51
|
Sun K, Guo Z, Hou L, Xu J, Du T, Xu T, Guo F. Iron homeostasis in arthropathies: From pathogenesis to therapeutic potential. Ageing Res Rev 2021; 72:101481. [PMID: 34606985 DOI: 10.1016/j.arr.2021.101481] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
Iron is an essential element for proper functioning of cells within mammalian organ systems; in particular, iron homeostasis is critical for joint health. Excess iron can induce oxidative stress damage, associated with the pathogenesis of iron-storage and ageing-related diseases. Therefore, iron levels in body tissues and cells must be tightly regulated. In the past decades, excess iron content within joints has been found in some patients with joint diseases including hemophilic arthropathy, hemochromatosis arthropathy, and osteoarthritis (OA). Currently, increased evidence has shown that iron accumulation is closely associated with multiple pathological changes of these arthropathies. This review summarizes system-level and intracellular regulation of iron homeostasis, and emphasizes the role of iron in synovial alterations, cartilage degeneration, and subchondral bone of several arthropathies. Of note, we discuss the potential link between iron homeostasis and OA pathogenesis. Finally, we discuss the therapeutic potential of maintaining iron homeostasis in these arthropathies.
Collapse
|
52
|
Yan JX, Pan BJ, Zhao PP, Wang LT, Liu JF, Fu SB. Serum ferritin is correlated with non-alcoholic fatty liver disease in middle-aged and older patients with type 2 diabetes. Endocr Connect 2021; 10:1560-1569. [PMID: 34738917 PMCID: PMC8679874 DOI: 10.1530/ec-21-0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Previous studies have shown the correlations between serum ferritin and non-alcoholic fatty liver disease (NAFLD) or diabetes. However, this relationship remains unclear in patients with type 2 diabetes (T2DM) with NAFLD. Therefore, this study aimed to elaborate the relationship between serum ferritin levels and NAFLD in middle-aged and older patients with T2DM and further explored the biomarkers for NAFLD in T2DM. METHODS A total of 805 middle-aged and older patients with T2DM were divided into NAFLD and non-NAFLD groups, and their serum ferritin levels were compared. Next, NAFLD group were divided into five subgroups according to the quintile levels of serum ferritin, and the differences in the constituent ratios of NAFLD were analyzed. A logistic regression analysis was performed to determine the risk factors for NAFLD in patients with T2DM. RESULTS The serum ferritin levels were significantly higher in T2DM patients with NAFLD (168.47 (103.78, 248.00) ng/mL) than in the non-NAFLD patients (121.19 (76.97, 208.39) ng/mL). The constituent ratios of NAFLD were significantly higher in the F5 and F4 groups than in the F2 or F1 groups (22.70 and 22.70% vs. 15.90 and 16.90%, respectively; P < 0.05). Binary logistic regression analysis showed that serum ferritin (P = 0.001) was an independent risk factor for NAFLD in patients with T2DM. CONCLUSIONS Serum ferritin levels were significantly increased in T2DM with NAFLD, and the constituent ratios of NAFLD increased gradually along with the increased levels of serum ferritin. Thus, serum ferritin is an independent risk factor for NAFLD in patients with T2DM.
Collapse
Affiliation(s)
- Jun-Xin Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Bin-Jing Pan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Ping-Ping Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Li-Ting Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jing-Fang Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Correspondence should be addressed to J-F Liu:
| | - Song-Bo Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
53
|
Olechno E, Puścion-Jakubik A, Socha K, Zujko ME. Coffee Infusions: Can They Be a Source of Microelements with Antioxidant Properties? Antioxidants (Basel) 2021; 10:antiox10111709. [PMID: 34829580 PMCID: PMC8614647 DOI: 10.3390/antiox10111709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023] Open
Abstract
Coffee is a beverage that is very popular all over the world. Its pro-health effect has been demonstrated in many publications. This drink can counteract the effects of oxidative stress thanks to its antioxidant properties. The aim of this study was to collect data on the content of microelements with antioxidant activity (manganese, zinc, copper, iron) in coffee infusions, taking into account various factors. The study considered publications from the years 2000–2020 found in Google Scholar and PubMed databases. It was noted that coffee can provide up to 13.7% of manganese requirements per serving, up to 4.0% and 3.1% of zinc requirements for women and men, up to 2.7% and 2.1% of copper requirements for women and men, and up to 0.4% and 0.6% of iron requirements for women and men. Coffee infusions can also be a source of fluoride (up to 2.5%), chromium (up to 0.4% of daily intake for women and 0.2% for men), and cobalt (up to 0.1%). There are no data in the literature regarding the content of selenium in coffee infusions. The origin of coffee beans and the type of water used (especially regarding fluoride) may have an impact on the content of minerals in infusions. The brewing method does not seem to play an important role. As it is a very popular beverage, coffee can additionally enrich the diet with such micronutrients as manganese, zinc, and copper. This seems beneficial due to their antioxidant properties, however the bioavailability of these elements of coffee should be taken into account. It seems necessary to carry out more research in this area.
Collapse
Affiliation(s)
- Ewa Olechno
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland; (E.O.); (M.E.Z.)
| | - Anna Puścion-Jakubik
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland;
- Correspondence: ; Tel.: +48-8574-854-69
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland;
| | - Małgorzata Elżbieta Zujko
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland; (E.O.); (M.E.Z.)
| |
Collapse
|
54
|
Javdani H, Etemad L, Moshiri M, Zarban A, Hanafi-Bojd MY. Effect of tannic acid-templated mesoporous silica nanoparticles on iron-induced oxidative stress and liver toxicity in rats. Toxicol Rep 2021; 8:1721-1728. [PMID: 34692422 PMCID: PMC8512627 DOI: 10.1016/j.toxrep.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/11/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022] Open
Abstract
The present study sought to investigate the effects of amino-functionalized tannic acid-templated mesoporous silica nanoparticles (TA-MS-NH2 NPs) on giving rats protection against iron-induced liver toxicity. To this end, the TA-MS-NH2 NPs were characterized using field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR). Moreover, 50 Wistar rats were randomly divided into one control group (group 1) and four experimental groups (groups 2- 5) (n = 10), each of which received 100 mg/kg oral normal saline and FeSO4, respectively. Then, post-exposure hepatotoxicity and oxidative stress markers were measured in two intervals, i.e., after 4 and 24 h, followed by the measurement of the acute iron toxicity. Furthermore, hepatotoxicity markers, including the alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total antioxidant capacity (TAC), were measured via Ferric Reducing Antioxidant Power (FRAP) and 2,2,1-diphenyl-1-picrylhydrazyl (DPPH) assays. Also, malondialdehyde (MDA), total thiol groups, advanced oxidation protein products (AOPP), and nitrite/nitrate (NOx) levels were measured as oxidative stress markers in the serum samples. The results indicated that oral administration of iron significantly elevated the liver enzymes and altered the level of oxidative stress markers. It was also found that treatment with TA-MS-NH2 NPs meaningfully protected against hepatotoxicity, decreased ALT, AST, ALP, and significantly improved oxidative stress markers by decreasing MDA, AOPP, and NOx levels and increasing TAC and thiol group contents, proving that TA-MS-NH2 NPs could protect rats against iron-induced acute liver toxicity through their antioxidant features.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AOPP, advanced oxidation protein products
- AST, aspartate aminotransferase
- Acute iron toxicity
- Antioxidant activity
- DLS, dynamic light scattering
- DPPH, 2,2,1-diphenyl-1-picrylhydrazyl
- FE-SEM, field-emission scanning electron microscope
- FRAP, Ferric Reducing Antioxidant Power
- FT-IR, Fourier-transform infrared spectroscopy
- Liver damage
- MDA, malondialdeide
- Mesoporous silica nanoparticles
- Oxidative stress
- TA-MS-NH2 NPs, amino-functionalized tannic acid-templated mesoporous silica nanoparticles
- TAC, total antioxidant capacity
- TEM, transmission electron microscopy
- Tannic acid
Collapse
Affiliation(s)
- Hossein Javdani
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asghar Zarban
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Clinical Biochemistry Department, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Nanomedicine Department, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
55
|
Ali A, Hussain F, Attacha S, Kalsoom A, Qureshi WA, Shakeel M, Militky J, Tomkova B, Kremenakova D. Development of Novel Antimicrobial and Antiviral Green Synthesized Silver Nanocomposites for the Visual Detection of Fe 3+ Ions. NANOMATERIALS 2021; 11:nano11082076. [PMID: 34443906 PMCID: PMC8402186 DOI: 10.3390/nano11082076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
In the current research, we present a single-step, one-pot, room temperature green synthesis approach for the development of functional poly(tannic acid)-based silver nanocomposites. Silver nanocomposites were synthesized using only tannic acid (plant polyphenol) as a reducing and capping agent. At room temperature and under mildly alkaline conditions, tannic acid reduces the silver salt into nanoparticles. Tannic acid undergoes oxidation and self-polymerization before the encapsulating of the synthesized silver nanoparticle and forms silver nanocomposites with a thick capping layer of poly(tannic acid). No organic solvents, special instruments, or toxic chemicals were used during the synthesis process. The results for the silver nanocomposites prepared under optimum conditions confirmed the successful synthesis of nearly spherical and fine nanocomposites (10.61 ± 1.55 nm) with a thick capping layer of poly(tannic acid) (~3 nm). With these nanocomposites, iron could be detected without any special instrument or technique. It was also demonstrated that, in the presence of Fe3+ ions (visual detection limit ~20 μM), nanocomposites aggregated using the coordination chemistry and exhibited visible color change. Ultraviolet-visible (UV–vis) and scanning electron microscopy (SEM) analysis also confirmed the formation of aggregate after the addition of the analyte in the detection system (colored nanocomposites). The unique analytic performance, simplicity, and ease of synthesis of the developed functional nanocomposites make them suitable for large-scale applications, especially in the fields of medical, sensing, and environmental monitoring. For the medical application, it is shown that synthesized nanocomposites can strongly inhibit the growth of Escherichia coli and Staphylococcus aureus. Furthermore, the particles also exhibit very good antifungal and antiviral activity.
Collapse
Affiliation(s)
- Azam Ali
- Department of Material and Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.M.); (B.T.); (D.K.)
- Correspondence: (A.A.); (W.A.Q.)
| | - Fiaz Hussain
- Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60000, Pakistan; (F.H.); (M.S.)
| | - Safira Attacha
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar 25130, Pakistan;
| | - Ambreen Kalsoom
- Department of Physics, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan;
| | - Waseem Akhtar Qureshi
- Cholistan Institute of Desert Studies, Bagdad ul Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (A.A.); (W.A.Q.)
| | - Muhammad Shakeel
- Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60000, Pakistan; (F.H.); (M.S.)
| | - Jiri Militky
- Department of Material and Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.M.); (B.T.); (D.K.)
| | - Blanka Tomkova
- Department of Material and Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.M.); (B.T.); (D.K.)
| | - Dana Kremenakova
- Department of Material and Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.M.); (B.T.); (D.K.)
| |
Collapse
|
56
|
Andrews-Guzmán M, Ruz M, Arredondo-Olguín M. Zinc Modulates the Response to Apoptosis in an In Vitro Model with High Glucose and Inflammatory Stimuli in C2C12 Cells. Biol Trace Elem Res 2021; 199:2288-2294. [PMID: 32840726 DOI: 10.1007/s12011-020-02348-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Apoptosis is programmed cell death and its alteration is related to cancer, neurologic, autoimmune, and chronic diseases. A number of factors can affect this process. The aim of this paper is to study the effect of supplemental zinc on apoptosis-related genes in C2C12 myoblast cells after being challenged with a series of stimuli, such as high glucose, insulin, and an inflammatory agent. C2C12 myoblast cells were cultured for 24 h with zinc (Zn) (ZnSO4) 10 or 100 μM and/or glucose 10 or 30 mM. In addition to these stimuli, the cells were challenged with insulin 1 nM or interleukin-6 (IL-6) 5 nM. The mRNA expression of proapoptotic genes caspase 3 and Fas, the antiapoptotic genes, Xiap and Bcl-xL and the ratio of pro-/antiapoptotic genes Bax/Bcl-2, were determined by qRT-PCR. The expression of caspase-3 gene was significantly increased in the presence of the combination high Zn/high glucose with and without the presence of insulin and IL6 in the culture medium Fas expression instead, showed uneven responses. The expression of Bcl-xL and Xiap was increased in most conditions by having high Zn in the medium regardless of the presence of insulin or IL6. Bax/Bcl2 ratio was decreased in the presence of high Zn. Zn was able to stimulate the expression of antiapoptotic genes. This effect was specially noted in high-glucose conditions with and without the presence of insulin. This effect is partially overridden by the presence of an inflammatory agent such as IL-6.
Collapse
Affiliation(s)
- Mónica Andrews-Guzmán
- Micronutrient Laboratory, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
| | - Miguel Arredondo-Olguín
- Micronutrient Laboratory, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile.
| |
Collapse
|
57
|
Li J, Wang S, Duan J, Le P, Li C, Ding Y, Wang R, Gao Y. The protective mechanism of resveratrol against hepatic injury induced by iron overload in mice. Toxicol Appl Pharmacol 2021; 424:115596. [PMID: 34044072 DOI: 10.1016/j.taap.2021.115596] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022]
Abstract
Excessive iron deposition can produce toxicity. Liver, as the main storage site of iron, is more vulnerable to excessive iron than other organs. Many studies have found that Resveratrol (RES) can effectively eliminate oxygen free radicals and resist lipid peroxide damage. However, studies investigating the mechanism of how RES prevents liver injury induced by iron overload are few. This study aims to observe the protective effect of RES on liver injury induced by iron overload in mice. Mice, except for the control group, received an intraperitoneal injection of iron dextran (50 mg/kg) every morning. The L-RES and H-RES groups received intragastric administration of low- and high-concentration RES solutions (20 or 50 mg/kg). The deferoxamine (DFO) group was intraperitoneally injected with DFO (50 mg/kg), while the control and iron overload groups were intraperitoneally injected with the same amount of normal saline every afternoon. Two weeks after continuous administration, iron-overloaded mice treated with high and low doses of RES significantly improved liver injury (GOT and GPT) and decreased LDH activity and MDA content and increased SOD and GSH activities (P < 0.01). Morphological tests showed that RES treatment can reduce liver iron deposition and improve liver pathological changes in iron-overloaded mice. Furthermore, RES treatment caused a significant decrease in Ft expression (P < 0.01). In conclusion, RES can alleviate liver injury in iron-overloaded mice. The mechanism may be related to improve the antioxidant capacity and reduce excess iron in the liver.
Collapse
Affiliation(s)
- Jinghan Li
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Simeng Wang
- College of Nursing, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jiaqi Duan
- College of Acupuncture and Massage, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Peixin Le
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Chao Li
- College of Acupuncture and Massage, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yongpei Ding
- College of Acupuncture and Massage, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Rui Wang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Yonggang Gao
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| |
Collapse
|
58
|
Ryan BJ, Foug KL, Gioscia-Ryan RA, Varshney P, Ludzki AC, Ahn C, Schleh MW, Gillen JB, Chenevert TL, Horowitz JF. Exercise training decreases whole-body and tissue iron storage in adults with obesity. Exp Physiol 2021; 106:820-827. [PMID: 33559926 DOI: 10.1113/ep089272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/29/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does exercise training modify tissue iron storage in adults with obesity? What is the main finding and its importance? Twelve weeks of moderate-intensity exercise or high-intensity interval training lowered whole-body iron stores, decreased the abundance of the key iron storage protein in skeletal muscle (ferritin) and tended to lower hepatic iron content. These findings show that exercise training can reduce tissue iron storage in adults with obesity and might have important implications for obese individuals with dysregulated iron homeostasis. ABSTRACT The regulation of iron storage is crucial to human health, because both excess and deficient iron storage have adverse consequences. Recent studies suggest altered iron storage in adults with obesity, with increased iron accumulation in their liver and skeletal muscle. Exercise training increases iron use for processes such as red blood cell production and can lower whole-body iron stores in humans. However, the effects of exercise training on liver and muscle iron stores in adults with obesity have not been assessed. The aim of this study was to determine the effects of 12 weeks of exercise training on whole-body iron stores, liver iron content and the abundance of ferritin (the key iron storage protein) in skeletal muscle in adults with obesity. Twenty-two inactive adults (11 women and 11 men; age, 31 ± 6 years; body mass index, 33 ± 3 kg/m2 ) completed 12 weeks (four sessions/week) of either moderate-intensity continuous training (MICT; 45 min at 70% of maximal heart rate; n = 11) or high-intensity interval training (HIIT; 10 × 1 min at 90% of maximal heart rate, interspersed with 1 min active recovery; n = 11). Whole-body iron stores were lower after training, as indicated by decreased plasma concentrations of ferritin (P = 3 × 10-5 ) and hepcidin (P = 0.02), without any change in C-reactive protein. Hepatic R2*, an index of liver iron content, was 6% lower after training (P = 0.06). Training reduced the skeletal muscle abundance of ferritin by 10% (P = 0.03), suggesting lower muscle iron storage. Interestingly, these adaptations were similar in MICT and HIIT groups. Our findings indicate that exercise training decreased iron storage in adults with obesity, which might have important implications for obese individuals with dysregulated iron homeostasis.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine L Foug
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel A Gioscia-Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Pallavi Varshney
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael W Schleh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jenna B Gillen
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Thomas L Chenevert
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
59
|
Liu Z, Simchick GA, Qiao J, Ashcraft MM, Cui S, Nagy T, Zhao Q, Xiong MP. Reactive Oxygen Species-Triggered Dissociation of a Polyrotaxane-Based Nanochelator for Enhanced Clearance of Systemic and Hepatic Iron. ACS NANO 2021; 15:419-433. [PMID: 33378155 PMCID: PMC8596504 DOI: 10.1021/acsnano.0c01083] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chronic blood transfusions are used to alleviate anemic symptoms in thalassemia and sickle cell anemia patients but can eventually result in iron overload (IO) and subsequently lead to severe oxidative stress in cells and tissues. Deferoxamine (DFO) is clinically approved to treat transfusional IO, but the use of the iron chelator is hindered by nonspecific toxicity and poor pharmacokinetic (PK) properties in humans, resulting in the need to administer the drug via long-term infusion regimens that can often lead to poor patient compliance. Herein, a nanochelator system that uses the characteristic IO physiological environment to dissociate was prepared through the incorporation of DFO and reactive oxygen species (ROS)-sensitive thioketal groups into an α-cyclodextrin-based polyrotaxane platform (rPR-DFO). ROS-induced dissociation of this nanochelator (ca. 10 nm) into constructs averaging 2 nm in diameter significantly increased urine and fecal elimination of excess iron in vivo. In addition to significantly improved PK properties, rPR-DFO was well-tolerated in mice and no adverse side effects were noted in single high dose or multiple dose acute toxicity studies. The overall features of rPR-DFO as a promising system for iron chelation therapy can be attributed to a combination of the nanochelator's improved PK, favorable distribution to the liver, and ROS-induced dissociation properties into constructs <6 nm for faster renal elimination. This ROS-responsive nanochelator design may serve as a promising alternative for safely prolonging the circulation of DFO and more rapidly eliminating iron chelates from the body in iron chelation therapy regimens requiring repeated dosing of nanochelators.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Gregory A Simchick
- Bioimaging Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| | - Jing Qiao
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Morgan M Ashcraft
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Shuolin Cui
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - Qun Zhao
- Bioimaging Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| | - May P Xiong
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
60
|
Mathuthu E, Janse van Rensburg A, Du Plessis D, Mason S. EDTA as a chelating agent in quantitative 1H-NMR of biologically important ions. Biochem Cell Biol 2021; 99:465-475. [PMID: 33449856 DOI: 10.1139/bcb-2020-0543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Biologically important ions such as Ca, K, Mg, Fe, and Zn play major roles in numerous biological processes, and their homeostatic balance is necessary for the maintenance of cellular activities. Sudden and severe loss in homeostasis of just one biologically important ion can cause a cascade of negative effects. The ability to quickly, accurately, and reliably quantify biologically important ions in samples of human bio-fluids is something that has been sorely lacking within the field of metabolomics. 1H-NMR spectra. The foundation of our investigation was the a-priori knowledge that free ethylenediaminetetraacetic acid (EDTA) produces two clear single peaks on 1H-NMR spectra, and that EDTA chelated to different ions produces unique 1H-NMR spectral patterns due to 3D conformational changes in the chemical structure of chelated-EDTA and varying degrees of electronegativity. The aim of this study was to develop and test a 1H-NMR-based method, with application specifically to the field of metabolomics, to quantify biologically important ions within the physiological pH range of 6.50-7.50 using EDTA as a chelating agent. Our method produced linear, accurate, precise, and repeatable results for Ca, Mg, and Zn; however, K and Fe did not chelate with EDTA.
Collapse
Affiliation(s)
- Emmanuel Mathuthu
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.,Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Angelique Janse van Rensburg
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.,Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Dean Du Plessis
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.,Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.,Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
61
|
Dahyaleh K, Sung HK, Prioriello M, Rengasamy P, Lam NH, Kim JB, Gross S, Sweeney G. Iron overload reduces adiponectin receptor expression via a ROS/FOXO1-dependent mechanism leading to adiponectin resistance in skeletal muscle cells. J Cell Physiol 2021; 236:5339-5351. [PMID: 33432609 DOI: 10.1002/jcp.30240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/11/2022]
Abstract
Iron overload (IO) is a common yet underappreciated finding in metabolic syndrome (MetS) patients. With the prevalence of MetS continuing to rise, it is imperative to further elucidate cellular mechanisms leading to metabolic dysfunction. Adiponectin has many beneficial effects and is a therapeutic target for the treatment of MetS and cardiovascular diseases. IO positively correlates with reduced circulating adiponectin levels yet the impact of IO on adiponectin action is unknown. Here, we established a model of IO in L6 skeletal muscle cells and found that IO-induced adiponectin resistance. This was shown via reduced p38 mitogen-activated protein kinase phosphorylation in response to the small molecule adiponectin receptor (AdipoR) agonist, AdipoRon, in presence of IO. This correlated with reduced messenger RNA and protein levels of AdipoR1 and its facilitative signaling binding partner, APPL1. IO caused phosphorylation, nuclear extrusion, and thus inhibition of FOXO1, a known transcription factor regulating AdipoR1 expression. The antioxidant N-acetyl cystine attenuated the production of reactive oxygen species (ROS) by IO, and blunted its effect on FOXO1 phosphorylation and removal from the nucleus, as well as subsequent adiponectin resistance. In conclusion, our study identifies a ROS/FOXO1/AdipoR1 axis as a cause of skeletal muscle adiponectin resistance in response to IO. This new knowledge provides insight into a cellular mechanism with potential relevance to disease pathophysiology in MetS patients with IO.
Collapse
Affiliation(s)
| | - Hye K Sung
- Department of Biology, York University, Toronto, Canada
| | | | | | - Nhat H Lam
- Department of Biology, York University, Toronto, Canada
| | - Jae B Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sean Gross
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Canada
| |
Collapse
|
62
|
Bereta M, Teplan M, Chafai DE, Radil R, Cifra M. Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture. Sci Rep 2021; 11:328. [PMID: 33431983 PMCID: PMC7801494 DOI: 10.1038/s41598-020-79668-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Normal or excessive oxidative metabolism in organisms is essential in physiological and pathophysiological processes, respectively. Therefore, monitoring of biological oxidative processes induced by the chemical or physical stimuli is nowadays of extreme importance due to the environment overloaded with various physicochemical factors. Current techniques typically require the addition of chemical labels or light illumination, which perturb the samples to be analyzed. Moreover, the current techniques are very demanding in terms of sample preparation and equipment. To alleviate these limitations, we propose a label-free monitoring tool of oxidation based on biological autoluminescence (BAL). We demonstrate this tool on Saccharomyces cerevisiae cell culture. We showed that BAL can be used to monitor chemical perturbation of yeast due to Fenton reagents initiated oxidation-the BAL intensity changes with hydrogen peroxide concentration in a dose-dependent manner. Furthermore, we also showed that BAL reflects the effects of low-frequency magnetic field on the yeast cell culture, where we observed a disturbance of the BAL kinetics in the exposed vs. control case. Our results contribute to the development of novel techniques for label-free, real-time, noninvasive monitoring of oxidative processes and approaches for their modulation.
Collapse
Affiliation(s)
- Martin Bereta
- Institute of Measurement Science of the Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Health, Catholic University in Ruzomberok, Ruzomberok, Slovakia
| | - Michal Teplan
- Institute of Measurement Science of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Djamel Eddine Chafai
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia
| | - Roman Radil
- Faculty of Electrical Engineering and Information Technology, University of Zilina, Zilina, Slovakia
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
63
|
Kim HY, Kim J, Noh E, Ahn KH, Cho GJ, Hong SC, Oh MJ, Kim HJ. Prepregnancy hemoglobin levels and gestational diabetes mellitus in pregnancy. Diabetes Res Clin Pract 2021; 171:108608. [PMID: 33310123 DOI: 10.1016/j.diabres.2020.108608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 11/15/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
AIM To identify the influence of prepregnancy hemoglobin levels on gestational diabetes mellitus. MATERIALS AND METHODS Korean women who had given birth between January 1st, 2006 and December 31st, 2015 and who had undergone a biannual national health screening examination within 6 months prior to pregnancy were enrolled. Subjects were divided into three groups according to their hemoglobin levels. Multivariate logistic regression analysis was used to estimate the adjusted odds ratio and 95% confidence interval for GDM. RESULTS Of the 366,122 participants, GDM developed in 14,799 (4%) women. More specifically, GDM developed in 3.6% of women with prepregnancy anemia (hemoglobin < 11 g/dL), 3.57% with normal hemoglobin levels, and 4.47% with hemoglobin levels higher than 13 g/dL. We did not find any association between prepregnancy anemia and the risk of developing GDM (OR 1.002 [95% CI 0.90-1.11]). After adjusting for potential confounding factors (adjusted odds ratio 1.41; 95% CI 1.29-1.54), high hemoglobin levels were associated with insulin requiring GDM. CONCLUSIONS Our study identified an association between high prepregnancy hemoglobin levels and GDM risk.
Collapse
Affiliation(s)
- Ho Yeon Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jinsil Kim
- Korea University Guro Hospital Smart Healthcare Center, Seoul, Republic of Korea
| | - Eunjin Noh
- Korea University Guro Hospital Smart Healthcare Center, Seoul, Republic of Korea
| | - Ki Hoon Ahn
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Soon-Cheol Hong
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min-Jeong Oh
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hai-Joong Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
64
|
Sarkar D, Chowdhury M, Das PK. Naphthalimide based fluorescent organic nanoparticles in selective sensing of Fe 3+ and as a diagnostic probe for Fe 2+/Fe 3+ transition. J Mater Chem B 2020; 9:494-507. [PMID: 33300911 DOI: 10.1039/d0tb02450c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorescent organic nanoparticles (FONPs) have attracted considerable attention as a practical and effective platform for sensing and imaging applications. The present article delineates the fabrication of FONPs derived from the naphthalimide based histidine appended amphiphile, NID. The self-assembly of NID in 99 vol% water in DMSO led to the formation of FONPs through J-type aggregation. Aggregation-induced emission (AIE) was observed due to the pre-associated excimer of NID with bluish green emission at 470 nm along with intramolecular charge transfer (ICT). The emission of NID FONPs was utilized for selective sensing of Fe3+ and bioimaging of Fe3+ inside mammalian cells. The fluorescence intensity of the FONPs was quenched with the gradual addition of Fe3+ due to the formation of a 1 : 1 stoichiometric complex with the histidine residue of NID. The morphology of the FONPs transformed from spherical to spindle upon the complex formation of NID with Fe3+. The limit of detection (LOD) of this AIE based turn-off chemosensor for Fe3+ was found to be 12.5 ± 1.2 μM having high selectivity over other metal ions. On the basis of the very low cytotoxicity and selective sensing of Fe3+, NID FONPs were successfully employed for bioimaging of Fe3+ ions through fluorescence quenching within mammalian cells (NIH3T3, B16F10). Considering the varying oxidative stress inside different cells, NID FONPs were used for detecting Fe2+ to Fe3+ redox state transition selectively inside cancer cells (B16F10) in comparison to non-cancerous cells (NIH3T3). Selective sensing of cancer cells was substantiated by co-culture experiment and flow cytometry. Hence, NID FONPs can be a selective diagnostic probe for cancer cells owing to their higher H2O2 content.
Collapse
Affiliation(s)
- Deblina Sarkar
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata - 700032, India.
| | - Monalisa Chowdhury
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata - 700032, India.
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata - 700032, India.
| |
Collapse
|
65
|
Tran HT, Tsai EHR, Lewis AJ, Moors T, Bol JGJM, Rostami I, Diaz A, Jonker AJ, Guizar-Sicairos M, Raabe J, Stahlberg H, van de Berg WDJ, Holler M, Shahmoradian SH. Alterations in Sub-Axonal Architecture Between Normal Aging and Parkinson's Diseased Human Brains Using Label-Free Cryogenic X-ray Nanotomography. Front Neurosci 2020; 14:570019. [PMID: 33324142 PMCID: PMC7724048 DOI: 10.3389/fnins.2020.570019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/14/2020] [Indexed: 01/25/2023] Open
Abstract
Gaining insight to pathologically relevant processes in continuous volumes of unstained brain tissue is important for a better understanding of neurological diseases. Many pathological processes in neurodegenerative disorders affect myelinated axons, which are a critical part of the neuronal circuitry. Cryo ptychographic X-ray computed tomography in the multi-keV energy range is an emerging technology providing phase contrast at high sensitivity, allowing label-free and non-destructive three dimensional imaging of large continuous volumes of tissue, currently spanning up to 400,000 μm3. This aspect makes the technique especially attractive for imaging complex biological material, especially neuronal tissues, in combination with downstream optical or electron microscopy techniques. A further advantage is that dehydration, additional contrast staining, and destructive sectioning/milling are not required for imaging. We have developed a pipeline for cryo ptychographic X-ray tomography of relatively large, hydrated and unstained biological tissue volumes beyond what is typical for the X-ray imaging, using human brain tissue and combining the technique with complementary methods. We present four imaged volumes of a Parkinson's diseased human brain and five volumes from a non-diseased control human brain using cryo ptychographic X-ray tomography. In both cases, we distinguish neuromelanin-containing neurons, lipid and melanic pigment, blood vessels and red blood cells, and nuclei of other brain cells. In the diseased sample, we observed several swellings containing dense granular material resembling clustered vesicles between the myelin sheaths arising from the cytoplasm of the parent oligodendrocyte, rather than the axoplasm. We further investigated the pathological relevance of such swollen axons in adjacent tissue sections by immunofluorescence microscopy for phosphorylated alpha-synuclein combined with multispectral imaging. Since cryo ptychographic X-ray tomography is non-destructive, the large dataset volumes were used to guide further investigation of such swollen axons by correlative electron microscopy and immunogold labeling post X-ray imaging, a possibility demonstrated for the first time. Interestingly, we find that protein antigenicity and ultrastructure of the tissue are preserved after the X-ray measurement. As many pathological processes in neurodegeneration affect myelinated axons, our work sets an unprecedented foundation for studies addressing axonal integrity and disease-related changes in unstained brain tissues.
Collapse
Affiliation(s)
| | | | - Amanda J. Lewis
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Tim Moors
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J. G. J. M. Bol
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Ana Diaz
- Paul Scherrer Institut, Villigen, Switzerland
| | - Allert J. Jonker
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Joerg Raabe
- Paul Scherrer Institut, Villigen, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Wilma D. J. van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | |
Collapse
|
66
|
Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn-Fe alloy through second phase refinement. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111197. [DOI: 10.1016/j.msec.2020.111197] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 11/23/2022]
|
67
|
Salama K, Abdelsalam A, Eldin HS, Youness E, Selim Y, Salama C, Hassanein G, Samir M, Zekri H. The relationships between pancreatic T2* values and pancreatic iron loading with cardiac dysfunctions, hepatic and cardiac iron siderosis among Egyptian children and young adults with β-thalassaemia major and sickle cell disease: a cross-sectional study. F1000Res 2020; 9:1108. [PMID: 34249348 PMCID: PMC8261758 DOI: 10.12688/f1000research.25943.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Cardiac, hepatic and pancreatic T2* measured by magnetic resonance imaging (MRI) has been proven to be an accurate and non-invasive method for measuring iron overload in iron overload conditions. There is accumulating evidence that pancreatic iron can predict cardiac iron in young children because the pancreas loads earlier than the heart. The aim of our study was to assess the relationships between pancreatic T2* values and pancreatic iron loading with cardiac dysfunctions and liver and cardiac iron
among patients with β-thalassaemia major (βTM) and sickle cell disease (SCD). Methods: 40 βTM and 20 transfusion-dependant SCD patients were included along with 60 healthy age and sex-matched controls. Echocardiography and Tissue Doppler Imaging were performed for all subjects as well as the control group. Hepatic, cardiac and pancreatic iron overload in cases were assessed by MRI T2*. Results: The mean age of our patients was 13.7 years with mean frequency of transfusion/year 12. Mean cardiac T2* was 32.9 ms and mean myocardial iron concentration was 0.7 mg/g; One patient had cardiac iron overload of moderate severity. Mean pancreatic T2* was 22.3 ms with 20 patients having mild pancreatic iron overload. Pancreatic T2* correlated positively peak late diastolic velocity at septal mitral annulus (r=0.269, p=0.038), peak early diastolic velocity at tricuspid annulus (r=0.430, p=0.001) and mitral annular plane systolic excursion (r=0.326, p=0.01); and negatively with end systolic pulmonary artery pressure (r=-0.343, p=0.007) and main pulmonary artery diameter (MPA) (r=-0.259, p=0.046). We couldn’t test the predictability of pancreatic T2* in relation to cardiac T2* as only one patient had cardiac T2*<20 ms. Conclusion: There was a relationship between pancreatic iron siderosis with cardiac dysfunction in multi-transfused patients with βTM and SCD. No direct relation between pancreatic iron and cardiac siderosis was detected.
Collapse
Affiliation(s)
- Khaled Salama
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amina Abdelsalam
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hadeel Seif Eldin
- Department of Radiodiagnosis, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman Youness
- Department of Medical Biochemistry, National Research Centre, Giza, Egypt
| | - Yasmeen Selim
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Christine Salama
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Gehad Hassanein
- Department of Radiodiagnosis, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Samir
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hanan Zekri
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
68
|
Ryan BJ, Foug KL, Gioscia-Ryan RA, Ludzki AC, Ahn C, Schleh MW, Gillen JB, Chenevert TL, Horowitz JF. Skeletal muscle ferritin abundance is tightly related to plasma ferritin concentration in adults with obesity. Exp Physiol 2020; 105:1808-1814. [PMID: 32888323 DOI: 10.1113/ep089010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023]
Abstract
NEW FINDINGS What is the central question of this study? Obesity is associated with complex perturbations to iron homeostasis: is plasma ferritin concentration (a biomarker of whole-body iron stores) related to the abundance of ferritin (the key tissue iron storage protein) in skeletal muscle in adults with obesity? What is the main finding and its importance? Plasma ferritin concentration was tightly correlated with the abundance of ferritin in skeletal muscle, and this relationship persisted when accounting for sex, age, body mass index and plasma C-reactive protein concentration. Our findings suggest that skeletal muscle may be an important iron store. ABSTRACT Obesity is associated with complex perturbations to whole-body and tissue iron homeostasis. Recent evidence suggests a potentially important influence of iron storage in skeletal muscle on whole-body iron homeostasis, but this association is not clearly resolved. The primary aim of this study was to assess the relationship between whole-body and skeletal muscle iron stores by measuring the abundance of the key iron storage (ferritin) and import (transferrin receptor) proteins in skeletal muscle, as well as markers of whole-body iron homeostasis in men (n = 19) and women (n = 43) with obesity. Plasma ferritin concentration (a marker of whole-body iron stores) was highly correlated with muscle ferritin abundance (r = 0.77, P = 2 × 10-13 ) and negatively associated with muscle transferrin receptor abundance (r = -0.76, P = 1 × 10-12 ). These relationships persisted when accounting for sex, age, BMI and plasma C-reactive protein concentration. In parallel with higher whole-body iron stores in our male versus female participants, men had 2.2-fold higher muscle ferritin abundance (P = 1 × 10-4 ) compared with women. In accordance with lower muscle iron storage, women had 2.7-fold higher transferrin receptor abundance (P = 7 × 10-10 ) compared with men. We conclude that muscle iron storage and import proteins are tightly and independently related to plasma ferritin concentration in adults with obesity, suggesting that skeletal muscle may be an underappreciated iron store.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Katherine L Foug
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Rachel A Gioscia-Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Michael W Schleh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Jenna B Gillen
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
69
|
Wu L, Li Y, Gu N. Nano-sensing and nano-therapy targeting central players in iron homeostasis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1667. [PMID: 32893493 DOI: 10.1002/wnan.1667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 11/10/2022]
Abstract
Iron plays vital roles in many life activities and it is strictly controlled via elaborate metabolic system. Growing evidence has suggested that the dysfunctional iron homeostasis is implicated to many refractory diseases including cancers and neurodegenerations. Systemic and cellular iron are regulated through different pathways but are meanwhile interconnecting with each other via a few key regulators, whose abnormal expressions are often found to be the root causes of many iron disorders. Nano-sensing techniques have enabled the detection and monitoring of such central players, which provide rich information for the iron homeostasis profile through multiplexing and flexible designs. In addition to general sensing, nanoprobes are capable of target imaging and precise local access, which are particularly beneficial for revealing the conditions of intra-/extracellular environments. Nanomaterials have also been applied in some therapies, targeting the aberrant iron metabolism. Various iron uptake pathways have been utilized for target drug delivery and iron level manipulation, while abnormal iron content is notably useful in tumor killing. With brief introduction to the significance of iron homeostasis, this review includes recent works regarding the nanotechnology that has been applied in iron-related diagnostic and therapeutic applications. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Linyuan Wu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
70
|
Kim JD, Lim DM, Park KY, Park SE, Rhee EJ, Park CY, Lee WY, Oh KW. Serum Transferrin Predicts New-Onset Type 2 Diabetes in Koreans: A 4-Year Retrospective Longitudinal Study. Endocrinol Metab (Seoul) 2020; 35:610-617. [PMID: 32981303 PMCID: PMC7520588 DOI: 10.3803/enm.2020.721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/10/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND It is well known that high serum ferritin, a marker of iron storage, predicts incident type 2 diabetes. Limited information is available on the association between transferrin, another marker of iron metabolism, and type 2 diabetes. Thus, we investigated the association between transferrin and incident type 2 diabetes. METHODS Total 31,717 participants (mean age, 40.4±7.2 years) in a health screening program in 2005 were assessed via cross-sectional analysis. We included 30,699 subjects who underwent medical check-up in 2005 and 2009 and did not have type 2 diabetes at baseline in this retrospective longitudinal analysis. RESULTS The serum transferrin level was higher in the type 2 diabetes group than in the non-type 2 diabetes group (58.32±7.74 μmol/L vs. 56.17±7.96 μmol/L, P<0.001). Transferrin correlated with fasting serum glucose and glycosylated hemoglobin in the correlational analysis (r=0.062, P<0.001 and r=0.077, P<0.001, respectively) after full adjustment for covariates. Transferrin was more closely related to homeostasis model assessment of insulin resistance than to homeostasis model assessment of β cell function (r=0.042, P<0.001 and r=-0.019, P=0.004, respectively) after full adjustment. Transferrin predicted incident type 2 diabetes in non-type 2 diabetic subjects in a multivariate linear regression analysis; the odds ratio (95% confidence interval [CI]) of the 3rd tertile compared to that in the 1st tertile of transferrin for incident diabetes was 1.319 (95% CI, 1.082 to 1.607) after full adjustment (P=0.006). CONCLUSION Transferrin is positively associated with incident type 2 diabetes in Koreans.
Collapse
Affiliation(s)
- Jong Dai Kim
- Division of Endocrinology, Department of Internal Medicine, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | - Dong-Mee Lim
- Division of Endocrinology, Department of Internal Medicine, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | - Keun-Young Park
- Division of Endocrinology, Department of Internal Medicine, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Won Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
71
|
De A, Ghosh S, Chakrabarti M, Ghosh I, Banerjee R, Mukherjee A. Effect of low-dose exposure of aluminium oxide nanoparticles in Swiss albino mice: Histopathological changes and oxidative damage. Toxicol Ind Health 2020; 36:567-579. [PMID: 32757906 DOI: 10.1177/0748233720936828] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rapid growth in the use of aluminium oxide nanoparticles (Al2O3 NPs) in various fields such as medicine, pharmacy, cosmetic industries, and engineering creates concerns since the literature is replete with data regarding their toxicity in living organisms. The objective of the present study was to demonstrate the potential toxicological manifestations of repeated exposure to Al2O3 NP at low doses in vivo. In the present study, Al2O3 NP was orally administered at 15, 30 or 60 mg kg−1 body weight for 5 days to Swiss albino male mice. A battery of well-defined assays was undertaken to evaluate aluminium (Al) bioaccumulation, haematological and histological changes, oxidative damage and genotoxicity. Physico-chemical characterisation demonstrated increases in hydrodynamic diameter along the concentration gradient of Al2O3 NP dispersed in MilliQ water. Brain, liver, spleen, kidney and testes showed high Al retention levels. Histopathological lesions were prominent in the brain and liver. Al2O3 NP treatment increased levels of lipid peroxidation and decreased glutathione content in the test organs at all dose levels. The enzyme activities of catalase and superoxide dismutase were also significantly altered. DNA damage quantified using the comet assay was markedly increased in all the soft organs studied. Anatomical abnormalities, redox imbalance and DNA damage were positively correlated with Al retention in the respective organs. Size, zeta potential and colloidal state might have contributed to the bio-physico-chemical interactions of the NPs in vivo and were responsible for the non-linear dose response. The overall data indicate that Al2O3 NP exposure may result in adverse health consequences, inclusive of but not limited to disturbed redox homeostasis, hepatocellular toxicity, neurodegeneration and DNA damage.
Collapse
Affiliation(s)
- Arpita De
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Swarupa Ghosh
- Department of Microbiology, Adamas University, Kolkata, West Bengal, India
| | - Manoswini Chakrabarti
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Ilika Ghosh
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Ritesh Banerjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
72
|
Cross-Sectional Study on the Association between Dietary Non-Enzymatic Antioxidant Capacity and Serum Liver Enzymes: The Furukawa Nutrition and Health Study. Nutrients 2020; 12:nu12072051. [PMID: 32664291 PMCID: PMC7400899 DOI: 10.3390/nu12072051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022] Open
Abstract
We examined the association of dietary non-enzymatic antioxidant capacity (NEAC) in overall diet, and separately from foods and beverages, with serum liver enzymes in a Japanese working population. This cross-sectional study was conducted among 1791 employees aged 18–69 years, who underwent a comprehensive health checkup in 2012–2013. A brief validated self-administered diet-history questionnaire was used for dietary assessment, and dietary NEAC intake was determined from databases of NEAC values, obtained using ferric reducing-antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. The dietary NEAC intake was calculated by multiplying the estimated NEAC values by the amounts consumed and summing the resulting values. A multiple-regression analysis was performed to explore the association between dietary NEAC intake and the serum levels of liver enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyltransferase (GGT)), after adjustment for confounding factors. No significant associations were found between overall dietary NEAC intake and AST (FRAP, p for trend = 0.97; ORAC, p = 0.72), ALT (FRAP, p = 0.73; ORAC, p = 0.92), and GGT (FRAP, p = 0.96; ORAC, p = 0.19) levels. Food-derived, but not beverage-derived, NEAC intake was inversely associated with serum GGT levels (FRAP, p for trend = 0.001; ORAC, p = 0.02), particularly among older participants and those with high serum ferritin concentrations. The results imply that overall dietary NEAC intake is not associated with liver dysfunction, and that the NEAC values from foods may be inversely associated with serum GGT levels.
Collapse
|
73
|
Nguyen TA, Tran DB, Le HDC, Nguyen QL, Pham V. Thiosemicarbazone-Modified Cellulose: Synthesis, Characterization, and Adsorption Studies on Cu(II) Removal. ACS OMEGA 2020; 5:14481-14493. [PMID: 32596586 PMCID: PMC7315607 DOI: 10.1021/acsomega.0c01129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Thiosemicarbazide-modified cellulose (MTC) has been studied for removing heavy metals in the water source or for extracting some precious metals. The conditions of synthesis of MTC and Cu(II) removal were optimized by single-variable analysis through oxidation-reduction on titration and photometry. The results of Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller, and thermogravimetric analyses show that MTC exists in the thioketone form with a high surface area and heat durability. The Cu(II) removal was of pseudo-second order and the isotherm equation correlated best with the Langmuir equation. MTC has the maximum capacity of adsorption, which is q m = 106.3829 mg g-1. Furthermore, MTC can be regenerated without the loss of adsorption efficiency after ten cycles of adsorption and desorption.
Collapse
Affiliation(s)
- Tien A. Nguyen
- Department
for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty
of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Dang B. Tran
- Ho
Chi Minh City University of Education, Ho Chi Minh City 700000, Vietnam
| | - Hien Dat C. Le
- Ho
Chi Minh City University of Education, Ho Chi Minh City 700000, Vietnam
| | - Quang L. Nguyen
- Le
Hong Phong High School for the Gifted, Ho Chi Minh City 700000, Vietnam
| | - Vinh Pham
- Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
74
|
Singh J, Kaur S, Lee J, Mehta A, Kumar S, Kim KH, Basu S, Rawat M. Highly fluorescent carbon dots derived from Mangifera indica leaves for selective detection of metal ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137604. [PMID: 32143054 DOI: 10.1016/j.scitotenv.2020.137604] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
In this study, we report an inexpensive, green, and one-pot synthesis method for highly fluorescent carbon quantum dots (CQDs) using mango (Mangifera indica: M. indica) leaves to develop an efficient sensing platform for metal ions. The CQDs synthesized from M. indica leaves via pyrolysis treatment at 300 °C for 3 h were characterized by various spectroscopic and electron microscopy techniques for their structural, morphological, and optical properties. Accordingly, the synthesized CQDs showed an absorption peak at 213 nm to confirm the p-p* transition of the carbon core state, while the CQD particles were spherical with a size less than 10 nm. The prepared CQDs showed excellent fluorescent properties with blue emission spectra (around 525 nm) upon excitation at 435 nm. The synthesized CQDs had the prodigious sensing potential to detect Fe2+ ions in water with a limit of detection of 0.62 ppm. Additionally, their sensing capability was tested using a real sample (e.g., Livogen tablet). Moreover, the synthesized CQDs showed substantial stability over a long period (three months). Thus, this study provides an inexpensive and facile method for CQD-based sensing of Fe2+ ions with a photoluminescence quenching mechanism.
Collapse
Affiliation(s)
- Jagpreet Singh
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India
| | - Sukhmeen Kaur
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India
| | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Akansha Mehta
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| | - Sanjeev Kumar
- Deptartment of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Soumen Basu
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Republic of Korea.
| | - Mohit Rawat
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India.
| |
Collapse
|
75
|
Kumar M, Gupta N, Singh AP. Malonyl-based Chemosensors: Selective Detection of Fe 3+ Ion in Aqueous Medium. ANAL SCI 2020; 36:659-666. [PMID: 31761811 DOI: 10.2116/analsci.19p299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two novel malonyl-based chemosensors, N,N'-bis(ethyl-4'-benzoate)-1,3-propanediamide (1) and N,N'-bis(ethyl-3'-benzoate)-1,3-propanediamide (2), have been synthesized and screened towards various biologically important metal ions such as Na+, Mg2+, K+, Ca2+, Al3+, Cr3+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+, Ti3+, and Pb2+. The emission spectral studies of both 1 and 2 displayed 84 - 91% turn-off emission responses selectively with Fe3+ ion in aqueous buffer (MeCN/H2O, 1:4, v/v, pH = 7.4) solution. Chemosensors 1 and 2 exhibited remarkable sensing ability towards Fe3+ ion over other metal ions with limit of detection (LOD) of 4.28 and 4.33 μM, respectively. The binding stoichiometry of 1 and 2 with Fe3+ ion was studied by Benesi-Hildebrand fitting, Stern-Volmer plot and Job's plots, revealing that both chemosensors (1 - 2) bind with Fe3+ metal ion in 1:1 stoichiometric ratio with the apparent association constant (Ka) 8.90 × 103 and 11.16 × 103 M-1, respectively. Furthermore, the interactions of chemosensors (1 - 2) with metal ion were also investigated by using density functional theory (DFT) at B3LYP hybrid functional using 6-31G and LanL2DZ basis sets.
Collapse
Affiliation(s)
- Monu Kumar
- Department of Applied Sciences, National Institute of Technology Delhi
| | - Neha Gupta
- Department of Applied Sciences, National Institute of Technology Delhi
| | - Amit Pratap Singh
- Department of Applied Sciences, National Institute of Technology Delhi
| |
Collapse
|
76
|
Rayis DA, Musa IR, Al-Shafei AI, Moheldein AH, El-Gendy OA, Adam I. High haemoglobin levels in early pregnancy and gestational diabetes mellitus among Sudanese women. J OBSTET GYNAECOL 2020; 41:385-389. [PMID: 32496157 DOI: 10.1080/01443615.2020.1741522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A longitudinal study was carried out to investigate the prevalence and risk factors (including haemoglobin levels) for gestational diabetes mellitus (GDM) in Khartoum, Sudan. The study was carried out at Saad Abuelela Hospital (Khartoum, Sudan) during February to November 2017. Pregnant women in early pregnancy (gestational age <14 weeks) were enrolled in the study. The detailed medical and obstetrics history was recorded for each participant using a questionnaire. The women were then followed up, where a 75-g oral glucose tolerance test was performed at 24 - 28 weeks of gestation. Of 290 women, 259 (89.3%) completed the follow-up. The mean (standard deviation [SD]) of the age, gravidity and gestational age at enrolment were 28.02 (5.7) years, 2.37 (2.42) and 10.86 (2.63) weeks, respectively. Forty-eight women (18.5%) had GDM. Binary regression showed that while age, parity, residence, education and body mass index (BMI) were not associated with GDM, a high haemoglobin level was the only factor associated with GDM (OR = 1.52, 95% confidence interval [CI] = 1.07 - 2.16, p = .019). Women with haemoglobin > 10.8 g/dl were at a higher risk of GDM (OR = 2.52, 95% CI = 1.02 - 6.27, p = .044). There is a high prevalence of GDM, especially among women with high haemoglobin levels.Impact statementWhat is already known on this subject? Gestational diabetes mellitus (GDM) is one of the most common complications during pregnancy, contributing significantly to maternal, perinatal morbidity and mortality and can lead to adverse consequences for the health of both mother and offspring later in life. The rate of GDM varies with the various settings and populations, and a prevalence of 1-14% has been reported depending on the population studied. High haemoglobin levels were recently reported to be associated with GDM.What do the results of this study add? There is a high prevalence of GDM in Khartoum, Sudan, especially among women with high haemoglobin levels in early pregnancy.What are the implications of these findings for clinical practice and/or further research? Haemoglobin levels could be used as reliable markers to detect GDM. These markers could be used in the prevention of GDM.
Collapse
Affiliation(s)
- Duria A Rayis
- Department of Obstetrics and Gyneology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Imad R Musa
- King Abdu Aziz Armed Forces, Hospital at Air Base, Dhahran, Kingdom of Saudi Arabia
| | - Ahmad I Al-Shafei
- Unaizah College of Medicine, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | | | - Ola A El-Gendy
- Unaizah College of Medicine, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Ishag Adam
- Department of Obstetrics and Gynecology, Unaizah College of Medicine, Qassim University, Unaizah, Kingdom of Saudi Arabia
| |
Collapse
|
77
|
Çam H, Yılmaz N. Serum hepcidin levels are related to serum markers for iron metabolism and fibrosis stage in patients with chronic hepatitis B: A cross-sectional study. Arab J Gastroenterol 2020; 21:85-90. [PMID: 32423859 DOI: 10.1016/j.ajg.2020.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/16/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND STUDY AIMS The clinical significance of serum parameters of iron metabolism and hepcidin in liver disease remains unknown. Therefore, this study aimed to evaluate the association of serum hepcidin levels with fibrosis stage and serum iron parameters in patients with chronic hepatitis B (CHB). PATIENTS AND METHODS This cross-sectional study included 126 treatment-naïve patients with CHB (median age, 39.0 years; 64.3% males) who were positive for hepatitis B surface antigen and 23 healthy controls (median age, 33.0 years; 52.2% males). Data on patient demographics, serum hepcidin levels, liver function tests and serum iron parameters and liver biopsy findings including fibrosis grade, histological activity index (HAI) and liver iron level were recorded. RESULTS The median (minimum-maximum) serum hepcidin levels were significantly lower in the CHB group than in the control group [71.2 (13.3-672.7) vs. 657.5 (201.7-2714.2) pg/mL, p < 0.001]. Higher fibrosis stage was associated with higher transferrin saturation (p = 0.029), serum ferritin level (p < 0.001) and viral load (p < 0.001). Fibrosis stage and HAI were positively correlated with ferritin (r = 0.407, p < 0.001 and r = 0.415, p < 0.001, respectively) and transferrin saturation (r = 0.219, p = 0.026 and r = 0.290, p = 0.003, respectively) levels, whereas hepcidin level was negatively correlated with fibrosis stage (r = -0.175, p = 0.051), viral load (r = -0.209, p = 0.020) and ferritin level (r = -0.244, p = 0.006) level. There were no significant differences in serum iron level, total iron binding capacity and liver iron level among patients with different stages of fibrosis. CONCLUSION Reduced hepcidin levels and elevated transferrin saturation and ferritin levels are linked to fibrosis severity and HAI in patients with CHB.
Collapse
Affiliation(s)
- Hakan Çam
- Gaziantep University Medical Faculty 27310 Gastroenterology, Gaziantep, Turkey
| | - Nimet Yılmaz
- Gaziantep University Medical Faculty 27310 Gastroenterology, Gaziantep, Turkey
| |
Collapse
|
78
|
He Y, Shi L, Wang J, Yan J, Chen Y, Wang X, Song Y, Han G. UiO-66-NDC (1,4-naphthalenedicarboxilic acid) as a novel fluorescent probe for the selective detection of Fe3+. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
79
|
Khan L, Sato K, Okuyama S, Kobayashi T, Ohashi K, Hirasaka K, Nikawa T, Takada K, Higashitani A, Abiko K. Ultra-high-purity iron is a novel and very compatible biomaterial. J Mech Behav Biomed Mater 2020; 106:103744. [PMID: 32250954 DOI: 10.1016/j.jmbbm.2020.103744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/10/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Metals and alloys are used widely in bone prosthetic materials, stents and dental tissue reconstructions. The most common materials are stainless steels and cobalt-chromium-nickel and titanium alloys. These alloys can be easily deformed but are hard to break. However, their affinity for cells and tissues is very low. In addition, they can sometimes provoke unexpected metal allergies. Iron is an abundant trace element essential for humans. However, excess amounts in particular of Fe2+ ions are toxic. We previously succeeded in obtaining 99.9996% ultra-high-purity iron (ABIKO iron). The chemical properties of ABIKO iron are completely different from that of conventional pure iron. For example, the reaction rate in hydrochloric acid is very slow and there is barely any corrosion. Here, we found that, in the absence of any type of coating, mammalian cells could easily attach to, and normally proliferate and differentiate on, ABIKO iron. On the other hand, cell densities and proliferation rate of the surfaces of plates made from Co-Cr-Mo or Ti-6Al-4V were significantly reduced. In addition, several stress and iron response genes, HSP70, SOD1, ATM and IRP2 did not change in the cells on ABIKO iron, while these genes were induced with exogenous application of FeSO4. Cells also secreted and fastened some organics on ABIKO iron. In vitro collagen binding assay showed that ABIKO iron binds higher amount of collagens. These findings highlight ABIKO iron as a novel biocompatible prosthetic material.
Collapse
Affiliation(s)
- Luqman Khan
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | | | | | - Takeshi Kobayashi
- Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Kazumasa Ohashi
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Katsuya Hirasaka
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Takeshi Nikawa
- Institute of Medical Nutrition, Tokushima University Medical School, Tokushima, 770-8503, Japan
| | - Kunio Takada
- Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| | - Kenji Abiko
- Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
80
|
Costa SA, Moreira ARO, Costa CPS, Carvalho Souza SDF. Iron overload and periodontal status in patients with sickle cell anaemia: A case series. J Clin Periodontol 2020; 47:668-675. [PMID: 32189376 DOI: 10.1111/jcpe.13284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/14/2020] [Accepted: 03/15/2020] [Indexed: 12/13/2022]
Abstract
AIM To investigate the association among iron overload, periodontal status, and periodontitis progression rate in sickle cell anaemia (SCA). MATERIALS AND METHODS This case series evaluated 123 patients. Clinical attachment level (CAL) and probing depth (PD) were evaluated at six sites per tooth. Alveolar bone loss was estimated using periapical radiography. Study outcomes were periodontal status (measured as number of sites with CAL of ≥3 mm, CAL of ≥5 mm, PD of ≥4 mm, and PD of ≥6 mm) and periodontitis progression rate (determined as ratio of alveolar bone loss to age). Serum transferrin saturation and ferritin levels were obtained from medical records. Poisson regression was performed to estimate associations. Covariables included in the adjusted models (comorbidities, skin colour, socioeconomic class, and vaso-occlusive crisis) were defined by DAGs. RESULTS Serum transferrin saturation level revealed a significant positive association with the number of sites with CAL of ≥3 mm, CAL of ≥5 mm, PD of ≥4 mm, and PD of ≥6 mm. Patients with serum transferrin saturation level of >45% were 1.93 times more likely to have rapid periodontitis progression. CONCLUSION High serum transferrin saturation level is associated with a greater extent of periodontitis and rapid periodontitis progression in SCA.
Collapse
|
81
|
Cotas J, Leandro A, Pacheco D, Gonçalves AMM, Pereira L. A Comprehensive Review of the Nutraceutical and Therapeutic Applications of Red Seaweeds (Rhodophyta). Life (Basel) 2020; 10:E19. [PMID: 32110890 PMCID: PMC7151636 DOI: 10.3390/life10030019] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The red seaweed group (Rhodophyta) is one of the phyla of macroalgae, among the groups Phaeophyceae and Chlorophyta, brown and green seaweeds, respectively. Nowadays, all groups of macroalgae are getting the attention of the scientific community due to the bioactive substances they produce. Several macroalgae products have exceptional properties with nutraceutical, pharmacological, and biomedical interest. The main compounds studied are the fatty acids, pigments, phenols, and polysaccharides. Polysaccharides are the most exploited molecules, which are already widely used in various industries and are, presently, entering into more advanced applications from the therapeutic point of view. The focuses of this review are the red seaweeds' compounds, its proprieties, and its uses. Moreover, this work discusses new possible applications of the compounds of the red seaweeds.
Collapse
Affiliation(s)
- João Cotas
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Adriana Leandro
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Diana Pacheco
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| |
Collapse
|
82
|
Barrera C, Valenzuela R, Rincón MA, Espinosa A, López-Arana S, González-Mañan D, Romero N, Vargas R, Videla LA. Iron-induced derangement in hepatic Δ-5 and Δ-6 desaturation capacity and fatty acid profile leading to steatosis: Impact on extrahepatic tissues and prevention by antioxidant-rich extra virgin olive oil. Prostaglandins Leukot Essent Fatty Acids 2020; 153:102058. [PMID: 32007744 DOI: 10.1016/j.plefa.2020.102058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 02/08/2023]
Abstract
The administration of iron induces liver oxidative stress and depletion of long-chain polyunsaturated fatty acids (LCPUFAs), n-6/n-3 LCPUFA ratio enhancement and fat accumulation, which may be prevented by antioxidant-rich extra virgin olive oil (AR-EVOO) supplementation. Male Wistar rats were subjected to a control diet (50 mg iron/kg diet) or iron-rich diet (IRD; 200 mg/kg diet) with alternate AR-EVOO for 21 days. Liver fatty acid (FA) analysis was performed by gas-liquid chromatography (GLC) after lipid extraction and fractionation, besides Δ-5 desaturase (Δ-5 D) and Δ6-D mRNA expression (qPCR) and activity (GLC) measurements. The IRD significantly (p < 0.05) increased hepatic total fat, triacylglycerols, free FA contents and serum transaminases levels, with diminution in those of n-6 and n-3 LCPUFAs, higher n-6/n-3 ratios, lower unsaturation index and Δ5-D and Δ6-D activities, whereas the mRNA expression of both desaturases was enhanced over control values, changes that were prevented by concomitant AR-EVOO supplementation. N-6 and n-3 LCPUFAs were also decreased by IRD in extrahepatic tissues and normalized by AR-EVOO. In conclusion, AR-EVOO supplementation prevents IRD-induced changes in parameters related to liver FA metabolism and steatosis, an effect that may have a significant impact in the treatment of iron-related pathologies or metabolic disorders such as non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Cynthia Barrera
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, Santiago 70000, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, Santiago 70000, Chile.
| | - Miguel A Rincón
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sandra López-Arana
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, Santiago 70000, Chile
| | | | - Nalda Romero
- Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Romina Vargas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
83
|
Yao X, Yao X, Xu K, Wu K, Chen X, Liu N, Nishinari K, Phillips GO, Jiang F. Trivalent iron induced gelation in Artemisia sphaerocephala Krasch. polysaccharide. Int J Biol Macromol 2020; 144:690-697. [DOI: 10.1016/j.ijbiomac.2019.12.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/02/2019] [Accepted: 12/14/2019] [Indexed: 11/24/2022]
|
84
|
Gwenzi W. Occurrence, behaviour, and human exposure pathways and health risks of toxic geogenic contaminants in serpentinitic ultramafic geological environments (SUGEs): A medical geology perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134622. [PMID: 31693951 DOI: 10.1016/j.scitotenv.2019.134622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Serpentinitic ultramafic geological environments (SUGEs) contain toxic geogenic contaminants (TGCs). Yet comprehensive reviews on the medical geology of SUGEs are still lacking. The current paper posits that TGCs occur widely in SUGEs, and pose human health risks. The objectives of the review are to: (1) highlight the nature, occurrence and behaviour of TGCs associated with SUGEs; (2) discuss the human intake pathways and health risks of TGCs; (4) identify the key risk factors predisposing human health to TGCs particularly in Africa; and (5) highlight key knowledge gaps and future research directions. TGCs of human health concern in SUGEs include chrysotile asbestos, toxic metals (Fe, Cr, Ni, Mn, Zn, Co), and rare earth elements. Human intake of TGCs occur via inhalation, and ingestion of contaminated drinking water, wild foods, medicinal plants, animal foods, and geophagic earths. Occupational exposure may occur in the mining, milling, sculpturing, engraving, and carving industries. African populations are particularly at high risk due to: (1) widespread consumption of wild foods, medicinal plants, untreated drinking water, and geophagic earths; (2) weak and poorly enforced environmental, occupational, and public health regulations; and (3) lack of human health surveillance systems. Human health risks of chrysotile include asbestosis, cancers, and mesothelioma. Toxic metals are redox active, thus generate reactive oxygen species causing oxidative stress. Dietary intake of iron and geophagy may increase the iron overload among native Africans who are genetically predisposed to such health risks. Synergistic interactions among TGCs particularly chrysotile and toxic metals may have adverse human health effects. The occurrence of SUGEs, coupled with the several risk factors in Africa, provides a unique and ideal setting for investigating the relationships between TGCs and human health risks. A conceptual framework for human health risk assessment and mitigation, and future research direction are highlighted.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe.
| |
Collapse
|
85
|
Grochowski C, Szukała M, Litak J, Budny A, Proch J, Majerek D, Blicharska E, Niedzielski P. Correlations Between Trace Elements in Selected Locations of the Human Brain in Individuals with Alcohol Use Disorder. Molecules 2020; 25:molecules25020359. [PMID: 31952277 PMCID: PMC7024425 DOI: 10.3390/molecules25020359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
Trace element distribution varies in different locations of the human brain. Several elements were found to cause various negative effects, such as neurodegeneration. In this paper, we analyzed the interactions between seven trace elements: zinc (Zn), selenium (Se), manganese (Mg), iron (Fe), copper (Cu), chromium (Cr) and cobalt (Co) in individuals with alcohol use disorder (AUD) and individuals without (control group). Brain tissue samples from 31 individuals with AUD and 31 control subjects were harvested. Inductively coupled plasma optical emission spectrometry was used for trace element determination. In the control group, there were several positive correlations between Cr, Cu, Fe and Mn. In the AUD group, positive correlations between Co and Cr, Cu, Fe, Mn, Zn were found. The majority of correlations between Zn and other elements are positive. In the studied group, Mn had strong positive correlations with Co, Cr, Cu and Fe. The strongest positive correlation found between average element concentration was between Cu and Cr. The knowledge of kinetics and metabolism of trace elements as well as the impact of alcohol on these processes is essential for understanding the pathological processes and functioning of human brain tissue.
Collapse
Affiliation(s)
- Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (A.B.)
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
- Correspondence:
| | - Magdalena Szukała
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (A.B.)
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Agnieszka Budny
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (A.B.)
| | - Jędrzej Proch
- Faculty of Chemistry, Department of Analytical Chemistry, Adam Mickiewicz University in Poznań, 89B Umultowska Street, 61-614 Poznan, Poland; (J.P.); (P.N.)
| | - Dariusz Majerek
- Department of Applied Mathematics, University of Technology, Nadbystrzycka 38D, 20-618 Lublin, Poland;
| | - Eliza Blicharska
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Przemysław Niedzielski
- Faculty of Chemistry, Department of Analytical Chemistry, Adam Mickiewicz University in Poznań, 89B Umultowska Street, 61-614 Poznan, Poland; (J.P.); (P.N.)
| |
Collapse
|
86
|
Kielbik P, Kaszewski J, Dominiak B, Damentko M, Serafińska I, Rosowska J, Gralak MA, Krajewski M, Witkowski BS, Gajewski Z, Godlewski M, Godlewski MM. Preliminary Studies on Biodegradable Zinc Oxide Nanoparticles Doped with Fe as a Potential Form of Iron Delivery to the Living Organism. NANOSCALE RESEARCH LETTERS 2019; 14:373. [PMID: 31823131 PMCID: PMC6904721 DOI: 10.1186/s11671-019-3217-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/20/2019] [Indexed: 05/06/2023]
Abstract
Iron is the crucial element for living organisms and its deficiency is described as the most common nutritional disorder all over the world. Nowadays, more effective and safe iron supplementation strategies for both humans and animals become one of the most important challenges in the therapy of nutritional deficiencies. Our previous in vivo studies confirmed safety and biodegradability of in-house manufactured zinc oxide-based nanoparticles and their rapid distribution to majority of organs and tissues in the body. In vitro examinations performed on Caco-2 cell line, a model of epithelial cells of the gastrointestinal tract, revealed a low toxicity of studied nanomaterials. In the current study, we investigated biodegradable zinc oxide nanoparticles doped with Fe(III) as a perspective supplementation strategy for iron deficiency. Biodegradable ZnO:Fe nanoparticles were intra-gastrically administered to adult mice and following 24 h, animals were sacrificed with collection of internal organs for further analyses. The iron concentration measured with atomic absorption spectrometry and histological staining (Perl's method) showed a rapid distribution of iron-doped nanoparticles to tissues specifically related with iron homeostasis. Accumulation of iron was also visible within hepatocytes and around blood vessels within the spleen, which might indicate the transfer of Fe-doped nanoparticles from the bloodstream into the tissue. Reassuming, preliminary results obtained in the current study suggest that biodegradable ZnO nanoparticles doped with Fe might be a good carriers of exogenous iron in the living body. Therefore, subsequent investigations focus on determination an exact mechanisms related with an iron deposition in the tissue and influence of nanoparticle carriers on iron metabolism are required.
Collapse
Affiliation(s)
- Paula Kielbik
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| | - Jarosław Kaszewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Bartłomiej Dominiak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| | - Magdalena Damentko
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| | - Izabela Serafińska
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Julita Rosowska
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Mikołaj A. Gralak
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| | - Marcin Krajewski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | | | - Zdzislaw Gajewski
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| | - Marek Godlewski
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Michal M. Godlewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| |
Collapse
|
87
|
Deferoxamine regulates neuroinflammation and oxidative stress in rats with diabetes-induced cognitive dysfunction. Inflammopharmacology 2019; 28:575-583. [DOI: 10.1007/s10787-019-00665-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
|
88
|
Asadi N, Vafaei H, Kasraeian M, Yoosefi S, Faraji A, Abbasi L. Effects of prophylactic iron supplementation on outcome of nonanemic pregnant women: A non-randomized clinical trial. J Chin Med Assoc 2019; 82:840-844. [PMID: 31517773 DOI: 10.1097/jcma.0000000000000184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aim of the current study was to investigate the effects of prophylactic iron supplementation on the pregnancy outcome of nonanemic pregnant women in a sample of Iranian population. METHODS This non-randomized clinical trial was conducted during a 2-year period in obstetrics clinics of Shiraz, southern Iran. We included a sample of singleton pregnancies registered in our clinics. Those with comorbidities were excluded. Serum ferritin was measured at baseline and participants were classified accordingly: those with normal serum ferritin levels (≥30 µg/dL) who received standard prophylactic iron supplementation during the pregnancy (Group 1); those who had minor thalassemia and elevated serum ferritin levels (≥30 µg/dL) who did not receive prophylactic iron supplementation or those with normal ferritin levels (≥30 µg/dL) who refused to receive iron supplementation due to gastrointestinal upset (Group 2); and those with iron deficiency anemia with low serum ferritin levels (<30 µg/dL) who received standard iron supplementation during pregnancy (Group 3). All the participants were followed to the delivery and maternal and neonatal outcomes were recorded and compared between three study groups. RESULTS Overall we included 30 pregnant women in each group with mean age of the participants was 28.66 ± 6.02 years. There was no significant difference between three study groups regarding gestational age at delivery (p = 0.250), birthweight (p = 0.893), Apgar at 1 (p = 0.532) and 5 (p = 0.590) minutes, and route of delivery (p = 0.590). The overall rate of maternal complication of the pregnancy was comparable between the three study groups (p = 0.188). However, those in group 1, had significantly higher rate of gestational diabetes mellitus (GDM) when compared to other two groups (p = 0.038). CONCLUSION Prophylactic iron supplementation in pregnant women with normal ferritin levels is associated with increased risk of GDM. Other pregnancy and neonatal outcomes are not affected by the prophylactic iron supplementation.
Collapse
Affiliation(s)
- Nasrin Asadi
- Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Homeira Vafaei
- Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kasraeian
- Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigeh Yoosefi
- Perinatology Division, Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Faraji
- Perinatology Division, Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lilia Abbasi
- Department of Obstetrics and Gynecology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
89
|
Suppression of the Peripheral Immune System Limits the Central Immune Response Following Cuprizone-Feeding: Relevance to Modelling Multiple Sclerosis. Cells 2019; 8:cells8111314. [PMID: 31653054 PMCID: PMC6912385 DOI: 10.3390/cells8111314] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cuprizone (CPZ) preferentially affects oligodendrocytes (OLG), resulting in demyelination. To investigate whether central oligodendrocytosis and gliosis triggered an adaptive immune response, the impact of combining a standard (0.2%) or low (0.1%) dose of ingested CPZ with disruption of the blood brain barrier (BBB), using pertussis toxin (PT), was assessed in mice. 0.2% CPZ(±PT) for 5 weeks produced oligodendrocytosis, demyelination and gliosis plus marked splenic atrophy (37%) and reduced levels of CD4 (44%) and CD8 (61%). Conversely, 0.1% CPZ(±PT) produced a similar oligodendrocytosis, demyelination and gliosis but a smaller reduction in splenic CD4 (11%) and CD8 (14%) levels and no splenic atrophy. Long-term feeding of 0.1% CPZ(±PT) for 12 weeks produced similar reductions in CD4 (27%) and CD8 (43%), as well as splenic atrophy (33%), as seen with 0.2% CPZ(±PT) for 5 weeks. Collectively, these results suggest that 0.1% CPZ for 5 weeks may be a more promising model to study the ‘inside-out’ theory of Multiple Sclerosis (MS). However, neither CD4 nor CD8 were detected in the brain in CPZ±PT groups, indicating that CPZ-mediated suppression of peripheral immune organs is a major impediment to studying the ‘inside-out’ role of the adaptive immune system in this model over long time periods. Notably, CPZ(±PT)-feeding induced changes in the brain proteome related to the suppression of immune function, cellular metabolism, synaptic function and cellular structure/organization, indicating that demyelinating conditions, such as MS, can be initiated in the absence of adaptive immune system involvement.
Collapse
|
90
|
Speer H, D'Cunha NM, Botek M, McKune AJ, Sergi D, Georgousopoulou E, Mellor DD, Naumovski N. The Effects of Dietary Polyphenols on Circulating Cardiovascular Disease Biomarkers and Iron Status: A Systematic Review. Nutr Metab Insights 2019; 12:1178638819882739. [PMID: 31673228 PMCID: PMC6804354 DOI: 10.1177/1178638819882739] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/25/2019] [Indexed: 12/28/2022] Open
Abstract
The prevalence of cardiovascular disease (CVD) is rising worldwide, remaining the major cause of death in developed countries. Polyphenols have been shown to have cardioprotective properties; however, their impact on iron bioavailability and potential impact on other aspects of health is unclear. A systematic review was undertaken to evaluate the current status of the relationship between habitual polyphenol consumption, iron status, and circulating biomarkers of CVD. Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2009 guidelines, searches were performed across 5 electronic databases (PubMed, Cochrane Library, Scopus, Web of Science, and CINAHL) to identify randomized controlled trials which investigated the effects of polyphenol consumption on inflammatory markers, serum lipid profile, and iron absorption and bioavailability. In total, 1174 records were identified, with only 7 studies meeting the inclusion criteria. The selected studies involved 133 participants and used a variety of foods and supplements, including olive oil and cherries, rich in polyphenols including hydroxytyrosol, quercetin, and resveratrol, as well as catechin enriched drinks. The duration of the studies ranged from between 56 and 145 days, with total polyphenolic content of the food items and supplements ranging from 45 to 1015 mg (per 100 g). Polyphenols did not appear to interfere with iron status, and most studies reported improvements in inflammatory markers and lipid profile. While these results are promising, the limited number of studies and considerable heterogeneity across the interventions support the need for more extensive trials assessing the relationship between polyphenol intake, iron bioavailability, and CVD risk.
Collapse
Affiliation(s)
- Hollie Speer
- Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia.,Faculty of Health, University of Canberra, Bruce, ACT, Australia.,Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra, Bruce, ACT, Australia
| | - Nathan M D'Cunha
- Faculty of Health, University of Canberra, Bruce, ACT, Australia.,Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra, Bruce, ACT, Australia
| | - Michal Botek
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra, Bruce, ACT, Australia.,Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic
| | - Andrew J McKune
- Faculty of Health, University of Canberra, Bruce, ACT, Australia.,Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra, Bruce, ACT, Australia.,Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Domenico Sergi
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra, Bruce, ACT, Australia.,Nutrition & Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Ekavi Georgousopoulou
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra, Bruce, ACT, Australia.,Australian National University Medical School, Australian National University, Canberra, ACT, Australia.,School of Medicine, The University of Notre Dame, Sydney, NSW, Australia
| | - Duane D Mellor
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra, Bruce, ACT, Australia.,Aston Medical School, Aston University, Birmingham, UK
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, Bruce, ACT, Australia.,Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
91
|
Duvigneau JC, Esterbauer H, Kozlov AV. Role of Heme Oxygenase as a Modulator of Heme-Mediated Pathways. Antioxidants (Basel) 2019; 8:antiox8100475. [PMID: 31614577 PMCID: PMC6827082 DOI: 10.3390/antiox8100475] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023] Open
Abstract
The heme oxygenase (HO) system is essential for heme and iron homeostasis and necessary for adaptation to cell stress. HO degrades heme to biliverdin (BV), carbon monoxide (CO) and ferrous iron. Although mostly beneficial, the HO reaction can also produce deleterious effects, predominantly attributed to excessive product formation. Underrated so far is, however, that HO may exert effects additionally via modulation of the cellular heme levels. Heme, besides being an often-quoted generator of oxidative stress, plays also an important role as a signaling molecule. Heme controls the anti-oxidative defense, circadian rhythms, activity of ion channels, glucose utilization, erythropoiesis, and macrophage function. This broad spectrum of effects depends on its interaction with proteins ranging from transcription factors to enzymes. In degrading heme, HO has the potential to exert effects also via modulation of heme-mediated pathways. In this review, we will discuss the multitude of pathways regulated by heme to enlarge the view on HO and its role in cell physiology. We will further highlight the contribution of HO to pathophysiology, which results from a dysregulated balance between heme and the degradation products formed by HO.
Collapse
Affiliation(s)
- J Catharina Duvigneau
- Institute for Medical Biochemistry, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, 1210 Vienna, Austria.
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria.
- Laboratory of Navigational Redox Lipidomics, Department of Human Pathology, IM Sechenov Moscow State Medical University, 119992 Moscow, Russia.
| |
Collapse
|
92
|
Orlando G, Ferrante C, Zengin G, Sinan KI, Bene K, Diuzheva A, Jekő J, Cziáky Z, Simone SD, Recinella L, Chiavaroli A, Leone S, Brunetti L, Picot-Allain CMN, Mahomoodally MF, Menghini L. Qualitative Chemical Characterization and Multidirectional Biological Investigation of Leaves and Bark Extracts of Anogeissus leiocarpus (DC.) Guill. & Perr. (Combretaceae). Antioxidants (Basel) 2019; 8:antiox8090343. [PMID: 31480498 PMCID: PMC6770311 DOI: 10.3390/antiox8090343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Anogeissus leiocarpus (DC.) Guill. & Perr. (Combretaceae) has a long history of use by folk populations for the management of multiple human ailments. Based on the published literature, there has been no attempt to conduct a comparative assessment of the biological activity and the phytochemical profiles of the leaves and stem bark of A. leiocarpus extracted using methanol, ethyl acetate, and water. By high-performance liquid chromatography with electrospray ionization mass spectrometric detection (HPLC-ESI-MSn) analysis, quinic, shikimic, gallic, and protocatechuic acids were tentatively identified from all the extracts, while chlorogenic, caffeic, ferulic, and dodecanedioic acids were only characterised from the leaves extracts. Additionally, a pharmacological study was carried out to evaluate potential protective effects that are induced by the extracts in rat colon and colon cancer HCT116 cell line. In general, the methanol and water extracts of A. leiocarpus leaves and stem bark showed potent radical scavenging and reducing properties. It was noted that the stem bark extracts were more potent antioxidants as compared to the leaves extracts. The methanol extract of A. leiocarpus leaves showed the highest acetyl (4.68 mg galantamine equivalent/g) and butyryl (4.0 mg galantamine equivalent/g) cholinesterase inhibition. Among ethyl acetate extracts, the pharmacological investigation suggested stem bark ethyl acetate extracts to be the most promising. This extract revealed ability to protect rat colon from lipopolysaccharide-induced oxidative stress, without exerting promoting effects on HCT116 cell line viability and migration. As a conclusion, A. leiocarpus represents a potential source of bioactive compounds in the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya 42130, Turkey.
| | | | - Kouadio Bene
- Laboratoire de Botanique et Phytothérapie, Unité de Formation et de Recherche Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Ivory Coast
| | - Alina Diuzheva
- Department of Forest Protection and Entomology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague 16500, Czech Republic
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza 4400, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza 4400, Hungary
| | - Simonetta Di Simone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | | | | | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
93
|
Gambaro RC, Seoane A, Padula G. Oxidative Stress and Genomic Damage Induced In Vitro in Human Peripheral Blood by Two Preventive Treatments of Iron Deficiency Anemia. Biol Trace Elem Res 2019; 190:318-326. [PMID: 30443707 DOI: 10.1007/s12011-018-1576-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/08/2018] [Indexed: 11/28/2022]
Abstract
Iron deficiency is the most prevalent nutritional deficiency and the main cause of anemia worldwide. Since children aged 6-24 months are among the most vulnerable groups at risk, daily supplementation with ferrous sulfate is recommended by the Argentine Society of Pediatrics as preventive treatment of anemia. However, a single weekly dose would have fewer adverse side effects and has been therefore proposed as an alternative treatment. Ferrous sulfate is known by its pro-oxidative properties, which may lead to increased oxidative stress as well as lipid, protein, and DNA damage. We analyzed the effect of daily and weekly preventive treatment of iron deficiency anemia (IDA) on cell viability, oxidative stress, chromosome, and cytomolecular damage in peripheral blood cultured in vitro. The study protocol included the following: untreated negative control; bleomycin, hydrogen peroxide, or ethanol-treated positive control; daily 0.14 mg ferrous sulfate-supplemented group; and weekly 0.55 mg ferrous sulfate-supplemented group. We assessed cell viability (methyl-thiazolyl-tetrazolium and neutral red assays), lipid peroxidation (thiobarbituric acid reactive substances assay), antioxidant response (superoxide dismutase and catalase enzyme analysis), chromosome damage (cytokinesis-blocked micronucleus cytome assay), and cytomolecular damage (comet assay). Lipid peroxidation, antioxidant response, and chromosome and cytomolecular damage decreased after weekly ferrous sulfate supplementation (p < 0.05), suggesting less oxygen free radical production and decreased oxidative stress and genomic damage. Such a decrease in oxidative stress and genomic damage in vitro positions weekly supplementation as a better alternative for IDA treatment. Further studies in vivo would be necessary to corroborate whether weekly supplementation could improve IDA preventive treatment compliance in children.
Collapse
Affiliation(s)
- Rocío Celeste Gambaro
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calle 60 y 118 s/n, 1900, La Plata, Argentina.
| | - Analía Seoane
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calle 60 y 118 s/n, 1900, La Plata, Argentina
| | - Gisel Padula
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calle 60 y 118 s/n, 1900, La Plata, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
94
|
Hearing loss in humans drinking tube well water with high levels of iron in arsenic-polluted area. Sci Rep 2019; 9:9028. [PMID: 31227759 PMCID: PMC6588562 DOI: 10.1038/s41598-019-45524-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/10/2019] [Indexed: 11/25/2022] Open
Abstract
Well water for drinking with increased levels of iron in arsenic-polluted areas has been reported worldwide. Oral exposure to arsenic has been shown to be associated with hearing loss, while there is no evidence for an association between excessive exposure to iron and hearing loss in humans. In this study, we determined iron and arsenic levels in biological samples and hearing levels by pure tone audiometry (PTA) in subjects in a control area and an arsenic-polluted area in Bangladesh. The iron level in well water in the arsenic-polluted area was significantly higher than that in piped supply water in the control area. Subjects in the polluted area (n = 109), who had higher iron and arsenic levels in hair and toenails than those in subjects in the control area (n = 36), had an increased risk of hearing loss at 8 kHz and 12 kHz after adjustments for age, gender, smoking and BMI. Significant associations of the exposure group with hearing loss at 8 kHz and 12 kHz remained after further adjustment for arsenic levels in toenails and hair. Thus, this pilot study showed that excessive exposure to iron via drinking water is a potential risk for hearing loss in humans.
Collapse
|
95
|
Deng M, Liao C, Wang X, Chen S, Qi F, Zhao X, Yu P. A paper-based colorimetric microfluidic sensor fabricated by a novel spray painting prototyping process for iron analysis. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A novel, simple, and low-cost spray painting technique has been developed for the fabrication of microfluidic paper-based devices. The devices that we developed utilize aerosol spray paint to build hydrophobic barriers and employ a hole puncher to obtain paper-based patterned layers and paper dots without using any specialized instruments (e.g., without a laser cutter). The entire manufacturing process is extremely simple, inexpensive, and rapid, which means that it can be applied broadly. Furthermore, the application of the device to iron detection was demonstrated. A linear relationship between the colour value and the iron concentration was observed from 0 to 0.02 g/L. The developed microfluidic paper-based device for iron detection exhibited a low detection limit (0.00090 g/L), good selectivity, and acceptable recovery.
Collapse
Affiliation(s)
- Muhan Deng
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Changhan Liao
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Shangda Chen
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Fugang Qi
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Xueliang Zhao
- Key Laboratory of Geological Environment Monitoring Technology, Center for Hydrogeology and Environmental Geology Survey, Baoding 071051, PR China
| | - Peng Yu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
96
|
Zolfaghari A, Reza Gheisari H, Omidi A, Nazifi S. Zinc and Manganese of serum were negatively, but Copper positively influenced by Iron elevation in diet of male Wistar rats. INT J VITAM NUTR RES 2019; 88:50-57. [PMID: 31038029 DOI: 10.1024/0300-9831/a000456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of the study was to determine the effect of dietary iron on distribution of zinc, manganese, copper, calcium and magnesium in the body of Wistar rats. Commercial Sangak, an Iranian traditional flat bread was used in this study. It was prepared by additionof yeast and sourdough. Different doses of iron (35, 70, 140, and 210 mg/kg per diet) were added to bread vehicle for 30 days with or without baking soda (250 mg/kg per diet). The concentrations of the above elements were determined by graphite furnace and flame atomic absorption spectroscopy. Serum zinc and manganese concentrations were significantly lower (P < 0.05) in rats that received higher concentrations of iron compared to the controls. Serum iron, and copper concentrations increased significantly (P < 0.05) with an increase in dietary iron compared to the controls. Increments of dietary concentrations of iron raised the concentration of iron, zinc and manganese in the feces, and lowered the concentration of copper and calcium in the feces (P < 0.05). Diets that contained baking soda showed a statistically significant increase in phytic acid (P < 0.05). Lower serum iron was seen in rats that received baking soda with diet of the control group. Conversely, feces iron and zinc were increased in this group. It is concluded that iron absorption might interfere with zinc and manganese because of similar physicochemical properties. Knowledge about these interactions is essential when supplementation of some elements is recommended in populations with a high risk of some deficiencies such as iron and zinc.
Collapse
Affiliation(s)
- Ali Zolfaghari
- 1 Department of Food Hygiene, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Hamid Reza Gheisari
- 1 Department of Food Hygiene, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Arash Omidi
- 2 Department of Animal Health Management, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.,3 Medical Geology Research Center, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- 4 Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
97
|
Marchisello S, Di Pino A, Scicali R, Urbano F, Piro S, Purrello F, Rabuazzo AM. Pathophysiological, Molecular and Therapeutic Issues of Nonalcoholic Fatty Liver Disease: An Overview. Int J Mol Sci 2019; 20:ijms20081948. [PMID: 31010049 PMCID: PMC6514656 DOI: 10.3390/ijms20081948] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) represents the leading cause of liver disease in developed countries but its diffusion is currently also emerging in Asian countries, in South America and in other developing countries. It is progressively becoming one of the main diseases responsible for hepatic insufficiency, hepatocarcinoma and the need for orthotopic liver transplantation. NAFLD is linked with metabolic syndrome in a close and bidirectional relationship. To date, NAFLD is a diagnosis of exclusion, and liver biopsy is the gold standard for diagnosis. NAFLD pathogenesis is complex and multifactorial, mainly involving genetic, metabolic and environmental factors. New concepts are constantly arising in the literature promising new diagnostic and therapeutic tools. One of the challenges will be to better characterize not only NAFLD development but overall NAFLD progression, in order to better identify NAFLD patients at higher risk of metabolic, cardiovascular and neoplastic complications. This review analyses NAFLD epidemiology and the different prevalence of the disease in distinct groups, particularly according to sex, age, body mass index, type 2 diabetes and dyslipidemia. Furthermore, the work expands on the pathophysiology of NAFLD, examining multiple-hit pathogenesis and the role of different factors in hepatic steatosis development and progression: genetics, metabolic factors and insulin resistance, diet, adipose tissue, gut microbiota, iron deposits, bile acids and circadian clock. In conclusion, the current available therapies for NAFLD will be discussed.
Collapse
Affiliation(s)
- Simona Marchisello
- Department of Clinical and Molecular Medicine, University of Catania, Catania 95100, Italy.
| | - Antonino Di Pino
- Department of Clinical and Molecular Medicine, University of Catania, Catania 95100, Italy.
| | - Roberto Scicali
- Department of Clinical and Molecular Medicine, University of Catania, Catania 95100, Italy.
| | - Francesca Urbano
- Department of Clinical and Molecular Medicine, University of Catania, Catania 95100, Italy.
| | - Salvatore Piro
- Department of Clinical and Molecular Medicine, University of Catania, Catania 95100, Italy.
| | - Francesco Purrello
- Department of Clinical and Molecular Medicine, University of Catania, Catania 95100, Italy.
| | - Agata Maria Rabuazzo
- Department of Clinical and Molecular Medicine, University of Catania, Catania 95100, Italy.
| |
Collapse
|
98
|
Hernández-Ruiz Á, García-Villanova B, Guerra-Hernández E, Amiano P, Ruiz-Canela M, Molina-Montes E. A Review of A Priori Defined Oxidative Balance Scores Relative to Their Components and Impact on Health Outcomes. Nutrients 2019; 11:nu11040774. [PMID: 30987200 PMCID: PMC6520884 DOI: 10.3390/nu11040774] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Oxidative Balance Scores (OBSs) are tools that have emerged to evaluate the global balance of individuals’ oxidation—reduction status. The aim was to compare OBSs available in the literature regarding their characteristics and associations with chronic diseases in epidemiological studies. Studies that developed OBSs were searched in PubMed until August 2018. A total of 21 OBSs were identified. These OBSs presented different scoring schemes and different types of anti- and pro-oxidant components, including dietary factors (dietary intake and/or nutrient biomarkers), lifestyle factors, and medications. Most OBSs were based on over 10 components, and some included only dietary factors. Few considered weighted components in the score. Only three OBSs were validated as potential surrogates of oxidative balance through inflammation and OS-related biomarkers. Notably, all the OBSs were associated—to a varying degree—with a reduced risk of cardiovascular diseases, chronic kidney disease, colorectal adenomas, and different cancer types (colorectal and breast cancer), as well as with all-cause and cancer-related mortality. For other outcomes, e.g., prostate cancer, contradictory results were reported. In summary, there is a great heterogeneity in the definition of OBSs. Most studies are concordant in supporting that excessive OS reflected by a lower OBS has deleterious effects on health. Unified criteria for defining the proper OBSs, valuable to gauge OS-related aspects of the diet and lifestyle that may lead to adverse health outcomes, are needed.
Collapse
Affiliation(s)
- Ángela Hernández-Ruiz
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Nutrition and Food Science Doctorate Program (RD 99/2011), University of Granada, 18002 Granada, Spain.
| | - Belén García-Villanova
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | - Eduardo Guerra-Hernández
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | - Pilar Amiano
- Public Health Division of Gipuzkoa, Biodonostia Research Institute, Health Department, 20014 San Sebastian, Spain.
- CIBER de Epidemiología y Salud Pública, CIBERESP, 28029 Madrid, Spain.
| | - Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, University of Navarra, 31003 Pamplona, Spain.
- Medicina Preventiva y Salud Pública, IdiSNA (Instituto de Investigación Sanitaria de Navarra), 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
| | - Esther Molina-Montes
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
- CIBER de Oncología, CIBERONC, 28029 Madrid, Spain.
| |
Collapse
|
99
|
Simultaneous determination of iron and nickel as contaminants in multimineral and multivitamin supplements by solid sampling HR-CS GF AAS. Talanta 2019; 195:745-751. [DOI: 10.1016/j.talanta.2018.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 11/22/2022]
|
100
|
Hu SJ, Jiang SS, Zhang J, Luo D, Yu B, Yang LY, Zhong HH, Yang MW, Liu LY, Hong FF, Yang SL. Effects of apoptosis on liver aging. World J Clin Cases 2019; 7:691-704. [PMID: 30968034 PMCID: PMC6448073 DOI: 10.12998/wjcc.v7.i6.691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/10/2019] [Accepted: 01/26/2019] [Indexed: 02/05/2023] Open
Abstract
As an irreversible and perennial process, aging is accompanied by functional and morphological declines in organs. Generally, aging liver exhibits a decline in volume and hepatic blood flow. Even with a preeminent regenerative capacity to restore its functions after liver cell loss, its biosynthesis and metabolism abilities decline, and these are difficult to restore to previous standards. Apoptosis is a programmed death process via intrinsic and extrinsic pathways, in which Bcl-2 family proteins and apoptosis-related genes, such as p21 and p53, are involved. Apoptosis inflicts both favorable and adverse influences on liver aging. Apoptosis eliminates transformed abnormal cells but promotes age-related liver diseases, such as nonalcoholic fatty liver disease, liver fibrosis, cirrhosis, and liver cancer. We summarize the roles of apoptosis in liver aging and age-related liver diseases.
Collapse
Affiliation(s)
- Shao-Jie Hu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Sha-Sha Jiang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jin Zhang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Dan Luo
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Bo Yu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Liang-Yan Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hua-Hua Zhong
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang 330006, Jiangxi Province, China
| | - Li-Yu Liu
- Department of Nurse, Nanchang University Hospital, Nanchang 330006, Jiangxi Province, China
| | - Fen-Fang Hong
- Experimental Teaching Center, Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|