51
|
Zaghi E, Calvi M, Puccio S, Spata G, Terzoli S, Peano C, Roberto A, De Paoli F, van Beek JJ, Mariotti J, De Philippis C, Sarina B, Mineri R, Bramanti S, Santoro A, Le-Trilling VTK, Trilling M, Marcenaro E, Castagna L, Di Vito C, Lugli E, Mavilio D. Single-cell profiling identifies impaired adaptive NK cells expanded after HCMV reactivation in haploidentical HSCT. JCI Insight 2021; 6:146973. [PMID: 34003794 PMCID: PMC8262468 DOI: 10.1172/jci.insight.146973] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Haploidentical hematopoietic stem cell transplantation (h-HSCT) represents an efficient curative approach for patients affected by hematologic malignancies in which the reduced intensity conditioning induces a state of immunologic tolerance between donor and recipient. However, opportunistic viral infections greatly affect h-HSCT clinical outcomes. NK cells are the first lymphocytes that recover after transplant and provide a prompt defense against human cytomegalovirus (HCMV) infection/reactivation. By undertaking a longitudinal single-cell computational profiling of multiparametric flow cytometry, we show that HCMV accelerates NK cell immune reconstitution together with the expansion of CD158b1b2jpos/NKG2Aneg/NKG2Cpos/NKp30lo NK cells. The frequency of this subset correlates with HCMV viremia, further increases in recipients experiencing multiple episodes of viral reactivations, and persists for months after the infection. The transcriptional profile of FACS-sorted CD158b1b2jpos NK cells confirmed the ability of HCMV to deregulate NKG2C, NKG2A, and NKp30 gene expression, thus inducing the expansion of NK cells with adaptive traits. These NK cells are characterized by the downmodulation of several gene pathways associated with cell migration, the cell cycle, and effector-functions, as well as by a state of metabolic/cellular exhaustion. This profile reflects the functional impairments of adaptive NK cells to produce IFN-γ, a phenomenon also due to the viral-induced expression of lymphocyte-activation gene 3 (LAG-3) and programmed cell death protein 1 (PD-1) checkpoint inhibitors.
Collapse
Affiliation(s)
- Elisa Zaghi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,BIOMETRA, Università degli Studi di Milano, Milan, Italy
| | | | - Gianmarco Spata
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Sara Terzoli
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, and Genomic Unit
| | | | | | | | | | | | | | - Rossana Mineri
- Molecular Biology Section, Clinical Investigation Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | | | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,BIOMETRA, Università degli Studi di Milano, Milan, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology.,Flow Cytometry Core, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,BIOMETRA, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
52
|
HCMV-controlling NKG2C+ NK cells originate from novel circulating inflammatory precursors. J Allergy Clin Immunol 2021; 147:2343-2357. [DOI: 10.1016/j.jaci.2020.12.648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022]
|
53
|
High-dimensional mass cytometry analysis of NK cell alterations in AML identifies a subgroup with adverse clinical outcome. Proc Natl Acad Sci U S A 2021; 118:2020459118. [PMID: 34050021 PMCID: PMC8179170 DOI: 10.1073/pnas.2020459118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are major antileukemic immune effectors. Leukemic blasts have a negative impact on NK cell function and promote the emergence of phenotypically and functionally impaired NK cells. In the current work, we highlight an accumulation of CD56-CD16+ unconventional NK cells in acute myeloid leukemia (AML), an aberrant subset initially described as being elevated in patients chronically infected with HIV-1. Deep phenotyping of NK cells was performed using peripheral blood from patients with newly diagnosed AML (n = 48, HEMATOBIO cohort, NCT02320656) and healthy subjects (n = 18) by mass cytometry. We showed evidence of a moderate to drastic accumulation of CD56-CD16+ unconventional NK cells in 27% of patients. These NK cells displayed decreased expression of NKG2A as well as the triggering receptors NKp30 and NKp46, in line with previous observations in HIV-infected patients. High-dimensional characterization of these NK cells highlighted a decreased expression of three additional major triggering receptors required for NK cell activation, NKG2D, DNAM-1, and CD96. A high proportion of CD56-CD16+ NK cells at diagnosis was associated with an adverse clinical outcome and decreased overall survival (HR = 0.13; P = 0.0002) and event-free survival (HR = 0.33; P = 0.018) and retained statistical significance in multivariate analysis. Pseudotime analysis of the NK cell compartment highlighted a disruption of the maturation process, with a bifurcation from conventional NK cells toward CD56-CD16+ NK cells. Overall, our data suggest that the accumulation of CD56-CD16+ NK cells may be the consequence of immune escape from innate immunity during AML progression.
Collapse
|
54
|
KSHV infection drives poorly cytotoxic CD56-negative natural killer cell differentiation in vivo upon KSHV/EBV dual infection. Cell Rep 2021; 35:109056. [PMID: 33951431 DOI: 10.1016/j.celrep.2021.109056] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/29/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Herpesvirus infections shape the human natural killer (NK) cell compartment. While Epstein-Barr virus (EBV) expands immature NKG2A+ NK cells, human cytomegalovirus (CMV) drives accumulation of adaptive NKG2C+ NK cells. Kaposi sarcoma-associated herpesvirus (KSHV) is a close relative of EBV, and both are associated with lymphomas, including primary effusion lymphoma (PEL), which nearly always harbors both viruses. In this study, KSHV dual infection of mice with reconstituted human immune system components leads to the accumulation of CD56-CD16+CD38+CXCR6+ NK cells. CD56-CD16+ NK cells were also more frequently found in KSHV-seropositive Kenyan children. This NK cell subset is poorly cytotoxic against otherwise-NK-cell-susceptible and antibody-opsonized targets. Accordingly, NK cell depletion does not significantly alter KSHV infection in humanized mice. These data suggest that KSHV might escape NK-cell-mediated immune control by driving CD56-CD16+ NK cell differentiation.
Collapse
|
55
|
Wijaya RS, Read SA, Schibeci S, Han S, Azardaryany MK, van der Poorten D, Lin R, Yuen L, Lam V, Douglas MW, George J, Ahlenstiel G. Expansion of dysfunctional CD56-CD16+ NK cells in chronic hepatitis B patients. Liver Int 2021; 41:969-981. [PMID: 33411395 DOI: 10.1111/liv.14784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/12/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Natural killer (NK) cells are primary innate effector cells that play an important role in the control of human viral infections. During chronic viral infection, NK cells undergo significant changes in phenotype, function and subset distribution, including the appearance of CD56-CD16+ (CD56-) NK cells, previously identified in chronic human immunodeficiency virus (HIV) and hepatitis C virus infection. However, the presence of CD56- NK cells in the pathogenesis of chronic hepatitis B (CHB) remains unknown. METHODS Phenotype and function of CD56- NK cells from patients with CHB (n = 28) were assessed using flow cytometry and in vitro stimulation with HBV antigen. RESULTS CHB patients had a higher frequency of CD56- NK cells compared to healthy controls in peripheral blood (6.2% vs 1.4%, P < .0001). Compared to CD56+ NK cells, CD56- NK cells had increased expression of inhibitory receptors, and reduced expression of activating receptors, as measured by MFI and qPCR. CD56- NK cells were less responsive to target cell and cytokine stimulation compared to their CD56+ counterparts. In addition, CD56- NK cells demonstrated defective dendritic cells (DCs) interactions resulting in reduced DCs maturation, lower expression of NK CD69 and impaired capacity of NK cells to eliminate immature DCs in co-culture studies. Finally, frequency of CD56- NK cells was positively correlated with serum HBV DNA levels. CONCLUSION Chronic HBV infection induces the expansion of highly dysfunctional of CD56- NK cells that likely contribute to inefficient innate and adaptive antiviral immune response in chronic HBV infection.
Collapse
Affiliation(s)
- Ratna S Wijaya
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Faculty of Medicine, Pelita Harapan University, Tangerang, Indonesia
| | - Scott A Read
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Blacktown Clinical School, Western Sydney University, Blacktown, NSW, Australia.,Blacktown Hospital, Blacktown, NSW, Australia
| | - Stephen Schibeci
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Shuanglin Han
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Mahmoud K Azardaryany
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | | | - Rita Lin
- Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | - Lawrence Yuen
- Westmead Hospital, University of Sydney, Westmead, NSW, Australia.,Discipline of Surgery, University of Sydney, Westmead, NSW, Australia
| | - Vincent Lam
- Westmead Hospital, University of Sydney, Westmead, NSW, Australia.,Discipline of Surgery, University of Sydney, Westmead, NSW, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Westmead Hospital, University of Sydney, Westmead, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | - Golo Ahlenstiel
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Blacktown Clinical School, Western Sydney University, Blacktown, NSW, Australia.,Blacktown Hospital, Blacktown, NSW, Australia
| |
Collapse
|
56
|
Bozzano F, Dentone C, Perrone C, Di Biagio A, Fenoglio D, Parodi A, Mikulska M, Bruzzone B, Giacobbe DR, Vena A, Taramasso L, Nicolini L, Patroniti N, Pelosi P, Gratarola A, De Palma R, Filaci G, Bassetti M, De Maria A. Extensive activation, tissue trafficking, turnover and functional impairment of NK cells in COVID-19 patients at disease onset associates with subsequent disease severity. PLoS Pathog 2021; 17:e1009448. [PMID: 33861802 PMCID: PMC8081333 DOI: 10.1371/journal.ppat.1009448] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/28/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
The SARS-CoV-2 infection causes severe respiratory involvement (COVID-19) in 5-20% of patients through initial immune derangement, followed by intense cytokine production and vascular leakage. Evidence of immune involvement point to the participation of T, B, and NK cells in the lack of control of virus replication leading to COVID-19. NK cells contribute to early phases of virus control and to the regulation of adaptive responses. The precise mechanism of NK cell dysregulation is poorly understood, with little information on tissue margination or turnover. We investigated these aspects by multiparameter flow cytometry in a cohort of 28 patients hospitalized with early COVID-19. Relevant decreases in CD56brightCD16+/- NK subsets were detected, with a shift of circulating NK cells toward more mature CD56dimCD16+KIR+NKG2A+ and "memory" KIR+CD57+CD85j+ cells with increased inhibitory NKG2A and KIR molecules. Impaired cytotoxicity and IFN-γ production were associated with conserved expression of natural cytotoxicity receptors and perforin. Moreover, intense NK cell activation with increased HLA-DR and CD69 expression was associated with the circulation of CD69+CD103+ CXCR6+ tissue-resident NK cells and of CD34+DNAM-1brightCXCR4+ inflammatory precursors to mature functional NK cells. Severe disease trajectories were directly associated with the proportion of CD34+DNAM-1brightCXCR4+ precursors and inversely associated with the proportion of NKG2D+ and of CD103+ NK cells. Intense NK cell activation and trafficking to and from tissues occurs early in COVID-19, and is associated with subsequent disease progression, providing an insight into the mechanism of clinical deterioration. Strategies to positively manipulate tissue-resident NK cell responses may provide advantages to future therapeutic and vaccine approaches.
Collapse
Affiliation(s)
- Federica Bozzano
- Division of Infectious Diseases, Policlinico San Martino Hospital, Genoa, Italy
| | - Chiara Dentone
- Division of Infectious Diseases, Policlinico San Martino Hospital, Genoa, Italy
| | - Carola Perrone
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Antonio Di Biagio
- Division of Infectious Diseases, Policlinico San Martino Hospital, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Daniela Fenoglio
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, Genoa, Italy
- Biotherapy Unit, Policlinico San Martino Hospital, Genoa, Italy
| | - Alessia Parodi
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, Genoa, Italy
- Biotherapy Unit, Policlinico San Martino Hospital, Genoa, Italy
| | - Malgorzata Mikulska
- Division of Infectious Diseases, Policlinico San Martino Hospital, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Bianca Bruzzone
- Hygiene Unit, Policlinico San Martino Hospital, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Division of Infectious Diseases, Policlinico San Martino Hospital, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Antonio Vena
- Division of Infectious Diseases, Policlinico San Martino Hospital, Genoa, Italy
| | - Lucia Taramasso
- Division of Infectious Diseases, Policlinico San Martino Hospital, Genoa, Italy
| | - Laura Nicolini
- Division of Infectious Diseases, Policlinico San Martino Hospital, Genoa, Italy
| | - Nicolò Patroniti
- Anesthesia and Intensive Care, Policlinico San Martino Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, Policlinico San Martino Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Angelo Gratarola
- Anesthesia and Intensive Care, Policlinico San Martino Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Raffaele De Palma
- Internal Medicine Unit, Clinical Immunology and Translational Medicine, Policlinico San Martino Hospital, Genoa, Italy
- Department of Internal Medicine (DIMI), University of Genoa, Italy
| | - Gilberto Filaci
- Biotherapy Unit, Policlinico San Martino Hospital, Genoa, Italy
- Department of Internal Medicine (DIMI), University of Genoa, Italy
| | - Matteo Bassetti
- Division of Infectious Diseases, Policlinico San Martino Hospital, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Andrea De Maria
- Division of Infectious Diseases, Policlinico San Martino Hospital, Genoa, Italy
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
- * E-mail:
| | | |
Collapse
|
57
|
Human NK Cells in Autologous Hematopoietic Stem Cell Transplantation for Cancer Treatment. Cancers (Basel) 2021; 13:cancers13071589. [PMID: 33808201 PMCID: PMC8037172 DOI: 10.3390/cancers13071589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Natural killer (NK) cells are key elements of the innate immune system that have the ability to kill transformed (tumor and virus-infected) cells without prior sensitization. Hematopoietic stem cell transplantation (HSCT) is a medical procedure used in the treatment of a variety of cancers. The early reconstitution of NK cells after HSCT and their functions support the therapeutic potential of these cells in allogenic HSCT. However, the role of NK cells in autologous HSCT is less clear. In this review, we have summarized general aspects of NK cell biology. In addition, we have also reviewed factors that affect autologous HSCT outcome, with particular attention to the role played by NK cells. Abstract Natural killer (NK) cells are phenotypically and functionally diverse lymphocytes with the ability to recognize and kill malignant cells without prior sensitization, and therefore, they have a relevant role in tumor immunosurveillance. NK cells constitute the main lymphocyte subset in peripheral blood in the first week after hematopoietic stem cell transplantation (HSCT). Although the role that NK cells play in allogenic HSCT settings has been documented for years, their significance and beneficial effects associated with the outcome after autologous HSCT are less recognized. In this review, we have summarized fundamental aspects of NK cell biology, such as, NK cell subset diversity, their effector functions, and differentiation. Moreover, we have reviewed the factors that affect autologous HSCT outcome, with particular attention to the role played by NK cells and their receptor repertoire in this regard.
Collapse
|
58
|
Jensen IJ, McGonagill PW, Butler NS, Harty JT, Griffith TS, Badovinac VP. NK Cell-Derived IL-10 Supports Host Survival during Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1171-1180. [PMID: 33514512 PMCID: PMC7946778 DOI: 10.4049/jimmunol.2001131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
Abstract
The dysregulated sepsis-induced cytokine storm evoked during systemic infection consists of biphasic and interconnected pro- and anti-inflammatory responses. The contrasting inflammatory cytokine responses determine the severity of the septic event, lymphopenia, host survival, and the ensuing long-lasting immunoparalysis state. NK cells, because of their capacity to elaborate pro- (i.e., IFN-γ) and anti-inflammatory (i.e., IL-10) responses, exist at the inflection of sepsis-induced inflammatory responses. Thus, NK cell activity could be beneficial or detrimental during sepsis. In this study, we demonstrate that murine NK cells promote host survival during sepsis by limiting the scope and duration of the cytokine storm. Specifically, NK cell-derived IL-10, produced in response to IL-15, is relevant to clinical manifestations in septic patients and critical for survival during sepsis. This role of NK cells demonstrates that regulatory mechanisms of classical inflammatory cells are beneficial and critical for controlling systemic inflammation, a notion relevant for therapeutic interventions during dysregulated infection-induced inflammatory responses.
Collapse
Affiliation(s)
- Isaac J Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | | | - Noah S Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| | - John T Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology PhD Program, University of Minnesota, Minneapolis, MN 55455
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417
| | - Vladimir P Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242;
- Department of Pathology, University of Iowa, Iowa City, IA 52242
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
59
|
Marcos-Jiménez A, Sánchez-Alonso S, Alcaraz-Serna A, Esparcia L, López-Sanz C, Sampedro-Núñez M, Mateu-Albero T, Sánchez-Cerrillo I, Martínez-Fleta P, Gabrie L, Del Campo Guerola L, Rodríguez-Frade JM, Casasnovas JM, Reyburn HT, Valés-Gómez M, López-Trascasa M, Martín-Gayo E, Calzada MJ, Castañeda S, de la Fuente H, González-Álvaro I, Sánchez-Madrid F, Muñoz-Calleja C, Alfranca A. Deregulated cellular circuits driving immunoglobulins and complement consumption associate with the severity of COVID-19 patients. Eur J Immunol 2021; 51:634-647. [PMID: 33251605 PMCID: PMC7753288 DOI: 10.1002/eji.202048858] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/16/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022]
Abstract
SARS‐CoV‐2 infection causes an abrupt response by the host immune system, which is largely responsible for the outcome of COVID‐19. We investigated whether the specific immune responses in the peripheral blood of 276 patients were associated with the severity and progression of COVID‐19. At admission, dramatic lymphopenia of T, B, and NK cells is associated with severity. Conversely, the proportion of B cells, plasmablasts, circulating follicular helper T cells (cTfh) and CD56–CD16+ NK‐cells increased. Regarding humoral immunity, levels of IgM, IgA, and IgG were unaffected, but when degrees of severity were considered, IgG was lower in severe patients. Compared to healthy donors, complement C3 and C4 protein levels were higher in mild and moderate, but not in severe patients, while the activation peptide of C5 (C5a) increased from the admission in every patient, regardless of their severity. Moreover, total IgG, the IgG1 and IgG3 isotypes, and C4 decreased from day 0 to day 10 in patients who were hospitalized for more than two weeks, but not in patients who were discharged earlier. Our study provides important clues to understand the immune response observed in COVID‐19 patients, associating severity with an imbalanced humoral response, and identifying new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ana Marcos-Jiménez
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Santiago Sánchez-Alonso
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Ana Alcaraz-Serna
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Laura Esparcia
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Miguel Sampedro-Núñez
- Department of Endocrinology, La Princesa Hospital, Madrid, Spain.,School of Medicine, Department of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
| | - Tamara Mateu-Albero
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | | | - Pedro Martínez-Fleta
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Ligia Gabrie
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Luciana Del Campo Guerola
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | | | | | | | | | | | - Enrique Martín-Gayo
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain.,School of Medicine, Department of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
| | - María José Calzada
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain.,School of Medicine, Department of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
| | - Santos Castañeda
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Isidoro González-Álvaro
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain.,School of Medicine, Department of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain.,School of Medicine, Department of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
| | - Arantzazu Alfranca
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| |
Collapse
|
60
|
Yang R, Mele F, Worley L, Langlais D, Rosain J, Benhsaien I, Elarabi H, Croft CA, Doisne JM, Zhang P, Weisshaar M, Jarrossay D, Latorre D, Shen Y, Han J, Ogishi M, Gruber C, Markle J, Al Ali F, Rahman M, Khan T, Seeleuthner Y, Kerner G, Husquin LT, Maclsaac JL, Jeljeli M, Errami A, Ailal F, Kobor MS, Oleaga-Quintas C, Roynard M, Bourgey M, El Baghdadi J, Boisson-Dupuis S, Puel A, Batteux F, Rozenberg F, Marr N, Pan-Hammarström Q, Bogunovic D, Quintana-Murci L, Carroll T, Ma CS, Abel L, Bousfiha A, Di Santo JP, Glimcher LH, Gros P, Tangye SG, Sallusto F, Bustamante J, Casanova JL. Human T-bet Governs Innate and Innate-like Adaptive IFN-γ Immunity against Mycobacteria. Cell 2020; 183:1826-1847.e31. [PMID: 33296702 PMCID: PMC7770098 DOI: 10.1016/j.cell.2020.10.046] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2+ γδ T lymphocytes, and of Mycobacterium-non reactive classic TH1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8+ αβ T and non-classic CD4+ αβ TH1∗ lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2+ γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8+ αβ T, and CD4+ αβ TH1∗ cells unable to compensate for this deficit.
Collapse
Affiliation(s)
- Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA.
| | - Federico Mele
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland
| | - Lisa Worley
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, NSW, Australia
| | - David Langlais
- Department of Human Genetics, Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Genome Center, McGill Research Centre on Complex Traits, Montreal, QC H3A 0G1, Canada
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Ibithal Benhsaien
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Houda Elarabi
- Pediatrics Department, Hassan II Hospital, 80030 Dakhla, Morocco
| | - Carys A Croft
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, 75015 Paris, France; University of Paris, 75006 Paris, France
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, 75015 Paris, France
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Marc Weisshaar
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - David Jarrossay
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland
| | - Daniela Latorre
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Yichao Shen
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Jing Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Conor Gruber
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Janet Markle
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Fatima Al Ali
- Research Branch, Sidra Medicine, Doha, PO 26999, Qatar
| | | | - Taushif Khan
- Research Branch, Sidra Medicine, Doha, PO 26999, Qatar
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Lucas T Husquin
- Human Evolutionary Genetics Unit, CNRS UMR2000, Institut Pasteur, 75015 Paris, France
| | - Julia L Maclsaac
- BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Mohamed Jeljeli
- University of Paris, 75006 Paris, France; Immunology Laboratory, Cochin Hospital, AH-HP, 75014 Paris, France
| | - Abderrahmane Errami
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco
| | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Michael S Kobor
- BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Manon Roynard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Mathieu Bourgey
- McGill University Genome Center, McGill Research Centre on Complex Traits, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics, Montreal, QC H3A 0G1, Canada
| | | | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Fréderic Batteux
- University of Paris, 75006 Paris, France; Immunology Laboratory, Cochin Hospital, AH-HP, 75014 Paris, France
| | - Flore Rozenberg
- University of Paris, 75006 Paris, France; Virology Laboratory, Cochin Hospital, AH-HP, 75014 Paris, France
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, PO 26999, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, PO 34110, Qatar
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, CNRS UMR2000, Institut Pasteur, 75015 Paris, France; Chair of Human Genomics and Evolution, Collège de France, 75005 Paris, France
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, NSW, Australia
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, 75015 Paris, France
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Philippe Gros
- McGill University Genome Center, McGill Research Centre on Complex Traits, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, NSW, Australia
| | - Federica Sallusto
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland; Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France; Study Center for Primary Immunodeficiencies, Necker Children Hospital, AP-HP, 75015 Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
61
|
Ishiyama KI, Kitawaki T, Otsuka Y, Takaori-Kondo A, Kadowaki N. Programmed cell death 1-expressing CD56-negative natural killer (NK) cell expansion is a hallmark of chronic NK cell activation during dasatinib treatment. Cancer Sci 2020; 112:523-536. [PMID: 33064914 PMCID: PMC7893985 DOI: 10.1111/cas.14692] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Dasatinib treatment markedly increases the number of large granular lymphocytes including natural killer (NK) cells in a proportion of Ph+ leukemia patients, which associates with a better prognosis. In-depth immune profiling of NK cells can predict therapeutic response in these patients. In the present study, we showed that CD56-negative (CD56neg ) NK cells increased exclusively in cytomegalovirus-seropositive (CMV+ ) patients treated with dasatinib. The increase longitudinally paralleled with progressive differentiation of CD56dim NK cells during dasatinib therapy driven by CMV reactivation as shown by principal component analysis on 19 NK cell markers. The CD56neg NK cells showed downregulation of NK-activating receptors, upregulation of PD-1, and lower cytotoxicity and cytokine production, indicating that these cells are anergic and dysfunctional as seen in chronic infections with HIV-1 or hepatitis C virus. Moreover, cytolytic activity of CD56dim and CD56neg NK cells against leukemia cells was partially restored by nivolumab in proportion to the frequency of PD-1+ NK cells. The proportion of patients who achieved deep molecular responses at 2 years was significantly higher in dasatinib-treated patients with ≥3% CD56neg NK cells than in those with fewer CD56neg NK cells (54.5% vs 15.8%, P = .0419). These findings suggest that CD56neg NK cells may be an exhausted population induced by chronic activation through CMV reactivation during dasatinib therapy. Expansion of CD56neg NK cells is a hallmark of chronic NK cell activation in patients treated with dasatinib and may predict a better clinical outcome. Furthermore, PD-1 blockade may enhance anti-leukemia responses of such NK cells.
Collapse
Affiliation(s)
- Ken-Ichi Ishiyama
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Toshio Kitawaki
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuyuki Otsuka
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norimitsu Kadowaki
- Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
62
|
Increased early activation of CD56dimCD16dim/- natural killer cells in immunological non-responders correlates with CD4+ T-cell recovery. Chin Med J (Engl) 2020; 133:2928-2939. [PMID: 33252378 PMCID: PMC7752673 DOI: 10.1097/cm9.0000000000001262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells play a critical role in suppressing human immunodeficiency virus-1 (HIV-1) infection, but knowledge on whether and how NK cells affect immune reconstitution in HIV-1-infected individuals who receive antiretroviral therapy (ART) is limited. METHODS We performed a case-control study with 35 healthy individuals and 66 HIV-1-infected patients including 32 immunological non-responders (INRs) with poor CD4+ T-cell recovery (<500 cells/μL after 4 years of ART) and 34 immunological responders (IRs) with improved CD4+ T-cell recovery (>500 cells/μL after 4 years of ART). NK cell phenotype, receptor repertoire, and early activation in INRs and IRs were investigated by flow cytometry. RESULTS A significantly higher proportion of CD56dimCD16dim/- NK cells was observed in INRs than IRs before ART and after 4 years of ART. The number of CD56dimCD16dim/- NK cells was inversely correlated with CD4+ T-cell counts in INRs before ART (r = -0.344, P = 0.050). The more CD69-expressing NK cells there were, the lower the CD4+ T-cell counts and ΔCD4, and these correlations were observed in INRs after ART (r = -0.416, P = 0.019; r = -0.509, P = 0.003, respectively). Additionally, CD69-expressing CD56dimCD16dim/- NK cells were more abundant in INRs than those in IRs (P = 0.018) after ART, both of which had an inverse association trend towards significance with CD4+ T-cell counts. The expression of the activating receptors NKG2C, NKG2D, and NKp46 on CD56dimCD16dim/- NK cell subsets were higher in IRs than that in INRs after 4 years of ART (all P < 0.01). Strong inverse correlations were observed between CD69 expression and NKG2C, NKG2A-NKG2C+, NKG2D, and NKp46 expression on CD56dimCD16dim/- NK cells in INRs after ART (NKG2C: r = -0.491, P = 0.004; NKG2A-NKG2C+: r = -0.434, P = 0.013; NKG2D: r = -0.405, P = 0.021; NKp46: r = -0.457, P = 0.008, respectively). CONCLUSIONS INRs had a larger number of CD56dimCD16dim/- NK cells characterized by higher activation levels than did IRs after ART. The increase in the CD56dimCD16dim/- NK cell subset may play an adverse role in immune reconstitution. Further functional studies of CD56dimCD16dim/- NK cells in INRs are urgently needed to inform targeted interventions to optimize immune recovery.
Collapse
|
63
|
Ljunggren HG. Paths taken towards NK cell-mediated immunotherapy of human cancer-a personal reflection. Scand J Immunol 2020; 93:e12993. [PMID: 33151595 PMCID: PMC7816273 DOI: 10.1111/sji.12993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022]
Abstract
The discovery that NK cells are able to specifically recognize cells lacking the expression of self‐MHC class I molecules provided the first insight into NK cell recognition of tumour cells. It started a flourishing field of NK cell research aimed at exploring the molecular nature of NK cell receptors involved in tumour cell recognition. While much of the important early work was conducted in murine experimental model systems, studies of human NK cells rapidly followed. Over the years, human NK cell research has swiftly progressed, aided by new detailed molecular information on human NK cell development, differentiation, molecular specificity, tissue heterogeneity and functional capacity. NK cells have also been studied in many different diseases aside from cancer, including viral diseases, autoimmunity, allergy and primary immunodeficiencies. These fields of research have all, indirectly or directly, provided further insights into NK cell‐mediated recognition of target cells and paved the way for the development of NK cell‐based immunotherapies for human cancer. Excitingly, NK cell‐based immunotherapy now opens up for novel strategies aimed towards treating malignant diseases, either alone or in combination with other drugs. Reviewed here are some personal reflections of select contributions leading up to the current state‐of‐the‐art in the field, with a particular emphasis on contributions from our own laboratory. This review is part of a series of articles on immunology in Scandinavia, published in conjunction with the 50th anniversary of the Scandinavian Society for Immunology.
Collapse
Affiliation(s)
- Hans-Gustaf Ljunggren
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
64
|
Wieckowski S, Avenal C, Orjalo AV, Gygax D, Cymer F. Toward a Better Understanding of Bioassays for the Development of Biopharmaceuticals by Exploring the Structure-Antibody-Dependent Cellular Cytotoxicity Relationship in Human Primary Cells. Front Immunol 2020; 11:552596. [PMID: 33193318 PMCID: PMC7658677 DOI: 10.3389/fimmu.2020.552596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/28/2020] [Indexed: 01/02/2023] Open
Abstract
Pharmaceutical manufacturing relies on rigorous methods of quality control of drugs and in particular of the physico-chemical and functional characterizations of monoclonal antibodies. To that end, robust bioassays are very often limited to reporter gene assays and the use of immortalized cell lines that are supposed to mimic immune cells such as natural killer (NK) cells to the detriment of primary materials, which are appreciated for their biological validity but are also difficult to exploit due to the great diversity between individuals. Here, we characterized the phenotype of the peripheral blood circulating cytotoxic cells of 30 healthy donors, in particular the repertoire of cytotoxic markers, using flow cytometry. In parallel, we characterized the antibody-dependent cellular cytotoxicity (ADCC) effector functions of these primary cells by measuring their cytolytic activity against a cancer cell-line expressing HER2 in the presence of trastuzumab and with regards to FCGR3A genotype. We could not establish a correlation or grouping of individuals using the data generated from whole peripheral blood mononuclear cells, however the isolation of the CD56-positive population, which is composed not only of NK cells but also of natural killer T (NKT) and γδ-T cells, as well as subsets of activated cytotoxic T cells, monocytes and dendritic cells, made it possible to standardize the parameters of the ADCC and enhance the overall functional avidity without however eliminating the inter-individual diversity. Finally, the use of primary CD56+ cells in ADCC experiments comparing glycoengineered variants of trastuzumab was conclusive to test the limits of this type of ex vivo system. Although the effector functions of CD56+ cells reflected to some extent the in vitro receptor binding properties and cytolytic activity data using NK92 cells, as previously published, reaching a functional avidity plateau could limit their use in a quality control framework.
Collapse
Affiliation(s)
- Sébastien Wieckowski
- School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Life Sciences and Arts Northwestern Switzerland (FHNW), Muttenz, Switzerland
| | - Cécile Avenal
- Department PTDE-A, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Arturo V. Orjalo
- Biological Technologies, Genentech, Inc., South San Francisco, CA, United States
| | - Daniel Gygax
- School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Life Sciences and Arts Northwestern Switzerland (FHNW), Muttenz, Switzerland
| | - Florian Cymer
- Department PTDE-A, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
65
|
Wedemeyer H, Khera T, Strunz B, Björkström NK. Reversal of Immunity After Clearance of Chronic HCV Infection-All Reset? Front Immunol 2020; 11:571166. [PMID: 33133084 PMCID: PMC7578424 DOI: 10.3389/fimmu.2020.571166] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic viral infections cause deterioration of our immune system. However, since persistent infections rarely can be eliminated, the reinvigoration capacity of an exhausted immune system has remained largely elusive. Chronic hepatitis C virus (HCV) infection can since some years be effectively cured with novel direct acting antiviral agents. Thus, it is now possible to study reversal of immunity in patients that are cured from a long-lasting chronic infection. We here highlight recent developments in the analysis of various immune cell populations during and after clearance of HCV infection. Surprisingly, whereas reinvigoration of certain immune traits clearly can be seen, many features of immune exhaustion persist over time after viral elimination. Thus, a long-term chronic insult might result in irreversible damage to our immune system. This will be important to consider in therapeutic vaccination efforts against chronic infection and in the development of immunotherapy based strategies against cancer.
Collapse
Affiliation(s)
- Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Tanvi Khera
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
66
|
Theresine M, Patil ND, Zimmer J. Airway Natural Killer Cells and Bacteria in Health and Disease. Front Immunol 2020; 11:585048. [PMID: 33101315 PMCID: PMC7546320 DOI: 10.3389/fimmu.2020.585048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells at the interface between innate and adaptive immunity and mostly studied for their important roles in viral infections and malignant tumors. They can kill diseased cells and produce cytokines and chemokines, thereby shaping the adaptive immune response. Nowadays, NK cells are considered as a strong weapon for cancer immunotherapy and can for example be transduced to express tumor-specific chimeric antigen receptors or harnessed with therapeutic antibodies such as the so-called NK engagers. Whereas a large body of literature exists about the antiviral and antitumoral properties of NK cells, their potential role in bacterial infections is not that well delineated. Furthermore, NK cells are much more heterogeneous than previously thought and have tissue-characteristic features and phenotypes. This review gives an overview of airway NK cells and their position within the immunological army dressed against bacterial infections in the upper and predominantly the lower respiratory tracts. Whereas it appears that in several infections, NK cells play a non-redundant and protective role, they can likewise act as rather detrimental. The use of mouse models and the difficulty of access to human airway tissues for ethical reasons might partly explain the divergent results. However, new methods are appearing that are likely to reduce the heterogeneity between studies and to give a more coherent picture in this field.
Collapse
Affiliation(s)
- Maud Theresine
- CG I Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Neha D Patil
- CG I Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jacques Zimmer
- CG I Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
67
|
Orrantia A, Terrén I, Izquierdo-Lafuente A, Alonso-Cabrera JA, Sandá V, Vitallé J, Moreno S, Tasias M, Uranga A, González C, Mateos JJ, García-Ruiz JC, Zenarruzabeitia O, Borrego F. A NKp80-Based Identification Strategy Reveals that CD56 neg NK Cells Are Not Completely Dysfunctional in Health and Disease. iScience 2020; 23:101298. [PMID: 32622268 PMCID: PMC7334412 DOI: 10.1016/j.isci.2020.101298] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/07/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are usually identified by the absence of other lineage markers, due to the lack of cell-surface-specific receptors. CD56neg NK cells, classically identified as CD56negCD16+, are very scarce in the peripheral blood of healthy people but they expand in some pathological conditions. However, studies on CD56neg NK cells had revealed different results regarding the phenotype and functionality. This could be due to, among others, the unstable expression of CD16, which hinders CD56neg NK cells' proper identification. Hence, we aim to determine an alternative surface marker to CD16 to better identify CD56neg NK cells. We have found that NKp80 is superior to CD16. Furthermore, we found differences between the functionality of CD56negNKp80+ and CD56negCD16+, suggesting that the effector functions of CD56neg NK cells are not as diminished as previously thought. We proposed NKp80 as a noteworthy marker to identify and accurately re-characterize human CD56neg NK cells.
Collapse
Affiliation(s)
- Ane Orrantia
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain
| | - Iñigo Terrén
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain
| | | | | | - Victor Sandá
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain
| | - Joana Vitallé
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain
| | - Santiago Moreno
- Ramón y Cajal Health Research Institute (IRYCIS), Ramón y Cajal University Hospital, Madrid 28034, Spain
| | - María Tasias
- Hospital Universitari i Politecnic La Fe, Valencia 46026, Spain
| | - Alasne Uranga
- Biodonostia Health Research Institute, Donostia University Hospital, Donostia-San Sebastián 20014, Spain
| | - Carmen González
- Biodonostia Health Research Institute, Donostia University Hospital, Donostia-San Sebastián 20014, Spain
| | - Juan J Mateos
- Biocruces Bizkaia Health Research Institute, Hematological Cancer Group, Cruces University Hospital, Barakaldo 48903, Spain
| | - Juan C García-Ruiz
- Biocruces Bizkaia Health Research Institute, Hematological Cancer Group, Cruces University Hospital, Barakaldo 48903, Spain
| | - Olatz Zenarruzabeitia
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain
| | - Francisco Borrego
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain.
| |
Collapse
|
68
|
Song T, Li L, Su B, Liu L, Liu Y, Yang X, Zhang Q, Guo N, Zhang T, Sun G, Wu H. NKG2C+ natural killer cell function improves the control of HBV replication in individuals with acute HIV infection coinfected with HBV. Medicine (Baltimore) 2020; 99:e20073. [PMID: 32358389 PMCID: PMC7440068 DOI: 10.1097/md.0000000000020073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Individuals infected with hepatitis B virus (HBV) are often coinfected with human immunodeficiency virus (HIV). However, individuals with chronic HBV infection living with acute HIV infection have a significantly lower HBV viral load, along with higher HBeAg and HBsAg loss than HBV-infected individuals alone. Here, we investigated the possible role of natural killer cells (NK cell) function in this progressive course to explore the relationship between phenotypic/functional changes in NK cells during acute HIV infection and HBV clearance in patients with HIV/HBV coinfection.Peripheral blood NK cells from 38 patients with primary HIV infection, including 20 with untreated HIV infection and 18 treatment-naïve patients with HIV/HBV coinfection and 16 patients with chronic HBV infection, were enrolled in this study.We found that the HIV/HBV-coinfected individuals had higher levels of NK cells than the HBV-infected individuals, due to expansion of the CD56 NK cell population. The proportion of NK cells in CD56 and CD56 NK subsets was not found significant difference between HIV/HBV-coinfected and HBV-infected individuals. However, NKG2C levels on NK cells and subsets were significantly higher in HIV/HBV-coinfected individuals than in HBV-infected individuals, whereas NKG2A levels were unaffected or decreased. In addition, the levels of degranulation CD107a, cytotoxicity and IFN-γ production of NK cells were increased in HIV/HBV-coinfected individuals than in HBV-infected individuals. The level of IL-10 production of NK cells was decreased in HIV/HBV-coinfected individuals than in HBV-infected individuals. Furthermore, the level of HBV-DNA was inversely correlated with the proportion of NKG2C and NKG2CNKG2A NK cells, while positively correlated with the proportion of NKG2A and NKG2CNKG2A NK cells. IFN-γ production was inversely correlated with levels of HBV-DNA, but the CD107a expression and IL-10 production of NK cells were not correlated with HBV-DNA levels.These results demonstrate that the upregulation of NKG2C expression, but not of NKG2A expression on the surface of NK cells increases cytolytic capacity and the amounts of cytokines produced and may play a crucial role in HBV clearance during HIV/HBV-coinfection.
Collapse
Affiliation(s)
- Ting Song
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University
- Beijing Key Laboratory for HIV/AIDS Research
| | - Li Li
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University
- Beijing Key Laboratory for HIV/AIDS Research
| | - Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University
- Beijing Key Laboratory for HIV/AIDS Research
| | - Lifeng Liu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University
- Beijing Key Laboratory for HIV/AIDS Research
| | - Yan Liu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University
- Beijing Key Laboratory for HIV/AIDS Research
| | - Xiaodong Yang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University
- Beijing Key Laboratory for HIV/AIDS Research
| | - Qiuyue Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University
- Beijing Key Laboratory for HIV/AIDS Research
| | - Na Guo
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University
- Beijing Key Laboratory for HIV/AIDS Research
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University
- Beijing Key Laboratory for HIV/AIDS Research
| | - Guizhen Sun
- Department of Clinical Laboratory, Beijing Youan hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University
- Beijing Key Laboratory for HIV/AIDS Research
| |
Collapse
|
69
|
TIGIT is upregulated by HIV-1 infection and marks a highly functional adaptive and mature subset of natural killer cells. AIDS 2020; 34:801-813. [PMID: 32028328 DOI: 10.1097/qad.0000000000002488] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Our objective was to investigate the mechanisms that govern natural killer (NK)-cell responses to HIV, with a focus on specific receptor--ligand interactions involved in HIV recognition by NK cells. DESIGN AND METHODS We first performed a mass cytometry-based screen of NK-cell receptor expression patterns in healthy controls and HIV individuals. We then focused mechanistic studies on the expression and function of T cell immunoreceptor with Ig and ITIM domains (TIGIT). RESULTS The mass cytometry screen revealed that TIGIT is upregulated on NK cells of untreated HIV women, but not in antiretroviral-treated women. TIGIT is an inhibitory receptor that is thought to mark exhausted NK cells; however, blocking TIGIT did not improve anti-HIV NK-cell responses. In fact, the TIGIT ligands CD112 and CD155 were not upregulated on CD4 T cells in vitro or in vivo, providing an explanation for the lack of benefit from TIGIT blockade. TIGIT expression marked a unique subset of NK cells that express significantly higher levels of NK-cell-activating receptors (DNAM-1, NTB-A, 2B4, CD2) and exhibit a mature/adaptive phenotype (CD57, NKG2C, LILRB1, FcRγ, Syk). Furthermore, TIGIT NK cells had increased responses to mock-infected and HIV-infected autologous CD4 T cells, and to PMA/ionomycin, cytokine stimulation and the K562 cancer cell line. CONCLUSION TIGIT expression is increased on NK cells from untreated HIV individuals. Although TIGIT does not participate directly to the response to HIV-infected cells, it marks a population of mature/adaptive NK cells with increased functional responses.
Collapse
|
70
|
Diversity of peripheral blood human NK cells identified by single-cell RNA sequencing. Blood Adv 2020; 4:1388-1406. [PMID: 32271902 PMCID: PMC7160259 DOI: 10.1182/bloodadvances.2019000699] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Human natural killer (NK) cells in peripheral blood perform many functions, and classification of specific subsets has been a longstanding goal. We report single-cell RNA sequencing of NK cells, comparing gene expression in unstimulated and interleukin (IL)-2-activated cells from healthy cytomegalovirus (CMV)-negative donors. Three NK cell subsets resembled well-described populations; CD56brightCD16-, CD56dimCD16+CD57-, and CD56dimCD16+CD57+. CD56dimCD16+CD57- cells subdivided to include a population with higher chemokine mRNA and increased frequency of killer-cell immunoglobulin-like receptor expression. Three novel human blood NK cell populations were identified: a population of type I interferon-responding NK cells that were CD56neg; a population exhibiting a cytokine-induced memory-like phenotype, including increased granzyme B mRNA in response to IL-2; and finally, a small population, with low ribosomal expression, downregulation of oxidative phosphorylation, and high levels of immediate early response genes indicative of cellular activation. Analysis of CMV+ donors established that CMV altered the proportion of NK cells in each subset, especially an increase in adaptive NK cells, as well as gene regulation within each subset. Together, these data establish an unexpected diversity in blood NK cells and provide a new framework for analyzing NK cell responses in health and disease.
Collapse
|
71
|
Njiomegnie GF, Read SA, Fewings N, George J, McKay F, Ahlenstiel G. Immunomodulation of the Natural Killer Cell Phenotype and Response during HCV Infection. J Clin Med 2020; 9:jcm9041030. [PMID: 32268490 PMCID: PMC7230811 DOI: 10.3390/jcm9041030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) infection develops into chronic hepatitis in over two-thirds of acute infections. While current treatments with direct-acting antivirals (DAAs) achieve HCV eradication in >95% of cases, no vaccine is available and re-infection can readily occur. Natural killer (NK) cells represent a key cellular component of the innate immune system, participating in early defence against infectious diseases, viruses, and cancers. When acute infection becomes chronic, however, NK cell function is altered. This has been well studied in the context of HCV, where changes in frequency and distribution of NK cell populations have been reported. While activating receptors are downregulated on NK cells in both acute and chronic infection, NK cell inhibiting receptors are upregulated in chronic HCV infection, leading to altered NK cell responsiveness. Furthermore, chronic activation of NK cells following HCV infection contributes to liver inflammation and disease progression through enhanced cytotoxicity. Consequently, the NK immune response is a double-edged sword that is a significant component of the innate immune antiviral response, but persistent activation can drive tissue damage during chronic infection. This review will summarise the role of NK cells in HCV infection, and the changes that occur during HCV therapy.
Collapse
Affiliation(s)
- Gaitan Fabrice Njiomegnie
- Blacktown Clinical School and Research Centre, Western Sydney University, Blacktown 2148, NSW, Australia (S.A.R.)
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia
| | - Scott A. Read
- Blacktown Clinical School and Research Centre, Western Sydney University, Blacktown 2148, NSW, Australia (S.A.R.)
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia
- Blacktown Hospital, Blacktown 2148, NSW, Australia
| | - Nicole Fewings
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead 2145, NSW, Australia
- Westmead Clinical School, University of Sydney, Westmead 2145, NSW, Australia
| | - Jacob George
- Blacktown Clinical School and Research Centre, Western Sydney University, Blacktown 2148, NSW, Australia (S.A.R.)
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia
- Westmead Clinical School, University of Sydney, Westmead 2145, NSW, Australia
- Westmead Hospital, Westmead 2145, NSW, Australia
| | - Fiona McKay
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead 2145, NSW, Australia
- Westmead Clinical School, University of Sydney, Westmead 2145, NSW, Australia
| | - Golo Ahlenstiel
- Blacktown Clinical School and Research Centre, Western Sydney University, Blacktown 2148, NSW, Australia (S.A.R.)
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia
- Blacktown Hospital, Blacktown 2148, NSW, Australia
- Westmead Clinical School, University of Sydney, Westmead 2145, NSW, Australia
- Correspondence: ; Tel.: +61-2-9851-6073
| |
Collapse
|
72
|
Harris LD, Khayumbi J, Ongalo J, Sasser LE, Tonui J, Campbell A, Odhiambo FH, Ouma SG, Alter G, Gandhi NR, Day CL. Distinct Human NK Cell Phenotypes and Functional Responses to Mycobacterium tuberculosis in Adults From TB Endemic and Non-endemic Regions. Front Cell Infect Microbiol 2020; 10:120. [PMID: 32266170 PMCID: PMC7105570 DOI: 10.3389/fcimb.2020.00120] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), which leads to an estimated 1. 5 million deaths worldwide each year. Although the immune correlates of protection against Mtb infection and TB disease have not been well-defined, natural killer (NK) cells are increasingly recognized as a key component of the innate immune response to Mtb and as a link between innate and adaptive immunity. In this study, we evaluated NK cell phenotypic and functional profiles in QuantiFERON-TB (QFT)+ and QFT− adults in a TB endemic setting in Kisumu, Kenya, and compared their NK cell responses to those of Mtb-naïve healthy adult controls in the U.S. We used flow cytometry to define the phenotypic profile of NK cells and identified distinct CD56dim NK cell phenotypes that differentiated the Kenyan and U.S. groups. Additionally, among Kenyan participants, NK cells from QFT+ individuals with latent Mtb infection (LTBI) were characterized by significant downregulation of the natural cytotoxicity receptor NKp46 and the inhibitory receptor TIGIT, compared with QFT− individuals. Moreover, the distinct CD56dim phenotypic profiles in Kenyan individuals correlated with dampened NK cell responses to tumor cells and diminished activation, degranulation, and cytokine production following stimulation with Mtb antigens, compared with Mtb-naïve U.S. healthy adult controls. Taken together, these data provide evidence that the phenotypic and functional profiles of NK cells are modified in TB endemic settings and will inform future studies aimed at defining NK cell-mediated immune correlates that may be protective against acquisition of Mtb infection and progression to TB disease.
Collapse
Affiliation(s)
- Levelle D Harris
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Jeremiah Khayumbi
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Joshua Ongalo
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Loren E Sasser
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Joan Tonui
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Angela Campbell
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | | | - Samuel Gurrion Ouma
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Neel R Gandhi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Cheryl L Day
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
73
|
Mack MR, Brestoff JR, Berrien-Elliott MM, Trier AM, Yang TLB, McCullen M, Collins PL, Niu H, Bodet ND, Wagner JA, Park E, Xu AZ, Wang F, Chibnall R, Council ML, Heffington C, Kreisel F, Margolis DJ, Sheinbein D, Lovato P, Vivier E, Cella M, Colonna M, Yokoyama WM, Oltz EM, Fehniger TA, Kim BS. Blood natural killer cell deficiency reveals an immunotherapy strategy for atopic dermatitis. Sci Transl Med 2020; 12:eaay1005. [PMID: 32102931 PMCID: PMC7433875 DOI: 10.1126/scitranslmed.aay1005] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/12/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Atopic dermatitis (AD) is a widespread, chronic skin disease associated with aberrant allergic inflammation. Current treatments involve either broad or targeted immunosuppression strategies. However, enhancing the immune system to control disease remains untested. We demonstrate that patients with AD harbor a blood natural killer (NK) cell deficiency that both has diagnostic value and improves with therapy. Multidimensional protein and RNA profiling revealed subset-level changes associated with enhanced NK cell death. Murine NK cell deficiency was associated with enhanced type 2 inflammation in the skin, suggesting that NK cells play a critical immunoregulatory role in this context. On the basis of these findings, we used an NK cell-boosting interleukin-15 (IL-15) superagonist and observed marked improvement in AD-like disease in mice. These findings reveal a previously unrecognized application of IL-15 superagonism, currently in development for cancer immunotherapy, as an immunotherapeutic strategy for AD.
Collapse
Affiliation(s)
- Madison R Mack
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Melissa M Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anna M Trier
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ting-Lin B Yang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew McCullen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patrick L Collins
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Haixia Niu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nancy D Bodet
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julia A Wagner
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eugene Park
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amy Z Xu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Fang Wang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca Chibnall
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - M Laurin Council
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Friederike Kreisel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David J Margolis
- Department of Dermatology and Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David Sheinbein
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paola Lovato
- Skin Research, LEO Pharma A/S, Industriparken 55, Ballerup, Denmark
| | - Eric Vivier
- Aix Marseille University, APHM, CNRS, INSERM, CIML, Hôpital de la Timone, Marseille-Immunopole, Marseille, France
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity, Ohio State University, Wexner School of Medicine, Columbus, OH 43210, USA
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian S Kim
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
74
|
Zaghi E, Calvi M, Di Vito C, Mavilio D. Innate Immune Responses in the Outcome of Haploidentical Hematopoietic Stem Cell Transplantation to Cure Hematologic Malignancies. Front Immunol 2019; 10:2794. [PMID: 31849972 PMCID: PMC6892976 DOI: 10.3389/fimmu.2019.02794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
In the context of allogeneic transplant platforms, human leukocyte antigen (HLA)-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) represents one of the latest and most promising curative strategies for patients affected by high-risk hematologic malignancies. Indeed, this platform ensures a suitable stem cell source immediately available for virtually any patents in need. Moreover, the establishment in recipients of a state of immunologic tolerance toward grafted hematopoietic stem cells (HSCs) remarkably improves the clinical outcome of this transplant procedure in terms of overall and disease free survival. However, the HLA-mismatch between donors and recipients has not been yet fully exploited in order to optimize the Graft vs. Leukemia effect. Furthermore, the efficacy of haplo-HSCT is currently hampered by several life-threatening side effects including the onset of Graft vs. Host Disease (GvHD) and the occurrence of opportunistic viral infections. In this context, the quality and the kinetic of the immune cell reconstitution (IR) certainly play a major role and several experimental efforts have been greatly endorsed to better understand and accelerate the post-transplant recovery of a fully competent immune system in haplo-HSCT. In particular, the IR of innate immune system is receiving a growing interest, as it recovers much earlier than T and B cells and it is able to rapidly exert protective effects against both tumor relapses, GvHD and the onset of life-threatening opportunistic infections. Herein, we review our current knowledge in regard to the kinetic and clinical impact of Natural Killer (NK), γδ and Innate lymphoid cells (ILCs) IRs in both allogeneic and haplo-HSCT. The present paper also provides an overview of those new therapeutic strategies currently being implemented to boost the alloreactivity of the above-mentioned innate immune effectors in order to ameliorate the prognosis of patients affected by hematologic malignancies and undergone transplant procedures.
Collapse
Affiliation(s)
- Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
75
|
Garcia-Broncano P, Maddali S, Einkauf KB, Jiang C, Gao C, Chevalier J, Chowdhury FZ, Maswabi K, Ajibola G, Moyo S, Mohammed T, Ncube T, Makhema J, Jean-Philippe P, Yu XG, Powis KM, Lockman S, Kuritzkes DR, Shapiro R, Lichterfeld M. Early antiretroviral therapy in neonates with HIV-1 infection restricts viral reservoir size and induces a distinct innate immune profile. Sci Transl Med 2019; 11:eaax7350. [PMID: 31776292 PMCID: PMC8397898 DOI: 10.1126/scitranslmed.aax7350] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022]
Abstract
Neonatal HIV-1 infection is associated with rapidly progressive and frequently fatal immune deficiency if left untreated. Immediate institution of antiretroviral therapy (ART), ideally within hours after birth, may restrict irreversible damage to the developing neonatal immune system and possibly provide opportunities for facilitating drug-free viral control during subsequent treatment interruptions. However, the virological and immunological effects of ART initiation within hours after delivery have not been systematically investigated. We examined a unique cohort of neonates with HIV-1 infection from Botswana who started ART shortly after birth and were followed longitudinally for about 2 years in comparison to control infants started on treatment during the first year after birth. We demonstrate multiple clear benefits of rapid antiretroviral initiation, including an extremely small reservoir of intact proviral sequences, a reduction in abnormal T cell immune activation, a more polyfunctional HIV-1-specific T cell response, and an innate immune profile that displays distinct features of improved antiviral activity and is associated with intact proviral reservoir size. Together, these data offer rare insight into the evolutionary dynamics of viral reservoir establishment in neonates and provide strong empirical evidence supporting the immediate initiation of ART for neonates with HIV-1 infection.
Collapse
Affiliation(s)
| | - Shivaali Maddali
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kevin B Einkauf
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Chenyang Jiang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Joshua Chevalier
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Kenneth Maswabi
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
| | | | - Sikhulile Moyo
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
| | | | - Thabani Ncube
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Joseph Makhema
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
| | | | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen M Powis
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard Medical School, Boston, MA 02115, USA
- Departments of Medicine and Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shahin Lockman
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Roger Shapiro
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
76
|
Fisher L, Zinter M, Stanfield-Oakley S, Carpp LN, Edwards RW, Denny T, Moodie Z, Laher F, Bekker LG, McElrath MJ, Gilbert PB, Corey L, Tomaras G, Pollara J, Ferrari G. Vaccine-Induced Antibodies Mediate Higher Antibody-Dependent Cellular Cytotoxicity After Interleukin-15 Pretreatment of Natural Killer Effector Cells. Front Immunol 2019; 10:2741. [PMID: 31827470 PMCID: PMC6890556 DOI: 10.3389/fimmu.2019.02741] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
The secondary analyses for correlates of risk of infection in the RV144 HIV-1 vaccine trial implicated vaccine-induced antibody-dependent cellular cytotoxicity (ADCC) responses in the observed protection, highlighting the importance of assessing such responses in ongoing and future HIV-1 vaccine trials. However, in vitro assays that detect ADCC activity in plasma from HIV-1 infected seropositive individuals are not always effective at detecting ADCC activity in plasma from HIV-1 vaccine recipients. In vivo, ADCC-mediating antibodies must operate at the site of infection, where effector cells are recruited and activated by a local milieu of chemokines and cytokines. Based on previous findings that interleukin 15 (IL-15) secretion increases during acute HIV-1 infection and enhances NK cell-mediated cytotoxicity, we hypothesized that IL-15 pretreatment of NK effector cells could be used to improve killing of infected cells by vaccine-induced antibodies capable of mediating ADCC. Using the HIV-1 infectious molecular clone (IMC)-infected target cell assay along with plasma samples from HIV-1 vaccine recipients, we found that IL-15 treatment of effector cells improved the ability of the vaccine-induced antibodies to recruit effector cells for ADCC. Through immunophenotyping experiments, we showed that this improved killing was likely due to IL-15 mediated activation of NK effector cells and higher intracellular levels of perforin and granzyme B in the IL-15 pretreated NK cells. We also found that using a 4-fold dilution series of plasma and subtraction of pre-vaccination responses resulted in lowest response rates among placebo recipients and significant separation between treatment groups. This represents the first attempt to utilize IL-15-treated effector cells and optimized analytical approaches to improve the detection of HIV-1 vaccine-induced ADCC responses and will inform analyses of future HIV vaccine clinical trials.
Collapse
Affiliation(s)
- Leigh Fisher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Melissa Zinter
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | | | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - R Whitney Edwards
- Department of Surgery, Duke University Medical Center, Durham, NC, United States.,Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Thomas Denny
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Fatima Laher
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Soweto, South Africa
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Georgia Tomaras
- Department of Surgery, Duke University Medical Center, Durham, NC, United States.,Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, NC, United States.,Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, United States.,Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
77
|
Filipovic I, Sönnerborg I, Strunz B, Friberg D, Cornillet M, Hertwig L, Ivarsson MA, Björkström NK. 29-Color Flow Cytometry: Unraveling Human Liver NK Cell Repertoire Diversity. Front Immunol 2019; 10:2692. [PMID: 31798596 PMCID: PMC6878906 DOI: 10.3389/fimmu.2019.02692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated extraordinary diversity in peripheral blood human natural killer (NK) cells and have suggested environmental control of receptor expression patterns on distinct subsets of NK cells. However, tissue localization may influence NK cell differentiation to an even higher extent and less is known about the receptor repertoire of human tissue-resident NK cells. Advances in single-cell technologies have allowed higher resolution studies of these cells. Here, the power of high-dimensional flow cytometry was harnessed to unravel the complexity of NK cell repertoire diversity in liver since recent studies had indicated high heterogeneity within liver NK cells. A 29-color flow cytometry panel allowing simultaneous measurement of surface tissue-residency markers, activating and inhibitory receptors, differentiation markers, chemokine receptors, and transcription factors was established. This panel was applied to lymphocytes across three tissues (liver, peripheral blood, and tonsil) with different distribution of distinct NK cell subsets. Dimensionality reduction of this data ordered events according to their lineage, rather than tissue of origin. Notably, narrowing the scope of the analysis to the NK cell lineage in liver and peripheral blood separated subsets according to tissue, enabling phenotypic characterization of NK cell subpopulations in individual tissues. Such dimensionality reduction, coupled with a clustering algorithm, identified CD49e as the preferred marker for future studies of liver-resident NK cell subsets. We present a robust approach for diversity profiling of tissue-resident NK cells that can be applied in various homeostatic and pathological conditions such as reproduction, infection, and cancer.
Collapse
Affiliation(s)
- Iva Filipovic
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Isabella Sönnerborg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.,Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Benedikt Strunz
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Danielle Friberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Cornillet
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Hertwig
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Martin A Ivarsson
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
78
|
Abou Hassan F, Bou Hamdan M, Melhem NM. The Role of Natural Killer Cells and Regulatory T Cells While Aging with Human Immunodeficiency Virus. AIDS Res Hum Retroviruses 2019; 35:1123-1135. [PMID: 31510754 DOI: 10.1089/aid.2019.0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Combined antiretroviral therapy (cART) has increased the quality of life of people living with HIV (PLHIV). Consequently, the number of PLHIV >50 years is increasing worldwide. Patients on cART are known to remain in a proinflammatory state. The latter is linked to the development of non-AIDS-related chronic conditions. Although the number of aging PLHIV is increasing, the effect of HIV infection on the process of aging is not fully understood. Understanding the complexity of aging with HIV by investigating the effect of the latter on different components of the innate and adaptive immune systems is important to reduce the impact of these comorbid conditions and improve the quality of life of PLHIV. The role of killer immunoglobulin receptors (KIRs), expressed on the surface of natural killer (NK) cells, and their human leukocyte antigen (HLA) ligands in the clearance, susceptibility to or disease progression following HIV infection is well established. However, data on the effect of KIR-HLA interaction in aging HIV-infected population and the development of non-AIDS-related comorbid conditions are lacking. Moreover, conflicting data exist on the role of regulatory T cells (Tregs) during HIV infection. The purpose of this review is to advance the current knowledge on the role of NK cells and Tregs while aging with HIV infection.
Collapse
Affiliation(s)
- Farouk Abou Hassan
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Mirna Bou Hamdan
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Nada M. Melhem
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
79
|
Ma M, Yin X, Zhao X, Guo C, Zhu X, Liu T, Yang M, Zhang Z, Fu Y, Liu J, Xu J, Ding H, Han X, Chu Z, Shang H, Jiang Y. CD56 - CD16 + NK cells from HIV-infected individuals negatively regulate IFN-γ production by autologous CD8 + T cells. J Leukoc Biol 2019; 106:1313-1323. [PMID: 31483071 DOI: 10.1002/jlb.3a0819-171rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
The percentage of human CD56- CD16+ NK cells increases during chronic infection with human HIV; however, the biologic role of CD56- CD16+ NK cells in HIV infection is unclear. Our results demonstrate that the percentage of CD56- CD16+ NK cells producing IL-10 and TGF-β was higher than CD56dim CD16+ NK cells. CD56- CD16+ NK cells could inhibit IFN-γ production by autologous CD8+ T cells, and this inhibition could be partially reversed by anti-IL-10, anti-TGF-β, or anti-PD-L1 mAbs. CD56- CD16+ NK cells are potential targets for the development of novel immune therapies against HIV infection.
Collapse
Affiliation(s)
- Meichen Ma
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaowan Yin
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xue Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Chenxi Guo
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoyu Zhu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Tingting Liu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Mei Yang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zining Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yajing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jing Liu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Junjie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhenxing Chu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yongjun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
80
|
Polo ML, Ghiglione YA, Salido JP, Urioste A, Poblete G, Sisto AE, Martinez A, Rolón MJ, Ojeda DS, Cahn PE, Turk GJ, Laufer NL. Liver cirrhosis in HIV/HCV-coinfected individuals is related to NK cell dysfunction and exhaustion, but not to an impaired NK cell modulation by CD4 + T-cells. J Int AIDS Soc 2019; 22:e25375. [PMID: 31536177 PMCID: PMC6752153 DOI: 10.1002/jia2.25375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION HIV worsens HCV-related liver disease by accelerating fibrosis progression; however, progression rates are extremely variable among HIV/HCV-coinfected individuals. NK cells are associated with modulation of liver fibrosis and are profoundly altered during HCV and HIV infections. CD4+ T-cells modulate NK cell function, and are also affected by HIV infection. Here, we aim to characterize the association of hepatic fibrosis with both the phenotype and function of peripheral NK cells and their regulation by CD4+ T-cells, in HIV/HCV-coinfected individuals. METHODS Thirty-four HIV/HCV-coinfected individuals with minimal (n = 16) and advanced (n = 18) fibrosis (METAVIR F0/F1 and F4 scores respectively) and 20 healthy volunteers were enrolled. PBMC were obtained from peripheral blood samples and NK and CD4+ T-cells were isolated and analysed. NK cell phenotype (CD25, CD69, Nkp46, NKG2D, PD-1), degranulation (CD107a) and IFN-γ and TNF-α production, as well as CD4+ T-cell activation (CD69, CD25 and CD38) were measured by flow cytometry. CD4+ T-cell conditioned medium (CM) derived from F0/F1 or F4 individuals was assessed for IL-2 levels by ELISA. Modulation of NK cell functionality by these CMs was also analysed. RESULTS When comparing to NK cells from individuals with minimal fibrosis, degranulation and cytokine secretion by NK cells from subjects with F4 scores was significantly impaired, while PD-1 expression was augmented. On the one hand, neither the expression of activation markers nor IL-2 secretion was distinctly induced in CD4+ T-cells from subjects with F0/F1 or F4 METAVIR scores. Finally, NK cell degranulation and cytokine secretion were not differentially modulated by CD4+ T-cell CM, whether CD4+ T-cells derived from subjects with minimal or advanced fibrosis. CONCLUSIONS Low levels of NK and CD4+ T-cells in HIV/HCV-coinfected individuals with advanced liver fibrosis have been previously described. Here, we show that advanced liver fibrosis in coinfected individuals is associated to a defective function of NK cells and an increased expression of the exhaustion/senescence marker PD-1. This NK signature could not be attributed to changes in the ability of CD4+ T-cells to modulate NK cell function.
Collapse
Affiliation(s)
- María L Polo
- CONICET‐Universidad de Buenos AiresInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Buenos AiresArgentina
| | - Yanina A Ghiglione
- CONICET‐Universidad de Buenos AiresInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Buenos AiresArgentina
| | - Jimena P Salido
- CONICET‐Universidad de Buenos AiresInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Buenos AiresArgentina
| | - Alejandra Urioste
- CONICET‐Universidad de Buenos AiresInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Buenos AiresArgentina
| | - Gabriela Poblete
- Infectious Diseases UnitHospital General de Agudos “Dr. JA Fernández”Buenos AiresArgentina
| | - Alicia E Sisto
- Infectious Diseases UnitHospital General de Agudos “Dr. JA Fernández”Buenos AiresArgentina
| | - Ana Martinez
- Gastroenterology UnitHospital General de Agudos “Dr. JA Fernández”Buenos AiresArgentina
| | - María J Rolón
- Infectious Diseases UnitHospital General de Agudos “Dr. JA Fernández”Buenos AiresArgentina
| | - Diego S Ojeda
- CONICET‐Universidad de Buenos AiresInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Buenos AiresArgentina
| | | | - Gabriela J Turk
- CONICET‐Universidad de Buenos AiresInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Buenos AiresArgentina
| | - Natalia L Laufer
- CONICET‐Universidad de Buenos AiresInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Buenos AiresArgentina
- Infectious Diseases UnitHospital General de Agudos “Dr. JA Fernández”Buenos AiresArgentina
| |
Collapse
|
81
|
Lucar O, Reeves RK, Jost S. A Natural Impact: NK Cells at the Intersection of Cancer and HIV Disease. Front Immunol 2019; 10:1850. [PMID: 31474977 PMCID: PMC6705184 DOI: 10.3389/fimmu.2019.01850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Despite efficient suppression of plasma viremia in people living with HIV (PLWH) on cART, evidence of HIV-induced immunosuppression remains, and normally benign and opportunistic pathogens become major sources of co-morbidities, including virus-induced cancers. In fact, cancer remains a primary cause of death even in virally suppressed PLWH. Natural killer (NK) cells provide rapid early responses to HIV infection, contribute substantially to disease modulation and vaccine protection, and are also major therapeutic targets for cancer immunotherapy. However, much like other lymphocyte populations, recent burgeoning evidence suggests that in chronic conditions like HIV, NK cells can become functionally exhausted with impaired cytotoxic function, altered cytokine production and impaired antibody-dependent cell-mediated cytotoxicity. Recent work suggests functional anergy is likely due to low-level ongoing virus replication, increased inflammatory cytokines, or increased presence of MHClow target cells. Indeed, HIV-induced loss of NK cell-mediated control of lytic EBV infection has been specifically shown to cause lymphoma and also increases replication of CMV. In this review, we will discuss current understanding of NK cell modulation of HIV disease, reciprocal exhaustion of NK cells, and how this may impact increased cancer incidences and prospects for NK cell-targeted immunotherapies. Finally, we will review the most recent evidence supporting adaptive functions of NK cells and highlight the potential of adaptive NK cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Olivier Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, United States
| | - Stephanie Jost
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
82
|
Di Vito C, Mikulak J, Mavilio D. On the Way to Become a Natural Killer Cell. Front Immunol 2019; 10:1812. [PMID: 31428098 PMCID: PMC6688484 DOI: 10.3389/fimmu.2019.01812] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphocytes playing pivotal roles in host defense and immune-surveillance. The homeostatic modulation of germ-line encoded/non-rearranged activating and inhibitory NK cell receptors (NKRs) determines the capability of these innate lymphocytes to either spare "self" cells or to kill viral-infected, tumor-transformed and heterologous cell targets. However, despite being discovered more than 40 years ago, several aspects of NK cell biology remain unknown or are still being debated. In particular, our knowledge of human NK cell ontogenesis and differentiation is still in its infancy as the majority of our experimental evidence on this topic mainly comes from findings obtained in vitro or with animal models in vivo. Although both the generation and the maintenance of human NK cells are sustained by hematopoietic stem cells (HSCs), the precise site(s) of NK cell development are still poorly defined. Indeed, HSCs and hematopoietic precursors are localized in different anatomical compartments that also change their ontogenic commitments before and after birth as well as in aging. Currently, the main site of NK cell generation and maturation in adulthood is considered the bone marrow, where their interactions with stromal cells, cytokines, growth factors, and other soluble molecules support and drive maturation. Different sequential stages of NK cell development have been identified on the basis of the differential expression of specific markers and NKRs as well as on the acquisition of specific effector-functions. All these phenotypic and functional features are key in inducing and regulating homing, activation and tissue-residency of NK cells in different human anatomic sites, where different homeostatic mechanisms ensure a perfect balance between immune tolerance and immune-surveillance. The present review summarizes our current knowledge on human NK cell ontogenesis and on the related pathways orchestrating a proper maturation, functions, and distributions.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
83
|
Goyos A, Fort M, Sharma A, Lebrec H. Current Concepts in Natural Killer Cell Biology and Application to Drug Safety Assessments. Toxicol Sci 2019; 170:10-19. [PMID: 31020324 DOI: 10.1093/toxsci/kfz098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes capable of cytotoxicity against virally infected cells and tumor cells. The display of effector function by NK cells is the result of interactions between germline encoded activating/inhibitory NK cell receptors and their ligands (major histocompatibility complex class I, major histocompatibility complex class I-like, viral, and cellular stress-related surface molecules) expressed on target cells. Determination of NK cell number and function is a common element of the immunotoxicology assessment paradigm for the development of certain classes of pharmaceuticals across a range of modalities. This article summarizes the evidence associating NK cell dysfunction with infectious and cancer risks, reviews emerging NK cell biology, including the impact of immunogenetics on NK cell education and function, and provides perspectives about points to consider when assessing NK cell function in different species in the context of safety assessment.
Collapse
Affiliation(s)
- Ana Goyos
- Amgen Research, Inc, South San Francisco, California 94080
| | - Madeline Fort
- Amgen Research, Inc, South San Francisco, California 94080
| | - Amy Sharma
- Genentech, Inc, South San Francisco, California 94080
| | - Herve Lebrec
- Amgen Research, Inc, South San Francisco, California 94080
| |
Collapse
|
84
|
Jiang HJ, Wang XX, Luo BF, Cong X, Jin Q, Qin H, Zhang HY, Kong XS, Wei L, Feng B. Direct antiviral agents upregulate natural killer cell potential activity in chronic hepatitis C patients. Clin Exp Med 2019; 19:299-308. [PMID: 31218578 DOI: 10.1007/s10238-019-00564-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/12/2019] [Indexed: 01/14/2023]
Abstract
Direct antiviral agents (DAAs) can eliminate hepatitis C virus rapidly and make chronic hepatitis C (CHC) curable. The changes in the innate immune system during treatment with DAAs are still in dispute. To investigate how the functions of natural killer (NK) cells change during and after treatment with DAAs in each NK cell subset. Thirteen CHC patients were treated with sofosbuvir/ledipasvir, and the expression levels of NKp46 and NKG2A were tested via flow cytometry at baseline, at 2, 4, 8 and 12 weeks during the therapy and 12 and 24 weeks after the end of treatment; expression levels were compared between CHC patients and 13 healthy controls. A redirected killing assay was used to detect the cytotoxicity of NK cells. After coculturing NK cells with JFH-Huh7 cells for 72 h, HCV RNA was tested to analyze the inhibition ability of NK cells. All patients achieved sustained virologic response. The expression of the activating receptor NKp46 was decreased first at week 8 during therapy with DAAs and then increased and normalized to levels in healthy controls after treatment with DAAs. The expression of the inhibitory receptor NKG2A was decreased during and after treatment with DAAs. Each NK cell subset has a similar changing trend during and after treatment with DAAs, although some differences can be found earlier and later. The ratio of NKp46 and NKG2A was upregulated after treatment with DAAs. CD56bright NK cells have less amplitude in the frequency ratio changes after treatment with DAAs. The coculture results showed that both the specific lysis and the inhibition of HCV replication were significantly upregulated after treatment with DAAs. DAA treatments can affect patients' NK cell function. After DAA treatments, the expression of functional markers is downregulated, but the potential activity of NK cells is upregulated. The function of NK cells is normalized to levels in healthy controls. CD56bright NK cells play an important role in this process.
Collapse
Affiliation(s)
- Han-Ji Jiang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Xiao-Xiao Wang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Bi-Fen Luo
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Xu Cong
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Qian Jin
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Hong Qin
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Hai-Ying Zhang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Xiang-Sha Kong
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Lai Wei
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Bo Feng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China.
| |
Collapse
|
85
|
Vitale M, Cantoni C, Della Chiesa M, Ferlazzo G, Carlomagno S, Pende D, Falco M, Pessino A, Muccio L, De Maria A, Marcenaro E, Moretta L, Sivori S. An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Front Immunol 2019; 10:1415. [PMID: 31316503 PMCID: PMC6611392 DOI: 10.3389/fimmu.2019.01415] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity characterized by the unique ability of killing tumor and virally infected cells without any prior priming and expansion of specific clones. The "missing-self" theory, proposed by Klas Karre, the seminal discovery of the first prototypic HLA class I-specific inhibitory receptors, and, later, of the Natural Cytotoxicity Receptors (NCRs) by Alessandro Moretta, provided the bases to understand the puzzling behavior of NK cells. Actually, those discoveries proved crucial also for many of the achievements that, along the years, have contributed to the modern view of these cells. Indeed, NK cells, besides killing susceptible targets, are now known to functionally interact with different immune cells, sense pathogens using TLR, adapt their responses to the local environment, and, even, mount a sort of immunological memory. In this review, we will specifically focus on the main activating NK receptors and on their crucial role in the ever-increasing number of functions assigned to NK cells and other innate lymphoid cells (ILCs).
Collapse
Affiliation(s)
- Massimo Vitale
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Daniela Pende
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annamaria Pessino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Muccio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andrea De Maria
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Dipartimento di Scienze della Salute (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
86
|
Merino A, Zhang B, Dougherty P, Luo X, Wang J, Blazar BR, Miller JS, Cichocki F. Chronic stimulation drives human NK cell dysfunction and epigenetic reprograming. J Clin Invest 2019; 129:3770-3785. [PMID: 31211698 DOI: 10.1172/jci125916] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A population of Natural Killer (NK) cells expressing the activating receptor NKG2C and the maturation marker CD57 expands in response to human cytomegalovirus (HCMV) infection. CD3-CD56dimCD57+NKG2C+ NK cells are similar to CD8+ memory T cells with rapid and robust effector function upon re-stimulation, persistence, and epigenetic remodeling of the IFNG locus. Chronic antigen stimulation drives CD8+ memory T cell proliferation while also inducing genome-wide epigenetic reprograming and dysfunction. We hypothesized that chronic stimulation could similarly induce epigenetic reprograming and dysfunction in NK cells. Here we show that chronic stimulation of adaptive NK cells through NKG2C using plate-bound agonistic antibodies in combination with IL-15 drove robust proliferation and activation of CD3-CD56dimCD57+NKG2C+ NK cells while simultaneously inducing high expression of the checkpoint inhibitory receptors LAG-3 and PD-1. Marked induction of checkpoint inhibitory receptors was also observed on the surface of adaptive NK cells co-cultured with HCMV-infected endothelial cells. Chronically stimulated adaptive NK cells were dysfunctional when challenged with tumor targets. These cells exhibited a pattern of epigenetic reprograming, with genome-wide alterations in DNA methylation. Our study has important implications for cancer immunotherapy and suggest that exhausted NK cells could be targeted with inhibitory checkpoint receptor blockade.
Collapse
Affiliation(s)
- Aimee Merino
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bin Zhang
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Philip Dougherty
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xianghua Luo
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jinhua Wang
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
87
|
Stiglund N, Strand K, Cornillet M, Stål P, Thorell A, Zimmer CL, Näslund E, Karlgren S, Nilsson H, Mellgren G, Fernø J, Hagström H, Björkström NK. Retained NK Cell Phenotype and Functionality in Non-alcoholic Fatty Liver Disease. Front Immunol 2019; 10:1255. [PMID: 31214196 PMCID: PMC6558016 DOI: 10.3389/fimmu.2019.01255] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), and the progressive stage non-alcoholic steatohepatitis (NASH), is the predominant cause of chronic liver disease globally. As part of the complex pathogenesis, natural killer (NK) cells have been implicated in the development of liver inflammation in experimental murine models of NASH. However, there is a lack of knowledge on how NK cells are affected in humans with this disease. Here, we explored the presence of disease-specific changes within circulating and tissue-resident NK cell populations, as well as within other major immune cell subsets, in patients with liver biopsy-confirmed NAFLD. Using 18-color-flow cytometry, substantial changes were observed in certain myeloid populations in patients as compared to controls. NK cell numbers, on the other hand, were not altered. Furthermore, only minor differences in expression of activating and inhibitory NK cell receptors were noted, with the exception of an increased expression of NKG2D on NK cells from patients with NASH. NK cell differentiation remained constant, and NK cells from these patients retain their ability to respond adequately upon stimulation. Instead, considerable alterations were observed between liver, adipose tissue, and peripheral blood NK cells, independently of disease status. Taken together, these results increase our understanding of the importance of the local microenvironment in shaping the NK cell compartment and stress the need for further studies exploring how NASH affects intrahepatic NK cells in humans.
Collapse
Affiliation(s)
- Natalie Stiglund
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Strand
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.,Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Martin Cornillet
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Stål
- Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anders Thorell
- Department of Surgery, Ersta Hospital, Stockholm, Sweden.,Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Solna, Sweden
| | - Christine L Zimmer
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Näslund
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Solna, Sweden
| | - Silja Karlgren
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Solna, Sweden
| | - Henrik Nilsson
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Solna, Sweden
| | - Gunnar Mellgren
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.,Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.,Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hannes Hagström
- Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
88
|
Ghofrani J, Lucar O, Dugan H, Reeves RK, Jost S. Semaphorin 7A modulates cytokine-induced memory-like responses by human natural killer cells. Eur J Immunol 2019; 49:1153-1166. [PMID: 31016720 DOI: 10.1002/eji.201847931] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/05/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022]
Abstract
Cytokine-induced memory-like (CIML) NK cells are endowed with the capacity to mediate enhanced effector functions upon cytokine or activating receptor restimulation for several weeks following short-term preactivation with IL-12, IL-15, and IL-18. Promising results from a first-in-human clinical trial highlighted the clinical potential of CIML NK cells as adoptive immunotherapy for patients with hematologic malignancies. However, the mechanisms underlying CIML NK cell differentiation and increased functionality remain incompletely understood. Semaphorin 7A (SEMA7A) is a potent immunomodulator expressed in activated lymphocytes and myeloid cells. In this study, we show that SEMA7A is substantially upregulated on NK cells stimulated with cytokines, and specifically marks activated NK cells with a strong potential to release IFN-γ. In particular, preactivation of NK cells with IL-12+IL-15+IL-18 resulted in greater than tenfold upregulation of SEMA7A and enhanced expression of the ligand for SEMA7A, integrin-β1, on CIML NK cells. Strikingly, preactivation in the presence of antibodies targeting SEMA7A lead to significantly decreased IFN-γ production following restimulation. These results imply a novel mechanism by which cytokine-enhanced SEMA7A/integrin-β1 interaction promotes CIML NK cell differentiation and maintenance of increased functionality. Our data suggest that targeting SEMA7A/integrin-β1 signaling might provide a novel immunotherapeutic approach to potentiate antitumor activity of CIML NK cells.
Collapse
Affiliation(s)
- Joshua Ghofrani
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Olivier Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Haley Dugan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, USA
| | - Stephanie Jost
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
89
|
Identification of NK Cell Subpopulations That Differentiate HIV-Infected Subject Cohorts with Diverse Levels of Virus Control. J Virol 2019; 93:JVI.01790-18. [PMID: 30700608 DOI: 10.1128/jvi.01790-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/19/2019] [Indexed: 02/07/2023] Open
Abstract
HIV infection is controlled immunologically in a small subset of infected individuals without antiretroviral therapy (ART), though the mechanism of control is unclear. CD8+ T cells are a critical component of HIV control in many immunological controllers. NK cells are also believed to have a role in controlling HIV infection, though their role is less well characterized. We used mass cytometry to simultaneously measure the levels of expression of 24 surface markers on peripheral NK cells from HIV-infected subjects with various degrees of HIV natural control; we then used machine learning to identify NK cell subpopulations that differentiate HIV controllers from noncontrollers. Using CITRUS (cluster identification, characterization, and regression), we identified 3 NK cell subpopulations that differentiated subjects with chronic HIV viremia (viremic noncontrollers [VNC]) from individuals with undetectable HIV viremia without ART (elite controllers [EC]). In a parallel approach, we identified 11 NK cell subpopulations that differentiated HIV-infected subject groups using k-means clustering after dimensionality reduction by t-neighbor stochastic neighbor embedding (tSNE) or linear discriminant analysis (LDA). Among these additional 11 subpopulations, the frequencies of 5 correlated with HIV DNA levels; importantly, significance was retained in 2 subpopulations in analyses that included only cohorts without detectable viremia. By comparing the surface marker expression patterns of all identified subpopulations, we revealed that the CD11b+ CD57- CD161+ Siglec-7+ subpopulation of CD56dim CD16+ NK cells are more abundant in EC and HIV-negative controls than in VNC and that the frequency of these cells correlated with HIV DNA levels. We hypothesize that this population may have a role in immunological control of HIV infection.IMPORTANCE HIV infection results in the establishment of a stable reservoir of latently infected cells; ART is usually required to keep viral replication under control and disease progression at bay, though a small subset of HIV-infected subjects can control HIV infection without ART through immunological mechanisms. In this study, we sought to identify subpopulations of NK cells that may be involved in the natural immunological control of HIV infection. We used mass cytometry to measure surface marker expression on peripheral NK cells. Using two distinct semisupervised machine learning approaches, we identified a CD11b+ CD57- CD161+ Siglec-7+ subpopulation of CD56dim CD16+ NK cells that differentiates HIV controllers from noncontrollers. These cells can be sorted out for future functional studies to assess their potential role in the immunological control of HIV infection.
Collapse
|
90
|
Ni M, Wang L, Yang M, Neuber B, Sellner L, Hückelhoven-Krauss A, Schubert ML, Luft T, Hegenbart U, Schönland S, Wuchter P, Chen BA, Eckstein V, Krüger W, Yerushalmi R, Beider K, Nagler A, Müller-Tidow C, Dreger P, Schmitt M, Schmitt A. Shaping of CD56 bri Natural Killer Cells in Patients With Steroid-Refractory/Resistant Acute Graft-vs.-Host Disease via Extracorporeal Photopheresis. Front Immunol 2019; 10:547. [PMID: 30949182 PMCID: PMC6436423 DOI: 10.3389/fimmu.2019.00547] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/28/2019] [Indexed: 11/24/2022] Open
Abstract
CD56bri natural killer (NK) cells play an important role in the pathogenesis of graft-vs. -host disease (GVHD) and immune defense in the early period after allogeneic hematopoietic stem cell transplantation. Extracorporeal photopheresis (ECP) as an immunomodulating therapy has been widely used for GVHD treatment. However, the mechanism of action of ECP still remains to be elucidated, particularly the influence of ECP on NK cells. Thirty-four patients with steroid-refractory/resistant acute GVHD (aGVHD) ≥ °II and moderate to severe chronic GVHD (cGVHD) received ECP therapy. Patient samples obtained during intensive and long-term treatment were analyzed. Immunomonitoring with respect to cell phenotype and function was performed on rested peripheral blood mononuclear cells (PBMCs) using multiparametric flow cytometry. NK activity in terms of cytokine release was analyzed by intracellular cytokine staining after co-culture with K562 cells. Moreover, the proliferative capacity of NK cells, CD4+, and CD8+ T cells was determined by carboxyfluorescein succinimidyl ester (CFSE) staining. Clinically, 75% of aGVHD and 78% of cGVHD patients responded to ECP therapy. Moreover, our data show that aGVHD, cGVHD patients and healthy donors (HDs) present distinct NK patterns: aGVHD patients have a higher frequency of CD56bri NK subsets with stronger NKG2D and CD62L expression, while CD56−CD16+ NK cells with higher expression of CD57 and CD11b stand out as a signature population for cGVHD. ECP therapy could significantly decrease CD56briCD16− NK cells with shifting the quality from a cytotoxic to a regulatory pattern and additionally mature CD56dim NK cells via upregulation of CD57 in complete responding aGVHD patients. Moreover, ECP could keep the anti-viral and anti-leukemic effects intact via maintaining specialized anti-viral/leukemic CD57+NKG2C+CD56dim NK cells as well as remaining the quality and quantity of cytokine release by NK cells. The proliferative capacity of effector cells remained constant over ECP therapy. In conclusion, ECP represents an attractive option to treat GVHD without compromising anti-viral/leukemic effects. Shaping of CD56bri NK cell compartment by downregulating the cytotoxic subset while upregulating the regulatory subset contributes to the mechanisms of ECP therapy in aGVHD.
Collapse
Affiliation(s)
- Ming Ni
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany.,Department of Hematology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei Wang
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Mingya Yang
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Brigitte Neuber
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Leopold Sellner
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | | | - Maria-Luisa Schubert
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Thomas Luft
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Ute Hegenbart
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Stefan Schönland
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Patrick Wuchter
- German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bao-An Chen
- Department of Hematology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Volker Eckstein
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - William Krüger
- Department of Internal Medicine C, Hematology, Oncology, Stem Cell Transplantation, Palliative Care, University Clinic Greifswald, Greifswald, Germany
| | - Ronit Yerushalmi
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Katia Beider
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Anita Schmitt
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
91
|
NK cells in treated HIV-infected children display altered phenotype and function. J Allergy Clin Immunol 2019; 144:294-303.e13. [PMID: 30735686 DOI: 10.1016/j.jaci.2018.11.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/06/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chronic HIV infection is known to trigger a population redistribution and alteration in the functional capacity of natural killer (NK) cells. Because of improved antiretroviral treatments, there are rising numbers of adolescents and young adults worldwide who are living with HIV infection since birth. OBJECTIVE We sought to determine how NK-cell phenotypic and functional subsets are altered in treated pediatric patients. METHODS NK cells were contrasted among 29 HIV-unexposed and uninfected controls (5-19 years), 23 HIV-exposed but uninfected patients (3-19 years), and 25 HIV-infected patients (3-19 years) using multiparametric flow cytometry. RESULTS Although most NK-cell markers did not differ, activating receptors such as NKp46, DNAX accessory molecule-1, and NKG2C and stimulatory receptors such as CD2 and CD11c were expressed by a higher frequency of NK cells in HIV-infected patients than in controls. Interestingly, there were less differences between HIV-infected and HIV-exposed but uninfected children. There was an inverse relationship between CD4/CD8 T-cell ratio (as a marker of disease progression) and CD11c and NKG2C frequency and CD69 upregulation on stimulation among HIV-infected patients. CONCLUSIONS A chronic NK-cell activation phenotype persists in HIV-infected children receiving antiretroviral therapy and is associated with declining CD4/CD8 T-cell ratios. A lower CD4/CD8 T-cell ratio was associated with higher baseline granzyme B (P = .0068; R2 = 0.29) and degranulation potential (P = .022; R2 = 0.22) in stimulated NK cells. Thus, NK cells in HIV-infected children receiving treatment have reduced functional potential and an activated phenotype that distinguishes them from uninfected children.
Collapse
|
92
|
Proof of concept study of mass cytometry in septic shock patients reveals novel immune alterations. Sci Rep 2018; 8:17296. [PMID: 30470767 PMCID: PMC6251894 DOI: 10.1038/s41598-018-35932-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022] Open
Abstract
Innovative single cell technologies such as mass cytometry (CyTOF) widen possibilities to deeply improve characterisation of immune alterations mechanisms in human diseases. So far, CyTOF has not been used in sepsis – a condition characterized by complex immune disorders. Here, we evaluated feasibility of CyTOF analysis in patients with septic shock. We designed a mass cytometry panel of 25 extracellular markers to study mononuclear cells from 5 septic shock patients and 5 healthy donors. We explored single-cell data with global and specific unsupervised approaches such as heatmaps, SPADE and viSNE. We first validated relevance of our CyTOF results by highlighting established immune hallmarks of sepsis, such as decreased monocyte HLA-DR expression and increased expressions of PD1 and PD-L1 on CD4 T cells and monocytes. We then showed that CyTOF analysis reveals novel aspects of sepsis-induced immune alterations, e.g. B cell shift towards plasma cell differentiation and uniform response of several monocyte markers defining an immune signature in septic patients. This proof of concept study demonstrates CyTOF suitability to analyse immune features of septic patients. Mass cytometry could thus represent a powerful tool to identify novel pathophysiological mechanisms and therapeutic targets for immunotherapy in septic shock patients.
Collapse
|
93
|
Santiago V, Rezvani K, Sekine T, Stebbing J, Kelleher P, Armstrong-James D. Human NK Cells Develop an Exhaustion Phenotype During Polar Degranulation at the Aspergillus fumigatus Hyphal Synapse. Front Immunol 2018; 9:2344. [PMID: 30405602 PMCID: PMC6204393 DOI: 10.3389/fimmu.2018.02344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022] Open
Abstract
Pulmonary aspergillosis is an opportunistic fungal infection affecting immunocompromised individuals. Increasing understanding of natural killer (NK) cell immunobiology has aroused considerable interest around the role of NK cells in pulmonary aspergillosis in the immunocompromised host. Murine studies indicate that NK cells play a critical role in pulmonary clearance of A. fumigatus. We show that the in vitro interaction between NK cells and A. fumigatus induces partial activation of NK cell immune response, characterised by low-level production of IFN-γ, TNF-α, MIP-1α, MIP-1β, and RANTES, polarisation of lytic granules and release of fungal DNA. We observed a contact-dependent down-regulation of activatory receptors NKG2D and NKp46 on the NK cell surface, and a failure of full granule release. Furthermore, the NK cell cytokine-mediated response to leukaemic cells was impaired in the presence of A. fumigatus. These observations suggest that A. fumigatus-mediated NK cell immunoparesis may represent an important mechanism of immune evasion during pulmonary aspergillosis.
Collapse
Affiliation(s)
- Virginia Santiago
- Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Katayoun Rezvani
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Centre, Houston, TX, United States
| | - Takuya Sekine
- Kennedy Institute, University of Oxford, Oxford, United Kingdom
| | - Justin Stebbing
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Peter Kelleher
- Faculty of Medicine, Centre for Immunology and Vaccinology, Imperial College London, London, United Kingdom
| | - Darius Armstrong-James
- Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, United Kingdom
| |
Collapse
|
94
|
RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses. Cell 2018; 175:387-399.e17. [PMID: 30270043 PMCID: PMC6176872 DOI: 10.1016/j.cell.2018.08.064] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/09/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022]
Abstract
HIV-1 broadly neutralizing antibodies (bnAbs) are difficult to induce with vaccines but are generated in ∼50% of HIV-1-infected individuals. Understanding the molecular mechanisms of host control of bnAb induction is critical to vaccine design. Here, we performed a transcriptome analysis of blood mononuclear cells from 47 HIV-1-infected individuals who made bnAbs and 46 HIV-1-infected individuals who did not and identified in bnAb individuals upregulation of RAB11FIP5, encoding a Rab effector protein associated with recycling endosomes. Natural killer (NK) cells had the highest differential expression of RAB11FIP5, which was associated with greater dysregulation of NK cell subsets in bnAb subjects. NK cells from bnAb individuals had a more adaptive/dysfunctional phenotype and exhibited impaired degranulation and cytokine production that correlated with RAB11FIP5 transcript levels. Moreover, RAB11FIP5 overexpression modulated the function of NK cells. These data suggest that NK cells and Rab11 recycling endosomal transport are involved in regulation of HIV-1 bnAb development. Elevated RAB11FIP5 expression is associated with HIV-1 bnAb induction NK cells show the highest differential RAB11FIP5 expression NK cell subsets are more dysregulated in individuals developing bnAbs Rab11Fip5 regulates NK cell function
Collapse
|
95
|
Belizário JE, Neyra JM, Setúbal Destro Rodrigues MF. When and how NK cell-induced programmed cell death benefits immunological protection against intracellular pathogen infection. Innate Immun 2018; 24:452-465. [PMID: 30236030 PMCID: PMC6830868 DOI: 10.1177/1753425918800200] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NK cells are innate lymphoid cells that exert a key role in immune surveillance
through the recognition and elimination of transformed cells and viral,
bacterial, and protozoan pathogen-infected cells without prior sensitization.
Elucidating when and how NK cell-induced intracellular microbial cell death
functions in the resolution of infection and host inflammation has been an
important topic of investigation. NK cell activation requires the engagement of
specific activating, co-stimulatory, and inhibitory receptors which control
positively and negatively their differentiation, memory, and exhaustion. NK
cells secrete diverse cytokines, including IFN-γ, TNF-α/β, CD95/FasL, and TRAIL,
as well as cytoplasmic cytotoxic granules containing perforin, granulysin, and
granzymes A and B. Paradoxically, NK cells also kill other immune cells like
macrophages, dendritic cells, and hyper-activated T cells, thus turning off
self-immune reactions. Here we first provide an overview of NK cell biology, and
then we describe and discuss the life–death signals that connect the microbial
pathogen sensors to the inflammasomes and finally to cell death signaling
pathways. We focus on caspase-mediated cell death by apoptosis and
pro-inflammatory and non-caspase-mediated cell death by necroptosis, as well as
inflammasome- and caspase-mediated pyroptosis.
Collapse
|
96
|
Voigt J, Malone DFG, Dias J, Leeansyah E, Björkström NK, Ljunggren HG, Gröbe L, Klawonn F, Heyner M, Sandberg JK, Jänsch L. Proteome analysis of human CD56 neg NK cells reveals a homogeneous phenotype surprisingly similar to CD56 dim NK cells. Eur J Immunol 2018; 48:1456-1469. [PMID: 29999523 DOI: 10.1002/eji.201747450] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/07/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022]
Abstract
NK cells lacking CD56 (CD56neg ) were first identified in chronic HIV-1 infection. However, CD56neg NK cells also exist in healthy individuals, albeit in significantly lower numbers. Here, we provide an extensive proteomic characterisation of human CD56neg peripheral blood NK cells of healthy donors and compare them to their CD56dim and CD56bright counterparts. Unbiased large-scale surface receptor profiling clustered CD56neg cells as part of the main NK cell compartment and indicated an overall CD56dim -like phenotype. Total proteome analyses of CD56neg NK cells further confirmed their similarity with CD56dim NK cells, and revealed a complete cytolytic inventory with high levels of perforin and granzyme H and M. In the present study, twelve proteins discriminated CD56neg NK cells from CD56dim NK cells with nine up-regulated and three down-regulated proteins in the CD56neg NK cell population. Those proteins were functionally related to lytic granule composition and transport, interaction with the extracellular matrix, DNA transcription or repair, and proliferation. Corroborating these results, CD56neg NK cells showed modest cytotoxicity, degranulation, and IFN-ɣ secretion as compared to CD56dim NK cells. In conclusion, CD56neg NK cells constitute functionally competent cells sharing many features of bona fide CD56dim NK cells in healthy individuals, but with some distinct characteristics.
Collapse
Affiliation(s)
- Jenny Voigt
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - David F G Malone
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Joana Dias
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lothar Gröbe
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frank Klawonn
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbuettel, Germany
| | - Maxi Heyner
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
97
|
Strunz B, Hengst J, Deterding K, Manns MP, Cornberg M, Ljunggren HG, Wedemeyer H, Björkström NK. Chronic hepatitis C virus infection irreversibly impacts human natural killer cell repertoire diversity. Nat Commun 2018; 9:2275. [PMID: 29891939 PMCID: PMC5995831 DOI: 10.1038/s41467-018-04685-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Diversity is a central requirement for the immune system’s capacity to adequately clear a variety of different infections. As such, natural killer (NK) cells represent a highly diverse population of innate lymphocytes important in the early response against viruses. Yet, the extent to which a chronic pathogen affects NK cell diversity is largely unknown. Here we study NK cell functional diversification in chronic hepatitis C virus (HCV) infection. High-dimensional flow cytometer assays combined with stochastic neighbor embedding analysis reveal that chronic HCV infection induces functional imprinting on human NK cells that is largely irreversible and persists long after successful interventional clearance of the virus. Furthermore, HCV infection increases inter-individual, but decreases intra-individual, NK cell diversity. Taken together, our results provide insights into how the history of infections affects human NK cell diversity. Natural killer (NK) cells are important immune cells for mediating antiviral immunity. Here the authors show that chronic hepatitis C virus infection in human can imprint lasting functional phenotypes in NK cells to increase their inter-individual but decrease intra-individual diversity.
Collapse
Affiliation(s)
- Benedikt Strunz
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden
| | - Julia Hengst
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625, Hannover, Germany
| | - Katja Deterding
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover Medical School, 30625, Hannover, Germany.,Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover Medical School, 30625, Hannover, Germany.,Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover Medical School, 30625, Hannover, Germany.,Helmholtz Center for Infection Research, 38124, Braunschweig, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, 45147, Essen, Germany
| | - Niklas K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden.
| |
Collapse
|
98
|
Muccio L, Falco M, Bertaina A, Locatelli F, Frassoni F, Sivori S, Moretta L, Moretta A, Della Chiesa M. Late Development of FcεRγ neg Adaptive Natural Killer Cells Upon Human Cytomegalovirus Reactivation in Umbilical Cord Blood Transplantation Recipients. Front Immunol 2018; 9:1050. [PMID: 29868012 PMCID: PMC5968376 DOI: 10.3389/fimmu.2018.01050] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/27/2018] [Indexed: 01/25/2023] Open
Abstract
In human natural killer (NK) cells, human cytomegalovirus (HCMV) has been shown to be a driving force capable of inducing the expansion of a highly differentiated NKG2C+CD57+ subset, persisting over time in both HCMV+ healthy subjects and umbilical cord blood transplantation (UCBT) recipients experiencing HCMV viral reactivation. In HCMV+ healthy subjects, such expanded NK-cells are characterized by epigenetic modifications that modulate their phenotypic and functional characteristics. In particular, an enhanced ADCC activity is detectable in NK cells lacking the signaling protein FcεRγ. Timing and mechanisms involved in the acquisition of HCMV-induced, adaptive-like features by NK cells are currently unknown. In this study, we investigated the de novo acquisition of several adaptive features in NK cells developing after UCBT by monitoring NK-cell differentiation for at least 2 years after transplant. In UCBT recipients experiencing HCMV reactivation, a rapid phenotypic reconfiguration occurred resulting in the expected expansion of CD56dim NKG2C+CD57+ NK cells. However, while certain HCMV-driven adaptive hallmarks, including high KIR, LILRB1, CD2 and low/negative NKG2A, Siglec-7, and CD161 expression, were acquired early after UCBT (namely by month 6), downregulation of the signaling protein FcεRγ was detected at a later time interval (i.e., by month 12). This feature characterized only a minor fraction of the HCMV-imprinted NKG2C+CD57+ CD56dim NK cell subset, while it was detectable in higher proportions of CD57+ NK cells lacking NKG2C. Interestingly, in patients developing a hyporesponsive CD56-CD16bright NK-cell subset, FcεRγ downregulation occurred in these cells earlier than in CD56dim NK cells. Our data suggest that the acquisition of a fully "adaptive" profile requires signals that may lack in UCBT recipients and/or longer time is needed to obtain a stable epigenetic reprogramming. On the other hand, we found that both HCMV-induced FcεRγneg and FcεRγ+ NK cells from these patients, display similar CD107a degranulation and IFN-γ production capabilities in response to different stimuli, thus indicating that the acquisition of specialized effector functions can be achieved before the "adaptation" to HCMV is completed. Our study provides new insights in the process leading to the generation of different adaptive NK-cell subsets and may contribute to develop new approaches for their employment as novel immunotherapeutic tools.
Collapse
Affiliation(s)
- Letizia Muccio
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Michela Falco
- IRCCS Istituto Giannina Gaslini, Dipartimento dei Laboratori di Ricerca, Genova, Italy
| | - Alice Bertaina
- IRCCS Ospedale Pediatrico Bambino Gesù, Dipartimento di Oncoematologia e Terapia Cellulare e Genica, Rome, Italy
| | - Franco Locatelli
- IRCCS Ospedale Pediatrico Bambino Gesù, Dipartimento di Oncoematologia e Terapia Cellulare e Genica, Rome, Italy.,Dipartimento di Scienze Pediatriche, Università degli Studi di Pavia, Pavia, Italy
| | - Francesco Frassoni
- IRCCS Istituto Giannina Gaslini, Dipartimento dei Laboratori di Ricerca, Genova, Italy
| | - Simona Sivori
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| | - Lorenzo Moretta
- IRCCS Ospedale Pediatrico Bambin Gesù, Area di Ricerca Immunologica, Rome, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| | - Mariella Della Chiesa
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
99
|
Wilk AJ, Blish CA. Diversification of human NK cells: Lessons from deep profiling. J Leukoc Biol 2018; 103:629-641. [PMID: 29350874 PMCID: PMC6133712 DOI: 10.1002/jlb.6ri0917-390r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
NK cells are innate lymphocytes with important roles in immunoregulation, immunosurveillance, and cytokine production. Originally defined on the functional basis of their "natural" ability to lyse tumor targets and thought to be a relatively homogeneous group of lymphocytes, NK cells possess a remarkable degree of phenotypic and functional diversity due to the combinatorial expression of an array of activating and inhibitory receptors. Diversification of NK cells is multifaceted: mechanisms of NK cell education that promote self-tolerance result in a heterogeneous repertoire that further diversifies upon encounters with viral pathogens. Here, we review the genetic, developmental, and environmental sources of NK cell diversity with a particular focus on deep profiling and single-cell technologies that will enable a more thorough and accurate dissection of this intricate and poorly understood lymphocyte lineage.
Collapse
Affiliation(s)
- Aaron J. Wilk
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A. Blish
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, and Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
100
|
Transcriptomic signatures of NK cells suggest impaired responsiveness in HIV-1 infection and increased activity post-vaccination. Nat Commun 2018; 9:1212. [PMID: 29572470 PMCID: PMC5865158 DOI: 10.1038/s41467-018-03618-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/28/2018] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells limit viral replication by direct recognition of infected cells, antibody-dependent cellular cytotoxicity (ADCC), and releasing cytokines. Although growing evidence supports NK cell antiviral immunity in HIV-1 infection, further knowledge of their response is necessary. Here we show that NK cells responding to models of direct cell recognition, ADCC, and cytokine activation have unique transcriptional fingerprints. Compared with healthy volunteers, individuals with chronic HIV-1 infection have higher expression of genes commonly associated with activation, and lower expression of genes associated with direct cell recognition and cytokine stimulation in their NK cells. By contrast, NK cell transcriptional profiles of individuals receiving a modified vaccinia Ankara (MVA) vectored HIV-1 vaccine show upregulation of genes associated with direct cell recognition. These findings demonstrate that targeted transcriptional profiling provides a sensitive assessment of NK cell activity, which helps understand how NK cells respond to viral infections and vaccination. Natural killer (NK) cells are important for eliminating cells under stress or infected by virus, and may have a function in anti-HIV immunity. Here the authors show that different NK-activating stimuli induce distinct transcriptional fingerprints in human NK cells that are analogous to changes caused by HIV vaccination or chronic infection.
Collapse
|