51
|
Myers SJ, Yuan H, Kang JQ, Tan FCK, Traynelis SF, Low CM. Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Res 2019; 8:F1000 Faculty Rev-1940. [PMID: 31807283 PMCID: PMC6871362 DOI: 10.12688/f1000research.18949.1] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Rapid advances in sequencing technology have led to an explosive increase in the number of genetic variants identified in patients with neurological disease and have also enabled the assembly of a robust database of variants in healthy individuals. A surprising number of variants in the GRIN genes that encode N-methyl-D-aspartate (NMDA) glutamatergic receptor subunits have been found in patients with various neuropsychiatric disorders, including autism spectrum disorders, epilepsy, intellectual disability, attention-deficit/hyperactivity disorder, and schizophrenia. This review compares and contrasts the available information describing the clinical and functional consequences of genetic variations in GRIN2A and GRIN2B. Comparison of clinical phenotypes shows that GRIN2A variants are commonly associated with an epileptic phenotype but that GRIN2B variants are commonly found in patients with neurodevelopmental disorders. These observations emphasize the distinct roles that the gene products serve in circuit function and suggest that functional analysis of GRIN2A and GRIN2B variation may provide insight into the molecular mechanisms, which will allow more accurate subclassification of clinical phenotypes. Furthermore, characterization of the pharmacological properties of variant receptors could provide the first opportunity for translational therapeutic strategies for these GRIN-related neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Scott J Myers
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Hongjie Yuan
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt Brain Institute, Vanderbilt Kennedy Center of Human Development, Vanderbilt University, Nashville, TN, USA
| | - Francis Chee Kuan Tan
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stephen F Traynelis
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Chian-Ming Low
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
52
|
Fehér E, Szatmári I, Dudás T, Zalatnai A, Farkas T, Lőrinczi B, Fülöp F, Vécsei L, Toldi J. Structural Evaluation and Electrophysiological Effects of Some Kynurenic Acid Analogs. Molecules 2019; 24:molecules24193502. [PMID: 31561643 PMCID: PMC6803921 DOI: 10.3390/molecules24193502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/28/2023] Open
Abstract
Kynurenic acid (KYNA), a metabolite of tryptophan, as an excitatory amino acid receptor antagonist is an effective neuroprotective agent in case of excitotoxicity, which is the hallmark of brain ischemia and several neurodegenerative processes. Therefore, kynurenine pathway, KYNA itself, and its derivatives came into the focus of research. During the past fifteen years, our research group has developed several neuroactive KYNA derivatives, some of which proved to be neuroprotective in preclinical studies. In this study, the synthesis of these KYNA derivatives and their evaluation with divergent molecular characteristics are presented together with their most typical effects on the monosynaptic transmission in CA1 region of the hippocampus of the rat. Their effects on the basic neuronal activity (on the field excitatory postsynaptic potentials: fEPSP) were studied in in vitro hippocampal slices in 1 and 200 μM concentrations. KYNA and its derivative 4 in both 1 and 200 μM concentrations proved to be inhibitory, while derivative 8 only in 200 μM decreased the amplitudes of fEPSPs. Derivative 5 facilitated the fEPSPs in 200 μM concentration. This is the first comparative study which evaluates the structural and functional differences of formerly and newly developed KYNA analogs. Considerations on possible relations between molecular structures and their physiological effects are presented.
Collapse
Affiliation(s)
- Evelin Fehér
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary.
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary.
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Tamás Dudás
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Anna Zalatnai
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Tamás Farkas
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary.
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary.
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary.
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary.
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| |
Collapse
|
53
|
Lautz JD, Gniffke EP, Brown EA, Immendorf KB, Mendel RD, Smith SEP. Activity-dependent changes in synaptic protein complex composition are consistent in different detergents despite differential solubility. Sci Rep 2019; 9:10890. [PMID: 31350430 PMCID: PMC6659712 DOI: 10.1038/s41598-019-46690-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/03/2019] [Indexed: 12/02/2022] Open
Abstract
At the post-synaptic density (PSD), large protein complexes dynamically form and dissociate in response to synaptic activity, comprising the biophysical basis for learning and memory. The use of detergents to isolate the PSD and release its membrane-associated proteins complicates studies of these activity-dependent protein interaction networks, because detergents can simultaneously disrupt the very interactions under study. Despite widespread recognition that different detergents yield different experimental results, the effect of detergent on activity-dependent synaptic protein complexes has not been rigorously examined. Here, we characterize the effect of three detergents commonly used to study synaptic proteins on activity-dependent protein interactions. We first demonstrate that SynGAP-containing interactions are more abundant in 1% Deoxycholate (DOC), while Shank-, Homer- and mGluR5-containing interactions are more abundant in 1% NP-40 or Triton. All interactions were detected preferentially in high molecular weight complexes generated by size exclusion chromatography, although the detergent-specific abundance of proteins in high molecular weight fractions did not correlate with the abundance of detected interactions. Activity-dependent changes in protein complexes were consistent across detergent types, suggesting that detergents do not isolate distinct protein pools with unique behaviors. However, detection of activity-dependent changes is more or less feasible in different detergents due to baseline solubility. Collectively, our results demonstrate that detergents affect the solubility of individual proteins, but activity-dependent changes in protein interactions, when detectable, are consistent across detergent types.
Collapse
Affiliation(s)
- Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Edward P Gniffke
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Emily A Brown
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Karen B Immendorf
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ryan D Mendel
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA. .,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA. .,Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
54
|
Tau is required for the function of extrasynaptic NMDA receptors. Sci Rep 2019; 9:9116. [PMID: 31235881 PMCID: PMC6591308 DOI: 10.1038/s41598-019-45547-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/10/2019] [Indexed: 11/21/2022] Open
Abstract
Tau is a microtubule-associated neuronal protein found mainly in axons. However, increasing evidence indicates that it is also present in dendrites, where it serves as an essential mediator of synaptic NMDA (N-methyl-D-aspartate) receptor-dependent excitotoxicity. Of note, NMDA receptors can also be found outside synapses in the plasma membrane, and activation of extrasynaptic NMDA receptors has been shown to be more linked to excitotoxicity than the activation of synaptic ones. Little is known about the role of Tau in the activity of extrasynaptic NMDA receptors. Thus, we have used a Tau knockout mouse model (Tau−/− mice) to analyze the consequences of Tau absence in extrasynaptic NMDA receptor activity. We demonstrate that absence of Tau leads to a decrease in functional extrasynaptic NMDA receptors in the hippocampus. We propose that this impairment in extrasynaptic NMDA receptor activity may contribute to the well-known neuroprotective effect associated with Tau deficiency under pathological conditions.
Collapse
|
55
|
Wang M, Qin C, Luo X, Wang J, Wang X, Xie M, Hu J, Cao J, Hu T, Goldman SA, Nedergaard M, Wang W. Astrocytic connexin 43 potentiates myelin injury in ischemic white matter disease. Am J Cancer Res 2019; 9:4474-4493. [PMID: 31285774 PMCID: PMC6599652 DOI: 10.7150/thno.31942] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/19/2019] [Indexed: 01/05/2023] Open
Abstract
Rational: Myelin loss is a characteristic feature of both ischemic white matter disease and its associated vascular dementia, and is a hallmark of chronic cerebral hypoperfusion due to carotid artery stenosis. Yet the cellular mechanisms involved in ischemic dysmyelination are not well-understood, and no effective treatment has emerged to prevent or slow hypoperfusion-related demyelination. In a study employing the bilateral common carotid artery stenosis (BCAS) mouse model, we found reduced cerebral blood flow velocity and arteriolar pulsatility, and confirmed that prolonged BCAS provoked myelin disruption. These pathological features were associated with marked cognitive decline, in the absence of evident damage to axons. Methods: To assess the role of astroglial communication in BCAS-associated demyelination, we investigated the effect of deleting or inhibiting connexin 43 (Cx43), a constituent of astroglial gap junctions and hemichannels. Results: Genetic deletion and pharmacological inhibition of gap junctions both protected myelin integrity and rescued cognitive decline in the BCAS-treated mice. Gap junction inhibition also suppressed the transient increase in extracellular glutamate observed in the callosal white matter of wild-type mice exposed to BCAS. Conclusion: These findings suggest that astrocytic Cx43 may be a viable target for attenuating the demyelination and cognitive decline associated with chronic cerebral hypoperfusion.
Collapse
|
56
|
Rivell A, Petralia RS, Wang YX, Mattson MP, Yao PJ. Sideroflexin 3 is a Mitochondrial Protein Enriched in Neurons. Neuromolecular Med 2019; 21:314-321. [PMID: 31177362 DOI: 10.1007/s12017-019-08553-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
Abstract
Sideroflexin 1 (Sfxn1) is a mitochondrial serine transporter involved in one-carbon metabolism in blood and cancer cell lines. The expression of other Sfxn homologs varies across tissues implying that each homolog may have tissue-specific functions. RNA databases suggest that among the Sfxns, Sfxn3 may have a specific function in the brain. Here, we systematically analyzed the level, cellular distribution, and subcellular localization of Sfxn3 protein in the developing and adult rodent brain. We found that, in the cortex and hippocampus, Sfxn3 protein level is low at birth but increases during development and remains at a high level in the mature brains. Similarly, in cultured hippocampal neurons, Sfxn3 protein level is low in young neurons but increases as neurons mature. Sfxn3 protein level is much higher in neurons than in astrocytes. Within neurons, Sfxn3 localizes to mitochondria in all major neuronal compartments. Our results establish that Sfxn3 is a mitochondrial protein enriched in neurons wherein it is developmentally expressed. These findings provide a foundation for future research aimed at understanding the functions of Sfxn3 and one-carbon metabolism in neurons.
Collapse
Affiliation(s)
- Aileen Rivell
- Laboratory of Neurosciences, NIA/NIH Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | | | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, Bethesda, MD, 20892, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, NIA/NIH Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, NIA/NIH Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
57
|
Rivell A, Petralia RS, Wang YX, Clawson E, Moehl K, Mattson MP, Yao PJ. Sonic hedgehog expression in the postnatal brain. Biol Open 2019; 8:bio.040592. [PMID: 30837226 PMCID: PMC6451348 DOI: 10.1242/bio.040592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Beyond its role in patterning the neural tube during embryogenesis, additional functions of Sonic hedgehog (Shh) in post-embryonic and mature brains have been coming into focus. However, the question of the abundance of endogenous Shh - the ligand of the signaling pathway - and its changes over time in post-embryonic and mature brains are less well understood. Here we find that while the amounts of Shh transcript and protein in rat brains are nearly undetectable at birth, they increase continuously during postnatal development and remain at readily detectable levels in young adults. This developmental age-associated increase in Shh levels is also seen in hippocampal neurons grown in culture, in which very young neurons produce minimal amounts of Shh protein but, as neurons grow and form synapses, the amounts of Shh increase significantly. Using immunolabeling with antibodies to different residues of Shh, we observed that the N-terminal fragment and the C-terminal fragment of Shh are present in hippocampal neurons, and that these two Shh forms co-exist in most compartments of the neuron. Our findings provide a better understanding of Shh expression in the brain, laying the groundwork for further comprehending the biogenesis of Shh protein in the young and mature brain and neurons.
Collapse
Affiliation(s)
- Aileen Rivell
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD 21224, USA
| | | | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, Bethesda, MD 20892, USA
| | - Ellie Clawson
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD 21224, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD 21224, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD 21224, USA
| |
Collapse
|
58
|
Hyperhomocysteinemia leads to exacerbation of ischemic brain damage: Role of GluN2A NMDA receptors. Neurobiol Dis 2019; 127:287-302. [PMID: 30885791 DOI: 10.1016/j.nbd.2019.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 11/24/2022] Open
Abstract
Hyperhomocysteinemia has been implicated in several neurodegenerative disorders including ischemic stroke. However, the pathological consequences of ischemic insult in individuals predisposed to hyperhomocysteinemia and the associated etiology are unknown. In this study, we evaluated the outcome of transient ischemic stroke in a rodent model of hyperhomocysteinemia, developed by subcutaneous implantation of osmotic pumps containing L-homocysteine into male Wistar rats. Our findings show a 42.3% mortality rate in hyperhomocysteinemic rats as compared to 7.7% in control rats. Magnetic resonance imaging of the brain in the surviving rats shows that mild hyperhomocysteinemia leads to exacerbation of ischemic injury within 24 h, which remains elevated over time. Behavioral studies further demonstrate significant deficit in sensorimotor functions in hyperhomocysteinemic rats compared to control rats. Using pharmacological inhibitors targeting the NMDAR subtypes, the study further demonstrates that inhibition of GluN2A-containing NMDARs significantly reduces ischemic brain damage in hyperhomocysteinemic rats but not in control rats, indicating that hyperhomocysteinemia-mediated exacerbation of ischemic brain injury involves GluN2A-NMDAR signaling. Complementary studies in GluN2A-knockout mice show that in the absence of GluN2A-NMDARs, hyperhomocysteinemia-associated exacerbation of ischemic brain injury is blocked, confirming that GluN2A-NMDAR activation is a critical determinant of the severity of ischemic damage under hyperhomocysteinemic conditions. Furthermore, at the molecular level we observe GluN2A-NMDAR dependent sustained increase in ERK MAPK phosphorylation under hyperhomocysteinemic condition that has been shown to be involved in homocysteine-induced neurotoxicity. Taken together, the findings show that hyperhomocysteinemia triggers a unique signaling pathway that in conjunction with ischemia-induced pathways enhance the pathology of stroke under hyperhomocysteinemic conditions.
Collapse
|
59
|
Veruki ML, Zhou Y, Castilho Á, Morgans CW, Hartveit E. Extrasynaptic NMDA Receptors on Rod Pathway Amacrine Cells: Molecular Composition, Activation, and Signaling. J Neurosci 2019; 39:627-650. [PMID: 30459218 PMCID: PMC6343648 DOI: 10.1523/jneurosci.2267-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
In the rod pathway of the mammalian retina, axon terminals of glutamatergic rod bipolar cells are presynaptic to AII and A17 amacrine cells in the inner plexiform layer. Recent evidence suggests that both amacrines express NMDA receptors, raising questions concerning molecular composition, localization, activation, and function of these receptors. Using dual patch-clamp recording from synaptically connected rod bipolar and AII or A17 amacrine cells in retinal slices from female rats, we found no evidence that NMDA receptors contribute to postsynaptic currents evoked in either amacrine. Instead, NMDA receptors on both amacrine cells were activated by ambient glutamate, and blocking glutamate uptake increased their level of activation. NMDA receptor activation also increased the frequency of GABAergic postsynaptic currents in rod bipolar cells, suggesting that NMDA receptors can drive release of GABA from A17 amacrines. A striking dichotomy was revealed by pharmacological and immunolabeling experiments, which found GluN2B-containing NMDA receptors on AII amacrines and GluN2A-containing NMDA receptors on A17 amacrines. Immunolabeling also revealed a clustered organization of NMDA receptors on both amacrines and a close spatial association between GluN2B subunits and connexin 36 on AII amacrines, suggesting that NMDA receptor modulation of gap junction coupling between these cells involves the GluN2B subunit. Using multiphoton Ca2+ imaging, we verified that activation of NMDA receptors evoked an increase of intracellular Ca2+ in dendrites of both amacrines. Our results suggest that AII and A17 amacrines express clustered, extrasynaptic NMDA receptors, with different and complementary subunits that are likely to contribute differentially to signal processing and plasticity.SIGNIFICANCE STATEMENT Glutamate is the most important excitatory neurotransmitter in the CNS, but not all glutamate receptors transmit fast excitatory signals at synapses. NMDA-type glutamate receptors act as voltage- and ligand-gated ion channels, with functional properties determined by their specific subunit composition. These receptors can be found at both synaptic and extrasynaptic sites on neurons, but the role of extrasynaptic NMDA receptors is unclear. Here, we demonstrate that retinal AII and A17 amacrine cells, postsynaptic partners at rod bipolar dyad synapses, express extrasynaptic (but not synaptic) NMDA receptors, with different and complementary GluN2 subunits. The localization of GluN2A-containing receptors to A17s and GluN2B-containing receptors to AIIs suggests a mechanism for differential modulation of excitability and signaling in this retinal microcircuit.
Collapse
Affiliation(s)
- Margaret L Veruki
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| | - Yifan Zhou
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| | - Áurea Castilho
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| | - Catherine W Morgans
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239
| | - Espen Hartveit
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| |
Collapse
|
60
|
Wei X, Nishi T, Kondou S, Kimura H, Mody I. Preferential enhancement of GluN2B-containing native NMDA receptors by the endogenous modulator 24S-hydroxycholesterol in hippocampal neurons. Neuropharmacology 2018; 148:11-20. [PMID: 30594698 DOI: 10.1016/j.neuropharm.2018.12.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/11/2018] [Accepted: 12/26/2018] [Indexed: 11/24/2022]
Abstract
24S-hydroxycholesterol (24HC) is the major metabolic breakdown product of cholesterol in the brain. Among its other effects on neurons, 24HC modulates N-methyl-d-aspartate (NMDA or GluN) receptors, but our understanding of this mechanism is poor. We used whole-cell patch clamp recordings and various pharmacological approaches in mouse brain slices to record isolated NMDAR-mediated (INMDA) tonic and evoked synaptic currents. 24HC (1 μΜ) significantly enhanced tonic, but not evoked, INMDA of dentate gyrus granule cells. The INMDA had both GluN2A and GluN2B-mediated components. Preincubation of the slices with PEAQX (a GluN2A antagonist) or Ro25-6981 (a GluN2B antagonist) dramatically changed the INMDA modulatory potential of 24HC. Ro25-6981 blocked the enhancing effect of 24HC on tonic INMDA, while preincubation with PEAQX had no effect. In cholesterol 24-hydroxylase (CYP46A1) knockout mice, in sharp contrast to WT, 24HC slightly decreased the tonic INMDA of granule cells. Furthermore, 24HC had no effect on tonic INMDA of dentate gyrus parvalbumin interneurons (PV-INs), known to express different GluN subunits than granule cells. Taken together, our results revealed a specific enhancement of GluN2B-containing NMDARs by 24HC, indicating a novel endogenous pathway to influence a subclass of NMDARs critically involved in cortical plasticity and in numerous neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Toshiya Nishi
- Department of Physiology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Shinichi Kondou
- Department of Physiology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Haruhide Kimura
- Department of Physiology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
61
|
Müller MK, Jacobi E, Sakimura K, Malinow R, von Engelhardt J. NMDA receptors mediate synaptic depression, but not spine loss in the dentate gyrus of adult amyloid Beta (Aβ) overexpressing mice. Acta Neuropathol Commun 2018; 6:110. [PMID: 30352630 PMCID: PMC6198500 DOI: 10.1186/s40478-018-0611-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 11/25/2022] Open
Abstract
Amyloid beta (Aβ)-mediated synapse dysfunction and spine loss are considered to be early events in Alzheimer’s disease (AD) pathogenesis. N-methyl-D-aspartate receptors (NMDARs) have previously been suggested to play a role for Amyloid beta (Aβ) toxicity. Pharmacological block of NMDAR subunits in cultured neurons and mice suggested that NMDARs containing the GluN2B subunit are necessary for Aβ-mediated changes in synapse number and function in hippocampal neurons. Interestingly, NMDARs undergo a developmental switch from GluN2B- to GluN2A-containing receptors. This indicates different functional roles of NMDARs in young mice compared to older animals. In addition, the lack of pharmacological tools to efficiently dissect the role of NMDARs containing the different subunits complicates the interpretation of their specific role. In order to address this problem and to investigate the specific role for Aβ toxicity of the distinct NMDAR subunits in dentate gyrus granule cells of adult mice, we used conditional knockout mouse lines for the subunits GluN1, GluN2A and GluN2B. Aβ-mediated changes in synaptic function and neuronal anatomy were investigated in several-months old mice with virus-mediated overproduction of Aβ and in 1-year old 5xFAD mice. We found that all three NMDAR subunits contribute to the Aβ-mediated decrease in the number of functional synapses. However, NMDARs are not required for the spine number reduction in dentate gyrus granule cells after chronic Aβ-overproduction in 5xFAD mice. Furthermore, the amplitude of synaptic and extrasynaptic NMDAR-mediated currents was reduced in dentate gyrus granule of 5xFAD mice without changes in current kinetics, suggesting that a redistribution or change in subunit composition of NMDARs does not play a role in mediating Amyloid beta (Aβ) toxicity. Our study indicates that NMDARs are involved in AD pathogenesis by compromising synapse function but not by affecting neuron morphology.
Collapse
|
62
|
Depp C, Bas-Orth C, Schroeder L, Hellwig A, Bading H. Synaptic Activity Protects Neurons Against Calcium-Mediated Oxidation and Contraction of Mitochondria During Excitotoxicity. Antioxid Redox Signal 2018; 29:1109-1124. [PMID: 28990420 DOI: 10.1089/ars.2017.7092] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Excitotoxicity triggered by extrasynaptic N-methyl-d-aspartate-type glutamate receptors has been implicated in many neurodegenerative conditions, including Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, and stroke. Mitochondrial calcium overload leading to mitochondrial dysfunction represents an early event in excitotoxicity. Neurons are rendered resistant to excitotoxicity by previous periods of synaptic activity that activates a nuclear calcium-driven neuroprotective gene program. This process, termed acquired neuroprotection, involves transcriptional repression of the mitochondrial calcium uniporter leading to a reduction in excitotoxcity-associated mitochondrial calcium load. As mitochondrial calcium and the production of reactive oxygen species may be linked, we monitored excitotoxicity-associated changes in the mitochondrial redox status using the ratiometric glutathione redox potential indicator, glutaredoxin 1 (GRX1)-redox-sensitive green fluorescent protein (roGFP)2, targeted to the mitochondrial matrix. Aim of this study was to investigate if suppression of oxidative stress underlies mitoprotection afforded by synaptic activity. RESULTS We found that synaptic activity protects primary rat hippocampal neurons against acute excitotoxicity-induced mitochondrial oxidative stress and mitochondrial contraction associated with it. Downregulation of the mitochondrial uniporter by genetic means mimics the protective effect of synaptic activity on mitochondrial redox status. These findings indicate that oxidative stress acts downstream of mitochondrial calcium overload in excitotoxicity. Innovation and Conclusion: We established mito-GRX1-roGFP2 as a reliable and sensitive tool to monitor rapid redox changes in mitochondria during excitotoxicity. Our results highlight the importance of developing means of blocking mitochondrial calcium overload for therapeutic targeting of oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Antioxid. Redox. Signal. 29, 1109-1124.
Collapse
Affiliation(s)
- Constanze Depp
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University , Heidelberg, Germany
| | - Carlos Bas-Orth
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University , Heidelberg, Germany
| | - Lisa Schroeder
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University , Heidelberg, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University , Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University , Heidelberg, Germany
| |
Collapse
|
63
|
Wang X, Yu H, You J, Wang C, Feng C, Liu Z, Li Y, Wei R, Xu S, Zhao R, Wu X, Zhang G. Memantine can improve chronic ethanol exposure-induced spatial memory impairment in male C57BL/6 mice by reducing hippocampal apoptosis. Toxicology 2018; 406-407:21-32. [PMID: 29800586 DOI: 10.1016/j.tox.2018.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 01/08/2023]
Abstract
Chronic ethanol intake can induce neuronal apoptosis, leading to dementia. We investigated the protective effects of memantine on spatial memory impairment induced by chronic ethanol exposure in mice. Male C57BL/6 mice were administered 10% (m/V) or 20% (m/V) ethanol as the only choice of drinking water. Mice were treated for 60 d, 90 d, or 180 d. Mice were treated with memantine for the same duration (daily 10 mg/kg oral). The Morris water maze and radial arm maze test were used to measure spatial memory. Mice were sacrificed after the behavioral tests. Brains were removed to prepare for paraffin sections, and hippocampi were isolated for protein and RNA extraction. 4',6-diamidino-2-phenylindole (DAPI) staining and immunohistochemical staining of cleaved caspase-3 were performed. Western blot analysis was used to detect the expression of cleaved caspase-3 and calcium-related proteins, including N-methyl-d-aspartic acid receptor 1 (NR1), 1,4,5-trisphosphate receptor 1 (IP3R1), and sarco/endoplasmic reticulum calcium adenosine triphosphatase 1 (SERCA1). The changes of NR1, IP3R1 and SERCA1 mRNA were detected using quantitative polymerase chain reaction (qPCR). The results revealed that chronic ethanol exposure induced spatial memory impairment in mice, as well as increasing the expression of NR1, IP3R1 and SERCA1, the activation of caspase-3 and apoptosis in hippocampus. The effect was particularly prominent in the 20% ethanol group after 180 d exposure. Memantine decreased ethanol-induced spatial memory impairment, caspase-3 activation and apoptosis in the mouse hippocampus. These results suggest that disruption of intracellular calcium balance by ethanol can induce caspase-3 activation and apoptosis, which underlies subsequent spatial memory impairment in mice.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Hao Yu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Jiabin You
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Changliang Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Chunmei Feng
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Zhaodi Liu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Ya Li
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Rucheng Wei
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Siqi Xu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China.
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
64
|
Pál B. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci 2018; 75:2917-2949. [PMID: 29766217 PMCID: PMC11105518 DOI: 10.1007/s00018-018-2837-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Glutamate is the most abundant neurotransmitter of the central nervous system, as the majority of neurons use glutamate as neurotransmitter. It is also well known that this neurotransmitter is not restricted to synaptic clefts, but found in the extrasynaptic regions as ambient glutamate. Extrasynaptic glutamate originates from spillover of synaptic release, as well as from astrocytes and microglia. Its concentration is magnitudes lower than in the synaptic cleft, but receptors responding to it have higher affinity for it. Extrasynaptic glutamate receptors can be found in neuronal somatodendritic location, on astroglia, oligodendrocytes or microglia. Activation of them leads to changes of neuronal excitability with different amplitude and kinetics. Extrasynaptic glutamate is taken up by neurons and astrocytes mostly via EAAT transporters, and astrocytes, in turn metabolize it to glutamine. Extrasynaptic glutamate is involved in several physiological phenomena of the central nervous system. It regulates neuronal excitability and synaptic strength by involving astroglia; contributing to learning and memory formation, neurosecretory and neuromodulatory mechanisms, as well as sleep homeostasis.The extrasynaptic glutamatergic system is affected in several brain pathologies related to excitotoxicity, neurodegeneration or neuroinflammation. Being present in dementias, neurodegenerative and neuropsychiatric diseases or tumor invasion in a seemingly uniform way, the system possibly provides a common component of their pathogenesis. Although parts of the system are extensively discussed by several recent reviews, in this review I attempt to summarize physiological actions of the extrasynaptic glutamate on neuronal excitability and provide a brief insight to its pathology for basic understanding of the topic.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary.
| |
Collapse
|
65
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. Invaginating Structures in Mammalian Synapses. Front Synaptic Neurosci 2018; 10:4. [PMID: 29674962 PMCID: PMC5895750 DOI: 10.3389/fnsyn.2018.00004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/26/2022] Open
Abstract
Invaginating structures at chemical synapses in the mammalian nervous system exist in presynaptic axon terminals, postsynaptic spines or dendrites, and glial processes. These invaginating structures can be divided into three categories. The first category includes slender protrusions invaginating into axonal terminals, postsynaptic spines, or glial processes. Best known examples of this category are spinules extending from postsynaptic spines into presynaptic terminals in forebrain synapses. Another example of this category are protrusions from inhibitory presynaptic terminals invaginating into postsynaptic neuronal somas. Regardless of the direction and location, the invaginating structures of the first category do not have synaptic active zones within the invagination. The second category includes postsynaptic spines invaginating into presynaptic terminals, whereas the third category includes presynaptic terminals invaginating into postsynaptic spines or dendrites. Unlike the first category, the second and third categories have active zones within the invagination. An example of the second category are mossy terminal synapses of the hippocampal CA3 region, in which enlarged spine-like structures invaginate partly or entirely into mossy terminals. An example of the third category is the neuromuscular junction (NMJ) where substantial invaginations of the presynaptic terminals invaginate into the muscle fibers. In the retina, rod and cone synapses have invaginating processes from horizontal and bipolar cells. Because horizontal cells act both as post and presynaptic structures, their invaginating processes represent both the second and third category. These invaginating structures likely play broad yet specialized roles in modulating neuronal cell signaling.
Collapse
Affiliation(s)
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, Bethesda, MD, United States
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD, United States
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD, United States
| |
Collapse
|
66
|
Wang H, Wang X, Li Y, Yu H, Wang C, Feng C, Xu G, Chen J, You J, Wang P, Wu X, Zhao R, Zhang G. Chronic ethanol exposure induces SK-N-SH cell apoptosis by increasing N-methyl-D-aspartic acid receptor expression and intracellular calcium. Exp Ther Med 2018; 15:3791-3800. [PMID: 29581737 PMCID: PMC5863573 DOI: 10.3892/etm.2018.5902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/12/2018] [Indexed: 01/26/2023] Open
Abstract
It has been identified that chronic ethanol exposure damages the nervous system, particularly neurons. There is scientific evidence suggesting that neuronal loss caused by chronic ethanol exposure has an association with neuron apoptosis and intracellular calcium oscillation is one of the primary inducers of apoptosis. Therefore, the present study aimed to investigate the inductive effects of intracellular calcium oscillation on apoptosis in SK-N-SH human neuroblastoma cells and the protective effects of the N-methyl-D-aspartic acid receptor (NMDAR) antagonist, memantine, on SK-N-SH cell apoptosis caused by chronic ethanol exposure. SK-N-SH cells were treated with 100 mM ethanol and memantine (4 µM) for 2 days. Protein expression of NR1 was downregulated by RNA interference (RNAi). Apoptosis was detected by Annexin V/propidium iodide (PI) double-staining and flow cytometry and cell viability was detected using an MTS kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration and the levels of NR1 and caspase-3 were detected using western blotting. NR1 mRNA levels were also detected using qPCR. It was found that chronic ethanol exposure reduced neuronal cell viability and caused apoptosis of SK-N-SH cells, and the extent of damage in SK-N-SH cells was associated with ethanol exposure concentration and time. In addition, chronic ethanol exposure increased the concentration of intracellular calcium in SK-N-SH cells by inducing the expression of NMDAR, resulting in apoptosis, and memantine treatment reduced ethanol-induced cell apoptosis. The results of the present study indicate that the application of memantine may provide a novel strategy for the treatment of alcoholic dementia.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaolong Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yan Li
- No.1 English Department, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hao Yu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Changliang Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Chunmei Feng
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guohui Xu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jiajun Chen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jiabin You
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Pengfei Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
67
|
Lin L, Murphy JG, Karlsson RM, Petralia RS, Gutzmann JJ, Abebe D, Wang YX, Cameron HA, Hoffman DA. DPP6 Loss Impacts Hippocampal Synaptic Development and Induces Behavioral Impairments in Recognition, Learning and Memory. Front Cell Neurosci 2018; 12:84. [PMID: 29651237 PMCID: PMC5884885 DOI: 10.3389/fncel.2018.00084] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/08/2018] [Indexed: 11/13/2022] Open
Abstract
DPP6 is well known as an auxiliary subunit of Kv4-containing, A-type K+ channels which regulate dendritic excitability in hippocampal CA1 pyramidal neurons. We have recently reported, however, a novel role for DPP6 in regulating dendritic filopodia formation and stability, affecting synaptic development and function. These results are notable considering recent clinical findings associating DPP6 with neurodevelopmental and intellectual disorders. Here we assessed the behavioral consequences of DPP6 loss. We found that DPP6 knockout (DPP6-KO) mice are impaired in hippocampus-dependent learning and memory. Results from the Morris water maze and T-maze tasks showed that DPP6-KO mice exhibit slower learning and reduced memory performance. DPP6 mouse brain weight is reduced throughout development compared with WT, and in vitro imaging results indicated that DPP6 loss affects synaptic structure and motility. Taken together, these results show impaired synaptic development along with spatial learning and memory deficiencies in DPP6-KO mice.
Collapse
Affiliation(s)
- Lin Lin
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Jonathan G Murphy
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Rose-Marie Karlsson
- Section on Neuroplasticity, National Institute of Mental Health, Bethesda, MD, United States
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Jakob J Gutzmann
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Daniel Abebe
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, Bethesda, MD, United States
| | - Dax A Hoffman
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| |
Collapse
|
68
|
Williamson J, Petralia RS, Wang YX, Mattson MP, Yao PJ. Purine Biosynthesis Enzymes in Hippocampal Neurons. Neuromolecular Med 2017; 19:518-524. [PMID: 28866774 PMCID: PMC6085884 DOI: 10.1007/s12017-017-8466-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/29/2017] [Indexed: 01/26/2023]
Abstract
Despite reports implicating disrupted purine metabolism in causing a wide spectrum of neurological defects, the mechanistic details of purine biosynthesis in neurons are largely unknown. As an initial step in filling that gap, we examined the expression and subcellular distribution of three purine biosynthesis enzymes (PFAS, PAICS and ATIC) in rat hippocampal neurons. Using immunoblotting and high-resolution light and electron microscopic analysis, we find that all three enzymes are broadly distributed in hippocampal neurons with pools of these enzymes associated with mitochondria. These findings suggest a potential link between purine metabolism and mitochondrial function in neurons and provide an impetus for further studies.
Collapse
Affiliation(s)
| | | | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, Bethesda, MD, 20892, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
69
|
Freeman DW, Petralia RS, Wang YX, Mattson MP, Yao PJ. Mitochondria in hippocampal presynaptic and postsynaptic compartments differ in size as well as intensity. ACTA ACUST UNITED AC 2017; 2017. [PMID: 31058178 DOI: 10.19185/matters.201711000009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Experimental observations have hinted that, in different compartments of a neuron, mitochondria can be different in their structure, behavior and activity. However, mitochondria have never been systematically compared at the subcellular level in neurons. Using electron microscopy, we analyzed several thousands of mitochondria in the synapses of rat hippocampal neurons in vitro and in vivo. We focused on examining the intensity and size of mitochondria as these structural features have been correlated to the activity of mitochondria. We compared mitochondria in the presynaptic compartment to those in the postsynaptic compartment. We found that, at least in the synapses of hippocampal neurons, presynaptic mitochondria are smaller in diameter and overall higher in intensity (darker) than postsynaptic mitochondria. Our finding highlights the need for developing technologies that would measure the activity of individual mitochondria at single-mitochondria resolution in real time.
Collapse
Affiliation(s)
- David W Freeman
- Laboratory of Epidemiology and Population Science, NIA/NIH, Baltimore, Maryland 21224
| | | | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, Bethesda, Maryland 20892
| | - Mark P Mattson
- Laboratory of Neurosciences, NIA/NIH, Baltimore, Maryland 21224
| | - Pamela J Yao
- Laboratory of Neurosciences, NIA/NIH, Baltimore, Maryland 21224
| |
Collapse
|
70
|
Memantine and Ketamine Differentially Alter NMDA Receptor Desensitization. J Neurosci 2017; 37:9686-9704. [PMID: 28877967 DOI: 10.1523/jneurosci.1173-17.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/07/2017] [Accepted: 08/30/2017] [Indexed: 11/21/2022] Open
Abstract
Memantine and ketamine are clinically useful NMDA receptor (NMDAR) open channel blockers that inhibit NMDARs with similar potency and kinetics, but display vastly different clinical profiles. This discrepancy has been hypothesized to result from inhibition by memantine and ketamine of overlapping but distinct NMDAR subpopulations. For example, memantine but not ketamine may inhibit extrasynaptic NMDARs more effectively than synaptic NMDARs. However, the basis for preferential NMDAR inhibition depending on subcellular location has not been investigated systematically. We integrated recordings from heterologously expressed single NMDAR subtypes, kinetic modeling, and recordings of synaptically evoked NMDAR responses in acute brain slices to investigate mechanisms by which channel blockers may distinguish NMDAR subpopulations. We found that memantine and ketamine differentially alter NMDAR desensitization and that memantine stabilizes a Ca2+-dependent desensitized state. As a result, inhibition by memantine of GluN1/2A receptors in tsA201 cells and of native synaptic NMDARs in cortical pyramidal neurons from mice of either sex increased in conditions that enhanced intracellular Ca2+ accumulation. Therefore, differential inhibition by memantine and ketamine based on NMDAR location is likely to result from location dependence of the intensity and duration of NMDAR activation. Modulation of Ca2+-dependent NMDAR desensitization is an unexplored mechanism of inhibitory action with the potential to endow drugs with NMDAR selectivity that leads to superior clinical profiles. Our results suggest that designing compounds to target specific receptor states, rather than specific receptor types, may be a viable strategy for future drug development.SIGNIFICANCE STATEMENT Memantine and ketamine are NMDA receptor (NMDAR) channel-blocking drugs with divergent clinical effects. Understanding mechanistically their differential actions may advance our understanding of nervous system disorders and suggest strategies for the design of more effective drugs. Here, we show that memantine and ketamine have contrasting effects on NMDAR desensitization. Ketamine binding decreases occupancy of desensitized states of the GluN1/2B NMDAR subtype. In contrast, memantine binding increases occupancy of GluN1/2A and native NMDAR desensitized states entered after accumulation of intracellular Ca2+, a novel inhibitory mechanism. These properties may contribute to inhibition of distinct NMDAR subpopulations by memantine and ketamine and help to explain their differential clinical effects. Our results suggest stabilization of Ca2+-dependent desensitized states as a new strategy for pharmaceutical neuroprotection.
Collapse
|
71
|
Pannexin-1 channels in epilepsy. Neurosci Lett 2017; 695:71-75. [PMID: 28886985 DOI: 10.1016/j.neulet.2017.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 07/20/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
Abstract
Pannexin-1 (Panx1) expression is raised in several animal seizure models and in resected human epileptic brain tissue, suggesting relevance to epilepsy. Multiple factors that are characteristic of seizures are thought to regulate Panx1 channel opening, including elevated levels of extracellular K+. Panx1, when open, 1) releases ATP, glutamate, and other metabolites into the extracellular medium, and 2) may depolarize the membrane due to a channel reversal potential around 0mV. Resultant ATP release from stimulated Panx1 can activate purinergic receptors, including P2X7 receptors. Glutamate and other signaling molecules released by Panx1 opening may have both excitatory and inhibitory actions on seizure generation. This review examines the critical and complex roles of Panx1 channels in epilepsy, which could provide a basis for future therapeutics.
Collapse
|
72
|
Wang X, Chen J, Wang H, Yu H, Wang C, You J, Wang P, Feng C, Xu G, Wu X, Zhao R, Zhang G. Memantine Can Reduce Ethanol-Induced Caspase-3 Activity and Apoptosis in H4 Cells by Decreasing Intracellular Calcium. J Mol Neurosci 2017; 62:402-411. [PMID: 28730337 DOI: 10.1007/s12031-017-0948-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023]
Abstract
Caspase-3 activation and apoptosis are associated with various neurodegenerative disorders. Calcium activation is an important factor in promoting apoptosis. We, therefore, assessed the role of intracellular calcium in ethanol-induced activation of caspase-3 in H4 human neuroglioma cells and the protective effect of the NMDA receptor antagonist, memantine, on ethanol-induced apoptosis in H4 cells. H4 cells were treated with 100 mM EtOH (in culture medium) for 2 days. For interaction studies, cells were treated with memantine (4 μM), EDTA (1 mM), or BAPTA-AM (10 μM) before treatment with EtOH. Knockdown of the gene encoding the NR1 subunit of the NMDA receptor was performed using RNAi. Apoptosis was detected by Annexin V-FITC/PI staining and flow cytometry. Cell viability was detected using an MTS cell proliferation kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration. The levels of NR1, caspase-3, IP3R1, and SERCA1 proteins were detected by western blotting. NR1, IP3R1, and SERCA1 mRNA levels were detected by qPCR. We observed increased expression of NR1, IP3R1, SERCA1, and increased intracellular levels of calcium ions in H4 cells exposed to ethanol. In addition, the calcium chelators, EDTA and BAPTA, and RNAi disruption of the NMDA receptor reduced ethanol-induced caspase-3 activation in H4 cells. Memantine treatment reduced the ethanol-induced increase of intracellular calcium, caspase-3 activation, apoptosis, and the ethanol-induced decrease in cell viability. Our results indicate that ethanol-induced caspase-3 activation and apoptosis are likely to be dependent on cytosolic calcium levels and that they can be reduced by memantine treatment.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Jiajun Chen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Hongbo Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Hao Yu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Changliang Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Jiabin You
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Pengfei Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Chunmei Feng
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Guohui Xu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
73
|
Li S, Li S, Li Y, Yan H, Huang C, Liu Q. Influence of circadian disorder on structures and functions of neurons in hippocampus of mice. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1299368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Songbing Li
- West China Hospital, Sichuan University, Chendu, China
| | - Shuaizhen Li
- College of Electronic Engineering, Chengdu University of Information Technology, Chendu, China
| | - Yonghong Li
- College of Electronic Engineering, Chengdu University of Information Technology, Chendu, China
| | - Hongli Yan
- College of Electronic Engineering, Chengdu University of Information Technology, Chendu, China
| | - Changquan Huang
- College of Electronic Engineering, Chengdu University of Information Technology, Chendu, China
- Department of Gynecology, Third People Hospital Mianyang City, Mianyang, China
| | - Qingxiu Liu
- Department of Gynecology, Third People Hospital Mianyang City, Mianyang, China
| |
Collapse
|
74
|
Chen YW, Actor-Engel H, Sherpa AD, Klingensmith L, Chowdhury TG, Aoki C. NR2A- and NR2B-NMDA receptors and drebrin within postsynaptic spines of the hippocampus correlate with hunger-evoked exercise. Brain Struct Funct 2017; 222:2271-2294. [PMID: 27915379 PMCID: PMC5764086 DOI: 10.1007/s00429-016-1341-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/16/2016] [Indexed: 01/22/2023]
Abstract
Hunger evokes foraging. This innate response can be quantified as voluntary wheel running following food restriction (FR). Paradoxically, imposing severe FR evokes voluntary FR, as some animals choose to run rather than eat, even during limited periods of food availability. This phenomenon, called activity-based anorexia (ABA), has been used to identify brain changes associated with FR and excessive exercise (EX), two core symptoms of anorexia nervosa (AN), and to explore neurobiological bases of AN vulnerability. Previously, we showed a strong positive correlation between suppression of FR-evoked hyperactivity, i.e., ABA resilience, and levels of extra-synaptic GABA receptors in stratum radiatum (SR) of hippocampal CA1. Here, we tested for the converse: whether animals with enhanced expression of NMDA receptors (NMDARs) exhibit greater levels of FR-evoked hyperactivity, i.e., ABA vulnerability. Four groups of animals were assessed for NMDAR levels at CA1 spines: (1) ABA, in which 4 days of FR was combined with wheel access to allow voluntary EX; (2) FR only; (3) EX only; and (4) control (CON) that experienced neither EX nor FR. Electron microscopy revealed that synaptic NR2A-NMDARs and NR2B-NMDARs levels are significantly elevated, relative to CONs'. Individuals' ABA severity, based on weight loss, correlated with synaptic NR2B-NMDAR levels. ABA resilience, quantified as suppression of hyperactivity, correlated strongly with reserve pools of NR2A-NMDARs in spine cytoplasm. NR2A- and NR2B-NMDAR measurements correlated with spinous prevalence of an F-actin binding protein, drebrin, suggesting that drebrin enables insertion of NR2B-NMDAR to and retention of NR2A-NMDARs away from synaptic membranes, together influencing ABA vulnerability.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA
| | - Hannah Actor-Engel
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA
| | - Ang Doma Sherpa
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA
| | - Lauren Klingensmith
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA
| | - Tara G Chowdhury
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA.
| |
Collapse
|
75
|
Zeng Y, Petralia RS, Vijayasarathy C, Wu Z, Hiriyanna S, Song H, Wang YX, Sieving PA, Bush RA. Retinal Structure and Gene Therapy Outcome in Retinoschisin-Deficient Mice Assessed by Spectral-Domain Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2017; 57:OCT277-87. [PMID: 27409484 PMCID: PMC4968785 DOI: 10.1167/iovs.15-18920] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Spectral-domain optical coherence tomography (SD-OCT) was used to characterize the retinal phenotype, natural history, and treatment responses in a mouse model of X-linked retinoschisis (Rs1-KO) and to identify new structural markers of AAV8-mediated gene therapy outcome. Methods Optical coherence tomography scans were performed on wild-type and Rs1-KO mouse retinas between 1 and 12 months of age and on Rs1-KO mice after intravitreal injection of AAV8-scRS/IRBPhRS (AAV8-RS1). Cavities and photoreceptor outer nuclear layer (ONL) thickness were measured, and outer retina reflective band (ORRB) morphology was examined with age and after AAV8-RS1 treatment. Outer retina reflective band morphology was compared to immunohistochemical staining of the outer limiting membrane (OLM) and photoreceptor inner segment (IS) mitochondria and to electron microscopy (EM) images of IS. Results Retinal cavity size in Rs1-KO mice increased between 1 and 4 months and decreased thereafter, while ONL thickness declined steadily, comparable to previous histologic studies. Wild-type retina had four ORRBs. In Rs1-KO, ORRB1was fragmented from 1 month, but was normal after 8 months; ORRB2 and ORRB3 were merged at all ages. Outer retina reflective band morphology returned to normal after AAV-RS1 therapy, paralleling the recovery of the OLM and IS mitochondria as indicated by anti–β-catenin and anti-COX4 labeling, respectively, and EM. Conclusions Spectral-domain OCT is a sensitive, noninvasive tool to monitor subtle changes in retinal morphology, disease progression, and effects of therapies in mouse models. The ORRBs may be useful to assess the outcome of gene therapy in the treatment of X-linked retinoschisis patients.
Collapse
Affiliation(s)
- Yong Zeng
- Section on Translational Research for Retinal and Macular Degeneration National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Camasamudram Vijayasarathy
- Section on Translational Research for Retinal and Macular Degeneration National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Zhijian Wu
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Suja Hiriyanna
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hongman Song
- Section on Translational Research for Retinal and Macular Degeneration National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Paul A Sieving
- Section on Translational Research for Retinal and Macular Degeneration National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States 4National Eye Institute, National Institutes of Healt
| | - Ronald A Bush
- Section on Translational Research for Retinal and Macular Degeneration National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
76
|
Gong WY, Wang R, Liu Y, Jin H, Zhao ZW, Wang YL, Li HY, Zhang X, Ni JX. Chronic Monoarthritis Pain Accelerates the Processes of Cognitive Impairment and Increases the NMDAR Subunits NR2B in CA3 of Hippocampus from 5-month-old Transgenic APP/PS1 Mice. Front Aging Neurosci 2017; 9:123. [PMID: 28553223 PMCID: PMC5427068 DOI: 10.3389/fnagi.2017.00123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023] Open
Abstract
Many factors impact cognitive impairment; however, the effects of chronic pain and the mechanisms underlying these effects on cognitive impairment are currently unknown. Here we tested the hypothesis that chronic pain accelerates the transition from normal cognition to mild cognitive impairment (MCI) in 5-month-old transgenic APP/PS1 mice, an animal model of Alzheimer’s disease (AD), and that neurotoxicity induced by N-methyl-D-aspartic acid receptor (NMDAR) subunits may be involved in this process. Chronic monoarthritis pain was induced in transgenic APP/PS1 mice and 5-month-old wild-type (WT) mice by intra- and pre-articular injections of Freund’s complete adjuvant (FCA) into one knee joint. Pain behavior, learning and memory function, and the distribution and quantity of NMDAR subunits (NR1, NR2A and NR2B) in hippocampal CA1 and CA3 regions were assessed. Our results showed that although persistent and robust monoarthritis pain was induced by the FCA injections, only the transgenic APP/PS1 mice with chronic monoarthritis pain exhibited marked learning and memory impairments. This result suggested that chronic monoarthritis pain accelerated the cognitive impairment process. Furthermore, only transgenic APP/PS1 mice with chronic monoarthritis pain exhibited an overexpression of NR2B and an increased NR2B/NR2A ratio in the hippocampus CA3. These findings suggest that chronic pain is a risk factor for cognitive impairment and that increased neurotoxicity associated with NMDAR subunit activation may underpin the impairment. Thus, NMDARs may be a therapeutic target for the prevention of chronic pain-induced cognitive impairment.
Collapse
Affiliation(s)
- Wei-Yi Gong
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China.,Department of Pain Management, Xuanwu Hospital, Capital Medical UniversityBeijing, China.,Department of Anesthesiology, Fujian Medical University Union HospitalFuzhou, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China
| | - Yuan Liu
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China
| | - He Jin
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China
| | - Zhi-Wei Zhao
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China
| | - Yu-Lan Wang
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China
| | - Hong-Yan Li
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China.,Department of Pain Management, Xuanwu Hospital, Capital Medical UniversityBeijing, China
| | - Xu Zhang
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China
| | - Jia-Xiang Ni
- Department of Pain Management, Xuanwu Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
77
|
Abstract
Stroke is the second most common cause of death and the leading cause of disability worldwide. Brain injury following stroke results from a complex series of pathophysiological events including excitotoxicity, oxidative and nitrative stress, inflammation, and apoptosis. Moreover, there is a mechanistic link between brain ischemia, innate and adaptive immune cells, intracranial atherosclerosis, and also the gut microbiota in modifying the cerebral responses to ischemic insult. There are very few treatments for stroke injuries, partly owing to an incomplete understanding of the diverse cellular and molecular changes that occur following ischemic stroke and that are responsible for neuronal death. Experimental discoveries have begun to define the cellular and molecular mechanisms involved in stroke injury, leading to the development of numerous agents that target various injury pathways. In the present article, we review the underlying pathophysiology of ischemic stroke and reveal the intertwined pathways that are promising therapeutic targets.
Collapse
|
78
|
Bhattacharya S, Kimble W, Buabeid M, Bhattacharya D, Bloemer J, Alhowail A, Reed M, Dhanasekaran M, Escobar M, Suppiramaniam V. Altered AMPA receptor expression plays an important role in inducing bidirectional synaptic plasticity during contextual fear memory reconsolidation. Neurobiol Learn Mem 2017; 139:98-108. [DOI: 10.1016/j.nlm.2016.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 11/25/2022]
|
79
|
Barad Z, Grattan DR, Leitch B. NMDA Receptor Expression in the Thalamus of the Stargazer Model of Absence Epilepsy. Sci Rep 2017; 7:42926. [PMID: 28220891 PMCID: PMC5318904 DOI: 10.1038/srep42926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/16/2017] [Indexed: 11/09/2022] Open
Abstract
In the stargazer mouse model of absence epilepsy, altered corticothalamic excitation of reticular thalamic nucleus (RTN) neurons has been suggested to contribute to abnormal synchronicity in the corticothalamic-thalamocortical circuit, leading to spike-wave discharges, the hallmark of absence seizures. AMPA receptor expression and function are decreased in stargazer RTN, due to a mutation of AMPAR auxiliary subunit stargazin. It is unresolved and debated, however, if decreased excitation of RTN is compatible with epileptogenesis. We tested the hypothesis that relative NMDAR expression may be increased in RTN and/or thalamic synapses in stargazers using Western blot on dissected thalamic nuclei and biochemically isolated synapses, as well as immunogold cytochemistry in RTN. Expression of main NMDAR subunits was variable in stargazer RTN and relay thalamus; however, mean expression values were not statistically significantly different compared to controls. Furthermore, no systematic changes in synaptic NMDAR levels could be detected in stargazer thalamus. In contrast, AMPAR subunits were markedly decreased in both nucleus-specific and synaptic preparations. Thus, defective AMPAR trafficking in stargazer thalamus does not appear to lead to a ubiquitous compensatory increase in total and synaptic NMDAR expression, suggesting that elevated NMDAR function is not mediated by changes in protein expression in stargazer mice.
Collapse
Affiliation(s)
- Z Barad
- Department of Anatomy, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - D R Grattan
- Department of Anatomy, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Centre for Neuroendocrinology, Dunedin, New Zealand
| | - B Leitch
- Department of Anatomy, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
80
|
Bading H. Therapeutic targeting of the pathological triad of extrasynaptic NMDA receptor signaling in neurodegenerations. J Exp Med 2017; 214:569-578. [PMID: 28209726 PMCID: PMC5339681 DOI: 10.1084/jem.20161673] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 01/12/2023] Open
Abstract
Activation of extrasynaptic N-methyl-d-aspartate (NMDA) receptors causes neurodegeneration and cell death. The disease mechanism involves a pathological triad consisting of mitochondrial dysfunction, loss of integrity of neuronal structures and connectivity, and disruption of excitation-transcription coupling caused by CREB (cyclic adenosine monophosphate-responsive element-binding protein) shut-off and nuclear accumulation of class IIa histone deacetylases. Interdependency within the triad fuels an accelerating disease progression that culminates in failure of mitochondrial energy production and cell loss. Both acute and slowly progressive neurodegenerative conditions, including stroke, Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease, share increased death signaling by extrasynaptic NMDA receptors caused by elevated extracellular glutamate concentrations or relocalization of NMDA receptors to extrasynaptic sites. Six areas of therapeutic objectives are defined, based on which a broadly applicable combination therapy is proposed to combat the pathological triad of extrasynaptic NMDA receptor signaling that is common to many neurodegenerative diseases.
Collapse
Affiliation(s)
- Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
81
|
Yao PJ, Manor U, Petralia RS, Brose RD, Wu RTY, Ott C, Wang YX, Charnoff A, Lippincott-Schwartz J, Mattson MP. Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons. Mol Biol Cell 2016; 28:387-395. [PMID: 27932496 PMCID: PMC5341723 DOI: 10.1091/mbc.e16-07-0553] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/10/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022] Open
Abstract
Activation of the Sonic hedgehog signaling pathway affects multiple aspects of mitochondria in hippocampal neurons. It increases mitochondrial mass significantly, reduces fission, and promotes elongation. It also protects neurons against stress. Mitochondria are essential organelles whose biogenesis, structure, and function are regulated by many signaling pathways. We present evidence that, in hippocampal neurons, activation of the Sonic hedgehog (Shh) signaling pathway affects multiple aspects of mitochondria. Mitochondrial mass was increased significantly in neurons treated with Shh. Using biochemical and fluorescence imaging analyses, we show that Shh signaling activity reduces mitochondrial fission and promotes mitochondrial elongation, at least in part, via suppression of the mitochondrial fission protein dynamin-like GTPase Drp1. Mitochondria from Shh-treated neurons were more electron-dense, as revealed by electron microscopy, and had higher membrane potential and respiratory activity. We further show that Shh protects neurons against a variety of stresses, including the mitochondrial poison rotenone, amyloid β-peptide, hydrogen peroxide, and high levels of glutamate. Collectively our data suggest a link between Shh pathway activity and the physiological properties of mitochondria in hippocampal neurons.
Collapse
Affiliation(s)
- Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Uri Manor
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Rebecca D Brose
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Ryan T Y Wu
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Carolyn Ott
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Ari Charnoff
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
82
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. The Diversity of Spine Synapses in Animals. Neuromolecular Med 2016; 18:497-539. [PMID: 27230661 PMCID: PMC5158183 DOI: 10.1007/s12017-016-8405-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
Abstract
Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| |
Collapse
|
83
|
Regulation of extrasynaptic signaling by polysialylated NCAM: Impact for synaptic plasticity and cognitive functions. Mol Cell Neurosci 2016; 81:12-21. [PMID: 27865768 DOI: 10.1016/j.mcn.2016.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 01/24/2023] Open
Abstract
The activation of synaptic N-methyl-d-aspartate-receptors (NMDARs) is crucial for induction of synaptic plasticity and supports cell survival, whereas activation of extrasynaptic NMDARs inhibits long-term potentiation and triggers neurodegeneration. A soluble polysialylated form of the neural cell adhesion molecule (polySia-NCAM) suppresses signaling through peri-/extrasynaptic GluN2B-containing NMDARs. Genetic or enzymatic manipulations blocking this mechanism result in impaired synaptic plasticity and learning, which could be repaired by reintroduction of polySia, or inhibition of either GluN1/GluN2B receptors or downstream signaling through RasGRF1 and p38 MAP kinase. Ectodomain shedding of NCAM, and hence generation of soluble NCAM, is controlled by metalloproteases of a disintegrin and metalloprotease (ADAM) family. As polySia-NCAM is predominantly associated with GABAergic interneurons in the prefrontal cortex, it is noteworthy that EphrinA5/EphA3-induced ADAM10 activity promotes polySia-NCAM shedding in these neurons. Thus, in addition to the well-known regulation of synaptic NMDARs by the secreted molecule Reelin, shed polySia-NCAM may restrain activation of extrasynaptic NMDARs. These data support a concept that GABAergic interneuron-derived extracellular proteins control the balance in synaptic/extrasynaptic NMDAR-mediated signaling in principal cells. Strikingly, dysregulation of Reelin or polySia expression is linked to schizophrenia. Thus, targeting of the GABAergic interneuron-principle cell communication and restoring the balance in synaptic/extrasynaptic NMDARs represent promising strategies for treatment of psychiatric diseases.
Collapse
|
84
|
Savchenko A, Braun GB, Molokanova E. Nanostructured Antagonist of Extrasynaptic NMDA Receptors. NANO LETTERS 2016; 16:5495-5502. [PMID: 27490923 DOI: 10.1021/acs.nanolett.6b01988] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glutamatergic cytotoxicity mediated by overactivation of N-methyl-d-aspartate receptors (NMDARs) is implicated in numerous neurological disorders. To be therapeutically viable, NMDAR antagonists must preserve physiological role of synaptic NMDARs (sNMDARs) in synaptic transmission and block only excessive pathological activation of NMDARs. Here we present a novel NMDAR antagonist that satisfies this two-fold requirement by exploiting spatial differences in NMDAR subcellular locations. Specifically, we designed a hybrid nanodrug (AuM) to be larger than the synaptic cleft by attaching memantine, NMDAR antagonist, via polymer linkers to a gold nanoparticle. We show that AuM efficiently and selectively inhibited extrasynaptic NMDARs (eNMDARs), while having no effect on sNMDARs and synaptic transmission. AuM exhibited neuroprotective properties both in vitro and ex vivo during such neurotoxic insults as NMDAR-mediated cytotoxicity in cerebrocortical cell culture and oxygen-glucose deprivation in acute hippocampal slices. Furthermore, AuM prevented dendritic spine loss triggered by Aβ oligomers in organotypic hippocampal slices and was more effective than free memantine. Using a novel rational design strategy, we demonstrate a proof of concept for a new class of neuroprotective drugs that might be beneficial for treatment of several neurological disorders.
Collapse
Affiliation(s)
- Alex Savchenko
- Department of Bioengineering and Pediatrics, University of California , San Diego, California 92093, United States
- Stanford University , Stanford, California 94305, United States
| | - Gary B Braun
- Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Elena Molokanova
- Nanotools Bioscience , Encinitas, California 92024, United States
| |
Collapse
|
85
|
Eitan E, Petralia RS, Wang YX, Indig FE, Mattson MP, Yao PJ. Probing extracellular Sonic hedgehog in neurons. Biol Open 2016; 5:1086-92. [PMID: 27387534 PMCID: PMC5004615 DOI: 10.1242/bio.019422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/20/2016] [Indexed: 01/02/2023] Open
Abstract
The bioactivity of Sonic hedgehog (Shh) depends on specific lipid modifications; a palmitate at its N-terminus and a cholesterol at its C-terminus. This dual-lipid modification makes Shh molecules lipophilic, which prevents them from diffusing freely in extracellular space. Multiple lines of evidence indicate that Shh proteins are carried by various forms of extracellular vesicles (EVs). It also has been shown, for instance, that in some tissues Shh proteins are transported to neighboring cells directly via filopodia. We have previously reported that Shh proteins are expressed in hippocampal neurons. In this study we show that, in the hippocampus and cerebellum of postnatal day (P)2 rats, Shh is mostly found near or on the membrane surface of small neurites or filopodia. We also examined cultured hippocampal neurons where we observed noticeable and widespread Shh-immunolabeled vesicles located outside neurons. Through immunoelectron microscopy and biochemical analysis, we find Shh-containing EVs with a wide range of sizes. Unlike robust Shh activity in EVs isolated from cells overexpressing an N-terminal Shh fragment construct, we did not detect measurable Shh activity in EVs purified from the medium of cultured hippocampal neurons. These results suggest the complexity of the transcellular Shh signaling mechanisms in neurons.
Collapse
Affiliation(s)
- Erez Eitan
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | | | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, Bethesda, MD 20892, USA
| | - Fred E Indig
- Confocal Imaging Facility, Laboratory of Clinical Investigation, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| |
Collapse
|
86
|
DAPK1 Signaling Pathways in Stroke: from Mechanisms to Therapies. Mol Neurobiol 2016; 54:4716-4722. [PMID: 27447806 PMCID: PMC5509806 DOI: 10.1007/s12035-016-0008-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023]
Abstract
Death-associated protein kinase 1 (DAPK1), a Ca2+/calmodulin (CaM)-dependent serine/threonine protein kinase, plays important roles in diverse apoptosis pathways not only in tumor suppression but also in neuronal cell death. The requirement of DAPK1 catalytic activity for its proposed cell functions and the elevation of catalytic activity of DAPK1 in injured neurons in models of neurological diseases, such as ischemia and epilepsy, validate that DAPK1 can be taken as a potential therapeutic target in these diseases. Recent studies show that DAPK1-NR2B, DAPK1-DANGER, DAPK1-p53, and DAPK1-Tau are currently known pathways in stroke-induced cell death, and blocking these cascades in an acute treatment effectively reduces neuronal loss. In this review, we focus on the role of DAPK1 in neuronal cell death after stroke. We hope to provide exhaustive summaries of relevant studies on DAPK1 signals involved in stroke damage. Therefore, disrupting DAPK1-relevant cell death pathway could be considered as a promising therapeutic approach in stroke.
Collapse
|
87
|
Zhang Y, Li P, Feng J, Wu M. Dysfunction of NMDA receptors in Alzheimer's disease. Neurol Sci 2016; 37:1039-47. [PMID: 26971324 PMCID: PMC4917574 DOI: 10.1007/s10072-016-2546-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/02/2016] [Indexed: 11/05/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a pivotal role in the synaptic transmission and synaptic plasticity thought to underlie learning and memory. NMDARs activation has been recently implicated in Alzheimer's disease (AD) related to synaptic dysfunction. Synaptic NMDARs are neuroprotective, whereas overactivation of NMDARs located outside of the synapse cause loss of mitochondrial membrane potential and cell death. NMDARs dysfunction in the glutamatergic tripartite synapse, comprising presynaptic and postsynaptic neurons and glial cells, is directly involved in AD. This review discusses that both beta-amyloid (Aβ) and tau perturb synaptic functioning of the tripartite synapse, including alterations in glutamate release, astrocytic uptake, and receptor signaling. Particular emphasis is given to the role of NMDARs as a possible convergence point for Aβ and tau toxicity and possible reversible stages of the AD through preventive and/or disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Yan Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China
| | - Peiyao Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China
| | - Jianbo Feng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China.
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China.
| |
Collapse
|
88
|
Abstract
UNLABELLED The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits.
Collapse
|
89
|
Modulation of Synaptic Plasticity by Glutamatergic Gliotransmission: A Modeling Study. Neural Plast 2016; 2016:7607924. [PMID: 27195153 PMCID: PMC4852535 DOI: 10.1155/2016/7607924] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/15/2016] [Indexed: 01/03/2023] Open
Abstract
Glutamatergic gliotransmission, that is, the release of glutamate from perisynaptic astrocyte processes in an activity-dependent manner, has emerged as a potentially crucial signaling pathway for regulation of synaptic plasticity, yet its modes of expression and function in vivo remain unclear. Here, we focus on two experimentally well-identified gliotransmitter pathways, (i) modulations of synaptic release and (ii) postsynaptic slow inward currents mediated by glutamate released from astrocytes, and investigate their possible functional relevance on synaptic plasticity in a biophysical model of an astrocyte-regulated synapse. Our model predicts that both pathways could profoundly affect both short- and long-term plasticity. In particular, activity-dependent glutamate release from astrocytes could dramatically change spike-timing-dependent plasticity, turning potentiation into depression (and vice versa) for the same induction protocol.
Collapse
|
90
|
Lo FS, Blue ME, Erzurumlu RS. Enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses in the barrel cortex of Mecp2-null mice. J Neurophysiol 2016; 115:1298-306. [PMID: 26683074 PMCID: PMC4808090 DOI: 10.1152/jn.00944.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that results from mutations in the X-linked gene for methyl-CpG-binding protein 2 (MECP2). The underlying cellular mechanism for the sensory deficits in patients with RTT is largely unknown. This study used the Bird mouse model of RTT to investigate sensory thalamocortical synaptic transmission in the barrel cortex of Mecp2-null mice. Electrophysiological results showed an excitation/inhibition imbalance, biased toward inhibition, due to an increase in efficacy of postsynaptic GABAA receptors rather than alterations in inhibitory network and presynaptic release properties. Enhanced inhibition impaired the transmission of tonic sensory signals from the thalamus to the somatosensory cortex. Previous morphological studies showed an upregulation of NMDA receptors in the neocortex of both RTT patients and Mecp2-null mice at early ages [Blue ME, Naidu S, Johnston MV. Ann Neurol 45: 541-545, 1999; Blue ME, Kaufmann WE, Bressler J, Eyring C, O'Driscoll C, Naidu S, Johnston MV. Anat Rec (Hoboken) 294: 1624-1634, 2011]. Although AMPA and NMDA receptor-mediated excitatory synaptic transmission was not altered in the barrel cortex of Mecp2-null mice, extrasynaptic NMDA receptor-mediated responses increased markedly. These responses were blocked by memantine, suggesting that extrasynaptic NMDA receptors play an important role in the pathogenesis of RTT. The results suggest that enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses may underlie impaired somatosensation and that pharmacological blockade of extrasynaptic NMDA receptors may have therapeutic value for RTT.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Mary E Blue
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc. and Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
91
|
Zhang J, Petralia RS, Wang YX, Diamond JS. High-Resolution Quantitative Immunogold Analysis of Membrane Receptors at Retinal Ribbon Synapses. J Vis Exp 2016:53547. [PMID: 26967746 DOI: 10.3791/53547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Retinal ganglion cells (RGCs) receive excitatory glutamatergic input from bipolar cells. Synaptic excitation of RGCs is mediated postsynaptically by NMDA receptors (NMDARs) and AMPA receptors (AMPARs). Physiological data have indicated that glutamate receptors at RGCs are expressed not only in postsynaptic but also in perisynaptic or extrasynaptic membrane compartments. However, precise anatomical locations for glutamate receptors at RGC synapses have not been determined. Although a high-resolution quantitative analysis of glutamate receptors at central synapses is widely employed, this approach has had only limited success in the retina. We developed a postembedding immunogold method for analysis of membrane receptors, making it possible to estimate the number, density and variability of these receptors at retinal ribbon synapses. Here we describe the tools, reagents, and the practical steps that are needed for: 1) successful preparation of retinal fixation, 2) freeze-substitution, 3) postembedding immunogold electron microscope (EM) immunocytochemistry and, 4) quantitative visualization of glutamate receptors at ribbon synapses.
Collapse
Affiliation(s)
- Jun Zhang
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health;
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| |
Collapse
|
92
|
Wee KSL, Tan FCK, Cheong YP, Khanna S, Low CM. Ontogenic Profile and Synaptic Distribution of GluN3 Proteins in the Rat Brain and Hippocampal Neurons. Neurochem Res 2015; 41:290-7. [DOI: 10.1007/s11064-015-1794-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 12/01/2022]
|
93
|
Lewerenz J, Maher P. Chronic Glutamate Toxicity in Neurodegenerative Diseases-What is the Evidence? Front Neurosci 2015; 9:469. [PMID: 26733784 PMCID: PMC4679930 DOI: 10.3389/fnins.2015.00469] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors) and a class of G-protein coupled receptors (metabotropic glutamate receptors). Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm UniversityUlm, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological StudiesLa Jolla, CA, USA
| |
Collapse
|
94
|
Depolarization of Hippocampal Neurons Induces Formation of Nonsynaptic NMDA Receptor Islands Resembling Nascent Postsynaptic Densities. eNeuro 2015; 2:eN-NWR-0066-15. [PMID: 26665164 PMCID: PMC4672205 DOI: 10.1523/eneuro.0066-15.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/15/2015] [Accepted: 11/03/2015] [Indexed: 01/11/2023] Open
Abstract
Depolarization of neurons in 3-week-old rat hippocampal cultures promotes a rapid increase in the density of surface NMDA receptors (NRs), accompanied by transient formation of nonsynaptic NMDA receptor clusters or NR islands. Islands exhibit cytoplasmic dense material resembling that at postsynaptic densities (PSDs), and contain typical PSD components, including MAGUKS (membrane-associated guanylate kinases), GKAP, Shank, Homer, and CaMKII detected by pre-embedding immunogold electron microscopy. In contrast to mature PSDs, islands contain more NMDA than AMPA receptors, and more SAP102 than PSD-95, features that are shared with nascent PSDs in developing synapses. Islands do not appear to be exocytosed or endocytosed directly as preformed packages because neurons lacked intracellular vacuoles containing island-like structures. Islands form and disassemble upon depolarization of neurons on a time scale of 2-3 min, perhaps representing an initial stage in synaptogenesis.
Collapse
|
95
|
Papouin T, Oliet SHR. Organization, control and function of extrasynaptic NMDA receptors. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130601. [PMID: 25225095 DOI: 10.1098/rstb.2013.0601] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
N-methyl D-aspartate receptors (NMDARs) exist in different forms owing to multiple combinations of subunits that can assemble into a functional receptor. In addition, they are located not only at synapses but also at extrasynaptic sites. There has been intense speculation over the past decade about whether specific NMDAR subtypes and/or locations are responsible for inducing synaptic plasticity and excitotoxicity. Here, we review the latest findings on the organization, subunit composition and endogenous control of NMDARs at extrasynaptic sites and consider their putative functions. Because astrocytes are capable of controlling NMDARs through the release of gliotransmitters, we also discuss the role of the glial environment in regulating the activity of these receptors.
Collapse
Affiliation(s)
- Thomas Papouin
- Neuroscience Department, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stéphane H R Oliet
- Neurocentre Magendie, Inserm U862, Bordeaux, France Université de Bordeaux, Bordeaux, France
| |
Collapse
|
96
|
Dysfunction in amygdala-prefrontal plasticity and extinction-resistant avoidance: A model for anxiety disorder vulnerability. Exp Neurol 2015; 275 Pt 1:59-68. [PMID: 26546833 DOI: 10.1016/j.expneurol.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 10/17/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
Individuals exhibiting an anxiety disorder are believed to possess an innate vulnerability that makes them susceptible to the disorder. Anxiety disorders are also associated with abnormalities in the interconnected brain regions of the amygdala and prefrontal cortex (PFC). However, the link between anxiety vulnerability and amygdala-PFC dysfunction is currently unclear. Accordingly, the present study sought to determine if innate dysfunction within the amygdala to PFC projection underlies the susceptibility to develop anxiety-like behavior, using an anxiety vulnerable rodent model. The inbred Wistar Kyoto (WKY) rat was used to model vulnerability, as this strain naturally expresses extinction-resistant avoidance; a behavior that models the symptom of avoidance present in anxiety disorders. Synaptic plasticity was assessed within the projection from the basolateral nucleus of the amygdala (BLA) to the prelimbic cortical subdivision of the PFC in WKY and Sprague Dawley (SD) rats. While WKY rats exhibited normal paired-pulse plasticity, they did not maintain long-term potentiation (LTP) as SD rats. Thus, impaired plasticity within the BLA-PL cortex projection may contribute to extinction resistant avoidance of WKY, as lesions of the PL cortex in SD rats impaired extinction of avoidance similar to WKY rats. Treatment with d-cycloserine to reverse the impaired LTP in WKY rats was unsuccessful. The lack of LTP in WKY rats was associated with a significant reduction of NMDA receptors containing NR2A subunits in the PL cortex. Thus, dysfunction in amygdala-PFC plasticity is innate in anxiety vulnerable rats and may promote extinction-resistant avoidance by disrupting communication between the amygdala and prefrontal cortex.
Collapse
|
97
|
Thevenon J, Souchay C, Seabold GK, Dygai-Cochet I, Callier P, Gay S, Corbin L, Duplomb L, Thauvin-Robinet C, Masurel-Paulet A, El Chehadeh S, Avila M, Minot D, Guedj E, Chancenotte S, Bonnet M, Lehalle D, Wang YX, Kuentz P, Huet F, Mosca-Boidron AL, Marle N, Petralia RS, Faivre L. Heterozygous deletion of the LRFN2 gene is associated with working memory deficits. Eur J Hum Genet 2015; 24:911-8. [PMID: 26486473 DOI: 10.1038/ejhg.2015.221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/09/2015] [Accepted: 09/01/2015] [Indexed: 11/09/2022] Open
Abstract
Learning disabilities (LDs) are a clinically and genetically heterogeneous group of diseases. Array-CGH and high-throughput sequencing have dramatically expanded the number of genes implicated in isolated intellectual disabilities and LDs, highlighting the implication of neuron-specific post-mitotic transcription factors and synaptic proteins as candidate genes. We report a unique family diagnosed with autosomal dominant learning disability and a 6p21 microdeletion segregating in three patients. The 870 kb microdeletion encompassed the brain-expressed gene LRFN2, which encodes for a synaptic cell adhesion molecule. Neuropsychological assessment identified selective working memory deficits, with borderline intellectual functioning. Further investigations identified a defect in executive function, and auditory-verbal processes. These data were consistent with brain MRI and FDG-PET functional brain imaging, which, when compared with controls, revealed abnormal brain volume and hypometabolism of gray matter structures implicated in working memory. We performed electron microscopy immunogold labeling demonstrating the localization of LRFN2 at synapses of cerebellar and hippocampal rat neurons, often associated with the NR1 subunit of N-methyl-D-aspartate receptors (NMDARs). Altogether, the combined approaches imply a role for LRFN2 in LD, specifically for working memory processes and executive function. In conclusion, the identification of familial cases of clinically homogeneous endophenotypes of LD might help in both the management of patients and genetic counseling for families.
Collapse
Affiliation(s)
- Julien Thevenon
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon, France.,Equipe GAD, EA 4271 et FHU TRANSLAD, Université de Bourgogne, Dijon, France
| | - Céline Souchay
- LEAD-CNRS UMR 5022, Laboratoire d'Etude de l'Apprentissage et du Développement-University of Bourgogne, Dijon, France
| | - Gail K Seabold
- Laboratory of Neurochemistry, NIDCD/National Institutes of Health, Bethesda, MD, USA
| | | | - Patrick Callier
- Equipe GAD, EA 4271 et FHU TRANSLAD, Université de Bourgogne, Dijon, France.,Laboratoire de Cytogénétique, Plateau Technique de Biologie, CHU de Dijon, Dijon, France
| | - Sébastien Gay
- Service de Pédiatrie, CH Wiliam Morey, Chalon sur Saône, France
| | - Lucie Corbin
- LEAD-CNRS UMR 5022, Laboratoire d'Etude de l'Apprentissage et du Développement-University of Bourgogne, Dijon, France
| | - Laurence Duplomb
- Equipe GAD, EA 4271 et FHU TRANSLAD, Université de Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon, France.,Equipe GAD, EA 4271 et FHU TRANSLAD, Université de Bourgogne, Dijon, France
| | - Alice Masurel-Paulet
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon, France
| | - Salima El Chehadeh
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon, France
| | - Magali Avila
- Service de Pédiatrie, Hôpital d'Enfants, Dijon, France
| | - Delphine Minot
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon, France
| | - Eric Guedj
- Department of Nuclear Medecine, AP-HM Hopital La Timone, Marseille, France
| | - Sophie Chancenotte
- Centre de Référence des Troubles du Langage et des Apprentissages, Hôpital d'Enfants, CHU de Dijon, Dijon, France
| | - Marlène Bonnet
- Centre de Référence des Troubles du Langage et des Apprentissages, Hôpital d'Enfants, CHU de Dijon, Dijon, France
| | - Daphne Lehalle
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon, France.,Equipe GAD, EA 4271 et FHU TRANSLAD, Université de Bourgogne, Dijon, France
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/National Institutes of Health, Bethesda, MD, USA
| | - Paul Kuentz
- Equipe GAD, EA 4271 et FHU TRANSLAD, Université de Bourgogne, Dijon, France
| | - Frédéric Huet
- Service de Pédiatrie, Hôpital d'Enfants, Dijon, France
| | | | - Nathalie Marle
- Laboratoire de Cytogénétique, Plateau Technique de Biologie, CHU de Dijon, Dijon, France
| | - Ronald S Petralia
- Advanced Imaging Core, NIDCD/National Institutes of Health, Bethesda, MD, USA
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon, France.,Equipe GAD, EA 4271 et FHU TRANSLAD, Université de Bourgogne, Dijon, France
| |
Collapse
|
98
|
Bender J, Engeholm M, Ederer MS, Breu J, Møller TC, Michalakis S, Rasko T, Wanker EE, Biel M, Martinez KL, Wurst W, Deussing JM. Corticotropin-Releasing Hormone Receptor Type 1 (CRHR1) Clustering with MAGUKs Is Mediated via Its C-Terminal PDZ Binding Motif. PLoS One 2015; 10:e0136768. [PMID: 26352593 PMCID: PMC4564177 DOI: 10.1371/journal.pone.0136768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/07/2015] [Indexed: 01/24/2023] Open
Abstract
The corticotropin-releasing hormone receptor type 1 (CRHR1) plays an important role in orchestrating neuroendocrine, behavioral, and autonomic responses to stress. To identify molecules capable of directly modulating CRHR1 signaling, we performed a yeast-two-hybrid screen using the C-terminal intracellular tail of the receptor as bait. We identified several members of the membrane-associated guanylate kinase (MAGUK) family: postsynaptic density protein 95 (PSD95), synapse-associated protein 97 (SAP97), SAP102 and membrane associated guanylate kinase, WW and PDZ domain containing 2 (MAGI2). CRHR1 is co-expressed with the identified MAGUKs and with the additionally investigated PSD93 in neurons of the adult mouse brain and in primary hippocampal neurons, supporting the probability of a physiological interaction in vivo. The C-terminal PDZ (PSD-95, discs large, zona occludens 1) binding motif of CRHR1 is essential for its physical interaction with MAGUKs, as revealed by the CRHR1-STAVA mutant, which harbors a functionally impaired PDZ binding motif. The imitation of a phosphorylation at Thr413 within the PDZ binding motif also disrupted the interaction with MAGUKs. In contrast, distinct PDZ domains within the identified MAGUKs are involved in the interactions. Expression of CRHR1 in primary neurons demonstrated its localization throughout the neuronal plasma membrane, including the excitatory post synapse, where the receptor co-localized with PSD95 and SAP97. The co-expression of CRHR1 and respective interacting MAGUKs in HEK293 cells resulted in a clustered subcellular co-localization which required an intact PDZ binding motif. In conclusion, our study characterized the PDZ binding motif-mediated interaction of CRHR1 with multiple MAGUKs, which directly affects receptor function.
Collapse
Affiliation(s)
- Julia Bender
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Molecular Neurogenetics, Munich, Germany
| | | | - Marion S. Ederer
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Molecular Neurogenetics, Munich, Germany
| | | | - Thor C. Møller
- University of Copenhagen, Department of Chemistry & Nano-Science Center, Copenhagen, Denmark
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CIPSM) and Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tamas Rasko
- Max Delbrueck Center for Molecular Medicine, Berlin-Buch, Germany
| | - Erich E. Wanker
- Max Delbrueck Center for Molecular Medicine, Berlin-Buch, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM) and Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karen L. Martinez
- University of Copenhagen, Department of Chemistry & Nano-Science Center, Copenhagen, Denmark
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Neurodegenerative Diseases within the Helmholtz Association, Munich, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Neuherberg, Germany
| | - Jan M. Deussing
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Molecular Neurogenetics, Munich, Germany
- * E-mail:
| |
Collapse
|
99
|
Takahashi K, Foster JB, Lin CLG. Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell Mol Life Sci 2015; 72:3489-506. [PMID: 26033496 PMCID: PMC11113985 DOI: 10.1007/s00018-015-1937-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the central nervous system. Excitatory amino acid transporter 2 (EAAT2) is primarily responsible for clearance of extracellular glutamate to prevent neuronal excitotoxicity and hyperexcitability. EAAT2 plays a critical role in regulation of synaptic activity and plasticity. In addition, EAAT2 has been implicated in the pathogenesis of many central nervous system disorders. In this review, we summarize current understanding of EAAT2, including structure, pharmacology, physiology, and functions, as well as disease relevancy, such as in stroke, Parkinson's disease, epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, major depressive disorder, and addiction. A large number of studies have demonstrated that up-regulation of EAAT2 protein provides significant beneficial effects in many disease models suggesting EAAT2 activation is a promising therapeutic approach. Several EAAT2 activators have been identified. Further understanding of EAAT2 regulatory mechanisms could improve development of drug-like compounds that spatiotemporally regulate EAAT2.
Collapse
Affiliation(s)
- Kou Takahashi
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| | - Joshua B. Foster
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| | - Chien-Liang Glenn Lin
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
100
|
Burette AC, Phend KD, Burette S, Lin Q, Liang M, Foltz G, Taylor N, Wang Q, Brandon NJ, Bates B, Ehlers MD, Weinberg RJ. Organization of TNIK in dendritic spines. J Comp Neurol 2015; 523:1913-24. [PMID: 25753355 DOI: 10.1002/cne.23770] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 01/16/2023]
Abstract
Tumor necrosis factor receptor-associated factor 2 (TRAF2)- and noncatalytic region of tyrosine kinase (NCK)-interacting kinase (TNIK) has been identified as an interactor in the psychiatric risk factor, Disrupted in Schizophrenia 1 (DISC1). As a step toward deciphering its function in the brain, we performed high-resolution light and electron microscopic immunocytochemistry. We demonstrate here that TNIK is expressed in neurons throughout the adult mouse brain. In striatum and cerebral cortex, TNIK concentrates in dendritic spines, especially in the vicinity of the lateral edge of the synapse. Thus, TNIK is highly enriched at a microdomain critical for glutamatergic signaling.
Collapse
Affiliation(s)
- Alain C Burette
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kristen D Phend
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Susan Burette
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Qingcong Lin
- Shenogen Pharma Group, Beijing, People's Republic of China 102206
| | - Musen Liang
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Andover, Massachusetts 01810
| | - Gretchen Foltz
- Clinical Research Unit, Pfizer, New Haven, Connecticut 06511
| | - Noël Taylor
- Biomarker and Personalized Medicine Group, Eisai Product Creation Systems, Eisai, Andover, Massachusetts 01810
| | - Qi Wang
- Neuroscience Research Unit, Pfizer, Cambridge, Massachusetts 02139
| | | | - Brian Bates
- Centers for Therapeutic Innovation, Pfizer, Boston, Massachusetts 02115
| | - Michael D Ehlers
- Neuroscience Research Unit, Pfizer, Cambridge, Massachusetts 02139
| | - Richard J Weinberg
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|