51
|
Ramon-Duaso C, Conde-Moro AR, Busquets-Garcia A. Astroglial cannabinoid signaling and behavior. Glia 2022; 71:60-70. [PMID: 35293647 DOI: 10.1002/glia.24171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/11/2022]
Abstract
In neuroscience, the explosion of innovative and advanced technical accomplishments is fundamental to understanding brain functioning. For example, the possibility to distinguish glial and neuronal activities at the synaptic level and/or the appearance of new genetic tools to specifically monitor and manipulate astroglial functions revealed that astrocytes are involved in several facets of behavioral control. In this sense, the discovery of functional presence of type-1 cannabinoid receptors in astrocytes has led to identify important behavioral responses mediated by this specific pool of cannabinoid receptors. Thus, astroglial type-1 cannabinoid receptors are in the perfect place to play a role in a complex scenario in which astrocytes sense neuronal activity, release gliotransmitters and modulate the activity of other neurons, ultimately controlling behavioral responses. In this review, we will describe the known behavioral implications of astroglial cannabinoid signaling and highlight exciting unexplored research avenues on how astroglial cannabinoid signaling could affect behavior.
Collapse
Affiliation(s)
- Carla Ramon-Duaso
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Ana Rocio Conde-Moro
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Arnau Busquets-Garcia
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| |
Collapse
|
52
|
Cannabinoid Receptor 1 Is Required for Neurodevelopment of Striosome-Dendron Bouquets. eNeuro 2022; 9:ENEURO.0318-21.2022. [PMID: 35361667 PMCID: PMC9007419 DOI: 10.1523/eneuro.0318-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Cannabinoid receptor 1 (CB1R) has strong effects on neurogenesis and axon pathfinding in the prenatal brain. Endocannabinoids that activate CB1R are abundant in the early postnatal brain and in mother's milk, but few studies have investigated their function in newborns. We examined postnatal CB1R expression in the major striatonigral circuit from striosomes of the striatum to the dopamine-containing neurons of the substantia nigra. CB1R enrichment was first detectable between postnatal day (P)5 and P7, and this timing coincided with the formation of "striosome-dendron bouquets," the elaborate anatomic structures by which striosomal neurons control dopaminergic cell activity through inhibitory synapses. In Cnr1-/- knock-out mice lacking CB1R expression, striosome-dendron bouquets were markedly disorganized by P11 and at adulthood, suggesting a postnatal pathfinding connectivity function for CB1R in connecting striosomal axons and dopaminergic neurons analogous to CB1R's prenatal function in other brain regions. Our finding that CB1R plays a major role in postnatal wiring of the striatonigral dopamine-control system, with lasting consequences at least in mice, points to a crucial need to determine whether lactating mothers' use of CB1R agonists (e.g., in marijuana) or antagonists (e.g., type 2 diabetes therapies) can disrupt brain development in nursing offspring.
Collapse
|
53
|
Bailone RL, Fukushima HCS, de Aguiar LK, Borra RC. The endocannabinoid system in zebrafish and its potential to study the effects of Cannabis in humans. Lab Anim Res 2022; 38:5. [PMID: 35193700 PMCID: PMC8862295 DOI: 10.1186/s42826-022-00116-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
Zebrafish is considered an unprecedented animal model in drug discovery. A review of the literature presents highlights and elucidates the biological effects of chemical components found in Cannabis sativa. Particular attention is paid to endocannabinoid system (eCB) and its main receptors (CB1 and CB2). The zebrafish model is a promising one for the study of cannabinoids because of the many similarities to the human system. Despite the recent advances on the eCB system, there is still the need to elucidate some of the interactions and, thus, the zebrafish model can be used for that purpose as it respects the 3Rs concept and reduced time and costs. In view of the relevance of cannabinoids in the treatment and prevention of diseases, as well as the importance of the zebrafish animal model in elucidating the biological effects of new drugs, the aim of this study was to bring to light information on the use of the zebrafish animal model in testing C. sativa-based medicines.
Collapse
|
54
|
Harris JC, Wallace AL, Thomas AM, Wirtz HG, Kaiver CM, Lisdahl KM. Disrupted Resting State Attentional Network Connectivity in Adolescent and Young Adult Cannabis Users following Two-Weeks of Monitored Abstinence. Brain Sci 2022; 12:brainsci12020287. [PMID: 35204050 PMCID: PMC8870263 DOI: 10.3390/brainsci12020287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
Background. Numerous neuropsychological studies have shown that cannabis use during adolescence and young adulthood led to deficits in sustained and selective attention. However, few studies have examined functional connectivity in attentional networks among young cannabis users, nor have characterized relationships with cannabis use patterns following abstinence. Methods. Differences in resting state functional connectivity (RSFC) within the dorsal (DAN) and ventral (VAN) attention networks were examined in 36 adolescent and young adult cannabis users and 39 non-substance using controls following two weeks of monitored abstinence. Observed connectivity differences were then correlated with past-year and lifetime cannabis use, length of abstinence, age of regular use onset, and Cannabis Use Disorder symptoms (CUD). Results. After controlling for alcohol and nicotine use, cannabis users had lower RSFC within the DAN network, specifically between right inferior parietal sulcus and right anterior insula, as well as white matter, relative to controls. This region was associated with more severe cannabis use measures, including increased lifetime cannabis use, shorter length of abstinence, and more severe CUD symptoms. Conclusions. Findings demonstrate that regular cannabis use by adolescents and young adults is associated with subtle differences in resting state connectivity within the DAN, even after two weeks of monitored abstinence. Notably, more severe cannabis use markers (greater lifetime use, CUD symptoms, and shorter abstinence) were linked with this reduced connectivity. Thus, findings support public policy aimed at reducing and delaying cannabis use and treatments to assist with sustained abstinence. Future longitudinal studies are needed to investigate causation.
Collapse
|
55
|
Almeida MM, Dias-Rocha CP, Calviño C, Trevenzoli IH. Lipid endocannabinoids in energy metabolism, stress and developmental programming. Mol Cell Endocrinol 2022; 542:111522. [PMID: 34843899 DOI: 10.1016/j.mce.2021.111522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) regulates brain development and function, energy metabolism and stress in a sex-, age- and tissue-dependent manner. The ECS comprises mainly the bioactive lipid ligands anandamide (AEA) and 2-aracdonoylglycerol (2-AG), cannabinoid receptors 1 and 2 (CB1 and CB2), and several metabolizing enzymes. The endocannabinoid tonus is increased in obesity, stimulating food intake and a preference for fat, reward, and lipid accumulation in peripheral tissues, as well as favoring a positive energy balance. Energy balance and stress responses share adaptive mechanisms regulated by the ECS that seem to underlie the complex relationship between feeding and emotional behavior. The ECS is also a key regulator of development. Environmental insults (diet, toxicants, and stress) in critical periods of developmental plasticity, such as gestation, lactation and adolescence, alter the ECS and may predispose individuals to the development of chronic diseases and behavioral changes in the long term. This review is focused on the ECS and the developmental origins of health and disease (DOHaD).
Collapse
Affiliation(s)
- Mariana Macedo Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Camila Calviño
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis Hara Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
56
|
Son HW, Ali DW. Endocannabinoid Receptor Expression in Early Zebrafish Development. Dev Neurosci 2022; 44:142-152. [PMID: 35168237 DOI: 10.1159/000522383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/19/2022] Open
Abstract
The endocannabinoid system is widely studied due to its interactions with cannabis and its role in modulating physiological responses. While most research has focused on the effects of cannabis on adult endocannabinoid systems, recent studies have begun to investigate the role of the endocannabinoid system in developing organisms. However, little is known about the spatial or temporal expression of these receptors during early development. This study combines reverse-transcriptase PCR with in situ hybridizations to compile a timeline of the developmental expression of six key cannabinoid receptors; cb1, cb2, trpv1, trpa1a, trpa1b, and gpr55 in zebrafish embryos, starting from as early as 6 hours post fertilization (hpf) until 3 days post fertilization. This time frame is roughly equivalent to two to ten weeks in human embryonic development. All six genes were confirmed to be expressed within this time range and share similarities with human and rodent expression. Cb1 expression was first detected between 12 and 24 hpf in the retina and CNS, and its expression increased thereafter and was more evident in the olfactory bulb, tegmentum, hypothalamus and gut. Cb2 expression was relatively high at the 6 and 24 hpf timepoints, as determined by RT-PCR, but was undetectable at other times. Trpv1 was first detected at 1 dpf in the trigeminal ganglia, Rohon-Beard neurons and lateral line, and its expression increased in the first 3 days post fertilization (dpf). Expression of trpa1a was first detected as late as 3 dpf in vagal neurons, whereas trpa1b was first detected at 1 dpf associated with trigeminal, glossopharyngeal and vagal ganglia. Expression of gpr55 was diffuse and widespread throughout the brain and head region but was undetectable elsewhere in the embryo. Thus, receptor expression was found to be enriched in the central nervous system and within sensory neurons. This work aims to serve as a foundation for further investigation on the role of cannabinoid and cannabinoid-interacting receptors in early embryonic development.
Collapse
Affiliation(s)
- Hae-Won Son
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
57
|
Canseco-Alba A, Sanabria B, Hammouda M, Bernadin R, Mina M, Liu QR, Onaivi ES. Cell-Type Specific Deletion of CB2 Cannabinoid Receptors in Dopamine Neurons Induced Hyperactivity Phenotype: Possible Relevance to Attention-Deficit Hyperactivity Disorder. Front Psychiatry 2022; 12:803394. [PMID: 35211038 PMCID: PMC8860836 DOI: 10.3389/fpsyt.2021.803394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/31/2021] [Indexed: 12/23/2022] Open
Abstract
DAT-Cnr2 mice are conditional knockout (cKO) animals that do not express cannabinoid CB2 receptors (CB2R), in midbrain dopamine neurons. The hyperactivity phenotype of DAT-Cnr2 cKO mice were paradoxically reduced by low dose of amphetamine. Here, we report on the locomotor activity analysis in male and female adolescent (PND 30 ± 2) mice in basal conditions and in response to different doses of amphetamine, using the Open Field (OF), Elevated Plus-Maze (EPM) tests and the Novel Object Recognition (NOR) task as a putative model of attention deficit hyperactivity disorder (ADHD). Results showed that both male and female adolescent DAT-Cnr2 mice displayed significant increases in distance traveled in the OF test compared with WT mice. However, 2 mg/kg dose of amphetamine reduced the distance traveled by the DAT-Cnr2 but was increased in the WT mice. In the EPM test of anxiety-like behavioral responses, DAT-Cnr2 spent more time in the open arms of the maze than the WT mice, suggesting a reduction in anxiety-like response. DAT-Cnr2 mice showed significant increase in the number of unprotected head dips in the maze test and in the cliff avoidance reaction (CAR) test demonstrating impulsivity and risky behavior. DAT-Cnr2 mice also exhibited deficient response in the delay decision making (DDM), with impulsive choice. Both DAT-Cnr2 and WT were able to recognize the new object in the NOR task, but the exploration by the DAT-Cnr2 was less than that of the WT mice. Following the administration of 2 mg/kg of amphetamine, the similarities and differential performances of the DAT-Cnr2 and WT mice in the EPM test and NOR task was probably due to increase in attention. Microglia activation detected by Cd11b immunolabelling was enhanced in the hippocampus in DAT-Cnr2 cKO than in WT mice, implicating neuro-immune modulatory effects of CB2R. The results demonstrates that DAT-Cnr2 cKO mice with cell-type specific deletion of CB2R in midbrain dopaminergic neurons may represent a possible model for studying the neurobiological basis of ADHD.
Collapse
Affiliation(s)
- Ana Canseco-Alba
- Dirección de Investigación, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Branden Sanabria
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Mariam Hammouda
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Rollanda Bernadin
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Marizel Mina
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Emmanuel S. Onaivi
- Department of Biology, William Paterson University, Wayne, NJ, United States
| |
Collapse
|
58
|
Dudok B, Soltesz I. Imaging the endocannabinoid signaling system. J Neurosci Methods 2022; 367:109451. [PMID: 34921843 PMCID: PMC8734437 DOI: 10.1016/j.jneumeth.2021.109451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
The endocannabinoid (eCB) system is one of the most widespread neuromodulatory systems in the mammalian brain, with a multifaceted role in functions ranging from development to synaptic plasticity. Endocannabinoids are synthesized on demand from membrane lipid precursors, and act primarily on a single G-protein coupled receptor type, CB1, to carry out diverse functions. Despite the importance of the eCB system both in healthy brain function and in disease, critically important details of eCB signaling remained unknown. How eCBs are released from the membrane, how these lipid molecules are transported between cells, and how the distribution of their receptors is controlled, remained elusive. Recent advances in optical microscopy methods and biosensor engineering may open up new avenues for studying eCB signaling. We summarize applications of superresolution microscopy using single molecule localization to reveal distinct patterns of nanoscale CB1 distribution in neuronal axons and axon terminals. We review single particle tracking studies using quantum dots that allowed visualizing CB1 trajectories. We highlight the recent development of fluorescent eCB biosensors, that revealed spatiotemporally specific eCB release in live cells and live animals. Finally, we discuss future directions where method development may help to advance a precise understanding of eCB signaling.
Collapse
Affiliation(s)
- Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
59
|
Stark T, Iannotti FA, Di Martino S, Di Bartolomeo M, Ruda-Kucerova J, Piscitelli F, Wotjak CT, D’Addario C, Drago F, Di Marzo V, Micale V. Early Blockade of CB1 Receptors Ameliorates Schizophrenia-like Alterations in the Neurodevelopmental MAM Model of Schizophrenia. Biomolecules 2022; 12:biom12010108. [PMID: 35053256 PMCID: PMC8773886 DOI: 10.3390/biom12010108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of Sprague-Dawley rats to the antimitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produces long-lasting behavioral alterations such as social withdrawal and cognitive impairment in adulthood, mimicking a schizophrenia-like phenotype. These abnormalities were preceded at neonatal age both by the delayed appearance of neonatal reflexes, an index of impaired brain maturation, and by higher 2-arachidonoylglycerol (2-AG) brain levels. Schizophrenia-like deficits were reversed by early treatment [from postnatal day (PND) 2 to PND 8] with the CB1 antagonist/inverse agonist AM251 (0.5 mg/kg/day). By contrast, early CB1 blockade affected the behavioral performance of control rats which was paralleled by enhanced 2-AG content in the prefrontal cortex (PFC). These results suggest that prenatal MAM insult leads to premorbid anomalies at neonatal age via altered tone of the endocannabinoid system, which may be considered as an early marker preceding the development of schizophrenia-like alterations in adulthood.
Collapse
Affiliation(s)
- Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (T.S.); (J.R.-K.)
- Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (V.D.M.)
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, 95123 Catania, Italy; (S.D.M.); (F.D.)
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.B.); (C.D.)
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (T.S.); (J.R.-K.)
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (V.D.M.)
| | - Carsten T. Wotjak
- Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach an der Riss, Germany;
| | - Claudio D’Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.B.); (C.D.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, 95123 Catania, Italy; (S.D.M.); (F.D.)
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (V.D.M.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine and Faculty of Agricultural and Food Sciences, Centre de Recherche de l’Institut de Cardiologie et Pneumologie de l’Université et Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, QC G1V 4G5, Canada
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, 95123 Catania, Italy; (S.D.M.); (F.D.)
- Correspondence: ; Tel.: +39-095-4781199
| |
Collapse
|
60
|
Molecular Findings Guiding the Modulation of the Endocannabinoid System as a Potential Target to Treat Schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:89-103. [DOI: 10.1007/978-3-030-97182-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
61
|
Baglot SL, VanRyzin JW, Marquardt AE, Aukema RJ, Petrie GN, Hume C, Reinl EL, Bieber JB, McLaughlin RJ, McCarthy MM, Hill MN. Maternal-fetal transmission of delta-9-tetrahydrocannabinol (THC) and its metabolites following inhalation and injection exposure during pregnancy in rats. J Neurosci Res 2021; 100:713-730. [PMID: 34882838 DOI: 10.1002/jnr.24992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 11/09/2022]
Abstract
Cannabis use during pregnancy has increased over the past few decades, with recent data indicating that, in youth and young adults especially, up to 22% of people report using cannabis during pregnancy. Animal models provide the ability to study prenatal cannabis exposure (PCE) with control over timing and dosage; however, these studies utilize both injection and inhalation approaches. While it is known that Δ9-tetrahydrocannabinol (THC; primary psychoactive component of cannabis) can cross the placenta, examination of the transmission and concentration of THC and its metabolites from maternal blood into the placenta and fetal brain remains relatively unknown, and the influence of route of administration has never been examined. Pregnant female rats were exposed to either vaporized THC-dominant cannabis extract for pulmonary consumption or subcutaneous injection of THC repeatedly during the gestational period. Maternal blood, placenta, and fetal brains were collected following the final administration of THC for analysis of THC and its metabolites, as well as endocannabinoid concentrations, through mass spectrometry. Both routes of administration resulted in the transmission of THC and its metabolites in placenta and fetal brain. Repeated exposure to inhaled THC vapor resulted in fetal brain THC concentrations that were about 30% of those seen in maternal blood, whereas repeated injections resulted in roughly equivalent concentrations of THC in maternal blood and fetal brain. Neither inhalation nor injection of THC during pregnancy altered fetal brain endocannabinoid concentrations. Our data provide the first characterization of maternal-fetal transmission of THC and its metabolites following both vaporized delivery and injection routes of administration. These data are important to establish the maternal-fetal transmission in preclinical injection and inhalation models of PCE and may provide insight into predicting fetal exposure in human studies.
Collapse
Affiliation(s)
- Samantha L Baglot
- Graduate Program in Neuroscience, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ashley E Marquardt
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert J Aukema
- Graduate Program in Neuroscience, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gavin N Petrie
- Graduate Program in Neuroscience, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Hume
- Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Erin L Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John B Bieber
- Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ryan J McLaughlin
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
62
|
Maternal cannabis use is associated with suppression of immune gene networks in placenta and increased anxiety phenotypes in offspring. Proc Natl Acad Sci U S A 2021; 118:2106115118. [PMID: 34782458 DOI: 10.1073/pnas.2106115118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
While cannabis is among the most used recreational drugs during pregnancy, the impact of maternal cannabis use (mCB) on fetal and child development remains unclear. Here, we assessed the effects of mCB on psychosocial and physiological measures in young children along with the potential relevance of the in utero environment reflected in the placental transcriptome. Children (∼3 to 6 y) were assessed for hair hormone levels, neurobehavioral traits on the Behavioral Assessment System for Children (BASC-2) survey, and heart rate variability (HRV) at rest and during auditory startle. For a subset of children with behavioral assessments, placental specimens collected at birth were processed for RNA sequencing. Hair hormone analysis revealed increased cortisol levels in mCB children. In addition, mCB was associated with greater anxiety, aggression, and hyperactivity. Children with mCB also showed a reduction in the high-frequency component of HRV at baseline, reflecting reduced vagal tone. In the placenta, there was reduced expression of many genes involved in immune system function including type I interferon, neutrophil, and cytokine-signaling pathways. Finally, several of these mCB-linked immune genes organized into coexpression networks that correlated with child anxiety and hyperactivity. Overall, our findings reveal a relationship between mCB and immune response gene networks in the placenta as a potential mediator of risk for anxiety-related problems in early childhood.
Collapse
|
63
|
Ellingson JM, Hinckley JD, Ross JM, Schacht JP, Bidwell LC, Bryan AD, Hopfer CJ, Riggs P, Hutchison KE. The Neurocognitive Effects of Cannabis Across the Lifespan. Curr Behav Neurosci Rep 2021; 8:124-133. [DOI: 10.1007/s40473-021-00244-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
64
|
The Vertical and Horizontal Pathways in the Monkey Retina Are Modulated by Typical and Atypical Cannabinoid Receptors. Cells 2021; 10:cells10113160. [PMID: 34831383 PMCID: PMC8622302 DOI: 10.3390/cells10113160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid (eCB) system has been found in all visual parts of the central ner-vous system and plays a role in the processing of visual information in many species, including monkeys and humans. Using anatomical methods, cannabinoid receptors are present in the monkey retina, particularly in the vertical glutamatergic pathway, and also in the horizontal GABAergic pathway. Modulating the eCB system regulates normal retinal function as demonstrated by electrophysiological recordings. The characterization of the expression patterns of all types of cannabinoid receptors in the retina is progressing, and further research is needed to elucidate their exact role in processing visual information. Typical cannabinoid receptors include G-protein coupled receptor CB1R and CB2R, and atypical cannabinoid receptors include the G-protein coupled receptor 55 (GPR55) and the ion channel transient receptor potential vanilloid 1 (TRPV1). This review focuses on the expression and localization studies carried out in monkeys, but some data on other animal species and humans will also be reported. Furthermore, the role of the endogenous cannabinoid receptors in retinal function will also be presented using intraocular injections of known modulators (agonists and antagonists) on electroretinographic patterns in monkeys. The effects of the natural bioactive lipid lysophosphatidylglucoside and synthetic FAAH inhibitor URB597 on retinal function, will also be described. Finally, the potential of typical and atypical cannabinoid receptor acti-vity regulation in retinal diseases, such as age-related macular degeneration, diabetic retinopathy, glaucoma, and retinitis pigmentosa will be briefly explored.
Collapse
|
65
|
Poleg S, Kourieh E, Ruban A, Shapira G, Shomron N, Barak B, Offen D. Behavioral aspects and neurobiological properties underlying medical cannabis treatment in Shank3 mouse model of autism spectrum disorder. Transl Psychiatry 2021; 11:524. [PMID: 34645786 PMCID: PMC8514476 DOI: 10.1038/s41398-021-01612-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease with a wide spectrum of manifestation. The core symptoms of ASD are persistent deficits in social communication, and restricted and repetitive patterns of behavior, interests, or activities. These are often accompanied by intellectual disabilities. At present, there is no designated effective treatment for the core symptoms and co-morbidities of ASD. Recently, interest is rising in medical cannabis as a treatment for ASD, with promising clinical data. However, there is a notable absence of basic pre-clinical research in this field. In this study, we investigate the behavioral and biochemical effects of long-term oral treatment with CBD-enriched medical cannabis oil in a human mutation-based Shank3 mouse model of ASD. Our findings show that this treatment alleviates anxiety and decreases repetitive grooming behavior by over 70% in treated mutant mice compared to non-treated mutant mice. Furthermore, we were able to uncover the involvement of CB1 receptor (CB1R) signaling in the Avidekel oil mechanism, alongside a mitigation of cerebrospinal fluid (CSF) glutamate concentrations. Subsequently, RNA sequencing (RNA seq) of cerebellar brain samples revealed changes in mRNA expression of several neurotransmission-related genes post-treatment. Finally, our results question the relevancy of CBD enrichment of medical cannabis for treating the core symptoms of ASD, and emphasize the importance of the THC component for alleviating deficits in repetitive and social behaviors in ASD.
Collapse
Affiliation(s)
- Shani Poleg
- Sackler Faculty of Medicine, Human Molecular Genetics & Biochemistry, Felsenstein Medical Research Center, Tel-Aviv University, Tel Aviv, Israel
| | - Emad Kourieh
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Angela Ruban
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Guy Shapira
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Sackler Faculty of Medicine, Human Molecular Genetics & Biochemistry, Felsenstein Medical Research Center, Tel-Aviv University, Tel Aviv, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
66
|
Harkany T, Cinquina V. Physiological Rules of Endocannabinoid Action During Fetal and Neonatal Brain Development. Cannabis Cannabinoid Res 2021; 6:381-388. [PMID: 34619043 DOI: 10.1089/can.2021.0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The endocannabinoid system is chiefly recognized as a homeostatic regulator of synaptic neurotransmission, primarily through the modulation of presynaptic CB1 cannabinoid neurons. Accordingly, the use of plant-derived cannabinoids received significant attention recently given the broad spectrum of physiological and pathobiological processes the endocannabinoid system is involved in. Nevertheless, a parallel line of research from a number of developmental biology groups has uncovered fundamental, evolutionarily conserved, and molecularly unique processes that endocannabinoids drive during development of the central nervous system. This lecture transcript is a concise summary of nearly 20 years of research on endocannabinoid-gated mechanisms of neurogenic specification events, which particularly define the numbers, placement, and connectivity of cortical neurons. A summary of both CB1 and alternative cannabinoid receptor contributions to neural differentiation is also discussed. Besides, insights are given into how phytocannabinoids can bypass physiologically timed and pivoted endocannabinoid action to inflict developmental errors that can significantly compromise the adaptive and computational ability of neurocircuits. By discussing specific subcellular targets of phytocannabinoid action and inferring errant glia versus neuron fate decisions and communication, a cellular basis is outlined for lifelong psychiatric phenotypes in offspring that associate with maternal cannabis seeking during pregnancy.
Collapse
Affiliation(s)
- Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Valentina Cinquina
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
67
|
The Impact of Early Life Exposure to Cannabis: The Role of the Endocannabinoid System. Int J Mol Sci 2021; 22:ijms22168576. [PMID: 34445282 PMCID: PMC8395329 DOI: 10.3390/ijms22168576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
Cannabis use during pregnancy has continued to rise, particularly in developed countries, as a result of the trend towards legalization and lack of consistent, evidence-based knowledge on the matter. While there is conflicting data regarding whether cannabis use during pregnancy leads to adverse outcomes such as stillbirth, preterm birth, low birthweight, or increased admission to neonatal intensive care units, investigations into long-term effects on the offspring’s health are limited. Historically, studies have focused on the neurobehavioral effects of prenatal cannabis exposure on the offspring. The effects of cannabis on other physiological aspects of the developing fetus have received less attention. Importantly, our knowledge about cannabinoid signaling in the placenta is also limited. The endocannabinoid system (ECS) is present at early stages of development and represents a potential target for exogenous cannabinoids in utero. The ECS is expressed in a broad range of tissues and influences a spectrum of cellular functions. The aim of this review is to explore the current evidence surrounding the effects of prenatal exposure to cannabinoids and the role of the ECS in the placenta and the developing fetus.
Collapse
|
68
|
Peters KZ, Zlebnik NE, Cheer JF. Cannabis exposure during adolescence: A uniquely sensitive period for neurobiological effects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:95-120. [PMID: 34801175 DOI: 10.1016/bs.irn.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adolescence is a crucial developmental period where neural circuits are refined and the brain is especially vulnerable to external insults. The endocannabinoid (eCB) system undergoes changes during adolescence which affect the way in which it modulates the development of other systems, in particular dopamine circuits, which show protracted development into adolescence. Given the rise of cannabis use by adolescents and young people, as well as variants containing increasingly higher concentrations of THC, it is now crucial to understand the unique effects of adolescent exposure to cannabis on the developing brain and it might shape future adult vulnerabilities to conditions such as psychosis, schizophrenia, addiction and more. Here we discuss the development of the eCB system across the lifespan, how CB1 receptors modulate dopamine release and potential neurobiological and behavioral effects of adolescent THC exposure on the developing brain such as alterations in excitatory/inhibitory balance during this developmental period.
Collapse
Affiliation(s)
- K Z Peters
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States; Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom.
| | - N E Zlebnik
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - J F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
69
|
Pandelides Z, Aluru N, Thornton C, Watts HE, Willett KL. Transcriptomic Changes and the Roles of Cannabinoid Receptors and PPARγ in Developmental Toxicities Following Exposure to Δ9-Tetrahydrocannabinol and Cannabidiol. Toxicol Sci 2021; 182:44-59. [PMID: 33892503 PMCID: PMC8285010 DOI: 10.1093/toxsci/kfab046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human consumption of cannabinoid-containing products during early life or pregnancy is rising. However, information about the molecular mechanisms involved in early life stage Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) toxicities is critically lacking. Here, larval zebrafish (Danio rerio) were used to measure THC- and CBD-mediated changes on transcriptome and the roles of cannabinoid receptors (Cnr) 1 and 2 and peroxisome proliferator activator receptor γ (PPARγ) in developmental toxicities. Transcriptomic profiling of 96-h postfertilization (hpf) cnr+/+ embryos exposed (6 - 96 hpf) to 4 μM THC or 0.5 μM CBD showed differential expression of 904 and 1095 genes for THC and CBD, respectively, with 360 in common. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in the THC and CBD datasets included those related to drug, retinol, and steroid metabolism and PPAR signaling. The THC exposure caused increased mortality and deformities (pericardial and yolk sac edemas, reduction in length) in cnr1-/- and cnr2-/- fish compared with cnr+/+ suggesting Cnr receptors are involved in protective pathways. Conversely, the cnr1-/- larvae were more resistant to CBD-induced malformations, mortality, and behavioral alteration implicating Cnr1 in CBD-mediated toxicity. Behavior (decreased distance travelled) was the most sensitive endpoint to THC and CBD exposure. Coexposure to the PPARγ inhibitor GW9662 and CBD in cnr+/+ and cnr2-/- strains caused more adverse outcomes compared with CBD alone, but not in the cnr1-/- fish, suggesting that PPARγ plays a role in CBD metabolism downstream of Cnr1. Collectively, PPARγ, Cnr1, and Cnr2 play important roles in the developmental toxicity of cannabinoids with Cnr1 being the most critical.
Collapse
Affiliation(s)
- Zacharias Pandelides
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543, USA
| | - Cammi Thornton
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA
| | - Haley E Watts
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA
| | - Kristine L Willett
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA
| |
Collapse
|
70
|
Irrera N, Bitto A, Sant’Antonio E, Lauro R, Musolino C, Allegra A. Pros and Cons of the Cannabinoid System in Cancer: Focus on Hematological Malignancies. Molecules 2021; 26:molecules26133866. [PMID: 34202812 PMCID: PMC8270322 DOI: 10.3390/molecules26133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022] Open
Abstract
The endocannabinoid system (ECS) is a composite cell-signaling system that allows endogenous cannabinoid ligands to control cell functions through the interaction with cannabinoid receptors. Modifications of the ECS might contribute to the pathogenesis of different diseases, including cancers. However, the use of these compounds as antitumor agents remains debatable. Pre-clinical experimental studies have shown that cannabinoids (CBs) might be effective for the treatment of hematological malignancies, such as leukemia and lymphoma. Specifically, CBs may activate programmed cell death mechanisms, thus blocking cancer cell growth, and may modulate both autophagy and angiogenesis. Therefore, CBs may have significant anti-tumor effects in hematologic diseases and may synergistically act with chemotherapeutic agents, possibly also reducing chemoresistance. Moreover, targeting ECS might be considered as a novel approach for the management of graft versus host disease, thus reducing some symptoms such as anorexia, cachexia, fatigue, anxiety, depression, and neuropathic pain. The aim of the present review is to collect the state of the art of CBs effects on hematological tumors, thus focusing on the essential topics that might be useful before moving into the clinical practice.
Collapse
Affiliation(s)
- Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | | | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +390902212364
| |
Collapse
|
71
|
Albaugh MD, Ottino-Gonzalez J, Sidwell A, Lepage C, Juliano A, Owens MM, Chaarani B, Spechler P, Fontaine N, Rioux P, Lewis L, Jeon S, Evans A, D’Souza D, Radhakrishnan R, Banaschewski T, Bokde ALW, Quinlan EB, Conrod P, Desrivières S, Flor H, Grigis A, Gowland P, Heinz A, Ittermann B, Martinot JL, Paillère Martinot ML, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Potter A, Garavan H. Association of Cannabis Use During Adolescence With Neurodevelopment. JAMA Psychiatry 2021; 78:2781289. [PMID: 34132750 PMCID: PMC8209561 DOI: 10.1001/jamapsychiatry.2021.1258] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/18/2021] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Animal studies have shown that the adolescent brain is sensitive to disruptions in endocannabinoid signaling, resulting in altered neurodevelopment and lasting behavioral effects. However, few studies have investigated ties between cannabis use and adolescent brain development in humans. OBJECTIVE To examine the degree to which magnetic resonance (MR) imaging-assessed cerebral cortical thickness development is associated with cannabis use in a longitudinal sample of adolescents. DESIGN, SETTING, AND PARTICIPANTS Data were obtained from the community-based IMAGEN cohort study, conducted across 8 European sites. Baseline data used in the present study were acquired from March 1, 2008, to December 31, 2011, and follow-up data were acquired from January 1, 2013, to December 31, 2016. A total of 799 IMAGEN participants were identified who reported being cannabis naive at study baseline and had behavioral and neuroimaging data available at baseline and 5-year follow-up. Statistical analysis was performed from October 1, 2019, to August 31, 2020. MAIN OUTCOMES AND MEASURES Cannabis use was assessed at baseline and 5-year follow-up with the European School Survey Project on Alcohol and Other Drugs. Anatomical MR images were acquired with a 3-dimensional T1-weighted magnetization prepared gradient echo sequence. Quality-controlled native MR images were processed through the CIVET pipeline, version 2.1.0. RESULTS The study evaluated 1598 MR images from 799 participants (450 female participants [56.3%]; mean [SD] age, 14.4 [0.4] years at baseline and 19.0 [0.7] years at follow-up). At 5-year follow-up, cannabis use (from 0 to >40 uses) was negatively associated with thickness in left prefrontal (peak: t785 = -4.87, cluster size = 1558 vertices; P = 1.10 × 10-6, random field theory cluster corrected) and right prefrontal (peak: t785 = -4.27, cluster size = 1551 vertices; P = 2.81 × 10-5, random field theory cluster corrected) cortices. There were no significant associations between lifetime cannabis use at 5-year follow-up and baseline cortical thickness, suggesting that the observed neuroanatomical differences did not precede initiation of cannabis use. Longitudinal analysis revealed that age-related cortical thinning was qualified by cannabis use in a dose-dependent fashion such that greater use, from baseline to follow-up, was associated with increased thinning in left prefrontal (peak: t815.27 = -4.24, cluster size = 3643 vertices; P = 2.28 × 10-8, random field theory cluster corrected) and right prefrontal (peak: t813.30 = -4.71, cluster size = 2675 vertices; P = 3.72 × 10-8, random field theory cluster corrected) cortices. The spatial pattern of cannabis-related thinning was associated with age-related thinning in this sample (r = 0.540; P < .001), and a positron emission tomography-assessed cannabinoid 1 receptor-binding map derived from a separate sample of participants (r = -0.189; P < .001). Analysis revealed that thinning in right prefrontal cortices, from baseline to follow-up, was associated with attentional impulsiveness at follow-up. CONCLUSIONS AND RELEVANCE Results suggest that cannabis use during adolescence is associated with altered neurodevelopment, particularly in cortices rich in cannabinoid 1 receptors and undergoing the greatest age-related thickness change in middle to late adolescence.
Collapse
Affiliation(s)
- Matthew D. Albaugh
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | | | - Amanda Sidwell
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | - Claude Lepage
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Anthony Juliano
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | - Max M. Owens
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | - Bader Chaarani
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | - Philip Spechler
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | - Nicholas Fontaine
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | - Pierre Rioux
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Lindsay Lewis
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Seun Jeon
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Alan Evans
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Deepak D’Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology, and Neuroscience, Social, Genetic & Developmental Psychiatry Centre, King’s College London, London, United Kingdom
| | - Patricia Conrod
- Department of Psychiatry, University of Montreal, Montreal, Quebec, Canada
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology, and Neuroscience, Social, Genetic & Developmental Psychiatry Centre, King’s College London, London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, Commissariat à l’Energie Atomique, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy Campus Charité Mitte, Charité–Universitätsmedizin Berlin, Berlin, Germany
- corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | | | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale U A10 “Trajectoires développementales en psychiatrie” Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 “Trajectoires développementales en psychiatrie,” Paris, France
- Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Paris, France
- AP-HP Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy Campus Charité Mitte, Charité–Universitätsmedizin Berlin, Berlin, Germany
- corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology, and Neuroscience, Social, Genetic & Developmental Psychiatry Centre, King’s College London, London, United Kingdom
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology, and Neuroscience, Social, Genetic & Developmental Psychiatry Centre, King’s College London, London, United Kingdom
- Centre for Population Neuroscience and Precision Medicine Research Group, Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, PR China
| | - Alexandra Potter
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| |
Collapse
|
72
|
Molina-Holgado E, Paniagua-Torija B, Arevalo-Martin A, Moreno-Luna R, Esteban PF, Le MQU, Del Cerro MDM, Garcia-Ovejero D. Cannabinoid Receptor 1 associates to different molecular complexes during GABAergic neuron maturation. J Neurochem 2021; 158:640-656. [PMID: 33942314 DOI: 10.1111/jnc.15381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023]
Abstract
CB1 cannabinoid receptor is widely expressed in the central nervous system of animals from late prenatal development to adulthood. Appropriate activation and signaling of CB1 cannabinoid receptors in cortical interneurons are crucial during perinatal/postnatal ages and adolescence, when long-lasting changes in brain activity may elicit subsequent appearance of disorders in the adult brain. Here we used an optimized immunoprecipitation protocol based on specific antibodies followed by shot-gun proteomics to find CB1 interacting partners in postnatal rat GABAergic cortical neurons in vitro at two different stages of maturation. Besides describing new proteins associated with CB1 like dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex (DLAT), fatty acid synthase (FASN), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ), voltage-dependent anion channel 1 (VDAC1), myosin phosphatase Rho-interacting protein (MPRIP) or usher syndrome type-1C protein-binding protein 1 (USHBP1), we show that the signaling complex of CB1 is different between maturational stages. Interestingly, the CB1 signaling complex is enriched at the more immature stage in mitochondrial associated proteins and metabolic molecular functions, whereas at more mature stage, CB1 complex is increased in maturation and synaptic-associated proteins. We describe also interacting partners specifically immunoprecipitated with either N-terminal or C-terminal CB1 directed antibodies. Our results highlight new players that may be affected by altered cannabinoid signaling at this critical window of postnatal cortical development.
Collapse
Affiliation(s)
- Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | | | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Minh Quynh Uyen Le
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | | | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| |
Collapse
|
73
|
Isaac AR, de Velasco PC, Fraga KYD, Tavares-do-Carmo MDG, Campos RMP, Iannotti FA, Verde R, Martins DBG, Santos TA, Ferreira BK, de Mello FG, Di Marzo V, Andrade-da-Costa BLDS, de Melo Reis RA. Maternal omega-3 intake differentially affects the endocannabinoid system in the progeny`s neocortex and hippocampus: Impact on synaptic markers. J Nutr Biochem 2021; 96:108782. [PMID: 34038760 DOI: 10.1016/j.jnutbio.2021.108782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/16/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Omega-3 (n-3) polyunsaturated fatty acids (PUFA) and the endocannabinoid system (ECS) modulate several functions through neurodevelopment including synaptic plasticity mechanisms. The interplay between n-3PUFA and the ECS during the early stages of development, however, is not fully understood. This study investigated the effects of maternal n-3PUFA supplementation (n-3Sup) or deficiency (n-3Def) on ECS and synaptic markers in postnatal offspring. Female rats were fed with a control, n-3Def, or n-3Sup diet from 15 days before mating and during pregnancy. The cerebral cortex and hippocampus of mothers and postnatal 1-2 days offspring were analyzed. In the mothers, a n-3 deficiency reduced CB1 receptor (CB1R) protein levels in the cortex and increased CB2 receptor (CB2R) in both cortex and hippocampus. In neonates, a maternal n-3 deficiency reduced the hippocampal CB1R amount while it increased CB2R. Additionally, total GFAP isoform expression was increased in both cortex and hippocampus in neonates of the n-3Def group. Otherwise, maternal n-3 supplementation increased the levels of n-3-derived endocannabinoids, DHEA and EPEA, in the cortex and hippocampus and reduced 2-arachidonoyl-glycerol (2-AG) concentrations in the cortex of the offspring. Furthermore, maternal n-3 supplementation also increased PKA phosphorylation in the cortex and ERK phosphorylation in the hippocampus. Synaptophysin immunocontent in both regions was also increased. In vitro assays showed that the increase of synaptophysin in the n-3Sup group was independent of CB1R activation. The findings show that variations in maternal dietary omega-3 PUFA levels may impact differently on the ECS and molecular markers in the cerebral cortex and hippocampus of the progeny.
Collapse
Affiliation(s)
- Alinny Rosendo Isaac
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Karla Yasmin Dias Fraga
- Instituto de Nutrição Josué de Castro (INJC), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria das Graças Tavares-do-Carmo
- Instituto de Nutrição Josué de Castro (INJC), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Maria Pereira Campos
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy
| | - Danyelly Bruneska Gondim Martins
- Grupo de Bioinformática e prospecção molecular, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thaysa Aragão Santos
- Grupo de Bioinformática e prospecção molecular, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Bruna Klippel Ferreira
- Departamento de Bioquímica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Garcia de Mello
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy; Canada Exellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and NUTRISS-INAF Universitè Laval, Quebec City, Canada
| | | | - Ricardo Augusto de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
74
|
Bara A, Ferland JMN, Rompala G, Szutorisz H, Hurd YL. Cannabis and synaptic reprogramming of the developing brain. Nat Rev Neurosci 2021; 22:423-438. [PMID: 34021274 DOI: 10.1038/s41583-021-00465-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Recent years have been transformational in regard to the perception of the health risks and benefits of cannabis with increased acceptance of use. This has unintended neurodevelopmental implications given the increased use of cannabis and the potent levels of Δ9-tetrahydrocannabinol today being consumed by pregnant women, young mothers and teens. In this Review, we provide an overview of the neurobiological effects of cannabinoid exposure during prenatal/perinatal and adolescent periods, in which the endogenous cannabinoid system plays a fundamental role in neurodevelopmental processes. We highlight impaired synaptic plasticity as characteristic of developmental exposure and the important contribution of epigenetic reprogramming that maintains the long-term impact into adulthood and across generations. Such epigenetic influence by its very nature being highly responsive to the environment also provides the potential to diminish neural perturbations associated with developmental cannabis exposure.
Collapse
Affiliation(s)
- Anissa Bara
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Jacqueline-Marie N Ferland
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Gregory Rompala
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Henrietta Szutorisz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA. .,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA. .,Friedman Brain Institute, Mount Sinai, NY, USA.
| |
Collapse
|
75
|
Tveden-Nyborg P. Vitamin C Deficiency in the Young Brain-Findings from Experimental Animal Models. Nutrients 2021; 13:1685. [PMID: 34063417 PMCID: PMC8156420 DOI: 10.3390/nu13051685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Severe and long-term vitamin C deficiency can lead to fatal scurvy, which is fortunately considered rare today. However, a moderate state of vitamin C (vitC) deficiency (hypovitaminosis C)-defined as a plasma concentration below 23 μM-is estimated to affect up to 10% of the population in the Western world, albeit clinical hallmarks in addition to scurvy have not been linked to vitC deficiency. The brain maintains a high vitC content and uniquely high levels during deficiency, supporting vitC's importance in the brain. Actions include both antioxidant and co-factor functions, rendering vitamin C deficiency likely to affect several targets in the brain, and it could be particularly significant during development where a high cellular metabolism and an immature antioxidant system might increase sensitivity. However, investigations of a non-scorbutic state of vitC deficiency and effects on the developing young brain are scarce. This narrative review provides a comprehensive overview of the complex mechanisms that regulate vitC homeostasis in vivo and in the brain in particular. Functions of vitC in the brain and the potential consequences of deficiency during brain development are highlighted, based primarily on findings from experimental animal models. Perspectives for future investigations of vitC are outlined.
Collapse
Affiliation(s)
- Pernille Tveden-Nyborg
- Section of Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark
| |
Collapse
|
76
|
Nguyen T, Gamage TF, Decker AM, Finlay DB, Langston TL, Barrus D, Glass M, Harris DL, Zhang Y. Rational design of cannabinoid type-1 receptor allosteric modulators: Org27569 and PSNCBAM-1 hybrids. Bioorg Med Chem 2021; 41:116215. [PMID: 34015703 DOI: 10.1016/j.bmc.2021.116215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022]
Abstract
Allosteric modulation offers an alternate approach to target the cannabinoid type-1 receptor (CB1) for therapeutic benefits. Examination of the two widely studied prototypic CB1 negative allosteric modulators (NAMs) Org27569 and PSNCBAM-1 revealed structural resemblance and similar structure-activity relationships (SARs). In silico docking and dynamics simulation studies using the crystal structure of CB1 co-bound with CP55,940 and Org27569 suggested that Org27569 and PSNCBAM-1 occupied the same binding pocket and several common interactions were present in both series with the CB1 receptor. A new scaffold was therefore designed by merging the key structural features from the two series and the hybrids retained these binding features in the in silico docking studies. In addition, one such hybrid displayed similar functions to Org27569 in dynamic simulations by preserving a key R2143.50-D3386.30 salt bridge and maintaining an antagonist-like Helix3-Helix6 interhelical distance. Based on these results, a series of hybrids were synthesized and assessed in calcium mobilization, [35S]GTPγS binding and cAMP assays. Several compounds displayed comparable potencies to Org27569 and PSNCBAM-1 in these assays. This work offers new insight of the SAR requirement at the allosteric site of the CB1 receptor and provides a new scaffold that can be optimized for the development of future CB1 allosteric modulators.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Thomas F Gamage
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Ann M Decker
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - David B Finlay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9054, New Zealand
| | | | - Daniel Barrus
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9054, New Zealand
| | - Danni L Harris
- Research Triangle Institute, Research Triangle Park, NC 27709, USA.
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
77
|
Antipsychotic potential of the type 1 cannabinoid receptor positive allosteric modulator GAT211: preclinical in vitro and in vivo studies. Psychopharmacology (Berl) 2021; 238:1087-1098. [PMID: 33442771 DOI: 10.1007/s00213-020-05755-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE Antipsychotics help alleviate the positive symptoms associated with schizophrenia; however, their debilitating side effects have spurred the search for better treatment options. Novel compounds can be screened for antipsychotic potential in neuronal cell cultures and following acute N-methyl-D-aspartate (NMDA) receptor blockade with non-competitive antagonists such as MK-801 in rodent behavioral models. Given the known interactions between NMDA receptors and type 1 cannabinoid receptors (CB1R), compounds that modulate CB1Rs may have therapeutic potential for schizophrenia. OBJECTIVES This study assessed whether the CB1R positive allosteric modulator GAT211, when compared to ∆9-tetrahydrocannabinol (THC), has potential to reduce psychiatric behavioral phenotypes following acute MK-801 treatment in rats, and block hyperdopaminergic signalling associated with those behaviors. METHODS The effects of GAT211 and THC on cellular signaling were compared in Neuro2a cells, and behavioral effects of GAT211 and THC on altered locomotor activity and prepulse inhibition of the acoustic startle response caused by acute MK-801 treatment were assessed in male, Long Evans rats. RESULTS GAT211 limited dopamine D2 receptor-mediated extracellular regulated kinase (ERK) phosphorylation in Neuro2a cells, whereas THC did not. As expected, acute MK-801 (0.15 mg/kg) produced a significant increase in locomotor activity and impaired PPI. GAT211 treatment alone (0.3-3.0 mg/kg) dose-dependently reduced locomotor activity and the acoustic startle response. GAT211 (3.0 mg/kg) also prevented hyperlocomotion caused by MK-801 but did not significantly affect PPI impairments. CONCLUSION Taken together, these findings support continued preclinical research regarding the usefulness of CB1R positive allosteric modulators as antipsychotics.
Collapse
|
78
|
Winiger EA, Ellingson JM, Morrison CL, Corley RP, Pasman JA, Wall TL, Hopfer CJ, Hewitt JK. Sleep deficits and cannabis use behaviors: an analysis of shared genetics using linkage disequilibrium score regression and polygenic risk prediction. Sleep 2021; 44:zsaa188. [PMID: 32935850 PMCID: PMC7953210 DOI: 10.1093/sleep/zsaa188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
STUDY OBJECTIVES Estimate the genetic relationship of cannabis use with sleep deficits and an eveningness chronotype. METHODS We used linkage disequilibrium score regression (LDSC) to analyze genetic correlations between sleep deficits and cannabis use behaviors. Secondly, we generated sleep deficit polygenic risk score (PRS) and estimated their ability to predict cannabis use behaviors using linear and logistic regression. Summary statistics came from existing genome-wide association studies of European ancestry that were focused on sleep duration, insomnia, chronotype, lifetime cannabis use, and cannabis use disorder (CUD). A target sample for PRS prediction consisted of high-risk participants and participants from twin/family community-based studies (European ancestry; n = 760, male = 64%; mean age = 26.78 years). Target data consisted of self-reported sleep (sleep duration, feeling tired, and taking naps) and cannabis use behaviors (lifetime ever use, number of lifetime uses, past 180-day use, age of first use, and lifetime CUD symptoms). RESULTS Significant genetic correlation between lifetime cannabis use and an eveningness chronotype (rG = 0.24, p < 0.001), as well as between CUD and both short sleep duration (<7 h; rG = 0.23, p = 0.017) and insomnia (rG = 0.20, p = 0.020). Insomnia PRS predicted earlier age of first cannabis use (OR = 0.92, p = 0.036) and increased lifetime CUD symptom count (OR = 1.09, p = 0.012). CONCLUSION Cannabis use is genetically associated with both sleep deficits and an eveningness chronotype, suggesting that there are genes that predispose individuals to both cannabis use and sleep deficits.
Collapse
Affiliation(s)
- Evan A Winiger
- Institute for Behavioral Genetics, University of Colorado Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado Boulder, CO
| | - Jarrod M Ellingson
- Institute for Behavioral Genetics, University of Colorado Boulder, CO
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO
| | - Claire L Morrison
- Institute for Behavioral Genetics, University of Colorado Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado Boulder, CO
| | - Robin P Corley
- Institute for Behavioral Genetics, University of Colorado Boulder, CO
| | - Joëlle A Pasman
- Behavioural Science Institute, Radboud University Nijmegen, Amsterdam, The Netherlands
| | - Tamara L Wall
- Department of Psychiatry, University of California, San Diego, CA
| | - Christian J Hopfer
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado Boulder, CO
| |
Collapse
|
79
|
Meeh KL, Rickel CT, Sansano AJ, Shirangi TR. The development of sex differences in the nervous system and behavior of flies, worms, and rodents. Dev Biol 2021; 472:75-84. [PMID: 33484707 DOI: 10.1016/j.ydbio.2021.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/14/2023]
Abstract
Understanding how sex differences in innate animal behaviors arise has long fascinated biologists. As a general rule, the potential for sex differences in behavior is built by the developmental actions of sex-specific hormones or regulatory proteins that direct the sexual differentiation of the nervous system. In the last decade, studies in several animal systems have uncovered neural circuit mechanisms underlying discrete sexually dimorphic behaviors. Moreover, how certain hormones and regulatory proteins implement the sexual differentiation of these neural circuits has been illuminated in tremendous detail. Here, we discuss some of these mechanisms with three case-studies-mate recognition in flies, maturation of mating behavior in worms, and play-fighting behavior in young rodents. These studies illustrate general and unique developmental mechanisms to establish sex differences in neuroanatomy and behavior and highlight future challenges for the field.
Collapse
Affiliation(s)
- Kristen L Meeh
- Villanova University, Department of Biology, 800 Lancaster Ave, Villanova, PA, 19085, USA
| | - Clare T Rickel
- Villanova University, Department of Biology, 800 Lancaster Ave, Villanova, PA, 19085, USA
| | - Alexander J Sansano
- Villanova University, Department of Biology, 800 Lancaster Ave, Villanova, PA, 19085, USA
| | - Troy R Shirangi
- Villanova University, Department of Biology, 800 Lancaster Ave, Villanova, PA, 19085, USA.
| |
Collapse
|
80
|
The Role of Cannabinoids as Anticancer Agents in Pediatric Oncology. Cancers (Basel) 2021; 13:cancers13010157. [PMID: 33466435 PMCID: PMC7796497 DOI: 10.3390/cancers13010157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The endocannabinoid system (ECS) is a complex signaling pathway system involved in the regulation of multiple functions in both normal tissues and cancer. Δ9-tetrahydrocannabinol and cannabidiol are plant-derived cannabinoids that possess some efficacy against adult cancer, in part via modulation of the ECS, and may be less toxic agents compared to other treatments used in oncology. To date, there are minimal studies that have investigated these drugs in the pediatric cancer setting. Indeed, there are currently no preclinical or clinical studies examining the effects of cannabinoids in pediatric brain cancer, although there is some evidence that they can alleviate symptoms associated with childhood cancer therapy, such as vomiting and nausea. Given there is accumulating evidence that cannabis use during adolescence is associated with poor mental and cognitive health, there is a present and urgent need to investigate the safety and efficacy of cannabinoids in pediatric oncology to provide guidance to families and physicians. Abstract Cannabinoids are a group of chemicals that bind to receptors in the human body and, in turn, modulate the endocannabinoid system (ECS). They can be endogenously produced, synthetic, or derived from the plant Cannabis sativa L. Research over the past several decades has shown that the ECS is a cellular communication network essential to maintain multiple biological functions and the homeostasis of the body. Indeed, cannabinoids have been shown to influence a wide variety of biological effects, including memory, pain, reproduction, bone remodeling or immunity, to name a few. Unsurprisingly, given these broad physiological effects, alterations of the ECS have been found in different diseases, including cancer. In recent years, the medical use of cannabis has been approved in different countries for a variety of human conditions. However, the use of these compounds, specifically as anticancer agents, remains controversial. Studies have shown that cannabinoids do have anticancer activity in different tumor types such as breast cancer, melanoma, lymphoma and adult brain cancer. Specifically, phytocannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) has been shown to induce apoptosis and inhibit proliferation of adult cancer cells, as well as modulate angiogenesis and metastasis. Despite increasing evidence that cannabinoids elicit antitumor effects in adult cancers, there is minimal data available on their effects in children or in pediatric cancers despite public and clinical demand for information. Here we describe a comprehensive and critical review of what is known about the effects of cannabinoids on pediatric cancers, highlight current gaps in knowledge and identify the critical issues that need addressing before considering these promising but controversial drugs for use in pediatric oncology.
Collapse
|
81
|
Beiersdorf J, Hevesi Z, Calvigioni D, Pyszkowski J, Romanov R, Szodorai E, Lubec G, Shirran S, Botting CH, Kasper S, Guy GW, Gray R, Di Marzo V, Harkany T, Keimpema E. Adverse effects of Δ9-tetrahydrocannabinol on neuronal bioenergetics during postnatal development. JCI Insight 2020; 5:135418. [PMID: 33141759 PMCID: PMC7714410 DOI: 10.1172/jci.insight.135418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 10/28/2020] [Indexed: 11/22/2022] Open
Abstract
Ongoing societal changes in views on the medical and recreational roles of cannabis increased the use of concentrated plant extracts with a Δ9-tetrahydrocannabinol (THC) content of more than 90%. Even though prenatal THC exposure is widely considered adverse for neuronal development, equivalent experimental data for young age cohorts are largely lacking. Here, we administered plant-derived THC (1 or 5 mg/kg) to mice daily during P5–P16 and P5–P35 and monitored its effects on hippocampal neuronal survival and specification by high-resolution imaging and iTRAQ proteomics, respectively. We found that THC indiscriminately affects pyramidal cells and both cannabinoid receptor 1+ (CB1R)+ and CB1R– interneurons by P16. THC particularly disrupted the expression of mitochondrial proteins (complexes I–IV), a change that had persisted even 4 months after the end of drug exposure. This was reflected by a THC-induced loss of membrane integrity occluding mitochondrial respiration and could be partially or completely rescued by pH stabilization, antioxidants, bypassed glycolysis, and targeting either mitochondrial soluble adenylyl cyclase or the mitochondrial voltage-dependent anion channel. Overall, THC exposure during infancy induces significant and long-lasting reorganization of neuronal circuits through mechanisms that, in large part, render cellular bioenergetics insufficient to sustain key developmental processes in otherwise healthy neurons. Repeated THC exposure in juvenile mice compromises the limbic circuitry, with life-long impairment to the respiration of neurons.
Collapse
Affiliation(s)
- Johannes Beiersdorf
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Zsofia Hevesi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Calvigioni
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | - Roman Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Edit Szodorai
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Paracelsus Private Medical University, Salzburg, Austria
| | - Sally Shirran
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom
| | | | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | - Roy Gray
- GW Phamaceuticals, Salisbury, Wiltshire, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Canada Excellence Research Chair, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Québec, Canada
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Biomedikum D7, Karolinska Institutet, Solna, Sweden
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
82
|
Gomes TM, Dias da Silva D, Carmo H, Carvalho F, Silva JP. Epigenetics and the endocannabinoid system signaling: An intricate interplay modulating neurodevelopment. Pharmacol Res 2020; 162:105237. [PMID: 33053442 DOI: 10.1016/j.phrs.2020.105237] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 01/08/2023]
Abstract
The endocannabinoid (eCB) system is a complex system comprising endogenous cannabinoids (eCBs), their synthesis and degradation enzymes, and cannabinoid receptors. These elements crucially regulate several biological processes during neurodevelopment, such as proliferation, differentiation, and migration. Recently, eCBs were also reported to have an epigenetic action on genes that play key functions in the neurotransmitter signaling, consequently regulating their expression. In turn, epigenetic modifications (e.g. DNA methylation, histone modifications) may also modulate the function of eCB system's elements. For example, the expression of the cnr gene in the central nervous system may be epigenetically regulated (e.g. DNA methylation, histone modifications), thus altering the function of the cannabinoid receptor type-1 (CB1R). Considering the importance of the eCB system during neurodevelopment, it is thus reasonable to expect that alterations in this interaction between the eCB system and epigenetic modifications may give rise to neurodevelopmental disorders. Here, we review key concepts related to the regulation of neuronal function by the eCB system and the different types of epigenetic modifications. In particular, we focus on the mechanisms involved in the intricate interplay between both signaling systems and how they control cell fate during neurodevelopment. Noteworthy, such mechanistic understanding assumes high relevance considering the implications of the dysregulation of key neurogenic processes towards the onset of neurodevelopment-related disorders. Moreover, considering the increasing popularity of cannabis and its synthetic derivatives among young adults, it becomes of utmost importance to understand how exogenous cannabinoids may epigenetically impact neurodevelopment.
Collapse
Affiliation(s)
- Telma Marisa Gomes
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Diana Dias da Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Helena Carmo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - João Pedro Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
83
|
Lyons EL, Leone-Kabler S, Kovach AL, Thomas BF, Howlett AC. Cannabinoid receptor subtype influence on neuritogenesis in human SH-SY5Y cells. Mol Cell Neurosci 2020; 109:103566. [PMID: 33049367 DOI: 10.1016/j.mcn.2020.103566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022] Open
Abstract
Human SH-SY5Y neuroblastoma cells stably expressing exogenous CB1 (CB1XS) or CB2 (CB2XS) receptors were developed to investigate endocannabinoid signaling in the extension of neuronal projections. Expression of cannabinoid receptors did not alter proliferation rate, viability, or apoptosis relative to parental SH-SY5Y. Transcripts for endogenous cannabinoid system enzymes (diacylglycerol lipase, monoacylglycerol lipase, α/β-hydrolase domain containing proteins 6 and 12, N-acyl phosphatidylethanolamine-phospholipase D, and fatty acid amide hydrolase) were not altered by CB1 or CB2 expression. Endocannabinoid ligands 2-arachidonoylglycerol (2-AG) and anandamide were quantitated in SH-SY5Y cells, and diacylglycerol lipase inhibitor tetrahydrolipstatin decreased 2-AG abundance by 90% but did not alter anandamide abundance. M3 muscarinic agonist oxotremorine M, and inhibitors of monoacylglycerol lipase and α/β hydrolase domain containing proteins 6 &12 increased 2-AG abundance. CB1 receptor expression increased lengths of short (<30 μm) and long (>30 μm) projections, and this effect was significantly reduced by tetrahydrolipstatin, indicative of stimulation by endogenously produced 2-AG. Pertussis toxin, Gβγ inhibitor gallein, and β-arrestin inhibitor barbadin did not significantly alter long projection length in CB1XS, but significantly reduced short projections, with gallein having the greatest inhibition. The rho kinase inhibitor Y27632 increased CB1 receptor-mediated long projection extension, indicative of actin cytoskeleton involvement. CB1 receptor expression increased GAP43 and ST8SIA2 mRNA and decreased ITGA1 mRNA, whereas CB2 receptor expression increased NCAM and SYT mRNA. We propose that basal endogenous production of 2-AG provides autocrine stimulation of CB1 receptor signaling through Gi/o, Gβγ, and β-arrestin mechanisms to promote neuritogenesis, and rho kinase influences process extension.
Collapse
Affiliation(s)
- Erica L Lyons
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Alexander L Kovach
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Brian F Thomas
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
84
|
Perinatal THC exposure via lactation induces lasting alterations to social behavior and prefrontal cortex function in rats at adulthood. Neuropsychopharmacology 2020; 45:1826-1833. [PMID: 32428929 PMCID: PMC7608083 DOI: 10.1038/s41386-020-0716-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
Cannabis is the world's most widely abused illicit drug and consumption amongst women during and surrounding the period of pregnancy is increasing. Previously, we have shown that cannabinoid exposure via lactation during the early postnatal period disrupts early developmental trajectories of prefrontal cortex maturation and induces behavioral abnormalities during the first weeks of life in male and female rat progeny. Here, we investigated the lasting consequences of this postnatal cannabinoid exposure on synaptic and behavioral parameters in the adult offspring of ∆9-tetrahydrocannabinol (THC)-treated dams. At adulthood, these perinatally THC-exposed rats exhibits deficits in social discrimination accompanied by an overall augmentation of social exploratory behavior. These behavioral alterations were further correlated with multiple abnormalities in synaptic plasticity in the prefrontal cortex, including lost endocannabinoid-mediated long-term depression (LTD), lost long-term potentiation and augmented mGlu2/3-LTD. Finally, basic parameters of intrinsic excitability at prefrontal cortex pyramidal neurons were similarly altered by the perinatal THC exposure. Thus, perinatal THC exposure via lactation induces lasting deficits in behavior and synaptic function which persist into adulthood life in male and female progeny.
Collapse
|
85
|
Huerga-Gómez A, Aguado T, Sánchez-de la Torre A, Bernal-Chico A, Matute C, Mato S, Guzmán M, Galve-Roperh I, Palazuelos J. Δ 9 -Tetrahydrocannabinol promotes oligodendrocyte development and CNS myelination in vivo. Glia 2020; 69:532-545. [PMID: 32956517 PMCID: PMC7821226 DOI: 10.1002/glia.23911] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Δ9‐Tetrahydrocannabinol (THC), the main bioactive compound found in the plant Cannabis sativa, exerts its effects by activating cannabinoid receptors present in many neural cells. Cannabinoid receptors are also physiologically engaged by endogenous cannabinoid compounds, the so‐called endocannabinoids. Specifically, the endocannabinoid 2‐arachidonoylglycerol has been highlighted as an important modulator of oligodendrocyte (OL) development at embryonic stages and in animal models of demyelination. However, the potential impact of THC exposure on OL lineage progression during the critical periods of postnatal myelination has never been explored. Here, we show that acute THC administration at early postnatal ages in mice enhanced OL development and CNS myelination in the subcortical white matter by promoting oligodendrocyte precursor cell cycle exit and differentiation. Mechanistically, THC‐induced‐myelination was mediated by CB1 and CB2 cannabinoid receptors, as demonstrated by the blockade of THC actions by selective receptor antagonists. Moreover, the THC‐mediated modulation of oligodendroglial differentiation relied on the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, as mTORC1 pharmacological inhibition prevented the THC effects. Our study identifies THC as an effective pharmacological strategy to enhance oligodendrogenesis and CNS myelination in vivo.
Collapse
Affiliation(s)
- Alba Huerga-Gómez
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Tania Aguado
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Aníbal Sánchez-de la Torre
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Ana Bernal-Chico
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Carlos Matute
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Susana Mato
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Biocruces Bizkaia, Multiple Sclerosis and Other Demyelinating Diseases Unit, Barakaldo, Spain
| | - Manuel Guzmán
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Ismael Galve-Roperh
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Javier Palazuelos
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| |
Collapse
|
86
|
Fontaine CJ, Gräfe EL, Pinar C, Bonilla-Del Río I, Grandes P, Christie BR. Endocannabinoid receptors contribute significantly to multiple forms of long-term depression in the rat dentate gyrus. LEARNING & MEMORY (COLD SPRING HARBOR, N.Y.) 2020; 27:380-389. [PMID: 32817304 PMCID: PMC7433656 DOI: 10.1101/lm.050666.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Cannabinoid receptors are widely expressed throughout the hippocampal formation, but are particularly dense in the dentate gyrus (DG) subregion. We, and others, have shown in mice that cannabinoid type 1 receptors (CB1Rs) are involved in a long-term depression (LTD) that can be induced by prolonged 10 Hz stimulation of the medial perforant path (MPP)-granule cell synaptic input to the DG. Here, we extend this work to examine the involvement of CB1Rs in other common forms of LTD in the hippocampus of juvenile male and female Sprague–Dawley rats (Rattus norvegicus). We found, as in mice, that prolonged 10 Hz stimulation (6000 pulses) could reliably induce a form of LTD that was dependent upon CB1R activation. In addition, we also discovered a role for both CB1R and mGluR proteins in LTD induced with 1 Hz low-frequency stimulation (1 Hz-LTD; 900 pulses) and in LTD induced by bath application of the group I mGluR agonist (RS)-3,5-Dihydroxyphenylglycine (DHPG; DHPG-LTD). This study elucidates an essential role for endocannabinoid receptors in a number of forms of LTD in the rat DG, and identifies a novel role for CB1Rs as potential therapeutic targets for conditions that involve impaired LTD in the DG.
Collapse
Affiliation(s)
- Christine J Fontaine
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Erin L Gräfe
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Cristina Pinar
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940 Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940 Leioa, Spain
| | - Pedro Grandes
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.,Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940 Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940 Leioa, Spain
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.,Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, USA
| |
Collapse
|
87
|
Lu HC, Mackie K. Review of the Endocannabinoid System. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:607-615. [PMID: 32980261 DOI: 10.1016/j.bpsc.2020.07.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is a widespread neuromodulatory network involved in the developing central nervous system as well as playing a major role in tuning many cognitive and physiological processes. The ECS is composed of endogenous cannabinoids, cannabinoid receptors, and the enzymes responsible for the synthesis and degradation of endocannabinoids. In addition to its endogenous roles, cannabinoid receptors are the primary target of Δ9-tetrahydrocannabinol, the intoxicating component of cannabis. In this review, we summarize our current understanding of the ECS. We start with a description of ECS components and their role in synaptic plasticity and neurodevelopment, and then discuss how phytocannabinoids and other exogenous compounds may perturb the ECS, emphasizing examples relevant to psychosis.
Collapse
Affiliation(s)
- Hui-Chen Lu
- Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana
| | - Ken Mackie
- Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana.
| |
Collapse
|
88
|
Chye Y, Kirkham R, Lorenzetti V, McTavish E, Solowij N, Yücel M. Cannabis, Cannabinoids, and Brain Morphology: A Review of the Evidence. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:627-635. [PMID: 32948510 DOI: 10.1016/j.bpsc.2020.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/19/2020] [Accepted: 07/10/2020] [Indexed: 11/26/2022]
Abstract
Cannabis and cannabinoid-based products are increasingly being accepted and commodified globally. Yet there is currently limited understanding of the effect of the varied cannabinoid compounds on the brain. Exogenous cannabinoids interact with the endogenous cannabinoid system that underpins vital functions in the brain and body, and they are thought to perturb key brain and cognitive function. However, much neuroimaging research has been confined to observational studies of cannabis users, without examining the specific role of the various cannabinoids (Δ9-tetrahydrocannabinol, cannabidiol, etc.). This review summarizes the brain structural imaging evidence to date associated with cannabis use, its major cannabinoids (e.g., Δ9-tetrahydrocannabinol, cannabidiol), and synthetic cannabinoid products that have emerged as recreational drugs. In doing so, we seek to highlight some of the key issues to consider in understanding cannabinoid-related brain effects, emphasizing the dual neurotoxic and neuroprotective role of cannabinoids, and the need to consider the distinct role of the varied cannabinoids in establishing their effect on the brain.
Collapse
Affiliation(s)
- Yann Chye
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Rebecca Kirkham
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Valentina Lorenzetti
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia; School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Eugene McTavish
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Nadia Solowij
- School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, New South Wales, Australia
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
89
|
Winiger EA, Hewitt JK. Prenatal cannabis exposure and sleep outcomes in children 9-10 years of age in the adolescent brain cognitive development SM study. Sleep Health 2020; 6:787-789. [PMID: 32605891 DOI: 10.1016/j.sleh.2020.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Analyze the associations between prenatal cannabis exposure and child sleep outcomes. METHODS Data from the Adolescent Brain Cognitive Development Study (ABCD Study®) was used to determine whether maternal reports of prenatal cannabis use were associated with child sleep outcomes among 11,875 children ages 9-10 controlling for covariates including prenatal substance exposure, mother's education, combined household income, parental marital status, race, child sex, and child age. RESULTS Endorsement of any prenatal cannabis use was associated with symptoms of disorders of initiating and maintaining sleep, disorders of arousal, sleep wake disorders, disorders of excessive somnolence, and a summed sleep disorder score (all β > 0.10 and p < 0.03) while frequency of prenatal daily cannabis use was significantly associated with disorders of excessive somnolence (β = 0.29, p = 0.03). CONCLUSIONS Although causality is not established, the results suggest potential long-term effects of prenatal cannabis exposure on sleep and the prudence of abstinence from cannabis use while pregnant.
Collapse
Affiliation(s)
- Evan A Winiger
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA; Department of Psychology and Neuroscience, University of Colorado Boulder. Muenzinger Psychology Building, Boulder, CO, USA.
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA; Department of Psychology and Neuroscience, University of Colorado Boulder. Muenzinger Psychology Building, Boulder, CO, USA
| |
Collapse
|
90
|
Reid HMO, Lysenko-Martin MR, Snowden TM, Thomas JD, Christie BR. A Systematic Review of the Effects of Perinatal Alcohol Exposure and Perinatal Marijuana Exposure on Adult Neurogenesis in the Dentate Gyrus. Alcohol Clin Exp Res 2020; 44:1164-1174. [PMID: 32246781 PMCID: PMC7905844 DOI: 10.1111/acer.14332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Marijuana and alcohol are both substances that, when used during pregnancy, may have profound effects on the developing fetus. There is evidence to suggest that both drugs have the capacity to affect working memory, one function of the hippocampal formation; however, there is a paucity of data on how perinatal exposure to alcohol or cannabis impacts the process of adult neurogenesis. METHODS This systematic review examines immunohistochemical data from adult rat and mouse models that assess perinatal alcohol or perinatal marijuana exposure. A comprehensive list of search terms was designed and used to search 3 separate databases. All results were imported to Mendeley and screened by 2 authors. Consensus was reached on a set of final papers that met the inclusion criteria, and their results were summarized. RESULTS Twelve papers were identified as relevant, 10 of which pertained to the effects of perinatal alcohol on the adult hippocampus, and 2 pertained to the effects of perinatal marijuana on the adult hippocampus. Cellular proliferation in the dentate gyrus was not affected in adult rats and mice exposed to alcohol perinatally. In general, perinatal alcohol exposure did not have a significant and reliable effect on the maturation and survival of adult born granule neurons in the dentate gyrus. In contrast, interneuron numbers appear to be reduced in the dentate gyrus of adult rats and mice exposed perinatally to alcohol. Perinatal marijuana exposure was also found to reduce inhibitory interneuron numbers in the dentate gyrus. CONCLUSIONS Perinatal alcohol exposure and perinatal marijuana exposure both act on inhibitory interneurons in the hippocampal formation of adult rats. These findings suggest simultaneous perinatal alcohol and marijuana exposure (SAM) may have a dramatic impact on inhibitory processes in the dentate gyrus.
Collapse
Affiliation(s)
- Hannah M O Reid
- From the, Division of Medical Sciences, (HMOR, MRL, TMS, BRC), University of Victoria, Victoria, British Columbia, Canada
| | - Melanie R Lysenko-Martin
- From the, Division of Medical Sciences, (HMOR, MRL, TMS, BRC), University of Victoria, Victoria, British Columbia, Canada
| | - Taylor M Snowden
- From the, Division of Medical Sciences, (HMOR, MRL, TMS, BRC), University of Victoria, Victoria, British Columbia, Canada
| | - Jennifer D Thomas
- Center for Behavioral Teratology, (JDT), San Diego State University, San Diego, California
| | - Brian R Christie
- From the, Division of Medical Sciences, (HMOR, MRL, TMS, BRC), University of Victoria, Victoria, British Columbia, Canada
- Island Medical Program and Department of Cellular and Physiological Sciences, (BRC), University of British Columbia, Victoria, British Columbia
| |
Collapse
|
91
|
Banaszkiewicz I, Biala G, Kruk-Slomka M. Contribution of CB2 receptors in schizophrenia-related symptoms in various animal models: Short review. Neurosci Biobehav Rev 2020; 114:158-171. [PMID: 32437746 DOI: 10.1016/j.neubiorev.2020.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
Abstract
Schizophrenia is a severe and chronic mental disease with a high prevalence and a variety of symptoms. Data from behavioural studies suggest that it is rational to investigate the endocannabinoid system (ECS) and its cannabinoid receptor (CBr) because they seem to underlie susceptibility to schizophrenia, and these findings have pointed to several lines of future research. Currently, most available studies address the role of CBr type 1 in schizophrenia-like responses. Here, we present for the first time, a review that demonstrates the pivotal role of CBr type 2 in the regulation of neurobiological processes underlying cognition, psychosis- and mood-related (anxiety, depression) behaviours, all of which may be included in schizophrenia symptoms. This review is based on available evidence from the PubMed database regarding schizophrenia-like symptoms induced via CB2r modulation in various animal models. The data presented in this manuscript indicate that CB2r could be a promising new key target in the treatment of different central nervous system (CNS) disorders, which manifest as psychosis, mood-related disturbances and/or memory impairment.
Collapse
Affiliation(s)
- Izabela Banaszkiewicz
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland.
| |
Collapse
|
92
|
Scheyer AF, Borsoi M, Wager-Miller J, Pelissier-Alicot AL, Murphy MN, Mackie K, Manzoni OJJ. Cannabinoid Exposure via Lactation in Rats Disrupts Perinatal Programming of the Gamma-Aminobutyric Acid Trajectory and Select Early-Life Behaviors. Biol Psychiatry 2020; 87:666-677. [PMID: 31653479 PMCID: PMC7056509 DOI: 10.1016/j.biopsych.2019.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cannabis usage is increasing with its widespread legalization. Cannabis use by mothers during lactation transfers active cannabinoids to the developing offspring during this critical period and alters postnatal neurodevelopment. A key neurodevelopmental landmark is the excitatory to inhibitory gamma-aminobutyric acid (GABA) switch caused by reciprocal changes in expression ratios of the K+/Cl- transporters potassium-chloride cotransporter 2 (KCC2) and sodium-potassium-chloride transporter (NKCC1). METHODS Rat dams were treated with Δ9-tetrahydrocannabinol or a synthetic cannabinoid during the first 10 days of postnatal development, and experiments were then conducted in the offspring exposed to these drugs via lactation. The network influence of GABA transmission was analyzed using cell-attached recordings. KCC2 and NKCC1 levels were determined using Western blot and quantitative polymerase chain reaction analyses. Ultrasonic vocalization and homing behavioral experiments were carried out at relevant time points. RESULTS Treating rat dams with cannabinoids during early lactation retards transcriptional upregulation and expression of KCC2, thereby delaying the GABA switch in pups of both sexes. This perturbed trajectory was corrected by the NKCC1 antagonist bumetanide and accompanied by alterations in ultrasonic vocalization without changes in homing behavior. Neurobehavioral deficits were prevented by CB1 receptor antagonism during maternal exposure, showing that the CB1 receptor underlies the cannabinoid-induced alterations. CONCLUSIONS These results reveal how perinatal cannabinoid exposure retards an early milestone of development, delaying the trajectory of GABA's polarity transition and altering early-life communication.
Collapse
Affiliation(s)
- Andrew F Scheyer
- Institut de neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille, France; Aix-Marseille University, Marseille, France; Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, Institut National de la Santé et de la Recherche Médicale-Aix-Marseille University/Indiana University
| | - Milene Borsoi
- Institut de neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille, France; Aix-Marseille University, Marseille, France; Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, Institut National de la Santé et de la Recherche Médicale-Aix-Marseille University/Indiana University
| | - Jim Wager-Miller
- Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, Institut National de la Santé et de la Recherche Médicale-Aix-Marseille University/Indiana University; Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Anne-Laure Pelissier-Alicot
- Institut de neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille, France; Aix-Marseille University, Marseille, France; Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, Institut National de la Santé et de la Recherche Médicale-Aix-Marseille University/Indiana University; Service de Psychiatrie, CHU Conception, Assistance Publique - Hôpitaux de Marseille, Marseille, France; Service de Médecine Légale, CHU Timone-Adultes, Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - Michelle N Murphy
- Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, Institut National de la Santé et de la Recherche Médicale-Aix-Marseille University/Indiana University; Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Ken Mackie
- Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, Institut National de la Santé et de la Recherche Médicale-Aix-Marseille University/Indiana University; Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana.
| | - Olivier J J Manzoni
- Institut de neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille, France; Aix-Marseille University, Marseille, France; Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, Institut National de la Santé et de la Recherche Médicale-Aix-Marseille University/Indiana University.
| |
Collapse
|
93
|
Tirado-Muñoz J, Lopez-Rodriguez AB, Fonseca F, Farré M, Torrens M, Viveros MP. Effects of cannabis exposure in the prenatal and adolescent periods: Preclinical and clinical studies in both sexes. Front Neuroendocrinol 2020; 57:100841. [PMID: 32339546 DOI: 10.1016/j.yfrne.2020.100841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
Abstract
Cannabis is the most commonly used illicit drug among adolescents and young adults, including pregnant women. There is substantial evidence for a significant association between prenatal cannabis exposure and lower birth weight in offspring, and mixed results regarding later behavioural outcomes in the offspring. Adolescent cannabis use, especially heavy use, has been associated with altered executive function, depression, psychosis and use of other drugs later in life. Human studies have limitations due to several confounding factors and have provided scarce information about sex differences. In general, animal studies support behavioural alterations reported in humans and have revealed diverse sex differences and potential underlying mechanisms (altered mesolimbic dopaminergic and hippocampal glutamatergic systems and interference with prefrontal cortex maturation). More studies are needed that analyse sex and gender influences on cannabis-induced effects with great clinical relevance such as psychosis, cannabis use disorder and associated comorbidities, to achieve more personalized and accurate treatments.
Collapse
Affiliation(s)
- Judith Tirado-Muñoz
- Addiction Research Group, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Ana Belen Lopez-Rodriguez
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Francina Fonseca
- Addiction Research Group, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Institute of Neuropsychiatry and Addictions, Parc de Salut Mar, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Magi Farré
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germas Trias (HUGTP-IGTP), Badalona, Spain; Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marta Torrens
- Addiction Research Group, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Institute of Neuropsychiatry and Addictions, Parc de Salut Mar, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
94
|
Flores Á, Maldonado R, Berrendero F. THC exposure during adolescence does not modify nicotine reinforcing effects and relapse in adult male mice. Psychopharmacology (Berl) 2020; 237:801-809. [PMID: 31858159 DOI: 10.1007/s00213-019-05416-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022]
Abstract
RATIONALE Cannabis use is typically initiated during adolescence, and different studies suggest that adolescent cannabinoid exposure may increase the risk for drug addiction in adulthood. OBJECTIVES This study investigated the effects of adolescent exposure to the main psychoactive component of cannabis, ∆9-tetrahydrocannabinol (THC), in the reinforcing properties of nicotine in adult male mice. Possible alterations in relapse to nicotine-seeking behaviour in adult animals due to THC adolescent exposure were also evaluated. METHODS Adolescent mice were exposed to escalating doses of THC from PND35 to PND49. When mice reached adulthood (PND70), surgical procedures were applied for further behavioural evaluation. Nicotine self-administration sessions were conducted consecutively for 10 days. Following extinction, mice were tested for cue- and stress-induced reinstatement of nicotine-seeking behaviour. RESULTS Adolescent THC treatment did not modify acquisition and extinction of nicotine self-administration in adulthood. Moreover, THC exposure did not alter relapse to nicotine seeking induced by stress or nicotine-associated cues. CONCLUSIONS These results suggest that a history of exposure to THC during adolescence under these particular conditions does not modify the reinforcing effects and seeking behaviour of nicotine in the adult period.
Collapse
Affiliation(s)
- África Flores
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, C/ Doctor Aiguader 88, 08003, Barcelona, Spain.,Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, C/ Doctor Aiguader 88, 08003, Barcelona, Spain.
| | - Fernando Berrendero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, C/ Doctor Aiguader 88, 08003, Barcelona, Spain. .,Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, 28223, Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
95
|
Funada M, Tomiyama KI. [Dependence and Cytotoxicity of Components of Cannabis]. YAKUGAKU ZASSHI 2020; 140:205-214. [PMID: 32009044 DOI: 10.1248/yakushi.19-00195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cannabis use among the younger population in Japan has been steadily increasing. The aim of the present review is to highlight recent knowledge regarding the molecular mechanisms of action and health risks associated with cannabis and synthetic cannabinoid consumption. We investigated the effects of Δ9-tetrahydrocannabinol (THC) and synthetic cannabinoids on place conditioning in ICR mice. Both Δ9-THC and synthetic cannabinoids produce a significant conditioned place preference. These rewarding effects were completely suppressed by the cannabinoid CB1 receptor type antagonist AM251. The cytotoxicological effects of Δ9-THC and synthetic cannabinoids were also characterized in the limbic forebrain of mice in primary culture in vitro. Δ9-THC and synthetic cannabinoids caused cell death in a dose-dependent manner. The rank order of cytotoxicological potency was synthetic cannabinoids>Δ9-THC and related to the agonistic activities of the CB1 receptor. A recent review on the harmful effects of cannabis use in humans reported that behavioral impairments, especially in terms of attention, memory, and complex information-processing ability, can last for many weeks after cessation of cannabis use among heavy users. In addition, cannabis use could be a risk factor for drug dependence and later psychosis among adolescents. The results of animal and human studies suggest that CB1 receptors play an important role in the expression of harmful effects of cannabis and synthetic cannabinoid use. Moreover, concern regarding increasing concentrations of Δ9-THC in cannabis in many countries has been noted, because more potent cannabis may be associated with worse adverse effects.
Collapse
Affiliation(s)
- Masahiko Funada
- Section of Addictive Drug Research, Department of Drug Dependence Research, National Institute of Mental Health, National Center of Neurology and Psychiatry
| | - Ken-Ichi Tomiyama
- Section of Addictive Drug Research, Department of Drug Dependence Research, National Institute of Mental Health, National Center of Neurology and Psychiatry
| |
Collapse
|
96
|
Amin MR, Ahmed KT, Ali DW. Early Exposure to THC Alters M-Cell Development in Zebrafish Embryos. Biomedicines 2020; 8:biomedicines8010005. [PMID: 31947970 PMCID: PMC7168183 DOI: 10.3390/biomedicines8010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Cannabis is one of the most commonly used illicit recreational drugs that is often taken for medicinal purposes. The psychoactive ingredient in cannabis is Δ9-Tetrahydrocannabinol (Δ9-THC, hereafter referred to as THC), which is an agonist at the endocannabinoid receptors CB1R and CB2R. Here, we exposed zebrafish embryos to THC during the gastrulation phase to determine the long-term effects during development. We specifically focused on reticulospinal neurons known as the Mauthner cells (M-cell) that are involved in escape response movements. The M- cells are born during gastrulation, thus allowing us to examine neuronal morphology of neurons born during the time of exposure. After the exposure, embryos were allowed to develop normally and were examined at two days post-fertilization for M-cell morphology and escape responses. THC treated embryos exhibited subtle alterations in M-cell axon diameter and small changes in escape response dynamics to touch. Because escape responses were altered, we also examined muscle fiber development. The fluorescent labelling of red and white muscle fibers showed that while muscles were largely intact, the fibers were slightly disorganized with subtle but significant changes in the pattern of expression of nicotinic acetylcholine receptors. However, there were no overt changes in the expression of nicotinic receptor subunit mRNA ascertained by qPCR. Embryos were allowed to further develop until 5 dpf, when they were examined for overall levels of movement. Animals exposed to THC during gastrulation exhibited reduced activity compared with vehicle controls. Together, these findings indicate that zebrafish exposed to THC during the gastrula phase exhibit small changes in neuronal and muscle morphology that may impact behavior and locomotion.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Department of Biological Sciences, CW-405 Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; (M.R.A.); (K.T.A.)
| | - Kazi T. Ahmed
- Department of Biological Sciences, CW-405 Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; (M.R.A.); (K.T.A.)
| | - Declan W. Ali
- Department of Biological Sciences, CW-405 Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; (M.R.A.); (K.T.A.)
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-780-492-6094
| |
Collapse
|
97
|
Manduca A, Servadio M, Melancia F, Schiavi S, Manzoni OJ, Trezza V. Sex-specific behavioural deficits induced at early life by prenatal exposure to the cannabinoid receptor agonist WIN55, 212-2 depend on mGlu5 receptor signalling. Br J Pharmacol 2020; 177:449-463. [PMID: 31658362 PMCID: PMC6989958 DOI: 10.1111/bph.14879] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/04/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Marijuana is the illicit drug most commonly used among pregnant and breastfeeding women. Different studies reported long-term adverse effects induced by in utero exposure to the main component of marijuana, Δ9 -tetrahydrocannabinol (THC), both in rodents and in humans. However, little is known about any potential sex-dependent effects of marijuana consumption during pregnancy on newborns at early developmental ages. EXPERIMENTAL APPROACH We studied the effects of prenatal exposure to the cannabinoid receptor agonist WIN55,212-2 (WIN; 0.5 mg·kg-1 from GD5 to GD20) on the emotional reactivity and cognitive performance of male and female rat offspring from infancy through adolescence and tested the role of mGlu5 receptor signalling in the observed effects. KEY RESULTS Prenatally WIN-exposed male infant pups emitted less isolation-induced ultrasonic vocalizations compared with male control pups, when separated from the dam and siblings and showed increased locomotor activity while females were spared. These effects were normalized when male pups were treated with the positive allosteric modulator of mGlu5 receptor CDPPB. When tested at the prepubertal and pubertal periods, WIN-prenatally exposed rats of both sexes did not show any difference in social play behaviour, anxiety and temporal order memory. CONCLUSIONS AND IMPLICATIONS We reveal a previously undisclosed sexual divergence in the consequences of fetal cannabinoids on newborns at early developmental ages, which is dependent on mGlu5 receptor signalling. These results provide new impetus for the urgent need to investigate the functional and behavioural substrates of prenatal cannabinoid exposure in both the male offspring and the female offspring.
Collapse
Affiliation(s)
- Antonia Manduca
- Department of Science, Section of Biomedical Sciences and TechnologiesUniversity “Roma Tre”RomeItaly
- INSERM, INMEDAix Marseille UniversitéMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERMIndiana UniversityBloomingtonIndianaUSA
| | - Michela Servadio
- Department of Science, Section of Biomedical Sciences and TechnologiesUniversity “Roma Tre”RomeItaly
| | - Francesca Melancia
- Department of Science, Section of Biomedical Sciences and TechnologiesUniversity “Roma Tre”RomeItaly
| | - Sara Schiavi
- Department of Science, Section of Biomedical Sciences and TechnologiesUniversity “Roma Tre”RomeItaly
| | - Olivier J. Manzoni
- INSERM, INMEDAix Marseille UniversitéMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERMIndiana UniversityBloomingtonIndianaUSA
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and TechnologiesUniversity “Roma Tre”RomeItaly
| |
Collapse
|
98
|
Nashed MG, Hardy DB, Laviolette SR. Prenatal Cannabinoid Exposure: Emerging Evidence of Physiological and Neuropsychiatric Abnormalities. Front Psychiatry 2020; 11:624275. [PMID: 33519564 PMCID: PMC7841012 DOI: 10.3389/fpsyt.2020.624275] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Clinical reports of cannabis use prevalence during pregnancy vary widely from 3% to upwards of 35% in North America; this disparity likely owing to underestimates from self-reporting in many cases. The rise in cannabis use is mirrored by increasing global legalization and the overall perceptions of safety, even during pregnancy. These trends are further compounded by a lack of evidence-based policy and guidelines for prenatal cannabis use, which has led to inconsistent messaging by healthcare providers and medically licensed cannabis dispensaries regarding prenatal cannabis use for treatment of symptoms, such as nausea. Additionally, the use of cannabis to self-medicate depression and anxiety during pregnancy is a growing medical concern. This review aims to summarize recent findings of clinical and preclinical data on neonatal outcomes, as well as long-term physiological and neurodevelopmental outcomes of prenatal cannabis exposure. Although many of the outcomes under investigation have produced mixed results, we consider these data in light of the unique challenges facing cannabis research. In particular, the limited longitudinal clinical studies available have not previously accounted for the exponential increase in (-)-Δ9- tetrahydrocannabinol (Δ9-THC; the psychoactive compound in cannabis) concentrations found in cannabis over the past two decades. Polydrug use and the long-term effects of individual cannabis constituents [Δ9-THC vs. cannabidiol (CBD)] are also understudied, along with sex-dependent outcomes. Despite these limitations, prenatal cannabis exposure has been linked to low birth weight, and emerging evidence suggests that prenatal exposure to Δ9-THC, which crosses the placenta and impacts placental development, may have wide-ranging physiological and neurodevelopmental consequences. The long-term effects of these changes require more rigorous investigation, though early reports suggest Δ9-THC increases the risk of cognitive impairment and neuropsychiatric disease, including psychosis, depression, anxiety, and sleep disorders. In light of the current trends in the perception and use of cannabis during pregnancy, we emphasize the social and medical imperative for more rigorous investigation of the long-term effects of prenatal cannabis exposure.
Collapse
Affiliation(s)
- Mina G Nashed
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Daniel B Hardy
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.,Department of Obstetrics & Gynecology, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
99
|
Osborne AL, Solowij N, Babic I, Lum JS, Newell KA, Huang XF, Weston-Green K. Effect of cannabidiol on endocannabinoid, glutamatergic and GABAergic signalling markers in male offspring of a maternal immune activation (poly I:C) model relevant to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109666. [PMID: 31202911 DOI: 10.1016/j.pnpbp.2019.109666] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
The mainstay treatment for schizophrenia is antipsychotic drugs (APDs), which are mostly effective against the positive symptoms (e.g. hallucinations), but provide minimal benefits for the negative symptoms (e.g. social withdrawal) and cognitive deficits. We have recently shown that treatment with the non-intoxicating phytocannabinoid, cannabidiol (CBD), can improve cognition and social interaction deficits in a maternal immune activation (MIA) model relevant to the aetiology of schizophrenia, however, the mechanisms underlying this effect are unknown. An imbalance in the main excitatory (glutamate) and inhibitory (GABA) neurotransmitter systems in the brain plays a role in the pathophysiology of schizophrenia. Therefore, the endocannabinoid system could represent a therapeutic target for schizophrenia as a regulator of glutamate and GABA release via the CB1 receptor (CB1R). This study investigated the effects of chronic CBD treatment on markers of glutamatergic, GABAergic and endocannabinoid signalling in brain regions implicated in social behaviour and cognitive function, including the prefrontal cortex (PFC) and hippocampus (HPC). Time-mated pregnant Sprague-Dawley rats (n = 16) were administered poly I:C (4 mg/kg, i.v.) or saline (control) on gestational day 15. Male offspring were injected with CBD (10 mg/kg, i.p.) or vehicle twice daily from postnatal day 56 for 3 weeks. The prefrontal cortex (PFC) and hippocampus (HPC) were collected for post-mortem receptor binding and Western blot analyses (n = 8 per group). CBD treatment attenuated poly I:C-induced deficits in cannabinoid CB1 receptor binding in the PFC and glutamate decarboxylase 67, the enzyme that converts glutamate to GABA, in the HPC. CBD treatment increased parvalbumin levels in the HPC, regardless of whether offspring were exposed to poly I:C in utero. Conversely, CBD did not affect N-methyl-d-aspartate receptor and gamma-aminobutyric acid (GABA) A receptor binding or protein levels of fatty acid amide hydrolase, the enzyme that degrades the endocannabinoid, anandamide. Overall, these findings show that CBD can restore cannabinoid/GABAergic signalling deficits in regions of the brain implicated in schizophrenia pathophysiology following maternal poly I:C exposure. These findings provide novel evidence for the potential mechanisms underlying the therapeutic effects of CBD treatment in the poly I:C model.
Collapse
Affiliation(s)
- Ashleigh L Osborne
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nadia Solowij
- School of Psychology, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Ilijana Babic
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra and Shoalhaven Health District, Wollongong, NSW 2500, Australia
| | - Jeremy S Lum
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kelly A Newell
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Katrina Weston-Green
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
100
|
Goldstein Ferber S, Trezza V, Weller A. Early life stress and development of the endocannabinoid system: A bidirectional process in programming future coping. Dev Psychobiol 2019; 63:143-152. [PMID: 31849055 DOI: 10.1002/dev.21944] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 01/06/2023]
Abstract
The endocannabinoid system (ECS) critically regulates stress responsivity and emotional behavior throughout development. It regulates anxiety-like behaviors in humans and animal models. In addition, it is sensitive to early life stress at the gene expression level in a sex-dependent and region-dependent manner, and these changes are already evident in the adolescent brain. The ECS modulates the neuroendocrine and behavioral effects of stress, and is also capable of being affected by stress exposure itself. Early life stress interferes with the development of corticolimbic circuits, a major location of endocannabinoid receptors, and increases vulnerability to adult psychopathology. Early life stress alters the ontogeny of the ECS, resulting in a sustained deficit in its function, particularly within the hippocampus. Specifically, exposure to early stress results in bidirectional changes in anandamide and 2-AG tissue levels within the amygdala and hippocampus and reduces hippocampal endocannabinoid function at puberty. CB1 receptor densities across all brain regions are downregulated later in life following exposure to early life stress. Manipulations affecting the glucocorticoid and the endocannabinoid systems persistently adjust individual emotional responses and synaptic plasticity. This review aims to show the bidirectional trajectories of endocannabinoid modulation of emotionality in reaction to early life stress.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | | | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|