51
|
Price CJ, Hoyda TD, Ferguson AV. The area postrema: a brain monitor and integrator of systemic autonomic state. Neuroscientist 2007; 14:182-94. [PMID: 18079557 DOI: 10.1177/1073858407311100] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The area postrema is a medullary structure lying at the base of the fourth ventricle. The area postrema's privileged location outside of the blood-brain barrier make this sensory circumventricular organ a vital player in the control of autonomic functions by the central nervous system. By virtue of its lack of tight junctions between endothelial cells in this densely vascularized structure and the presence of fenestrated capillaries, peptide and other physiological signals borne in the blood have direct access to neurons that project to brain areas with important roles in the autonomic control of many physiological systems, including the cardiovascular system and systems controlling feeding and metabolism. However, the area postrema is not simply a conduit through which signals flow into the brain, but it is now being recognized as the initial site of integration for these signals as they enter the circuitry of the central nervous system.
Collapse
|
52
|
Angelucci F, Ricci V, Pomponi M, Conte G, Mathé AA, Attilio Tonali P, Bria P. Chronic heroin and cocaine abuse is associated with decreased serum concentrations of the nerve growth factor and brain-derived neurotrophic factor. J Psychopharmacol 2007; 21:820-5. [PMID: 17715210 DOI: 10.1177/0269881107078491] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic cocaine and heroin users display a variety of central nervous system (CNS) dysfunctions including impaired attention, learning, memory, reaction time, cognitive flexibility, impulse control and selective processing. These findings suggest that these drugs may alter normal brain functions and possibly cause neurotoxicity. Neurotrophins are a class of proteins that serve as survival factors for CNS neurons. In particular, nerve growth factor (NGF) plays an important role in the survival and function of cholinergic neurons while brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity and in the maintenance of midbrain dopaminergic and cholinergic neurons. In the present study, we measured by enzyme-linked immunosorbent assay (ELISA) the NGF and BDNF levels in serum of three groups of subjects: heroin-dependent patients, cocaine-dependent patients and healthy volunteers. Our goal was to identify possible change in serum neurotrophins in heroin and cocaine users. BDNF was decreased in heroin users whereas NGF was decreased in both heroin and cocaine users. These findings indicate that NGF and BDNF may play a role in the neurotoxicity and addiction induced by these drugs. In view of the neurotrophin hypothesis of schizophrenia the data also suggest that reduced level of neurotrophins may increase the risk of developing psychosis in drug users.
Collapse
Affiliation(s)
- Francesco Angelucci
- Institute of Neurology and Institute of Psychiatry, Catholic University, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
53
|
Fouladiun M, Körner U, Gunnebo L, Sixt-Ammilon P, Bosaeus I, Lundholm K. Daily Physical-Rest Activities in Relation to Nutritional State, Metabolism, and Quality of Life in Cancer Patients with Progressive Cachexia. Clin Cancer Res 2007; 13:6379-85. [DOI: 10.1158/1078-0432.ccr-07-1147] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
54
|
Esquifino AI, Cano P, Jiménez-Ortega V, Fernández-Mateos P, Cardinali DP. Neuroendocrine-immune correlates of circadian physiology: studies in experimental models of arthritis, ethanol feeding, aging, social isolation, and calorie restriction. Endocrine 2007; 32:1-19. [PMID: 17992597 DOI: 10.1007/s12020-007-9009-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
Abstract
Virtually all neuroendocrine and immunological variables investigated in animals and humans display biological periodicity. Circadian rhythmicity is revealed for every hormone in circulation as well as for circulating immune cells, lymphocyte metabolism and transformability, cytokines, receptors, and adhesion molecules. Clock genes, notably the three Period (Per1/Per2/Per3) genes and two Cryptochrome (Cry1/Cry2) genes, are present in immune and endocrine cells and are expressed in a circadian manner in human cells. This review discusses the circadian disruption of hormone release and immune-related mechanisms in several animal models in which circulating cytokines are modified including rat adjuvant arthritis, social isolation in rats and rabbits and alcoholism, the aging process and calorie restriction in rats. In every case the experimental manipulation used perturbed the temporal organization by affecting the shape and amplitude of a rhythm or by modifying the intrinsic oscillatory mechanism itself.
Collapse
Affiliation(s)
- Ana I Esquifino
- Departamento de Bioquimica y Biologia Molecular III, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain.
| | | | | | | | | |
Collapse
|
55
|
Abstract
Just as the blood-brain barrier (BBB) is not a static barrier, the adipocytes are not inert storage depots. Adipokines are peptides or polypeptides produced by white adipose tissue; they play important roles in normal physiology as well as in the metabolic syndrome. Adipokines secreted into the circulation can interact with the BBB and exert potent CNS effects. The specific transport systems for two important adipokines, leptin and tumor necrosis factor alpha, have been characterized during the past decade. By contrast, transforming growth factor beta-1 and adiponectin do not show specific permeation across the BBB, but modulate endothelial functions. Still others, like interleukin-6, may reach the brain but are rapidly degraded. This review summarizes current knowledge and recent findings of the rapidly growing family of adipokines and their interactions with the BBB.
Collapse
Affiliation(s)
- Weihong Pan
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, United States.
| | | |
Collapse
|
56
|
MohanKumar SMJ, King A, Shin AC, Sirivelu MP, MohanKumar PS, Fink GD. Developmental programming of cardiovascular disorders: focus on hypertension. Rev Endocr Metab Disord 2007; 8:115-25. [PMID: 17665309 DOI: 10.1007/s11154-007-9047-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 06/29/2007] [Indexed: 01/21/2023]
Abstract
Increasing evidence suggests that adult cardiovascular disorders, e.g. hypertension, can be "programmed" in utero. The mechanisms that affect the developing fetus and lead to future cardiovascular disease are not fully established. This review addresses the possible involvement of maternal nutrition, sex steroids and other endocrine factors in the programming of hypertension in adulthood. Some possible mechanisms of subsequent development of hypertension in adulthood, such as elevated sympathetic and renin-angiotensin system activity, and failure of nephron development, also are discussed. Previous studies suggest that maternal undernutrition could be a major factor in fetal programming, but in light of the increased worldwide prevalence of obesity, maternal overnutrition is now receiving increased attention. Special emphasis is given here to this phenomenon. Obesity is associated with increased serum and tissue levels of proinflammatory cytokines, and loss of sensitivity to the adipokine leptin. It is postulated that this causes dysregulation of the hypothalamo-pituitary-adrenal axis, resulting in increased levels of circulating glucocorticoids. These factors could play a major role in programming, during the in utero period, of future hypertension in the offspring of obese mothers.
Collapse
Affiliation(s)
- Sheba M J MohanKumar
- Department of Pharmacology and Toxicology, Michigan State University, E. Lansing, MI 48824, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Ashwood P, Kwong C, Hansen R, Hertz-Picciotto I, Croen L, Krakowiak P, Walker W, Pessah IN, Van de Water J. Brief report: plasma leptin levels are elevated in autism: association with early onset phenotype? J Autism Dev Disord 2007; 38:169-75. [PMID: 17347881 DOI: 10.1007/s10803-006-0353-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 12/29/2006] [Indexed: 11/30/2022]
Abstract
There is evidence of both immune dysregulation and autoimmune phenomena in children with autism spectrum disorders (ASD). We examined the hormone/cytokine leptin in 70 children diagnosed with autism (including 37 with regression) compared with 99 age-matched controls including 50 typically developing (TD) controls, 26 siblings without autism, and 23 children with developmental disabilities (DD). Children with autism had significantly higher plasma leptin levels compared with TD controls (p<.006). When further sub-classified into regression or early onset autism, children with early onset autism had significantly higher plasma leptin levels compared with children with regressive autism (p<.042), TD controls (p<.0015), and DD controls (p<.004). We demonstrated an increase in leptin levels in autism, a finding driven by the early onset group.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Shi ZH, Wei YY, Wang CJ, Yu L. Synthesis and Analgesic Activities of Endomorphin-2 and Its Analogues. Chem Biodivers 2007; 4:458-67. [PMID: 17372948 DOI: 10.1002/cbdv.200790038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endomorphin-2 (1; H-Tyr-Pro-Phe-Phe-NH2; EM2) and its novel cyclic asparagine (cycloAsn) analogues, H-Tyr-cAsn(CHPh)-Phe-Phe-NH2 (2) and H-Tyr-cAsn(CHMe2)-Phe-Phe-NH2 (3), were synthesized via liquid-phase synthesis. The structures of the products and intermediates were characterized by IR, 1H-NMR, MS, and HR-MS analyses. The antinociceptive activity of EM2 and its cyclic asparagine analogues were assessed in AcOH-induced abdominal constriction tests in mice with i.p. injection. The results show that the antinociceptive activities of EM2 and its cyclic asparagine analogue 2 were higher than those of aspirine and meperidine. Analogue 2 was observed to be a stronger analgesic with dose-dependence than EM2. The test mice did not show any tendency to be addicted while administrated of analogue 2 repeatedly and regularly.
Collapse
Affiliation(s)
- Zhi-Hao Shi
- Institute of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | | | | | | |
Collapse
|
59
|
Rojas Vega S, Strüder HK, Vera Wahrmann B, Schmidt A, Bloch W, Hollmann W. Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Res 2006; 1121:59-65. [PMID: 17010953 DOI: 10.1016/j.brainres.2006.08.105] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 08/23/2006] [Accepted: 08/28/2006] [Indexed: 01/01/2023]
Abstract
The effect of short-term aerobic exercise and a following ramp incremental cycle ergometry to exhaustion on the acute response of the serum concentrations of brain derived neurotrophic factor (BDNF) and cortisol (COR) was examined in 8 healthy male athletes. Venous and capillary blood samples were drawn at rest, immediately after a 10 min warm-up period with aerobic exercise and after a ramp test to exhaustion, as well as 3, 6, 10 and 15 min post exercise. Capillary blood lactate (LA) concentration and blood gases as well as serum BDNF and COR concentrations did not change during the warm-up period. LA was increased (p<0.05) at the end of the ramp test and during recovery period while bicarbonate concentration, carbon dioxide pressure, pH and base excess were decreased (p<0.05) during this period. Serum BDNF was increased at the point of exhaustion (p<0.05) while no significant differences were found between values at rest and those during recovery period. At 10 and 15 min post incremental exercise, COR concentrations were increased (p<0.05) compared to rest. The present study is the first to demonstrate in humans that in contrast to short duration aerobic exercise immediately after a following short duration high-intensity exercise to exhaustion, there is a transient augmentation of serum BDNF concentration. Short-term response of serum BDNF and COR concentrations differs as BDNF returns to baseline level faster than COR.
Collapse
Affiliation(s)
- Sandra Rojas Vega
- Institute of Motor Control and Movement Technique, German Sport University Cologne, Carl-Diem-Weg 6, 50933 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
60
|
Li F, Feng J, Cheng Q, Zhu W, Jin Y. Delivery of 125I-cobrotoxin after intranasal administration to the brain: a microdialysis study in freely moving rats. Int J Pharm 2006; 328:161-7. [PMID: 17049426 DOI: 10.1016/j.ijpharm.2006.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 07/03/2006] [Accepted: 08/08/2006] [Indexed: 11/16/2022]
Abstract
In order to determine the contribution of intranasal (i.n.) administration to the uptake of large molecular weight (MW) substances into central nervous system (CNS), concentration in brain of the centrally acting polypeptide cobrotoxin (NT-I) versus time profiles were studied using dual-probe microdialysis in awake free-moving rats. NT-I, radiolabeled with sodium (125)I-Iodide ((125)I-NT-I), was administered at the dose of 105 microg/kg intravenously and intranasally in the same set of rat (n=15). The (125)I-NT-Inasal preparations were formulated with borneol/menthol eutectic mixture (+BMEM) as an absorption enhancer and without (-BMEM). After application, the dialysates sampled simultaneously from olfactory bulb and cerebellar nuclei were measured in a gamma-counter for radioactivity. The real concentrations of NT-I were recalculated by in vivo recoveries of microdialysis probes. The results showed that the area under the curve (AUC) value in cerebellar nuclei (2283.51+/-34.54 min ng/ml) following i.n. administration (+BMEM) was significantly larger than those (AUC(olfactory)=1141.92+/-26.42 min ng/ml; AUC(cerebellar)=1364.62+/-19.35 min ng/ml) after intravenous (i.v.) bolus, respectively. A prolonged time values to peak concentrations after i.n. application (+BMEM) were observed compared with those following i.v. administration. Also, following i.n. application (+BMEM) the measured time value to peak concentration in cerebellar nuclei (85 min) was statistically longer than that in olfactory bulb (75 min), which could be plausibly an indication for NT-I delivery into brain via nose-brain pathway in the presence of absorption enhancer. i.n. administration (-BMEM) had little or no ability of NT-I delivering into brain. In conclusion, i.n. administration (+BMEM) significantly enhanced brain transport of NT-I with uneven distribution in discrete regions of brain compared with i.v. administration. Additionally, multi-probe microdialysis technique should be considerably valuable in brain delivery studies.
Collapse
Affiliation(s)
- Fanzhu Li
- Department of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | | | | | | | | |
Collapse
|
61
|
Abstract
The central role of CART peptide in feeding, drug abuse and stress has been widely researched however, CART's role in the peripheral system are less explored. CART peptide is present in a variety of peripheral tissues including sympathetic ganglion neurons, adrenal glands, gut, pancreas and blood. Studies that examined circulating CART demonstrated that the active fragment with a molecular weight of CART55-102 is present in the blood of rats and rhesus macaques. Interestingly, CART expression in these species exhibits a distinctive diurnal rhythm which correlates with the respective daily rhythms of corticosterone and feeding. In the rat, adrenalectomy significantly reduces blood CART levels and abolishes its daily rhythm while corticosterone replacement reinstates CART expression to control levels. In addition, direct administration of corticosterone significantly increases CART blood levels while administration of corticosterone synthesis blocker metyrapone, inhibits CART blood levels. These data suggest that the adrenal gland could be a source of blood CART and that glucocorticoids may play a role in the generation of CART's diurnal rhythm. Moreover, fuel availability may be important in the control of CART levels and its daily rhythm, since 24 h food restriction alters CART levels and abolishes its rhythm. In addition to blood, both CART peptide and mRNA exhibit food-dependent diurnal rhythm in discrete rat brain areas including the nucleus accumbens, amygdala and hypothalamus. Altogether, these findings suggest that CART is influenced by hypothalamic-pituitary-adrenal interactions and that it may play a role in multiple physiological processes possibly involving feeding, stress, reward and motivation.
Collapse
Affiliation(s)
- Aleksandra Vicentic
- Neuroscience Division, Yerkes National Primate Research Center of Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
62
|
Jégou S, Cartier D, Dubessy C, Gonzalez BJ, Chatenet D, Tostivint H, Scalbert E, LePrince J, Vaudry H, Lihrmann I. Localization of the urotensin II receptor in the rat central nervous system. J Comp Neurol 2006; 495:21-36. [PMID: 16432902 DOI: 10.1002/cne.20845] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The vasoactive peptide urotensin II (UII) is primarily expressed in motoneurons of the brainstem and spinal cord. Intracerebroventricular injection of UII provokes various behavioral, cardiovascular, motor, and endocrine responses in the rat, but the distribution of the UII receptor in the central nervous system (CNS) has not yet been determined. In the present study, we have investigated the localization of UII receptor (GPR14) mRNA and UII binding sites in the rat CNS. RT-PCR analysis revealed that the highest density of GPR14 mRNA occurred in the pontine nuclei. In situ hybridization histochemistry showed that the GPR14 gene is widely expressed in the brain and spinal cord. In particular, a strong hybridization signal was observed in the olfactory system, hippocampus, olfactory and medial amygdala, hypothalamus, epithalamus, several tegmental nuclei, locus coeruleus, pontine nuclei, motor nuclei, nucleus of the solitary tract, dorsal motor nucleus of the vagus, inferior olive, cerebellum, and spinal cord. Autoradiographic labeling of brain slices with radioiodinated UII showed the presence of UII-binding sites in the lateral septum, bed nucleus of the stria terminalis, medial amygdaloid nucleus, anteroventral thalamus, anterior pretectal nucleus, pedunculopontine tegmental nucleus, pontine nuclei, geniculate nuclei, parabigeminal nucleus, dorsal endopiriform nucleus, and cerebellar cortex. Intense expression of the GPR14 gene in some hypothalamic nuclei (supraoptic, paraventricular, ventromedian, and arcuate nuclei), in limbic structures (amygdala and hippocampus), in medullary nuclei (solitary tract, dorsal motor nucleus of the vagus), and in motor control regions (cerebral and cerebellar cortex, substantia nigra, pontine nuclei) provides the anatomical substrate for the central effects of UII on behavioral, cardiovascular, neuroendocrine, and motor functions. The occurrence of GPR14 mRNA in cranial and spinal motoneurons is consistent with the reported autocrine/paracrine action of UII on motoneurons.
Collapse
Affiliation(s)
- Sylvie Jégou
- Institut National de la Santé et de la Recherche Médicale U-413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP23), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Cheunsuang O, Stewart AL, Morris R. Differential uptake of molecules from the circulation and CSF reveals regional and cellular specialisation in CNS detection of homeostatic signals. Cell Tissue Res 2006; 325:397-402. [PMID: 16555054 DOI: 10.1007/s00441-006-0162-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 12/20/2005] [Indexed: 12/12/2022]
Abstract
The uptake of hydroxystilbamidine (OHSt, FluoroGold equivalent) and wheat germ agglutinin (WGA), into the hypothalamus, two hours after injections into either the circulation or the cerebrospinal fluid, were compared in adult rats. Following intravenous injection, OHSt was found in astrocytes of the median eminence and medial part of the arcuate nucleus whereas WGA intensely labelled the blood vessels and ependymal cells throughout the hypothalamus. In complete contrast, intracerebroventricular (icv) injection into the lateral ventricle resulted in OHSt uptake by ependymocytes and astrocytes in the area adjacent to the third ventricle, with virtually no uptake in regions taking up this dye following systematic injections, i.e., the median eminence and medial arcuate. Following icv injection WGA labelling was intense in all parts of the ependymal layer of the third ventricle, including the alpha- and beta-tanycytes. Injections into the cisterna magna gave a different pattern of uptake with OHSt being found only in astrocytes in the ventral part of the hypothalamus lateral to the arcuate nucleus whilst WGA uptake was virtually absent. This highlights the regional and cellular specialisation for uptake of molecules from the circulation and CSF. The median eminence and medial arcuate take up molecules from the circulation, with different cell types taking up different molecules. As the CSF flows through the ventricular system, different cells lining the ventricular and subarachnoid spaces take up molecules differentially. Molecules in the CSF appear to be excluded from the median eminence and medial arcuate region.
Collapse
Affiliation(s)
- Ornsiri Cheunsuang
- Department of Veterinary Anatomy, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|
64
|
Kruszynski R, Fichna J, do-Rego JC, Janecki T, Kosson P, Pakulska W, Costentin J, Janecka A. Synthesis and biological activity of N-methylated analogs of endomorphin-2. Bioorg Med Chem 2005; 13:6713-7. [PMID: 16143536 DOI: 10.1016/j.bmc.2005.07.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 07/18/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
In this paper, we describe the synthesis of a series of endomorphin-2 analogs containing N-methylated amino acids, consecutively in each position. The mu-opioid receptor binding affinities of the new analogs were determined in the displacement experiments. Their in vivo antinociceptive activity was assessed in the hot-plate test in mice after central (icv) and peripheral (ip) administration. [Sar2]endomorphin-2, which had the highest mu-receptor affinity, also showed the strongest analgesic effect when administered centrally and was the only analog that retained activity after peripheral injection.
Collapse
Affiliation(s)
- Rafal Kruszynski
- Institute of General and Ecological Chemistry, Technical University of Lodz, Lodz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Edagawa Y, Sato F, Saito H, Takeda T, Shimizu N, Narui T, Shibata S, Ito Y. Dual effects of the lichen glucan PB-2, extracted from Flavoparmelia baltimorensis, on the induction of long-term potentiation in the dentate gyrus of the anesthetized rat: possible mediation via adrenaline beta- and interleukin-1 receptors. Brain Res 2005; 1032:183-92. [PMID: 15680958 DOI: 10.1016/j.brainres.2004.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2004] [Indexed: 10/26/2022]
Abstract
We have previously found that oral or intravenous (i.v.) administration of the polysaccharide fraction PB-2, extracted from the lichen Flavoparmelia baltimorensis, facilitated the induction of long-term potentiation (LTP) in the dentate gyrus (DG) in vivo. In this study, the mechanism underlying the effect of PB-2 on the induction of LTP was investigated in the DG of anesthetized rat focusing on the contribution of the interleukin-1 (IL-1) receptor and the adrenaline beta-receptor. An i.v. injection of IL-1ra (10(-9) g/kg), an antagonist of the IL-1 receptor, had no effect on the basal response in the DG; however, this treatment augmented the enhancement of LTP induced by a single i.v. injection of PB-2 (10(-3) g/kg). This potentiating effect was also observed following intracerebroventricular (i.c.v.) injection of IL-1ra (10(-15)-10(-11) g). An i.v. injection of IL-1beta (3.5 x 10(-15)-3.5 x 10(-9) g/kg) inhibited the induction of LTP, which was diminished by the previous application of IL-1ra. These results suggest that the activation of the IL-1 receptor induces the suppression of LTP in PB-2-treated rats, and that endogenous IL-1beta contributes to the IL-1 receptor activation. An i.c.v. infusion of metoprolol (7.5 x 10(-6) g), an antagonist of the adrenaline beta(1)-receptor, attenuated the enhancement of LTP induced by an i.v. injection of PB-2. These results suggest that PB-2 has two different effects on the LTP, an enhancing effect and an inhibiting one, and that it exhibited the significant enhancing effect on the LTP as a total balance of these effects.
Collapse
Affiliation(s)
- Yoshikuni Edagawa
- Department of Pharmacology, College of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Rich T, Innominato PF, Boerner J, Mormont MC, Iacobelli S, Baron B, Jasmin C, Lévi F. Elevated serum cytokines correlated with altered behavior, serum cortisol rhythm, and dampened 24-hour rest-activity patterns in patients with metastatic colorectal cancer. Clin Cancer Res 2005; 11:1757-64. [PMID: 15755997 DOI: 10.1158/1078-0432.ccr-04-2000] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Incapacitating symptom burden in cancer patients contributes to poor quality of life (QOL) and can influence treatment outcomes because of poor tolerance to therapy. In this study, the role of circulating cytokines in the production symptoms in cancer patients is evaluated. EXPERIMENTAL DESIGN Eighty patients with metastatic colorectal cancer with either normal (group I, n = 40) or dampened (group II, n = 40) 24-hour rest/activity patterns measured by actigraphy were identified. Actigraphy patterns were correlated with QOL indices, serum cortisol obtained at 8:00 a.m. and 4:00 p.m. and with serum levels of transforming growth factor-alpha, tumor necrosis factor-alpha, and interleukin 6 (IL-6) obtained at 8:00 a.m. and analyzed in duplicate by ELISA. Cytokine levels and survival were also correlated. RESULTS Group II patients had significantly higher pre treatment levels of all three cytokines, displayed significantly poorer emotional and social functioning, had higher fatigue, more appetite loss, and poorer performance status compared with group I patients. Transforming growth factor-alpha (TGF-alpha) and IL-6 were significantly increased in the patients with WHO performance status >1 and in those with appetite loss. Fatigue was significantly associated with elevated TGF-alpha only. IL-6 was increased in those patients with extensive liver involvement and multiple organ replacement, and it was significantly correlated with dampened cortisol rhythm. In a multivariate analysis, IL-6 was correlated with poor treatment outcome. CONCLUSIONS Significant correlations were found between serum levels of TGF-alpha and IL-6, circadian patterns in wrist activity and serum cortisol and tumor-related symptoms in patients with metastatic colorectal cancer. These data support the hypothesis that some cancer patient's symptoms of fatigue, poor QOL, and treatment outcome are related to tumor or host generated cytokines and could reflect cytokine effects on the circadian timing system. This interplay between cytokine signaling pathways, the hypothalamic-pituitary-adrenal axis, the autonomic nervous system, and efferent pathways of the suprachiasmatic nucleus that control circadian physiology, opens the way to new rational interventions for symptom management in cancer patients.
Collapse
Affiliation(s)
- Tyvin Rich
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, VA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Brunetti L, Orlando G, Recinella L, Michelotto B, Ferrante C, Vacca M. Resistin, but not adiponectin, inhibits dopamine and norepinephrine release in the hypothalamus. Eur J Pharmacol 2005; 493:41-4. [PMID: 15189762 DOI: 10.1016/j.ejphar.2004.04.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 03/20/2004] [Accepted: 04/09/2004] [Indexed: 11/16/2022]
Abstract
Adiponectin (Adipocyte Complement-Related Protein of 30 kDa, ACRP30) and resistin are adipocyte-derived polypeptide hormones playing a role in metabolic homeostasis. Their plasma levels are inversely (adiponectin) or directly (resistin) correlated to obesity and they have opposite effects on insulin sensitivity. Adipose tissue hormones such as leptin have been shown to modulate neurotransmitters which control feeding in the hypothalamus. We have studied the effects of adiponectin and resistin on dopamine, norepinephrine and serotonin release from hypothalamic neuronal endings (synaptosomes) in vitro. We have found that adiponectin does not modify either basal or depolarization-induced amine release, while resistin inhibits the stimulated release of dopamine and norepinephrine, leaving unaffected serotonin release. We can conclude that, similarly to leptin, but differently from adiponectin, the adipose tissue hormone resistin could affect the central mechanisms of feeding by inhibiting catecholamine release in the hypothalamus.
Collapse
Affiliation(s)
- Luigi Brunetti
- Department of Drug Sciences, G. D'Annunzio University, via dei Vestini, 66013 Chieti, Italy
| | | | | | | | | | | |
Collapse
|
68
|
Schuhmann MU, Heine G, Skardelly M, Jaeger M, Selle H. Brain injury and proteomics/peptidomics: is it relevant? an overview. ACTA NEUROCHIRURGICA. SUPPLEMENT 2005; 95:465-70. [PMID: 16463902 DOI: 10.1007/3-211-32318-x_95] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Proteomics and peptidomics are different and supplemental to genomics, since in contrast to the basically constant genome - the proteome and peptidome are dynamic, constantly changing, and complex networks. Proteomics is traditionally linked to 2D-gel electrophoresis techniques. Concerning peptidomics, three different approaches are currently available, all using mass spectrometry as a key element. The use of proteomics or peptidomics in traumatic brain injury (TBI) research is demanding. From the technical point of view there are high-level requirements concerning the preanalytical phase, specific machinery, sophisticated software and skilled manpower/intellectual input. There are currently no bedside techniques and most methods are suitable for experimental TBI research in specialized laboratories. In screening experiments of CSF following controlled cortical impact in rats we identified several peptides, which, although previously known, were so far not reported in the TBI context or in CSF. Peptidomics and proteomics, as highly complex screening technologies, thus seem to carry a large potential to lead TBI science. Newly "discovered" peptide targets have to be validated with different methodology to establish a real diagnostic or therapeutic value.
Collapse
Affiliation(s)
- M U Schuhmann
- Department of Neurosurgery, University of Leipzig, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
69
|
Cano P, Cardinali DP, Jimenez V, Alvarez MP, Cutrera RA, Esquifino AI. Effect of interferon-gamma treatment on 24-hour variations in plasma ACTH, growth hormone, prolactin, luteinizing hormone and follicle-stimulating hormone of male rats. Neuroimmunomodulation 2005; 12:146-51. [PMID: 15905622 DOI: 10.1159/000084846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 08/11/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Interferon-gamma (IFN-gamma) is a cytokine produced by T helper cells on antigenic challenge that may affect the release of several pituitary hormones. However, in vitro or in vivo studies have yielded disparate results with stimulatory, inhibitory or absent effects of IFN on pituitary hormone release. One of the reasons for these discrepancies could be that hormone changes were commonly assessed at a single time point in the day-night cycle. In this study we measured the circadian pattern of plasma ACTH, growth hormone (GH), prolactin, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) at 6 different time points within a 24-hour cycle in adult male Wistar rats. METHODS Groups of 6-8 rats kept under light from 08:00 to 20:00 h daily received 5 daily injections intraperitoneally of human IFN-gamma (10(5) IU/kg body weight) or saline at 08:30 h. Plasma ACTH, GH, prolactin, LH and FSH levels were measured by a homologous specific double antibody RIA. RESULTS A factorial ANOVA for main effects indicated a significant 43% increase of circulating prolactin in IFN-gamma-treated rats. Time of day changes were significant for the five hormones examined and these diurnal variations became altered by IFN-gamma administration, with a phase advance of ACTH peak, a suppression of the rest phase peak of GH, the appearance of a second peak of prolactin at an early phase of daily photoperiod, and the blunting of the 24-hour variations of plasma FSH. CONCLUSION The data point out an effect of IFN-gamma on the mechanisms responsible for the circadian organization of pituitary hormone release.
Collapse
Affiliation(s)
- Pilar Cano
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, España
| | | | | | | | | | | |
Collapse
|
70
|
Gao J, Ghibaudi L, Hwa JJ. Selective activation of central NPY Y1 vs. Y5 receptor elicits hyperinsulinemia via distinct mechanisms. Am J Physiol Endocrinol Metab 2004; 287:E706-11. [PMID: 15187000 DOI: 10.1152/ajpendo.00530.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Central administration of neuropeptide Y (NPY) stimulates hyperphagia and hyperinsulinemia. Recent evidence has suggested that the Y1 and Y5 receptor subtypes may both mediate NPY-stimulated feeding. The present study attempts to further characterize the role of central NPY receptor subtypes involved in hyperinsulinemia. NPY and peptide analogs of NPY that selectively activated the NPY Y1 or Y5 receptor subtype induced feeding and hyperinsulinemia in satiated Long Evans rats, whereas NPY analogs that selectively activated the NPY Y2 or Y4 receptor subtype did not. To determine whether NPY-induced hyperinsulinemia is secondary to its hyperphagic effect, we compared the plasma insulin levels in the presence and absence of food after a 1-min central infusion of NPY and its analogs at 15, 60, and 120 min postinfusion. Our data suggest that selective activation of central NPY Y1 receptor subtype induced hyperinsulinemia independent of food ingestion, whereas the NPY Y5 receptor-induced hyperinsulinemia was dependent on food ingestion. Central administration of the selective Y1 receptor agonist D-Arg25 NPY eventually decreased plasma glucose levels 2 h postinfusion in Long Evans rats.
Collapse
Affiliation(s)
- Jun Gao
- Department of Cardiovascular/Metabolic Diseases, Schering-Plough Research Institute, 2015 Galloping Hill Road, K15-2600, Kenilworth, NJ 07033-0530, USA
| | | | | |
Collapse
|
71
|
Deguchi Y, Naito Y, Ohtsuki S, Miyakawa Y, Morimoto K, Hosoya KI, Sakurada S, Terasaki T. Blood-brain barrier permeability of novel [D-arg2]dermorphin (1-4) analogs: transport property is related to the slow onset of antinociceptive activity in the central nervous system. J Pharmacol Exp Ther 2004; 310:177-84. [PMID: 15031301 DOI: 10.1124/jpet.103.064006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To clarify the pharmacological characteristics of Nalpha-amidino-Tyr-D-Arg-Phe-betaAla-OH (ADAB) and Nalpha-amidino-Tyr-D-Arg-Phe-MebetaAla-OH (ADAMB), mu1-opioid receptor-selective [D-Arg2]dermorphin tetrapeptide analogs, the plasma pharmacokinetics, and the in vivo blood-brain barrier (BBB) transport of these peptides were quantitatively evaluated. The mechanism responsible for the BBB transport of these peptides was also examined. The in vivo BBB permeation influx rates of 125I-ADAB and 125I-ADAMB after an i.v. bolus injection into mice were determined to be 0.0515 +/- 0.0284 microl/(min.g of brain) and 0.0290 +/- 0.0059 microl/(min.g of brain), respectively, both rates being slower than that of 125I-Tyr-D-Arg-Phe-betaAla-OH (125I-TAPA), a [D-Arg2]dermorphin tetrapeptide analog. To elucidate the BBB transport mechanism of ADAB and ADAMB, a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4) was used as an in vitro model of the BBB. The internalization of both 125I-ADAB and 125I-ADAMB into cells was concentration-dependent with half-saturation constant (Kd) values of 3.76 +/- 0.83 and 5.68 +/- 1.75 microM, respectively. The acid-resistant binding of both ADAB and ADAMB was significantly inhibited by dansylcadaverine (an endocytosis inhibitor) and poly-l-lysine and protamine (polycations), but it was not inhibited by 2,4-dinitrophenol, or at 4 degrees C. These results suggest that ADAB and ADAMB are transported through the BBB with slower permeation rates than that of TAPA, and this is likely to be a factor in the slow onset of their antinociceptive activity in the central nervous system. The mechanism of the BBB transport of these drugs is considered to be adsorptive-mediated endocytosis.
Collapse
Affiliation(s)
- Yoshiharu Deguchi
- Department of Drug Disposition and Pharmacokinetics, School of Pharmaceutical Sciences, Teikyo University, Kanagawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Song C, Phillips AG, Leonard BE, Horrobin DF. Ethyl-eicosapentaenoic acid ingestion prevents corticosterone-mediated memory impairment induced by central administration of interleukin-1beta in rats. Mol Psychiatry 2004; 9:630-8. [PMID: 14699427 DOI: 10.1038/sj.mp.4001462] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Central or peripheral administration of the proinflammatory cytokine interleukin (IL)-1beta can impair performance on spatial memory tasks and also elevate circulating concentration of corticosterone. The present experiment provides independent confirmation that intracerebroventricular administration of 10 ng IL-1beta in the rat can have a selective effect on the retrieval of trial unique information about the location of food on an eight-arm radial maze. The probable involvement of corticosterone in IL-1beta-induced memory impairment was indicated by elevated corticosterone levels after IL-1beta administration. Further evidence comes from the blockade of the associated impairment in working memory by coadministration of the glucocorticoid receptor antagonist RU486. Ingestion of diet containing omega-3 fatty acid eicosapentaenoic acid (EPA) is known to antagonize the synthesis of prostaglandin (PG) E2 from aracadonic acid, and the present study confirmed that ethyl EPA (1%) reduced IL-1beta-elevated concentrations of PGE2 and corticosterone. Furthermore, rats given the ethyl-EPA diet for 8 weeks were unaffected by the disruptive effects of IL-1beta on working memory. IL-1beta-induced suppression of mitogen-stimulated release of the anti-inflammatory cytokine IL-10 was also blocked by treatment with ethyl-EPA. Collectively, these data demonstrate that IL-1beta can impair memory function by elevating the concentration of corticosterone and that prior consumption of 1% ethyl-EPA can block both the neuroendocrine and cognitive effects of IL-1beta. These findings in turn may indicate beneficial effects of ethyl-EPA in the treatment of cognitive and affective disorders in which inflammation and stress play a critical role.
Collapse
Affiliation(s)
- C Song
- Department of Psychiatry, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|
73
|
Song C, Leonard BE, Horrobin DF. Dietary ethyl-eicosapentaenoic acid but not soybean oil reverses central interleukin-1-induced changes in behavior, corticosterone and immune response in rats. Stress 2004; 7:43-54. [PMID: 15204032 DOI: 10.1080/10253890410001667188] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Omega (n)-3 and n-6 fatty acids are important membrane components of neurons and immune cells, and related to psychiatric and inflammatory diseases. Increased ratio of n-6/n-3 in the blood has been reported in depressed patients and in students following stress exposure. The n-3 fatty acid, eicosapentaenoic acid (ethyl-EPA) suppresses inflammation and has antidepressant properties. Interleukin (IL)-1beta can stimulate corticosterone secretion, induce anxiety and stress-like behavior and inflammatory responses. This study was to evaluate the effect of diets enriched with coconut oil, ethyl-EPA and soybean oil on central IL-1beta induced stress and anxiety-like behavior, induced changes in the concentration of prostaglandin (PG) E2 and corticosterone and the release of IL-10. Groups of rats were fed with either 5% coconut oil (as control diet), 0.2% EPA with 4.8% coconut oil or 1% EPA with 4% coconut oil and 5% soybean oil for 7 weeks. The central administration of IL-1beta induced sickness, stress and anxiety-like behavior as indicated by a reduction in body weight, decreased time spent, and the number of entries, into the open arms of the elevated plus maze and decreased exploration and entry into the central zone of the "open field" apparatus. IL-1beta also increased PGE2 and corticosterone concentrations and decreased the release of IL-10 from leucocytes. Food enriched with ethyl-EPA but not soybean oil, significantly attenuated most of these changes. These results demonstrate that ethyl-EPA has anti-inflammatory, anti-stress and anti-anxiety effects in rats.
Collapse
Affiliation(s)
- Cai Song
- Department of Psychiatry, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
74
|
Thiéry JC, Robel P, Canepa S, Delaleu B, Gayrard V, Picard-Hagen N, Malpaux B. Passage of progesterone into the brain changes with photoperiod in the ewe. Eur J Neurosci 2003; 18:895-901. [PMID: 12925015 DOI: 10.1046/j.1460-9568.2003.02796.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study we tested the hypothesis that photoperiod can modulate steroid access to the brain in a seasonal breeder. To this goal, we compared the passage of exogenous progesterone to the brain of female sheep maintained under short (SD) or long (LD) daylengths. In the first experiment, we studied two groups of ovariectomized females maintained under SD or LD, for three artificial cycles, consisting of bearing a subcutaneous oestradiol implant (E2-treated) and an intravaginal device releasing progesterone (CIDR). During the third cycle, the concentrations of progesterone and of its metabolites 5alpha-dihydroprogesterone and 3alpha-hydroxy-5alpha-pregnan-20-one were measured in the preoptic area (POA). The levels of progesterone in the POA were higher in ewes under LD than under SD while the amounts of metabolites were unchanged. In the second experiment, we compared ovariectomized female sheep equipped with a cannula in the third ventricle to sample the cerebrospinal fluid (CSF) under LD vs. SD. After progesterone (1 mg and 10 mg) was injected into the carotid artery, it was only detectable in the cerebrospinal fluid in sheep under LD. In the third experiment, we compared progesterone concentration in plasma and CSF in two groups of SD vs. LD ovariectomized E2-treated ewes for 2 h under CIDR treatment. Despite similar progesterone plasma concentrations, concentration in the CSF was 2.5 times higher in SD than in LD. Our results suggest a physiological modulation of the passage of progesterone to the brain according to the photoperiod.
Collapse
Affiliation(s)
- J C Thiéry
- UMR 6073 INRA-CNRS-Université de Tours, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France.
| | | | | | | | | | | | | |
Collapse
|
75
|
Hervieu G. Melanin-concentrating hormone functions in the nervous system: food intake and stress. Expert Opin Ther Targets 2003; 7:495-511. [PMID: 12885269 DOI: 10.1517/14728222.7.4.495] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide, which centrally regulates food intake and stress. MCH induces food intake in rodents and, more generally, acts as an anabolic signal in energy regulation. In addition, MCH seems to be activatory on the stress axis. Two receptors for MCH in humans have very recently been characterised, namely, MCH-R1 and MCH-R2. MCH-R1 has received considerable attention, as potent and selective antagonists acting at that receptor display anxiolytic, antidepressant and/or anorectic properties. Feeding and affective disorders are both debilitating conditions that have become serious worldwide health threats. There are as yet no efficient and/or safe cures that could contain the near-pandemia phenomen of both diseases. Thus, the discovery of MCH-R1 antagonists may lead to the development of valuable drugs to treat obesity, anxiety and depressive syndromes. In addition, it opens wide avenues to probe additional functions of the peptide, both in the brain and in the peripheral nervous system.
Collapse
Affiliation(s)
- Guillaume Hervieu
- GlaxoSmithKline R&D, Drug Discovery, Neurology Centre of Excellence for Drug Discovery, New Frontiers Science Park - North, HW1713 Building H17, L1-130 C06 Third Avenue, Harlow, Essex CM19 5AW, UK.
| |
Collapse
|
76
|
Ho M, Segre M. Inhibition of cocaine binding to the human dopamine transporter by a single chain anti-idiotypic antibody: its cloning, expression, and functional properties. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1638:257-66. [PMID: 12878327 PMCID: PMC3295240 DOI: 10.1016/s0925-4439(03)00091-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Conventional drug development for treatment of cocaine addiction is greatly hindered by the extreme difficulty in designing a selective cocaine antagonist. We employed anti-idiotypic (anti-Id) antibodies to generate cocaine antagonists. The purpose of this study was to investigate the feasibility of this alternative approach. Herein, we describe the molecular cloning, bacterial expression, and functional properties of an anti-Id monoclonal antibody (mAb), designated K2-3f, which possesses an internal image of cocaine within its variable regions. The heavy and light chain variable domains of K2-3f were cloned by reverse transcription-polymerase chain reaction (RT-PCR) and a single chain antibody variable fragment (scFv) was assembled for expression in Escherichia coli. The scFv bound to the human dopamine transporter (hDAT) with moderate affinity (K(a)=5.3 x 10(6) M(-1)) and excellent mimicry of the cocaine molecule completely inhibited cocaine binding at a molar concentration closely resembling in vivo conditions while allowing approximately 90% of equimolar dopamine uptake. Our data suggest that the use of anti-Id antibody as a template for generation of a cocaine antagonist is a promising approach well worth pursuing. If this strategy is successful, it could be applied to potential ligand-receptor interactions in the treatment of other diseases.
Collapse
Affiliation(s)
| | - Mariangela Segre
- Corresponding author: Dr. Mariangela Segre, Division of Microbiology and Immunology, Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, Illinois 61802, USA, Fax: +1-217-244-7421,
| |
Collapse
|
77
|
Spampinato S, Qasem AR, Calienni M, Murari G, Gentilucci L, Tolomelli A, Cardillo G. Antinociception by a peripherally administered novel endomorphin-1 analogue containing beta-proline. Eur J Pharmacol 2003; 469:89-95. [PMID: 12782189 DOI: 10.1016/s0014-2999(03)01736-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously described a novel endomorphin-1 analogue (Tyr-L-beta-Pro-Trp-Phe-NH(2); Endo1-beta-Pro) more resistant to enzymatic hydrolysis than endomorphin-1 that acts as a mu-opioid receptor agonist. In this study we report that Endo1-beta-Pro, s.c. injected in the mouse, is an effective antinociceptive agent in the tail flick (ED(50)=9.2 mg/kg) and acetic acid-induced abdominal constriction (ED(50)=1.2 mg/kg) tests. Moreover, s.c. Endo1-beta-Pro significantly decreases, in the mouse, the gastrointestinal propulsion measured as transit of an orally administered charcoal meal (ED(50)=10.0 mg/kg). Subcutaneous beta-funaltrexamine or a high dose of the mu(1)-opioid receptor-selective antagonist naloxonazine (50 mg/kg) prevents the antinociceptive and antitransit action of Endo1-beta-Pro; moreover, these effects are partially blocked by i.c.v. naloxone or by i.p. naloxone methiodide, this latter does not readily cross the blood-brain barrier. On the contrary, the kappa-opioid receptor antagonist nor-binaltorphimine or the delta-opioid receptor antagonist naltrindole are ineffective Thus, Endo1-beta-Pro may act, preferentially, through central and peripheral mu(2)-opioid receptors to produce antinociception and to inhibit gastrointestinal transit. Endo1-beta-Pro is among the first endomorphin-1 analogues showing antinociceptive activity after systemic administration. This compound will be extremely useful for exploring the pharmacological profile of endomorphins in vivo and confirms the potential therapeutic interest of endomorphin derivatives as novel analgesic agents.
Collapse
Affiliation(s)
- Santi Spampinato
- Department of Pharmacology, University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
78
|
Gold SM, Schulz KH, Hartmann S, Mladek M, Lang UE, Hellweg R, Reer R, Braumann KM, Heesen C. Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J Neuroimmunol 2003; 138:99-105. [PMID: 12742659 DOI: 10.1016/s0165-5728(03)00121-8] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neurotrophins like brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are thought to play an important role in neuronal repair and plasticity. Recent experimental evidence suggests neuroprotective effects of these proteins in multiple sclerosis (MS). We investigated the response of serum NGF and BDNF concentrations to standardized acute exercise in MS patients and controls. Basal NGF levels were significantly elevated in MS. Thirty minutes of moderate exercise significantly induced BDNF production in MS patients and controls, but no differential effects were seen. We conclude that moderate exercise can be used to induce neutrophin production in humans. This may mediate beneficial effects of physical exercise in MS reported recently.
Collapse
Affiliation(s)
- Stefan M Gold
- Department of Neurology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Deguchi Y, Miyakawa Y, Sakurada S, Naito Y, Morimoto K, Ohtsuki S, Hosoya KI, Terasaki T. Blood-brain barrier transport of a novel micro 1-specific opioid peptide, H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA). J Neurochem 2003; 84:1154-61. [PMID: 12603838 DOI: 10.1046/j.1471-4159.2003.01582.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to clarify the mechanism of the blood-brain barrier (BBB) transport of H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA), which is a novel dermorphin analog with high affinity for the micro 1-opioid receptor. The in vivo BBB permeation influx rate of [125I]TAPA after an i.v. bolus injection (7.3 pmol/g body weight) into mice was estimated to be 0.265 +/- 0.025 microL/(min.g of brain). The influx rate of [125I]TAPA was reduced 70% by the coadministration of unlabeled TAPA (33 nmol/g of brain), suggesting the existence of a specific transport system for TAPA at the BBB. In order to elucidate the BBB transport mechanism of TAPA, a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4) was used as an in vitro model of the BBB. The acid-resistant binding of [125I]TAPA, which represents the internalization of the peptide into cells, was temperature- and concentration-dependent with a half-saturation constant of 10.0 +/- 1.7 microm. The acid-resistant binding of TAPA was significantly inhibited by 2,4-dinitrophenol, dansylcadaverine (an endocytosis inhibitor) and poly-l-lysine and protamine (polycations). These results suggest that TAPA is transported through the BBB by adsorptive-mediated endocytosis, which is triggered by binding of the peptide to negatively charged sites on the surface of brain capillary endothelial cells. Blood-brain barrier transport via adsorptive-mediated endocytosis plays a key role in the expression of the potent opioid activity of TAPA in the CNS.
Collapse
MESH Headings
- 2,4-Dinitrophenol/pharmacology
- Animals
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Blood-Brain Barrier/physiology
- Brain/blood supply
- Cadaverine/analogs & derivatives
- Cadaverine/pharmacology
- Capillaries/cytology
- Cells, Cultured
- Chromatography, High Pressure Liquid
- Endocytosis/drug effects
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Hydrogen-Ion Concentration
- Iodine Radioisotopes
- Mice
- Mice, Inbred Strains
- Oligopeptides/analysis
- Oligopeptides/metabolism
- Oligopeptides/pharmacokinetics
- Permeability
- Polyamines/pharmacology
- Polyelectrolytes
- Polymers/pharmacology
- Receptors, Opioid, mu/metabolism
- Temperature
Collapse
Affiliation(s)
- Yoshiharu Deguchi
- Department of Drug Disposition and Pharmacokinetics, School of Pharmaceutical Sciences, Teikyo University, 1091-1 Suarashi, Sagamiko-machi, Tsukui-gun, Kanagawa 199-0195, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2003; 61:39-78. [PMID: 14674608 DOI: 10.1007/978-3-0348-8049-7_2] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David J Begley
- Centre for Neuroscience Research, Kings College London, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
81
|
Futamura T, Kakita A, Tohmi M, Sotoyama H, Takahashi H, Nawa H. Neonatal perturbation of neurotrophic signaling results in abnormal sensorimotor gating and social interaction in adults: implication for epidermal growth factor in cognitive development. Mol Psychiatry 2003; 8:19-29. [PMID: 12556905 DOI: 10.1038/sj.mp.4001138] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epidermal growth factor (EGF) and its structurally related proteins are implicated in the developmental regulation of various brain neurons, including midbrain dopaminergic neurons. There are EGF and EGF receptor abnormalities in both brain tissues and blood from schizophrenic patients. We administered EGF to neonatal rats to transiently perturb endogenous EGF receptor signaling and evaluated the neurobehavioral consequences. EGF-treatment-induced transient impairment in tyrosine hydroxylase expression. The animals grew normally, exhibited normal weight increase, glial growth, and gross brain structures, and later lost the tyrosine hydroxylase abnormality. During and after development, however, the rats began to display various behavioral abnormalities. Abnormal sensorimotor gating was apparent, as measured by deficits in prepulse inhibition of acoustic startle. Motor activity and social interaction scores of the EGF-treated animals were also impaired in adult rats, though not in earlier developmental stages. In parallel, there was a significant abnormality in dopamine metabolism in the brain stem of the adult animals. Gross learning ability appeared to be normal as measured by active avoidance. These behavioral alterations, which are often present in schizophrenic models, were ameliorated by subchronic treatment with clozapine. Although the molecular and/or physiologic background(s) of these behavioral abnormalities await further investigation, the results of the present experiment indicate that abnormal EGF receptor stimulation given during limited neonatal stages can result in severe and persistent cognitive/behavioral dysfunctions, which appear only in adulthood.
Collapse
Affiliation(s)
- T Futamura
- Molecular Neurobiology, Brain Research Institute, Niigata University, Japan
| | | | | | | | | | | |
Collapse
|
82
|
Heine G, Zucht HD, Schuhmann MU, Bürger K, Jürgens M, Zumkeller M, Schneekloth CG, Hampel H, Schulz-Knappe P, Selle H. High-resolution peptide mapping of cerebrospinal fluid: a novel concept for diagnosis and research in central nervous system diseases. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 782:353-61. [PMID: 12458018 DOI: 10.1016/s1570-0232(02)00571-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Peptides, such as many hormones, cytokines and growth factors play a central role in biological processes. Furthermore, as degradation products and processed forms of larger proteins they are part of the protein turnover. Thus, they can reflect disease-related changes in an organism's homeostasis in several ways. Since two-dimensional gel electrophoresis is restricted to analysis and display of proteins with relative molecular masses above 5000, we developed Differential Peptide Display (DPD), a new technology for analysis and visualization of peptides. Here we describe its application to cerebrospinal fluid of three subjects without a disease of the central nervous system (CNS) undergoing routine myelography and of two patients suffering from a primary CNS lymphoma. Peptides with a relative molecular mass below 20000 were extracted and analysed by a combination of chromatography and mass spectrometry. The peptide pattern of a sample was depicted as a multi-dimensional peptide mass fingerprint with each peptide's position being characterized by its molecular mass and chromatographic behaviour. Such a fingerprint of a CNS sample consists of more than 6000 different signals. Data analysis of peptide patterns from patients with CNS lymphoma compared to controls revealed obvious differences regarding the peptide content of the samples. By analysing peptides within a mass range of 750-20000, DPD extends 2D gel electrophoresis, thus offering the chance to investigate CNS diseases on the level of peptides. This represents a new approach for diagnosis and possible therapy.
Collapse
Affiliation(s)
- Gabriele Heine
- BioVisioN AG, Feodor-Lynen-Str. 5, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Mora M, Sagristá ML, Trombetta D, Bonina FP, De Pasquale A, Saija A. Design and characterization of liposomes containing long-chain N-acylPEs for brain delivery: penetration of liposomes incorporating GM1 into the rat brain. Pharm Res 2002; 19:1430-8. [PMID: 12425459 DOI: 10.1023/a:1020440229102] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To develop a suitable liposomal carrier to encapsulate neu roactive compounds that are stable enough to carry them to the brain across the blood-brain barrier with the appropriate surface characteri tics for an effective targeting and for an active membrane transport. METHODS Liposomes containing glycosides and a fusogenic lipid were prepared by extrusion. Photon correlation spectroscopy, fluorescent spectroscopy, and differential scanning calorimetry were used to characterize liposomal preparations. Tissue distribution was determined by using 3H-cholesterylhexadecylether as a marker. RESULTS The incorporation of glycoside determinants and N-palmitoylphosphatidylethanolamine gives liposomes with similar in tial size, trapped volume, negative surface charge, bilayer fluidity, and melting temperature, except for monosialoganglioside-containing liposomes, which showed less negative surface charge and the highe size, trapped volume and melting temperature. All glycosilated formulations gave liposomes able to retain up to the 95% of encapsulated carboxyfluorescein after 90 min at physiologic temperature even in the presence of serum. Monosialoganglioside liposomes were recovered in the cortex, basal ganglia, and mesencephalon of both brain hemispheres. The liver uptake was higher for sulfatide- and glucose-liposomes, whereas the higher blood levels were observed for glucose- and mannose-liposomes. CONCLUSIONS These results show the suitability of such liposomal formulations to hold encapsulated drugs. Moreover, the brain uptake of monosialoganglioside liposomes makes them good candidates as drug delivery systems to the brain.
Collapse
Affiliation(s)
- Margarita Mora
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
84
|
Maulon-Feraille L, Della Zuana O, Suply T, Rovere-Jovene C, Audinot V, Levens N, Boutin JA, Duhault J, Nahon JL. Appetite-boosting property of pro-melanin-concentrating hormone(131-165) (neuropeptide-glutamic acid-isoleucine) is associated with proteolytic resistance. J Pharmacol Exp Ther 2002; 302:766-73. [PMID: 12130742 DOI: 10.1124/jpet.302.2.766] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide, with a major role in stimulation of feeding behavior in mammals. MCH signals in the brain occur via two seven-transmembrane G protein-coupled receptors, namely MCH1 (SLC-1, MCH(1), MCH-R1, or MCH-1R) and MCH2 (SLT, MCH(2), MCH-R2, or MCH-2R). In this study, we demonstrate that the pro-MCH(131-165) peptide neuropeptide-glutamic acid-isoleucine (NEI)-MCH is more potent than MCH in stimulating feeding in the rat. Using rat MCH1-expressed human embryonic kidney 293 cells, we show that NEI-MCH exhibits 5-fold less affinity in a binding assay and 2-fold less potency in a cAMP assay than MCH. A similar 7- to 8-fold shift in potency was observed in a Ca(2+)(i) assay using rat MCH1 or human MCH2-transfected Chinese hamster ovary cell models. This demonstrates that NEI-MCH is not a better agonist than MCH at either of the MCH receptors. Then, we compared the proteolysis resistance of MCH and NEI-MCH to rat brain membrane homogenates and purified proteases. Kinetics of peptide degradation using brain extracts indicated a t(1/2) of 34.8 min for MCH and 78.5 min for NEI-MCH with a specific pattern of cleavage of MCH but not NEI-MCH by exo- and endo-proteases. Furthermore, MCH was found highly susceptible to degradation by aminopeptidase M and endopeptidase 24.11, whereas NEI-MCH was fully resistant to proteolysis by these enzymes. Therefore, our results strongly suggest that reduced susceptibility to proteases of NEI-MCH compared with MCH account for its enhanced activity in feeding behavior. NEI-MCH represents therefore the first MCH natural functional "superagonist" so far described.
Collapse
Affiliation(s)
- Laurence Maulon-Feraille
- Institut de Pharmacologie Moléculaire et Cellulaire-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6097, 660 route des Lucioles-Sophia-Antipolis, 06560 Valbonne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Cardelli P, Scarpa S, Ceci F, Lucarelli M, Tabacco F, Ferraguti G, Brisdelli F, Strom R, Bozzi A. Effects of different oxidizing agents on neutral amino acid transport systems in isolated bovine brain microvessels. Neurochem Int 2002; 41:29-36. [PMID: 11918969 DOI: 10.1016/s0197-0186(01)00139-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using isolated bovine brain microvessels as an in vitro model of the blood-brain barrier (BBB) we have evaluated the role of free radical generating solutions on some amino acid transport systems operating on the endothelial cell membrane. Fe(2+)/ascorbate, phenylhydrazine and CuSO(4) did not affect any of the transport system tested, while exposure of bovine brain microvessels to tert-butylhydroperoxide (t-BHP) caused a reduced capacity to take up small neutral amino acids via the Na(+)-dependent A-system. The presence of glucose during t-BHP treatment did not prevent this inhibition, which was partially counteracted when the isolated microvessels were incubated with 5mM inosine before the oxidative stress. Incubation of the isolated capillaries with 5mM dithiothreitol, after exposure to t-BHP, resulted in a 50% recovery of the alpha-methylaminoisobutyrate (MeAIB) uptake by the A-system. Treatment with t-BHP, which had no effect on the L-system of neutral amino acid transport, caused a significant decrease of the intracellular levels of ATP, of glutathione (GSH), and of gamma-glutamyltranspeptidase (GGT) activity, while no significant modification of hexokinase (HK) or of alkaline phosphatase (ALKP) activities were observed. Oxidative damage of the BBB appears therefore to impair essentially the metabolic pathways which ensure the energy requirement for the endothelial cells, thus inhibiting the energy-dependent amino acid transport system "A".
Collapse
Affiliation(s)
- Patrizia Cardelli
- Department of Cellular Biotechnology and Hematology, University of Rome, La Sapienza, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Adessi C, Soto C. Beta-sheet breaker strategy for the treatment of Alzheimer's disease. Drug Dev Res 2002. [DOI: 10.1002/ddr.10074] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
87
|
Permanne B, Adessi C, Saborio GP, Fraga S, Frossard MJ, Van Dorpe J, Dewachter I, Banks WA, Van Leuven F, Soto C. Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer's disease by treatment with a beta-sheet breaker peptide. FASEB J 2002; 16:860-2. [PMID: 11967228 DOI: 10.1096/fj.01-0841fje] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Genetic, neuropathological, and biochemical studies have provided strong evidence for a central role of amyloid in the pathogenesis of Alzheimer's disease (AD). We have proposed previously that peptides designed as beta-sheet breakers may be useful in preventing the formation of amyloid plaques. In this study, we describe a modified beta-sheet breaker peptide with improved pharmacological properties, a high rate of penetration across the blood-brain barrier, and the ability to induce a dramatic reduction in amyloid deposition in two different transgenic AD models. In addition, we report for the first time a significant increase in neuronal survival and a decrease in brain inflammation associated with the reduction of amyloid plaques. These results demonstrate that the process of amyloid deposition is one of the causes of neurodegeneration in AD. Moreover, our findings indicate that beta-sheet breaker peptides provide a valuable tool for evaluating further the importance of amyloid in the etiology of AD and suggest that these peptides or some of their derivatives might be good candidates for AD treatment.
Collapse
Affiliation(s)
- Bruno Permanne
- Serono Pharmaceutical Research Institute, 1228 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Chesnokova V, Melmed S. Minireview: Neuro-immuno-endocrine modulation of the hypothalamic-pituitary-adrenal (HPA) axis by gp130 signaling molecules. Endocrinology 2002; 143:1571-4. [PMID: 11956136 DOI: 10.1210/endo.143.5.8861] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuroendocrine and immune systems communicate bidirectionally. The neuro-immune-endocrine interface is mediated by cytokines acting as auto/paracrine or endocrine factors regulating pituitary development, cell proliferation, hormone secretion, and feedback control of the hypothalamic-pituitary-adrenal (HPA) axis. At birth or during neonatal ontogenesis, cytokines produce permanent alterations of HPA axis function and the stress response. Overexpressing IL-6 or leukemia inhibitory factor leads to significant changes in pituitary development and functions. Pituitary corticotroph POMC gene expression is regulated by CRH as well as several gp130 cytokines acting as neuro-immuno-endocrine modulators. Conversely, HPA axis functions modulate susceptibility or resistance to inflammatory disease. Cytokines (including IL-1, TNF, and members of the gp130 cytokine family) participate as mediators of a complex HPA axis response to stress and inflammation. Prolonged exposure to proinflammatory cytokines increases levels of the dominant negative glucocorticoid receptor isoform. Nonresponsiveness of the HPA axis to glucocorticoid negative feedback control provides a defense from destructive effects of cytokine excess. At the same time, gp130 cytokines stimulate pituitary suppressor of cytokine signaling (SOCS)-3, which represses cytokine signaling and abrogates cytokine-induced corticotroph POMC gene transcription and ACTH secretion.
Collapse
Affiliation(s)
- Vera Chesnokova
- Cedars-Sinai Research Institute, University of California-Los Angeles School of Medicine, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | |
Collapse
|
89
|
Abstract
Over a short period in the late 1990s, three groups converged on the discovery of a neuropeptide system, centred in the dorsolateral hypothalamus, that regulates arousal states, influences feeding and is implicated in the sleep disorder narcolepsy. Subsequent studies have illuminated many aspects of the circuitry of the hypocretin (also called orexin) system, which also influences hormone secretion and autonomic homeostasis, and have led to the hypothesis that most human narcolepsies result from an autoimmune attack against the hypocretin-producing neurons. The biochemical, physiological and anatomical components that regulate the switch between waking and sleeping are becoming clear. The rapidity with which the hypocretin story has emerged is a testament to both the conceptual and the technical evolution of genomic science in the past two decades.
Collapse
Affiliation(s)
- J Gregor Sutcliffe
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
90
|
Thorne RG, Frey WH. Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 2002; 40:907-46. [PMID: 11735609 DOI: 10.2165/00003088-200140120-00003] [Citation(s) in RCA: 353] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurotrophic factors are proteins with considerable potential in the treatment of central nervous system (CNS) diseases and traumatic injuries. However, a significant challenge to their clinical use is the difficulty associated with delivering these proteins to the CNS. Neurotrophic factors are hydrophilic, typically basic, monomeric or dimeric proteins, mostly in the size range of 5 to 30 kDa. Neurotrophic factors potently support the development, growth and survival of neurons, eliciting biological effects at concentrations in the nanomolar to femtomolar range. They are not orally bioavailable and the blood-brain and blood-cerebrospinal fluid barriers severely limit their ability to enter into and act on sites in the CNS following parenteral systemic routes of administration. Most neurotrophic factors have short in vivo half-lives and poor pharmacokinetic profiles. Their access to the CNS is restricted by rapid enzymatic inactivation, multiple clearance processes, potential immunogenicity and sequestration by binding proteins and other components of the blood and peripheral tissues. The development of targeted drug delivery strategies for neurotrophic factors will probably determine their clinical effectiveness for CNS conditions. Achieving significant CNS target site concentrations while limiting systemic exposure and distribution to peripheral sites of action will lessen unwanted pleiotropic effects and toxicity. Local introduction of neurotrophic factors into the CNS intraparenchymally by direct injection/infusion or by implantation of delivery vectors such as polymer matrices or genetically modified cells yields the highest degree of targeting, but is limited by diffusion restrictions and invasiveness. Delivery of neurotrophic factors into the cerebrospinal fluid (CSF) following intracerebroventricular or intrathecal administration is less invasive and allows access to a much wider area of the CNS through CSF circulation pathways. However, diffusional and cellular barriers to penetration into surrounding CNS tissue and significant clearance of CSF into the venous and lymphatic circulation are also limiting. Unconventional delivery strategies such as intranasal administration may offer some degree of CNS targeting with minimal invasiveness. This review presents a summary of the neurotrophic factors and their indications for CNS disorders, their physicochemical characteristics and the different approaches that have been attempted or suggested for their delivery to the CNS. Future directions for further research such as the potential for CNS disease treatment utilising combinations of neurotrophic factors, displacement strategies, small molecule mimetics, chimaeric molecules and gene therapy are also discussed.
Collapse
Affiliation(s)
- R G Thorne
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
91
|
Parker MS, Lundell I, Parker SL. Pancreatic polypeptide receptors: affinity, sodium sensitivity and stability of agonist binding. Peptides 2002; 23:291-303. [PMID: 11825644 DOI: 10.1016/s0196-9781(01)00610-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cloned rat, human and guinea-pig Y4 pancreatic polypeptide (PP) receptors expressed in Chinese hamster ovary (CHO) cells, as well as the rabbit Y4-like PP receptor, show a selective sensitivity to Na+ over K+ ion in PP attachment, but little sensitivity to Na+ in dissociation of bound PP peptides. Agonist binding to Y4 receptors of intact CHO cells also shows much greater sensitivity to Na+ over K+, and a tenacious attachment of the bound agonist. Binding sensitivity to K+ is greatly enhanced upon receptor solubilization. Pancreatic polypeptide sites also show large sensitivity to modulators of Na+ transport such as N5-substituted amilorides and to RFamides, as different from Y1 or Y2 receptors. Thus, PP binding is modulated by cation-induced changes in site environment (with selectivity for Na+) and ultimately results in a blocking attachment. This would support receptor operation in the presence of ion gradients, as well as prolonged agonist-delimited signaling activity (which can include partial antagonism). Also, this could point to an evolutionary adaptation enabling small numbers of PP receptors to perform extensive metabolic tasks in response to low agonist signals.
Collapse
Affiliation(s)
- Michael S Parker
- Department of Microbiology and Molecular Cell Sciences, University of Memphis, Memphis, TN 38152, USA
| | | | | |
Collapse
|
92
|
Naidu KA, Fu ES, Prockop LD. Acute Experimental Allergic Encephalomyelitis Increases Lumbar Spinal Cord Incorporation of Epidurally Administered [3H]-D-Mannitol and [14C]-Carboxyl-Inulin in Rabbits. Anesth Analg 2002. [DOI: 10.1213/00000539-200201000-00040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
93
|
Naidu KA, Fu ES, Prockop LD. Acute experimental allergic encephalomyelitis increases lumbar spinal cord incorporation of epidurally administered [(3)H]-D-mannitol and [(14)C]-carboxyl-inulin in rabbits. Anesth Analg 2002; 94:208-12, table of contents. [PMID: 11772830 DOI: 10.1097/00000539-200201000-00040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED We sought to determine whether acute experimental allergic encephalomyelitis (EAE) alters the incorporation of epidurally administered [(3)H]-D-mannitol and [(14)C]-carboxyl-inulin into the lumbar spinal cord in rabbits. Acute EAE is an experimental model for demyelinating spinal cord diseases such as multiple sclerosis. It was induced in rabbits by footpad inoculation with rabbit spinal cord homogenate, resulting in hind limb paresis or paralysis. Animals were classified into four study groups: Control, Paraparesis, 1-Day Paraplegia, and 5-Day Paraplegia. Ten microCi each of [(3)H]-D-mannitol and [(14)C]-carboxyl-inulin were administered epidurally for 90 min. After infusion, animals were perfused with saline. The lumbar cord was dissected and divided into 11 segments. Compared with other groups, animals in the 5-Day Paraplegia group had greater incorporation of [(3)H]-D-mannitol and [(14)C]-carboxyl-inulin in lumbar segment 8, corresponding to the location of the epidural catheter tip. Compared with the Control group, EAE animals had increased [(3)H]-D-mannitol incorporation in various lumbar segments. Increases in the spinal cord incorporation of epidural drugs with EAE suggest that demyelination may render the spinal cord susceptible to larger amounts of substances administered in the epidural space. These findings may have implications regarding neurotoxicity in association with demyelinating spinal cord disease. IMPLICATIONS Acute experimental allergic encephalomyelitis, a disease model for multiple sclerosis, increased spinal cord incorporation of radioactive drugs administered in the epidural space. We conclude that demyelinating disease processes may expose the spinal cord to larger amounts of substances administered neuraxially.
Collapse
Affiliation(s)
- Kamatham A Naidu
- Department of Neurology, University of South Florida College of Medicine, Tampa, Florida, USA.
| | | | | |
Collapse
|
94
|
Clark SD, Nothacker HP, Wang Z, Saito Y, Leslie FM, Civelli O. The urotensin II receptor is expressed in the cholinergic mesopontine tegmentum of the rat. Brain Res 2001; 923:120-7. [PMID: 11743979 DOI: 10.1016/s0006-8993(01)03208-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Urotensin II (UII) is a peptide known to be a potent vasoconstrictor. The urotensin II receptor (UII-R) is expressed not only in peripheral tissues but also in the brain of rodents. As a basis for studies of UII central nervous system actions, UII-R localization in the rat brain was analyzed by in situ hybridization and by in situ binding. UII-R mRNA was found in the mesopontine tegmental area colocalizing with choline acetyltransferase. Binding sites were detected throughout the brain with the highest levels found in the pedunculopontine tegmental area, the lateral dorsal tegmental area, and the lateral septal, medial habenular, and interpeduncular nuclei. The majority of these brain nuclei are sites of axonal termination originating from the mesopontine areas, suggesting that UII-R is a presynaptic receptor. This distribution of UII-R in the cholinergic mesopontine area indicates that the UII system may be involved in sensory-motor integration and perhaps in central nervous system blood flow.
Collapse
Affiliation(s)
- S D Clark
- Department of Developmental and Cell Biology, The University of California, Irvine, CA 92697-4625, USA
| | | | | | | | | | | |
Collapse
|
95
|
Kastin AJ, Akerstrom V, Pan W. Validity of multiple-time regression analysis in measurement of tritiated and iodinated leptin crossing the blood-brain barrier: meaningful controls. Peptides 2001; 22:2127-36. [PMID: 11786200 DOI: 10.1016/s0196-9781(01)00569-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple-time regression analysis has been used to study the influx of radiolabeled peptides and polypeptides across the blood-brain barrier (BBB). This study used both tritiated and iodinated leptin to clarify several issues associated with these measurements. Recombinant murine leptin was radiolabeled with 3H by derivatization or with 125I by the iodobead method and each studied separately in mice. Intact 3H-leptin had a higher apparent influx rate from blood to brain than did intact 125I-leptin, correlating with its higher proportion of reversible association with the capillary lumen that would misleadingly appear to reflect entry. Yet the majority of 3H-leptin and 125I-leptin reached brain parenchyma. There was no significant difference in the influx rate between cerebral cortex and the subcortical regions, thus ruling out a predominant contribution of simple diffusion through the circumventricular organs or choroid plexuses outside the BBB. The influx of radiolabeled leptin, especially 125I-leptin, was decreased by excess unlabeled leptin, supporting the presence of a saturable transport system for leptin at the BBB. To identify the specificity of the transport system and determine whether it is shared by 3H-leptin and 125I-leptin, these radioactively labeled leptins were heat-denatured. Denaturation had no effect on the fast influx of 3H-leptin, but abolished the entry of 125I-leptin into brain; excess denatured leptin failed to inhibit the influx of either 3H-leptin or 125I-leptin. This indicates that the conformation of 125I-leptin is similar to that of native unlabeled leptin, so that iodination would be the better choice for investigating the interaction of leptin with the BBB. However, 3H-leptin can use the same transport system, as shown by inhibition of its influx by unlabeled leptin, whereas the derivatization procedure altered its biophysical properties such that its non-saturated influx was greatly enhanced. Finally, the rapid influx of radioactively labeled leptin contrasted greatly with that of the reference compounds 99mTc-albumin and 3H-inulin which had no significant penetration of the BBB. Thus, with additional considerations such as stability and interactions with the vasculature, multiple-time regression analysis is sensitive and selective for study of the penetration of peptides across the BBB.
Collapse
Affiliation(s)
- A J Kastin
- VA Medical Center and Tulane University School of Medicine, New Orleans LA 70112-1262, USA
| | | | | |
Collapse
|
96
|
Abstract
Although urocortin is a potent inhibitor of food ingestion after peripheral administration, it was recently shown that under normal conditions this peptide crosses the blood-brain barrier (BBB) at a very slow rate. We examined whether hyperglycemia could stimulate the rate of entry (K(i)) of (125)I-urocortin into the mouse brain. In euglycemic mice, (125)I-urocortin injected iv entered the brain at a rate similar to that of the vascular marker (99m)Tc-albumin. However, injection of glucose (3 g/kg, ip) 0.5, 1, or 2 h before the (125)I-urocortin greatly increased the influx of urocortin. Without the glucose, the self-inhibition characteristic of a saturable transport system was not apparent. Self-inhibition could be demonstrated after the glucose injection, indicating activation of a transport system for urocortin that was saturable. Injection of insulin (10 U/kg, ip) 1 or 2 h before the (125)I-urocortin decreased the K(i). Thus, the entry of urocortin into brain can be activated by changes in the concentration of blood glucose, illustrating the responsiveness of the BBB to regulatory influences.
Collapse
Affiliation(s)
- A J Kastin
- VA Medical Center and Tulane University School of Medicine, New Orleans, LA 70112-1262, USA
| | | |
Collapse
|
97
|
Abstract
We measured the concentration of beta-endorphin (beta-End) in plasma, as well as in aqueous humor and crystalline lens removed during cataract surgery. beta-End was detected both in the aqueous humor and in the crystalline lens. The concentration of beta-End in the aqueous humor corresponded to almost the half of the plasma level (2.18 fmol/l and 4.55 fmol/l). Endogenous beta-End is presumed to enter the intraocular structures by passive diffusion.
Collapse
Affiliation(s)
- T Bender
- National Institute of Rheumatology and Physiotherapy, Budapest, Hungary.
| | | | | | | |
Collapse
|
98
|
Abstract
Adult male rats were used to determine whether high circulating levels of the pro-inflammatory cytokine interleukin-6 (IL-6) were capable of releasing ACTH independently of endogenous corticotropin-releasing factor (CRF). On one hand, CRF antibodies or a potent CRF antagonist significantly decreased, but did not totally abolish the ACTH response to the intravenous(i.v.) injection of recombinant rat IL-6. These results suggest that this cytokine might act either directly on the pituitary, or can release ACTH through mechanisms that do not involve CRF. On the other hand, the CRF antagonist or antibodies significantly (but not totally) blocked ACTH secretion due to the i.v. injection of endotoxin (LPS) while enhancing the ability of this immune stimulus to increase serum IL-6 concentrations. These results indicate that during endotoxemia, even very elevated circulating IL-6 concentrations were notable to release large amounts of ACTH in the absence of CRF drive. These data also illustrate the ability of a CRF antagonist or CRF antibodies to significantly augment IL-6 secretion,which indicates an inhibitory influence of the endogenous peptide in the paradigm we used.As comparable findings were obtained in adrenal-intact and adrenalectomized rats, they suggest that endogenous CRF is involved in the IL-6 response to LPS independently of circulating corticosteroids or other adrenal factors.
Collapse
Affiliation(s)
- C Rivier
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
99
|
Abstract
This paper is the twenty-second installment of the annual review of research concerning the opiate system. It summarizes papers published during 1999 that studied the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress; tolerance and dependence; learning, memory, and reward; eating and drinking; alcohol and other drugs of abuse; sexual activity, pregnancy, and development; mental illness and mood; seizures and other neurologic disorders; electrical-related activity; general activity and locomotion; gastrointestinal, renal, and hepatic function; cardiovascular responses; respiration and thermoregulation; and immunologic responses.
Collapse
Affiliation(s)
- A L Vaccarino
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA.
| | | |
Collapse
|
100
|
Abstract
There are several transport systems for peptides and polypeptides at the blood-brain barrier (BBB) which facilitate the passage of bioactive substances from blood to brain or from brain to blood. Nonetheless, it would be a novel concept for one peptide or polypeptide to activate the transport of another peptide with a similar function but unrelated structure. In this study, we report the first observation of such a phenomenon: activation of a urocortin transport system at the BBB by leptin. Urocortin, a corticotropin-releasing factor (CRF)-related neuropeptide, is a more potent suppressor of food intake than leptin or CRF when injected peripherally. Radiolabeled urocortin ((125)I-urocortin) was used for these in vivo studies in mice; it remained stable and intact during the experimental period. Unlike CRF, urocortin was not saturably transported out of the brain. There was no substantial entry of (125)I-urocortin into brain as determined by sensitive multiple-time regression analysis after iv bolus injection. Addition of leptin, however, caused a dose-related increase in the influx of (125)I-urocortin and greatly facilitated its entry into brain parenchyma; this effect disappeared at higher doses of leptin. Moreover, in the presence of an activating dose of leptin, the entry of (125)I-urocortin into brain was saturable. The results indicate that the presence of leptin contributes to the potent satiety effects of urocortin after peripheral administration. Thus, the action of leptin in the periphery extends beyond its direct passage across the BBB and involves acute modulation of an inert transport system. We believe that these findings have broad physiological implications and indicate a unique function of the BBB as a regulatory interface.
Collapse
Affiliation(s)
- A J Kastin
- VA Medical Center and Tulane University School of Medicine, 1601 Perdido Street, New Orleans, LA 70112-1262, USA
| | | | | |
Collapse
|