Liu F. Genome-wide analysis of the cotton G-coupled receptor proteins (GPCR) and functional analysis of GTOM1, a novel cotton GPCR gene under drought and cold stress. BMC Genomics 2019; 20:651. [PMID: 31412764 PMCID: PMC6694541 DOI: 10.1186/s12864-019-5972-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The efficient detection and initiation of appropriate response to abiotic stresses are important to plants survival. The plant G-protein coupled receptors (GPCRs) are diverse membranous proteins that are responsible for signal transduction. RESULTS In this research work, we identified a novel gene of the GPCR domain, transformed and carried out the functional analysis in Arabidopsis under drought and cold stresses. The transgenic lines exposed to drought and cold stress conditions showed higher germination rate, increased root length and higher fresh biomass accumulation. Besides, the levels of antioxidant enzymes, glutathione (GSH) and ascorbate peroxidase (APX) exhibited continuously increasing trends, with approximately threefold higher than the control, implying that these ROS-scavenging enzymes were responsible for the detoxification of ROS induced by drought and cold stresses. Similarly, the transgenic lines exhibited stable cell membrane stability (CMS), reduced water loss rate in the detached leaves and significant values for the saturated leaves compared to the wild types. Highly stress-responsive miRNAs were found to be targeted by the novel gene and based on GO analysis; the protein encoded by the gene was responsible for maintaining an integral component of membrane. In cotton, the virus-induced gene silencing (VIGS) plants exhibited a higher susceptibility to drought and cold stresses compared to the wild types. CONCLUSION The novel GPCR gene enhanced drought and cold stress tolerance in transgenic Arabidopsis plants by promoting root growth and induction of ROS scavenging enzymes. The outcome showed that the gene had a role in enhancing drought and cold stress tolerance, and can be further exploited in breeding for more stress-resilient and tolerant crops.
Collapse
Affiliation(s)
- Pu Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR-CAAS), Anyang, 455000 Henan China
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR-CAAS), Anyang, 455000 Henan China
- School of Physical and Biological Sciences (SPBS), Main campus, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210-40601, Bondo, Kenya
| | - Joy Nyangasi Kirungu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR-CAAS), Anyang, 455000 Henan China
| | - Qi Dong
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR-CAAS), Anyang, 455000 Henan China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR-CAAS), Anyang, 455000 Henan China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR-CAAS), Anyang, 455000 Henan China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR-CAAS), Anyang, 455000 Henan China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR-CAAS), Anyang, 455000 Henan China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR-CAAS), Anyang, 455000 Henan China
| | - Renhai Peng
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Anyang Institute of technology, Anyang, 455000 Henan China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR-CAAS), Anyang, 455000 Henan China
| | - Fang Liu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR-CAAS), Anyang, 455000 Henan China
- School of Agricultural Sciences, Zhengzhou University, 450001 Henan China
| |
Collapse
|
56
|
Bi C, Ma Y, Jiang SC, Mei C, Wang XF, Zhang DP. Arabidopsis translation initiation factors eIFiso4G1/2 link repression of mRNA cap-binding complex eIFiso4F assembly with RNA-binding protein SOAR1-mediated ABA signaling. THE NEW PHYTOLOGIST 2019; 223:1388-1406. [PMID: 31050354 DOI: 10.1111/nph.15880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/18/2019] [Indexed: 05/06/2023]
Abstract
The translation initiation factor eIF4E-binding protein-mediated regulation of protein translation by interfering with assembly of mRNA cap-binding complex eIF4F is well described in mammalian and yeast cells. However, it remains unknown whether a signaling regulator or pathway interacts directly with any translation initiation factor to modulate assembly of eIF4F in plant cells. Here, we report that the two isoforms of Arabidopsis eIF4G, eIFiso4G1 and eIFiso4G2, interact with a cytoplasmic-nuclear dual-localized pentatricopeptide repeat protein SOAR1 to regulate abscisic acid (ABA) signaling. SOAR1 inhibits interactions of eIFiso4E, eIF4Es, eIF4A1, eIF4B2 and poly(A)-binding protein PAB6 with eIFiso4G1 and eIFiso4G2, thereby inhibiting eIFiso4F/mixed eIF4F assembly and repressing translation initiation. SOAR1 binds mRNA of a key ABA-responsive gene ABI5 and cooperates with eIFiso4G1/2 to repress translation of ABI5. The binding of SOAR1 to ABI5 mRNA is likely to inhibit the interaction of SOAR1 with eIFiso4G1/2, suggesting a regulatory loop. Our findings identify a novel translation initiation repressor interfering with cap-binding complex assembly, and establish a link between cap-binding complex assembly and ABA signaling.
Collapse
Affiliation(s)
- Chao Bi
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yu Ma
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shang-Chuan Jiang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chao Mei
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiao-Fang Wang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Da-Peng Zhang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
57
|
Zhao MJ, Yin LJ, Ma J, Zheng JC, Wang YX, Lan JH, Fu JD, Chen M, Xu ZS, Ma YZ. The Roles of GmERF135 in Improving Salt Tolerance and Decreasing ABA Sensitivity in Soybean. FRONTIERS IN PLANT SCIENCE 2019; 10:940. [PMID: 31396249 PMCID: PMC6664033 DOI: 10.3389/fpls.2019.00940] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/04/2019] [Indexed: 05/24/2023]
Abstract
Abscisic acid (ABA) mediates various abiotic stress responses, and ethylene responsive factors (ERFs) play vital role in resisting stresses, but the interaction of these molecular mechanisms remains elusive. In this study, we identified an ABA-induced soybean ERF gene GmERF135 that was highly up-regulated by ethylene (ET), drought, salt, and low temperature treatments. Subcellular localization assay showed that the GmERF135 protein was targeted to the nucleus. Promoter cis-acting elements analysis suggested that numerous potential stress responsive cis-elements were distributed in the promoter region of GmERF135, including ABA-, light-, ET-, gibberellin (GA)-, and methyl jasmonate (MeJA)-responsive elements. Overexpression of GmERF135 in Arabidopsis enhanced tolerance to drought and salt conditions. In addition, GmERF135 promoted the growth of transgenic hairy roots under salt and exogenous ABA conditions. These results suggest that soybean GmERF135 may participate in both ABA and ET signaling pathways to regulate the responses to multiple stresses.
Collapse
Affiliation(s)
- Meng-Jie Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Li-Juan Yin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jian Ma
- Department of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jia-Cheng Zheng
- College of Agriculture, Anhui University of Science and Technology, Fengyang County, China
| | - Yan-Xia Wang
- Hebei Academy of Agriculture and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, China
| | - Jin-Hao Lan
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- Department of Agronomy, Jilin Agricultural University, Changchun, China
- College of Agriculture, Anhui University of Science and Technology, Fengyang County, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
58
|
Anunanthini P, Manoj VM, Sarath Padmanabhan TS, Dhivya S, Narayan JA, Appunu C, Sathishkumar R. In silico characterisation and functional validation of chilling tolerant divergence 1 (COLD1) gene in monocots during abiotic stress. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:524-532. [PMID: 30940337 DOI: 10.1071/fp18189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
The G protein-coupled receptor is one of the major transmembrane proteins in plants. It consists of an α subunit, a β subunit and three γ subunits. Chilling tolerant divergence 1 (COLD1) includes a Golgi pH receptor (GPHR) domain, which maintains cell membrane organisation and dynamics, along with abscisic acid linked G protein-coupled receptor (ABA_GPCR) that regulates the signalling pathways during cold stress. In the present study, we performed characterisation of a homologous COLD1 from the economically important monocot species Oryza sativa L., Zea mays L., Sorghum bicolor (L.)Moench and Erianthus arundinaceus (L.) Beauv. IK 76-81, a wild relative of Saccharum. COLD1 was isolated from E. arundinaceus IK 76-81, analysed for its evolution, domain, membrane topology, followed by prediction of secondary, tertiary structures and functionally validated in all four different monocots. Gene expression studies of COLD1 revealed differential expression under heat, drought, salinity and cold stresses in selected monocots. This is the first study on regulation of native COLD1 during abiotic stress in monocots, which has opened up new leads for trait improvement strategies in this economically important crop species.
Collapse
Affiliation(s)
- P Anunanthini
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - V M Manoj
- Genetic Transformation Lab, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - T S Sarath Padmanabhan
- Genetic Transformation Lab, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - S Dhivya
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - J Ashwin Narayan
- Genetic Transformation Lab, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - C Appunu
- Genetic Transformation Lab, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India; and Corresponding authors. Emails: ;
| | - R Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India; and Corresponding authors. Emails: ;
| |
Collapse
|
59
|
Zhu J, Wang G, Li C, Li Q, Gao Y, Chen F, Xia G. Maize Sep15-like functions in endoplasmic reticulum and reactive oxygen species homeostasis to promote salt and osmotic stress resistance. PLANT, CELL & ENVIRONMENT 2019; 42:1486-1502. [PMID: 30577086 DOI: 10.1111/pce.13507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 05/21/2023]
Abstract
In animals, the Sep15 protein participates in disease resistance, growth, and development, but the function of its plant homologues remains unclear. Here, the function of maize Sep15 was analysed by characterization of two independent Sep15-like loss-of-function mutants. In the absence of ZmSep15-like, seedling tolerance to both water and salinity stress was compromised. The mutants experienced a heightened level of endoplasmic reticulum stress, and over-accumulated reactive oxygen species, resulting in leaf necrosis. Characterization of Arabidopsis thaliana atsep15 mutant as well as like with ectopic expression of ZmSep15-like indicated that ZmSep15-like contributed to tolerance of both osmotic and salinity stress. ZmSep15-like interacted physically with UDP-glucose: glycoprotein glucosyltransferase1 (UGGT1). When the interaction was disrupted, the response to both osmotic and salinity stresses was impaired in maize or Arabidopsis. Co-expressing ZmUGGT1 and ZmUGGT2 enhanced the tolerance of A. thaliana to both stressors, indicating a functional interaction between them. Together, the data indicated that plants Sep15-like proteins promote osmotic and salinity stress resistance by influencing endoplasmic reticulum stress response and reactive oxygen species level.
Collapse
Affiliation(s)
- Jiantang Zhu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Guangling Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Cuiling Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Qingqing Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Yankun Gao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Fanguo Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| |
Collapse
|
60
|
Pandey S. Heterotrimeric G-Protein Signaling in Plants: Conserved and Novel Mechanisms. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:213-238. [PMID: 31035831 DOI: 10.1146/annurev-arplant-050718-100231] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Heterotrimeric GTP-binding proteins are key regulators of a multitude of signaling pathways in all eukaryotes. Although the core G-protein components and their basic biochemistries are broadly conserved throughout evolution, the regulatory mechanisms of G proteins seem to have been rewired in plants to meet specific needs. These proteins are currently the focus of intense research in plants due to their involvement in many agronomically important traits, such as seed yield, organ size regulation, biotic and abiotic stress responses, symbiosis, and nitrogen use efficiency. The availability of massive sequence information from a variety of plant species, extensive biochemical data generated over decades, and impressive genetic resources for plant G proteins have made it possible to examine their role, unique properties, and novel regulation. This review focuses on some recent advances in our understanding of the mechanistic details of this critical signaling pathway to enable the precise manipulation and generation of plants to meet future needs.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA;
| |
Collapse
|
61
|
Zhao XY, Qi CH, Jiang H, You CX, Guan QM, Ma FW, Li YY, Hao YJ. The MdWRKY31 transcription factor binds to the MdRAV1 promoter to mediate ABA sensitivity. HORTICULTURE RESEARCH 2019; 6:66. [PMID: 31231524 PMCID: PMC6544635 DOI: 10.1038/s41438-019-0147-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 05/02/2023]
Abstract
The phytohormone abscisic acid (ABA) is a major element involved in apple (Malus domestica) production because of its role in seed germination and early seedling development. The WRKY family, which is one of the largest families of transcription factors, plays an important role in ABA signaling in plants. However, the underlying molecular mechanisms of WRKY-mediated ABA sensitivity in apple are poorly understood. A genome-wide transcriptome analysis indicated that MdWRKY31 is a key factor induced by ABA. Quantitative real-time PCR showed that MdWRKY31 is induced by ABA in response to PEG4000, which is used to simulate drought. As a transcription factor, MdWRKY31 is localized in the nucleus. Ectopic expression of MdWRKY31 in Arabidopsis and Nicotiana benthamiana enhanced plant sensitivity to ABA. Overexpression of MdWRKY31 in apple roots and apple calli increased sensitivity to ABA, whereas repression of MdWRKY31 reduced sensitivity to ABA in the roots of 'Royal Gala'. Electrophoretic mobility shift assays, chromatin immunoprecipitation PCR, and yeast one-hybrid assays indicated that MdWRKY31 directly binds to the promoter of MdRAV1. Expression analyses of transgenic apple calli containing MdWRKY31 and pMdRAV1::GUS implied that MdWRKY31 represses the expression of MdRAV1. We also found that MdRAV1 binds directly to the promoters of MdABI3 and MdABI4 and repressed their expression. Our findings reveal a new important regulatory mechanism of MdWRKY31-MdRAV1-MdABIs in the ABA signaling pathway in apple.
Collapse
Affiliation(s)
- Xian-Yan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chen-Hui Qi
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Qing-Mei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Feng-Wang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yuan-Yuan Li
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| |
Collapse
|
62
|
Wong GR, Mazumdar P, Lau SE, Harikrishna JA. Ectopic expression of a Musa acuminata root hair defective 3 (MaRHD3) in Arabidopsis enhances drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:219-233. [PMID: 30292098 DOI: 10.1016/j.jplph.2018.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/14/2018] [Accepted: 09/20/2018] [Indexed: 05/24/2023]
Abstract
Genetic improvement is an important approach for crop improvement towards yield stability in stress-prone areas. Functional analysis of candidate stress response genes can provide key information to allow the selection and modification of improved crop varieties. In this study, the constitutive expression of a banana cDNA, MaRHD3 in Arabidopsis improved the ability of transgenic lines to adapt to drought conditions. Transgenic Arabidopsis plants expressing MaRHD3 had roots with enhanced branching and more root hairs when challenged with drought stress. The MaRHD3 plants had higher biomass accumulation, higher relative water content, higher chlorophyll content and an increase in activity of reactive oxygen species (ROS) scavenging enzymes; SOD, CAT, GR, POD and APX with reduced water loss rates compared to control plants. The analysis of oxidative damage indicated lower cell membrane damage in transgenic lines compared to control plants. These findings, together with data from higher expression of ABF-3 and higher ABA content of drought-stressed transgenic MaRHD3 expressing plants, support the involvement of the ABA signal pathway and ROS scavenging enzyme systems in MaRHD3 mediated drought tolerance.
Collapse
Affiliation(s)
- Gwo Rong Wong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jennifer Ann Harikrishna
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
63
|
Rojas F, Silvester E, Young J, Milne R, Tettey M, Houston DR, Walkinshaw MD, Pérez-Pi I, Auer M, Denton H, Smith TK, Thompson J, Matthews KR. Oligopeptide Signaling through TbGPR89 Drives Trypanosome Quorum Sensing. Cell 2018; 176:306-317.e16. [PMID: 30503212 PMCID: PMC6333907 DOI: 10.1016/j.cell.2018.10.041] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/13/2018] [Accepted: 10/17/2018] [Indexed: 02/03/2023]
Abstract
Trypanosome parasites control their virulence and spread by using quorum sensing (QS) to generate transmissible “stumpy forms” in their host bloodstream. However, the QS signal “stumpy induction factor” (SIF) and its reception mechanism are unknown. Although trypanosomes lack G protein-coupled receptor signaling, we have identified a surface GPR89-family protein that regulates stumpy formation. TbGPR89 is expressed on bloodstream “slender form” trypanosomes, which receive the SIF signal, and when ectopically expressed, TbGPR89 drives stumpy formation in a SIF-pathway-dependent process. Structural modeling of TbGPR89 predicts unexpected similarity to oligopeptide transporters (POT), and when expressed in bacteria, TbGPR89 transports oligopeptides. Conversely, expression of an E. coli POT in trypanosomes drives parasite differentiation, and oligopeptides promote stumpy formation in vitro. Furthermore, the expression of secreted trypanosome oligopeptidases generates a paracrine signal that accelerates stumpy formation in vivo. Peptidase-generated oligopeptide QS signals being received through TbGPR89 provides a mechanism for both trypanosome SIF production and reception. Trypanosomes use quorum sensing to differentiate to transmissible stumpy forms A GPR89 protein with oligopeptide transport activity drives parasite differentiation Oligopeptide mixtures and synthetic di- and tripeptides promote stumpy formation Released parasite oligopeptidases generate the paracrine quorum sensing signal in vivo
Collapse
Affiliation(s)
- Federico Rojas
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Eleanor Silvester
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Julie Young
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Rachel Milne
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Mabel Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Malcolm D Walkinshaw
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Irene Pérez-Pi
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Manfred Auer
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Helen Denton
- School of Biology, BSRC, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, UK
| | - Terry K Smith
- School of Biology, BSRC, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, UK
| | - Joanne Thompson
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| |
Collapse
|
64
|
Ma Y, Cao J, He J, Chen Q, Li X, Yang Y. Molecular Mechanism for the Regulation of ABA Homeostasis During Plant Development and Stress Responses. Int J Mol Sci 2018; 19:ijms19113643. [PMID: 30463231 PMCID: PMC6274696 DOI: 10.3390/ijms19113643] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
The plant hormone abscisic acid (ABA) play essential roles in numerous physiological processes such as seed dormancy, seed germination, seeding growth and responses to biotic and abiotic stresses. Such biological processes are tightly controlled by a complicated regulatory network including ABA homoeostasis, signal transduction as well as cross-talking among other signaling pathways. It is known that ABA homoeostasis modulated by its production, inactivation, and transport pathways is considered to be of great importance for plant development and stress responses. Most of the enzymes and transporters involved in ABA homoeostasis have been largely characterized and they all work synergistically to maintain ABA level in plants. Increasing evidence have suggested that transcriptional regulation of the genes involved in either ABA production or ABA inactivation plays vital roles in ABA homoeostasis. In addition to transcription factors, such progress is also regulated by microRNAs and newly characterized root to shoot mobile peptide-receptor like kinase (RLKs) mediated long-distance signal transduction. Thus, ABA contents are always kept in a dynamic balance. In this review, we survey recent research on ABA production, inactivation and transport pathways, and summarize some latest findings about the mechanisms that regulate ABA homoeostasis.
Collapse
Affiliation(s)
- Yanlin Ma
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Jing Cao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Jiahan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Qiaoqiao Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
65
|
Wei J, Li DX, Zhang JR, Shan C, Rengel Z, Song ZB, Chen Q. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J Pineal Res 2018; 65:e12500. [PMID: 29702752 DOI: 10.1111/jpi.12500] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022]
Abstract
Melatonin has been detected in plants in 1995; however, the function and signaling pathway of this putative phytohormone are largely undetermined due to a lack of knowledge about its receptor. Here, we discovered the first phytomelatonin receptor (CAND2/PMTR1) in Arabidopsis thaliana and found that melatonin governs the receptor-dependent stomatal closure. The application of melatonin induced stomatal closure through the heterotrimeric G protein α subunit-regulated H2 O2 and Ca2+ signals. The Arabidopsis mutant lines lacking AtCand2 that encodes a candidate G protein-coupled receptor were insensitive to melatonin-induced stomatal closure. Accordingly, the melatonin-induced H2 O2 production and Ca2+ influx were completely abolished in cand2. CAND2 is a membrane protein that interacts with GPA1 and the expression of AtCand2 was tightly regulated by melatonin in various organs and guard cells. CAND2 showed saturable and specific 125 I-melatonin binding, with apparent Kd (dissociation constant) of 0.73 ± 0.10 nmol/L (r2 = .99), demonstrating this protein is a phytomelatonin receptor (PMTR1). Our results suggest that the phytomelatonin regulation of stomatal closure is dependent on its receptor CAND2/PMTR1-mediated H2 O2 and Ca2+ signaling transduction cascade.
Collapse
Affiliation(s)
- Jian Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Dong-Xu Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jia-Rong Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Chi Shan
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zed Rengel
- Faculty of Science, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Zhong-Bang Song
- Tobacco Breeding Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
66
|
Wang S, Xie K, Xu G, Zhou H, Guo Q, Wu J, Liao Z, Liu N, Wang Y, Liu Y. Plant G proteins interact with endoplasmic reticulum luminal protein receptors to regulate endoplasmic reticulum retrieval. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:541-561. [PMID: 29573168 DOI: 10.1111/jipb.12648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Maintaining endoplasmic reticulum (ER) homeostasis is essential for the production of biomolecules. ER retrieval, i.e., the retrograde transport of compounds from the Golgi to the ER, is one of the pathways that ensures ER homeostasis. However, the mechanisms underlying the regulation of ER retrieval in plants remain largely unknown. Plant ERD2-like proteins (ERD2s) were recently suggested to function as ER luminal protein receptors that mediate ER retrieval. Here, we demonstrate that heterotrimeric G protein signaling is involved in ERD2-mediated ER retrieval. We show that ERD2s interact with the heterotrimeric G protein Gα and Gγ subunits at the Golgi. Silencing of Gα, Gβ, or Gγ increased the retention of ER luminal proteins. Furthermore, overexpression of Gα, Gβ, or Gγ caused ER luminal proteins to escape from the ER, as did the co-silencing of ERD2a and ERD2b. These results suggest that G proteins interact with ER luminal protein receptors to regulate ER retrieval.
Collapse
Affiliation(s)
- Shanshan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ke Xie
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guoyong Xu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Huarui Zhou
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Guo
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingyi Wu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zengwei Liao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Na Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
67
|
Pandey S, Vijayakumar A. Emerging themes in heterotrimeric G-protein signaling in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:292-300. [PMID: 29576082 DOI: 10.1016/j.plantsci.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/18/2018] [Accepted: 03/01/2018] [Indexed: 05/28/2023]
Abstract
Heterotrimeric G-proteins are key signaling components involved during the regulation of a multitude of growth and developmental pathways in all eukaryotes. Although the core proteins (Gα, Gβ, Gγ subunits) and their basic biochemistries are conserved between plants and non-plant systems, seemingly different inherent properties of specific components, altered wirings of G-protein network architectures, and the presence of novel receptors and effector proteins make plant G-protein signaling mechanisms somewhat distinct from the well-established animal paradigm. G-protein research in plants is getting a lot of attention recently due to the emerging roles of these proteins in controlling many agronomically important traits. New findings on both canonical and novel G-protein components and their conserved and unique signaling mechanisms are expected to improve our understanding of this important module in affecting critical plant growth and development pathways and eventually their utilization to produce plants for the future needs. In this review, we briefly summarize what is currently known in plant G-protein research, describe new findings and how they are changing our perceptions of the field, and discuss important issues that still need to be addressed.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA.
| | - Anitha Vijayakumar
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| |
Collapse
|
68
|
Abstract
The evolution of land plants from algae is an age-old question in biology. The entire terrestrial flora stems from a grade of algae, the streptophyte algae. Recent phylogenomic studies have pinpointed the Zygnematophyceae as the modern-day streptophyte algal lineage that is most closely related to the algal land plant ancestor. Here, we provide insight into the biology of this ancestor that might have aided in its conquest of land. Specifically, we uncover the existence of stress-signaling pathways and the potential for intimate plastid-nucleus communication. Plastids act as environmental sensors in land plants; our data suggest that this feature was present in a common ancestor they shared with streptophyte algae. Streptophytes are unique among photosynthetic eukaryotes in having conquered land. As the ancestors of land plants, streptophyte algae are hypothesized to have possessed exaptations to the environmental stressors encountered during the transition to terrestrial life. Many of these stressors, including high irradiance and drought, are linked to plastid biology. We have investigated global gene expression patterns across all six major streptophyte algal lineages, analyzing a total of around 46,000 genes assembled from a little more than 1.64 billion sequence reads from six organisms under three growth conditions. Our results show that streptophyte algae respond to cold and high light stress via expression of hallmark genes used by land plants (embryophytes) during stress–response signaling and downstream responses. Among the strongest differentially regulated genes were those associated with plastid biology. We observed that among streptophyte algae, those most closely related to land plants, especially Zygnema, invest the largest fraction of their transcriptional budget in plastid-targeted proteins and possess an array of land plant-type plastid-nucleus communication genes. Streptophyte algae more closely related to land plants also appear most similar to land plants in their capacity to respond to plastid stressors. Support for this notion comes from the detection of a canonical abscisic acid receptor of the PYRABACTIN RESISTANCE (PYR/PYL/RCAR) family in Zygnema, the first found outside the land plant lineage. We conclude that a fine-tuned response toward terrestrial plastid stressors was among the exaptations that allowed streptophytes to colonize the terrestrial habitat on a global scale.
Collapse
|
69
|
Hou BZ, Xu C, Shen YY. A leu-rich repeat receptor-like protein kinase, FaRIPK1, interacts with the ABA receptor, FaABAR, to regulate fruit ripening in strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1569-1582. [PMID: 29281111 PMCID: PMC5888985 DOI: 10.1093/jxb/erx488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Strawberry (Fragaria×ananassa) is a model plant for studying non-climacteric fruit ripening regulated by abscisic acid (ABA); however, its exact molecular mechanisms are yet not fully understood. In this study, a predicted leu-rich repeat (LRR) receptor-like kinase in strawberry, red-initial protein kinase 1 (FaRIPK1), was screened and, using a yeast two-hybrid assay, was shown to interact with a putative ABA receptor, FaABAR. This association was confirmed by bimolecular fluorescence complementation and co-immunoprecipitation assays, and shown to occur in the nucleus. Expression analysis by real-time PCR showed that FaRIPK1 is expressed in roots, stems, leaves, flowers, and fruit, with a particularly high expression in white fruit at the onset of coloration. Down-regulation of FaRIPK1 expression in strawberry fruit, using Tobacco rattle virus-induced gene silencing, inhibited ripening, as evidenced by suppression of ripening-related physiological changes and reduced expression of several genes involved in softening, sugar content, pigmentation, and ABA biosynthesis and signaling. The yeast-expressed LRR and STK (serine/threonine protein kinase) domains of FaRIPK1 bound ABA and showed kinase activity, respectively. A fruit disc-incubation test revealed that FaRIPK1 expression was induced by ABA and ethylene. The synergistic action of FaRIPK1 with FaABAR in regulation of strawberry fruit ripening is discussed.
Collapse
Affiliation(s)
- Bing-Zhu Hou
- State Key Laboratory of Plant Physiology and Biochemistry, Beijing, P. R. China
- National Plant Gene Research Center, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, P. R. China
| | - Cheng Xu
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, P. R. China
| | - Yuan-Yue Shen
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, P. R. China
- Correspondence:
| |
Collapse
|
70
|
Wong A, Tian X, Gehring C, Marondedze C. Discovery of Novel Functional Centers With Rationally Designed Amino Acid Motifs. Comput Struct Biotechnol J 2018; 16:70-76. [PMID: 29977479 PMCID: PMC6026216 DOI: 10.1016/j.csbj.2018.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/23/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
Plants are constantly exposed to environmental stresses and in part due to their sessile nature, they have evolved signal perception and adaptive strategies that are distinct from those of other eukaryotes. This is reflected at the cellular level where receptors and signalling molecules cannot be identified using standard homology-based searches querying with proteins from prokaryotes and other eukaryotes. One of the reasons for this is the complex domain architecture of receptor molecules. In order to discover hidden plant signalling molecules, we have developed a motif-based approach designed specifically for the identification of functional centers in plant molecules. This has made possible the discovery of novel components involved in signalling and stimulus-response pathways; the molecules include cyclic nucleotide cyclases, a nitric oxide sensor and a novel target for the hormone abscisic acid. Here, we describe the major steps of the method and illustrate it with recent and experimentally confirmed molecules as examples. We foresee that carefully curated search motifs supported by structural and bioinformatic assessments will uncover many more structural and functional aspects, particularly of signalling molecules.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Xuechen Tian
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy
| | - Claudius Marondedze
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/DRF/BIG, INRA UMR1417, CNRS UMR5168, 38054 Grenoble Cedex 9, France
| |
Collapse
|
71
|
Shukla A, Srivastava S, Suprasanna P. Genomics of Metal Stress-Mediated Signalling and Plant Adaptive Responses in Reference to Phytohormones. Curr Genomics 2017; 18:512-522. [PMID: 29204080 PMCID: PMC5684655 DOI: 10.2174/1389202918666170608093327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/15/2016] [Accepted: 10/30/2016] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION As a consequence of a sessile lifestyle, plants often have to face a number of life threatening abiotic and biotic stresses. Plants counteract the stresses through morphological and physiological adaptations, which are imparted through flexible and well-coordinated network of signalling and effector molecules, where phytohormones play important role. Hormone synthesis, signal transduction, perception and cross-talks create a complex network. Omics approaches, which include transcriptomics, genomics, proteomics and metabolomics, have opened new paths to understand such complex networks. OBJECTIVE This review concentrates on the importance of phytohormones and enzymatic expressions under metal stressed conditions. CONCLUSION This review sheds light on gene expressions involved in plant adaptive and defence responses during metal stress. It gives an insight of genomic approaches leading to identification and functional annotation of genes involved in phytohormone signal transduction and perception. Moreover, it also emphasizes on perception, signalling and cross-talks among various phytohormones and other signalling components viz., Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS).
Collapse
Affiliation(s)
- Anurakti Shukla
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi - 221005, U.P., India
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi - 221005, U.P., India
| | - Penna Suprasanna
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai - 400085, Maharashtra, India
| |
Collapse
|
72
|
Ooi A, Lemtiri-Chlieh F, Wong A, Gehring C. Direct Modulation of the Guard Cell Outward-Rectifying Potassium Channel (GORK) by Abscisic Acid. MOLECULAR PLANT 2017; 10:1469-1472. [PMID: 28844521 DOI: 10.1016/j.molp.2017.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 05/24/2023]
Affiliation(s)
- Amanda Ooi
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Fouad Lemtiri-Chlieh
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Aloysius Wong
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Christoph Gehring
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
73
|
Hackenberg D, McKain MR, Lee SG, Roy Choudhury S, McCann T, Schreier S, Harkess A, Pires JC, Wong GKS, Jez JM, Kellogg EA, Pandey S. Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants. THE NEW PHYTOLOGIST 2017; 216:562-575. [PMID: 27634188 DOI: 10.1111/nph.14180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/03/2016] [Indexed: 05/05/2023]
Abstract
Signaling pathways regulated by heterotrimeric G-proteins exist in all eukaryotes. The regulator of G-protein signaling (RGS) proteins are key interactors and critical modulators of the Gα protein of the heterotrimer. However, while G-proteins are widespread in plants, RGS proteins have been reported to be missing from the entire monocot lineage, with two exceptions. A single amino acid substitution-based adaptive coevolution of the Gα:RGS proteins was proposed to enable the loss of RGS in monocots. We used a combination of evolutionary and biochemical analyses and homology modeling of the Gα and RGS proteins to address their expansion and its potential effects on the G-protein cycle in plants. Our results show that RGS proteins are widely distributed in the monocot lineage, despite their frequent loss. There is no support for the adaptive coevolution of the Gα:RGS protein pair based on single amino acid substitutions. RGS proteins interact with, and affect the activity of, Gα proteins from species with or without endogenous RGS. This cross-functional compatibility expands between the metazoan and plant kingdoms, illustrating striking conservation of their interaction interface. We propose that additional proteins or alternative mechanisms may exist which compensate for the loss of RGS in certain plant species.
Collapse
Affiliation(s)
- Dieter Hackenberg
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Michael R McKain
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Soon Goo Lee
- Department of Biology, Washington University, One Brookings Drive, Campus Box 1137, St Louis, MO, 63130, USA
| | - Swarup Roy Choudhury
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Tyler McCann
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Spencer Schreier
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Alex Harkess
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - J Chris Pires
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Joseph M Jez
- Department of Biology, Washington University, One Brookings Drive, Campus Box 1137, St Louis, MO, 63130, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| |
Collapse
|
74
|
Basu S, Rabara R. Abscisic acid — An enigma in the abiotic stress tolerance of crop plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
75
|
González-Villagra J, Kurepin LV, Reyes-Díaz MM. Evaluating the involvement and interaction of abscisic acid and miRNA156 in the induction of anthocyanin biosynthesis in drought-stressed plants. PLANTA 2017; 246:299-312. [PMID: 28534253 DOI: 10.1007/s00425-017-2711-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/13/2017] [Indexed: 05/11/2023]
Abstract
ABA is involved in anthocyanin synthesis through the regulation of microRNA156, augmenting the level of expression of anthocyanin synthesis-related genes and, therefore, increasing anthocyanin level. Drought stress is the main cause of agricultural crop loss in the world. However, plants have developed mechanisms that allow them to tolerate drought stress conditions. At cellular level, drought stress induces changes in metabolite accumulation, including increases in anthocyanin levels due to upregulation of the anthocyanin biosynthetic pathway. Recent studies suggest that the higher anthocyanin content observed under drought stress conditions could be a consequence of a rise in the abscisic acid (ABA) concentration. This plant hormone crosses the plasma membrane by specific transporters, and it is recognized at the cytosolic level by receptors known as pyrabactin resistance (PYR)/regulatory component of ABA receptors (PYR/RCARs) that regulate downstream components. In this review, we discuss the hypothesis regarding the involvement of ABA in the regulation of microRNA156 (miRNA156), which is upregulated as part of dehydration stress responsiveness in different species. The miRNA156 upregulation produces a greater level of anthocyanin gene expression, forming the multienzyme complex that will synthesize an increased level of anthocyanins at the cytosolic face of the rough endoplasmic reticulum (RER). After synthesis, anthocyanins are transported from the RER to the vacuole by two possible models of transport: (1) membrane vesicle-mediated transport, or (2) membrane transporter-mediated transport. Thus, the aim was to analyze the recent findings on synthesis, transport and the possible mechanism by which ABA could increase anthocyanin synthesis under drought stress conditions potentially throughout microRNA156 (miRNA156).
Collapse
Affiliation(s)
- Jorge González-Villagra
- Doctoral Program in Science of Natural Resources, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Leonid V Kurepin
- Department of Biology and The Biotron Centre for Experimental Climate Change Research, Western University, London, ON, N6A 5B7, Canada
| | - Marjorie M Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|
76
|
Chen Y, Feng L, Wei N, Liu ZH, Hu S, Li XB. Overexpression of cotton PYL genes in Arabidopsis enhances the transgenic plant tolerance to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:229-238. [PMID: 28388505 DOI: 10.1016/j.plaphy.2017.03.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/11/2017] [Accepted: 03/28/2017] [Indexed: 05/06/2023]
Abstract
PYR/PYL/RCAR proteins are putative abscisic acid (ABA) receptors that play important roles in plant responses to biotic and abiotic stresses. In this study, 27 predicted PYL proteins were identified in cotton (Gossypium hirsutum). Sequence analysis showed they are conserved in structures. Phylogenetic analysis showed that cotton PYL family could be categorized into three groups. Yeast two-hybrid assay revealed that the GhPYL proteins selectively interacted with some GhPP2C proteins. Quantitative RT-PCR analysis indicated that the most of nine GhPYL genes were down-regulated, while the other three were up-regulated in cotton under drought stress. Overexpression of GhPYL10/12/26 in Arabidopsis conferred the transgenic plants increased ABA sensitivity during seed germination and early seedling growth. On the contrary, the transgenic seedlings displayed better growth status and longer primary roots under normal conditions and mannitol stress, compared with wild type. Furthermore, the transgenic plants showed the enhanced drought tolerance, relative to wild type, when they were suffered from drought stress. Expression of some stress-related genes in transgenic plants was significant higher than that in wild type under osmotic stress. Thus, our data suggested that these cotton PYL genes may be involved in plant response and defense to drought/osmotic stress.
Collapse
Affiliation(s)
- Yun Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Li Feng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ning Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Zhi-Hao Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shan Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
77
|
Stumpf M, Müller R, Gaßen B, Wehrstedt R, Fey P, Karow MA, Eichinger L, Glöckner G, Noegel AA. A tripeptidyl peptidase 1 is a binding partner of the Golgi pH regulator (GPHR) in Dictyostelium. Dis Model Mech 2017; 10:897-907. [PMID: 28546289 PMCID: PMC5536908 DOI: 10.1242/dmm.029280] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/17/2017] [Indexed: 02/02/2023] Open
Abstract
Mutations in tripeptidyl peptidase 1 (TPP1) have been associated with late infantile neuronal ceroid lipofuscinosis (NCL), a neurodegenerative disorder. TPP1 is a lysosomal serine protease, which removes tripeptides from the N-terminus of proteins and is composed of an N-terminal prodomain and a catalytic domain. It is conserved in mammals, amphibians, fish and the amoeba Dictyostelium discoideum. D. discoideum harbors at least six genes encoding TPP1, tpp1A to tpp1F. We identified TPP1F as binding partner of Dictyostelium GPHR (Golgi pH regulator), which is an evolutionarily highly conserved intracellular transmembrane protein. A region encompassing the DUF3735 (GPHR_N) domain of GPHR was responsible for the interaction. In TPP1F, the binding site is located in the prodomain of the protein. The tpp1F gene is transcribed throughout development and translated into a polypeptide of ∼65 kDa. TPP1 activity was demonstrated for TPP1F-GFP immunoprecipitated from D. discoideum cells. Its activity could be inhibited by addition of the recombinant DUF3735 domain of GPHR. Knockout tpp1F mutants did not display any particular phenotype, and TPP1 activity was not abrogated, presumably because tpp1B compensates as it has the highest expression level of all the TPP1 genes during growth. The GPHR interaction was not restricted to TPP1F but occurred also with TPP1B. As previous reports show that the majority of the TPP1 mutations in NCL resulted in reduction or loss of enzyme activity, we suggest that Dicyostelium could be used as a model system in which to test new reagents that could affect the activity of the protein and ameliorate the disease. Summary: Interaction of Dictyostelium tripeptidyl peptidase 1 with GPHR could be relevant for studies of the human enzyme, which is associated with a neurodegenerative disorder.
Collapse
Affiliation(s)
- Maria Stumpf
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| | - Rolf Müller
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| | - Berthold Gaßen
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| | - Regina Wehrstedt
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| | - Petra Fey
- Dicty Base, Northwestern University, Biomedical Informatics Center and Center for Genetic Medicine, Chicago, IL 60611, USA
| | - Malte A Karow
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| | - Ludwig Eichinger
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| | - Gernot Glöckner
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, Köln 50931, Germany
| |
Collapse
|
78
|
Miyakawa T, Tanokura M. Structural basis for the regulation of phytohormone receptors. Biosci Biotechnol Biochem 2017; 81:1261-1273. [PMID: 28417669 DOI: 10.1080/09168451.2017.1313696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phytohormones are central players in diverse plant physiological events, such as plant growth, development, and environmental stress and defense responses. The elucidation of their regulatory mechanisms through phytohormone receptors could facilitate the generation of transgenic crops with cultivation advantages and the rational design of growth control chemicals. During the last decade, accumulated structural data on phytohormone receptors have provided critical insights into the molecular mechanisms of phytohormone perception and signal transduction. Here, we review the structural bases of phytohormone recognition and receptor activation. As a common feature, phytohormones regulate the interaction between the receptors and their respective target proteins (also called co-receptors) by two types of regulatory mechanisms, acting as either "molecular glue" or an "allosteric regulator." However, individual phytohormone receptors adopt specific structural features that are essential for activation. In addition, recent studies have focused on the molecular diversity of redundant phytohormone receptors.
Collapse
Affiliation(s)
- Takuya Miyakawa
- a Department of Applied Biological Chemistry , Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan
| | - Masaru Tanokura
- a Department of Applied Biological Chemistry , Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan
| |
Collapse
|
79
|
Yu J, Ge H, Wang X, Tang R, Wang Y, Zhao F, Lan W, Luan S, Yang L. Overexpression of Pyrabactin Resistance-Like Abscisic Acid Receptors Enhances Drought, Osmotic, and Cold Tolerance in Transgenic Poplars. FRONTIERS IN PLANT SCIENCE 2017; 8:1752. [PMID: 29081783 PMCID: PMC5645508 DOI: 10.3389/fpls.2017.01752] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/25/2017] [Indexed: 05/17/2023]
Abstract
Abscisic acid (ABA) has been known participate in a wider range of adaptive responses to diverse environmental abiotic stresses such as drought, osmosis, and low temperatures. ABA signaling is initiated by its receptors PYR/PYL/RCARs, a type of soluble proteins with a conserved START domain which can bind ABA and trigger the downstream pathway. Previously, we discovered that poplar (Populus trichocarpa) genome encodes 14 PYR/PYL/RCAR orthologs (PtPYRLs), and two of them, PtPYRL1 and PtPYRL5 have been functionally characterized to positively regulate drought tolerance. However, the physiological function of these ABA receptors in poplar remains uncharacterized. Here, we generated transgenic poplar plants overexpressing PtPYRL1 and PtPYRL5 and found that they exhibited more vigorous growth and produced greater biomass when exposed to drought stress. The improved drought tolerance was positively correlated with the key physiological responses dictated by the ABA signaling pathway, including increase in stomatal closure and decrease in leaf water loss. Further analyses revealed that overexpression lines showed improved capacity in scavenging reactive oxygen species and enhanced the activation of antioxidant enzymes under drought stress. Moreover, overexpression of PtPYRL1 or PtPYRL5 significantly increased the poplar resistance to osmotic and cold stresses. In summary, our results suggest that constitutive expression of PtPYRL1 and PtPYRL5 significantly enhances the resistance to drought, osmotic and cold stresses by positively regulating ABA signaling in poplar.
Collapse
Affiliation(s)
- Jingling Yu
- State Key Laboratory for Pharmaceutical Biotechnology, NJU–NFU Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Haiman Ge
- State Key Laboratory for Pharmaceutical Biotechnology, NJU–NFU Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaokun Wang
- State Key Laboratory for Pharmaceutical Biotechnology, NJU–NFU Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Renjie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yuan Wang
- State Key Laboratory for Pharmaceutical Biotechnology, NJU–NFU Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Fugeng Zhao
- State Key Laboratory for Pharmaceutical Biotechnology, NJU–NFU Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Wenzhi Lan
- State Key Laboratory for Pharmaceutical Biotechnology, NJU–NFU Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
- *Correspondence: Wenzhi Lan, Sheng Luan, Lei Yang,
| | - Sheng Luan
- State Key Laboratory for Pharmaceutical Biotechnology, NJU–NFU Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Wenzhi Lan, Sheng Luan, Lei Yang,
| | - Lei Yang
- State Key Laboratory for Pharmaceutical Biotechnology, NJU–NFU Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
- *Correspondence: Wenzhi Lan, Sheng Luan, Lei Yang,
| |
Collapse
|
80
|
Ghatak A, Chaturvedi P, Weckwerth W. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding. FRONTIERS IN PLANT SCIENCE 2017; 8:757. [PMID: 28626463 PMCID: PMC5454074 DOI: 10.3389/fpls.2017.00757] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
- Vienna Metabolomics Center, University of ViennaVienna, Austria
- *Correspondence: Wolfram Weckwerth
| |
Collapse
|
81
|
Abstract
Glycosylation is essential for all trees of life. N-glycosylation is one of the most common covalent protein modifications and influences a large variety of cellular processes including protein folding, quality control and protein-receptor interactions. Despite recent progress in understanding of N-glycan biosynthesis, our knowledge of N-glycan function on individual plant proteins is still very limited. In this respect, plant hormone receptors are an interesting group of proteins as several of these proteins are present at distinct sites in the secretory pathway or at the plasma membrane and have numerous potential N-glycosylation sites. Identifying and characterization of N-glycan structures on these proteins is essential to investigate the functional role of this abundant protein modification. Here, a straightforward immunoblot-based approach is presented that enables the analysis of N-glycosylation on endogenous hormone receptors like the brassinosteroid receptor BRI1.
Collapse
Affiliation(s)
- Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Muthgasse 18, 1190, Vienna, Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Muthgasse 18, 1190, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
82
|
Sharma R, Vishal P, Kaul S, Dhar MK. Epiallelic changes in known stress-responsive genes under extreme drought conditions in Brassica juncea (L.) Czern. PLANT CELL REPORTS 2017; 36:203-217. [PMID: 27844102 DOI: 10.1007/s00299-016-2072-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Under severe drought conditions, Brassica juncea shows differential methylation and demethylation events, such that certain epialleles are silenced and some are activated. The plant employed avoidance strategy by delaying apoptosis through the activation of several genes. Harsh environmental conditions pose serious threat to normal growth and development of crops, sometimes leading to their death. However, plants have developed an essential mechanism of modulation of gene activities by epigenetic modifications. Brassica juncea is an important oilseed crop contributing effectively to the economy of India. In the present investigation, we studied the changes in the methylation level of various stress-responsive genes of B. juncea variety RH30 by methylation-dependent immune-precipitation-chip in response to severe drought. On the basis of changes in the number of differential methylation regions in response to drought, the promoter regions were designated as hypermethylated and hypomethylated. Gene body methylation increased in all the genes, whereas promoter methylation was dependent on the function of the gene. Overall, the genes responsible for delaying apoptosis were hypomethylated and many genes responsible for normal routine activities were hypermethylated at promoter regions, thereby suggesting that these may be suspending the activities under harsh conditions.
Collapse
Affiliation(s)
- Rahul Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Parivartan Vishal
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India.
| |
Collapse
|
83
|
Zhu JK. Abiotic Stress Signaling and Responses in Plants. Cell 2016; 167:313-324. [PMID: 27716505 DOI: 10.1007/978-1-4614-0634-1_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 05/27/2023]
Abstract
As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.
Collapse
Affiliation(s)
- Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
84
|
Assmann SM, Jegla T. Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO 2. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:157-167. [PMID: 27518594 DOI: 10.1016/j.pbi.2016.07.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 05/18/2023]
Abstract
By controlling the opening and closure of the stomatal pores through which gas exchange occurs, guard cells regulate two of the most important plant physiological processes: photosynthesis and transpiration. Accordingly, guard cells have evolved exquisite sensory systems. Here we summarize recent literature on guard cell sensing of light, drought (via the phytohormone abscisic acid (ABA)), and CO2. New advances in our understanding of how guard cells satisfy the energetic and osmotic requirements of stomatal opening and utilize phosphorylation to regulate the anion channels and aquaporins involved in ABA-stimulated stomatal closure are highlighted. Omics and modeling approaches are providing new information that will ultimately allow an integrated understanding of guard cell physiology.
Collapse
Affiliation(s)
- Sarah M Assmann
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA 16802, United States.
| | - Timothy Jegla
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA 16802, United States; Huck Institutes of the Life Sciences, 201 Life Sciences Building, University Park, PA 16802, United States.
| |
Collapse
|
85
|
Lu K, Liang S, Wu Z, Bi C, Yu YT, Wang XF, Zhang DP. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5009-27. [PMID: 27406784 PMCID: PMC5014153 DOI: 10.1093/jxb/erw266] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Receptor-like kinases (RLKs) have been reported to regulate many developmental and defense process, but only a few members have been functionally characterized. In the present study, our observations suggest that one of the RLKs, a membrane-localized cysteine-rich receptor-like protein kinase, CRK5, is involved in abscisic acid (ABA) signaling in Arabidopsis thaliana Overexpression of CRK5 increases ABA sensitivity in ABA-induced early seedling growth arrest and promotion of stomatal closure and inhibition of stomatal opening. Interestingly, and importantly, overexpression of CRK5 enhances plant drought tolerance without affecting plant growth at the mature stages and plant productivity. Transgenic lines overexpressing a mutated form of CRK5, CRK5 (K372E) with the change of the 372nd conserved amino acid residue from lysine to glutamic acid in its kinase domain, result in wild-type ABA and drought responses, supporting the role of CRK5 in ABA signaling. The loss-of-function mutation of the CRK5 gene does not affect the ABA response, while overexpression of two homologs of CRK5, CRK4 and CRK19, confers ABA responses, suggesting that these CRK members function redundantly. We further showed that WRKY18, WRKY40 and WRKY60 transcription factors repress the expression of CRK5, and that CRK5 likely functions upstream of ABI2 in ABA signaling. These findings help in understanding the complex ABA signaling network.
Collapse
Affiliation(s)
- Kai Lu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Liang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhen Wu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chao Bi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong-Tao Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Fang Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Da-Peng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
86
|
Xu Q, Zhao M, Wu K, Fu X, Liu Q. Emerging insights into heterotrimeric G protein signaling in plants. J Genet Genomics 2016; 43:495-502. [DOI: 10.1016/j.jgg.2016.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/23/2022]
|
87
|
Verslues PE. ABA and cytokinins: challenge and opportunity for plant stress research. PLANT MOLECULAR BIOLOGY 2016; 91:629-640. [PMID: 26910054 DOI: 10.1007/s11103-016-0458-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Accumulation of the stress hormone abscisic acid (ABA) induces many cellular mechanisms associated with drought resistance. Recent years have seen a rapid advance in our knowledge of how increased ABA levels are perceived by ABA receptors, particularly the PYL/RCAR receptors, but there has been relatively less new information about how ABA accumulation is controlled and matched to stress severity. ABA synthesis and catabolism, conjugation and deconjugation to glucose, and ABA transport all are involved in controlling ABA levels. This highly buffered system of ABA metabolism represents both a challenge and opportunity in developing a mechanistic understanding of how plants detect and respond to drought. Recent data have also shown that direct manipulation of cytokinin levels in transgenic plants has dramatic effect on drought phenotypes and prompted new interest in the role of cytokinins and cytokinin signaling in drought. Both ABA and cytokinins will continue to be major foci of drought research but likely with different trajectories both in terms of basic research and in translational research aimed at increasing plant performance during drought.
Collapse
Affiliation(s)
- Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Sec. 2 Academia Rd, Nankang Dist., Taipei, 11529, Taiwan.
| |
Collapse
|
88
|
Leandro DDS, Tessio ADS, Priscila SDO, Bruno GL, Marcio GCDC, Alex Alan FDA, Fabio PG. Abscisic acid-mediated stomatal closure and antioxidant defenses in Jatropha curcas L. seedlings submitted to moderate water deficit. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajar2015.10587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
89
|
Abstract
The phytohormone abscisic acid (ABA) plays crucial roles in numerous physiological processes during plant growth and abiotic stress responses. The endogenous ABA level is controlled by complex regulatory mechanisms involving biosynthesis, catabolism, transport and signal transduction pathways. This complex regulatory network may target multiple levels, including transcription, translation and post-translational regulation of genes involved in ABA responses. Most of the genes involved in ABA biosynthesis, catabolism and transport have been characterized. The local ABA concentration is critical for initiating ABA-mediated signalling during plant development and in response to environmental changes. In this chapter we discuss the mechanisms that regulate ABA biosynthesis, catabolism, transport and homoeostasis. We also present the findings of recent research on ABA perception by cellular receptors, and ABA signalling in response to cellular and environmental conditions.
Collapse
|
90
|
Yuan F, Lyu MJA, Leng BY, Zhu XG, Wang BS. The transcriptome of NaCl-treated Limonium bicolor leaves reveals the genes controlling salt secretion of salt gland. PLANT MOLECULAR BIOLOGY 2016; 91:241-56. [PMID: 26936070 DOI: 10.1007/s11103-016-0460-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 02/24/2016] [Indexed: 05/20/2023]
Abstract
Limonium bicolor, a typical recretohalophyte that lives in saline environments, excretes excessive salt to the environment through epidermal salt glands to avoid salt stress. The aim of this study was to screen for L. bicolor genes involved in salt secretion by high-throughput RNA sequencing. We established the experimental procedure of salt secretion using detached mature leaves, in which the optimal salt concentration was determined as 200 mM NaCl. The detached salt secretion system combined with Illumina deep sequencing were applied. In total, 27,311 genes were annotated using an L. bicolor database, and 2040 of these genes were differentially expressed, of which 744 were up-regulated and 1260 were down-regulated with the NaCl versus the control treatment. A gene ontology enrichment analysis indicated that genes related to ion transport, vesicles, reactive oxygen species scavenging, the abscisic acid-dependent signaling pathway and transcription factors were found to be highly expressed under NaCl treatment. We found that 102 of these genes were likely to be involved in salt secretion, which was confirmed using salt-secretion mutants. The present study identifies the candidate genes in the L. bicolor salt gland that are highly associated with salt secretion. In addition, a salt-transporting pathway is presented to explain how Na(+) is excreted by the salt gland in L. bicolor. These findings will shed light on the molecular mechanism of salt secretion from the salt glands of plants.
Collapse
Affiliation(s)
- Fang Yuan
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Ming-Ju Amy Lyu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute of Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, 200031, China
| | - Bing-Ying Leng
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xin-Guang Zhu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute of Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, 200031, China
| | - Bao-Shan Wang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
91
|
Zang G, Zou H, Zhang Y, Xiang Z, Huang J, Luo L, Wang C, Lei K, Li X, Song D, Din AU, Wang G. The De-Etiolated 1 Homolog of Arabidopsis Modulates the ABA Signaling Pathway and ABA Biosynthesis in Rice. PLANT PHYSIOLOGY 2016; 171:1259-76. [PMID: 27208292 PMCID: PMC4902595 DOI: 10.1104/pp.16.00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/27/2016] [Indexed: 05/20/2023]
Abstract
DEETIOLATED1 (DET1) plays a critical role in developmental and environmental responses in many plants. To date, the functions of OsDET1 in rice (Oryza sativa) have been largely unknown. OsDET1 is an ortholog of Arabidopsis (Arabidopsis thaliana) DET1 Here, we found that OsDET1 is essential for maintaining normal rice development. The repression of OsDET1 had detrimental effects on plant development, and leaded to contradictory phenotypes related to abscisic acid (ABA) in OsDET1 interference (RNAi) plants. We found that OsDET1 is involved in modulating ABA signaling in rice. OsDET1 RNAi plants exhibited an ABA hypersensitivity phenotype. Using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays, we determined that OsDET1 interacts physically with DAMAGED-SPECIFIC DNA-BINDING PROTEIN1 (OsDDB1) and CONSTITUTIVE PHOTOMORPHOGENIC10 (COP10); DET1- and DDB1-ASSOCIATED1 binds to the ABA receptors OsPYL5 and OsDDB1. We found that the degradation of OsPYL5 was delayed in OsDET1 RNAi plants. These findings suggest that OsDET1 deficiency disturbs the COP10-DET1-DDB1 complex, which is responsible for ABA receptor (OsPYL) degradation, eventually leading to ABA sensitivity in rice. Additionally, OsDET1 also modulated ABA biosynthesis, as ABA biosynthesis was inhibited in OsDET1 RNAi plants and promoted in OsDET1-overexpressing transgenic plants. In conclusion, our data suggest that OsDET1 plays an important role in maintaining normal development in rice and mediates the cross talk between ABA biosynthesis and ABA signaling pathways in rice.
Collapse
Affiliation(s)
- Guangchao Zang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Hanyan Zou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Yuchan Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Zheng Xiang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Li Luo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Chunping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Kairong Lei
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Xianyong Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Deming Song
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Ahmad Ud Din
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| |
Collapse
|
92
|
Affiliation(s)
- Xin-Min Li
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | - Hong-Xuan Lin
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| |
Collapse
|
93
|
Hopper DW, Ghan R, Schlauch KA, Cramer GR. Transcriptomic network analyses of leaf dehydration responses identify highly connected ABA and ethylene signaling hubs in three grapevine species differing in drought tolerance. BMC PLANT BIOLOGY 2016; 16:118. [PMID: 27215785 PMCID: PMC4877820 DOI: 10.1186/s12870-016-0804-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/17/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Grapevine is a major food crop that is affected by global climate change. Consistent with field studies, dehydration assays of grapevine leaves can reveal valuable information of the plant's response at physiological, transcript, and protein levels. There are well-known differences in grapevine rootstocks responses to dehydration. We used time-series transcriptomic approaches combined with network analyses to elucidate and identify important physiological processes and network hubs that responded to dehydration in three different grapevine species differing in their drought tolerance. RESULTS Transcriptomic analyses of the leaves of Cabernet Sauvignon, Riparia Gloire, and Ramsey were evaluated at different times during a 24-h controlled dehydration. Analysis of variance (ANOVA) revealed that approximately 11,000 transcripts changed significantly with respect to the genotype x treatment interaction term and approximately 6000 transcripts changed significantly according to the genotype x treatment x time interaction term indicating massive differential changes in gene expression over time. Standard analyses determined substantial effects on the transcript abundance of genes involved in the metabolism and signaling of two known plant stress hormones, abscisic acid (ABA) and ethylene. ABA and ethylene signaling maps were constructed and revealed specific changes in transcript abundance that were associated with the known drought tolerance of the genotypes including genes such as VviABI5, VviABF2, VviACS2, and VviWRKY22. Weighted-gene coexpression network analysis (WGCNA) confirmed these results. In particular, WGCNA identified 30 different modules, some of which had highly enriched gene ontology (GO) categories for photosynthesis, phenylpropanoid metabolism, ABA and ethylene signaling. The ABA signaling transcription factors, VviABI5 and VviABF2, were highly connected hubs in two modules, one being enriched in gaseous transport and the other in ethylene signaling. VviABI5 was distinctly correlated with an early response and high expression for the drought tolerant Ramsey and with little response from the drought sensitive Riparia Gloire. These ABA signaling transcription factors were highly connected to VviSnRK1 and other gene hubs associated with sugar, ethylene and ABA signaling. CONCLUSION A leaf dehydration assay provided transcriptomic evidence for differential leaf responses to dehydration between genotypes differing in their drought tolerance. WGCNA proved to be a powerful network analysis approach; it identified 30 distinct modules (networks) with highly enriched GO categories and enabled the identification of gene hubs in these modules. Some of these genes were highly connected hubs in both the ABA and ethylene signaling pathways, supporting the hypothesis that there is substantial crosstalk between the two hormone pathways. This study identifies solid gene candidates for future investigations of drought tolerance in grapevine.
Collapse
Affiliation(s)
- Daniel W Hopper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Karen A Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Grant R Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
94
|
Bao Y, Song WM, Zhang HX. Role of Arabidopsis NHL family in ABA and stress response. PLANT SIGNALING & BEHAVIOR 2016; 11:e1180493. [PMID: 27110948 PMCID: PMC4977461 DOI: 10.1080/15592324.2016.1180493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Based on their sequence homology to Arabidopsis NDR1 and tobacco (Nicotiana tabacum) HIN1, 45 NHL (NDR1/HIN1-like) family genes are found in Arabidopsis genome. Recently, we reported that overexpression of NHL6, a member of NHL family, modulated seed germination under abiotic stresses through affecting ABA biosynthesis and signaling. We also carried out qPCR and investigated the expression of the other 8 member genes (NHL7a, 16, 17, 21, 25, 26, 41, 43) whose transcriptional data are publicly unavailable, and found that expression of NHL17 was induced more than 2 folds in ABA treated seedlings. Furthermore, in addition to the plasma membrane localization, YFP-NHL6 fusion protein was also observed in the cytosol (as dots) or on the membrane of small vacuoles or vesicles. As a member of the pathogen infection related genes, expression of NHL6 was significantly induced by salicylic acid and NHL6s are evolutionarily conserved among different plant species. A working model of NHL6 in ABA response was proposed.
Collapse
Affiliation(s)
- Yan Bao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Plant Sciences Institute and the Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Wei-Meng Song
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Xia Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Agriculture, Ludong University, Yantai, China
- Hong-Xia Zhang ,
| |
Collapse
|
95
|
Fan W, Zhao M, Li S, Bai X, Li J, Meng H, Mu Z. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. BMC PLANT BIOLOGY 2016; 16:99. [PMID: 27101806 PMCID: PMC4839062 DOI: 10.1186/s12870-016-0764-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/21/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND The different actions of abscisic acid (ABA) in the aboveground and belowground parts of plants suggest the existence of a distinct perception mechanism between these organs. Although characterization of the soluble ABA receptors PYR1/PYL/RCAR as well as core signaling components has greatly advanced our understanding of ABA perception, signal transduction, and responses, the environment-dependent organ-specific sensitivity of plants to ABA is less well understood. RESULTS By performing real-time quantitative PCR assays, we comprehensively compared transcriptional differences of core ABA signaling components in response to ABA or osmotic/dehydration stress between maize (Zea mays L.) roots and leaves. Our results demonstrated up-regulation of the transcript levels of ZmPYLs homologous to dimeric-type Arabidopsis ABA receptors by ABA in maize primary roots, whereas those of ZmPYLs homologous to monomeric-type Arabidopsis ABA receptors were down-regulated. However, this trend was reversed in the leaves of plants treated with ABA via the root medium. Although the mRNA levels of ZmPYL1-3 increased significantly in roots subjected to polyethylene glycol (PEG)-induced osmotic stress, ZmPYL4-11 transcripts were either maintained at a stable level or increased only slightly. In detached leaves subjected to dehydration, the transcripts of ZmPYL1-3 together with ZmPYL5, ZmPYL6, ZmPYL10 and ZmPYL11 were decreased, whereas those of ZmPYL4, ZmPYL7 and ZmPYL8 were significantly increased. Our results also showed that all of the evaluated transcripts of PP2Cs and SnRK2 were quickly up-regulated in roots by ABA or osmotic stress; conversely they were either up-regulated or maintained at a constant level in leaves, depending on the isoforms within each family. CONCLUSIONS There is a distinct profile of PYR/PYL/RCAR ABA receptor gene expression between maize roots and leaves, suggesting that monomeric-type ABA receptors are mainly involved in the transmission of ABA signals in roots but that dimeric-type ABA receptors primarily carry out this function in leaves. Given that ZmPYL1 and ZmPYL4 exhibit similar transcript abundance under normal conditions, our findings may represent a novel mechanism for species-specific regulation of PYR/PYL/RCAR ABA receptor gene expression. A difference in the preference for core signaling components in the presence of exogenous ABA versus stress-induced endogenous ABA was observed in both leaves and roots. It appears that core ABA signaling components perform their osmotic/dehydration stress response functions in a stress intensity-, duration-, species-, organ-, and isoform-specific manner, leading to plasticity in response to adverse conditions and, thus, acclimation to life on land. These results deepen our understanding of the diverse biological effects of ABA between plant leaves and roots in response to abiotic stress at the stimulus-perception level.
Collapse
Affiliation(s)
- Wenqiang Fan
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mengyao Zhao
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Suxin Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xue Bai
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jia Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Haowei Meng
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zixin Mu
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
96
|
Yu YT, Wu Z, Lu K, Bi C, Liang S, Wang XF, Zhang DP. Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2016; 90:267-79. [PMID: 26646286 PMCID: PMC4717180 DOI: 10.1007/s11103-015-0411-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/24/2015] [Indexed: 05/04/2023]
Abstract
Although a lot of genes have been revealed to participate in abscisic acid (ABA) signaling, many of the additional components involved in ABA signaling remain to be discovered. Here we report that overexpression of MYB37, a R2R3 MYB subgroup 14 transcription factor in Arabidopsis thaliana, confers hypersensitive phenotypes to exogenous ABA in all the major ABA responses, including ABA-induced inhibition of seed germination, cotyledon greening and early seedling growth, and ABA-induced stomatal closure and inhibition of stomatal opening. Interestingly and importantly, MYB37-overexpression improves plant tolerance to drought, enhances growth of mature plants and seed productivity, thought it delays flowering, which suggests that this gene may be used for improving crop adaptability to drought environment and productivity. However, a myb37-1 knockout mutant displays wild-type ABA responses most likely due to a functional redundancy of the multiple MYB members. Real-time PCR analysis shows that upregulation of the MYB37 expression changes expression of a subset of ABA-responsive genes. Together, these findings suggest that the MYB37 transcription factor plays an important, positive role in plant response to ABA and drought stress, and meanwhile, it plays a positive role in the regulation of seed production.
Collapse
Affiliation(s)
- Yong-Tao Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhen Wu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kai Lu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chao Bi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shan Liang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiao-Fang Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Da-Peng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
97
|
Miller JC, Chezem WR, Clay NK. Ternary WD40 Repeat-Containing Protein Complexes: Evolution, Composition and Roles in Plant Immunity. FRONTIERS IN PLANT SCIENCE 2016; 6:1108. [PMID: 26779203 PMCID: PMC4703829 DOI: 10.3389/fpls.2015.01108] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/23/2015] [Indexed: 05/18/2023]
Abstract
Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialog by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect "non-self," "damaged-self," and "altered-self"- associated molecular patterns and translate these "danger" signals into largely inducible chemical defenses. The WD40 repeat (WDR)-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. They are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.
Collapse
Affiliation(s)
- Jimi C. Miller
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT, USA
| | - William R. Chezem
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| | - Nicole K. Clay
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
98
|
Chakraborty N, Sharma P, Kanyuka K, Pathak RR, Choudhury D, Hooley R, Raghuram N. G-protein α-subunit (GPA1) regulates stress, nitrate and phosphate response, flavonoid biosynthesis, fruit/seed development and substantially shares GCR1 regulation in A. thaliana. PLANT MOLECULAR BIOLOGY 2015; 89:559-76. [PMID: 26346778 DOI: 10.1007/s11103-015-0374-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/28/2015] [Indexed: 05/09/2023]
Abstract
Heterotrimeric G-proteins are implicated in several plant processes, but the mechanisms of signal-response coupling and the roles of G-protein coupled receptors in general and GCR1 in particular, remain poorly understood. We isolated a knock-out mutant of the Arabidopsis G-protein α subunit (gpa1-5) and analysed its transcriptome to understand the genomewide role of GPA1 and compared it with that of our similar analysis of a GCR1 mutant (Chakraborty et al. 2015, PLoS ONE 10(2):e0117819). We found 394 GPA1-regulated genes spanning 79 biological processes, including biotic and abiotic stresses, development, flavonoid biosynthesis, transcription factors, transporters and nitrate/phosphate responses. Many of them are either unknown or unclaimed explicitly in other published gpa1 mutant transcriptome analyses. A comparison of all known GPA1-regulated genes (including the above 394) with 350 GCR1-regulated genes revealed 114 common genes. This can be best explained by GCR1-GPA1 coupling, or by convergence of their independent signaling pathways. Though the common genes in our GPA1 and GCR1 mutant datasets constitute only 26% of the GPA1-regulated and 30% of the GCR1-responsive genes, they belong to nearly half of all the processes affected in both the mutants. Thus, GCR1 and GPA1 regulate not only some common genes, but also different genes belonging to the same processes to achieve similar outcomes. Overall, we validate some known and report many hitherto unknown roles of GPA1 in plants, including agronomically important ones such as biotic stress and nutrient response, and also provide compelling genetic evidence to revisit the role of GCR1 in G-protein signalling.
Collapse
Affiliation(s)
- Navjyoti Chakraborty
- University School of Biotechnology, G.G.S. Indraprastha University, Sector 16 C, Dwarka, New Delhi, 110078, India
| | - Priyanka Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, Sector 16 C, Dwarka, New Delhi, 110078, India
| | - Kostya Kanyuka
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Ravi Ramesh Pathak
- University School of Biotechnology, G.G.S. Indraprastha University, Sector 16 C, Dwarka, New Delhi, 110078, India
| | | | - Richard Hooley
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Nandula Raghuram
- University School of Biotechnology, G.G.S. Indraprastha University, Sector 16 C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
99
|
Palmeros-Suárez PA, Massange-Sánchez JA, Martínez-Gallardo NA, Montero-Vargas JM, Gómez-Leyva JF, Délano-Frier JP. The overexpression of an Amaranthus hypochondriacus NF-YC gene modifies growth and confers water deficit stress resistance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:25-40. [PMID: 26475185 DOI: 10.1016/j.plantsci.2015.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 05/28/2023]
Abstract
Nuclear factor-Y (NF-Y), is a plant heterotrimeric transcription factor constituted by NF-YA, NF-YB and NF-YC subunits. The function of many NF-Y subunits, mostly of the A and B type, has been studied in plants, but knowledge regarding the C subunit remains fragmentary. Here, a water stress-induced NF-YC gene from Amaranthus hypochondriacus (AhNF-YC) was further characterized by its overexpression in transgenic Arabidospis thaliana plants. A role in development was inferred from modified growth rates in root, rosettes and inflorescences recorded in AhNF-YC overexpressing Arabidopsis plants, in addition to a delayed onset of flowering. Also, the overexpression of AhNF-YC caused increased seedling sensitivity to abscisic acid (ABA), and influenced the expression of several genes involved in secondary metabolism, development and ABA-related responses. An altered expression of the latter in water stressed and recovered transgenic plants, together with the observed increase in ABA sensitivity, suggested that their increased water stress resistance was partly ABA-dependent. An untargeted metabolomic analysis also revealed an altered metabolite pattern, both in normal and water stress/recovery conditions. These results suggest that AhNF-YC may play an important regulatory role in both development and stress, and represents a candidate gene for the engineering of abiotic stress resistance in commercial crops.
Collapse
Affiliation(s)
- Paola A Palmeros-Suárez
- Centro de Investigación y de Estudios Avanzados del I. P. N. (Cinvestav), Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Julio A Massange-Sánchez
- Centro de Investigación y de Estudios Avanzados del I. P. N. (Cinvestav), Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Norma A Martínez-Gallardo
- Centro de Investigación y de Estudios Avanzados del I. P. N. (Cinvestav), Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Josaphat M Montero-Vargas
- Centro de Investigación y de Estudios Avanzados del I. P. N. (Cinvestav), Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Juan F Gómez-Leyva
- Laboratorio de Biología Molecular, Instituto Tecnológico de Tlajomulco, Jalisco (ITTJ), Km 10 Carretera a San Miguel Cuyutlán, C.P. 45640 Tlajomulco de Zúñiga, Jalisco, Mexico
| | - John P Délano-Frier
- Centro de Investigación y de Estudios Avanzados del I. P. N. (Cinvestav), Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
100
|
Merilo E, Jalakas P, Laanemets K, Mohammadi O, Hõrak H, Kollist H, Brosché M. Abscisic Acid Transport and Homeostasis in the Context of Stomatal Regulation. MOLECULAR PLANT 2015; 8:1321-33. [PMID: 26099923 DOI: 10.1016/j.molp.2015.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/04/2015] [Accepted: 06/08/2015] [Indexed: 05/18/2023]
Abstract
The discovery of cytosolic ABA receptors is an important breakthrough in stomatal research; signaling via these receptors is involved in determining the basal stomatal conductance and stomatal responsiveness. However, the source of ABA in guard cells is still not fully understood. The level of ABA increases in guard cells by de novo synthesis, recycling from inactive conjugates via β-glucosidases BG1 and BG2 and by import, whereas it decreases by hydroxylation, conjugation, and export. ABA importers include the NRT1/PTR family protein AIT1, ATP-binding cassette protein ABCG40, and possibly ABCG22, whereas the DTX family member DTX50 and ABCG25 function as ABA exporters. Here, we review the proteins involved in ABA transport and homeostasis and their physiological role in stomatal regulation. Recent experiments suggest that functional redundancy probably exists among ABA transporters between vasculature and guard cells and ABA recycling proteins, as stomatal functioning remained intact in abcg22, abcg25, abcg40, ait1, and bg1bg2 mutants. Only the initial response to reduced air humidity was significantly delayed in abcg22. Considering the reports showing autonomous ABA synthesis in guard cells, we discuss that rapid stomatal responses to atmospheric factors might depend primarily on guard cell-synthesized ABA, whereas in the case of long-term soil water deficit, ABA synthesized in the vasculature might have a significant role.
Collapse
Affiliation(s)
- Ebe Merilo
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Pirko Jalakas
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Kristiina Laanemets
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Omid Mohammadi
- Division of Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland
| | - Hanna Hõrak
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Mikael Brosché
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; Division of Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland
| |
Collapse
|