51
|
Dysmetabolism and Neurodegeneration: Trick or Treat? Nutrients 2022; 14:nu14071425. [PMID: 35406040 PMCID: PMC9003269 DOI: 10.3390/nu14071425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests the existence of a strong link between metabolic syndrome and neurodegeneration. Indeed, epidemiologic studies have described solid associations between metabolic syndrome and neurodegeneration, whereas animal models contributed for the clarification of the mechanistic underlying the complex relationships between these conditions, having the development of an insulin resistance state a pivotal role in this relationship. Herein, we review in a concise manner the association between metabolic syndrome and neurodegeneration. We start by providing concepts regarding the role of insulin and insulin signaling pathways as well as the pathophysiological mechanisms that are in the genesis of metabolic diseases. Then, we focus on the role of insulin in the brain, with special attention to its function in the regulation of brain glucose metabolism, feeding, and cognition. Moreover, we extensively report on the association between neurodegeneration and metabolic diseases, with a particular emphasis on the evidence observed in animal models of dysmetabolism induced by hypercaloric diets. We also debate on strategies to prevent and/or delay neurodegeneration through the normalization of whole-body glucose homeostasis, particularly via the modulation of the carotid bodies, organs known to be key in connecting the periphery with the brain.
Collapse
|
52
|
Mossine VV, Waters JK, Gu Z, Sun GY, Mawhinney TP. Bidirectional Responses of Eight Neuroinflammation-Related Transcriptional Factors to 64 Flavonoids in Astrocytes with Transposable Insulated Signaling Pathway Reporters. ACS Chem Neurosci 2022; 13:613-623. [PMID: 35147416 DOI: 10.1021/acschemneuro.1c00750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is implicated in a variety of pathologies and is mechanistically linked to hyperactivation of glial cells in the central nervous system (CNS), predominantly in response to external stimuli. Multiple dietary factors were reported to alter neuroinflammation, but their actions on the relevant transcription factors in glia are not sufficiently understood. Here, an in vitro protocol employing cultured astroglial cells, which carry reporters of multiple signaling pathways associated with inflammation, was developed for screening environmental factors and synthetic drugs. Immortalized rat astrocyte line DI TNC1 was stably transfected with piggyBac transposon vectors containing a series of insulated reporters for the transcriptional activity of NF-κB, AP-1, signal transducer and activator of transcription 1 (STAT1), signal transducer and activator of transcription 3 (STAT3), aromatic hydrocarbon receptor (AhR), Nrf2, peroxisome proliferator-activated receptor γ (PPARγ), and HIF-1α, which is quantified via luciferase assay. Concatenated green fluorescent protein (GFP) expression was employed for simultaneous evaluation of cellular viability. Responses to a set of 64 natural and synthetic monomeric flavonoids representing six main structural classes (flavan-3-ols, flavanones, flavones, flavonols, isoflavones, and anthocyan(id)ins) were obtained at 10 and 50 μM concentrations. Except for HIF-1α, the activity of NF-κB and other transcription factors (TFs) in astrocytes was predominantly inhibited by flavan-3-ols and anthocyan(id)ins, while flavones and isoflavones generally activated these TFs. In addition, we obtained dose-response profiles for 11 flavonoids (apigenin, baicalein, catechin, cyanidin, epigallocatechin gallate, genistein, hesperetin, kaempferol, luteolin, naringenin, and quercetin) within the 1-100 μM range and in the presence of immune-stimulants and immune-suppressors. The flavonoid concentration profiles for TF-activation reveal biphasic response curves from the astrocytes. Apart from epigallocatechin gallate (EGCG), flavonoids failed to inhibit the NF-κB activation by proinflammatory agents [lipopolysaccharide (LPS), cytokines], but most of the tested polyphenols synergized with STAT3 inhibitors (stattic, ruxolitinib) against the activation of this TF in the astrocytes. We conclude that transposable insulated reporters of transcriptional activation represent a convenient neurochemistry tool in screening for activators/inhibitors of signaling pathways.
Collapse
Affiliation(s)
- Valeri V. Mossine
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - James K. Waters
- Agriculture Experiment Station Chemical Laboratories, University of Missouri, Columbia, Missouri 65211, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri 65211, United States
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Thomas P. Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Child Health, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
53
|
Ceasrine AM, Bilbo SD. Dietary fat: a potent microglial influencer. Trends Endocrinol Metab 2022; 33:196-205. [PMID: 35078706 PMCID: PMC8881786 DOI: 10.1016/j.tem.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022]
Abstract
Poor nutrition, lack of exercise, and genetic predisposition all contribute to the growing epidemic of obesity. Overweight/obesity create an environment of chronic inflammation that leads to negative physiological and neurological outcomes, such as diabetes, cardiovascular disease, and anxiety/depression. While the whole body contributes to metabolic homeostasis, the neuroimmune system has recently emerged as a key regulator of metabolism. Microglia, the resident immune cells of the brain, respond both directly and indirectly to dietary fat, and the environment in which microglia develop contributes to their responsiveness later in life. Thus, high maternal weight during pregnancy may have consequences for microglial function in offspring. Here, we discuss the most recent findings on microglia signaling in overweight/obesity with a focus on perinatal programming.
Collapse
Affiliation(s)
- Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA; Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
54
|
Coad BM, Ghomroudi PA, Sims R, Aggleton JP, Vann SD, Metzler-Baddeley C. Apolipoprotein ε4 modifies obesity-related atrophy in the hippocampal formation of cognitively healthy adults. Neurobiol Aging 2022; 113:39-54. [PMID: 35303671 PMCID: PMC9084919 DOI: 10.1016/j.neurobiolaging.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 02/12/2022] [Indexed: 12/02/2022]
Abstract
Age-related inverted U-shaped curve of hippocampal myelin/neurite packing. Reduced hippocampal myelin/neurite packing and size/complexity in obesity. APOE modifies the effects of obesity on hippocampal size/complexity. Age-related slowing of spatial navigation but no risk effects on cognition. CA/DG predict episodic memory and subiculum predicts spatial navigation performance.
Characterizing age- and risk-related hippocampal vulnerabilities may inform about the neural underpinnings of cognitive decline. We studied the impact of three risk-factors, Apolipoprotein (APOE)-ε4, a family history of dementia, and central obesity, on the CA1, CA2/3, dentate gyrus and subiculum of 158 cognitively healthy adults (38-71 years). Subfields were labelled with the Automatic Segmentation of Hippocampal Subfields and FreeSurfer (version 6) protocols. Volumetric and microstructural measurements from quantitative magnetization transfer and Neurite Orientation Density and Dispersion Imaging were extracted for each subfield and reduced to three principal components capturing apparent myelin/neurite packing, size/complexity, and metabolism. Aging was associated with an inverse U-shaped curve on myelin/neurite packing and affected all subfields. Obesity led to reductions in myelin/neurite packing and size/complexity regardless of APOE and family history of dementia status. However, amongst individuals with a healthy Waist-Hip-Ratio, APOE ε4 carriers showed lower size/complexity than non-carriers. Segmentation protocol type did not affect this risk pattern. These findings reveal interactive effects between APOE and central obesity on the hippocampal formation of cognitively healthy adults.
Collapse
|
55
|
Zhuang H, Yao X, Li H, Li Q, Yang C, Wang C, Xu D, Xiao Y, Gao Y, Gao J, Bi M, Liu R, Teng G, Liu L. Long-term high-fat diet consumption by mice throughout adulthood induces neurobehavioral alterations and hippocampal neuronal remodeling accompanied by augmented microglial lipid accumulation. Brain Behav Immun 2022; 100:155-171. [PMID: 34848340 DOI: 10.1016/j.bbi.2021.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023] Open
Abstract
High-fat diet (HFD) consumption is generally associated with an increased risk of cognitive and emotional dysfunctions that constitute a sizeable worldwide health burden with profound social and economic consequences. Middle age is a critical time period that affects one's health later in life; pertinently, the prevalence of HFD consumption is increasing among mature adults. Given the growing health-related economic burden imposed globally by increasing rates of noncommunicable diseases in rapidly aging populations, along with the pervasive but insidious health impairments associated with HFD consumption, it is critically important to understand the effects of long-term HFD consumption on brain function and to gain insights into their potential underlying mechanisms. In the present study, adult male C57BL/6J mice were randomly assigned a control diet (CD, 10 kJ% from fat) or an HFD (60 kJ% from fat) for 6 months (6 M) or 9 months (9 M) followed by behavioral tests, serum biochemical analysis, and histological examinations of both the dorsal and ventral regions of the hippocampus. In both the 6 M and 9 M cohorts, mice that consumed an HFD exhibited poorer memory performance in the Morris water maze test (MWM) and greater depression- and anxiety-like behavior during the open field test (OFT), sucrose preference test (SPT) and forced swim test (FST) than control mice. Compared with age-matched mice in the CD group, mice in the HFD group showed abnormal hippocampal neuronal morphology, which was particularly evident in the ventral hippocampus. Hippocampal microglia in mice in the HFD group generally had a more activated phenotype evidenced by a smaller microglial territory area and increased cluster of differentiation 68 (CD68, a marker of phagocytic activity) immunoreactivity, while the microglial density in the dentate gyrus (DG) was decreased, indicating microglial decline. The engulfment of postsynaptic density 95 (PSD95, a general postsynaptic marker) puncta by microglia was increased in the HFD groups. Histological analysis of neutral lipids using a fluorescent probe (BODIPY) revealed that the total neutral lipid content in regions of interests (ROIs) and the lipid load in microglia were increased in the HFD group relative to the age-matched CD group. In summary, our results demonstrated that chronic HFD consumption from young adulthood to middle age induced anxiety- and depression-like behavior as well as memory impairment. The negative influence of chronic HFD consumption on behavioral and hippocampal neuroplasticity appears to be linked to a change in microglial phenotype that is accompanied by a remarkable increase in cellular lipid accumulation. These observations highlighting the potential to target lipid metabolism deficits to reduce the risk of HFD-associated emotional dysfunctions.
Collapse
Affiliation(s)
- Hong Zhuang
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Xiuting Yao
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Hong Li
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Qian Li
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Chenxi Yang
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Conghui Wang
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Dan Xu
- School of Public Health, Southeast University, Nanjing 210009
| | - Yu Xiao
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Yuan Gao
- Medical College, Southeast University, Nanjing 210009, China
| | - Jiayi Gao
- Medical College, Southeast University, Nanjing 210009, China
| | - Mingze Bi
- Medical College, Southeast University, Nanjing 210009, China
| | - Rui Liu
- Medical College, Southeast University, Nanjing 210009, China
| | - Gaojun Teng
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China.
| | - Lijie Liu
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China.
| |
Collapse
|
56
|
Paulo SL, Miranda-Lourenço C, Belo RF, Rodrigues RS, Fonseca-Gomes J, Tanqueiro SR, Geraldes V, Rocha I, Sebastião AM, Xapelli S, Diógenes MJ. High Caloric Diet Induces Memory Impairment and Disrupts Synaptic Plasticity in Aged Rats. Curr Issues Mol Biol 2021; 43:2305-2319. [PMID: 34940136 PMCID: PMC8929079 DOI: 10.3390/cimb43030162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
The increasing consumption of sugar and fat seen over the last decades and the consequent overweight and obesity, were recently linked with a deleterious effect on cognition and synaptic function. A major question, which remains to be clarified, is whether obesity in the elderly is an additional risk factor for cognitive impairment. We aimed at unravelling the impact of a chronic high caloric diet (HCD) on memory performance and synaptic plasticity in aged rats. Male rats were kept on an HCD or a standard diet (control) from 1 to 24 months of age. The results showed that under an HCD, aged rats were obese and displayed significant long-term recognition memory impairment when compared to age-matched controls. Ex vivo synaptic plasticity recorded from hippocampal slices from HCD-fed aged rats revealed a reduction in the magnitude of long-term potentiation, accompanied by a decrease in the levels of the brain-derived neurotrophic factor receptors TrkB full-length (TrkB-FL). No alterations in neurogenesis were observed, as quantified by the density of immature doublecortin-positive neurons in the hippocampal dentate gyrus. This study highlights that obesity induced by a chronic HCD exacerbates age-associated cognitive decline, likely due to impaired synaptic plasticity, which might be associated with deficits in TrkB-FL signaling.
Collapse
Affiliation(s)
- Sara L. Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (S.L.P.); (C.M.-L.); (R.F.B.); (R.S.R.); (J.F.-G.); (S.R.T.); (A.M.S.); (S.X.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (S.L.P.); (C.M.-L.); (R.F.B.); (R.S.R.); (J.F.-G.); (S.R.T.); (A.M.S.); (S.X.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Rita F. Belo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (S.L.P.); (C.M.-L.); (R.F.B.); (R.S.R.); (J.F.-G.); (S.R.T.); (A.M.S.); (S.X.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Rui S. Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (S.L.P.); (C.M.-L.); (R.F.B.); (R.S.R.); (J.F.-G.); (S.R.T.); (A.M.S.); (S.X.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - João Fonseca-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (S.L.P.); (C.M.-L.); (R.F.B.); (R.S.R.); (J.F.-G.); (S.R.T.); (A.M.S.); (S.X.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara R. Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (S.L.P.); (C.M.-L.); (R.F.B.); (R.S.R.); (J.F.-G.); (S.R.T.); (A.M.S.); (S.X.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Vera Geraldes
- Instituto de Fisiologia, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (V.G.); (I.R.)
- Centro Cardiovascular da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Isabel Rocha
- Instituto de Fisiologia, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (V.G.); (I.R.)
- Centro Cardiovascular da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (S.L.P.); (C.M.-L.); (R.F.B.); (R.S.R.); (J.F.-G.); (S.R.T.); (A.M.S.); (S.X.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (S.L.P.); (C.M.-L.); (R.F.B.); (R.S.R.); (J.F.-G.); (S.R.T.); (A.M.S.); (S.X.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (S.L.P.); (C.M.-L.); (R.F.B.); (R.S.R.); (J.F.-G.); (S.R.T.); (A.M.S.); (S.X.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217-985-183
| |
Collapse
|
57
|
Stranahan AM. Visceral adiposity, inflammation, and hippocampal function in obesity. Neuropharmacology 2021; 205:108920. [PMID: 34902347 DOI: 10.1016/j.neuropharm.2021.108920] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023]
Abstract
The 'apple-shaped' anatomical pattern that accompanies visceral adiposity increases risk for multiple chronic diseases, including conditions that impact the brain, such as diabetes and hypertension. However, distinguishing between the consequences of visceral obesity, as opposed to visceral adiposity-associated metabolic and cardiovascular pathologies, presents certain challenges. This review summarizes current literature on relationships between adipose tissue distribution and cognition in preclinical models and highlights unanswered questions surrounding the potential role of tissue- and cell type-specific insulin resistance in these effects. While gaps in knowledge persist related to insulin insensitivity and cognitive impairment in obesity, several recent studies suggest that cells of the neurovascular unit contribute to hippocampal synaptic dysfunction, and this review interprets those findings in the context of progressive metabolic dysfunction in the CNS. Signalling between cerebrovascular endothelial cells, astrocytes, microglia, and neurons has been linked with memory deficits in visceral obesity, and this article describes the cellular changes in each of these populations with respect to their role in amplification or diminution of peripheral signals. The picture emerging from these studies, while incomplete, implicates pro-inflammatory cytokines, insulin resistance, and hyperglycemia in various stages of obesity-induced hippocampal dysfunction. As in the parable of the five blind wanderers holding different parts of an elephant, considerable work remains in order to assemble a model for the underlying mechanisms linking visceral adiposity with age-related cognitive decline.
Collapse
Affiliation(s)
- Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1462 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
58
|
de Paula GC, Brunetta HS, Engel DF, Gaspar JM, Velloso LA, Engblom D, de Oliveira J, de Bem AF. Hippocampal Function Is Impaired by a Short-Term High-Fat Diet in Mice: Increased Blood-Brain Barrier Permeability and Neuroinflammation as Triggering Events. Front Neurosci 2021; 15:734158. [PMID: 34803583 PMCID: PMC8600238 DOI: 10.3389/fnins.2021.734158] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, and especially in Western civilizations, most of the staple diets contain high amounts of fat and refined carbohydrates, leading to an increasing number of obese individuals. In addition to inducing metabolic disorders, energy dense food intake has been suggested to impair brain functions such as cognition and mood control. Here we demonstrate an impaired memory function already 3 days after the start of a high-fat diet (HFD) exposure, and depressive-like behavior, in the tail suspension test, after 5 days. These changes were followed by reduced synaptic density, changes in mitochondrial function and astrocyte activation in the hippocampus. Preceding or coinciding with the behavioral changes, we found an induction of the proinflammatory cytokines TNF-α and IL-6 and an increased permeability of the blood–brain barrier (BBB), in the hippocampus. Finally, in mice treated with a TNF-α inhibitor, the behavioral and BBB alterations caused by HFD-feeding were mitigated suggesting that inflammatory signaling was critical for the changes. In summary, our findings suggest that HFD rapidly triggers hippocampal dysfunction associated with BBB disruption and neuroinflammation, promoting a progressive breakdown of synaptic and metabolic function. In addition to elucidating the link between diet and cognitive function, our results might be relevant for the comprehension of the neurodegenerative process.
Collapse
Affiliation(s)
- Gabriela Cristina de Paula
- Postgraduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Brazil.,Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Henver S Brunetta
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Daiane F Engel
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil.,Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Joana M Gaspar
- Postgraduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - David Engblom
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Andreza Fabro de Bem
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden.,Department of Physiological Science, University of Brasília, Brasília, Brazil
| |
Collapse
|
59
|
Wang XL, Li L. Microglia Regulate Neuronal Circuits in Homeostatic and High-Fat Diet-Induced Inflammatory Conditions. Front Cell Neurosci 2021; 15:722028. [PMID: 34720877 PMCID: PMC8549960 DOI: 10.3389/fncel.2021.722028] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are brain resident macrophages, which actively survey the surrounding microenvironment and promote tissue homeostasis under physiological conditions. During this process, microglia participate in synaptic remodeling, neurogenesis, elimination of unwanted neurons and cellular debris. The complex interplay between microglia and neurons drives the formation of functional neuronal connections and maintains an optimal neural network. However, activation of microglia induced by chronic inflammation increases synaptic phagocytosis and leads to neuronal impairment or death. Microglial dysfunction is implicated in almost all brain diseases and leads to long-lasting functional deficiency, such as hippocampus-related cognitive decline and hypothalamus-associated energy imbalance (i.e., obesity). High-fat diet (HFD) consumption triggers mediobasal hypothalamic microglial activation and inflammation. Moreover, HFD-induced inflammation results in cognitive deficits by triggering hippocampal microglial activation. Here, we have summarized the current knowledge of microglial characteristics and biological functions and also reviewed the molecular mechanism of microglia in shaping neural circuitries mainly related to cognition and energy balance in homeostatic and diet-induced inflammatory conditions.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianjian Li
- Department of Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
60
|
Butler MJ, Deems NP, Muscat S, Butt CM, Belury MA, Barrientos RM. Dietary DHA prevents cognitive impairment and inflammatory gene expression in aged male rats fed a diet enriched with refined carbohydrates. Brain Behav Immun 2021; 98:198-209. [PMID: 34425209 PMCID: PMC8511052 DOI: 10.1016/j.bbi.2021.08.214] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
The consumption of a processed foods diet (PD) enriched with refined carbohydrates, saturated fats, and lack of fiber has increased in recent decades and likely contributed to increased incidence of chronic disease and weight gain in humans. These diets have also been shown to negatively impact brain health and cognitive function in rodents, non-human primates, and humans, potentially through neuroimmune-related mechanisms. However, mechanisms by which PD impacts the aged brain are unknown. This gap in knowledge is critical, considering the aged brain has a heightened state of baseline inflammation, making it more susceptible to secondary challenges. Here, we showed that consumption of a PD, enriched with refined carbohydrate sources, for 28 days impaired hippocampal- and amygdalar-dependent memory function in aged (24 months), but not young (3 months) F344 × BN rats. These memory deficits were accompanied by increased expression of inflammatory genes, such as IL-1β, CD11b, MHC class II, CD86, NLRP3, and complement component 3, in the hippocampus and amygdala of aged rats. Importantly, we also showed that when the same PD is supplemented with the omega-3 polyunsaturated fatty acid DHA, these memory deficits and inflammatory gene expression changes were ameliorated in aged rats, thus providing the first evidence that DHA supplementation can protect against memory deficits and inflammatory gene expression in aged rats fed a processed foods diet. Lastly, we showed that while PD consumption increased weight gain in both young and aged rats, this effect was exaggerated in aged rats. Aging was also associated with significant alterations in hypothalamic gene expression, with no impact by DHA on weight gain or hypothalamic gene expression. Together, our data provide novel insights regarding diet-brain interactions by showing that PD consumption impairs cognitive function likely through a neuroimmune mechanism and that dietary DHA can ameliorate this phenomenon.
Collapse
Affiliation(s)
- Michael J Butler
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Stephanie Muscat
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | | | - Martha A Belury
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
61
|
Delgado I, Dexpert S, Sauvant J, Cryan JF, Capuron L. Influence of pro-obesogenic dietary habits on stress-induced cognitive alterations in healthy adult volunteers. Neurobiol Stress 2021; 15:100353. [PMID: 34189193 PMCID: PMC8220106 DOI: 10.1016/j.ynstr.2021.100353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
Stress is a fundamental biological response that can be associated with alterations in cognitive processes. Unhealthy dietary habits are proposed to modulate this effect, notably through their pro-inflammatory potential. This cross-sectional study aimed to evaluate the influence of an obesogenic dietary pattern with inflammatory potential on stress-induced cognitive alterations in healthy volunteers. Fifty healthy adult participants were stratified into two diet groups: obesogenic vs. non-obesogenic, based on their self-reported consumption of fat, sugar, and salt, assessed by the French National Program for Nutrition and Health questionnaire and a food frequency questionnaire. Serum high-sensitive C-reactive protein (hsCRP) was measured as a marker of systemic inflammation using ELISA. Verbal memory and sustained attention were evaluated through the Verbal Recognition Memory (VRM) test and the Rapid Visual Information Processing (RVP) test respectively, from the Cambridge Neuropsychological Test Automated Battery. Assessments were performed before and after exposure to the psychological stressor Trier Social Stress Test (TSST). Stress response was evaluated by subjective stress perception, salivary cortisol, blood pressure, and heart rate. Twenty-two participants (44%) presented an obesogenic diet. Systemic inflammation was significantly higher in the obesogenic diet group (p=0.005). The TSST induced a significant stress response, regardless of dietary habits (Time effect p < 0.001). In the whole sample, exposure to TSST was associated with cognitive changes in the form of impaired performance on the VRM test and overall improved RVP scores. However, the obesogenic diet group exhibited an increased total number of false alarms (Time x Diet: p=0.014) on the RVP test after TSST exposure as well as a greater impairment in immediate verbal recognition on the VRM test (Time x Diet: p=0.002). This effect was not associated with the inflammatory component of the obesogenic diet. These results suggest that an obesogenic diet may sensitize healthy individuals to the detrimental effects of acute stress on cognitive performance.
Collapse
Affiliation(s)
- Inês Delgado
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Sandra Dexpert
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Julie Sauvant
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| |
Collapse
|
62
|
Shrivastava K, Rosenberg T, Meiri N, Maroun M. Age-Specific Modulation of Prefrontal Cortex LTP by Glucocorticoid Receptors Following Brief Exposure to HFD. Front Synaptic Neurosci 2021; 13:722827. [PMID: 34675793 PMCID: PMC8524128 DOI: 10.3389/fnsyn.2021.722827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/17/2021] [Indexed: 11/27/2022] Open
Abstract
The corticolimbic circuits in general and the medial prefrontal cortex in particular, undergo maturation during juvenility. It is thus expected that environmental challenges in forms of obesogenic diet can exert different effects in juvenile animals compared to adults. Further, the relationship between glucocorticoids and obesity has also been demonstrated in several studies. As a result, glucocorticoid receptor (GR) antagonists are currently being tested as potential anti-obesity agents. In the present study, we examined the effects of short-term exposure to high-fat diet (HFD) on prefrontal long-term potentiation (LTP) in both juvenile and adult rats, and the role of glucocorticoid receptors (GRs) in modulating these effects. We found HFD impaired prefrontal LTP in both juveniles and adults, but the effects of GR modulation were age- and diet-dependent. Specifically, GR antagonist RU-486 reversed the impairment of LTP in juvenile animals following HFD, and had no effect on control-diet animals. In adult animals, RU-486 has no effect on HFD-impaired LTP, but abolished LTP in control-diet animals. Furthermore, impairments in the prefrontal LTP following HFD are involved with an increase in the mPFC GR levels only in the juveniles. Further, we found that in vivo application of GR agonists into adult mPFC rescued HFD-induced impairment in LTP, suggesting that these receptors might represent strategic therapeutic targets to potentially combat obesity and metabolic related disorder.
Collapse
Affiliation(s)
- Kuldeep Shrivastava
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Tali Rosenberg
- Agricultural Research Organization, The Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Noam Meiri
- Agricultural Research Organization, The Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
63
|
Xu CJ, Li MQ, Li-Zhao, Chen WG, Wang JL. Short-term high-fat diet favors the appearances of apoptosis and gliosis by activation of ERK1/2/p38MAPK pathways in brain. Aging (Albany NY) 2021; 13:23133-23148. [PMID: 34620734 PMCID: PMC8544319 DOI: 10.18632/aging.203607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 01/26/2023]
Abstract
High-fat diet (HFD) has been associated with neuroinflammation and apoptosis in distinct brain regions. To explore the effect of short-term (7, 14 and 21 days) high-fat overfeeding on apoptosis, inflammatory signaling proteins, APP changes and glial cell activities in cerebral cortex and cerebellum. Mice were fed with HFD for different lengths (up to 21 days) and after each time body weights of mice was tested, then the apoptotic proteins, IL-1β, APP, BACE1and MAPKs, Akt and NF-κB signaling activity were evaluated by western blots. Results demonstrate that short period of high-fat overnutrition significantly promotes apoptosis, APP expression at day 21 of cerebral cortex and at day 7 of cerebellum compared to chow diet. In addition, increased GFAP+astrocytes, Iba-1+microglia and IL-1β 30 were observed in cerebral cortex after 21 days HFD, but no changes for 7 days overfeeding of cerebellum. Serendipitously, ERK1/2 pathway was activated both in cerebral cortex and cerebellum for different time course of HFD. Furthermore, increased phospho-p38 MAPK level was observed in cerebellum only. In consistent with in vivo results, SH-SY5Y cells treatment with cholesterol (50 μM, 100 μM) for 48 h culture in vitro demonstrated that pro-apoptotic proteins were enhanced as well. In brief, short-term HFD consumption increases sensitivity to apoptosis, APP and IL-1β production as well as gliosis in cerebral cortex and cerebellum, which may be related to enhancement of ERK1/2 and p38 MAPK activation.
Collapse
Affiliation(s)
- Chao-Jin Xu
- Department of Histology and Embryology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Mei-Qi Li
- School of 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Li-Zhao
- School of 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Wei-Guang Chen
- Department of Histology and Embryology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jun-Ling Wang
- Center for Reproductive Medicine, Affiliated Hospital 1 of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| |
Collapse
|
64
|
De Sousa RAL, Santos LG, Lopes PM, Cavalcante BRR, Improta-Caria AC, Cassilhas RC. Physical exercise consequences on memory in obesity: A systematic review. Obes Rev 2021; 22:e13298. [PMID: 34105227 DOI: 10.1111/obr.13298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023]
Abstract
Obesity is associated with changes in memory. Thus, the aim of this systematic review was to investigate the physical exercise consequences on memory in obesity. A search was carried out in the PubMed, Lilacs, and Scielo databases with the following descriptors: "physical exercise," "memory," and "obesity." A total of 16 studies were analyzed in this review. Low, moderate, and high intensity exercise training showed positive effects on memory in patients with obesity (100%). The animal models of obesity used in their physical exercise protocols: treadmill (72.7%) or wheel running (27.3%). Most of the animal studies (81.8%) revealed positive effects of the physical exercise protocol on memory in obesity. Mouse was the most commonly used animal (54.5%), and a 60% high-fat diet (HFD) was the most commonly method used to induce obesity (82%). We did not identify any knockout model of obesity that was used to evaluate memory and used physical exercise as the main intervention. Thus, exercise training, independently if it is resistance or endurance training, seems to be an excellent intervention to prevent and inhibit cognitive impairment and memory loss on obese patients and animal models of obesity.
Collapse
Affiliation(s)
- Ricardo Augusto Leoni De Sousa
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, Brazil.,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), Brazilian Society of Physiology, UFVJM, Diamantina, Brazil
| | - Letícia Gomes Santos
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, Brazil.,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, Brazil
| | - Paulo Maurício Lopes
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, Brazil.,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, Brazil.,Post Graduation Program in Health Sciences (PPGCS), UFVJM, Diamantina, Brazil
| | | | | | - Ricardo Cardoso Cassilhas
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, Brazil.,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), Brazilian Society of Physiology, UFVJM, Diamantina, Brazil.,Post Graduation Program in Health Sciences (PPGCS), UFVJM, Diamantina, Brazil
| |
Collapse
|
65
|
Butler MJ. The role of Western diets and obesity in peripheral immune cell recruitment and inflammation in the central nervous system. Brain Behav Immun Health 2021; 16:100298. [PMID: 34589790 PMCID: PMC8474237 DOI: 10.1016/j.bbih.2021.100298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022] Open
Abstract
As the prevalence of obesity and chronic disease increases, the role of nutrition is taking center stage as a potential root cause of not just metabolic-related illnesses, but also of disorders of the central nervous system (CNS). Consumption of a modern, westernized diet, such as a high fat diet (HFD) that contains excess saturated fatty acids (SFAs), refined carbohydrates, and ultra-processed ingredients has been shown to induce neuroinflammation in multiple brain regions important for energy homeostasis, cognitive function, and mood regulation in rodents, non-human primates, and humans. This review article summarizes the literature showing Western diets, via SFA increases, can increase the reactivity and alter the function of multiple types of immune cells from both the innate and adaptive branches of the immune system, with a specific focus on microglia, macrophages, dendritic cells, and T-cells. These changes in immune and neuroimmune signaling have important implications for neuroinflammation and brain health and will be an important factor in future psychoneuroimmunology research.
Collapse
Affiliation(s)
- Michael J. Butler
- Institute for Behavioral Medicine Research, Ohio State University, Wexner Medical Center 460 Medical Center Drive, Columbus, OH, 43210, USA
| |
Collapse
|
66
|
Sarangi M, Dus M. Crème de la Créature: Dietary Influences on Behavior in Animal Models. Front Behav Neurosci 2021; 15:746299. [PMID: 34658807 PMCID: PMC8511460 DOI: 10.3389/fnbeh.2021.746299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
In humans, alterations in cognitive, motivated, and affective behaviors have been described with consumption of processed diets high in refined sugars and saturated fats and with high body mass index, but the causes, mechanisms, and consequences of these changes remain poorly understood. Animal models have provided an opportunity to answer these questions and illuminate the ways in which diet composition, especially high-levels of added sugar and saturated fats, contribute to brain physiology, plasticity, and behavior. Here we review findings from invertebrate (flies) and vertebrate models (rodents, zebrafish) that implicate these diets with changes in multiple behaviors, including eating, learning and memory, and motivation, and discuss limitations, open questions, and future opportunities.
Collapse
Affiliation(s)
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
67
|
Porcher L, Bruckmeier S, Burbano SD, Finnell JE, Gorny N, Klett J, Wood SK, Kelly MP. Aging triggers an upregulation of a multitude of cytokines in the male and especially the female rodent hippocampus but more discrete changes in other brain regions. J Neuroinflammation 2021; 18:219. [PMID: 34551810 PMCID: PMC8459490 DOI: 10.1186/s12974-021-02252-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Despite widespread acceptance that neuroinflammation contributes to age-related cognitive decline, studies comparing protein expression of cytokines in the young versus old brains are surprisingly limited in terms of the number of cytokines and brain regions studied. Complicating matters, discrepancies abound-particularly for interleukin 6 (IL-6)-possibly due to differences in sex, species/strain, and/or the brain regions studied. METHODS As such, we clarified how cytokine expression changes with age by using a Bioplex and Western blot to measure multiple cytokines across several brain regions of both sexes, using 2 mouse strains bred in-house as well as rats obtained from NIA. Parametric and nonparametric statistical tests were used as appropriate. RESULTS In the ventral hippocampus of C57BL/6J mice, we found age-related increases in IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, eotaxin, G-CSF, interfeuron δ, KC, MIP-1a, MIP-1b, rantes, and TNFα that are generally more pronounced in females, but no age-related change in IL-5, MCP-1, or GM-CSF. We also find aging is uniquely associated with the emergence of a module (a.k.a. network) of 11 strongly intercorrelated cytokines, as well as an age-related shift from glycosylated to unglycosylated isoforms of IL-10 and IL-1β in the ventral hippocampus. Interestingly, age-related increases in extra-hippocampal cytokine expression are more discreet, with the prefrontal cortex, striatum, and cerebellum of male and female C57BL/6J mice demonstrating robust age-related increase in IL-6 expression but not IL-1β. Importantly, we found this widespread age-related increase in IL-6 also occurs in BALB/cJ mice and Brown Norway rats, demonstrating conservation across species and rearing environments. CONCLUSIONS Thus, age-related increases in cytokines are more pronounced in the hippocampus compared to other brain regions and can be more pronounced in females versus males depending on the brain region, genetic background, and cytokine examined.
Collapse
Affiliation(s)
- Latarsha Porcher
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Sophie Bruckmeier
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA
| | - Steven D Burbano
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Julie E Finnell
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Nicole Gorny
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA
| | - Jennifer Klett
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Susan K Wood
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Michy P Kelly
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA. .,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA. .,Center for Research on Aging, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA.
| |
Collapse
|
68
|
Lier J, Streit WJ, Bechmann I. Beyond Activation: Characterizing Microglial Functional Phenotypes. Cells 2021; 10:cells10092236. [PMID: 34571885 PMCID: PMC8464670 DOI: 10.3390/cells10092236] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Classically, the following three morphological states of microglia have been defined: ramified, amoeboid and phagocytic. While ramified cells were long regarded as “resting”, amoeboid and phagocytic microglia were viewed as “activated”. In aged human brains, a fourth, morphologically novel state has been described, i.e., dystrophic microglia, which are thought to be senescent cells. Since microglia are not replenished by blood-borne mononuclear cells under physiological circumstances, they seem to have an “expiration date” limiting their capacity to phagocytose and support neurons. Identifying factors that drive microglial aging may thus be helpful to delay the onset of neurodegenerative diseases, such as Alzheimer’s disease (AD). Recent progress in single-cell deep sequencing methods allowed for more refined differentiation and revealed regional-, age- and sex-dependent differences of the microglial population, and a growing number of studies demonstrate various expression profiles defining microglial subpopulations. Given the heterogeneity of pathologic states in the central nervous system, the need for accurately describing microglial morphology and expression patterns becomes increasingly important. Here, we review commonly used microglial markers and their fluctuations in expression in health and disease, with a focus on IBA1 low/negative microglia, which can be found in individuals with liver disease.
Collapse
Affiliation(s)
- Julia Lier
- Institute of Anatomy, University of Leipzig, 04109 Leipzig, Germany;
- Department of Neurology, University of Leipzig, 04109 Leipzig, Germany
- Correspondence:
| | - Wolfgang J. Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32611, USA;
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, 04109 Leipzig, Germany;
| |
Collapse
|
69
|
Muscat SM, Barrientos RM. The Perfect Cytokine Storm: How Peripheral Immune Challenges Impact Brain Plasticity & Memory Function in Aging. Brain Plast 2021; 7:47-60. [PMID: 34631420 PMCID: PMC8461734 DOI: 10.3233/bpl-210127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Precipitous declines in cognitive function can occur in older individuals following a variety of peripheral immune insults, such as surgery, infection, injury, and unhealthy diet. Aging is associated with numerous changes to the immune system that shed some light on why this abrupt cognitive deterioration may occur. Normally, peripheral-to-brain immune signaling is tightly regulated and advantageous; communication between the two systems is bi-directional, via either humoral or neural routes. Following an immune challenge, production, secretion, and translocation of cytokines into the brain is critical to the development of adaptive sickness behaviors. However, aging is normally associated with neuroinflammatory priming, notably microglial sensitization. Microglia are the brain's innate immune cells and become sensitized with advanced age, such that upon immune stimulation they will mount more exaggerated neuroimmune responses. The resultant elevation of pro-inflammatory cytokine expression, namely IL-1β, has profound effects on synaptic plasticity and, consequentially, cognition. In this review, we (1) investigate the processes which lead to aberrantly elevated inflammatory cytokine expression in the aged brain and (2) examine the impact of the pro-inflammatory cytokine IL-1β on brain plasticity mechanisms, including its effects on BDNF, AMPA and NMDA receptor-mediated long-term potentiation.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
70
|
Augusto-Oliveira M, Verkhratsky A. Lifestyle-dependent microglial plasticity: training the brain guardians. Biol Direct 2021; 16:12. [PMID: 34353376 PMCID: PMC8340437 DOI: 10.1186/s13062-021-00297-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Lifestyle is one of the most powerful instruments shaping mankind; the lifestyle includes many aspects of interactions with the environment, from nourishment and education to physical activity and quality of sleep. All these factors taken in complex affect neuroplasticity and define brain performance and cognitive longevity. In particular, physical exercise, exposure to enriched environment and dieting act through complex modifications of microglial cells, which change their phenotype and modulate their functional activity thus translating lifestyle events into remodelling of brain homoeostasis and reshaping neural networks ultimately enhancing neuroprotection and cognitive longevity.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, 66075-110, Brazil.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain. .,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| |
Collapse
|
71
|
Sun Q, Yan H, Chen F, Jiang F, Chen W, Li D, Guo Y. Restoration of Proresolution Pathway with Exogenous Resolvin D1 Prevents Sevoflurane-Induced Cognitive Decline by Attenuating Neuroinflammation in the Hippocampus in Rats with Type 2 Diabetes Mellitus. Front Pharmacol 2021; 12:720249. [PMID: 34366871 PMCID: PMC8343131 DOI: 10.3389/fphar.2021.720249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022] Open
Abstract
Sevoflurane (SEV), a commonly used volatile anesthetic, has been shown to cause cognitive decline in diabetic rats by aggregating neuroinflammation in the hippocampus, but the underlying mechanisms are unknown. Recent evidence suggests that neuroinflammation could be a consequence of failure to resolve inflammation by specialized pro-resolving lipid mediators including resolvin D1 (RvD1). Here we first examined whether type 2 diabetes mellitus (DM) alters RvD1 proresolution pathway. Diabetic Goto-Kakizaki (GK) rats and non-diabetic Wistar rats received control or 2.6% SEV exposure for 4 h. Seven days after exposure, GK control rats, compared with Wistar control rats, had significantly lower RvD1 levels in plasma and CSF and decreased RvD1 receptor FPR2 expression in the hippocampus. SEV increased RvD1 levels in plasma and CSF and FPR2 expression in the hippocampus in Wistar rats but not in GK rats. We next examined whether RvD1 treatment of GK rats can prevent SEV-induced neuroinflammation and cognitive decline. GK rats received control, SEV or SEV and once-daily treatment with exogenous RvD1 (0.2 ug/kg, ip) for 7 days. RvD1 administration markedly increased RvD1 levels in plasma and CSF and FPR2 expression in the hippocampus in GK rats received SEV. Compared with GK control rats, GK rats received SEV exhibited shorter freezing times in trace fear conditioning task, which was accompanied by increased microglia activity and pro-inflammatory cytokine expression in the hippocampus. RvD1 administration attenuated SEV-induced increases in microglia activity and pro-inflammatory cytokine expression in the hippocampus, preventing cognitive decline in GK rats. Notably, neither SEV nor RvD1 altered metabolic parameters in GK rats. The results suggest that RvD1 proresolution pathway is impaired in the brain of diabetic GK rats. which may enhance the susceptibility to SEV, contributing to neuroinflammation and cognitive decline. Restoration of RvD1 proresolution pathway in diabetic GK rats with exogenous RvD1 can prevent SEV-induced cognitive decline by attenuating neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Hongdan Yan
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Falong Chen
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Fen Jiang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Wenjuan Chen
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Yongmin Guo
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
72
|
Ettcheto M, Sánchez-Lopez E, Cano A, Carrasco M, Herrera K, Manzine PR, Espinosa-Jimenez T, Busquets O, Verdaguer E, Olloquequi J, Auladell C, Folch J, Camins A. Dexibuprofen ameliorates peripheral and central risk factors associated with Alzheimer's disease in metabolically stressed APPswe/PS1dE9 mice. Cell Biosci 2021; 11:141. [PMID: 34294142 PMCID: PMC8296685 DOI: 10.1186/s13578-021-00646-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several studies stablished a relationship between metabolic disturbances and Alzheimer´s disease (AD) where inflammation plays a pivotal role. However, mechanisms involved still remain unclear. In the present study, we aimed to evaluate central and peripheral effects of dexibuprofen (DXI) in the progression of AD in APPswe/PS1dE9 (APP/PS1) female mice, a familial AD model, fed with high fat diet (HFD). Animals were fed either with conventional chow or with HFD, from their weaning until their sacrifice, at 6 months. Moreover, mice were divided into subgroups to which were administered drinking water or water supplemented with DXI (20 mg kg-1 d-1) for 3 months. Before sacrifice, body weight, intraperitoneal glucose and insulin tolerance test (IP-ITT) were performed to evaluate peripheral parameters and also behavioral tests to determine cognitive decline. Moreover, molecular studies such as Western blot and RT-PCR were carried out in liver to confirm metabolic effects and in hippocampus to analyze several pathways considered hallmarks in AD. RESULTS Our studies demonstrate that DXI improved metabolic alterations observed in transgenic animals fed with HFD in vivo, data in accordance with those obtained at molecular level. Moreover, an improvement of cognitive decline and neuroinflammation among other alterations associated with AD were observed such as beta-amyloid plaque accumulation and unfolded protein response. CONCLUSIONS Collectively, evidence suggest that chronic administration of DXI prevents the progression of AD through the regulation of inflammation which contribute to improve hallmarks of this pathology. Thus, this compound could constitute a novel therapeutic approach in the treatment of AD in a combined therapy.
Collapse
Affiliation(s)
- Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
- Unitat de Farmacologia I Farmacognòsia, Facultat de Farmàcia I Ciències de L'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, 08028, Barcelona, Spain.
| | - Elena Sánchez-Lopez
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades - International University of Catalunya (UIC), Barcelona, Spain
| | - Marina Carrasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira I Virgili, Reus, Spain
| | - Katherine Herrera
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Patricia R Manzine
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil
| | - Triana Espinosa-Jimenez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Oriol Busquets
- Dominick P. Purpura Department of Neurosciences, Albert Einstein College of Medicine, New York City (10461), USA
| | - Ester Verdaguer
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jaume Folch
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira I Virgili, Reus, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
73
|
Markovic SJ, Fitzgerald M, Peiffer JJ, Scott BR, Rainey-Smith SR, Sohrabi HR, Brown BM. The impact of exercise, sleep, and diet on neurocognitive recovery from mild traumatic brain injury in older adults: A narrative review. Ageing Res Rev 2021; 68:101322. [PMID: 33737117 DOI: 10.1016/j.arr.2021.101322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Mild traumatic brain injury (mTBI) accounts for a large majority of traumatic brain injuries sustained globally each year. Older adults, who are already susceptible to age-related declines to neurocognitive health, appear to be at an increased risk of both sustaining an mTBI and experiencing slower or impaired recovery. There is also growing evidence that mTBI is a potential risk factor for accelerated cognitive decline and neurodegeneration. Lifestyle-based interventions are gaining prominence as a cost-effective means of maintaining cognition and brain health with age. Consequently, inter-individual variations in exercise, sleep, and dietary patterns could influence the trajectory of post-mTBI neurocognitive recovery, particularly in older adults. This review synthesises the current animal and human literature centred on the mechanisms through which lifestyle-related habits and behaviours could influence acute and longer-term neurocognitive functioning following mTBI. Numerous neuroprotective processes which are impacted by lifestyle factors have been established in animal models of TBI. However, the literature is characterised by a lack of translation to human samples and limited appraisal of the interaction between ageing and brain injury. Further research is needed to better establish the therapeutic utility of applying lifestyle-based modifications to improve post-mTBI neurocognitive outcomes in older adults.
Collapse
Affiliation(s)
- Shaun J Markovic
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia, Australia.
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia, Australia
| | - Jeremiah J Peiffer
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; Centre for Healthy Ageing, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; Murdoch Applied Sports Science Laboratory, Murdoch University, 90 South St, Murdoch, Western Australia, Australia
| | - Brendan R Scott
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; Centre for Healthy Ageing, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; Murdoch Applied Sports Science Laboratory, Murdoch University, 90 South St, Murdoch, Western Australia, Australia
| | - Stephanie R Rainey-Smith
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia, Australia; Centre for Healthy Ageing, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Dr, Joondalup, Western Australia, Australia; School of Psychological Science, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia, Australia
| | - Hamid R Sohrabi
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia, Australia; Centre for Healthy Ageing, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Dr, Joondalup, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, Balaclava Rd, Macquarie Park, New South Wales, Australia
| | - Belinda M Brown
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia, Australia; Centre for Healthy Ageing, Murdoch University, 90 South St, Murdoch, Western Australia, Australia
| |
Collapse
|
74
|
Li W, Wang S, Wang H, Wang J, Jin F, Fang F, Fang C. Astragaloside IV prevents memory impairment in D-galactose-induced aging rats via the AGEs/RAGE/ NF-κB axis. Arch Med Res 2021; 53:20-28. [PMID: 34217517 DOI: 10.1016/j.arcmed.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND We investigated the effects of astragaloside IV (AS-IV) on memory function in aging rats mimicked by D-galactose administration and explored the potential molecular mechanisms. METHODS Twenty-seven male rats were randomly divided into control group (N = 9), model group (N = 9), and AS-IV treated group (N = 9). Aging model was stimulated by D-galactose (400 mg/kg/d, i.p., dissolved in saline) for 8 weeks in rats. The general status of the rats was observed weekly. Learning and memory function was determined using the eight-arm radical maze and step-down test. Pathological changes in the hippocampal CA1 region were determined by hematoxylin and eosin staining. Organ indexes, superoxide dismutase (SOD) activity and malonaldehyde (MDA) content in the serum were measured. Expression of advanced glycation end products (AGEs), receptor for AGEs (RAGE), nuclear factor-κB (NF-κB), interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay, real-time polymerase chain reaction or western blotting. RESULTS AS-IV improved the general status of the aging rats induced by D-galactose, prevented the impairment of memory function, organ indexes, and the pathological damage of the hippocampus. From the prospective of oxidative stress, AS-IV increased sera SOD activity and decreased MDA content. Additionally, AS-IV also reduced the inflammatory response by reducing hippocampal IL-1β, TNF-α, and IL-6 expression. Importantly, AS-IV prevented D-galactose-induced expression of AGEs, RAGE and NF-κB in the hippocampus. CONCLUSION AS-IV could prevent D-galactose-induced aging and memory impairment in rats, likely via regulation of inflammatory response, which was modulated by AGEs/RAGE/NF-κB axis.
Collapse
Affiliation(s)
- Wei Li
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Shuo Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Hao Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jiepeng Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Feng Jin
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Fang Fang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Chaoyi Fang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang 050091, China.
| |
Collapse
|
75
|
Wang W, Wang R, Jiang Z, Li H, Zhu Z, Khalid A, Liu D, Pan F. Inhibiting Brd4 alleviated PTSD-like behaviors and fear memory through regulating immediate early genes expression and neuroinflammation in rats. J Neurochem 2021; 158:912-927. [PMID: 34050937 DOI: 10.1111/jnc.15439] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by depression/anxiety and memory failure, primarily fear memory. According to the reports, neuroinflammation and synaptic plasticity can play a role in the neurophysiological mechanisms underlying PTSD. Bromodomain-containing protein 4 (Brd4) intriguingly affects regulating of inflammatory responses and learning and memory. This study aimed to explore the effect of inhibiting Brd4 on depression/anxiety-like behaviors, spatial and fear memory, and underlying mechanisms in a model of PTSD. Inescapable foot shocks (IFS) with a sound reminder in 6 days were used to induce PTSD-like behaviors which were tested using contextual and cue fear tests, sucrose preference test, open-field test, elevated plus maze test, and Y-maze test. Meanwhile, the Brd4 inhibitor JQ1 was used as an intervention. The results found that IFS induced PTSD-like behaviors and indicated obvious Brd4 expression in microglia of the prefrontal cortex (PFC), hippocampus, and amygdala, pro-inflammatory cytokines over-expression, microglial activation, and nuclear factor-kappa B over-expression in PFC and hippocampus but not in amygdala. Meanwhile, the alterations of immediate early genes (IEGs) were found in PFC, hippocampus, and amygdala. Besides, dendritic spine density was reduced in PFC and hippocampus but was elevated in amygdala of rats with IFS. In addition, treatment with JQ1 significantly reduced freezing time in the contextual and cue fear test, reversed the behavioral impairment, decreased the elevated neuroinflammation, and normalized the alteration in IEGs and dendritic spine densities. The results suggested that Brd4 was involved in IFS-induced PTSD-like behaviors through regulating neuroinflammation, dynamics of IEGs, and synaptic plasticity.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Rui Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Zhijun Jiang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Haonan Li
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Zemeng Zhu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Arslan Khalid
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| |
Collapse
|
76
|
Saponins from Panax japonicus alleviate HFD-induced impaired behaviors through inhibiting NLRP3 inflammasome to upregulate AMPA receptors. Neurochem Int 2021; 148:105098. [PMID: 34129896 DOI: 10.1016/j.neuint.2021.105098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
Obesity is characterized by a condition of low-grade chronic inflammation that facilitates development of numerous comorbidities and dysregulation of brain homeostasis. It is reported that obesity can lead to behavioral alterations such as cognitive decline and depression-like behaviors both in humans and rodents. Saponins from panax japonicus (SPJ) have been reported to exhibit anti-inflammatory action in mouse model of diet-induced obesity. We evaluated the neuroprotection of SPJ on high fat diet (HFD) induced impaired behaviors such as memory deficit and depressive-like behaviors, and explored the underlying mechanisms. 6-week male Balb/c mice were divided into normal control group (NC, 17% total calories from fat), HFD group (60% total calories from fat), and HFD treated with SPJ groups (orally gavaged with dosages of 15 mg/kg and 45 mg/kg), respectively. After treatment for 16 weeks, behavioral tests were performed to evaluate the cognition and depression-like behaviors of the mice. The underling mechanisms of SPJ on HFD-induced impaired behaviors were investigated through histopathological observation, Western blot analysis and immunofluorescence. Our results showed that HFD-fed mice caused behavioral disorders, neuronal degeneration as well as elevated neuroinflammation, which was partly involved in NLRP3 inflammasome that finally resulted in decreased protein levels of AMPA receptors and down-regulated phosphorylated levels of CaMKII and CREB in cortex and hippocampus. All the above changes in cortex and hippocampus induced by HFD were mitigated by SPJ treatment. SPJ treatment alleviated HFD-induced recognitive impairment and depression-like behaviors of mice, which could be partly due to the capacity of SPJ to mitigate neuroinflammation through inhibition of NLRP3 inflammasome and upregulation of AMPA receptors signaling pathway.
Collapse
|
77
|
Valencia AP, Nagaraj N, Osman DH, Rabinovitch PS, Marcinek DJ. Are fat and sugar just as detrimental in old age? GeroScience 2021; 43:1615-1625. [PMID: 34101101 DOI: 10.1007/s11357-021-00390-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Aging and poor nutrition are independent risk factors for the development of chronic disease. When young animals are given diets high in fat or sugar, they exhibit hallmarks of aging like mitochondrial dysfunction and inflammation, and also develop a greater risk for age-related disease. The same mitochondrial dysfunction and inflammation that progress with aging may also further predispose older individuals to dietary insults by fat and sugar. The purpose of this work is to review the most recent studies that address the impact of fat and sugar consumption on hallmarks of aging (mitochondrial dysfunction and inflammation). Findings from these studies show that obesogenic, high-fat diets can exacerbate age-related disease and hallmarks of aging in young animals, but high-fat diets that are non-obesogenic may play a beneficial role in old age. In contrast, high-sugar diets do not require an obesogenic effect to induce mitochondrial dysfunction or inflammation in young rodents. Currently, there is a lack of experimental studies addressing the impact of sugar in the context of aging, even though empirical evidence points to the detrimental effect of sugar in aging by contributing to a variety of age-related diseases. Fig. 1 Mitochondrial dysfunction and altered cellular communication (e.g. inflammation) progress with advancing age and increase the risk for age-related disease (ARD). Given the physiological changes that occur with age, the impact of high-fat (HFD) and high-sugar diets (HSD) may differ in later and earlier stages of life. HFD can promote the development of hallmarks of aging in young animals and can also exacerbate the risk for ARD when consumed at an old age. However, non-obesogenic high-fat diets may also reduce the risk for ARD in old age by acting on these hallmarks of aging. On the other hand, HSD promotes mitochondrial dysfunction and inflammation without necessarily inducing weight gain in young animals. Empirical evidence points to sugar as a major contributor to age-related disease and more experimental studies are needed to clarify whether aged individuals are more susceptible to its effects.
Collapse
Affiliation(s)
- Ana P Valencia
- Department of Radiology, University of Washington, Seattle, WA, 98109, USA
| | - Nitin Nagaraj
- Department of Radiology, University of Washington, Seattle, WA, 98109, USA
| | - Deena H Osman
- Department of Radiology, University of Washington, Seattle, WA, 98109, USA
| | - Peter S Rabinovitch
- Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, 98109, USA. .,University of Washington School of Medicine, Brotman 140, 850 Republican St, Seattle, WA, 98109, USA.
| |
Collapse
|
78
|
Costa J, Martins S, Ferreira PA, Cardoso AMS, Guedes JR, Peça J, Cardoso AL. The old guard: Age-related changes in microglia and their consequences. Mech Ageing Dev 2021; 197:111512. [PMID: 34022277 DOI: 10.1016/j.mad.2021.111512] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
Among all major organs, the brain is one of the most susceptible to the inexorable effects of aging. Throughout the last decades, several studies in human cohorts and animal models have revealed a plethora of age-related changes in the brain, including reduced neurogenesis, oxidative damage, mitochondrial dysfunction and cell senescence. As the main immune effectors and first responders of the nervous tissue, microglia are at the center of these events. These cells experience irrevocable changes as a result from cumulative exposure to environmental triggers, such as stress, infection and metabolic dysregulation. The age-related immunosenescent phenotype acquired by microglia is characterized by profound modifications in their transcriptomic profile, secretome, morphology and phagocytic activity, which compromise both their housekeeping and defensive functions. As a result, aged microglia are no longer capable of establishing effective immune responses and sustaining normal synaptic activity, directly contributing to age-associated cognitive decline and neurodegeneration. This review discusses how lifestyle and environmental factors drive microglia dysfunction at the molecular and functional level, also highlighting possible interventions to reverse aging-associated damage to the nervous and immune systems.
Collapse
Affiliation(s)
- Jéssica Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Solange Martins
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro A Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; PhD Program in Biosciences, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana M S Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Joana R Guedes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - João Peça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana L Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
79
|
Duggan MR, Parikh V. Microglia and modifiable life factors: Potential contributions to cognitive resilience in aging. Behav Brain Res 2021; 405:113207. [PMID: 33640394 PMCID: PMC8005490 DOI: 10.1016/j.bbr.2021.113207] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/27/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Given the increasing prevalence of age-related cognitive decline, it is relevant to consider the factors and mechanisms that might facilitate an individual's resiliency to such deficits. Growing evidence suggests a preeminent role of microglia, the prime mediator of innate immunity within the central nervous system. Human and animal investigations suggest aberrant microglial functioning and neuroinflammation are not only characteristic of the aged brain, but also might contribute to age-related dementia and Alzheimer's Disease. Conversely, accumulating data suggest that modifiable lifestyle factors (MLFs), such as healthy diet, exercise and cognitive engagement, can reliably afford cognitive benefits by potentially suppressing inflammation in the aging brain. The present review highlights recent advances in our understanding of the role for microglia in maintaining brain homeostasis and cognitive functioning in aging. Moreover, we propose an integrated, mechanistic model that postulates an individual's resiliency to cognitive decline afforded by MLFs might be mediated by the mitigation of aberrant microglia activation in aging, and subsequent suppression of neuroinflammation.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States.
| |
Collapse
|
80
|
Hernández-Ramírez S, Osorio-Gómez D, Escobar ML, Rodríguez-Durán L, Velasco M, Bermúdez-Rattoni F, Hiriart M, Guzmán-Ramos KR. Catecholaminergic stimulation restores high-sucrose diet-induced hippocampal dysfunction. Psychoneuroendocrinology 2021; 127:105178. [PMID: 33706043 DOI: 10.1016/j.psyneuen.2021.105178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 11/15/2022]
Abstract
Increasing evidence suggests that long-term consumption of high-caloric diets increases the risk of developing cognitive dysfunctions. In the present study, we assessed the catecholaminergic activity in the hippocampus as a modulatory mechanism that is altered in rats exposed to six months of a high-sucrose diet (HSD). Male Wistar rats fed with this diet developed a metabolic disorder and showed impaired spatial memory in both water maze and object location memory (OLM) tasks. Intrahippocampal free-movement microdialysis showed a diminished dopaminergic and noradrenergic response to object exploration during OLM acquisition compared to rats fed with normal diet. In addition, electrophysiological results revealed an impaired long-term potentiation (LTP) of the perforant to dentate gyrus pathway in rats exposed to a HSD. Local administration of nomifensine, a catecholaminergic reuptake inhibitor, prior to OLM acquisition or LTP induction, improved long-term memory and electrophysiological responses, respectively. These results suggest that chronic exposure to HSD induces a hippocampal deterioration which impacts on cognitive and neural plasticity events negatively; these impairments can be ameliorated by increasing or restituting the affected catecholaminergic activity.
Collapse
Affiliation(s)
- Susana Hernández-Ramírez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Martha L Escobar
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Luis Rodríguez-Durán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Myrian Velasco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Marcia Hiriart
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico.
| | - Kioko R Guzmán-Ramos
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Av. de las Garzas No. 10, Col. El Panteón, Lerma de Villada, Estado de México, C.P. 52005, Mexico.
| |
Collapse
|
81
|
Kaliszewska A, Allison J, Martini M, Arias N. Improving Age-Related Cognitive Decline through Dietary Interventions Targeting Mitochondrial Dysfunction. Int J Mol Sci 2021; 22:ijms22073574. [PMID: 33808221 PMCID: PMC8036520 DOI: 10.3390/ijms22073574] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is inevitable and it is one of the major contributors to cognitive decline. However, the mechanisms underlying age-related cognitive decline are still the object of extensive research. At the biological level, it is unknown how the aging brain is subjected to progressive oxidative stress and neuroinflammation which determine, among others, mitochondrial dysfunction. The link between mitochondrial dysfunction and cognitive impairment is becoming ever more clear by the presence of significant neurological disturbances in human mitochondrial diseases. Possibly, the most important lifestyle factor determining mitochondrial functioning is nutrition. Therefore, with the present work, we review the latest findings disclosing a link between nutrition, mitochondrial functioning and cognition, and pave new ways to counteract cognitive decline in late adulthood through diet.
Collapse
Affiliation(s)
- Aleksandra Kaliszewska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
| | - Joseph Allison
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
| | - Matteo Martini
- Department of Psychology, University of East London, London E154LZ, UK;
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33005 Oviedo, Spain
- Correspondence:
| |
Collapse
|
82
|
Mapping of Microglial Brain Region, Sex and Age Heterogeneity in Obesity. Int J Mol Sci 2021; 22:ijms22063141. [PMID: 33808700 PMCID: PMC8003547 DOI: 10.3390/ijms22063141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
The prevalence of obesity has increased rapidly in recent years and has put a huge burden on healthcare worldwide. Obesity is associated with an increased risk for many comorbidities, such as cardiovascular diseases, type 2 diabetes and hypertension. The hypothalamus is a key brain region involved in the regulation of food intake and energy expenditure. Research on experimental animals has shown neuronal loss, as well as microglial activation in the hypothalamus, due to dietary-induced obesity. Microglia, the resident immune cells in the brain, are responsible for maintaining the brain homeostasis and, thus, providing an optimal environment for neuronal function. Interestingly, in obesity, microglial cells not only get activated in the hypothalamus but in other brain regions as well. Obesity is also highly associated with changes in hippocampal function, which could ultimately result in cognitive decline and dementia. Moreover, changes have also been reported in the striatum and cortex. Microglial heterogeneity is still poorly understood, not only in the context of brain region but, also, age and sex. This review will provide an overview of the currently available data on the phenotypic differences of microglial innate immunity in obesity, dependent on brain region, sex and age.
Collapse
|
83
|
Martín-Sánchez A, García-Baos A, Castro-Zavala A, Alegre-Zurano L, Valverde O. Early-life stress exacerbates the effects of WIN55,212-2 and modulates the cannabinoid receptor type 1 expression. Neuropharmacology 2021; 184:108416. [PMID: 33271186 DOI: 10.1016/j.neuropharm.2020.108416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/06/2023]
Abstract
Early-life stress induces an abnormal brain development and increases the risk of psychiatric diseases, including depression, anxiety and substance use disorders. We have developed a reliable model for maternal neglect, named maternal separation with early weaning (MSEW) in CD1 mice. In the present study, we evaluated the long-term effects on anxiety-like behaviours, nociception as well as the Iba1-positive microglial cells in this model in comparison to standard nest (SN) mice. Moreover, we investigated whether MSEW alters the cannabinoid agonist WIN55,212-2 effects regarding reward, spatial and emotional memories, tolerance to different cannabinoid responses, and physical dependence. Adult male offspring of MSEW group showed impaired responses on spatial and emotional memories after a repeated WIN55,212-2 treatment. These behavioural impairments were associated with an increase in basolateral amygdala and hippocampal CB1-expressing fibres and higher number of CB1-containing cells in cerebellum. Additionally, MSEW promotes a higher number of Iba1-positive microglial cells in basolateral amygdala and cerebellum. As for the cannabinoid-induced effects, rearing conditions did not influence the rewarding effects of WIN55,212-2 in the conditioned place preference paradigm. However, MSEW mice showed a delay in the development of tolerance to the cannabinoid effects. Moreover, CB1-positive fibres were reduced in limbic areas in MSEW mice after cannabinoid withdrawal precipitated with the CB1 antagonist SR141617A. These findings support that early-life stress promotes behavioural and molecular changes in the sensitivity to cannabinoids, which are mediated by alterations in CB1 signalling in limbic areas and it induces an increased Iba1-microglial marker which could interfere in emotional memories formation.
Collapse
Affiliation(s)
- Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain
| | - Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
84
|
Izquierdo V, Palomera-Ávalos V, Pallàs M, Griñán-Ferré C. Resveratrol Supplementation Attenuates Cognitive and Molecular Alterations under Maternal High-Fat Diet Intake: Epigenetic Inheritance over Generations. Int J Mol Sci 2021; 22:1453. [PMID: 33535619 PMCID: PMC7867164 DOI: 10.3390/ijms22031453] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Environmental factors such as maternal high-fat diet (HFD) intake can increase the risk of age-related cognitive decline in adult offspring. Epigenetic mechanisms are a possible link between diet effect and neurodegeneration across generations. Here, we found a significant decrease in triglyceride levels in a high-fat diet with resveratrol (RSV) HFD + RSV group and the offspring. Firstly, we obtained better cognitive performance in HFD+RSV groups and their offspring. Molecularly, a significant increase in DNA methylation (5-mC) levels, as well as increased gene expression of DNA methyltransferase 1 (Dnmt1) and Dnmt3a in HFD + RSV F1 group, were found. Furthermore, a significant increase of N6-Methyladenosine methylation (m6A) levels in HFD+RSV F1, as well as changes in gene expression of its enzymes Methyltransferase like 3 (Mettl3) and FTO alpha-ketoglutarate dependent dioxygenase (Fto) were found. Moreover, we found a decrease in gene expression levels of pro-inflammatory markers such as Interleukin 1β (Il1-β), Interleukin 6 (Il-6), Tumor necrosis factor-α (Tnf-α), C-X-C motif chemokine ligand 10 (Cxcl-10), the pro-inflammatory factors monocyte chemoattractant protein 1 (Mcp-1) and Tumor growth factor-β1 (Tgf-β1) in HFD+RSV and HFD+RSV F1 groups. Moreover, there was increased gene expression of neurotrophins such as Neural growth factor (Ngf), Neurotrophin-3 (Nt3), and its receptors Tropomyosin receptor kinase TrkA and TrkB. Likewise, an increase in protein levels of brain-derived neurotrophic factor (BDNF) and phospho-protein kinase B (p-Akt) in HFD+RSV F1 was found. These results suggest that maternal RSV supplementation under HFD intake prevents cognitive decline in senescence-accelerated mice prone 8 (SAMP8) adult offspring, promoting a reduction in triglycerides and leptin plasma levels, changes in the pro-inflammatory profile, and restoring the epigenetic landscape as well as synaptic plasticity.
Collapse
Affiliation(s)
- Vanesa Izquierdo
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències—Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain; (V.I.); (M.P.)
| | - Verónica Palomera-Ávalos
- Department of Cellular and Molecular Biology, University Center of Biological and Agricultural Sciences, University of Guadalajara, km 15.5 Guadalajara-Nogales highway, 45110 Zapopan, Jalisco, Mexico;
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències—Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain; (V.I.); (M.P.)
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències—Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain; (V.I.); (M.P.)
| |
Collapse
|
85
|
Balasubramanian P, Kiss T, Tarantini S, Nyúl-Tóth Á, Ahire C, Yabluchanskiy A, Csipo T, Lipecz A, Tabak A, Institoris A, Csiszar A, Ungvari Z. Obesity-induced cognitive impairment in older adults: a microvascular perspective. Am J Physiol Heart Circ Physiol 2021; 320:H740-H761. [PMID: 33337961 PMCID: PMC8091942 DOI: 10.1152/ajpheart.00736.2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Tabak
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
86
|
Muscat SM, Deems NP, D'Angelo H, Kitt MM, Grace PM, Andersen ND, Silverman SN, Rice KC, Watkins LR, Maier SF, Barrientos RM. Postoperative cognitive dysfunction is made persistent with morphine treatment in aged rats. Neurobiol Aging 2021; 98:214-224. [PMID: 33341652 PMCID: PMC7870544 DOI: 10.1016/j.neurobiolaging.2020.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is the collection of cognitive impairments, lasting days to months, experienced by individuals following surgery. Persistent POCD is most commonly experienced by older individuals and is associated with a greater vulnerability to developing Alzheimer's disease, but the underlying mechanisms are not known. It is known that laparotomy (exploratory abdominal surgery) in aged rats produces memory impairments for 4 days. Here we report that postsurgical treatment with morphine extends this deficit to at least 2 months while having no effects in the absence of surgery. Indeed, hippocampal-dependent long-term memory was impaired 2, 4, and 8 weeks postsurgery only in aged, morphine-treated rats. Short-term memory remained intact. Morphine is known to have analgesic effects via μ-opioid receptor activation and neuroinflammatory effects through Toll-like receptor 4 activation. Here we demonstrate that persistent memory deficits were mediated independently of the μ-opioid receptor, suggesting that they were evoked through a neuroinflammatory mechanism and unrelated to pain modulation. In support of this, aged, laparotomized, and morphine-treated rats exhibited increased gene expression of various proinflammatory markers (IL-1β, IL-6, TNFα, NLRP3, HMGB1, TLR2, and TLR4) in the hippocampus at the 2-week time point. Furthermore, central blockade of IL-1β signaling with the specific IL-1 receptor antagonist (IL-1RA), at the time of surgery, completely prevented the memory impairment. Finally, synaptophysin and PSD95 gene expression were significantly dysregulated in the hippocampus of aged, laparotomized, morphine-treated rats, suggesting that impaired synaptic structure and/or function may play a key role in this persistent deficit. This instance of long-term memory impairment following surgery closely mirrors the timeline of persistent POCD in humans and may be useful for future treatment discoveries.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Heather D'Angelo
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Meagan M Kitt
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathan D Andersen
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Shaelyn N Silverman
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
87
|
Alghamdi BS. The Effect of Short-Term Feeding of a High-Coconut Oil or High-Fat Diet on Neuroinflammation and the Performance of an Object-Place Task in Rats. Neurochem Res 2021; 46:287-298. [PMID: 33221998 DOI: 10.1007/s11064-020-03163-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
The consumption of high-fat and high-sugar diets, in the form of junk food, and binge eating are now common. Increasing evidence suggests that a high-fat diet (HFD) can induce neuroinflammation and alter behavior. I aimed to study the effects of diets of differing fat content on neuroinflammation and spatial memory using an object-place (OP) task. Thirty-two adult male rats were allocated to four groups and fed a regular diet (Regular diet), a control diet (Control diet), an HFD (60% of calories from lard), or a high-coconut oil diet (HCOD; 60% of calories from coconut oil) for 3 days. Their water intake, food consumption, body mass, and metabolic variables were measured. HFD-fed rats showed significantly poorer performance on the OP task, as assessed using the discrimination index (- 0.208 ± 0.094), than the Regular (0.462 ± 0.078; P < 0.0001) and Control (0.379 ± 0.081; P = 0.0003) groups. However, no significant difference was observed in spatial memory between the HCOD and Regular groups. The concentrations of neuroinflammatory markers (interleukin [IL]-1β, IL-6, tumor necrosis factor α, and nuclear factor κB) were also measured in the hippocampus and prefrontal cortex. HFD-fed rats showed significantly higher levels of neuroinflammatory markers than the Regular and Control diet-fed groups. HCOD feeding did not induce neuroinflammation in the hippocampus and prefrontal cortex compared with the Regular and Control groups.
Collapse
Affiliation(s)
- Badrah Saeed Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
88
|
de Bem AF, Krolow R, Farias HR, de Rezende VL, Gelain DP, Moreira JCF, Duarte JMDN, de Oliveira J. Animal Models of Metabolic Disorders in the Study of Neurodegenerative Diseases: An Overview. Front Neurosci 2021; 14:604150. [PMID: 33536868 PMCID: PMC7848140 DOI: 10.3389/fnins.2020.604150] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
The incidence of metabolic disorders, as well as of neurodegenerative diseases—mainly the sporadic forms of Alzheimer’s and Parkinson’s disease—are increasing worldwide. Notably, obesity, diabetes, and hypercholesterolemia have been indicated as early risk factors for sporadic forms of Alzheimer’s and Parkinson’s disease. These conditions share a range of molecular and cellular features, including protein aggregation, oxidative stress, neuroinflammation, and blood-brain barrier dysfunction, all of which contribute to neuronal death and cognitive impairment. Rodent models of obesity, diabetes, and hypercholesterolemia exhibit all the hallmarks of these degenerative diseases, and represent an interesting approach to the study of the phenotypic features and pathogenic mechanisms of neurodegenerative disorders. We review the main pathological aspects of Alzheimer’s and Parkinson’s disease as summarized in rodent models of obesity, diabetes, and hypercholesterolemia.
Collapse
Affiliation(s)
- Andreza Fabro de Bem
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brazilia, Brazil
| | - Rachel Krolow
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hémelin Resende Farias
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Victória Linden de Rezende
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Pens Gelain
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - José Cláudio Fonseca Moreira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Miguel das Neves Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
89
|
Alò R, Fazzari G, Zizza M, Avolio E, Di Vito A, Bruno R, Cuda G, Barni T, Canonaco M, Facciolo RM. Daidzein Pro-cognitive Effects Coincided with Changes of Brain Neurotensin1 Receptor and Interleukin-10 Expression Levels in Obese Hamsters. Neurotox Res 2021; 39:645-657. [PMID: 33428179 DOI: 10.1007/s12640-020-00328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
At present, concerns are pointing to "tasteful" high-fat diets as a cause of conditioning physical-social states that through alterations of some key emotional- and nutritional-related limbic circuits such as hypothalamic and amygdalar areas lead to obesity states. Feeding and energetic homeostatic molecular mechanisms are part of a complex neuronal circuit accounting for this metabolic disorder. In an attempt to exclude conventional drugs for treating obesity, daidzein, a natural glycosidic isoflavone, which mimics estrogenic neuroprotective properties against increased body weight, is beginning to be preferred. In this study, evident anxiolytic-like behaviors were detected following treatment of high-fat diet hamsters with daidzein as shown by extremely evident (p < 0.001) exploration tendencies in novel object recognition test and a notably greater amount of time spent (p < 0.01) in open arms of elevated plus maze. Moreover, the isoflavone promoted a protective role against neurodegeneration processes as shown by few, if any, amino cupric silver granules in amygdalar, hypothalamic and hippocampal neuronal fields when compared with obese hamsters. Interestingly, elevated expression levels of the anorexic neuropeptide receptor neurotensin1 in the above limbic areas of obese hamsters were extremely reduced by daidzein, especially during recovery of cognitive events. Contextually, such effects were strongly paralleled by increased levels of the anti-neuroinflammatory cytokine, interleukin-10. Our results corroborate a neuroprotective ability of this natural glycosidic isoflavone, which through its interaction with the receptor neurotensin1 and interleukin-10 pathways is correlated not only to improved feeding states, and subsequently obesity conditions, but above all to cognitive performances.
Collapse
Affiliation(s)
- Raffaella Alò
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy
| | - Gilda Fazzari
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy
| | - Merylin Zizza
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy
| | - Ennio Avolio
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy
| | - Anna Di Vito
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Græcia", Viale Europa, 88100, Catanzaro, Italy
| | - Rosalinda Bruno
- Department of Pharmacy and Science of Health and Nutrition, Polyfunctional Building, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
| | - Giovanni Cuda
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Græcia", Viale Europa, 88100, Catanzaro, Italy
| | - Tullio Barni
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Græcia", Viale Europa, 88100, Catanzaro, Italy
| | - Marcello Canonaco
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy.
| | - Rosa Maria Facciolo
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy
| |
Collapse
|
90
|
Evolution of the Human Diet and Its Impact on Gut Microbiota, Immune Responses, and Brain Health. Nutrients 2021; 13:nu13010196. [PMID: 33435203 PMCID: PMC7826636 DOI: 10.3390/nu13010196] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
The relatively rapid shift from consuming preagricultural wild foods for thousands of years, to consuming postindustrial semi-processed and ultra-processed foods endemic of the Western world less than 200 years ago did not allow for evolutionary adaptation of the commensal microbial species that inhabit the human gastrointestinal (GI) tract, and this has significantly impacted gut health. The human gut microbiota, the diverse and dynamic population of microbes, has been demonstrated to have extensive and important interactions with the digestive, immune, and nervous systems. Western diet-induced dysbiosis of the gut microbiota has been shown to negatively impact human digestive physiology, to have pathogenic effects on the immune system, and, in turn, cause exaggerated neuroinflammation. Given the tremendous amount of evidence linking neuroinflammation with neural dysfunction, it is no surprise that the Western diet has been implicated in the development of many diseases and disorders of the brain, including memory impairments, neurodegenerative disorders, and depression. In this review, we discuss each of these concepts to understand how what we eat can lead to cognitive and psychiatric diseases.
Collapse
|
91
|
Agarwal P, Dhana K, Barnes LL, Holland TM, Zhang Y, Evans DA, Morris MC. Unhealthy foods may attenuate the beneficial relation of a Mediterranean diet to cognitive decline. Alzheimers Dement 2021; 17:1157-1165. [DOI: 10.1002/alz.12277] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/07/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Puja Agarwal
- Rush Institute of Healthy Aging, Department of Internal Medicine Rush University Medical Center Chicago Illinois USA
| | - Klodian Dhana
- Rush Institute of Healthy Aging, Department of Internal Medicine Rush University Medical Center Chicago Illinois USA
| | - Lisa L. Barnes
- Rush Alzheimer's Disease Center Rush University Medical Center Chicago Illinois USA
- Department of Neurological Sciences Rush University Medical Center Chicago Illinois USA
| | - Thomas M Holland
- Rush Institute of Healthy Aging, Department of Internal Medicine Rush University Medical Center Chicago Illinois USA
| | - Yanyu Zhang
- Rush Institute of Healthy Aging, Department of Internal Medicine Rush University Medical Center Chicago Illinois USA
| | - Denis A. Evans
- Rush Institute of Healthy Aging, Department of Internal Medicine Rush University Medical Center Chicago Illinois USA
| | - Martha Clare Morris
- Rush Institute of Healthy Aging, Department of Internal Medicine Rush University Medical Center Chicago Illinois USA
| |
Collapse
|
92
|
From Obesity to Hippocampal Neurodegeneration: Pathogenesis and Non-Pharmacological Interventions. Int J Mol Sci 2020; 22:ijms22010201. [PMID: 33379163 PMCID: PMC7796248 DOI: 10.3390/ijms22010201] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
High-caloric diet and physical inactivity predispose individuals to obesity and diabetes, which are risk factors of hippocampal neurodegeneration and cognitive deficits. Along with the adipose-hippocampus crosstalk, chronically inflamed adipose tissue secretes inflammatory cytokine could trigger neuroinflammatory responses in the hippocampus, and in turn, impairs hippocampal neuroplasticity under obese and diabetic conditions. Hence, caloric restriction and physical exercise are critical non-pharmacological interventions to halt the pathogenesis from obesity to hippocampal neurodegeneration. In response to physical exercise, peripheral organs, including the adipose tissue, skeletal muscles, and liver, can secret numerous exerkines, which bring beneficial effects to metabolic and brain health. In this review, we summarized how chronic inflammation in adipose tissue could trigger neuroinflammation and hippocampal impairment, which potentially contribute to cognitive deficits in obese and diabetic conditions. We also discussed the potential mechanisms underlying the neurotrophic and neuroprotective effects of caloric restriction and physical exercise by counteracting neuroinflammation, plasticity deficits, and cognitive impairments. This review provides timely insights into how chronic metabolic disorders, like obesity, could impair brain health and cognitive functions in later life.
Collapse
|
93
|
Hazzaa SM, Eldaim MAA, Fouda AA, Mohamed ASED, Soliman MM, Elgizawy EI. Intermittent Fasting Ameliorated High-Fat Diet-Induced Memory Impairment in Rats via Reducing Oxidative Stress and Glial Fibrillary Acidic Protein Expression in Brain. Nutrients 2020; 13:nu13010010. [PMID: 33375195 PMCID: PMC7822208 DOI: 10.3390/nu13010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022] Open
Abstract
Intermittent fasting (IF) plays an important role in the protection against metabolic syndrome-induced memory defects. This study aimed to assess the protective effects of both prophylactic and curative IF against high-fat diet (HFD)-induced memory defects in rats. The control group received a normal diet; the second group received a HFD; the third group was fed a HFD for 12 weeks and subjected to IF during the last four weeks (curative IF); the fourth group was fed a HFD and subjected to IF simultaneously (prophylactic IF). A high-fat diet significantly increased body weight, serum lipids levels, malondialdehyde (MDA) concentration, glial fibrillary acidic protein (GFAP) and H score in brain tissue and altered memory performance. In addition, it significantly decreased reduced glutathione (GSH) concentration in brain tissue and viability and thickness of pyramidal and hippocampus granular cell layers. However, both types of IF significantly decreased body weight, serum lipids, GFAP protein expression and H score and MDA concentration in brain tissue, and improved memory performance, while it significantly increased GSH concentration in brain tissue, viability, and thickness of pyramidal and granular cell layers of the hippocampus. This study indicated that IF ameliorated HFD-induced memory disturbance and brain tissue damage and the prophylactic IF was more potent than curative IF.
Collapse
Affiliation(s)
- Suzan M. Hazzaa
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (S.M.H.); (E.I.E.)
| | - Mabrouk A. Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary, Medicine, Menoufia University, Shebeen Elkom 32511, Egypt
- Correspondence:
| | - Amira A. Fouda
- Pathology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (A.A.F.); (A.S.E.D.M.)
| | - Asmaa Shams El Dein Mohamed
- Pathology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (A.A.F.); (A.S.E.D.M.)
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia;
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Eman I. Elgizawy
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (S.M.H.); (E.I.E.)
| |
Collapse
|
94
|
Biyong EF, Alfos S, Dumetz F, Helbling JC, Aubert A, Brossaud J, Foury A, Moisan MP, Layé S, Richard E, Patterson E, Murphy K, Rea K, Stanton C, Schellekens H, Cryan JF, Capuron L, Pallet V, Ferreira G. Dietary vitamin A supplementation prevents early obesogenic diet-induced microbiota, neuronal and cognitive alterations. Int J Obes (Lond) 2020; 45:588-598. [PMID: 33223517 DOI: 10.1038/s41366-020-00723-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/30/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Early consumption of obesogenic diets, rich in saturated fat and added sugar, is associated with a plethora of biological dysfunctions, at both peripheral and brain levels. Obesity is also linked to decreased vitamin A bioavailability, an essential molecule for brain plasticity and memory function. METHODS Here we investigated in mice whether dietary vitamin A supplementation (VAS) could prevent some of the metabolic, microbiota, neuronal and cognitive alterations induced by obesogenic, high-fat and high-sugar diet (HFSD) exposure from weaning to adulthood, i.e. covering periadolescent period. RESULTS As expected, VAS was effective in enhancing peripheral vitamin A levels as well as hippocampal retinoic acid levels, the active metabolite of vitamin A, regardless of the diet. VAS attenuated HFSD-induced excessive weight gain, without affecting metabolic changes, and prevented alterations of gut microbiota α-diversity. In HFSD-fed mice, VAS prevented recognition memory deficits but had no effect on aversive memory enhancement. Interestingly, VAS alleviated both HFSD-induced higher neuronal activation and lower glucocorticoid receptor phosphorylation in the hippocampus after training. CONCLUSION Dietary VAS was protective against the deleterious effects of early obesogenic diet consumption on hippocampal function, possibly through modulation of the gut-brain axis.
Collapse
Affiliation(s)
- Essi F Biyong
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Serge Alfos
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Fabien Dumetz
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.,INRAE, MycSa, UMR 1264, Villenave d'Ornon Cedex, France
| | - Jean-Christophe Helbling
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Agnès Aubert
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Julie Brossaud
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Aline Foury
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Marie-Pierre Moisan
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Emmanuel Richard
- Université de Bordeaux, INSERM, U1035, CHU Bordeaux, Place Amélie Raba Léon, 33000, Bordeaux, France
| | | | - Kiera Murphy
- Teagasc Food Research Centre, Moorepark, Co, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland & Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Harriët Schellekens
- APC Microbiome Ireland & Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland & Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Lucile Capuron
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Véronique Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Guillaume Ferreira
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
95
|
Muscat SM, Barrientos RM. Lifestyle modifications with anti-neuroinflammatory benefits in the aging population. Exp Gerontol 2020; 142:111144. [PMID: 33152515 DOI: 10.1016/j.exger.2020.111144] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 10/28/2020] [Indexed: 01/03/2023]
Abstract
Aging-associated microglial priming results in the potential for an exaggerated neuroinflammatory response to a subsequent inflammatory challenge in regions of the brain known to support learning and memory. This excessive neuroinflammation in the aging brain is known to occur following a variety of peripheral insults, including infection and surgery, where it has been associated with precipitous declines in cognition and memory. As the average lifespan increases worldwide, identifying interventions to prevent and treat aging-associated excessive neuroinflammation and ensuing cognitive impairments is of critical importance. Lifestyle has emerged as a potential non-pharmacological target in this endeavor. Here, we review important and recent preclinical and clinical literature demonstrating the anti-inflammatory effects of lifestyle modifications such as exercise, diet, and environmental enrichment in the context of aging and memory. Importantly, we focus on research indicating that these lifestyle modifications do not need to be lifelong, suggesting that such interventions may be efficacious in the prevention and treatment of aging- and neuroinflammation-associated cognitive impairment, even when initiated in older age.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
96
|
Glushchak K, Ficarro A, Schoenfeld TJ. High-fat diet and acute stress have different effects on object preference tests in rats during adolescence and adulthood. Behav Brain Res 2020; 399:112993. [PMID: 33152318 DOI: 10.1016/j.bbr.2020.112993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
Meals of high-fat diet (HFD) during adolescence produce stronger impairments to memory during adolescence than adulthood, however recovery of memory from adolescent HFD is underexplored. In addition, many tests of rodent memory are confounded by aversive or food-based stimuli, making it difficult to determine baseline memory processing affected by HFD. Thus, we utilized three cohorts of rats (adolescent HFD, adult HFD, and adolescent HFD with recovery) to explore the effects of HFD at different ages on two traditional tests of memory based strictly on object exploration, novel object recognition and novel object location tests. To isolate stress as a variable, rats were tested either at baseline or with cold water swim occurring directly after object acquisition. Results show that preference for novel objects is impaired by stress across all groups, but HFD alone only impairs preference for novel objects during adolescence, although this recovers after switching to a control diet. Additionally, preference for an object in a new location is impaired by HFD in all age groups and fails to recover following diet change. Together the data suggest that stress and HFD differentially affect object preference, based on test type, except during the adolescent period. Because these tests are traditionally interpreted as memory processes dependent on two distinct brain regions, the hippocampus and perirhinal cortex, these results support that stress and HFD affect the hippocampus and perirhinal cortex differently. The data affirm that while perirhinal cortex-dependent behavior recovers, the adolescent period is susceptible to long-lasting dysfunctions of hippocampal behavior by HFD.
Collapse
Affiliation(s)
- Karina Glushchak
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, 37212, USA
| | - Alexandria Ficarro
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, 37212, USA
| | - Timothy J Schoenfeld
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, 37212, USA.
| |
Collapse
|
97
|
Lizarbe B, Campillo B, Guadilla I, López-Larrubia P, Cerdán S. Magnetic resonance assessment of the cerebral alterations associated with obesity development. J Cereb Blood Flow Metab 2020; 40:2135-2151. [PMID: 32703110 PMCID: PMC7585928 DOI: 10.1177/0271678x20941263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a current threat to health care systems, affecting approximately 13% of the world's adult population, and over 18% children and adolescents. The rise of obesity is fuelled by inadequate life style habits, as consumption of diets rich in fats and sugars which promote, additionally, the development of associated comorbidities. Obesity results from a neuroendocrine imbalance in the cerebral mechanisms controlling food intake and energy expenditure, including the hypothalamus and the reward and motivational centres. Specifically, high-fat diets are known to trigger an early inflammatory response in the hypothalamus that precedes weight gain, is time-dependent, and eventually extends to the remaining appetite regulating regions in the brain. Multiple magnetic resonance imaging (MRI) and spectroscopy (MRS) methods are currently available to characterize different features of cerebral obesity, including diffusion weighted, T2 and volumetric imaging and 1H and 13C spectroscopic evaluations. In particular, consistent evidences have revealed increased water diffusivity and T2 values, decreased grey matter volumes, and altered metabolic profiles and fluxes, in the brain of animal models and in obese humans. This review provides an integrative interpretation of the physio-pathological processes associated with obesity development in the brain, and the MRI and MRS methods implemented to characterize them.
Collapse
Affiliation(s)
- Blanca Lizarbe
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | - Basilio Campillo
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | - Irene Guadilla
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | | | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| |
Collapse
|
98
|
Ha S, Kim MJ, Kim DH, Kim BM, Chung KW, Chung HY. Short-term intake of high fat diet aggravates renal fibrosis in aged Sprague-Dawley rats. Exp Gerontol 2020; 142:111108. [PMID: 33130113 DOI: 10.1016/j.exger.2020.111108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Age- or high fat diet (HFD)-associated renal structural changes are commonly associated with a decline in renal function. Although HFD causes injurious effects in various organs during aging, its effects on age-associated renal fibrosis have not yet been investigated. In this study, we show that a short-term HFD significantly induces renal fibrosis by causing loss of mitochondrial integrity in aged Sprague-Dawley (SD) rats. To evaluate the effects of short-term HFD intake on age-associated renal fibrosis, we administered HFD in young and aged SD rats for 15 days. Our results showed that a short-term HFD significantly increased the renal fibrosis and inflammation in aged rats. Moreover, mitochondrial integrity and the expression of fatty acid oxidation-related proteins decreased in the kidneys of the HFD-fed aged rats. Further, NRK52E renal tubular epithelial cells subjected to lipid stress by treatment with oleic acid showed a reduced amount of mitochondrial OXPHOS-related proteins. Our results suggest that short-term HFD affects mitochondrial integrity and exacerbates inflammation leading to renal fibrosis, especially in aged rats. We conclude that the mitochondrial integrity in kidney tissues is important in HFD-induced renal fibrosis development during aging.
Collapse
Affiliation(s)
- Sugyeong Ha
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min Jo Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Dae Hyun Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Byeong Moo Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
99
|
Moyse E, Haddad M, Benlabiod C, Ramassamy C, Krantic S. Common Pathological Mechanisms and Risk Factors for Alzheimer's Disease and Type-2 Diabetes: Focus on Inflammation. Curr Alzheimer Res 2020; 16:986-1006. [PMID: 31692443 DOI: 10.2174/1567205016666191106094356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/10/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Diabetes is considered as a risk factor for Alzheimer's Disease, but it is yet unclear whether this pathological link is reciprocal. Although Alzheimer's disease and diabetes appear as entirely different pathological entities affecting the Central Nervous System and a peripheral organ (pancreas), respectively, they share a common pathological core. Recent evidence suggests that in the pancreas in the case of diabetes, as in the brain for Alzheimer's Disease, the initial pathological event may be the accumulation of toxic proteins yielding amyloidosis. Moreover, in both pathologies, amyloidosis is likely responsible for local inflammation, which acts as a driving force for cell death and tissue degeneration. These pathological events are all inter-connected and establish a vicious cycle resulting in the progressive character of both pathologies. OBJECTIVE To address the literature supporting the hypothesis of a common pathological core for both diseases. DISCUSSION We will focus on the analogies and differences between the disease-related inflammatory changes in a peripheral organ, such as the pancreas, versus those observed in the brain. Recent evidence suggesting an impact of peripheral inflammation on neuroinflammation in Alzheimer's disease will be presented. CONCLUSION We propose that it is now necessary to consider whether neuroinflammation in Alzheimer's disease affects inflammation in the pancreas related to diabetes.
Collapse
Affiliation(s)
| | - Mohamed Haddad
- INRS-Centre Armand-Frappier Sante Biotechnologie, Laval, QC, Canada
| | | | | | | |
Collapse
|
100
|
Butler MJ, Cole RM, Deems NP, Belury MA, Barrientos RM. Fatty food, fatty acids, and microglial priming in the adult and aged hippocampus and amygdala. Brain Behav Immun 2020; 89:145-158. [PMID: 32544595 PMCID: PMC7572563 DOI: 10.1016/j.bbi.2020.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/20/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Short-term (3-day) consumption of a high fat diet (HFD) rich in saturated fats is associated with a neuroinflammatory response and subsequent cognitive impairment in aged, but not young adult, male rats. This exaggerated effect in aged rats could be due to a "primed" microglial phenotype observed in the normal aging process in rodents in which aged microglia display a potentiated response to immune challenge. Here, we investigated the impact of HFD on microglial priming and lipid composition in the hippocampus and amygdala of young and aged rats. Furthermore, we investigated the microglial response to palmitate, the main saturated fatty acid (SFA) found in HFD that is proinflammatory. Our results indicate that HFD increased gene expression of microglial markers of activation indicative of microglial priming, including CD11b, MHCII, CX3CR1, and NLRP3, as well as the pro-inflammatory marker IL-1β in both hippocampus and amygdala-derived microglia. Furthermore, HFD increased the concentration of SFAs and decreased the concentration of polyunsaturated fatty acids (PUFAs) in the hippocampus. We also observed a specific decrease in the anti-inflammatory PUFA docosahexaenoic acid (DHA) in the hippocampus and amygdala of aged rats. In a separate cohort of young and aged animals, isolated microglia from the hippocampus and amygdala exposed to palmitate in vitro induced an inflammatory gene expression profile mimicking the effects of HFD in vivo. These data suggest that palmitate may be a critical nutritional signal from the HFD that is directly involved in hippocampal and amygdalar inflammation. Interestingly, microglial activation markers were increased in response to HFD or palmitate in an age-independent manner, suggesting that HFD sensitivity of microglia, under these experimental conditions, is not the sole mediator of the exaggerated inflammatory response observed in whole tissue extracts from aged HFD-fed rats.
Collapse
Affiliation(s)
- Michael J. Butler
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Rachel M. Cole
- Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - Nicholas P. Deems
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Martha A. Belury
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA,Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - Ruth M. Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA,Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA,Corresponding author: Dr. Ruth M. Barrientos, Institute for Behavioral Medicine Research and Department of Psychiatry and Behavioral Health, Ohio State University, 460 Medical Center Drive, Columbus, OH 43210, Tel.: 614-293-6591,
| |
Collapse
|