51
|
Lee I, Jeon E, Lee J. On-site bioaerosol sampling and detection in microfluidic platforms. Trends Analyt Chem 2023; 158:116880. [PMID: 36514783 PMCID: PMC9731818 DOI: 10.1016/j.trac.2022.116880] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
As the recent coronavirus disease (COVID-19) pandemic and several severe illnesses such as Middle East respiratory syndrome coronavirus (MERS-CoV), Influenza A virus (IAV) flu, and severe acute respiratory syndrome (SARS) have been found to be airborne, the importance of monitoring bioaerosols for the control and prevention of airborne epidemic diseases outbreaks is increasing. However, current aerosol collection and detection technologies may be limited to on-field use for real-time monitoring because of the relatively low concentrations of targeted bioaerosols in air samples. Microfluidic devices have been used as lab-on-a-chip platforms and exhibit outstanding capabilities in airborne particulate collection, sample processing, and target molecule analysis, thereby highlighting their potential for on-site bioaerosol monitoring. This review discusses the measurement of airborne microorganisms from air samples, including sources and transmission of bioaerosols, sampling strategies, and analytical methodologies. Recent advancements in microfluidic platforms have focused on bioaerosol sample preparation strategies, such as sorting, concentrating, and extracting, as well as rapid and field-deployable detection methods for analytes on microfluidic chips. Furthermore, we discuss an integrated platform for on-site bioaerosol analyses. We believe that our review significantly contributes to the literature as it assists in bridging the knowledge gaps in bioaerosol monitoring using microfluidic platforms.
Collapse
Affiliation(s)
- Inae Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, South Korea
| | - Eunyoung Jeon
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, South Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
52
|
Rodríguez-Arias RM, Rojo J, Fernández-González F, Pérez-Badia R. Desert dust intrusions and their incidence on airborne biological content. Review and case study in the Iberian Peninsula. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120464. [PMID: 36273688 DOI: 10.1016/j.envpol.2022.120464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Desert dust intrusions cause the transport of airborne particulate matter from natural sources, with important consequences for climate regulation, biodiversity, ecosystem functioning and dynamics, human health, and socio-economic activities. Some effects of desert intrusions are reinforced or aggravated by the bioaerosol content of the air during these episodes. The influence of desert intrusions on airborne bioaerosol content has been very little studied from a scientific point of view. In this study, a systematic review of scientific literature during 1970-2021 was carried out following the standard protocol Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). After this literature review, only 6% of the articles on airborne transport from desert areas published in the last 50 years are in some way associated with airborne pollen, and of these, only a small proportion focus on the study of pollen-related parameters. The Iberian Peninsula is affected by Saharan intrusions due to its proximity to the African continent and is seeing an increasing trend the number of intrusion events. There is a close relationship among the conditions favouring the occurrence of intrusion episodes, the transport of particulate matter, and the transport of bioaerosols such as pollen grains, spores, or bacteria. The lack of linearity in this relationship and the different seasonal patterns in the occurrence of intrusion events and the pollen season of most plants hinders the study of the correspondence between both phenomena. It is therefore important to analyse the proportion of pollen that comes from regional sources and the proportion that travels over long distances, and the atmospheric conditions that cause greater pollen emission during dust episodes. Current advances in aerobiological techniques make it possible to identify bioaerosols such as pollen and spores that serve as indicators of long-distance transport from remote areas belonging to other bioclimatic and biogeographical units. A greater incidence of desert intrusion episodes may pose a challenge for both traditional systems and for the calibration and correct validation of automatic aerobiological monitoring methods.
Collapse
Affiliation(s)
- R M Rodríguez-Arias
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - J Rojo
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - F Fernández-González
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - R Pérez-Badia
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain.
| |
Collapse
|
53
|
Xie C, Li L, Zhai X, Chu W. Improved redox synthesis of Mn–Co bimetallic oxide catalysts using citric acid and their toluene oxidation activity. RSC Adv 2023; 13:11069-11080. [PMID: 37033425 PMCID: PMC10078199 DOI: 10.1039/d3ra01440a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
In this work, high-activity cobalt-doped α-MnO2 hybrid materials were prepared using the citric acid oxidation reduction (CR) technique and applied to the catalytic oxidation of toluene. Compared to the traditional processes such as sol–gel, co-precipitation and our previous reported self-driving combustion process, the microstructure of Mn–Co bimetallic oxide catalyst is easier to regulated as well as the dispersion of active phase. Moreover, some accurate characterization techniques such as XRD, H2-TPR, O2-TPD, SEM, TEM, and XPS have been employed, to further illustrate the intrinsic factors for the efficient catalytic oxidation of toluene. It was ultimately found that the CR-Mn10Co1 prepared by citric acid oxidation reduction method could catalyze the oxidation of 90% of toluene at 232 °C, and its excellent catalytic performance was significantly related to its large specific surface area, excellent oxidation reduction ability, and abundant Mn3+ species and oxygen vacancy content. Therefore, citric acid oxidation reduction (CR) provides a convenient and effective route for the efficient and low-cost synthesis of Mn–Co catalysts for removing VOCs. The CR method was used to synthesize a nanorod CoO2/α-MnO2 catalyst with large specific surface area and abundant oxygen vacancies.![]()
Collapse
Affiliation(s)
- Chongrui Xie
- School of Chemical Engineering, Sichuan UniversityChengdu 610065China
| | - Luming Li
- College of Food and Biological Engineering, Chengdu UniversityChengdu 610106China
| | - Xuxu Zhai
- Institute of New Energy and Low Carbon Technology, Sichuan UniversityChengdu 610207China
| | - Wei Chu
- School of Chemical Engineering, Sichuan UniversityChengdu 610065China
- Institute of New Energy and Low Carbon Technology, Sichuan UniversityChengdu 610207China
| |
Collapse
|
54
|
Fernández-González M, Ribeiro H, Rodríguez-Rajo FJ, Cruz A, Abreu I. Short-Term Exposure of Dactylis glomerata Pollen to Atmospheric Gaseous Pollutants Is Related to an Increase in IgE Binding in Patients with Grass Pollen Allergies. PLANTS (BASEL, SWITZERLAND) 2022; 12:76. [PMID: 36616204 PMCID: PMC9823458 DOI: 10.3390/plants12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The concentrations of nitrogen dioxide (NO2) and tropospheric ozone (O3) in urban and industrial site atmospheres are considered key factors associated with pollen-related respiratory allergies. This work studies the effects of NO2 and O3 on the protein expression profile and IgE binding in patients with grass allergies to Dactylis glomerata pollen extracts. Pollens were collected during the flowering season and were exposed to NO2 and O3 in a controlled environmental chamber. The amount of soluble protein was examined using the Bradford method, and the protein expression profile and antigenic properties were analysed using the immunoblotting and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed apparent inter-sera differences concerning the number and intensity of IgE reactivity, with the most prominent at bands of 55 kDa, 35, 33, and 13 kDa. In the 13 kDa band, both gases tend to induce an increase in IgE binding, the band at 33 kDa showed a tendency towards a reduction, particularly pollen exposed to O3. Reactive bands at 55 and 35 kDa presented an increase in the IgE binding pattern for all the patient sera samples exposed to NO2, but the samples exposed to O3 showed an increase in some sera and in others a decrease. Regarding the ELISA results, out of the 21 tested samples, only 9 showed a statistically significant increase in total IgE reactivity after pollen exposure to the pollutants. Our study revealed that although airborne pollen allergens might be affected by air pollution, the possible impacts on allergy symptoms might vary depending on the type of pollutant and the patient's sensitisation profile.
Collapse
Affiliation(s)
- María Fernández-González
- Department of Plant Biology and Soil Sciences, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain
| | - Helena Ribeiro
- Earth Sciences Institute (ICT), Pole of the Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Fco. Javier Rodríguez-Rajo
- Department of Plant Biology and Soil Sciences, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain
| | - Ana Cruz
- Clinical Pathology Service, Immunology Laboratory Vila Nova de Gaia Hospitalar Centre, 4434-502 Vila Nova de Gaia, Portugal
| | - Ilda Abreu
- Earth Sciences Institute (ICT), Pole of the Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Department of Biology, Faculty of Sciences University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
55
|
Liu Q, Wen M, Guo Y, Song S, Li G, An T. Efficient Catalytic Combustion of Cyclohexane over PdAg/Fe 2O 3 Catalysts under Low-Temperature Conditions: Establishing the Degradation Mechanism Using PTR-TOF-MS and in Situ DRIFTS. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55503-55516. [PMID: 36456474 DOI: 10.1021/acsami.2c14515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cyclohexane, a typical volatile organic compound (VOC), poses high risks to the environment and humans. Herein, synthesized PdAg/Fe2O3 catalysts exhibited exceptional catalytic performance for cyclohexane combustion at lower temperatures (50% mineralization temperature (T50) of 199 °C, 90% mineralization temperature (T90) of 315 °C) than Pd/Fe2O3 (T50 of 262 °C, T90 of 335 °C) and Fe2O3 (T50 of 305 °C, T90 of 360 °C). In addition, PdAg/Fe2O3 displayed enhanced stability by alloying Ag with Pd. The redox and acidity of the PdAg/Fe2O3 were studied by XPS, H2-TPR, and NH3-TPD. In situ diffuse reflectance infrared Fourier transform spectroscopy and proton-transfer-reaction time-of-flight mass spectrometry were applied to identify the intermediates formed on the catalyst surface and in the tail gas during oxidation, respectively. Results suggested that loading PdAg onto Fe2O3 significantly enhanced the adsorption and activation of oxygen and cyclohexane, oxidative dehydrogenation of cyclohexane to benzene, and catalytic cracking of cyclohexane to olefins at low temperatures. This in-depth study will benefit the design and application of efficient catalysts for the effective combustion of VOCs at low temperatures.
Collapse
Affiliation(s)
- Qiuxia Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Meicheng Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Yunlong Guo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Shengnan Song
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou510006, China
| |
Collapse
|
56
|
Zhang T, Shen Z, Huang S, Lei Y, Zeng Y, Sun J, Zhang Q, Ho SSH, Xu H, Cao J. Optical properties, molecular characterizations, and oxidative potentials of different polarity levels of water-soluble organic matters in winter PM 2.5 in six China's megacities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158600. [PMID: 36089047 DOI: 10.1016/j.scitotenv.2022.158600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Humic-like substances (HULIS) accounted for a great fraction of water-soluble organic matter (WSOM) in PM2.5, which efficiently absorb ultraviolet (UV) radiation and pose climate and health impacts. In this study, the molecular structure, optical properties, and oxidative potential (OP) of acid- and neutral-HULIS (denoted as HULIS-a, and HULIS-n, respectively), and high-polarity WSOM (HP-WSOM) were investigated in winter PM2.5 collected at six China's megacities. For both carbon levels and optical absorption coefficients (babs_365), HULIS-a/HULIS-n/HP-WSOM showed significant spatial differences. For each city, the carbon levels and babs_365 follow a similar order of HULIS-n > HULIS-a > HP-WSOM. Besides, the babs_365 of HULIS-n and HULIS-a showed the same order of Harbin > Beijing ≈ Wuhan > Xi'an > Guangzhou > Chengdu, while HP-WSOM exhibited an order of Wuhan > Chengdu > Xi'an > Harbin > Beijing > Guangzhou. Both HULIS-a and HULIS-n were abundant in aromatic and aliphatic compounds, whereas HP-WSOM was dominated by a carboxylic acid group. The OP (in unit of nmol H2O2 μg-1C) followed the order of HP-WSOM > HULIS-a > HULIS-n in all the cities. The OPs of HULIS-a, HULIS-n, and HP-WSOM in Harbin and Beijing were much higher than those of other cities, attributing to the high contribution from biomass burning. Highly positive correlations between reactive oxygen species (ROS) of HULIS-a and MAE365 were obtained in Chengdu, Wuhan, and Harbin, but ROS of HULIS-n had stronger correlation with MAE365 in Harbin, Chengdu, and Xi'an.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
| | - Shasha Huang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yali Lei
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yaling Zeng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, United States
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| |
Collapse
|
57
|
Morrison GC, Eftekhari A, Lakey PSJ, Shiraiwa M, Cummings BE, Waring MS, Williams B. Partitioning of reactive oxygen species from indoor surfaces to indoor aerosols. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2310-2323. [PMID: 36314460 DOI: 10.1039/d2em00307d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reactive oxygen species (ROS) are among the species thought to be responsible for the adverse health effects of particulate matter (PM) inhalation. Field studies suggest that indoor sources of ROS contribute to measured ROS on PM in indoor air. We hypothesize that ozone reacts on indoor surfaces to form semi-volatile ROS, in particular organic peroxides (OPX), which partition to airborne particles. To test this hypothesis, we modeled ozone-induced formation of OPX, its decay and its partitioning to PM in a residential building and compared the results to field measurements. Simulations indicate that, while ROS of outdoor origin is the primary contributor to indoor ROS (in PM), a substantial fraction of ROS present in indoor PM is from ozone-surface chemistry. At an air change rate equal to 1/h, and an outdoor ozone mixing ratio of 35 ppb, 25% of the ROS concentration in air is due to indoor formation and partitioning of OPX to PM. For the same conditions, but with a modest indoor source of PM (1.5 mg h-1), 44% of indoor ROS on PM is of indoor origin. An indoor source of ozone, such as an electrostatic air cleaner, also increases OPX present in indoor PM. The results of the simulations support the hypothesis that ozone-induced formation of OPX on indoor surfaces, and subsequent partitioning to aerosols, is sufficient to explain field observations. Therefore, indoor sourced ROS could contribute meaningfully to total inhaled PM-ROS.
Collapse
Affiliation(s)
- Glenn C Morrison
- Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC, USA.
| | - Azin Eftekhari
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, GA, USA
| | | | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, CA, USA
| | - Bryan E Cummings
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Michael S Waring
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Brent Williams
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
58
|
Kaur R, Sadtchenko V. Mass Accommodation of Water on Ice at Environmentally Relevant Temperatures: Insights from Fast Scanning Calorimetry. J Phys Chem Lett 2022; 13:11112-11117. [PMID: 36441956 DOI: 10.1021/acs.jpclett.2c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Using a conceptually simple, quasi-adiabatic, fast scanning calorimetry technique, we have investigated the sublimation kinetics of ice films with thicknesses ranging from 14 to 400 nm at environmentally relevant temperatures, between 223 and 268 K. The technique enables accurate determination of ice sublimation rates into vacuum under the conditions of free molecular flow during rapid yet quasistatic heating. The measured sublimation fluxes yield the vapor pressure of the ice samples, which is indistinguishable from that derived from experiments under near-equilibrium conditions. Thus, in agreement with the microscopic reversibility principle, we conclude that the mass accommodation coefficient of water by ice is unity and temperature-independent in the temperature range of the studies. We discuss these findings in the context of current computational and theoretical research into the chemistry and physics of aqueous interfaces.
Collapse
Affiliation(s)
- Rinipal Kaur
- Department of Chemistry, The George Washington University, Washington, D.C.20052, United States
| | - Vlad Sadtchenko
- Department of Chemistry, The George Washington University, Washington, D.C.20052, United States
| |
Collapse
|
59
|
Min X, Guo M, Li K, Gu JN, Hu X, Jia J, Sun T. Performance of toluene oxidation on different morphologies of α-MnO 2 prepared using manganese-based compound high-selectively recovered from spent lithium-ion batteries. ENVIRONMENTAL RESEARCH 2022; 215:114299. [PMID: 36096167 DOI: 10.1016/j.envres.2022.114299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The proper disposals of spent lithium-ion batteries (LIBs) and volatile organic compounds (VOCs) both have a significant impact on the environment and human health. In this work, different morphologies of α-MnO2 catalysts are synthesized using a manganese-based compound as the precursor which is high-selectively recovered from spent lithium-ion ternary batteries. Different synthesis methods including the co-precipitation method, hydrothermal method, and impregnation method are used to prepare different morphologies of α-MnO2 catalysts and their catalytic activities of toluene oxidation are investigated. Experimental results show that MnO2-HM-140 with stacked nanorods synthesized using the hydrothermal method exhibits the best catalytic performance of toluene oxidation (T90 of 226 °C under the WHSV of 60,000 mL g-1·h-1), which could be attributed to its better redox ability at low temperature and much more abundant adsorbed oxygen species at low temperature. The adsorption abilities of toluene and the replenish rate of surface lattice oxygen can be enhanced due to the increase of oxygen vacancies on the surface of MnO2-HM-140. Furthermore, the results of in-situ DRIFTS and TD/GC-MS imply that benzoate species are the main intermediate groups and then the reaction pathway of toluene oxidation on the surface of MnO2-HM-140 is proposed.
Collapse
Affiliation(s)
- Xin Min
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China
| | - Mingming Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai, 200240, PR China.
| | - Kan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China; Lab Center for the School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jia-Nan Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China
| | - Xiaofang Hu
- Lab Center for the School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China; Shanghai Institute of Pollution Control and Ecology Security, Shanghai, 200092, PR China
| | - Tonghua Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai, 200240, PR China.
| |
Collapse
|
60
|
Xie L, Zhu K, Jiang W, Lu H, Yang H, Deng Y, Jiang Y, Jia H. Toxic effects and primary source of the aged micro-sized artificial turf fragments and rubber particles: Comparative studies on laboratory photoaging and actual field sampling. ENVIRONMENT INTERNATIONAL 2022; 170:107663. [PMID: 36450210 DOI: 10.1016/j.envint.2022.107663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Numerous micro-sized artificial turf fragments (MATF) and rubber particles (MRP) are generated and accumulated during the use of the artificial playing field. However, attention has rarely been paid to the potential toxic effects of MATF and MRP on sportsmen. In this study, the active components and chemical composition of aged MATF and MRP derived from laboratory photoaging and actual field sampling were detected, and their effects on cytotoxicity were examined correspondingly. Laboratory photoaging significantly increased environmental persistent free radicals (EPFRs), reactive oxygen species (ROS) abundances and oxidative potential (OP) levels on MATF and MRP, but they have limited cytotoxicity. Unfortunately, in the actual field, aged MATF and MRP with higher heavy metals and polycyclic aromatic hydrocarbons (PAHs) contents exhibited markedly higher cytotoxicity with the survival rate of cells of 78 % and 26 % (p < 0.05), although they had lower EPFRs and ROS yields. Correlation analysis revealed that the cell viability was closely linked to heavy metals of MATF (p < 0.05), and to organic hydroperoxide (OHP), PAHs and heavy metals of MRP (p < 0.05). By systematically considering the above results, heavy metals and PAHs enriched on MATF and MRP from the surrounding environment played the important role in the cytotoxicity, which was different from conventional perspectives. Our findings demonstrate that MATF and MRP associated with an artificial turf field contain potent mixtures of pollutants and can, therefore, be relevant yet underestimated factors contributing to the health risks.
Collapse
Affiliation(s)
- Linyang Xie
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Wenjun Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Haodong Lu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Huiqiang Yang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yongxi Deng
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yuanren Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
61
|
Zhang X, Tan S, Chen X, Yin S. Computational chemistry of cluster: Understanding the mechanism of atmospheric new particle formation at the molecular level. CHEMOSPHERE 2022; 308:136109. [PMID: 36007737 DOI: 10.1016/j.chemosphere.2022.136109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
New particle formation (NPF), which exerts significant influence over human health and global climate, has been a hot topic and rapidly expands field of research in the environmental and atmospheric chemistry recent years. Generally, NPF contains two processes: formation of critical nucleus and further growth of the nucleus. However, due to the complexity of the atmospheric nucleation, which is a multicomponent process, formation of critical clusters as well as their growth is still connected to large uncertainties. Detection limits of instruments in measuring specific gaseous aerosol precursors and chemical compositions at the molecular level call for computational studies. Computational chemistry could effectively compensate the deficiency of laboratory experiments as well as observations and predict the nucleation mechanisms. We review the present theoretical literatures that discuss nucleation mechanism of atmospheric clusters. Focus of this review is on different nucleation systems involving sulfur-containing species, nitrogen-containing species and iodine-containing species. We hope this review will provide a deep insight for the molecular interaction of nucleation precursors and reveal nucleation mechanism at the molecular level.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Shendong Tan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
62
|
Enhancement of PdV/TiO2 catalyst for low temperature DCM catalytic removal and chlorine poisoning resistance by oxygen vacancy construction. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
63
|
Aregahegn KZ, Felber T, Tilgner A, Hoffmann EH, Schaefer T, Herrmann H. Kinetics and Mechanisms of Aqueous-Phase Reactions of Triplet-State Imidazole-2-carboxaldehyde and 3,4-Dimethoxybenzaldehyde with α,β-Unsaturated Carbonyl Compounds. J Phys Chem A 2022; 126:8727-8740. [DOI: 10.1021/acs.jpca.2c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kifle Z. Aregahegn
- Department of Chemistry, Debre Berhan University, P.O. Box 445, 1000 Debre Berhan, Ethiopia
| | - Tamara Felber
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Andreas Tilgner
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Erik H. Hoffmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
64
|
Zhao Y, Yao M, Wang Y, Li Z, Wang S, Li C, Xiao H. Acylperoxy Radicals as Key Intermediates in the Formation of Dimeric Compounds in α-Pinene Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14249-14261. [PMID: 36178682 DOI: 10.1021/acs.est.2c02090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High molecular weight dimeric compounds constitute a significant fraction of secondary organic aerosol (SOA) and have profound impacts on the properties and lifecycle of particles in the atmosphere. Although different formation mechanisms involving reactive intermediates and/or closed-shell monomeric species have been proposed for the particle-phase dimers, their relative importance remains in debate. Here, we report unambiguous experimental evidence of the important role of acyl organic peroxy radicals (RO2) and a small but non-negligible contribution from stabilized Criegee intermediates (SCIs) in the formation of particle-phase dimers during ozonolysis of α-pinene, one of the most important precursors for biogenic SOA. Specifically, we find that acyl RO2-involved reactions explain 50-80% of total oxygenated dimer signals (C15-C20, O/C ≥ 0.4) and 20-30% of the total less oxygenated (O/C < 0.4) dimer signals. In particular, they contribute to 70% of C15-C19 dimer ester formation, likely mainly via the decarboxylation of diacyl peroxides arising from acyl RO2 cross-reactions. In comparison, SCIs play a minor role in the formation of C15-C19 dimer esters but react noticeably with the most abundant C9 and C10 carboxylic acids and/or carbonyl products to form C19 and C20 dimeric peroxides, which are prone to particle-phase transformation to form more stable dimers without the peroxide functionality. This work provides a clearer view of the formation pathways of particle-phase dimers from α-pinene oxidation and would help reduce the uncertainties in future atmospheric modeling of the budget, properties, and health and climate impacts of SOA.
Collapse
Affiliation(s)
- Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingqi Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shunyao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenxi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huayun Xiao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
65
|
Ye C, Xue C, Liu P, Zhang C, Ma Z, Zhang Y, Liu C, Liu J, Lu K, Mu Y. Strong impacts of biomass burning, nitrogen fertilization, and fine particles on gas-phase hydrogen peroxide (H 2O 2). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156997. [PMID: 35777574 DOI: 10.1016/j.scitotenv.2022.156997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Gas-phase hydrogen peroxide (H2O2) plays an important role in atmospheric chemistry as an indicator of the atmospheric oxidizing capacity. It is also a vital oxidant of sulfur dioxide (SO2) in the aqueous phase, resulting in the formation of acid precipitation and sulfate aerosol. However, sources of H2O2 are not fully understood especially in polluted areas affected by human activities. In this study, we reported some high H2O2 cases observed during one summer and two winter campaigns conducted at a polluted rural site in the North China Plain. Our results showed that agricultural fires led to high H2O2 concentrations up to 9 ppb, indicating biomass burning events contributed substantially to primary H2O2 emission. In addition, elevated H2O2 and O3 concentrations were measured after fertilization as a consequence of the enhanced atmospheric oxidizing capacity by soil HONO emission. Furthermore, H2O2 exhibited unexpectedly high concentration under high NOx conditions in winter, which are closely related to multiphase reactions in particles involving organic chromophores. Our findings suggest that these special factors (biomass burning, fertilization, and ambient particles), which are not well considered in current models, are significant contributors to H2O2 production, thereby affecting the regional atmospheric oxidizing capacity and the global sulfate aerosol formation.
Collapse
Affiliation(s)
- Can Ye
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chaoyang Xue
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS - Université Orléans - CNES, 45071 Orléans Cedex 2, France.
| | - Pengfei Liu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Zhang
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuobiao Ma
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Zhang
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengtang Liu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Liu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yujing Mu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
66
|
Edwards KC, Klodt AL, Galeazzo T, Schervish M, Wei J, Fang T, Donahue NM, Aumont B, Nizkorodov SA, Shiraiwa M. Effects of Nitrogen Oxides on the Production of Reactive Oxygen Species and Environmentally Persistent Free Radicals from α-Pinene and Naphthalene Secondary Organic Aerosols. J Phys Chem A 2022; 126:7361-7372. [PMID: 36194388 PMCID: PMC9574922 DOI: 10.1021/acs.jpca.2c05532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species (ROS) and environmentally persistent free radicals (EPFR) play an important role in chemical transformation of atmospheric aerosols and adverse aerosol health effects. This study investigated the effects of nitrogen oxides (NOx) during photooxidation of α-pinene and naphthalene on the EPFR content and ROS formation from secondary organic aerosols (SOA). Electron paramagnetic resonance (EPR) spectroscopy was applied to quantify EPFR content and ROS formation. While no EPFR were detected in α-pinene SOA, we found that naphthalene SOA contained about 0.7 pmol μg-1 of EPFR, and NOx has little influence on EPFR concentrations and oxidative potential. α-Pinene and naphthalene SOA generated under low NOx conditions form OH radicals and superoxide in the aqueous phase, which was lowered substantially by 50-80% for SOA generated under high NOx conditions. High-resolution mass spectrometry analysis showed the substantial formation of nitroaromatics and organic nitrates in a high NOx environment. The modeling results using the GECKO-A model that simulates explicit gas-phase chemistry and the radical 2D-VBS model that treats autoxidation predicted reduced formation of hydroperoxides and enhanced formation of organic nitrates under high NOx due to the reactions of peroxy radicals with NOx instead of their reactions with HO2. Consistently, the presence of NOx resulted in the decrease of peroxide contents and oxidative potential of α-pinene SOA.
Collapse
Affiliation(s)
- Kasey C Edwards
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Alexandra L Klodt
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Tommaso Galeazzo
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Meredith Schervish
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jinlai Wei
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Ting Fang
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Neil M Donahue
- Departments of Chemistry, Chemical Engineering, Engineering and Public Policy, Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Bernard Aumont
- CNRS, LISA, Univ of Paris Est Creteil and University Paris Cité, F-94010 Créteil, France
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
67
|
To T, Terebessy E, Zhu J, Zhang K, Lakey PS, Shiraiwa M, Hatzopoulou M, Minet L, Weichenthal S, Dell S, Stieb D. Does early life exposure to exogenous sources of reactive oxygen species (ROS) increase the risk of respiratory and allergic diseases in children? A longitudinal cohort study. Environ Health 2022; 21:90. [PMID: 36184638 PMCID: PMC9528154 DOI: 10.1186/s12940-022-00902-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/12/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Excess reactive oxygen species (ROS) can cause oxidative stress damaging cells and tissues, leading to adverse health effects in the respiratory tract. Yet, few human epidemiological studies have quantified the adverse effect of early life exposure to ROS on child health. Thus, this study aimed to examine the association of levels of ROS exposure at birth and the subsequent risk of developing common respiratory and allergic diseases in children. METHODS 1,284 Toronto Child Health Evaluation Questionnaire (T-CHEQ) participants were followed from birth (born between 1996 and 2000) until outcome, March 31, 2016 or loss-to-follow-up. Using ROS data from air monitoring campaigns and land use data in Toronto, ROS concentrations generated in the human respiratory tract in response to inhaled pollutants were estimated using a kinetic multi-layer model. These ROS values were assigned to participants' postal codes at birth. Cox proportional hazards regression models, adjusted for confounders, were then used to estimate hazard ratios (HR) with 95% confidence intervals (CI) per unit increase in interquartile range (IQR). RESULTS After adjusting for confounders, iron (Fe) and copper (Cu) were not significantly associated with the risk of asthma, allergic rhinitis, nor eczema. However, ROS, a measure of the combined impacts of Fe and Cu in PM2.5, was associated with an increased risk of asthma (HR = 1.11, 95% CI: 1.02-1.21, p < 0.02) per IQR. There were no statistically significant associations of ROS with allergic rhinitis (HR = 0.96, 95% CI: 0.88-1.04, p = 0.35) and eczema (HR = 1.03, 95% CI: 0.98-1.09, p = 0.24). CONCLUSION These findings showed that ROS exposure in early life significantly increased the childhood risk of asthma, but not allergic rhinitis and eczema.
Collapse
Affiliation(s)
- Teresa To
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Canada.
- ICES, Ontario, Canada.
| | - Emilie Terebessy
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Jingqin Zhu
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Canada
- ICES, Ontario, Canada
| | - Kimball Zhang
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Canada
- ICES, Ontario, Canada
| | - Pascale Sj Lakey
- Department of Chemistry, University of California Irvine, Irvine, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, USA
| | - Marianne Hatzopoulou
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Laura Minet
- Department of Civil Engineering, University of Victoria, Victoria, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
- Water and Air Quality Bureau, Health Canada, Ottawa, Canada
| | - Sharon Dell
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Pediatric Respiratory Medicine, Provincial Health Services Authority, BC Children's Hospital, Vancouver, Canada
| | - Dave Stieb
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
68
|
Li S, Men Y, Liu S, Wang J. Boosting the efficiencies of ethanol total combustion by Cs incorporation into rod-shaped α-MnO2 catalysts. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
69
|
Abstract
Vehicle exhaust has been acknowledged as an essential factor affecting human health due to the extensive use of cars. Its main components include volatile organic compounds (VOCs) and nitrogen oxides (NOx), which can cause acute irritation and chronic diseases, and significant research on the treatment of vehicle exhaust has received increasing attention in recent decades. Recently, photocatalytic technology has been considered a practical approach for eliminating vehicle emissions. This review highlights the crucial role of photocatalytic technology in eliminating vehicle emissions using semiconductor catalysts. A particular emphasis has been placed on various photocatalytic materials, such as TiO2-based materials, Bi-based materials, and Metal–Organic Frameworks (MOFs), and their recent advances in the performance of VOC and NOx photodegradation. In addition, the applications of photocatalytic technology for the elimination of vehicle exhaust are presented (including photocatalysts combined with pavement surfaces, making photocatalysts into architectural coatings and photoreactors), which will offer a promising strategy for photocatalytic technology to remove vehicle exhaust.
Collapse
|
70
|
Numadate N, Saito S, Nojima Y, Ishibashi TA, Enami S, Hama T. Direct Observation and Quantitative Measurement of OH Radical Desorption During the Ultraviolet Photolysis of Liquid Nonanoic Acid. J Phys Chem Lett 2022; 13:8290-8297. [PMID: 36073084 DOI: 10.1021/acs.jpclett.2c02199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultraviolet (UV) photolysis of fatty acid surfactants─which cover the surfaces of atmospheric liquid aerosols and are found in the oceans─such as nonanoic acid (NA) has recently been suggested as a source of hydroxyl (OH) radicals in the troposphere. We used laser-induced fluorescence to directly observe OH radicals desorbed from the surface of neat liquid NA as a primary photoproduct following 213 nm irradiation. The upper limit of photoreaction cross section for the OH radical desorption was estimated to be 9.0(4.1) × 10-22 cm2, which is only 1.2 ± 0.8% of the photoreaction cross section established for the photolysis of gas-phase acetic acid monomers. Vibrational sum-frequency generation spectroscopy for liquid NA revealed the hydrogen-bonded, cyclic, dimer structure of the NA molecules at the liquid surface. This dimerization can inhibit the formation of OH radicals and lead the present low photochemical reactivity of liquid NA.
Collapse
Affiliation(s)
- Naoki Numadate
- Komaba Institute for Science and Department of Basic Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Shota Saito
- Komaba Institute for Science and Department of Basic Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Yuki Nojima
- Department of Chemistry, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Taka-Aki Ishibashi
- Department of Chemistry, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Shinichi Enami
- National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Tetsuya Hama
- Komaba Institute for Science and Department of Basic Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| |
Collapse
|
71
|
Vineeth Kumar CM, Karthick V, Kumar VG, Inbakandan D, Rene ER, Suganya KSU, Embrandiri A, Dhas TS, Ravi M, Sowmiya P. The impact of engineered nanomaterials on the environment: Release mechanism, toxicity, transformation, and remediation. ENVIRONMENTAL RESEARCH 2022; 212:113202. [PMID: 35398077 DOI: 10.1016/j.envres.2022.113202] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The presence and longevity of nanomaterials in the ecosystem, as well as their properties, account for environmental toxicity. When nanomaterials in terrestrial and aquatic systems are exposed to the prevailing environmental conditions, they undergo various transformations such as dissociation, dissolution, and aggregation, which affects the food chain. The toxicity of nanomaterials is influenced by a variety of factors, including environmental factors and its physico-chemical characteristics. Bioaccumulation, biotransformation, and biomagnification are the mechanisms that have been identified for determining the fate of nanomaterials. The route taken by nanomaterials to reach living cells provides us with information about their toxicity profile. This review discusses the recent advances in the transport, transformation, and fate of nanomaterials after they are released into the environment. The review also discusses how nanoparticles affect lower trophic organisms through direct contact, the impact of nanoparticles on higher trophic organisms, and the possible options for remediation.
Collapse
Affiliation(s)
- C M Vineeth Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - V Karthick
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India.
| | - V Ganesh Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - D Inbakandan
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2611AX Delft, the Netherlands
| | - K S Uma Suganya
- Department of Biotechnology and Biochemical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram, 695018, Kerala, India
| | - Asha Embrandiri
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Amhara, Ethiopia
| | - T Stalin Dhas
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - M Ravi
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - P Sowmiya
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| |
Collapse
|
72
|
Pardo M, Offer S, Hartner E, Di Bucchianico S, Bisig C, Bauer S, Pantzke J, Zimmermann EJ, Cao X, Binder S, Kuhn E, Huber A, Jeong S, Käfer U, Schneider E, Mesceriakovas A, Bendl J, Brejcha R, Buchholz A, Gat D, Hohaus T, Rastak N, Karg E, Jakobi G, Kalberer M, Kanashova T, Hu Y, Ogris C, Marsico A, Theis F, Shalit T, Gröger T, Rüger CP, Oeder S, Orasche J, Paul A, Ziehm T, Zhang ZH, Adam T, Sippula O, Sklorz M, Schnelle-Kreis J, Czech H, Kiendler-Scharr A, Zimmermann R, Rudich Y. Exposure to naphthalene and β-pinene-derived secondary organic aerosol induced divergent changes in transcript levels of BEAS-2B cells. ENVIRONMENT INTERNATIONAL 2022; 166:107366. [PMID: 35763991 DOI: 10.1016/j.envint.2022.107366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The health effects of exposure to secondary organic aerosols (SOAs) are still limited. Here, we investigated and compared the toxicities of soot particles (SP) coated with β-pinene SOA (SOAβPin-SP) and SP coated with naphthalene SOA (SOANap-SP) in a human bronchial epithelial cell line (BEAS-2B) residing at the air-liquid interface. SOAβPin-SP mostly contained oxygenated aliphatic compounds from β-pinene photooxidation, whereas SOANap-SP contained a significant fraction of oxygenated aromatic products under similar conditions. Following exposure, genome-wide transcriptome responses showed an Nrf2 oxidative stress response, particularly for SOANap-SP. Other signaling pathways, such as redox signaling, inflammatory signaling, and the involvement of matrix metalloproteinase, were identified to have a stronger impact following exposure to SOANap-SP. SOANap-SP also induced a stronger genotoxicity response than that of SOAβPin-SP. This study elucidated the mechanisms that govern SOA toxicity and showed that, compared to SOAs derived from a typical biogenic precursor, SOAs from a typical anthropogenic precursor have higher toxicological potency, which was accompanied with the activation of varied cellular mechanisms, such as aryl hydrocarbon receptor. This can be attributed to the difference in chemical composition; specifically, the aromatic compounds in the naphthalene-derived SOA had higher cytotoxic potential than that of the β-pinene-derived SOA.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, ISR-7610001 Rehovot, Israel.
| | - Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Xin Cao
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Stephanie Binder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Seongho Jeong
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Uwe Käfer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Eric Schneider
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Arunas Mesceriakovas
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70210 Kuopio, Finland
| | - Jan Bendl
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; University of the Bundeswehr Munich, Institute for Chemistry and Environmental Engineering, Werner- Heisenberg-Weg 39, D-85577 Neubiberg, Germany; Institute for Environmental Studies, Faculty of Science, Charles University, Albertov 6, CZE-12800 Prague, Czech Republic
| | - Ramona Brejcha
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Angela Buchholz
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70210 Kuopio, Finland
| | - Daniela Gat
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, ISR-7610001 Rehovot, Israel
| | - Thorsten Hohaus
- Institute of Energy and Climate Research, Troposphere (IEK-8), Forschungszentrum Jülich GmbH, Wilhelm-Johen-Str., D-52428 Jülich, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Erwin Karg
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Gert Jakobi
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Markus Kalberer
- Department of Environmental Sciences, University of Basel, Klingelbergstr. 27, CH-4056 Basel, Switzerland
| | - Tamara Kanashova
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Yue Hu
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Christoph Ogris
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Annalisa Marsico
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Tali Shalit
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Andreas Paul
- Institute of Energy and Climate Research, Troposphere (IEK-8), Forschungszentrum Jülich GmbH, Wilhelm-Johen-Str., D-52428 Jülich, Germany
| | - Till Ziehm
- Institute of Energy and Climate Research, Troposphere (IEK-8), Forschungszentrum Jülich GmbH, Wilhelm-Johen-Str., D-52428 Jülich, Germany
| | - Zhi-Hui Zhang
- Department of Environmental Sciences, University of Basel, Klingelbergstr. 27, CH-4056 Basel, Switzerland
| | - Thomas Adam
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; University of the Bundeswehr Munich, Institute for Chemistry and Environmental Engineering, Werner- Heisenberg-Weg 39, D-85577 Neubiberg, Germany
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70210 Kuopio, Finland
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, Troposphere (IEK-8), Forschungszentrum Jülich GmbH, Wilhelm-Johen-Str., D-52428 Jülich, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, ISR-7610001 Rehovot, Israel
| |
Collapse
|
73
|
Willis MD, Wilson KR. Coupled Interfacial and Bulk Kinetics Govern the Timescales of Multiphase Ozonolysis Reactions. J Phys Chem A 2022; 126:4991-5010. [PMID: 35863113 DOI: 10.1021/acs.jpca.2c03059] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chemical transformations in aerosols impact the lifetime of particle phase species, the fate of atmospheric pollutants, and both climate- and health-relevant aerosol properties. Timescales for multiphase reactions of ozone in atmospheric aqueous phases are governed by coupled kinetic processes between the gas phase, the particle interface, and its bulk, which respond dynamically to reactive consumption of O3. However, models of atmospheric aerosol reactivity often do not account for the coupled nature of multiphase processes. To examine these dynamics, we use new and prior experimental observations of aqueous droplet reaction kinetics, including three systems with a range of surface affinities and ozonolysis rate coefficients (trans-aconitic acid (C6H6O6), maleic acid (C4H4O4), and sodium nitrite (NaNO2)). Using literature rate coefficients and thermodynamic properties, we constrain a simple two-compartment stochastic kinetic model which resolves the interface from the particle bulk and represents O3 partitioning, diffusion, and reaction as a coupled kinetic system. Our kinetic model accurately predicts decay kinetics across all three systems, demonstrating that both the thermodynamic properties of O3 and the coupled kinetic and diffusion processes are key to making accurate predictions. An enhanced concentration of adsorbed O3, compared to gas and bulk phases is rapidly maintained and remains constant even as O3 is consumed by reaction. Multiphase systems dynamically seek to achieve equilibrium in response to reactive O3 loss, but this is hampered at solute concentrations relevant to aqueous aerosol by the rate of O3 arrival in the bulk by diffusion. As a result, bulk-phase O3 becomes depleted from its Henry's law solubility. This bulk-phase O3 depletion limits reaction timescales for relatively slow-reacting organic solutes with low interfacial affinity (i.e., trans-aconitic and maleic acids, with krxn ≈ 103-104 M-1 s-1), which is in contrast to fast-reacting solutes with higher surface affinity (i.e., nitrite, with krxn ≈ 105 M-1 s-1) where surface reactions strongly impact the observed decay kinetics.
Collapse
Affiliation(s)
- Megan D Willis
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
74
|
Wei J, Fang T, Shiraiwa M. Effects of Acidity on Reactive Oxygen Species Formation from Secondary Organic Aerosols. ACS ENVIRONMENTAL AU 2022; 2:336-345. [PMID: 35928555 PMCID: PMC9342606 DOI: 10.1021/acsenvironau.2c00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) play a critical role in the chemical transformation of atmospheric secondary organic aerosols (SOA) and aerosol health effects by causing oxidative stress in vivo. Acidity is an important physicochemical property of atmospheric aerosols, but its effects on the ROS formation from SOA have been poorly characterized. By applying the electron paramagnetic resonance spin-trapping technique and the Diogenes chemiluminescence assay, we find highly distinct radical yields and composition at different pH values in the range of 1-7.4 from SOA generated by oxidation of isoprene, α-terpineol, α-pinene, β-pinene, toluene, and naphthalene. We observe that isoprene SOA has substantial hydroxyl radical (•OH) and organic radical yields at neutral pH, which are 1.5-2 times higher compared to acidic conditions in total radical yields. Superoxide (O2 •-) is found to be the dominant species generated by all types of SOAs at lower pH. At neutral pH, α-terpineol SOA exhibits a substantial yield of carbon-centered organic radicals, while no radical formation is observed by aromatic SOA. Further experiments with model compounds show that the decomposition of organic peroxide leading to radical formation may be suppressed at lower pH due to acid-catalyzed rearrangement of peroxides. We also observe 1.5-3 times higher molar yields of hydrogen peroxide (H2O2) in acidic conditions compared to neutral pH by biogenic and aromatic SOA, likely due to enhanced decomposition of α-hydroxyhydroperoxides and quinone redox cycling, respectively. These findings are critical to bridge the gap in understanding ROS formation mechanisms and kinetics in atmospheric and physiological environments.
Collapse
|
75
|
Zhang ZW, Shahpoury P, Zhang W, Harner T, Huang L. A new method for measuring airborne elemental carbon using PUF disk passive samplers. CHEMOSPHERE 2022; 299:134323. [PMID: 35302004 DOI: 10.1016/j.chemosphere.2022.134323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Carbonaceous aerosol species, such as elemental carbon (EC), are important Short-Lived Climate Forcers (SLCFs), contributing to climate and health effects of air pollution. The quantification of carbonaceous aerosols has been conventionally carried out using active air sampling followed by various analytical techniques, such as thermal/thermal-optical analysis. Active sampling requires specific equipment and infrastructure with electricity and therefore may not be the best choice for studying carbonaceous aerosols at remote locations. Passive sampling on the other hand provides a simple and cost-effective alternative to study time-weighted temporal and spatial trends. For the first time in this study, we have developed a method to examine the viability of measuring EC using polyurethane foam passive air samplers (PUF-PAS) coupled with a thermal analysis, i.e., EnCan-Total-900 (ECT9). The method was found reproducible with coefficients of variation as low as 3% for EC measured in ambient passive samples. The method had relatively low background with EC levels in blanks being as low as 0.1% of those in deployed samples, allowing quantification within a wide range of concentrations. The results indicate a homogenous distribution of particles within the PUF-PAS substrate. EC concentrations measured with the passive method were not significantly different from those obtained from active samples at the study sites (p > 0.01). This proof of concept of the PUF-PAS method provides an opportunity to cost-effectively expand measurements of elemental carbon at the global scale, and could be further extended to include other carbonaceous aerosol species in the future. This helps address regional data gaps for improving uncertainties of SLCF impacts on global climate forcing and to inform policy decisions.
Collapse
Affiliation(s)
- Zheng Wei Zhang
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada
| | - Pourya Shahpoury
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada; Department of Chemistry, Trent University, Peterborough, Canada.
| | - Wendy Zhang
- Climate Research Division, Environment and Climate Change Canada, Toronto, Canada
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada
| | - Lin Huang
- Climate Research Division, Environment and Climate Change Canada, Toronto, Canada
| |
Collapse
|
76
|
The use of black mass in spent primary battery as an oxidative catalyst for removal of volatile organic compounds. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
77
|
Zhu J, Sheng M, Shang J, Kuang Y, Shi X, Qiu X. Photocatalytic Role of Atmospheric Soot Particles under Visible-Light Irradiation: Reactive Oxygen Species Generation, Self-Oxidation Process, and Induced Higher Oxidative Potential and Cytotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7668-7678. [PMID: 35537182 DOI: 10.1021/acs.est.2c00420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is known that there are semiconductor oxides involved in mineral dust, which have photocatalytic properties. However, soot particles contained in carbonaceous aerosol and their photoactivity under sunlight are rarely realized. In this study, reactive oxygen species (ROS) such as superoxide anions and hydroxyl radicals were generated upon visible-light irradiation of soot particles, and the production activity was consistent with the carbonaceous core content, indicating that the atmospheric soot particles can serve as a potential photocatalyst. The increase of oxygen-containing functional groups, environmentally persistent free radicals, oxygenated polycyclic aromatic hydrocarbons, and the oxidative potential (OP) of soot after irradiation confirmed the occurrence of visible-light-triggered photocatalytic oxidation of the soot itself. The mechanism analyses suggested that the carbonaceous core caused the production of ROS, which subsequently oxidize the extractable organic species on the soot surface. It is oxidized organic extracts that are responsible for the enhancements of the OP, cell mortality, and intracellular ROS generation. These new findings shed light on both the photocatalytic role of the soot and the importance of ROS during the photochemical self-oxidation of soot triggered by visible light and will promote a more comprehensive understanding of both the atmospheric chemical behavior and health effects of soot particles.
Collapse
Affiliation(s)
- Jiali Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Mengshuang Sheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Yu Kuang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Xiaodi Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Xinghua Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| |
Collapse
|
78
|
He T, Kong XJ, Bian ZX, Zhang YZ, Si GR, Xie LH, Wu XQ, Huang H, Chang Z, Bu XH, Zaworotko MJ, Nie ZR, Li JR. Trace removal of benzene vapour using double-walled metal-dipyrazolate frameworks. NATURE MATERIALS 2022; 21:689-695. [PMID: 35484330 PMCID: PMC9156410 DOI: 10.1038/s41563-022-01237-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/18/2022] [Indexed: 05/08/2023]
Abstract
In principle, porous physisorbents are attractive candidates for the removal of volatile organic compounds such as benzene by virtue of their low energy for the capture and release of this pollutant. Unfortunately, many physisorbents exhibit weak sorbate-sorbent interactions, resulting in poor selectivity and low uptake when volatile organic compounds are present at trace concentrations. Herein, we report that a family of double-walled metal-dipyrazolate frameworks, BUT-53 to BUT-58, exhibit benzene uptakes at 298 K of 2.47-3.28 mmol g-1 at <10 Pa. Breakthrough experiments revealed that BUT-55, a supramolecular isomer of the metal-organic framework Co(BDP) (H2BDP = 1,4-di(1H-pyrazol-4-yl)benzene), captures trace levels of benzene, producing an air stream with benzene content below acceptable limits. Furthermore, BUT-55 can be regenerated with mild heating. Insight into the performance of BUT-55 comes from the crystal structure of the benzene-loaded phase (C6H6@BUT-55) and density functional theory calculations, which reveal that C-H···X interactions drive the tight binding of benzene. Our results demonstrate that BUT-55 is a recyclable physisorbent that exhibits high affinity and adsorption capacity towards benzene, making it a candidate for environmental remediation of benzene-contaminated gas mixtures.
Collapse
Affiliation(s)
- Tao He
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China
- The Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, China
| | - Xiang-Jing Kong
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China
- Bernal Institute and Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Zhen-Xing Bian
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Yong-Zheng Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Guang-Rui Si
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Xue-Qian Wu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, China
| | - Ze Chang
- School of Materials Science and Engineering and TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, China
| | - Xian-He Bu
- School of Materials Science and Engineering and TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, China
| | - Michael J Zaworotko
- Bernal Institute and Department of Chemical Sciences, University of Limerick, Limerick, Ireland.
| | - Zuo-Ren Nie
- The Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China.
- The Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China.
| |
Collapse
|
79
|
Lin J, Zhao H, Cao H, Zhao Y, Chen C. Photoinduced release of odorous volatile organic compounds from aqueous pollutants: The role of reactive oxygen species in increasing risk during cross-media transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153397. [PMID: 35122842 DOI: 10.1016/j.scitotenv.2022.153397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Photoinduced volatile organic compounds (VOCs) release from fatty alcohols at the air-water interface, has attracted considerable attention. This paper comprehensively explores the release of odorous VOCs from aqueous micropollutants under photoirradiation, especially in terms of the important role of the reactive oxygen species (ROS) in increased risk by cross-media transformation. The formation and distribution of photoinduced VOCs produced by aqueous benzyl alcohol (BzOH), a common ingredient in personal care products, were monitored in situ by online gas chromatography equipped with mass spectrometry and flame ionization detector (GC-MS/FID). The photoreaction of BzOH followed first-order kinetics with a rate constant of 0.0158/min under air. After 180 min of ultraviolet irradiation, the accumulated output of the gas-phase products benzene and benzaldehyde (BA) reached 3.8 μmol and 2.6 μmol respectively, being approximately 10 times that under nitrogen. According to electron paramagnetic resonance measurements, singlet oxygen mainly promoted the oxidation of BzOH to BA, which was an important intermediate producing benzene via photocleavage. Odorous alicyclic hydrocarbons were also generated through photorearrangement under nitrogen. On the other hand, the Henry's law constants of the main products were much lower than those of BzOH, indicating that the photoproducts would volatilize from the aqueous phase into the gas phase. The odor threshold of gas-phase products decreased to varying degrees after photoirradiation. Especially for BA, one of the main products, its odor threshold decreased 130 times compared with BzOH. This study shows that the risk of cross-media pollution could significantly increase due to the transformation of aqueous pollutants into odorous VOCs under photoirradiation and provides new insight into its risk prevention.
Collapse
Affiliation(s)
- Jingyi Lin
- Beijing Engineering Research Center of Process Pollution Control, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhao
- Beijing Engineering Research Center of Process Pollution Control, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China.
| | - Hongbin Cao
- Beijing Engineering Research Center of Process Pollution Control, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuehong Zhao
- Beijing Engineering Research Center of Process Pollution Control, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; National Basic Public Science Data Center, Beijing 100190, China
| | - Chuncheng Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
80
|
Recent Advances of Beta Zeolite in the Volatile Organic Compounds(VOCs) Elimination by the Catalytic Oxidations. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2038-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
81
|
Li X, Zhang Y, Shi L, Kawamura K, Kunwar B, Takami A, Arakaki T, Lai S. Aerosol Proteinaceous Matter in Coastal Okinawa, Japan: Influence of Long-Range Transport and Photochemical Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5256-5265. [PMID: 35358385 DOI: 10.1021/acs.est.1c08658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The characteristics, sources, and atmospheric oxidation processes of marine aerosol proteinaceous matter (APM), including total proteins and free amino acids (FAAs), were investigated using a set of 1 year total suspended particulate (TSP) samples collected in the coastal area of Okinawa Island in the western North Pacific rim. The concentrations of APM at this site (total proteins: 0.16 ± 0.10 μg m-3 and total FAAs: 9.7 ± 5.6 ng m-3, annual average) are comparable to those of marine APM. The major FAA species of APM are also similar to previously reported marine APM with glycine as the dominant species (31%). Based on the different seasonal trends and weak correlations of total proteins and FAAs, we found that they were contributed by different sources, especially with the influence of long-range transport from the Asian continent of northern China and Mongolia and the oceanic area of the Bohai Sea, Yellow Sea, and East China Sea. The photochemical oxidation processes of high-molecular-weight proteins releasing FAAs (especially glycine) were also considered as an important factor influencing the characteristics of APM at this site. In addition, we propose a degradation process based on the correlation with ozone and ultraviolet radiation, emphasizing their roles in the degradation of proteins. Our findings help to deepen the understanding of atmospheric photochemical reaction processes of organic aerosols.
Collapse
Affiliation(s)
- Xiaoying Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yingyi Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Luhan Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Bhagawati Kunwar
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Akinori Takami
- Center for Regional Environmental Research, National Institute of Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Takemitsu Arakaki
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Senchao Lai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
82
|
Mahrt F, Huang Y, Zaks J, Devi A, Peng L, Ohno PE, Qin YM, Martin ST, Ammann M, Bertram AK. Phase Behavior of Internal Mixtures of Hydrocarbon-like Primary Organic Aerosol and Secondary Aerosol Based on Their Differences in Oxygen-to-Carbon Ratios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3960-3973. [PMID: 35294833 PMCID: PMC8988305 DOI: 10.1021/acs.est.1c07691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The phase behavior, the number and type of phases, in atmospheric particles containing mixtures of hydrocarbon-like organic aerosol (HOA) and secondary organic aerosol (SOA) is important for predicting their impacts on air pollution, human health, and climate. Using a solvatochromic dye and fluorescence microscopy, we determined the phase behavior of 11 HOA proxies (O/C = 0-0.29) each mixed with 7 different SOA materials generated in environmental chambers (O/C 0.4-1.08), where O/C represents the average oxygen-to-carbon atomic ratio. Out of the 77 different HOA + SOA mixtures studied, we observed two phases in 88% of the cases. The phase behavior was independent of relative humidity over the range between 90% and <5%. A clear trend was observed between the number of phases and the difference between the average O/C ratios of the HOA and SOA components (ΔO/C). Using a threshold ΔO/C of 0.265, we were able to predict the phase behavior of 92% of the HOA + SOA mixtures studied here, with one-phase particles predicted for ΔO/C < 0.265 and two-phase particles predicted for ΔO/C ≥ 0.265. The threshold ΔO/C value provides a relatively simple and computationally inexpensive framework for predicting the number of phases in internal SOA and HOA mixtures in atmospheric models.
Collapse
Affiliation(s)
- Fabian Mahrt
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
- Laboratory
of Environmental Chemistry, Paul Scherrer
Institute, 5232 Villigen, Switzerland
| | - Yuanzhou Huang
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| | - Julia Zaks
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| | - Annesha Devi
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| | - Long Peng
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
- Institute
for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Paul E. Ohno
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Center
for the Environment, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yi Ming Qin
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Scot T. Martin
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Markus Ammann
- Laboratory
of Environmental Chemistry, Paul Scherrer
Institute, 5232 Villigen, Switzerland
| | - Allan K. Bertram
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| |
Collapse
|
83
|
Cruzeiro VWD, Galib M, Limmer DT, Götz AW. Uptake of N 2O 5 by aqueous aerosol unveiled using chemically accurate many-body potentials. Nat Commun 2022; 13:1266. [PMID: 35273144 PMCID: PMC8913772 DOI: 10.1038/s41467-022-28697-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
The reactive uptake of N2O5 to aqueous aerosol is a major loss channel for nitrogen oxides in the troposphere. Despite its importance, a quantitative picture of the uptake mechanism is missing. Here we use molecular dynamics simulations with a data-driven many-body model of coupled-cluster accuracy to quantify thermodynamics and kinetics of solvation and adsorption of N2O5 in water. The free energy profile highlights that N2O5 is selectively adsorbed to the liquid-vapor interface and weakly solvated. Accommodation into bulk water occurs slowly, competing with evaporation upon adsorption from gas phase. Leveraging the quantitative accuracy of the model, we parameterize and solve a reaction-diffusion equation to determine hydrolysis rates consistent with experimental observations. We find a short reaction-diffusion length, indicating that the uptake is dominated by interfacial features. The parameters deduced here, including solubility, accommodation coefficient, and hydrolysis rate, afford a foundation for which to consider the reactive loss of N2O5 in more complex solutions.
Collapse
Affiliation(s)
- Vinícius Wilian D Cruzeiro
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mirza Galib
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Kavli Energy NanoScience Institute, Berkeley, CA, USA.
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
84
|
Zong T, Wang H, Wu Z, Lu K, Wang Y, Zhu Y, Shang D, Fang X, Huang X, He L, Ma N, Größ J, Huang S, Guo S, Zeng L, Herrmann H, Wiedensohler A, Zhang Y, Hu M. Particle hygroscopicity inhomogeneity and its impact on reactive uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151364. [PMID: 34740668 DOI: 10.1016/j.scitotenv.2021.151364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/10/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric particles are important reaction vessels for multiphase chemistry. We conducted a meta-analysis of previous field observations in various environments (includes ocean, urban and rural regions), showing that particle hygroscopicity inhomogeneity (PHI) is ubiquitous for the continental atmospheric particles, in which a considerable part of the particulate matters is hydrophobic (10%-33% on average). However, the effects of PHI in quantifying the uptake process of reactive gases are still unclear. Here, taking N2O5 uptake as an example, we showed that using a laboratory-based parameterization scheme without considering the PHI might result in a misestimation of uptake rate coefficient, especially under low ambient relative humidity (RH). Such misestimation may be caused by the differences of the uptake coefficients, as well as the proportion of surface area concentration (SA) between hydrophilic and hydrophobic particles. We suggested that the PHI should be well-considered in establishing the reactive traces gases heterogeneous uptake parameterizations.
Collapse
Affiliation(s)
- Taomou Zong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haichao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yu Wang
- Centre for Atmospheric Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Yishu Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Dongjie Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xin Fang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaofeng Huang
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lingyan He
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Ma
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Johannes Größ
- Leibniz Institute for Tropospheric Research, Permoserstraße 15, Leipzig 04318, Germany
| | - Shan Huang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research, Permoserstraße 15, Leipzig 04318, Germany
| | - Alfred Wiedensohler
- Leibniz Institute for Tropospheric Research, Permoserstraße 15, Leipzig 04318, Germany
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
85
|
Zhang J, Xu X, Zhao S, Meng X, Xiao FS. Recent advances of zeolites in catalytic oxidations of volatile organic compounds. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
86
|
Ma W, Liu Y, Zhang Y, Feng Z, Zhan J, Hua C, Ma L, Guo Y, Zhang Y, Zhou W, Yan C, Chu B, Chen T, Ma Q, Liu C, Kulmala M, Mu Y, He H. A New Type of Quartz Smog Chamber: Design and Characterization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2181-2190. [PMID: 35076226 DOI: 10.1021/acs.est.1c06341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Since the 1960s, many indoor and outdoor smog chambers have been developed worldwide. However, most of them are made of Teflon films, which have relatively high background contaminations due to the wall effect. We developed the world's first medium-size quartz chamber (10 m3), which is jointed with 32 pieces of 5 mm thick polished quartz glasses and a stainless-steel frame. Characterizations show that this chamber exhibits excellent performance in terms of relative humidity (RH) (2-80%) and temperature (15-30 ± 1 °C) control, mixing efficiency of the reactants (6-8 min), light transmittance (>90% above 290 nm), and wall loss of pollutants. The wall loss rates of the gas-phase pollutants are on the order of 10-4 min-1 at 298 K under dry conditions. It is 0.08 h-1 for 100-500 nm particles, significantly lower than those of Teflon chambers. The photolysis rate of NO2 (JNO2) is automatically adjustable to simulate the diurnal variation of solar irradiation from 0 to 0.40 min-1. The inner surface of the chamber can be repeatedly washed with deionized water, resulting in low background contaminations. Both experiments (toluene-NOx and α-pinene-ozone systems) and box model demonstrate that this new quartz chamber can provide high-quality data for investigating SOA and O3 formation in the atmosphere.
Collapse
Affiliation(s)
- Wei Ma
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yusheng Zhang
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zemin Feng
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junlei Zhan
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenjie Hua
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Ma
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yishuo Guo
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Zhang
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenshuo Zhou
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Yan
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunshan Liu
- Beijing Convenient Environmental Tech Co. Ltd., Beijing 101115, China
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
87
|
Zheng Y, Su Y, Pang C, Yang L, Song C, Ji N, Ma D, Lu X, Han R, Liu Q. Interface-Enhanced Oxygen Vacancies of CoCuO x Catalysts In Situ Grown on Monolithic Cu Foam for VOC Catalytic Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1905-1916. [PMID: 34856794 DOI: 10.1021/acs.est.1c05855] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of highly efficient and stable monolithic catalysts is essential for the removal of volatile organic compounds (VOCs). Copper foam (CF) is a potential ideal carrier for monolithic catalysts, but its low surface area is not conducive to dispersion of active species, thus reducing the interface interaction with active species. Herein, a vertically oriented Cu(OH)2 nanorod was in situ grown on the CF, which acted as the template and precursor to synthesize CoCu-MOF. The optimized catalyst (12CoCu-R) delivers excellent performance for acetone oxidation with a T90 of 195 °C. Impressively, the catalyst demonstrated satisfactory stability in long-term, cycle, water resistance, and high airspeed tests. Therefore, the present study provides a novel strategy for rationally designing efficient monolithic catalysts for VOC oxidation and other environmental applications.
Collapse
Affiliation(s)
- Yanfei Zheng
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Yun Su
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Caihong Pang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Lizhe Yang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Chunfeng Song
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Na Ji
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Degang Ma
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Xuebin Lu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Rui Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| |
Collapse
|
88
|
Air Quality Measurements in Kitchener, Ontario, Canada Using Multisensor Mini Monitoring Stations. ATMOSPHERE 2022. [DOI: 10.3390/atmos13010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Region of Waterloo is the third fastest growing region in Southern Ontario in Canada with a population of 619,000 as of 2019. However, only one air quality monitoring station, located in a city park in Kitchener, Ontario, is currently being used to assess the air quality of the region. In September 2020, a network of AQMesh Multisensor Mini Monitoring Stations (pods) were installed near elementary schools in Kitchener located near different types of emission source. Data analysis using a custom-made long-distance scaling software showed that the levels of nitrogen oxides (NO and NO2), ground level ozone (O3), and fine particulate matter (PM2.5) were traffic related. These pollutants were used to calculate the Air Quality Health Index-Plus (AQHI+) at each location, highlighting the inability of the provincial air quality monitoring station to detect hotspot areas in the city. The case study presented here quantified the impact of the 2021 summer wildfires on the local air quality at a high time resolution (15-min). The findings in this article show that these multisensor pods are a viable alternative to expensive research-grade equipment. The results highlight the need for networks of local scale air quality measurements, particularly in fast-growing cities in Canada.
Collapse
|
89
|
Air Pollutants Reduce the Physical Activity of Professional Soccer Players. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182412928. [PMID: 34948538 PMCID: PMC8701275 DOI: 10.3390/ijerph182412928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
The aim of the study was to determine the impact of air quality—analyzed on the basis of the model of integrating three types of air pollutants (ozone, O3; particulate matter, PM; nitrogen dioxide, NO2)—on the physical activity of soccer players. Study material consisted of 8927 individual match observations of 461 players competing in the German Bundesliga during the 2017/2018 and 2018/2019 domestic seasons. The measured indices included players’ physical activities: total distance (TD) and high-intensity effort (HIE). Statistical analysis showed that with increasing levels of air pollution, both TD (F = 13.900(3); p = 0.001) and HIE (F = 8.060(3); p = 0.001) decrease significantly. The worsening of just one parameter of air pollution results in a significant reduction in performance. This is important information as air pollution is currently a considerable problem for many countries. Improving air quality during training sessions and sports competitions will result in better well-being and sporting performance of athletes and will also help protect athletes from negative health effects caused by air pollution.
Collapse
|
90
|
Qian Y, Ma D, Zhong J. Metal-Organic Frameworks With Variable Valence Metal-Photoactive Components: Emerging Platform for Volatile Organic Compounds Photocatalytic Degradation. Front Chem 2021; 9:749839. [PMID: 34869203 PMCID: PMC8634840 DOI: 10.3389/fchem.2021.749839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
With their outstanding diversities in both structures and performances, newly emerging metal-organic frameworks (MOFs) materials are considered to be the most promising artificial catalysts to meet multiple challenges in the fields of energy and environment. Especially in absorption and conversion of solar energy, a variety of MOFs can be readily designed to cover and harvest the sun irradiation of ultraviolet (UV), visible and near-infrared region through tuning both organic linkers and metal nodes to create optimal photocatalytic efficiency. Nowadays, a variety of MOFs were successfully synthesized as powerful photocatalysts for important redox reactions such as water-splitting, CO2 reduction and aqueous environmental pollutants detoxification. MOFs applications in indoor-air VOCs pollutants cleaning, however, are less concerned partially because of limited diffusion of both gaseous pollutant molecules and photo-induced active species in very porous MOFs structures. In this mini-review, we focus on the major breakthroughs of MOFs as photocatalysts for the effective removal of indoor-air VOCs such as aldehydes, aromatics and short-chain alcohols. According to their nature of photoactive centers, herein MOFs photocatalysts are divided into two categories to comment, that is, MOFs with variable valence metal nodes as direct photoactive centers and MOFs with non-variable valence metal nodes but after combining other photoactive variable valence metal centers as excellent concentrated and concerted electron-transfer materials. The mechanisms and current challenges of the photocatalytic degradation of indoor-air VOC pollutants by these MOFs will be discussed as deeply as possible.
Collapse
Affiliation(s)
- Yuhang Qian
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Dongge Ma
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Junbo Zhong
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, China
| |
Collapse
|
91
|
Sokhi RS, Singh V, Querol X, Finardi S, Targino AC, Andrade MDF, Pavlovic R, Garland RM, Massagué J, Kong S, Baklanov A, Ren L, Tarasova O, Carmichael G, Peuch VH, Anand V, Arbilla G, Badali K, Beig G, Belalcazar LC, Bolignano A, Brimblecombe P, Camacho P, Casallas A, Charland JP, Choi J, Chourdakis E, Coll I, Collins M, Cyrys J, da Silva CM, Di Giosa AD, Di Leo A, Ferro C, Gavidia-Calderon M, Gayen A, Ginzburg A, Godefroy F, Gonzalez YA, Guevara-Luna M, Haque SM, Havenga H, Herod D, Hõrrak U, Hussein T, Ibarra S, Jaimes M, Kaasik M, Khaiwal R, Kim J, Kousa A, Kukkonen J, Kulmala M, Kuula J, La Violette N, Lanzani G, Liu X, MacDougall S, Manseau PM, Marchegiani G, McDonald B, Mishra SV, Molina LT, Mooibroek D, Mor S, Moussiopoulos N, Murena F, Niemi JV, Noe S, Nogueira T, Norman M, Pérez-Camaño JL, Petäjä T, Piketh S, Rathod A, Reid K, Retama A, Rivera O, Rojas NY, Rojas-Quincho JP, San José R, Sánchez O, Seguel RJ, Sillanpää S, Su Y, Tapper N, Terrazas A, Timonen H, Toscano D, Tsegas G, Velders GJM, Vlachokostas C, von Schneidemesser E, Vpm R, Yadav R, Zalakeviciute R, Zavala M. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. ENVIRONMENT INTERNATIONAL 2021; 157:106818. [PMID: 34425482 DOI: 10.1016/j.envint.2021.106818] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 05/21/2023]
Abstract
This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015-2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015-2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples' mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015-2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015-2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.
Collapse
Affiliation(s)
- Ranjeet S Sokhi
- Centre for Atmospheric and Climate Physics (CACP) and Centre for Climate Change Research (C3R), University of Hertfordshire, Hatfield, Hertfordshire, UK.
| | - Vikas Singh
- National Atmospheric Research Laboratory, Gadanki, AP, India
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | | | - Admir Créso Targino
- Graduate Program in Environment Engineering, Federal University of Technology, Londrina, Brazil
| | | | - Radenko Pavlovic
- Meteorological Service of Canada, Environment and Climate Change Canada, Dorval, Canada
| | - Rebecca M Garland
- Council for Scientific and Industrial Research, Pretoria, South Africa; Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Department of Geography, Geo-informatics and Meteorology, University of Pretoria, Pretoria, South Africa
| | - Jordi Massagué
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain; Department of Mining, Industrial and ICT Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Alexander Baklanov
- Science and Innovation Department, World Meteorological Organization (WMO), Geneva, Switzerland
| | - Lu Ren
- Center for Global and Regional Environmental Research, University of Iowa, Iowa City, United States
| | - Oksana Tarasova
- Science and Innovation Department, World Meteorological Organization (WMO), Geneva, Switzerland
| | - Greg Carmichael
- Center for Global and Regional Environmental Research, University of Iowa, Iowa City, United States
| | - Vincent-Henri Peuch
- ECMWF, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, UK
| | - Vrinda Anand
- Indian Institute of Tropical Meteorology, Pune, Ministry of Earth Sciences, Govt. of India, India
| | | | - Kaitlin Badali
- Analysis and Air Quality Section, Air Quality Research Division, Environment and Climate Change Canada, Ottawa, Canada
| | - Gufran Beig
- Indian Institute of Tropical Meteorology, Pune, Ministry of Earth Sciences, Govt. of India, India
| | | | - Andrea Bolignano
- Agenzia Regionale di Protezione dell'Ambiente del Lazio, Rome, Italy
| | - Peter Brimblecombe
- Department of Marine Environment and Engineering, National Sun Yat Sen University, Kaohsiung, Taiwan
| | - Patricia Camacho
- Secretaria del Medio Ambiente de la Ciudad de México (SEDEMA), Mexico City, Mexico
| | - Alejandro Casallas
- Earth System Physics, The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy; Escuela de Ciencias Exactas e Ingenieria, Universidad Sergio Arboleda, Bogotá, Colombia
| | - Jean-Pierre Charland
- Analysis and Air Quality Section, Air Quality Research Division, Environment and Climate Change Canada, Ottawa, Canada
| | - Jason Choi
- Environment Protection Authority Victoria, Centre for Applied Sciences, Macleod, Australia
| | - Eleftherios Chourdakis
- Laboratory of Heat Transfer and Environmental Engineering, Aristotle University, Thessaloniki, Greece
| | - Isabelle Coll
- Université Paris-Est Créteil and Université de Paris, CNRS, LISA, Creteil, France
| | - Marty Collins
- Air Monitoring Operations, Resource Stewardship Division, Environment and Parks, Edmonton, Canada
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | - Anna Di Leo
- Agenzia Regionale di Protezione dell'Ambiente della Lombardia, Milano, Italy
| | - Camilo Ferro
- Escuela de Ciencias Exactas e Ingenieria, Universidad Sergio Arboleda, Bogotá, Colombia
| | | | - Amiya Gayen
- Department of Geography, University of Calcutta, Kolkata, India
| | | | - Fabrice Godefroy
- Service de l'Environnement, Division du Contrôle des Rejets et Suivi Environnemental, Montréal, Canada
| | | | - Marco Guevara-Luna
- Conservación, Bioprospección y Desarrollo Sostenible, Universidad Nacional Abierta y a Distancia, Bogotá, Colombia
| | | | - Henno Havenga
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Dennis Herod
- National Smog Analysis, Analysis and Air Quality Section, Air Quality Research Division, Environment and Climate Change Canada, Ottawa, Canada
| | - Urmas Hõrrak
- Institute of Physics, University of Tartu, Tartu, Estonia
| | - Tareq Hussein
- Institute for Atmospheric and Earth System Research (INAR/Physics), University of Helsinki, Helsinki, Finland
| | - Sergio Ibarra
- Departamento de Ciências Atmosféricas, Universidade de São Paulo, São Paulo, Brazil
| | - Monica Jaimes
- Secretaria del Medio Ambiente de la Ciudad de México (SEDEMA), Mexico City, Mexico
| | - Marko Kaasik
- Institute of Physics, University of Tartu, Tartu, Estonia
| | - Ravindra Khaiwal
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India
| | - Jhoon Kim
- Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
| | - Anu Kousa
- Helsinki Region Environmental Services Authority, Helsinki, Finland
| | - Jaakko Kukkonen
- Centre for Atmospheric and Climate Physics (CACP) and Centre for Climate Change Research (C3R), University of Hertfordshire, Hatfield, Hertfordshire, UK; Finnish Meteorological Institute, Helsinki, Finland
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research (INAR/Physics), University of Helsinki, Helsinki, Finland
| | - Joel Kuula
- Finnish Meteorological Institute, Helsinki, Finland
| | - Nathalie La Violette
- Direction de la qualité de l'air et du climat, Direction générale du suivi de l'état de l'environnement, Ministère de l'Environnement et de la Lutte contre les changements climatiques Québec, Canada
| | - Guido Lanzani
- Agenzia Regionale di Protezione dell'Ambiente della Lombardia, Milano, Italy
| | - Xi Liu
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | | | - Patrick M Manseau
- Meteorological Service of Canada, Environment and Climate Change Canada, Dorval, Canada
| | - Giada Marchegiani
- Agenzia Regionale di Protezione dell'Ambiente del Lazio, Rome, Italy
| | - Brian McDonald
- National Oceanic and Atmospheric Administration, Chemical Sciences Laboratory, Boulder, USA
| | | | | | - Dennis Mooibroek
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Suman Mor
- Department of Environment Studies, Punjab University, Chandigarh, India
| | - Nicolas Moussiopoulos
- Laboratory of Heat Transfer and Environmental Engineering, Aristotle University, Thessaloniki, Greece
| | - Fabio Murena
- Department of Chemical, Material and Production Engineering (DICMAPI), Naples, Italy
| | - Jarkko V Niemi
- Direction de la qualité de l'air et du climat, Direction générale du suivi de l'état de l'environnement, Ministère de l'Environnement et de la Lutte contre les changements climatiques Québec, Canada
| | - Steffen Noe
- Estonian University of Life Sciences, Tartu, Estonia
| | - Thiago Nogueira
- Departamento de Ciências Atmosféricas, Universidade de São Paulo, São Paulo, Brazil
| | - Michael Norman
- Environment and Health Administration, City of Stockholm, Sweden
| | | | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR/Physics), University of Helsinki, Helsinki, Finland
| | - Stuart Piketh
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Aditi Rathod
- Indian Institute of Tropical Meteorology, Pune, Ministry of Earth Sciences, Govt. of India, India
| | - Ken Reid
- Air Quality and Climate Change, Metro Vancouver Regional District, Burnaby, Canada
| | | | - Olivia Rivera
- Secretaria del Medio Ambiente de la Ciudad de México (SEDEMA), Mexico City, Mexico
| | | | | | - Roberto San José
- Computer Science School, ESMG, Technical University of Madrid (UPM), Madrid, Spain
| | - Odón Sánchez
- Atmospheric Pollution Research Group, Universidad Nacional Tecnológica de Lima Sur, Lima, Peru
| | - Rodrigo J Seguel
- Center for Climate and Resilience Research (CR)2, Department of Geophysics, University of Chile, Santiago, Chile
| | | | - Yushan Su
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, Canada
| | - Nigel Tapper
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Australia
| | - Antonio Terrazas
- Secretaria del Medio Ambiente de la Ciudad de México (SEDEMA), Mexico City, Mexico
| | | | - Domenico Toscano
- Department of Chemical, Material and Production Engineering (DICMAPI), Naples, Italy
| | - George Tsegas
- Laboratory of Heat Transfer and Environmental Engineering, Aristotle University, Thessaloniki, Greece
| | - Guus J M Velders
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Christos Vlachokostas
- Laboratory of Heat Transfer and Environmental Engineering, Aristotle University, Thessaloniki, Greece
| | | | - Rajasree Vpm
- Centre for Atmospheric and Climate Physics (CACP) and Centre for Climate Change Research (C3R), University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - Ravi Yadav
- Indian Institute of Tropical Meteorology, Pune, Ministry of Earth Sciences, Govt. of India, India
| | - Rasa Zalakeviciute
- Grupo de Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de Las Americas, Quito, Ecuador
| | - Miguel Zavala
- Molina Center for Energy and the Environment, CA, USA
| |
Collapse
|
92
|
Guo C, Yang M, He J, Kan G, Yu K, Liu Z, Lin S, Jiang J, Zhang H. Hypochlorous acid initiated lipid chlorination at air-water interface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149320. [PMID: 34340067 DOI: 10.1016/j.scitotenv.2021.149320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/24/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
There has been a surge of interest in interfacial hypochlorous acid (HOCl) chemistry for indoor air quality and public health. Here we combined nanoelectrospray mass spectrometry (nESI-MS) and acoustic levitation (AL) techniques to study the chlorination chemistry of three model lipids (DPPE, POPG, DOPG) mediated by HOCl at the air-water interface of levitated water droplet. For DPPE with no CC double bonds, HOCl was insensitive to the alkane chains, and showed considerable delay directing to head amino groups compared to that in aqueous environment. Chlorination chemistry, for POPG and DOPG with CC double bonds, preferentially reacted with double bonds of one chain. The mechanism was discussed in light of these observations, and it is concluded that the increased hydrophilicity of the chlorinated chain disturbed the lipid packing and attracted it toward the water phase. In addition, the reaction rate constant and reactive uptake coefficient suggested that the chlorination of lipids exposed to HOCl at the air-water interface is likely to occur rapidly. These results gain the knowledge of HOCl mediated lipid interface reaction at the molecule level, and would better understand the adverse health effects associated with elevated indoor pollutants.
Collapse
Affiliation(s)
- Changlu Guo
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Miao Yang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Zhuo Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Sifan Lin
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Jie Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China.
| |
Collapse
|
93
|
Hahad O, Kuntic M, Frenis K, Chowdhury S, Lelieveld J, Lieb K, Daiber A, Münzel T. Physical Activity in Polluted Air-Net Benefit or Harm to Cardiovascular Health? A Comprehensive Review. Antioxidants (Basel) 2021; 10:1787. [PMID: 34829658 PMCID: PMC8614825 DOI: 10.3390/antiox10111787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Both exposure to higher levels of polluted air and physical inactivity are crucial risk factors for the development and progression of major noncommunicable diseases and, in particular, of cardiovascular disease. In this context, the World Health Organization estimated 4.2 and 3.2 million global deaths per year in response to ambient air pollution and insufficient physical activity, respectively. While regular physical activity is well known to improve general health, it may also increase the uptake and deposit of air pollutants in the lungs/airways and circulation, due to increased breathing frequency and minute ventilation, thus increasing the risk of cardiovascular disease. Thus, determining the tradeoff between the health benefits of physical activity and the potential harmful effects of increased exposure to air pollution during physical activity has important public health consequences. In the present comprehensive review, we analyzed evidence from human and animal studies on the combined effects of physical activity and air pollution on cardiovascular and other health outcomes. We further report on pathophysiological mechanisms underlying air pollution exposure, as well as the protective effects of physical activity with a focus on oxidative stress and inflammation. Lastly, we provide mitigation strategies and practical recommendations for physical activity in areas with polluted air.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
| | - Marin Kuntic
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
| | - Katie Frenis
- Department of Hematology/Oncology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Sourangsu Chowdhury
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55122 Mainz, Germany; (S.C.); (J.L.)
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55122 Mainz, Germany; (S.C.); (J.L.)
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Klaus Lieb
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
94
|
Characteristics and Potential Inhalation Exposure Risks of Environmentally Persistent Free Radicals in Atmospheric Particulate Matter and Solid Fuel Combustion Particles in High Lung Cancer Incidence Area, China. ATMOSPHERE 2021. [DOI: 10.3390/atmos12111467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Environmentally persistent free radicals (EPFRs) were previously considered an unrecognized composition of air pollutants and might help explain the long-standing medical mystery of why non-smokers develop tobacco-related diseases such as lung cancer. However, there is no investigated on EPFRs in Xuanwei rural areas, especially in high prevalence of lung cancer areas. In this study, we selected six types of coal and three types of biomass in Xuanwei, then conducted simulated combustion, and six group of atmospheric particulate matters (APMs) to explore the content and particle size distribution pattern of EPFRs and a new health risk assessment method to evaluate the risk of EPFRs in PM for adults and children. Our results show that the contribution of EPFRs for biomass combustion, coal combustion and APMs were mainly distributed in the size range of <1.1 μm, which accounted for 76.15 ± 4.14%, 74.85 ± 10.76%, and 75.23 ± 8.18% of PM3.3. The mean g factors and ΔHp-p indicated that the EPFRs were mainly oxygen-centered radicals in PM in Xuanwei. The results suggest that the health risk of EPFRs is significantly increased when the particle size distribution of EPFRs is taken into account, and coal combustion particulate matter (174.70 ± 37.86 cigarettes for an adult, 66.39 ± 14.39 cigarettes per person per year for a child) is more hazardous to humans than biomass combustion particulate matter (69.41 ± 4.83 cigarettes for an adult, 26.37 ± 1.84 cigarettes per person per year for), followed by APMs (102.88 ± 39.99 cigarettes for an adult, 39.10 ±15.20 cigarettes per person per year for) in PM3.3. Our results provides a new perspective and evidence for revealing the reason for the high incidence of lung cancer in Xuanwei, China.
Collapse
|
95
|
Lu H, Yin Y, Sun J, Li W, Shen X, Feng X, Ouyang J, Na N. Accelerated plasma degradation of organic pollutants in milliseconds and examinations by mass spectrometry. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
96
|
Chen H, Yu Y, Yu Y, Ye J, Zhang S, Chen J. Exogenous electron transfer mediator enhancing gaseous toluene degradation in a microbial fuel cell: Performance and electron transfer mechanism. CHEMOSPHERE 2021; 282:131028. [PMID: 34116314 DOI: 10.1016/j.chemosphere.2021.131028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Effective electron transfer (ET) between microorganisms and electrodes is essential for the toluene degradation and power generation in a microbial fuel cell (MFC). In this work, the neutral red, with excellent electrochemical reversibility and compatible redox potential as NADH/NAD+, was selected as electron mediator to boost the performance of the MFC. Experimental results revealed that, with the 0.5 μM neutral red, the removal efficiency and coulombic efficiency of the gaseous toluene powered MFC was increased by ~19% and ~400%, respectively. However, further increase in neutral red concentration resulted in a decreased in removal efficiency and coulombic efficiency, which was attributed by the toxicity of neutral red to the microbes. The microbial community analysis indicated that, with the dosage of the neutral red, the dominated bacteria shifted from Geobacter to Ignavibacteriales, resulting in a high coulombic efficiency. With the further increase in the neutral red, the amount of Ignavibacteriales gradually decreased and thus the coulombic efficiency declined at a high neutral red concentration. Based on the cyclic voltammetry analysis, an electron transport pathway involving neutral red, cytochromes, and OMCs in neutral red mediated MFC was proposed. Overall, the dosage of neutral not only enhanced the electron transfer but also induced the growth of the exoelectrogens, and thus significantly improve the MFC performance.
Collapse
Affiliation(s)
- Han Chen
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Yanan Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yu Yu
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
97
|
Madawala C, Lee HD, Kaluarachchi CP, Tivanski AV. Probing the Water Uptake and Phase State of Individual Sucrose Nanoparticles Using Atomic Force Microscopy. ACS EARTH & SPACE CHEMISTRY 2021; 5:2612-2620. [PMID: 34712889 PMCID: PMC8543754 DOI: 10.1021/acsearthspacechem.1c00101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 06/13/2023]
Abstract
The effects of atmospheric aerosols on the climate and atmosphere of Earth can vary significantly depending upon their properties, including size, morphology, and phase state, all of which are influenced by varying relative humidity (RH) in the atmosphere. A significant fraction of atmospheric aerosols is below 100 nm in size. However, as a result of size limitations of conventional experimental techniques, how the particle-to-particle variability of the phase state of aerosols influences atmospheric processes is poorly understood. To address this issue, the atomic force microscopy (AFM) methodology that was previously established for sub-micrometer aerosols is extended to measure the water uptake and identify the phase state of individual sucrose nanoparticles. Quantified growth factors (GFs) of individual sucrose nanoparticles up to 60% RH were lower than expected values observed on the sub-micrometer sucrose particles. The effect could be attributed to the semisolid sucrose nanoparticle restructuring on a substrate. At RH > 60%, sucrose nanoparticles are liquid and GFs overlap well with the sub-micrometer particles and theoretical predictions. This suggests that quantification of GFs of nanoparticles may be inaccurate for the RH range where particles are semisolid but becomes accurate at elevated RH where particles are liquid. Despite this, however, the identified phase states of the nanoparticles were comparable to their sub-micrometer counterparts. The identified phase transitions between solid and semisolid and between semisolid and liquid for sucrose were at ∼18 and 60% RH, which are equivalent to viscosities of 1011.2 and 102.5 Pa s, respectively. This work demonstrates that measurements of the phase state using AFM are applicable to nanosized particles, even when the substrate alters the shape of semisolid nanoparticles and alters the GF.
Collapse
|
98
|
Lelieveld S, Wilson J, Dovrou E, Mishra A, Lakey PSJ, Shiraiwa M, Pöschl U, Berkemeier T. Hydroxyl Radical Production by Air Pollutants in Epithelial Lining Fluid Governed by Interconversion and Scavenging of Reactive Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14069-14079. [PMID: 34609853 PMCID: PMC8529872 DOI: 10.1021/acs.est.1c03875] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 06/02/2023]
Abstract
Air pollution is a major risk factor for human health. Chemical reactions in the epithelial lining fluid (ELF) of the human respiratory tract result in the formation of reactive oxygen species (ROS), which can lead to oxidative stress and adverse health effects. We use kinetic modeling to quantify the effects of fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) on ROS formation, interconversion, and reactivity, and discuss different chemical metrics for oxidative stress, such as cumulative production of ROS and hydrogen peroxide (H2O2) to hydroxyl radical (OH) conversion. All three air pollutants produce ROS that accumulate in the ELF as H2O2, which serves as reservoir for radical species. At low PM2.5 concentrations (<10 μg m-3), we find that less than 4% of all produced H2O2 is converted into highly reactive OH, while the rest is intercepted by antioxidants and enzymes that serve as ROS buffering agents. At elevated PM2.5 concentrations (>10 μg m-3), however, Fenton chemistry overwhelms the ROS buffering effect and leads to a tipping point in H2O2 fate, causing a strong nonlinear increase in OH production. This shift in ROS chemistry and the enhanced OH production provide a tentative mechanistic explanation for how the inhalation of PM2.5 induces oxidative stress and adverse health effects.
Collapse
Affiliation(s)
- Steven Lelieveld
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Jake Wilson
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Eleni Dovrou
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Ashmi Mishra
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Pascale S. J. Lakey
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Manabu Shiraiwa
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Thomas Berkemeier
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
99
|
Cao Y, Zhao Q, Geng Y, Li Y, Huang J, Tian S, Ning P. Interfacial interaction between benzo[a]pyrene and pulmonary surfactant: Adverse effects on lung health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117669. [PMID: 34426389 DOI: 10.1016/j.envpol.2021.117669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Inhaled polycyclic aromatic hydrocarbons (PAHs) can directly interact with the lung surfactant (PS) lining of alveoli, thereby affecting the normal physiological functions of PS, which is a serious threat to lung health. In spite of the extensive study of benzo[a]pyrene (BaP, a representative of PAHs), its potential biophysical influence on the natural PS is still largely unknown. In this study, the interfacial interaction between PS (extracted from porcine lungs) and BaP is investigated in vitro. The results showed that the surface tension, phase behavior, and interfacial structure of the PS monolayers were obviously altered in the presence of BaP. A solubilization test manifested that PS and its major components (dipalmitoyl phosphatidylcholine, DPPC; bovine serum albumin, BSA) could in turn accelerate the dissolution of BaP, which followed the order: PS > DPPC > BSA, and mixed phospholipids were significantly responsible for the solubilization of BaP by PS. In addition, solubilization of BaP also enhanced the consumption of hydroxyl radicals (·OH) in the simulated lung fluid, which could disturb the balance between oxidation and antioxidation.
Collapse
Affiliation(s)
- Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
100
|
Münzel T, Hahad O, Sørensen M, Lelieveld J, Duerr GD, Nieuwenhuijsen M, Daiber A. Environmental risk factors and cardiovascular diseases: a comprehensive review. Cardiovasc Res 2021; 118:2880-2902. [PMID: 34609502 PMCID: PMC9648835 DOI: 10.1093/cvr/cvab316] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Noncommunicable diseases (NCDs) are fatal for more than 38 million people each year and are thus the main contributors to the global burden of disease accounting for 70% of mortality. The majority of these deaths are caused by cardiovascular disease. The risk of NCDs is strongly associated with exposure to environmental stressors such as pollutants in the air, noise exposure, artificial light at night and climate change, including heat extremes, desert storms and wildfires. In addition to the traditional risk factors for cardiovascular disease such as diabetes, arterial hypertension, smoking, hypercholesterolemia and genetic predisposition, there is a growing body of evidence showing that physicochemical factors in the environment contribute significantly to the high NCD numbers. Furthermore, urbanization is associated with accumulation and intensification of these stressors. This comprehensive expert review will summarize the epidemiology and pathophysiology of environmental stressors with a focus on cardiovascular NCDs. We will also discuss solutions and mitigation measures to lower the impact of environmental risk factors with focus on cardiovascular disease.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Mette Sørensen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Georg Daniel Duerr
- Department of Cardiac Surgery, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| |
Collapse
|