51
|
Kim JY, Kim MH, Lee HJ, Huh JW, Lee SR, Lee HS, Lee DS. Peroxiredoxin 4 inhibits insulin-induced adipogenesis through regulation of ER stress in 3T3-L1 cells. Mol Cell Biochem 2020; 468:97-109. [PMID: 32185676 DOI: 10.1007/s11010-020-03714-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
Obesity was originally considered a disease endemic to developed countries but has since emerged as a global health problem. Obesity is characterized by abnormal or excessive lipid accumulation (World Health Organization, WHO) resulting from pre-adipocyte differentiation (adipogenesis). The endoplasmic reticulum (ER) produces proteins and cholesterol and shuttles these compounds to their target sites. Many studies have implicated ER stress, indicative of ER dysfunction, in adipogenesis. Reactive oxygen species (ROS) are also known to be involved in pre-adipocyte differentiation. Prx4 specific to the ER lumen exhibits ROS scavenging activity, and we thereby focused on ER-specific Prx4 in tracking changes in adipocyte differentiation and lipid accumulation. Overexpression of Prx4 reduced ER stress and suppressed lipid accumulation by regulating adipogenic gene expression during adipogenesis. Our results demonstrate that Prx4 inhibits ER stress, lowers ROS levels, and attenuates pre-adipocyte differentiation. These findings suggested enhancing the activity of Prx4 may be helpful in the treatment of obesity; the data also support the development of new therapeutic approaches to obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Jae Yeop Kim
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Hye Kim
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hong Jun Lee
- College of Medicine, Chungbuk National University, Chungbuk, Republic of Korea.,Research Institute, E-Biogen Inc, Seoul, Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea. .,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
52
|
Abstract
Excess adiposity is a risk factor for several cancer types. This is likely due to complex mechanisms including alterations in the lipid milieu that plays a pivotal role in multiple aspects of carcinogenesis. Here we consider the direct role of lipids in regulating well-known hallmarks of cancer. Furthermore, we suggest that obesity-associated remodelling of membranes and organelles drives cancer cell proliferation and invasion. Identification of cancer-related lipid-mediated mechanisms amongst the broad metabolic disturbances due to excess adiposity is central to the identification of novel and more efficacious prevention and intervention strategies.
Collapse
Affiliation(s)
- J Molendijk
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, 4006, Australia.
| | | | | | | |
Collapse
|
53
|
Cui F, Hu HF, Guo J, Sun J, Shi M. The Effect of Autophagy on Chronic Intermittent Hypobaric Hypoxia Ameliorating Liver Damage in Metabolic Syndrome Rats. Front Physiol 2020; 11:13. [PMID: 32082187 PMCID: PMC7002389 DOI: 10.3389/fphys.2020.00013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Aim Our previous study demonstrated that chronic intermittent hypobaric hypoxia (CIHH) can confer hepatic protection by reducing endoplasmic reticulum stress (ERS) in high-fat-high-fructose induced metabolic syndrome (MS) rats. It is known that there is a functional coupling between autophagy and ERS. This study aimed to investigate the effect of CIHH on autophagy function and adenosine mono-phosphate-activated protein kinase-mammalian target of rapamycin (AMPKα-mTOR) signaling pathway in hepatic tissue of MS rats. Main Methods 6-week old male Sprague-Dawley rats were randomly divided into: control (CON), CIHH (treated with hypobaric hypoxia simulating 5000-m altitude for 28 days, 6 h daily), MS (induced by 16-week high fat diet and 10% fructose water feeding), and MS + CIHH groups (exposed to CIHH after 16-week MS model). Food and water intakes, body weight, Lee's index, fat coefficient, systolic arterial pressure, blood biochemicals, and histopathology of liver were measured, the expression of phosphorylated (p)-AMPK, p-mTOR, autophagy-related and ERS-related proteins were assayed in hepatic tissue. Key Findings The MS rats displayed obesity, hypertension, polydipsia, glucose and lipids metabolism disorders, increased inflammatory cytokine, hepatic tissue morphological and functional damage, and the up-regulated expressions of ERS-related, autophagy-related proteins and p-mTOR, and the down-regulated expression of p-AMPKα. All aforementioned abnormalities in MS rats were ameliorated in MS + CIHH rats. Significance In conclusion CIHH confers hepatic protection through activating AMPK-mTOR signaling pathway and the autophagy function, thus inhibiting ERS in hepatic tissue.
Collapse
Affiliation(s)
- Fang Cui
- Department of Electron Microscope Laboratory Centre, Hebei Medical University, Shijiazhuang, China
| | - Hao Fei Hu
- Department of Clinical Laboratory, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Guo
- Department of Clinical Laboratory, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Sun
- Department of Clinical Laboratory, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Shi
- Department of Clinical Laboratory, Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
54
|
Kurniawan AL, Lee YC, Shih CK, Hsieh RH, Chen SH, Chang JS. Alteration in iron efflux affects male sex hormone testosterone biosynthesis in a diet-induced obese rat model. Food Funct 2020; 10:4113-4123. [PMID: 31233037 DOI: 10.1039/c8fo01870g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study was motivated by clinical observations that dysmetabolic iron overload syndrome (DIOS) and an androgen deficiency are common features observed in obese adult men; however, the molecular mechanism underlying the effects of DIOS on androgen deficiency remains to be elucidated. We established a DIOS animal model by feeding Sprague-Dawley rats an iron/fat-enriched diet (50% fat plus 0.25, 1, or 2 g ferric iron per kg diet) for 12 weeks to induce iron dysfunction (indicated by decreased tissue iron efflux) in obese rats. Obese rats fed an iron/fat-enriched diet showed decreased levels of testicular total Testosterone (T) and iron exporter ferroportin but increased levels of testicular iron and hepcidin, and these effects were more evident with a >1 g ferric iron per kg diet. A western blot analysis showed that an iron/fat-enriched diet triggered testicular endoplasmic reticular (ER) stress but decreased mitochondrion biogenesis proteins (PGC1α and TFAM) and T-converting proteins (StAR, CYP11A, and 17β-HSD). TUNEL staining showed that >1 g ferric iron induced apoptosis mainly in germ cells and Leydig's cells. Uncontrolled testicular iron efflux may cause mitochondrial-ER dysfunction and affect T biosynthesis. Future study targeting the testicular hepcidin-ferroportin axis may offer a therapeutic tool to alleviate testicular iron retention and mitochondrial-ER stress in Leydig's cells.
Collapse
Affiliation(s)
- Adi Lukas Kurniawan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Chieh Lee
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan. and School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Rong-Hong Hsieh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.
| | - Seu-Hwa Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan. and Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan and Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan and Chinese Taipei Society for the Study of Obesity, CTSSO, Taipei, Taiwan
| |
Collapse
|
55
|
Vega-Martín E, González-Blázquez R, Manzano-Lista FJ, Martín-Ramos M, García-Prieto CF, Viana M, Rubio MA, Calle-Pascual AL, Lionetti L, Somoza B, Fernández-Alfonso MS, Alcalá M, Gil-Ortega M. Impact of caloric restriction on AMPK and endoplasmic reticulum stress in peripheral tissues and circulating peripheral blood mononuclear cells from Zucker rats. J Nutr Biochem 2020; 78:108342. [PMID: 32004927 DOI: 10.1016/j.jnutbio.2020.108342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
The activation of endoplasmic reticulum (ER) stress and a reduction of AMP-dependent protein kinase (AMPK) phosphorylation have been described in obesity. We hypothesize that a moderate caloric restriction (CR) might contribute to reducing ER stress and increasing AMPK phosphorylation in peripheral tissues from genetically obese Zucker fa/fa rats and in peripheral blood mononuclear cells (PBMCs). Zucker Lean and Zucker fa/fa rats were fed with chow diet either ad libitum (AL) (C, as controls) or 80% of AL (CR) for 2 weeks, giving rise to four experimental groups: Lean C, Lean CR, fa/fa C and fa/fa CR. CR significantly increased AMPK phosphorylation in the liver, perirenal adipose tissue (PRAT) and PBMCs from fa/fa rats but not in the subcutaneous AT (SCAT), suggesting a reduced response of SCAT to CR. Liver samples of fa/fa rats exhibited an increased mRNA expression of PERK, EIF-2α, XBP-1(s), Chop and caspase 3, which was significantly reduced by CR. PRAT exhibited an overexpression of Edem and PDIA-4 in fa/fa rats, but only PDIA-4 expression was reduced by CR. eIF-2α phosphorylation was significantly increased in all studied tissues from fa/fa rats and reduced by CR. A negative correlation was detected between p-AMPK and p-eIF-2α in the liver, PRAT and PBMCs from fa/fa rats but not in SCAT. This study shows that a moderate CR reduces ER stress and improves AMPK phosphorylation in several peripheral tissues and in circulating PBMCs, suggesting that alterations observed in PBMCs could reflect metabolic alterations associated with obesity.
Collapse
Affiliation(s)
- Elena Vega-Martín
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Francisco J Manzano-Lista
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miriam Martín-Ramos
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Concepción F García-Prieto
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Miguel A Rubio
- Department of Endocrinology and Nutrition, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Facultad de Medicina, Complutense University, C/ Prof. Martin Lagos s/n, 28040 Madrid, Spain
| | - Alfonso L Calle-Pascual
- Department of Endocrinology and Nutrition, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Facultad de Medicina, Complutense University, C/ Prof. Martin Lagos s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Lillà Lionetti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain.
| |
Collapse
|
56
|
Oh S, Son M, Choi J, Choi CH, Park KY, Son KH, Byun K. Phlorotannins from Ecklonia cava Attenuates Palmitate-Induced Endoplasmic Reticulum Stress and Leptin Resistance in Hypothalamic Neurons. Mar Drugs 2019; 17:E570. [PMID: 31600939 PMCID: PMC6835517 DOI: 10.3390/md17100570] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Leptin resistance in the hypothalamus has an essential role in obesity. Saturated fatty acids such as palmitate bind to Toll-like receptor 4 (TLR4) and lead to endoplasmic reticulum (ER) stress and leptin resistance. In this study, we evaluated whether extracts of Ecklonia cava would attenuate the ER stress induced by palmitate and reduce leptin resistance in hypothalamic neurons and microglia. We added palmitate to these cells to mimic the environment induced by high-fat diet in the hypothalamus and evaluated which of the E. cava phlorotannins-dieckol (DK), 2,7-phloroglucinol-6,6-bieckol (PHB), pyrogallol-phloroglucinol-6,6-bieckol (PPB), or phlorofucofuroeckol-A (PFFA)-had the most potent effect on attenuating leptin resistance. TLR4 and NF-κB expression induced by palmitate was attenuated most effectively by PPB in both hypothalamic neurons and microglia. ER stress markers were increased by palmitate and were attenuated by PPB in both hypothalamic neurons and microglia. Leptin resistance, which was evaluated as an increase in SOCS3 and a decrease in STAT3 with leptin receptor expression, was increased by palmitate and was decreased by PPB in hypothalamic neurons. The culture medium from palmitate-treated microglia increased leptin resistance in hypothalamic neurons and this resistance was attenuated by PPB. In conclusion, PPB attenuated leptin resistance by decreasing ER stress in both hypothalamic neurons and microglia.
Collapse
Affiliation(s)
- Seyeon Oh
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
| | - Myeongjoo Son
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea.
| | - Junwon Choi
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea.
| | - Chang Hu Choi
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea.
| | - Kook Yang Park
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea.
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea.
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea.
| |
Collapse
|
57
|
Ma Y, Zhang M, Yu H, Lu J, Cheng KKY, Zhou J, Chen H, Jia W. Activation of G0/G1 switch gene 2 by endoplasmic reticulum stress enhances hepatic steatosis. Metabolism 2019; 99:32-44. [PMID: 31271806 DOI: 10.1016/j.metabol.2019.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Perturbed endoplasmic reticulum (ER) homeostasis and increased levels of G0/G1 Switch Gene 2 (G0S2) have been documented in animal models with fatty liver disease. In this study, we investigated whether G0S2 is regulated by branch of the unfolded protein response (UPR) and contributes to ER stress-induced hepatic steatosis. METHODS We first analyzed G0S2 expression and the state of the three canonical UPR branches in several hepatic steatosis models, tunicamycin-treated C57BL/6J mice and HepG2 cells, where ER homeostasis was perturbed. We pretreated HepG2 cells with tauroursodeoxycholic acid (TUDCA) to validate whether G0S2 was the downstream target of ER stress. Loss or gain function analysis was conducted to identify which UPR branch specifically linked to G0S2 transcription. The transcription mechanism was estimated by luciferase reporter assay and ChIP assay. RESULTS Here we showed that the activation of ER stress was accompanied by elevation of G0S2 expression in the occurrence of fatty liver disease. Furthermore, G0S2 was found to be a novel target gene of activating transcription factor 4(ATF4). We also localized one conserved ATF4-binding sequence in the 5' regulatory region of G0S2, which was responsible for transcriptional activating G0S2 by ATF4. CONCLUSION G0S2 is regulated by the PERK-eIF2α-ATF4 branch of the UPR and mediates ER stress-induced hepatic steatosis.
Collapse
Affiliation(s)
- Yunqin Ma
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Mingliang Zhang
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Junxi Lu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Kenneth K Y Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
58
|
Plant Extracts and Reactive Oxygen Species as Two Counteracting Agents with Anti- and Pro-Obesity Properties. Int J Mol Sci 2019; 20:ijms20184556. [PMID: 31540021 PMCID: PMC6770307 DOI: 10.3390/ijms20184556] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is a complex disease of great public health significance worldwide: It entails several complications including diabetes mellitus type 2, cardiovascular dysfunction and hypertension, and its prevalence is increasing around the world. The pathogenesis of obesity is closely related to reactive oxygen species. The role of reactive oxygen species as regulatory factors in mitochondrial activity in obese subjects, molecules taking part in inflammation processes linked to excessive size and number of adipocytes, and as agents governing the energy balance in hypothalamus neurons has been examined. Phytotherapy is the traditional form of treating health problems using plant-derived medications. Some plant extracts are known to act as anti-obesity agents and have been screened in in vitro models based on the inhibition of lipid accumulation in 3T3-L1 cells and activity of pancreatic lipase methods and in in vivo high-fat diet-induced obesity rat/mouse models and human models. Plant products may be a good natural alternative for weight management and a source of numerous biologically-active chemicals, including antioxidant polyphenols that can counteract the oxidative stress associated with obesity. This review presents polyphenols as natural complementary therapy, and a good nutritional strategy, for treating obesity without serious side effects.
Collapse
|
59
|
Wahlang B, Jin J, Beier JI, Hardesty JE, Daly EF, Schnegelberger RD, Falkner KC, Prough RA, Kirpich IA, Cave MC. Mechanisms of Environmental Contributions to Fatty Liver Disease. Curr Environ Health Rep 2019; 6:80-94. [PMID: 31134516 PMCID: PMC6698418 DOI: 10.1007/s40572-019-00232-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Fatty liver disease (FLD) affects over 25% of the global population and may lead to liver-related mortality due to cirrhosis and liver cancer. FLD caused by occupational and environmental chemical exposures is termed "toxicant-associated steatohepatitis" (TASH). The current review addresses the scientific progress made in the mechanistic understanding of TASH since its initial description in 2010. RECENT FINDINGS Recently discovered modes of actions for volatile organic compounds and persistent organic pollutants include the following: (i) the endocrine-, metabolism-, and signaling-disrupting chemical hypotheses; (ii) chemical-nutrient interactions and the "two-hit" hypothesis. These key hypotheses were then reviewed in the context of the steatosis adverse outcome pathway (AOP) proposed by the US Environmental Protection Agency. The conceptual understanding of the contribution of environmental exposures to FLD has progressed significantly. However, because this is a new research area, more studies including mechanistic human data are required to address current knowledge gaps.
Collapse
Affiliation(s)
- Banrida Wahlang
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
| | - Jian Jin
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Juliane I Beier
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Josiah E Hardesty
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Erica F Daly
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Regina D Schnegelberger
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Irina A Kirpich
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Hepatobiology & Toxicology COBRE Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY, 40202, USA
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Hepatobiology & Toxicology COBRE Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY, 40202, USA.
- The Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206, USA.
- The Jewish Hospital Liver Transplant Program, Louisville, KY, 40202, USA.
- Kosair Charities Clinical & Translational Research Building, 505 South Hancock Street, Louisville, KY, 40202, USA.
| |
Collapse
|
60
|
Fang Z, Pyne S, Pyne NJ. WITHDRAWN: Ceramide and Sphingosine 1-Phosphate in adipose dysfunction. Prog Lipid Res 2019:100991. [PMID: 31442525 DOI: 10.1016/j.plipres.2019.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Zijian Fang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| |
Collapse
|
61
|
Sjögren M, Soylu-Kucharz R, Dandunna U, Stan TL, Cavalera M, Sandelius Å, Zetterberg H, Björkqvist M. Leptin deficiency reverses high metabolic state and weight loss without affecting central pathology in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 2019; 132:104560. [PMID: 31419548 DOI: 10.1016/j.nbd.2019.104560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 11/18/2022] Open
Abstract
Body weight has been shown to be a predictor of clinical progression in Huntington's disease (HD). Alongside widespread neuronal pathology, both HD patients and the R6/2 mouse model of HD exhibit weight loss and increased energy expenditure, providing a rationale for targeting whole-body energy metabolism in HD. Leptin-deficient mice display low energy expenditure and increased body weight. We therefore hypothesized that normalizing energy metabolism in R6/2 mice, utilizing leptin- deficiency, would lead to a slower disease progression in the R6/2 mouse. In this study, we show that R6/2 mice on a leptin-deficient genetic background display increased body weight and increased fat mass compared to R6/2 mice, as well as wild type littermates. The increased body weight was accompanied by low energy expenditure, illustrated by a reduction in respiratory exchange rate. Leptin-deficient R6/2 mice had large white adipocytes with white adipocyte gene expression characteristics, in contrast to white adipose tissue in R6/2 mice, where white adipose tissue showed signs of browning. Leptin-deficient R6/2 mice did not exhibit improved neuropathological measures. Our results indicate that lowering energy metabolism in HD, by increasing fat mass and reducing respiratory exchange rate, is not sufficient to affect neuropathology. Further studies targeting energy metabolism in HD are warranted.
Collapse
Affiliation(s)
- Marie Sjögren
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden.
| | - Rana Soylu-Kucharz
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Unali Dandunna
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Tiberiu Loredan Stan
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Michele Cavalera
- Department of Clinical Sciences, Cardiovascular Research, Translational Studies, Lund University, Malmö, Sweden
| | - Åsa Sandelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Maria Björkqvist
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
62
|
Kalkan R, Becer E. RANK/RANKL/OPG pathway is an important for the epigenetic regulation of obesity. Mol Biol Rep 2019; 46:5425-5432. [PMID: 31364017 DOI: 10.1007/s11033-019-04997-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022]
Abstract
Obesity is a complex disorder that is influenced by genetic and environmental factors. DNA methylation is an epigenetic mechanism that is involved in development of obesity and its metabolic complications. The aim of this study was to investigate the association between the RANKL and c-Fos gene methylation on obesity with body mass index (BMI), lipid parameters, homeostasis model assessment of insulin resistance (HOMA-IR), plasma leptin, adiponectin and resistin levels. The study included 68 obese and 46 non-obese subjects. Anthropometric parameters, including body weight, body mass index, waist circumference, and waist-hip ratio, were assessed. Serum glucose, triglycerides (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), plasma leptin, adiponectin and resistin levels were measured. Methylation status of RANKL and c-Fos gen were evaluated by MS-HRM. Statistically significant differences were observed between obese patients and the controls with respect to RANKL and c-Fos gene methylation status (p < 0.001). Also, statistically significant importance was observed RANKL gene methylation and increased level of leptin in obese subjects (p = 0.0081). At the same time, statistically significant association between methylation of c-Fos and increased level of adiponectin was observed in obese patients (p = 0.03) On the other hand, decreased level of resistin was observed where the c-Fos was unmetyladed in controls (p = 0.01). We conclude that methylation of RANKL and c-Fos genes have significant influences on obesity and adipokine levels. Based on literature this was the first study which shows the interactions between RANKL and c-Fos methylation and obesity.
Collapse
Affiliation(s)
- Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Eda Becer
- Department of Biochemistry, Faculty of Pharmacy, Near East University, Near East Boulevard, ZIP. 99138, Nicosia, Cyprus. .,Research Center of Experimental Health Sciences (DESAM), Near East University, Nicosia, Cyprus.
| |
Collapse
|
63
|
Effect of lifelong carnitine supplementation on plasma and tissue carnitine status, hepatic lipid metabolism and stress signalling pathways and skeletal muscle transcriptome in mice at advanced age. Br J Nutr 2019; 121:1323-1333. [DOI: 10.1017/s0007114519000709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AbstractWhile strong evidence from clinical studies suggests beneficial effects of carnitine supplementation on metabolic health, serious safety concerns associated with carnitine supplementation have been raised from studies in mice. Considering that the carnitine doses in these mice studies were up to 100 times higher than those used in clinical studies, the present study aimed to address possible safety concerns associated with long-term supplementation of a carnitine dose used in clinical trials. Two groups of NMRI mice were fed either a control or a carnitine-supplemented diet (1 g/kg diet) from weaning to 19 months of age, and parameters of hepatic lipid metabolism and stress signalling and skeletal muscle gene expression were analysed in the mice at 19 months of age. Concentrations of free carnitine and acetylcarnitine in plasma and tissues were higher in the carnitine than in the control group (P<0·05). Plasma concentrations of free carnitine and acetylcarnitine were higher in mice at adult age (10 and 15 months) than at advanced age (19 months) (P<0·05). Hepatic mRNA and protein levels of genes involved in lipid metabolism and stress signalling and hepatic and plasma lipid concentrations did not differ between the carnitine and the control group. Skeletal muscle transcriptome analysis in 19-month-old mice revealed only a moderate regulation between carnitine and control group. Lifelong carnitine supplementation prevents an age-dependent impairment of plasma carnitine status, but safety concerns associated with long-term supplementation of carnitine at doses used in clinical trials can be considered as unfounded.
Collapse
|
64
|
Luangmonkong T, Suriguga S, Mutsaers HAM, Groothuis GMM, Olinga P, Boersema M. Targeting Oxidative Stress for the Treatment of Liver Fibrosis. Rev Physiol Biochem Pharmacol 2019; 175:71-102. [PMID: 29728869 DOI: 10.1007/112_2018_10] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a reflection of the imbalance between the production of reactive oxygen species (ROS) and the scavenging capacity of the antioxidant system. Excessive ROS, generated from various endogenous oxidative biochemical enzymes, interferes with the normal function of liver-specific cells and presumably plays a role in the pathogenesis of liver fibrosis. Once exposed to harmful stimuli, Kupffer cells (KC) are the main effectors responsible for the generation of ROS, which consequently affect hepatic stellate cells (HSC) and hepatocytes. ROS-activated HSC undergo a phenotypic switch and deposit an excessive amount of extracellular matrix that alters the normal liver architecture and negatively affects liver function. Additionally, ROS stimulate necrosis and apoptosis of hepatocytes, which causes liver injury and leads to the progression of end-stage liver disease. In this review, we overview the role of ROS in liver fibrosis and discuss the promising therapeutic interventions related to oxidative stress. Most importantly, novel drugs that directly target the molecular pathways responsible for ROS generation, namely, mitochondrial dysfunction inhibitors, endoplasmic reticulum stress inhibitors, NADPH oxidase (NOX) inhibitors, and Toll-like receptor (TLR)-affecting agents, are reviewed in detail. In addition, challenges for targeting oxidative stress in the management of liver fibrosis are discussed.
Collapse
Affiliation(s)
- Theerut Luangmonkong
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.,Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Su Suriguga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Henricus A M Mutsaers
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Geny M M Groothuis
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.
| | - Miriam Boersema
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
65
|
Lang AL, Beier JI. Interaction of volatile organic compounds and underlying liver disease: a new paradigm for risk. Biol Chem 2019; 399:1237-1248. [PMID: 29924722 DOI: 10.1515/hsz-2017-0324] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/14/2018] [Indexed: 01/07/2023]
Abstract
Occupational and environmental exposures to industrial chemicals are known to cause hepatotoxicity and liver injury, in humans and in animal models. Historically, research has focused on severe acute liver injury (e.g. fulminant liver failure) or endstage diseases (e.g. cirrhosis and HCC). However, it has become recently recognized that toxicants can cause more subtle changes to the liver. For example, toxicant-associated steatohepatitis, characterized by hepatic steatosis, and inflammation, was recently recognized in an occupational cohort exposed to vinyl chloride. At high occupational levels, toxicants are sufficient to cause liver damage and disease even in healthy subjects with no comorbidities for liver injury. However, it is still largely unknown how exposure to toxicants initiate and possibly more importantly exacerbate liver disease, when combined with other factors, such as underlying non-alcoholic fatty liver disease caused by poor diet and/or obesity. With better understanding of the mechanism(s) and risk factors that mediate the initiation and progression of toxicant-induced liver disease, rational targeted therapy can be developed to better predict risk, as well as to treat or prevent this disease. The purpose of this review is to summarize established and proposed mechanisms of volatile organic compound-induced liver injury and to highlight key signaling events known or hypothesized to mediate these effects.
Collapse
Affiliation(s)
- Anna L Lang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.,Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, USA.,University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | - Juliane I Beier
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.,Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, USA.,University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, KY 40292, USA.,Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
66
|
Ceramide and sphingosine 1-phosphate in adipose dysfunction. Prog Lipid Res 2019; 74:145-159. [PMID: 30951736 DOI: 10.1016/j.plipres.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
The increased adipose tissue mass of obese individuals enhances the risk of metabolic syndrome, type 2 diabetes and cardiovascular diseases. During pathological expansion of adipose tissue, multiple molecular controls of lipid storage, adipocyte turn-over and endocrine secretion are perturbed and abnormal lipid metabolism results in a distinct lipid profile. There is a role for ceramides and sphingosine 1-phosphate (S1P) in inducing adipose dysfunction. For instance, the alteration of ceramide biosynthesis, through the de-regulation of key enzymes, results in aberrant formation of ceramides (e.g. C16:0 and C18:0) which block insulin signaling and promote adipose inflammation. Furthermore, S1P can induce defective adipose tissue phenotypes by promoting chronic inflammation and inhibiting adipogenesis. These abnormal changes are discussed in the context of possible therapeutic approaches to re-establish normal adipose function and to, thereby, increase insulin sensitivity in type 2 diabetes. Such novel approaches include blockade of ceramide biosynthesis using inhibitors of sphingomyelinase or dihydroceramide desaturase and by antagonism of S1P receptors, such as S1P2.
Collapse
|
67
|
Sikkeland J, Lindstad T, Nenseth HZ, Dezitter X, Qu S, Muhumed RM, Ertunc ME, Gregor MF, Saatcioglu F. Inflammation and ER stress differentially regulate STAMP2 expression and localization in adipocytes. Metabolism 2019; 93:75-85. [PMID: 30710574 PMCID: PMC6460919 DOI: 10.1016/j.metabol.2019.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/11/2019] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chronic ER stress and dysfunction is a hallmark of obesity and a critical contributor to metaflammation, abnormal hormone action and altered substrate metabolism in metabolic tissues, such as liver and adipocytes. Lack of STAMP2 in lean mice induces inflammation and insulin resistance on a regular diet, and it is dysregulated in the adipose tissue of obese mice and humans. We hypothesized that the regulation of STAMP2 is disrupted by ER stress. METHODS 3T3-L1 and MEF adipocytes were treated with ER stress inducers thapsigargin and tunicamycin, and inflammation inducer TNFα. The treatments effect on STAMP2 expression and enzymatic function was assessed. In addition, 3T3-L1 adipocytes and HEK cells were utilized for Stamp2 promoter activity investigation performed with luciferase and ChIP assays. RESULTS ER stress significantly reduced both STAMP2 mRNA and protein expression in cultured adipocytes whereas TNFα had the opposite effect. Concomitant with loss of STAMP2 expression during ER stress, intracellular localization of STAMP2 was altered and total iron reductase activity was reduced. Stamp2 promoter analysis by reporter assays and chromatin immunoprecipitation, showed that induction of ER stress disrupts C/EBPα-mediated STAMP2 expression. CONCLUSION These data suggest a clear link between ER stress and quantitative and functional STAMP2-deficiency.
Collapse
Affiliation(s)
- Jørgen Sikkeland
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0310 Oslo, Norway
| | - Torstein Lindstad
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway
| | - Hatice Zeynep Nenseth
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway
| | - Xavier Dezitter
- Plateforme de Binding et de Biologie Moléculaire, Institut de Chimie Pharmaceutique Albert Lespagnol, Faculté des Sciences Pharmaceutiques et Biologiques - Université de Lille, F-59006 Lille, France
| | - Su Qu
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway
| | - Ridhwan M Muhumed
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway
| | - Meric Erikci Ertunc
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway; Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Margaret F Gregor
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0310 Oslo, Norway.
| |
Collapse
|
68
|
Anosov M, Birk R. Bardet-Biedl syndrome obesity: BBS4 regulates cellular ER stress in early adipogenesis. Mol Genet Metab 2019; 126:495-503. [PMID: 30902542 DOI: 10.1016/j.ymgme.2019.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/16/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy, presenting with early obesity onset. The etiology of BBS obesity involves both central and peripheral defects, through mechanisms mostly yet to be deciphered. We previously showed BBS4 expression in adipogenesis, peaking at day 3 of differentiation. Obesity is characterized by cellular stress which promotes pathological consequences. AIMS We set out to test a possible role of BBS4 in adipocyte endoplasmic reticulum (ER) stress-induced unfolding protein response (UPR). METHODS BBS4 silenced (SiBBS4) and overexpressing (OEBBS4) pre-adipocyte murine cell lines were subjected to ER-stress induction (Tunicamycin, TM) during adipogenesis. ER-stress UPR was analyzed at the transcript, protein and biochemical levels (microscopy, immunocytochemistry, western blotting, quantitative RT-PCR and X-box binding protein 1 (XBP-1) splicing). RESULTS In silico analysis showed that BBS4 harbors an ER localization sequences indicative of ER localization. We verified BBS4's ER localization in adipocytes by immunocytochemistry and cellular protein fractionation. Furthermore, we demonstrated that BBS4 expression is significantly up-regulated by ER-stress, as indicated by protein and transcript levels. SiBBS4 adipocytes exhibited swollen ER typical to ER-stress and significant XBP-1 down-regulation at day 3 of differentiation. Following ER-stress, SiBBS4 adipocytes exhibited XBP-1 ER retention, failure to translocate to the nucleus and depletion of the nuclear active cleaved ATF6α. BBS4 did not alter ATF6α processing by S1P and S2P in the Golgi. Notably, SiBBS4 cells demonstrated significant reduction in the downstream activated phospho-IRE1α, independent of ER-stress. CONCLUSIONS At day 3 of adipogenesis, coinciding with the timing of its peak expression, BBS4 is localized to the ER and is involved in the ER stress response and trafficking. BBS4 depletion results in swollen ER with impaired intracellular nucleus translocation of XBP-1 and ATF6α. Thus, BBS4 affects the ER stress response in early adipogenesis, altering ER stress responsiveness and the adipocyte ER phenotype.
Collapse
Affiliation(s)
- Mariana Anosov
- Department of Nutrition, Faculty of Health Sciences, Ariel University, 40700, Israel
| | - Ruth Birk
- Department of Nutrition, Faculty of Health Sciences, Ariel University, 40700, Israel.
| |
Collapse
|
69
|
Nagahara R, Matono T, Sugihara T, Matsuki Y, Yamane M, Okamoto T, Miyoshi K, Nagahara T, Okano JI, Koda M, Isomoto H. Gene Expression Analysis of the Activating Factor 3/Nuclear Protein 1 Axis in a Non-alcoholic Steatohepatitis Mouse Model. Yonago Acta Med 2019. [PMID: 30962743 DOI: 10.33160/yam.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) is a chronic liver disease related to metabolic syndrome that can progress to liver cirrhosis. The involvement of the endoplasmic reticulum (ER) stress response in NAFLD progression and the roles played by activating factor 3 (ATF3) and the downstream nuclear protein 1 (NUPR1) are poorly understood. The aim of this study was to determine the gene expression profiles around the ATF3/NUPR1 axis in relation to the development of NAFLD using novel mouse models. Methods Fatty liver Shionogi (FLS) mice (n = 12) as a NAFLD model and FLS-ob/ob mice (n = 28) as a NASH model were fed a standard diet. The FLS mice were sacrificed at 24 weeks of age as a control, whereas the FLS-ob/ob mice were sacrificed at 24, 36, and 48 weeks of age. Hepatic steatosis, inflammation, and fibrosis were evaluated by biochemical, histological, and gene expression analyses. The expression levels of the ER-stress related genes Jun proto-oncogene (C-jun), Atf3, Nupr1, and C/EBP homologous protein (Chop) were measured in liver tissue. Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Results Control mice demonstrated hepatic steatosis alone without apparent fibrosis. On the other hand, FLS-ob/ob mice showed severe steatohepatitis at both 24 and 36 weeks of age and severe fibrosis at both 36 and 48 weeks of age. The expression levels of Atf3, Nupr-1, and C-jun significantly increased from 24 to 48 weeks of age in FLS-ob/ob mice compared with control mice. The expression level of Chop was already high in FLS mice and maintained similar levels in FLS-ob/ob mice; the expression level was consistent with the percentage of TUNEL-positive cells. Conclusion The ATF3/NUPR1 axis plays a pivotal role in NASH progression in association with C-jun and Chop and appears to induce apoptosis from early steatosis in the NASH model mice.
Collapse
Affiliation(s)
- Ran Nagahara
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Tomomitsu Matono
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Takaaki Sugihara
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Yukako Matsuki
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Masafumi Yamane
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Toshiaki Okamoto
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Kenichi Miyoshi
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Takakazu Nagahara
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Jun-Ichi Okano
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Masahiko Koda
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| |
Collapse
|
70
|
Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism 2019; 92:71-81. [PMID: 30447223 DOI: 10.1016/j.metabol.2018.11.005] [Citation(s) in RCA: 326] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
Abstract
Obesity, a pandemic of the modern world, is intimately associated with dyslipidemia, which is mainly driven by the effects of insulin resistance and pro-inflammatory adipokines. However, recent evidence suggests that obesity-induced dyslipidemia is not a unique pathophysiological entity, but rather has distinct characteristics depending on many individual factors. In line with that, in a subgroup of metabolically healthy obese (MHO) individuals, dyslipidemia is less prominent or even absent. In this review, we will address the main characteristics of dyslipidemia and mechanisms that induce its development in obesity. The fields, which should be further investigated to expand our knowledge on obesity-related dyslipidemia and potentially yield new strategies for prevention and management of cardiometabolic risk, will be highlighted. Also, we will discuss recent findings on novel lipid biomarkers in obesity, in particular proprotein convertase subtilisin/kexin type 9 (PCSK9), as the key molecule that regulates metabolism of low-density lipoproteins (LDL), and sphingosine-1-phosphate (S1P), as one of the most important mediators of high-density lipoprotein (HDL) particles function. Special attention will be given to microRNAs and their potential use as biomarkers of obesity-associated dyslipidemia.
Collapse
Affiliation(s)
- Jelena Vekic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stefanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Zorana Jelic-Ivanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
71
|
Fujii N, Uta S, Kobayashi M, Sato T, Okita N, Higami Y. Impact of aging and caloric restriction on fibroblast growth factor 21 signaling in rat white adipose tissue. Exp Gerontol 2019; 118:55-64. [PMID: 30620889 DOI: 10.1016/j.exger.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/14/2018] [Accepted: 01/01/2019] [Indexed: 12/31/2022]
Abstract
Caloric restriction (CR) suppresses age-related pathophysiology and extends lifespan. We recently reported that metabolic remodeling of white adipose tissue (WAT) plays an important role in the beneficial actions of CR; however, the detailed molecular mechanisms of this remodeling remain to be established. In the present study, we aimed to identify CR-induced alterations in the expression of fibroblast growth factor 21 (FGF21), a regulator of lipid and glucose metabolism, and of its downstream signaling mediators in liver and WAT, across the lifespan of rats. We evaluated groups of rats that had been either fed ad libitum or calorie restricted from 3 months of age and were euthanized at 3.5, 9, or 24 months of age, under fed and fasted conditions. The expression of FGF21 mRNA and/or protein increased with age in liver and WAT. Interestingly, in the WAT of 9-month-old fed rats, CR further upregulated FGF21 expression and eliminated the aging-associated reductions in the expression of FGFR1 and beta-klotho (KLB; FGF21 receptor complex). It also enhanced the expression of FGF21 targets, including glucose transporter 1 and peroxisome proliferator-activated receptor (PPAR)γ coactivator-1α. The analysis of transcriptional regulators of Fgf21 suggested that aging and CR might upregulate Fgf21 expression via different mechanisms. In adipocytes in vitro, constitutive FGF21 overexpression upregulated the FGF21 receptor complex and FGF21 targets at the mRNA or protein level. Thus, both aging and CR induced FGF21 expression in rat WAT; however, only CR activated FGF21 signaling. Our results suggest that FGF21 signaling contributes to the CR-induced metabolic remodeling of WAT, likely activating glucose uptake and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Namiki Fujii
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Seira Uta
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Tsugumichi Sato
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Laboratory of Drug Informatics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Naoyuki Okita
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Division of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigakudori, Sanyo-onoda, Yamaguchi 756-0884, Japan.
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
72
|
Salvestrini V, Sell C, Lorenzini A. Obesity May Accelerate the Aging Process. Front Endocrinol (Lausanne) 2019; 10:266. [PMID: 31130916 PMCID: PMC6509231 DOI: 10.3389/fendo.2019.00266] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/10/2019] [Indexed: 12/27/2022] Open
Abstract
Lines of evidence from several studies have shown that increases in life expectancy are now accompanied by increased disability rate. The expanded lifespan of the aging population imposes a challenge on the continuous increase of chronic disease. The prevalence of overweight and obesity is increasing at an alarming rate in many parts of the world. Further to increasing the onset of metabolic imbalances, obesity leads to reduced life span and affects cellular and molecular processes in a fashion resembling aging. Nine key hallmarks of the aging process have been proposed. In this review, we will review these hallmarks and discuss pathophysiological changes that occur with obesity, that are similar to or contribute to those that occur during aging. We present and discuss the idea that obesity, in addition to having disease-specific effects, may accelerate the rate of aging affecting all aspects of physiology and thus shortening life span and health span.
Collapse
Affiliation(s)
- Valentina Salvestrini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Christian Sell
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, Biochemistry Unit, University of Bologna, Bologna, Italy
- *Correspondence: Antonello Lorenzini
| |
Collapse
|
73
|
Xu Y, Park Y. Application of Caenorhabditis elegans for Research on Endoplasmic Reticulum Stress. Prev Nutr Food Sci 2018; 23:275-281. [PMID: 30675455 PMCID: PMC6342542 DOI: 10.3746/pnf.2018.23.4.275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/21/2018] [Indexed: 01/01/2023] Open
Abstract
Caenorhabditis elegans is a versatile model organism that has been applied to research involving obesity, aging, and neurodegenerative diseases. C. elegans has many advantages over traditional animal models, including ease of handling, a short lifespan, a fully sequenced genome, ease of genetic manipulation, and a high similarity to human disease-related genes. With established C. elegans models of human disease, C. elegans provides a great platform for studying disease pathologies, including endoplasmic reticulum (ER) stress, which is characterized by the accumulation of unfolded and misfolded proteins involved in the pathologies of many diseases. ER stress can lead to activation of the unfolded and misfolded protein response, a mechanism that attenuates ER stress and recovers ER homeostasis. The current review gives an introduction to C. elegans and ER stress, along with the pathological role of ER stress in disease and the application of worm models in ER stress-related research.
Collapse
Affiliation(s)
- Yuejia Xu
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
74
|
Levi NJ, Wilson CW, Redweik GAJ, Gray NW, Grzybowski CW, Lenkey JA, Moseman AW, Bertsch AD, Dao N, Walsh HE. Obesity-related cellular stressors regulate gonadotropin releasing hormone gene expression via c-Fos/AP-1. Mol Cell Endocrinol 2018; 478:97-105. [PMID: 30063946 DOI: 10.1016/j.mce.2018.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/14/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
Obesity is a risk factor for infertility, but mechanisms underlying this risk are unclear. Fertility is regulated by hypothalamic gonadotropin-releasing hormone, encoded by the Gnrh1 gene. Because obesity promotes endoplasmic reticulum (ER) stress, we sought to determine how tunicamycin-induced ER stress affected Gnrh1 gene expression in the mouse hypothalamic cell line GT1-7. Tunicamycin repressed expression of Gnrh1 in a PKC- and JNK-dependent manner, while upregulating expression of a known Gnrh1 repressor, Fos. Obesity is associated with increased circulating free fatty acids, and exposure to palmitate promoted ER stress and inflammation. Fos expression increased with palmitate dose, but Gnrh1 expression was upregulated with low-dose palmitate and repressed with high-dose palmitate. Using a small molecule inhibitor, we determined that AP-1 was required for Gnrh1 repression by high-dose palmitate or tunicamycin-induced ER stress. These findings suggest that hypogonadism driven by decreased hypothalamic GnRH may be a component of obesity-related infertility.
Collapse
Affiliation(s)
- Noah J Levi
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Christopher W Wilson
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Graham A J Redweik
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Nathan W Gray
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Cody W Grzybowski
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Joseph A Lenkey
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Anthony W Moseman
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Alec D Bertsch
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Nhien Dao
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Heidi E Walsh
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA.
| |
Collapse
|
75
|
Afroz F, Kist A, Hua J, Zhou Y, Sokoya EM, Padbury R, Nieuwenhuijs V, Barritt G. Rapamycin induces the expression of heme oxygenase-1 and peroxyredoxin-1 in normal hepatocytes but not in tumorigenic liver cells. Exp Mol Pathol 2018; 105:334-344. [PMID: 30290159 DOI: 10.1016/j.yexmp.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/27/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Rapamycin (sirolimus) is employed as an immunosuppressant following liver transplant, to inhibit the re-growth of cancer cells following liver resection for hepatocellular carcinoma (HCC), and for the treatment of advanced HCC. Rapamycin also induces the expression of antioxidant enzymes in the liver, suggesting that pretreatment with the drug could provide a potential strategy to reduce ischemia reperfusion injury following liver surgery. The aim of this study was to further investigate the actions of rapamycin in inducing expression of the antioxidant enzymes heme oxygenase-1 (HO-1) and peroxiredoxin-1 (Prx-1) in normal liver and in tumorigenic liver cells. A rat model of segmental hepatic ischemia and reperfusion, cultured freshly-isolated rat hepatocytes, and tumorigenic H4IIE rat liver cells in culture were employed. Expression of HO-1 and Prx-1 was measured using quantitative PCR and western blot. Rapamycin pre-treatment of normal liver in vivo or normal hepatocytes in vitro led to a substantial induction of mRNA encoding HO-1 and Prx-1. The dose-response curve for the action of rapamycin on mRNA expression was biphasic, showing an increase in expression at 0 - 0.1 μM rapamycin but a decrease from maximum at concentrations greater than 0.1 μM. By contrast, in H4IIE cells, rapamycin inhibited the expression of HO-1 and Prx-1 mRNA. Oltipraz, an established activator of transcription factor Nrf2, caused a large induction of HO-1 and Prx-1 mRNA. The dose response curve for the inhibition by rapamycin of HO-1 and Prx-4 mRNA expression, determined in the presence of oltipraz, was monophasic with half maximal inhibition at about 0.01 μM. It is concluded that, at concentrations comparable to those used clinically, pre-treatment of the liver with rapamycin induces the expression of HO-1 and Prx-1. However, the actions of rapamycin on the expression of these two antioxidant enzymes in normal hepatocytes are complex and, in tumorigenic liver cells, differ from those in normal hepatocytes. Further studies are warranted to evaluate preconditioning the livers of patients subject to liver resection or liver transplant with rapamycin as a viable strategy to reduce IR injury following liver surgery.
Collapse
Affiliation(s)
- Farhana Afroz
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Alwyn Kist
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Jin Hua
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Yabin Zhou
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Elke M Sokoya
- Discipline of Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Robert Padbury
- The HPB and Liver Transplant Unit, Flinders Medical Centre and College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | | | - Greg Barritt
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
76
|
Archer AE, Von Schulze AT, Geiger PC. Exercise, heat shock proteins and insulin resistance. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0529. [PMID: 29203714 DOI: 10.1098/rstb.2016.0529] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2017] [Indexed: 12/30/2022] Open
Abstract
Best known as chaperones, heat shock proteins (HSPs) also have roles in cell signalling and regulation of metabolism. Rodent studies demonstrate that heat treatment, transgenic overexpression and pharmacological induction of HSP72 prevent high-fat diet-induced glucose intolerance and skeletal muscle insulin resistance. Overexpression of skeletal muscle HSP72 in mice has been shown to increase endurance running capacity nearly twofold and increase mitochondrial content by 50%. A positive correlation between HSP72 mRNA expression and mitochondrial enzyme activity has been observed in human skeletal muscle, and HSP72 expression is markedly decreased in skeletal muscle of insulin resistant and type 2 diabetic patients. In addition, decreased levels of HSP72 correlate with insulin resistance and non-alcoholic fatty liver disease progression in livers from obese patients. These data suggest the targeted induction of HSPs could be a therapeutic approach for preventing metabolic disease by maintaining the body's natural stress response. Exercise elicits a number of metabolic adaptations and is a powerful tool in the prevention and treatment of insulin resistance. Exercise training is also a stimulus for increased HSP expression. Although the underlying mechanism(s) for exercise-induced HSP expression are currently unknown, the HSP response may be critical for the beneficial metabolic effects of exercise. Exercise-induced extracellular HSP release may also contribute to metabolic homeostasis by actively restoring HSP72 content in insulin resistant tissues containing low endogenous levels of HSPs.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Ashley E Archer
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alex T Von Schulze
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paige C Geiger
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
77
|
Abstract
The liver has a unique ability of regenerating after injuries or partial loss of its mass. The mechanisms responsible for liver regeneration - mostly occurring when the hepatic tissue is damaged or functionally compromised by metabolic stress - have been studied in considerable detail over the last few decades, because this phenomenon has both basic-biology and clinical relevance. More specifically, recent interest has been focusing on the widespread occurrence of abnormal nutritional habits in the Western world that result in an increased prevalence of non-alcoholic fatty liver disease (NAFLD). NAFLD is closely associated with insulin resistance and dyslipidemia, and it represents a major clinical challenge. The disease may progress to steatohepatitis with persistent inflammation and progressive liver damage, both of which will compromise regeneration under conditions of partial hepatectomy in surgical oncology or in liver transplantation procedures. Here, we analyze the impact of ER stress and SIRT1 in lipid metabolism and in fatty liver pathology, and their consequences on liver regeneration. Moreover, we discuss the fine interplay between ER stress and SIRT1 functioning when contextualized to liver regeneration. An improved understanding of the cellular and molecular intricacies contributing to liver regeneration could be of great clinical relevance in areas as diverse as obesity, metabolic syndrome and type 2 diabetes, as well as oncology and transplantation.
Collapse
Affiliation(s)
| | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
78
|
Ulum B, Teker HT, Sarikaya A, Balta G, Kuskonmaz B, Uckan-Cetinkaya D, Aerts-Kaya F. Bone marrow mesenchymal stem cell donors with a high body mass index display elevated endoplasmic reticulum stress and are functionally impaired. J Cell Physiol 2018; 233:8429-8436. [PMID: 29797574 DOI: 10.1002/jcp.26804] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) are promising candidates for regenerative medicine purposes. The effect of obesity on the function of BM-MSCs is currently unknown. Here, we assessed how obesity affects the function of BM-MSCs and the role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) therein. BM-MSCs were obtained from healthy donors with a normal (<25) or high (>30) body mass index (BMI). High-BMI BM-MSCs displayed severely impaired osteogenic and diminished adipogenic differentiation, decreased proliferation rates, increased senescence, and elevated expression of ER stress-related genes ATF4 and CHOP. Suppression of ER stress using tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyrate (4-PBA) resulted in partial recovery of osteogenic differentiation capacity, with a significant increase in the expression of ALPL and improvement in the UPR. These data indicate that BMI is important during the selection of BM-MSC donors for regenerative medicine purposes and that application of high-BMI BM-MSCs with TUDCA or 4-PBA may improve stem cell function. However, whether this improvement can be translated into an in vivo clinical advantage remains to be assessed.
Collapse
Affiliation(s)
- Baris Ulum
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Hikmet Taner Teker
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Aysun Sarikaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Gunay Balta
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.,Department of Pediatrics, Faculty of Medicine, Division of Hematology, Hacettepe University, Ankara, Turkey
| | - Baris Kuskonmaz
- Department of Pediatrics, Faculty of Medicine, Division of Hematology, Hacettepe University, Ankara, Turkey
| | - Duygu Uckan-Cetinkaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.,Department of Pediatrics, Faculty of Medicine, Division of Hematology, Hacettepe University, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
79
|
Regnault C, Usal M, Veyrenc S, Couturier K, Batandier C, Bulteau AL, Lejon D, Sapin A, Combourieu B, Chetiveaux M, Le May C, Lafond T, Raveton M, Reynaud S. Unexpected metabolic disorders induced by endocrine disruptors in Xenopus tropicalis provide new lead for understanding amphibian decline. Proc Natl Acad Sci U S A 2018; 115:E4416-E4425. [PMID: 29686083 PMCID: PMC5948982 DOI: 10.1073/pnas.1721267115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite numerous studies suggesting that amphibians are highly sensitive to endocrine disruptors (EDs), both their role in the decline of populations and the underlying mechanisms remain unclear. This study showed that frogs exposed throughout their life cycle to ED concentrations low enough to be considered safe for drinking water, developed a prediabetes phenotype and, more commonly, a metabolic syndrome. Female Xenopus tropicalis exposed from tadpole stage to benzo(a)pyrene or triclosan at concentrations of 50 ng⋅L-1 displayed glucose intolerance syndrome, liver steatosis, liver mitochondrial dysfunction, liver transcriptomic signature, and pancreatic insulin hypersecretion, all typical of a prediabetes state. This metabolic syndrome led to progeny whose metamorphosis was delayed and occurred while the individuals were both smaller and lighter, all factors that have been linked to reduced adult recruitment and likelihood of reproduction. We found that F1 animals did indeed have reduced reproductive success, demonstrating a lower fitness in ED-exposed Xenopus Moreover, after 1 year of depuration, Xenopus that had been exposed to benzo(a)pyrene still displayed hepatic disorders and a marked insulin secretory defect resulting in glucose intolerance. Our results demonstrate that amphibians are highly sensitive to EDs at concentrations well below the thresholds reported to induce stress in other vertebrates. This study introduces EDs as a possible key contributing factor to amphibian population decline through metabolism disruption. Overall, our results show that EDs cause metabolic disorders, which is in agreement with epidemiological studies suggesting that environmental EDs might be one of the principal causes of metabolic disease in humans.
Collapse
Affiliation(s)
- Christophe Regnault
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Marie Usal
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Sylvie Veyrenc
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | | | | | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon, Université Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 69000 Lyon, France
| | - David Lejon
- Rovaltain Research Company, F-26300 Alixan, France
| | | | | | - Maud Chetiveaux
- Plate-forme Therassay, l'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Cédric Le May
- Plate-forme Therassay, l'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Thomas Lafond
- Centre de Ressources Biologiques Xénopes, Université Rennes 1, CNRS, Unité Mixte de Service 3387, 35042 Rennes, France
| | - Muriel Raveton
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France;
| |
Collapse
|
80
|
Twayana KS, Ravanan P. Eukaryotic cell survival mechanisms: Disease relevance and therapeutic intervention. Life Sci 2018; 205:73-90. [PMID: 29730169 DOI: 10.1016/j.lfs.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Accepted: 05/01/2018] [Indexed: 01/10/2023]
Abstract
Cell responds to stress by activating various modes of stress responses which aim for minimal damage to cells and speedy recovery from the insults. However, unresolved stresses exceeding the tolerance limit lead to cell death (apoptosis, autophagy etc.) that helps to get rid of damaged cells and protect cell integrity. Furthermore, aberrant stress responses are the hallmarks of several pathophysiologies (neurodegeneration, metabolic diseases, cancer etc.). The catastrophic remodulation of stress responses is observed in cancer cells in favor of their uncontrolled growth. Whereas pro-survival stress responses redirected to death signaling provokes excessive cell death in neurodegeneration. Clear understanding of such mechanistic link to disease progression is required in order to modulate these processes for new therapeutic targets. The current review explains this with respect to novel drug discoveries and other breakthroughs in therapeutics.
Collapse
Affiliation(s)
- Krishna Sundar Twayana
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India.
| |
Collapse
|
81
|
Kitamoto T, Sakurai K, Lee EY, Yokote K, Accili D, Miki T. Distinct roles of systemic and local actions of insulin on pancreatic β-cells. Metabolism 2018; 82:100-110. [PMID: 29320716 PMCID: PMC7391221 DOI: 10.1016/j.metabol.2017.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/16/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Pancreatic β-cell mass and function are critical in glucose homeostasis. Their regulatory mechanisms have been studied principally under experimental conditions of reduced β-cell numbers, such as β-cell ablation and partial pancreatectomy. In the present study, we generated an opposite mouse model with an excessive amount of ectopic β-cells, and analyzed its consequence on β-cell mass and survival. METHODS Mice underwent sub-renal transplantation (SRT) of pseudo-islets generated from a pancreatic β-cell line MIN6 or intra-pancreatic transplantation (IPT) of MIN6 cells, and morphological and functional changes of their endocrine pancreata were analyzed. Cellular fate of pancreatic β-cells after transplantation was traced using RipCre:Rosa26-tdTomato mice. By using MIN6 cells, we evaluated the roles of extracellular glucose, membrane potential, and insulin signaling on β-cell survival. RESULTS SRT mice developed severe, progressive hypoglycemia associated with marked reduction in insulin-positive (Ins+) cell mass and apparent increase in apoptotic Ins+ cells. In in vitro experiments of MIN6 cells, insulin signaling blockade potently induced cell death, suggesting that local insulin action is required for β-cell survival. In fact, IPT (i.e. transplantation close to endogenous β-cells) resulted in fewer apoptotic Ins+ cells compared with those induced by SRT. On the other hand, β-cell mass was decreased in proportion to the decrease in blood glucose levels in both SRT and IPT mice, suggesting a contribution of hypoglycemia induced by systemic hyperinsulinemia. CONCLUSION Insulin plays distinct roles in β-cell survival and β-cell mass regulation through its local and systemic actions on β-cells, respectively.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan; Department of Clinical Cell Biology and Medicine, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan; Division of Endocrinology, Department of Medicine, Columbia University, New York 10032, USA
| | - Kenichi Sakurai
- Center for Preventive Medical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Eun Young Lee
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Domenico Accili
- Division of Endocrinology, Department of Medicine, Columbia University, New York 10032, USA
| | - Takashi Miki
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
| |
Collapse
|
82
|
Marei WFA, De Bie J, Mohey-Elsaeed O, Wydooghe E, Bols PEJ, Leroy JLMR. Alpha-linolenic acid protects the developmental capacity of bovine cumulus-oocyte complexes matured under lipotoxic conditions in vitro. Biol Reprod 2018; 96:1181-1196. [PMID: 28520897 DOI: 10.1093/biolre/iox046] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/17/2017] [Indexed: 12/22/2022] Open
Abstract
Elevated concentrations of free fatty acids (FFAs), predominantly palmitic, stearic, and oleic acids (PSO), exert detrimental effects on oocyte developmental competence. This study examined the effects of omega-3 alpha-linolenic acid (ALA) during in vitro oocyte maturation (IVM) in the presence of PSO on subsequent embryo development and quality, and the cellular mechanisms that might be involved. Bovine cumulus-oocyte complexes (COCs) were supplemented during IVM with ALA (50 μM), PSO (425 μM), or PSO+ALA. Compared with FFA-free controls (P < 0.05), PSO increased embryo fragmentation and decreased good quality embryos on day 2 postfertilization. Day 7 blastocyst rate was also reduced. Day 8 blastocysts had lower cell counts and higher apoptosis but normal metabolic profile. In the PSO group, cumulus cell (CC) expansion was inhibited with an increased CC apoptosis while COC metabolism was not affected. Mitochondrial inner membrane potential (MMP; JC-1 staining) was reduced in the CCs and oocytes. Heat shock protein 70 (HSP70) but not glucose-regulated protein 78 kDa (GRP78, known as BiP; an endoplasmic reticulum stress marker) was upregulated in the CCs. Higher reactive oxygen species levels (DCHFDA staining) were detected in the oocytes. In contrast, adding ALA in the presence of PSO normalized embryo fragmentation, cleavage, blastocyst rates, and blastocyst quality compared to controls (P > 0.05). Combined treatment with ALA also reduced CC apoptosis, partially recovered CC expansion, abrogated the reduction in MMP in the CCs but not in the oocytes, and reduced BiP and HSP70 expression in CCs, compared with PSO only (P < 0.05). In conclusion, ALA supplementation protected oocyte developmental capacity under lipotoxic conditions mainly by protecting cumulus cell viability.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Jessie De Bie
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Omnia Mohey-Elsaeed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eline Wydooghe
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Peter E J Bols
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
83
|
Wang N, Liu Y, Ma Y, Wen D. Hydroxytyrosol ameliorates insulin resistance by modulating endoplasmic reticulum stress and prevents hepatic steatosis in diet-induced obesity mice. J Nutr Biochem 2018; 57:180-188. [PMID: 29747118 DOI: 10.1016/j.jnutbio.2018.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/06/2018] [Accepted: 03/10/2018] [Indexed: 11/28/2022]
Abstract
Endoplasmic reticulum (ER) is a principal organelle responsible for energy and nutrient management. Its dysfunction has been viewed in the context of obesity and related glucolipid metabolic disorders. However, therapeutic approaches to improve ER adaptation and systemic energy balance in obesity are limited. Thus, we examined whether hydroxytyrosol (HT), an important polyphenolic compound found in virgin olive oil, could correct the metabolic impairments in diet-induced obesity (DIO) mice. Here, we found that HT gavage for 10 weeks significantly ameliorated glucose homeostasis and chronic inflammation and decreased hepatic steatosis in DIO mice. At the molecular level, ER stress indicators, inflammatory and insulin signaling markers demonstrated that high-fat diet (HFD)-induced ER stress and insulin resistance (IR) in insulin sensitive tissue were corrected by HT. In vitro studies confirmed that HT supplementation (100 μM) attenuated palmitate-evoked ER stress, thus rescuing the downstream JNK/IRS pathway. As a result from suppression of ER stress in the liver, HT further decreased hepatic sterol regulatory element-binding protein-1 expression (SREBP1). Additionally, aberrant expression of genes involved in hepatic lipogenesis (SREBP1, ACC, FAS, SCD1) caused by HFD was restored by HT. These findings suggested that HT ameliorated chronic inflammation and IR and decreased hepatic steatosis in obesity by beneficial modulation of ER stress.
Collapse
Affiliation(s)
- Ningning Wang
- School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Yang Liu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yanan Ma
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Deliang Wen
- School of Public Health, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
84
|
Kotzbeck P, Giordano A, Mondini E, Murano I, Severi I, Venema W, Cecchini MP, Kershaw EE, Barbatelli G, Haemmerle G, Zechner R, Cinti S. Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation. J Lipid Res 2018; 59:784-794. [PMID: 29599420 DOI: 10.1194/jlr.m079665] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
In mammals, white adipose tissue (WAT) stores and releases lipids, whereas brown adipose tissue (BAT) oxidizes lipids to fuel thermogenesis. In obese individuals, WAT undergoes profound changes; it expands, becomes dysfunctional, and develops a low-grade inflammatory state. Importantly, BAT content and activity decline in obese subjects, mainly as a result of the conversion of brown adipocytes to white-like unilocular cells. Here, we show that BAT "whitening" is induced by multiple factors, including high ambient temperature, leptin receptor deficiency, β-adrenergic signaling impairment, and lipase deficiency, each of which is capable of inducing macrophage infiltration, brown adipocyte death, and crown-like structure (CLS) formation. Brown-to-white conversion and increased CLS formation were most marked in BAT from adipose triglyceride lipase (Atgl)-deficient mice, where, according to transmission electron microscopy, whitened brown adipocytes contained enlarged endoplasmic reticulum, cholesterol crystals, and some degenerating mitochondria, and were surrounded by an increased number of collagen fibrils. Gene expression analysis showed that BAT whitening in Atgl-deficient mice was associated to a strong inflammatory response and NLRP3 inflammasome activation. Altogether, the present findings suggest that converted enlarged brown adipocytes are highly prone to death, which, by promoting inflammation in whitened BAT, may contribute to the typical inflammatory state seen in obesity.
Collapse
Affiliation(s)
- Petra Kotzbeck
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine and Center of Obesity, University of Ancona (Politecnica delle Marche)-United Hospitals, Ancona, Italy
| | - Eleonora Mondini
- Department of Experimental and Clinical Medicine and Center of Obesity, University of Ancona (Politecnica delle Marche)-United Hospitals, Ancona, Italy
| | - Incoronata Murano
- Department of Experimental and Clinical Medicine and Center of Obesity, University of Ancona (Politecnica delle Marche)-United Hospitals, Ancona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine and Center of Obesity, University of Ancona (Politecnica delle Marche)-United Hospitals, Ancona, Italy
| | - Wiebe Venema
- Department of Experimental and Clinical Medicine and Center of Obesity, University of Ancona (Politecnica delle Marche)-United Hospitals, Ancona, Italy
| | - Maria Paola Cecchini
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Erin E Kershaw
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Giorgio Barbatelli
- Department of Experimental and Clinical Medicine and Center of Obesity, University of Ancona (Politecnica delle Marche)-United Hospitals, Ancona, Italy
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine and Center of Obesity, University of Ancona (Politecnica delle Marche)-United Hospitals, Ancona, Italy
| |
Collapse
|
85
|
Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Moreno-Aliaga MJ, Martinez JA. Endoplasmic reticulum stress epigenetics is related to adiposity, dyslipidemia, and insulin resistance. Adipocyte 2018; 7:137-142. [PMID: 29570038 DOI: 10.1080/21623945.2018.1447731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Unresolved ER stress is involved in the onset and progression of several obesity-related metabolic disorders, including dyslipidemia and insulin resistance. Different epigenetic modifications may regulate ER stress response and consequently disease risks. These epigenetic phenomena encompass DNA and histone methylation patterns in ER stress genes and downstream signaling molecules, as well as microRNA expression. Our results suggest potential associations of methylation signatures at ER regulatory genes in white blood cells with an abdominal/central obesity marker (waist circumference), dyslipidemia, and insulin resistance. Interestingly, most of these genes were implicated in ER stress, as revealed by pathway enrichment analysis. Together, these findings add knowledge into the current understanding of relationships between obesity and accompanying complications with epigenetics and ER stress. Here, we comment about the implication of ER stress in central/abdominal adiposity, dyslipidemia, and insulin resistance, with an emphasis on the role that epigenetics may play on these pathological processes.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Jose I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Fermin I. Milagro
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición; Carlos III Health Institute, Madrid, Spain
| | - Maria J. Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición; Carlos III Health Institute, Madrid, Spain
| | - J. Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición; Carlos III Health Institute, Madrid, Spain
- Madrid Institute of Advanced Studies (IMDEA Food), Madrid, Spain
| | | |
Collapse
|
86
|
Röhrl C, Stangl H. Cholesterol metabolism-physiological regulation and pathophysiological deregulation by the endoplasmic reticulum. Wien Med Wochenschr 2018; 168:280-285. [PMID: 29488036 PMCID: PMC6132555 DOI: 10.1007/s10354-018-0626-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022]
Abstract
Cholesterol is an essential lipid for mammalian cells and its homeostasis is tightly regulated. Disturbance of cellular cholesterol homeostasis is linked to atherosclerosis and cardiovascular diseases. A central role in the sensing and regulation of cholesterol homeostasis is attributed to the endoplasmic reticulum (ER). This organelle harbours inactive transcription factors, which sense ER cholesterol levels and initiate transcriptional responses after activation and translocation into the nucleus. Thereupon, these responses enable adaption to high or low cellular cholesterol levels. Besides the abovementioned canonical functions, ER stress-induced by metabolic burden-and the resulting unfolded protein response influence cholesterol metabolism relevant to metabolic disorders. This review summarizes basic as well as recent knowledge on the role of the ER in terms of regulation of cholesterol metabolism.
Collapse
Affiliation(s)
- Clemens Röhrl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währingerstraße 10, 1090, Vienna, Austria
| | - Herbert Stangl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währingerstraße 10, 1090, Vienna, Austria.
| |
Collapse
|
87
|
Zhang M, Jiang X, Qu M, Gu H, Sha Q, Hua F. Salubrinal abrogates palmitate-induced leptin resistance and endoplasmic reticulum stress via nuclear factor kappa-light-chain-enhancer of activated B cell pathway in mHypoE-44 hypothalamic neurons. Diabetes Metab Syndr Obes 2018; 11:893-899. [PMID: 30584344 PMCID: PMC6287548 DOI: 10.2147/dmso.s179346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The prevalence of obesity is growing rapidly and has become a global problem that increases the risk for many diseases. It is influenced by many factors, including consumption of the Western-style diet, characterized as a high-fat diet. Within the central nervous system, the hypothalamus is a critical site in maintaining energy homeostasis and sensing nutrient status, including palmitate, the major component of high-fat-diet. METHODS In the present study, we conducted a variety of studies to investigate the specific role of salubrinal on palmitate-induced hypothalamic cell death, leptin signaling, and ER stress in an embryonic hypothalamic cell line. Experiments were also performed to identify the underlying mechanisms of the protective effect of salubrinal. RESULTS Our results indicate that salubrinal protects hypothalamic cells against PA-induced ER stress and improves hypothalamic leptin sensitivity. CONCLUSION Taken together, our findings conclusively reveal that salubrinal abrogates palmitate-induced hypothalamic leptin resistance and ER stress via NF-κB pathway.
Collapse
Affiliation(s)
- Min Zhang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Xiaohong Jiang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China,
| | - Meidi Qu
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Hongliu Gu
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Qi Sha
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China,
| |
Collapse
|
88
|
High fat diet disrupts endoplasmic reticulum calcium homeostasis in the rat liver. J Hepatol 2017; 67:1009-1017. [PMID: 28596111 PMCID: PMC6122848 DOI: 10.1016/j.jhep.2017.05.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Disruption to endoplasmic reticulum (ER) calcium homeostasis has been implicated in obesity, however, the ability to longitudinally monitor ER calcium fluctuations has been challenging with prior methodologies. We recently described the development of a Gaussia luciferase (GLuc)-based reporter protein responsive to ER calcium depletion (GLuc-SERCaMP) and investigated the effect of a high fat diet on ER calcium homeostasis. METHODS A GLuc-based reporter cell line was treated with palmitate, a free fatty acid. Rats intrahepatically injected with GLuc-SERCaMP reporter were fed a cafeteria diet or high fat diet. The liver and plasma were examined for established markers of steatosis and compared to plasma levels of SERCaMP activity. RESULTS Palmitate induced GLuc-SERCaMP release in vitro, indicating ER calcium depletion. Consumption of a cafeteria diet or high fat pellets correlated with alterations to hepatic ER calcium homeostasis in rats, shown by increased GLuc-SERCaMP release. Access to ad lib high fat pellets also led to a corresponding decrease in microsomal calcium ATPase activity and an increase in markers of hepatic steatosis. In addition to GLuc-SERCaMP, we have also identified endogenous proteins (endogenous SERCaMPs) with a similar response to ER calcium depletion. We demonstrated the release of an endogenous SERCaMP, thought to be a liver esterase, during access to a high fat diet. Attenuation of both GLuc-SERCaMP and endogenous SERCaMP was observed during dantrolene administration. CONCLUSIONS Here we describe the use of a reporter for in vitro and in vivo models of high fat diet. Our results support the theory that dietary fat intake correlates with a decrease in ER calcium levels in the liver and suggest a high fat diet alters the ER proteome. Lay summary: ER calcium dysregulation was observed in rats fed a cafeteria diet or high fat pellets, with fluctuations in sensor release correlating with fat intake. Attenuation of sensor release, as well as food intake was observed during administration of dantrolene, a drug that stabilizes ER calcium. The study describes a novel technique for liver research and provides insight into cellular processes that may contribute to the pathogenesis of obesity and fatty liver disease.
Collapse
|
89
|
Winn NC, Grunewald ZI, Gastecki ML, Woodford ML, Welly RJ, Clookey SL, Ball JR, Gaines TL, Karasseva NG, Kanaley JA, Sacks HS, Vieira-Potter VJ, Padilla J. Deletion of UCP1 enhances ex vivo aortic vasomotor function in female but not male mice despite similar susceptibility to metabolic dysfunction. Am J Physiol Endocrinol Metab 2017; 313:E402-E412. [PMID: 28655717 PMCID: PMC5668596 DOI: 10.1152/ajpendo.00096.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/08/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023]
Abstract
Females are typically more insulin sensitive than males, which may be partly attributed to greater brown adipose tissue (BAT) activity and uncoupling protein 1 (UCP1) content. Accordingly, we tested the hypothesis that UCP1 deletion would abolish sex differences in insulin sensitivity and that whitening of thoracic periaortic BAT caused by UCP1 loss would be accompanied with impaired thoracic aortic function. Furthermore, because UCP1 exerts antioxidant effects, we examined whether UCP1 deficiency-induced metabolic dysfunction was mediated by oxidative stress. Compared with males, female mice had lower HOMA- and AT-insulin resistance (IR) despite no significant differences in BAT UCP1 content. UCP1 ablation increased HOMA-IR, AT-IR, and whitening of BAT in both sexes. Expression of UCP1 in thoracic aorta was greater in wild-type females compared with males. Importantly, deletion of UCP1 enhanced aortic vasomotor function in females only. UCP1 ablation did not promote oxidative stress in interscapular BAT. Furthermore, daily administration of the free radical scavenger tempol for 8 wk did not abrogate UCP1 deficiency-induced increases in adiposity, hyperinsulinemia, or liver steatosis. Collectively, we report that 1) in normal chow-fed mice housed at 25°C, aortic UCP1 content was greater in females than males and its deletion improved ex vivo aortic vasomotor function in females only; 2) constitutive UCP1 content in BAT was similar between females and males and loss of UCP1 did not abolish sex differences in insulin sensitivity; and 3) the metabolic disruptions caused by UCP1 ablation did not appear to be contingent upon increased oxidative stress in mice under normal dietary conditions.
Collapse
Affiliation(s)
- Nathan C Winn
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Zachary I Grunewald
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Michelle L Gastecki
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rebecca J Welly
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Stephanie L Clookey
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - James R Ball
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - T'Keaya L Gaines
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | - Jill A Kanaley
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Harold S Sacks
- Endocrine and Diabetes Division, Veterans Affairs Greater Los Angeles Healthcare System and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | | | - Jaume Padilla
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri;
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
- Child Health, University of Missouri, Columbia, Missouri
| |
Collapse
|
90
|
Murakami S. The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity. Life Sci 2017; 186:80-86. [DOI: 10.1016/j.lfs.2017.08.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/31/2017] [Accepted: 08/08/2017] [Indexed: 01/08/2023]
|
91
|
Inhibition of endoplasmic reticulum stress alleviates cigarette smoke-induced airway inflammation and emphysema. Oncotarget 2017; 8:77685-77695. [PMID: 29100417 PMCID: PMC5652808 DOI: 10.18632/oncotarget.20768] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic bronchitis and emphysema are pathologic features of chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS)-induced endoplasmic reticulum (ER) stress has been implicated in the COPD development, but the molecular mechanism by which it contributes to COPD etiology and the specific role it plays in COPD pathogenesis remain poorly understood. Here, we aimed to determine the role of ER stress in the pathogenesis of CS-induced airway inflammation and emphysema. Exposure to CS significantly increased the expression of ER stress markers in Beas-2B cells and in mouse lungs, possibly through the production of oxidative stress. Further, inhibition of ER stress by 4-phenylbutyric acid (4-PBA) reduced CS extract-induced inflammation in Beas-2B cells through the modulation of NF-κB signaling. 4-PBA also protected against CS-induced airway inflammation and the development of emphysema in mice, which was associated with a reduction in NF-κB activation and alveolar cell apoptosis in the lungs. Taken together, our results suggest that ER stress is crucial for CS-induced inflammation and emphysema, and that targeting ER stress may represent a novel approach to the treatment of COPD.
Collapse
|
92
|
Qiu L, Ma Y, Luo Y, Cao Z, Lu H. Protective effects of isorhamnetin on N2a cell against endoplasmic reticulum stress-induced injury is mediated by PKCε. Biomed Pharmacother 2017; 93:830-836. [DOI: 10.1016/j.biopha.2017.06.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023] Open
|
93
|
Downregulation of TRB3 protects neurons against apoptosis induced by global cerebral ischemia and reperfusion injury in rats. Neuroscience 2017; 360:118-127. [PMID: 28782643 DOI: 10.1016/j.neuroscience.2017.07.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023]
Abstract
Global cerebral ischemia and reperfusion injury (GCI/R) can lead to neuronal apoptosis and contributes to permanent neurological sequelae. However, the underlying mechanism is largely unknown. Therefore, the present study aimed to assess the effects of GCI/R on the tribbles homolog 3 (TRB3) and to explore the role of TRB3 in GCI/R. The GCI/R model was developed in Sprague-Dawley male rats by four-vessel occlusion. Subsequently, the expressions of TRB3, endoplasmic reticulum stress markers, and apoptosis-associated proteins were examined by western blot at 1h, 6h, 12h, 24h, and 72h after GCI/R. TRB3 short-hairpin RNA (shRNA) lentivirus was constructed and used to investigate the role of TRB3 in GCI/R-induced neuronal apoptosis. GCI/R increased the level of TRB3, endoplasmic reticulum stress markers, and pro-apoptotic proteins. The level of protein kinase B (Akt) phosphorylation was reduced during GCI/R. Administration of TRB3 shRNA lentivirus attenuated GCI/R-induced up-regulation of TRB3, endoplasmic reticulum stress, and neuronal apoptosis. Furthermore, TRB3 shRNA lentivirus reversed the reduced level of Akt phosphorylation induced by GCI/R. These data implied that TRB3 participated in the GCI/R-induced neuronal apoptosis. Knocking down TRB3 attenuated endoplasmic reticulum stress, enhanced Akt phosphorylation, and protected neurons from apoptosis in response to GCI/R. These results demonstrated that the downregulation of TRB3 may be a promising approach for treating GCI/R.
Collapse
|
94
|
Liu Y, Chen Y, Zhang J, Liu Y, Zhang Y, Su Z. Retinoic acid receptor-related orphan receptor α stimulates adipose tissue inflammation by modulating endoplasmic reticulum stress. J Biol Chem 2017; 292:13959-13969. [PMID: 28698385 DOI: 10.1074/jbc.m117.782391] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/06/2017] [Indexed: 02/05/2023] Open
Abstract
Adipose tissue inflammation has been linked to metabolic diseases such as obesity and type 2 diabetes. However, the molecules that mediate inflammation in adipose tissue have not been addressed. Although retinoic acid receptor-related orphan receptor α (RORα) is known to be involved in the regulation of inflammatory response in some tissues, its role is largely unknown in adipose tissue. Conversely, it is known that endoplasmic reticulum (ER) stress and unfolding protein response (UPR) signaling affect the inflammatory response in obese adipose tissue, but whether RORα regulates these processes remains unknown. In this study, we investigate the link between RORα and adipose tissue inflammation. We showed that the inflammatory response in macrophages or 3T3-L1 adipocytes stimulated by lipopolysaccharide, as well as adipose tissue in obese mice, markedly increased the expression of RORα. Adenovirus-mediated overexpression of RORα or treatment with the RORα-specific agonist SR1078 enhanced the expression of inflammatory cytokines and increased the number of infiltrated macrophages into adipose tissue. Furthermore, SR1078 up-regulated the mRNA expression of ER stress response genes and enhanced phosphorylations of two of the three mediators of major UPR signaling pathways, PERK and IRE1α. Finally, we found that alleviation of ER stress using a chemical chaperone followed by the suppression of RORα induced inflammation in adipose tissue. Our data suggest that RORα-induced ER stress response potentially contributes to the adipose tissue inflammation that can be mitigated by treatment with chemical chaperones. The relationships established here between RORα expression, inflammation, and UPR signaling may have implications for therapeutic targeting of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yin Liu
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yulong Chen
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinlong Zhang
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yulan Liu
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yanjie Zhang
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhiguang Su
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
95
|
Chiappisi E, Ringseis R, Eder K, Gessner DK. Effect of endoplasmic reticulum stress on metabolic and stress signaling and kidney-specific functions in Madin-Darby bovine kidney cells. J Dairy Sci 2017. [PMID: 28624282 DOI: 10.3168/jds.2016-12406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent studies demonstrated induction of endoplasmic reticulum (ER) stress in tissues of cows after parturition, but knowledge about the effect of ER stress on important cellular processes, such as critical signaling and metabolic pathways, in cattle is scarce. Thus, the present study aimed to investigate the effect of ER stress induction on nuclear factor-κB (NF-κB), nuclear factor E2-related factor 2 (Nrf2), and sterol regulatory element-binding protein (SREBF1) pathway in Madin-Darby bovine kidney (MDBK) cells, a widely used in vitro model in ruminant research. To consider the kidney origin of MDBK cells, the effect on renal distal tubular cell-specific functions, such as transport processes and regulation of 1,25(OH)2D3 levels, was also studied. Treatment of MDBK cells with 2 different ER stress inducers, thapsigargin (TG) and tunicamycin (TM), strongly induced ER stress as evident from induction of ER stress target genes, increased phosphorylation of PKR-like ER kinase, and enhanced splicing of X-box binding protein 1. The TM decreased the protein concentration of NF-κB p50 and the mRNA levels of the NF-κB target genes. Likewise, TG decreased the mRNA concentration of tumor necrosis factor and tended to decrease NF-κB p50 protein and mRNA levels of NF-κB target genes. The mRNA levels of most of the Nrf2 target genes investigated were reduced by TG and TM in MDBK cells. Both ER stress inducers reduced the mRNA levels of SREBF1 and its target genes in MDBK cells. Interestingly, TG decreased, but TM increased the mRNA level of the Ca2+ binding protein calbindin 1, whereas the mRNA level of the plasma membrane Ca2+-transporting ATPase 1 remained unchained. The mRNA level of the cytochrome P450 component 24A1 involved in 1α-hydroxylation of 25(OH)D3 was strongly elevated, whereas the mRNA level of the cytochrome P450 component 27A1 catalyzing the breakdown of 1,25(OH)2D3 was markedly reduced by both ER stress inducers. The concentration of 1,25(OH)2D3 in the supernatant of MDBK cells was increased by approximately 15% by both TG and TM. The present study indicates that under conditions of ER stress, critical signaling pathways, such as NF-κB, Nrf2, and SREBF1, are inhibited, whereas the formation of 1,25(OH)2D3 is stimulated in bovine MDBK cells. Future studies are necessary to clarify the physiological relevance of these findings.
Collapse
Affiliation(s)
- E Chiappisi
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - R Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - D K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
96
|
Carta S, Semino C, Sitia R, Rubartelli A. Dysregulated IL-1β Secretion in Autoinflammatory Diseases: A Matter of Stress? Front Immunol 2017; 8:345. [PMID: 28421072 PMCID: PMC5378711 DOI: 10.3389/fimmu.2017.00345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/10/2017] [Indexed: 12/02/2022] Open
Abstract
Infectious and sterile inflammation is induced by activation of innate immune cells. Triggering of toll-like receptors by pathogen-associated molecular pattern or damage-associated molecular pattern (PAMP or DAMP) molecules generates reactive oxygen species that in turn induce production and activation of pro-inflammatory cytokines such as IL-1β. Recent evidence indicates that cell stress due to common events, like starvation, enhanced metabolic demand, cold or heat, not only potentiates inflammation but may also directly trigger it in the absence of PAMPs or DAMPs. Stress-mediated inflammation is also a common feature of many hereditary disorders, due to the proteotoxic effects of mutant proteins. We propose that harmful mutant proteins can induce dysregulated IL-1β production and inflammation through different pathways depending on the cell type involved. When expressed in professional inflammatory cells, stress induced by the mutant protein activates in a cell-autonomous way the onset of inflammation and mediates its aberrant development, resulting in the explosive responses that hallmark autoinflammatory diseases. When expressed in non-immune cells, the mutant protein may cause the release of transcellular stress signals that trigger and propagate inflammation.
Collapse
Affiliation(s)
- Sonia Carta
- Cell Biology Unit, IRCCS AOU San Martino-IST, Genova, Italy
| | - Claudia Semino
- Unit of Protein Transport and Secretion, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Roberto Sitia
- Unit of Protein Transport and Secretion, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | |
Collapse
|
97
|
Mann JP, Raponi M, Nobili V. Clinical implications of understanding the association between oxidative stress and pediatric NAFLD. Expert Rev Gastroenterol Hepatol 2017; 11:371-382. [PMID: 28162008 DOI: 10.1080/17474124.2017.1291340] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress is central to the pathogenesis of non-alcoholic steatohepatitis. The reactive oxygen species (ROS) that characterise oxidative stress are generated in several cellular sites and their production is influence by multi-organ interactions. Areas covered: Mitochondrial dysfunction is the main source of ROS in fatty liver and is closely related to endoplasmic reticulum stress. Both are caused by lipotoxicity and together these three factors form a cycle of progressive organelle damage, resulting in sterile inflammation and apoptosis. Adipose tissue inflammation and intestinal dysbiosis provide substrates for ROS formation and trigger immune activation. Obstructive sleep apnea and abnormal divalent metal metabolism may also play a role. Expert commentary: The majority of available high-quality data originates from studies in adults and there are fewer therapeutic trials performed in pediatric cohorts, therefore conclusions are generalised to children. Establishing the role of organelle interactions, and its relationship with oxidative stress in steatohepatitis, is a rapidly evolving area of research.
Collapse
Affiliation(s)
- Jake P Mann
- a Metabolic Research Laboratories, Institute of Metabolic Science , University of Cambridge , Cambridge , UK.,b Department of paediatrics , University of Cambridge , Cambridge , UK
| | | | - Valerio Nobili
- d Hepatometabolic Unit , Bambino Gesu Hospital - IRCCS , Rome , Italy.,e Liver Research Unit , Bambino Gesu Hospital - IRCCS , Rome , Italy
| |
Collapse
|
98
|
Metabolic Disorders and Cancer: Hepatocyte Store-Operated Ca2+ Channels in Nonalcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:595-621. [DOI: 10.1007/978-3-319-57732-6_30] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
99
|
Obesity-induced endoplasmic reticulum stress suppresses nuclear factor-Y expression. Mol Cell Biochem 2016; 426:47-54. [PMID: 27837431 DOI: 10.1007/s11010-016-2879-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/07/2016] [Indexed: 02/05/2023]
Abstract
Nuclear transcription factor Y (NF-Y) is an evolutionarily conserved transcription factor composed of three subunits, NF-YA, NF-YB, and NF-YC. NF-Y plays crucial roles in pre-adipocyte maintenance and/or commitment to adipogenesis. NF-YA dysfunction in adipocyte resulted in an age-dependent progressive loss of adipose tissue associated with metabolic complications. Endoplasmic reticulum (ER) stress has emerged as an important mediator in the pathogenesis of obesity. However, it is not known if NF-YA is involved in the ER stress-mediated pathogenesis of obesity. We first examined the effects of ER stress on the NF-YA expression in cultured 3T3-L1 adipocytes; then in ob/ob genetic obesity mice, we tested the effect of chemical chaperones alleviating ER stress on the expression levels of NF-YA. Subsequently, we inhibited the new mRNA synthesis using actinomycin D in 3T3-L1 cells to explore the mechanism modulating NF-YA expression. Finally, we evaluated the involvement of PPARg in the regulation of NF-YA expression by ER stress. We demonstrated that both obesity- and chemical chaperone -induced ER stress suppressed NF-YA expression and alleviation of ER stress by chemical chaperone could recover NF-YA expression in ob/ob mice. Moreover, we showed that ER stress suppressed NF-YA mRNA transcription through the involvement of peroxisome proliferator-activated receptor gamma (PPARg). Activation of PPARg ameliorates the ER stress-induced NF-YA suppression. Our findings may point to a possible role of NF-YA in stress conditions that occur in chronic obesity, ER stress might be involved in the pathogenesis of obesity through NF-YA depletion.
Collapse
|