51
|
Tombuloglu H, Slimani Y, Tombuloglu G, Alshammari T, Almessiere M, Korkmaz AD, Baykal A, Samia ACS. Engineered magnetic nanoparticles enhance chlorophyll content and growth of barley through the induction of photosystem genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34311-34321. [PMID: 32542569 DOI: 10.1007/s11356-020-09693-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the impact of an engineered magnetic nanoparticle (MNP) on a crop plant. For this purpose, a sonochemical synthetic approach was utilized in order to dope magnetic elements (Co and Nd) into technologically important iron oxide NPs. After being characterized by using TEM, SEM, and XRD instruments, the MNPs were hydroponically applied to barley plants with varying doses (from 125 to 1000 mg/L) both in germination (4 days) and early growing stages (3 weeks). Physiological responses, as well as expression of photosystem marker genes, were assessed. Compared to the untreated control, MNP treatment enhanced germination rate (~ 31%), tissue growth (8% in roots, 16% in shoots), biomass (~ 21%), and chlorophyll (a, b) (~ 20%), and carotenoids (~ 22%) pigments. In general, plants showed the highest growth enhancement at 125 or 250 mg/L treatment. However, higher doses diminished the growth indices. Compared to the control, the catalase activity was significantly reduced in the leaves (~ 33%, p < 0.005) but stimulated in the roots (~ 46%, p < 0.005). All tested photosystem marker genes (BCA, psbA, and psaA) were overexpressed in MNP-treated leaves than non-treated control. Moreover, the gene expressions were found to be proportionally increased with increasing MNP doses, indicating a positive correlation between MNPs and the photosynthetic machinery, which could contribute to the enhancement of plant growth.
Collapse
Affiliation(s)
- Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia.
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia
| | - Guzin Tombuloglu
- Adnan Kahveci Mah., Mimar Sinan Cad., Mavisu evl, 7/28 Beylikduzu-, Istanbul, Turkey
| | - Thamer Alshammari
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia
| | - Munirah Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Ayşe Demir Korkmaz
- Department of Chemistry, Istanbul Medeniyet University, 34700 Uskudar, Istanbul, Turkey
| | - Abdulhadi Baykal
- Department of Nanomedicine, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia
| | | |
Collapse
|
52
|
Wojcieszek J, Jiménez-Lamana J, Ruzik L, Szpunar J, Jarosz M. To-Do and Not-To-Do in Model Studies of the Uptake, Fate and Metabolism of Metal-Containing Nanoparticles in Plants. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1480. [PMID: 32731603 PMCID: PMC7466506 DOI: 10.3390/nano10081480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/20/2022]
Abstract
Due to the increasing release of metal-containing nanoparticles into the environment, the investigation of their interactions with plants has become a hot topic for many research fields. However, the obtention of reliable data requires a careful design of experimental model studies. The behavior of nanoparticles has to be comprehensively investigated; their stability in growth media, bioaccumulation and characterization of their physicochemical forms taken-up by plants, identification of the species created following their dissolution/oxidation, and finally, their localization within plant tissues. On the basis of their strong expertise, the authors present guidelines for studies of interactions between metal-containing nanoparticles and plants.
Collapse
Affiliation(s)
- Justyna Wojcieszek
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego str., 00-664 Warsaw, Poland; (J.W.); (L.R.); (M.J.)
| | - Javier Jiménez-Lamana
- Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR 5254, 64053 Pau, France;
| | - Lena Ruzik
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego str., 00-664 Warsaw, Poland; (J.W.); (L.R.); (M.J.)
| | - Joanna Szpunar
- Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR 5254, 64053 Pau, France;
| | - Maciej Jarosz
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego str., 00-664 Warsaw, Poland; (J.W.); (L.R.); (M.J.)
| |
Collapse
|
53
|
Li J, Mu Q, Du Y, Luo J, Liu Y, Li T. Growth and Photosynthetic Inhibition of Cerium Oxide Nanoparticles on Soybean (Glycine max). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:119-126. [PMID: 32468075 DOI: 10.1007/s00128-020-02892-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Cerium oxide nanoparticles (CeO2 NPs) are widely used in industries and have caused environmental problems. However, the phytotoxicity induced by CeO2 NPs lacks detailed information on phytotoxicity. In this research, the effect of CeO2 NPs on soybean plants (Glycine max) was studied. Scanning electron microscopy with the energy dispersion spectroscopy was used to characterize the NPs form in soybean. The growth of the root was increased, whereas the growth of shoot was inhibited. Besides, Chlorophyll Fluorescence Imager (CF Imager) showed that chlorophyll synthesis was inhibited: the maximum quantum yield of Photosystem II complex (PSII) (Fv/Fm) and photochemical quenching (qP) decreased. Moreover, transmission electron microscopy revealed that the chloroplast thylakoid structure was changed, and thus reduced the energy conversion in the Calvin cycle from C5 to C3. Our work suggests that CeO2 NPs will cause growth changes as well as irreversible damage to soybean plants. Our findings will provide evidence for estimation of plant toxicity induced by CeO2 NPs.
Collapse
Affiliation(s)
- Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qili Mu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yilin Du
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
54
|
Chu C, Lu C, Yuan J, Xing C. Fate of Fe 3O 4@NH 2 in soil and their fixation effect to reduce lead translocation in two rice cultivars. Food Sci Nutr 2020; 8:3673-3681. [PMID: 32724630 PMCID: PMC7382116 DOI: 10.1002/fsn3.1651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/23/2022] Open
Abstract
The fate of nanoparticles in the ecological chain of agriculture has been concerned as their potential pollution and biological effect to humans with rapid development and massive emission of nanomaterials. Here, we found that two rice cultivars (Oryza sativa L) have different heavy metal accumulation results in the roots and shoots after 15 days growth. Two rice cultivars (Oryza sativa L), grown in soil containing magnetite (Fe3O4@NH2) nanoparticles and heavy metal simultaneous, showed less Pb uptake in the roots and shoots, compared with that without Fe3O4@NH2 added. The shape and magnetic properties of Fe3O4@NH2 have no obvious change; however, the transmission electron microscope (TEM) results showed the shell of Fe3O4@NH2 could be broken in the process of interaction with soil. These results suggested that magnetite nanoparticles, such as Fe3O4@NH2, could potentially be used as the recyclable heavy metal fixation materials for alleviating heavy metal poisoning to plant.
Collapse
Affiliation(s)
- Chenlu Chu
- Key Laboratory of Grains and Oils Quality Control and ProcessingCollege of Food Science and EngineeringCollaborative Innovation Center for Modern Grain Circulation and SafetyNanjing University of Finance and EconomicsNanjingChina
| | - Chenhao Lu
- Key Laboratory of Grains and Oils Quality Control and ProcessingCollege of Food Science and EngineeringCollaborative Innovation Center for Modern Grain Circulation and SafetyNanjing University of Finance and EconomicsNanjingChina
| | - Jian Yuan
- Key Laboratory of Grains and Oils Quality Control and ProcessingCollege of Food Science and EngineeringCollaborative Innovation Center for Modern Grain Circulation and SafetyNanjing University of Finance and EconomicsNanjingChina
| | - Changrui Xing
- Key Laboratory of Grains and Oils Quality Control and ProcessingCollege of Food Science and EngineeringCollaborative Innovation Center for Modern Grain Circulation and SafetyNanjing University of Finance and EconomicsNanjingChina
| |
Collapse
|
55
|
Balážová Ľ, Baláž M, Babula P. Zinc Oxide Nanoparticles Damage Tobacco BY-2 Cells by Oxidative Stress Followed by Processes of Autophagy and Programmed Cell Death. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1066. [PMID: 32486255 PMCID: PMC7353174 DOI: 10.3390/nano10061066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
Nanomaterials, including zinc oxide nanoparticles (ZnO NPs), have a great application potential in many fields, such as medicine, the textile industry, electronics, and cosmetics. Their impact on the environment must be carefully investigated and specified due to their wide range of application. However, the amount of data on possible negative effects of ZnO NPs on plants at the cellular level are still insufficient. Thus, we focused on the effect of ZnO NPs on tobacco BY-2 cells, i.e., a widely accepted plant cell model. Adverse effects of ZnO NPs on both growth and biochemical parameters were observed. In addition, reactive oxygen and nitrogen species visualizations confirmed that ZnO NPs may induce oxidative stress. All these changes were associated with the lipid peroxidation and changes in the plasma membrane integrity, which together with endoplasmatic reticulum and mitochondrial dysfunction led to autophagy and programmed cell death. The present study demonstrates that the phytotoxic effect of ZnO NPs on the BY-2 cells is very complex and needs further investigation.
Collapse
Affiliation(s)
- Ľudmila Balážová
- Department of Pharmacognosy and Botany, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 72, SK-041 81 Košice, Slovakia
| | - Matej Baláž
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Košice, Slovakia;
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic;
| |
Collapse
|
56
|
Mortimer M, Li D, Wang Y, Holden PA. Physical Properties of Carbon Nanomaterials and Nanoceria Affect Pathways Important to the Nodulation Competitiveness of the Symbiotic N 2 -Fixing Bacterium Bradyrhizobium diazoefficiens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906055. [PMID: 31899607 DOI: 10.1002/smll.201906055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/21/2019] [Indexed: 05/07/2023]
Abstract
The pathogenicity and antimicrobial properties of engineered nanomaterials (ENMs) are relatively well studied. However, less is known regarding the interactions of ENMs and agriculturally beneficial microorganisms that affect food security. Nanoceria (CeO2 nanoparticles (NPs)), multiwall carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs), and carbon black (CB) have been previously shown to inhibit symbiotic N2 fixation in soybeans, but direct rhizobial susceptibility is uncertain. Here, Bradyrhizobium diazoefficiens associated with symbiotic N2 fixation in soybeans is assessed, evaluating the role of soybean root exudates (RE) on ENM-bacterial interactions and the effects of CeO2 NPs, MWCNTs, GNPs, and CB on bacterial growth and gene expression. Although bacterial growth is inhibited by 50 mg L-1 CeO2 NPs, MWCNTs, and CB, all ENMs at 0.1 and 10 mg L-1 cause a global transcriptomic response that is mitigated by RE. ENMs may interfere with plant-bacterial signaling, as evidenced by suppressed upregulation of genes induced by RE, and downregulation of genes encoding transport RNA, which facilitates nodulation signaling. MWCNTs and CeO2 NPs inhibit the expression of genes conferring B. diazoefficiens nodulation competitiveness. Surprisingly, the transcriptomic effects on B. diazoefficiens are similar for these two ENMs, indicating that physical, not chemical, ENM properties explain the observed effects.
Collapse
Affiliation(s)
- Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China
- Bren School of Environmental Science and Management and Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, CA, 93106, USA
| | - Dong Li
- Bren School of Environmental Science and Management and Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Ying Wang
- Bren School of Environmental Science and Management and Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, CA, 93106, USA
| | - Patricia A Holden
- Bren School of Environmental Science and Management and Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
57
|
Peng C, Tong H, Shen C, Sun L, Yuan P, He M, Shi J. Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136662. [PMID: 31958734 DOI: 10.1016/j.scitotenv.2020.136662] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/27/2019] [Accepted: 01/11/2020] [Indexed: 05/16/2023]
Abstract
To determine the bioavailability and translocation of metal oxide nanoparticles (MONPs) in the soil-rice plant system, we examined the accumulation and micro-distribution of ZnO nanoparticles (NPs), CuO NPs and CeO2 NPs (50, 100 and 500 mg/kg) in the paddy soil and rice plants under flooded condition for 30 days using single-step chemical extraction and diffusive gradients in thin films (DGT) technique combined with micro X-ray fluorescence spectroscopy (μ-XRF). The results show that various MONPs changed the soil properties, especially the redox potential was enhanced to -165.33 to -75.33 mV compared to the control. The extraction efficiency of Zn, Cu and Ce in the paddy soil from high to low was EDTA, DTPA, CaCl2 and DGT. Moreover, exposure to 500 mg/kg CuO NPs and CeO2 NPs induced the primary accumulation of Cu and Ce elements in rice roots as high as 235.48 mg Cu/kg and 164.84 mg Ce/kg, respectively, while the Zn concentration in shoots was up to 313.18 mg/kg under highest ZnO NPs with a 1.5 of translocation factor. The effect of MONPs on the plant growth was mainly related to the chemical species and solubility of MONPs. Micro-XRF analysis shows that Zn was mostly located in the root cortex while Cu was primarily accumulated in the root exodermis and few Ce distributed in the root. Pearson correlation coefficients indicate that only DTPA-extracted metals in soil were significantly and well correlated to the Zn, Cu and Ce accumulation in rice seedlings exposed to MONPs. This work is of great significance for evaluating the environmental risks of MONPs in soil and ensuring the safety of agricultural products.
Collapse
Affiliation(s)
- Cheng Peng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hong Tong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lijuan Sun
- Institute of ECO-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Peng Yuan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Miao He
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiyan Shi
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
58
|
Zhou Y. Controllable design, synthesis and characterization of nanostructured rare earth metal oxides. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Rare earth metal oxide nanomaterials have drawn much attention in recent decades due to their unique properties and promising applications in catalysis, chemical and biological sensing, separation, and optical devices. Because of the strong structure–property correlation, controllable synthesis of nanomaterials with desired properties has long been the most important topic in nanoscience and nanotechnology and still maintains a grand challenge. A variety of methods, involving chemical, physical, and hybrid method, have been developed to precisely control nanomaterials, including size, shape, dimensionality, crystal structure, composition, and homogeneity. These nanostructural parameters play essential roles in determining the final properties of functional nanomaterials. Full understanding of nanomaterial properties through characterization is vital in elucidating the fundamental principles in synthesis and applications. It allows researchers to discover the correlations between the reaction parameters and nanomaterial properties, offers valuable insights in improving synthetic routes, and provokes new design strategies for nanostructures. In application systems, it extrapolates the structure–activity relationship and reaction mechanism and helps to establish quality model for similar reaction processes. The purpose of this chapter is to provide a comprehensive overview and a practical guide of rare earth oxide nanomaterial design and characterization, with special focus on the well-established synthetic methods and the conventional and advanced analytical techniques. This chapter addresses each synthetic method with its advantages and certain disadvantages, and specifically provides synthetic strategies, typical procedures and features of resulting nanomaterials for the widely-used chemical methods, such as hydrothermal, solvothermal, sol–gel, co-precipitation, thermal decomposition, etc. For the nanomaterial characterization, a practical guide for each technique is addressed, including working principle, applications, materials requirements, experimental design and data analysis. In particular, electron and force microscopy are illuminated for their powerful functions in determining size, shape, and crystal structure, while X-ray based techniques are discussed for crystalline, electronic, and atomic structural determination for oxide nanomaterials. Additionally, the advanced characterization methodologies of synchrotron-based techniques and in situ methods are included. These non-traditional methods become more and more popular because of their capabilities of offering unusual nanostructural information, short experiment time, and in-depth problem solution.
Graphical Abstract:
Collapse
|
59
|
Montanha GS, Rodrigues ES, Romeu SLZ, de Almeida E, Reis AR, Lavres J, Pereira de Carvalho HW. Zinc uptake from ZnSO 4 (aq) and Zn-EDTA (aq) and its root-to-shoot transport in soybean plants (Glycine max) probed by time-resolved in vivo X-ray spectroscopy. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110370. [PMID: 32005376 DOI: 10.1016/j.plantsci.2019.110370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the dynamic of zinc (Zn) uptake and the root-to-shoot Zn-transport when supplied as ZnSO4 (aq) or Zn-EDTA (aq) in soybean seedlings using in vivo X-ray fluorescence (XRF) and X-ray absorption spectroscopy (XANES). The time-resolved X-ray fluorescence showed that plants absorbed ca. 10-fold more Zn from ZnSO4 (aq) than from Zn-EDTA (aq). However, the uptake velocity did not influence the amount of Zn in the stem. It let furthermore appear that the plants were able to reduce the absorption of Zn from Zn-EDTA (aq) earlier than ZnSO4 (aq). Thus, the entrance of Zn2+ into the roots is not necessarily accompanied by SO42-(aq). Regardless the source, the Zn distribution and its transport in the stem were spatially correlated to the bundles and cortex nearby the epidermal cells. Its chemical speciation showed that Zn is neither transported as ZnSO4(aq) nor as Zn-EDTA(aq), indicating that these compounds are retained in the roots or biotransformed on in the root-solution interface. Zn2+ was long-distance transported complexed by organic molecules such as histidine, malate, and citrate, and the proportion of ligands was affected by the concentration of Zn2+ in the stem rather than by the type of Zn source.
Collapse
Affiliation(s)
- Gabriel S Montanha
- University of São Paulo (USP), Center of Nuclear Energy in Agriculture (CENA), Avenida Centenário 303, 13416-000, Piracicaba, São Paulo, Brazil.
| | - Eduardo S Rodrigues
- University of São Paulo (USP), Center of Nuclear Energy in Agriculture (CENA), Avenida Centenário 303, 13416-000, Piracicaba, São Paulo, Brazil.
| | - Sara L Z Romeu
- University of São Paulo (USP), Center of Nuclear Energy in Agriculture (CENA), Avenida Centenário 303, 13416-000, Piracicaba, São Paulo, Brazil.
| | - Eduardo de Almeida
- University of São Paulo (USP), Center of Nuclear Energy in Agriculture (CENA), Avenida Centenário 303, 13416-000, Piracicaba, São Paulo, Brazil.
| | - André R Reis
- São Paulo State University (UNESP), Rua Domingos da Costa Lopes 780, 17602-496, Tupã, São Paulo, Brazil.
| | - José Lavres
- University of São Paulo (USP), Center of Nuclear Energy in Agriculture (CENA), Avenida Centenário 303, 13416-000, Piracicaba, São Paulo, Brazil.
| | - Hudson W Pereira de Carvalho
- University of São Paulo (USP), Center of Nuclear Energy in Agriculture (CENA), Avenida Centenário 303, 13416-000, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
60
|
Gomez-Gonzalez MA, Koronfel MA, Goode AE, Al-Ejji M, Voulvoulis N, Parker JE, Quinn PD, Scott TB, Xie F, Yallop ML, Porter AE, Ryan MP. Spatially Resolved Dissolution and Speciation Changes of ZnO Nanorods during Short-Term in Situ Incubation in a Simulated Wastewater Environment. ACS NANO 2019; 13:11049-11061. [PMID: 31525960 DOI: 10.1021/acsnano.9b02866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zinc oxide engineered nanomaterials (ZnO ENMs) are used in a variety of applications worldwide due to their optoelectronic and antibacterial properties with potential contaminant risk to the environment following their disposal. One of the main potential pathways for ZnO nanomaterials to reach the environment is via urban wastewater treatment plants. So far there is no technique that can provide spatiotemporal nanoscale information about the rates and mechanisms by which the individual nanoparticles transform. Fundamental knowledge of how the surface chemistry of individual particles change, and the heterogeneity of transformations within the system, will reveal the critical physicochemical properties determining environmental damage and deactivation. We applied a methodology based on spatially resolved in situ X-ray fluorescence microscopy (XFM), allowing observation of real-time dissolution and morphological and chemical evolution of synthetic template-grown ZnO nanorods (∼725 nm length, ∼140 nm diameter). Core-shell ZnO-ZnS nanostructures were formed rapidly within 1 h, and significant amounts of ZnS species were generated, with a corresponding depletion of ZnO after 3 h. Diffuse nanoparticles of ZnS, Zn3(PO4)2, and Zn adsorbed to Fe-oxyhydroxides were also imaged in some nonsterically impeded regions after 3 h. The formation of diffuse nanoparticles was affected by ongoing ZnO dissolution (quantified by inductively coupled plasma mass spectrometry) and the humic acid content in the simulated sludge. Complementary ex situ X-ray absorption spectroscopy and scanning electron microscopy confirmed a significant decrease in the ZnO contribution over time. Application of time-resolved XFM enables predictions about the rates at which ZnO nanomaterials transform during their first stages of the wastewater treatment process.
Collapse
Affiliation(s)
- Miguel A Gomez-Gonzalez
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , United Kingdom
| | - Mohamed A Koronfel
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , United Kingdom
| | - Angela Erin Goode
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , United Kingdom
| | - Maryam Al-Ejji
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , United Kingdom
| | - Nikolaos Voulvoulis
- Centre for Environmental Policy , Imperial College London , London SW7 2AZ , United Kingdom
| | - Julia E Parker
- Harwell Science and Innovation Campus , Diamond Light Source, Ltd. , Didcot , Oxfordshire OX11 0DE , United Kingdom
| | - Paul D Quinn
- Harwell Science and Innovation Campus , Diamond Light Source, Ltd. , Didcot , Oxfordshire OX11 0DE , United Kingdom
| | - Thomas Bligh Scott
- Interface Analyses Centre , University of Bristol , Bristol BS2 8BS , United Kingdom
| | - Fang Xie
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , United Kingdom
| | - Marian L Yallop
- School of Biological Sciences , University of Bristol , Bristol BS8 1TQ , United Kingdom
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , United Kingdom
| | - Mary P Ryan
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , United Kingdom
| |
Collapse
|
61
|
Wojcieszek J, Jiménez-Lamana J, Bierła K, Ruzik L, Asztemborska M, Jarosz M, Szpunar J. Uptake, translocation, size characterization and localization of cerium oxide nanoparticles in radish (Raphanus sativus L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:284-292. [PMID: 31132708 DOI: 10.1016/j.scitotenv.2019.05.265] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 05/21/2023]
Abstract
Due to their unique physical and chemical properties, the production and use of cerium oxide nanoparticles (CeO2 NPs) in different areas, especially in automotive industry, is rapidly increasing, causing their presence in the environment. Released CeO2 NPs can undergo different transformations and interact with the soil and hence with plants, providing a potential pathway for human exposure and leading to serious concerns about their impact on the ecosystem and human organism. This study investigates the uptake, bioaccumulation, possible translocation and localization of CeO2 NPs in a model plant (Raphanus sativus L.), whose edible part is in direct contact with the soil where contamination is more likely to happen. The stability of CeO2 NPs in plant growth medium as well as after applying a standard enzymatic digestion procedure was tested by single particle ICP-MS (SP-ICP-MS) showing that CeO2 NPs can remain intact after enzymatic digestion; however, an agglomeration process was observed in the growth medium already after one day of cultivation. An enzymatic digestion method was next used in order to extract intact nanoparticles from the tissues of plants cultivated from the stage of seeds, followed by size characterization by SP-ICP-MS. The results obtained by SP-ICP-MS showed a narrower size distribution in the case of roots suggesting preferential uptake of smaller nanoparticles which led to the conclusion that plants do not take up the CeO2 NPs agglomerates present in the medium. However, nanoparticles at higher diameters were observed after analysis of leaves plus stems. Additionally, a small degree of dissolution was observed in the case of roots. Finally, after CeO2 NPs treatment of adult plants, the spatial distribution of intact CeO2 NPs in the radish roots was studied by laser ablation ICP-MS (LA-ICP-MS) and the ability of NPs to enter and be accumulated in root tissues was confirmed.
Collapse
Affiliation(s)
| | - Javier Jiménez-Lamana
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), CNRS-UPPA, UMR5254, Pau, France.
| | - Katarzyna Bierła
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), CNRS-UPPA, UMR5254, Pau, France
| | - Lena Ruzik
- Faculty of Chemistry, Warsaw University of Technology, Poland
| | - Monika Asztemborska
- Isotopic Laboratory, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maciej Jarosz
- Faculty of Chemistry, Warsaw University of Technology, Poland
| | - Joanna Szpunar
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), CNRS-UPPA, UMR5254, Pau, France
| |
Collapse
|
62
|
Coman V, Oprea I, Leopold LF, Vodnar DC, Coman C. Soybean Interaction with Engineered Nanomaterials: A Literature Review of Recent Data. NANOMATERIALS 2019; 9:nano9091248. [PMID: 31484310 PMCID: PMC6780927 DOI: 10.3390/nano9091248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 01/07/2023]
Abstract
With a continuous increase in the production and use in everyday life applications of engineered nanomaterials, concerns have appeared in the past decades related to their possible environmental toxicity and impact on edible plants (and therefore, upon human health). Soybean is one of the most commercially-important crop plants, and a perfect model for nanomaterials accumulation studies, due to its high biomass production and ease of cultivation. In this review, we aim to summarize the most recent research data concerning the impact of engineered nanomaterials on the soya bean, covering both inorganic (metal and metal-oxide nanoparticles) and organic (carbon-based) nanomaterials. The interactions between soybean plants and engineered nanomaterials are discussed in terms of positive and negative impacts on growth and production, metabolism and influences on the root-associated microbiota. Current data clearly suggests that under specific conditions, nanomaterials can negatively influence the development and metabolism of soybean plants. Moreover, in some cases, a possible risk of trophic transfer and transgenerational impact of engineered nanomaterials are suggested. Therefore, comprehensive risk-assessment studies should be carried out prior to any mass productions of potentially hazardous materials.
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Ioana Oprea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Loredana Florina Leopold
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Cristina Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
63
|
Du W, Yang J, Peng Q, Liang X, Mao H. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. CHEMOSPHERE 2019; 227:109-116. [PMID: 30986592 DOI: 10.1016/j.chemosphere.2019.03.168] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 05/04/2023]
Abstract
ZnO nanoparticles (NPs) are studied as a potential solution to alleviate Zn deficiency in human diet due to their special physicochemical properties. However, information for food quality and safety in NP-treated crops is limited. The effects of ZnO NPs and ZnSO4 on germination and growth of wheat (Triticum aestivum L.) were studied in germination and pot experiments. Zn content increased significantly, ZnO NPs were more effective than ZnSO4 at increasing grain Zn content, but less effective at increasing leaf Zn, and no ZnO NPs were detected in the wheat tissues by NP-treatments, indicated by XRD. Both ZnO NPs and ZnSO4 at moderate doses increased grain yield and biomass. Compared with control, the maximum grain yield and biomass of wheat treated with ZnO NPs and ZnSO4 were increased by 56%, 63% and 55%, 72%, respectively. ZnSO4 was more toxic than ZnO NPs at high doses as measured by the inhibitory effects in seed germination, root length, shoot length and dry biomass of seedlings. Structural damage in roots and variation in enzyme activities were greater with ZnSO4 than with ZnO NPs. ZnO NPs did not cause toxicity different from that of ZnSO4, which indicates that ZnO NPs used under the current experimental conditions did not cause Nano specific risks.
Collapse
Affiliation(s)
- Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Jingya Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingqing Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoping Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
64
|
Xie C, Ma Y, Yang J, Zhang B, Luo W, Feng S, Zhang J, Wang G, He X, Zhang Z. Effects of foliar applications of ceria nanoparticles and CeCl 3 on common bean (Phaseolus vulgaris). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:530-536. [PMID: 31026700 DOI: 10.1016/j.envpol.2019.04.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/14/2019] [Accepted: 04/08/2019] [Indexed: 05/23/2023]
Abstract
In this study, comparative effects of foliar application of ceria nanoparticles (NPs) and Ce3+ ions on common bean plants were investigated. Soil grown bean seedlings were exposed to ceria NPs and Ce3+ ions at 0, 40, 80, and 160 mg Ce·L-1 every other day at the vegetative growth stage for 17 d. The plants were harvested 47 d after the last treatment. Performed analyses involved growth, physiological and biochemical parameters of the plants and nutritional quality of the pods. Ceria NPs at 40 mg Ce·L-1 increased dry weight of the plants by 51.8% over the control. Neither ceria NPs nor Ce3+ ions significantly affected other vegetative growth parameters. Pod yields and nutrient contents except for several mineral elements were also not significantly different among groups. Compared to control, pods from ceria NPs at 80 mg Ce·L-1 had significantly less S and Mn. At 40 and 80 mg Ce·L-1, ceria NPs reduced pod Mo by 27% and 21%, while Ce3+ ions elevated Mo contents by 20% and 18%, respectively, compared with control. Ce3+ ions at 80 and 160 mg Ce·L-1 significantly increased pod Zn by 25% and 120%, respectively, compared with control. At the end of the experiment, Ce3+ ions at 40, 80, and 160 mg Ce·L-1 increased contents of malondialdehyde (MDA) by 46%, 65%, and 82% respectively as compared with control. While ceria NPs led to a significant increase of MDA level only at the highest concentration. X-ray absorption near edge structure (XANES) analysis of the leaf samples revealed that both ceria NPs and Ce3+ ions kept their original chemical species after foliar applications, suggesting the observed effects of ceria NPs and Ce3+ ions on the plants were probably due to their nano-specific properties and ionic properties respectively.
Collapse
Affiliation(s)
- Changjian Xie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Yang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Boxin Zhang
- International Department, Beijing National Day School, Beijing, 100049, China
| | - Wenhe Luo
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Feng
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Junzhe Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guohua Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
65
|
Wang Y, Jiang F, Ma C, Rui Y, Tsang DCW, Xing B. Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:319-327. [PMID: 31015082 DOI: 10.1016/j.jenvman.2019.04.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/06/2019] [Accepted: 04/13/2019] [Indexed: 05/04/2023]
Abstract
Engineered nanoparticles (NPs) are now used as additives in pesticides and fungicides and as novel fertilizers in agriculture so there is an urgent need to explore their effects on crop yield and quality in a full life cycle study. In the present study, three widely used NPs (TiO2, Fe2O3 and CuO NPs applied at doses of 50 and 500 mg/kg) were selected to investigate their long-term impact on wheat growth. TiO2 NPs did not affect the growth and development of wheat, but Fe2O3 NPs promoted wheat precocity and CuO NPs inhibited the growth and development of the wheat grains. The Cu content in grains treated with CuO NP increased by 18.84%-30.45% compared with the control. However, the contents of Fe and Zn were both significantly lower in the CuO NP treatments. Univariate and multivariate analyses were used to analyze the effect of different NPs on the composition of amino acids in wheat grains. Exposure to TiO2 NPs at dose of 500 mg/kg increased the overall amino acid nutrition in the edible portion of wheat. Fe2O3 NPs at both doses increased the contents of cysteine (Cys) and tyrosine (Tyr). The addition of CuO NPs reduced the level of some essential amino acids in wheat grains, isoleucine (Ile), leucine (Leu), threonine (Thr) and histidine (His). Overall, evaluation of the potential impacts of metal-based NPs on the nutritional quality of wheat grains could provide important information for their safe use when incorporated into agrichemicals in sustainable agriculture.
Collapse
Affiliation(s)
- Yaoyao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Fuping Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, United States; Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, United States.
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, United States
| |
Collapse
|
66
|
Ding Y, Bai X, Ye Z, Ma L, Liang L. Toxicological responses of Fe 3O 4 nanoparticles on Eichhornia crassipes and associated plant transportation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:558-567. [PMID: 30933811 DOI: 10.1016/j.scitotenv.2019.03.344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 05/17/2023]
Abstract
This work investigated the interaction of Fe3O4 nanoparticles (NPs) with a floating water plant (Eichhornia crassipes). The effects of Fe3O4 NPs on E. crassipes physiology and root morphology as well as the migration and transformation of Fe3O4 NPs in plant were studied emphatically. Fe3O4 NPs (200 mg/L) showed significant growth inhibition on E. crassipes roots and leaves after a 21-day exposure, while dissolved Fe3+ ions and Fe3O4 bulk particles had no obvious effect on E. crassipes growth. Scanning electron microscopy showed that the roots of E. crassipes were significantly damaged, the root tips became thin and the root epidermis began to peel off after Fe3O4 NPs exposure. In addition, there was disordered cell arrangement and a destroyed elongation zone of the root tips. The physiology of E. crassipes was also affected. In particular, after exposure to Fe3O4 NPs (200 mg/L), a distinct decrease in chlorophyll content and catalase activity and an increase of malondialdehyde (MDA) content could be seen. Transmission electron microscopy and energy dispersive spectroscopy revealed that Fe3O4 NPs were present in the root epidermis, intercellular space and protoplasts, as well as in the leaf cytoplasm and chloroplasts. Vulcanization in the leaves was also found through diffraction analysis, which may be due to the small number of absorbed nanoparticles, some of which still existed in the original form in the leaves while others were reduced to FeS through interactions with plant components during translocation. These findings are helpful for better understanding the fate of NPs in aquatic plants. Moreover, it is important to evaluate the water environment safety of NPs.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Lingyu Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lu Liang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
67
|
Liu M, Feng S, Ma Y, Xie C, He X, Ding Y, Zhang J, Luo W, Zheng L, Chen D, Yang F, Chai Z, Zhao Y, Zhang Z. Influence of Surface Charge on the Phytotoxicity, Transformation, and Translocation of CeO 2 Nanoparticles in Cucumber Plants. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16905-16913. [PMID: 30993970 DOI: 10.1021/acsami.9b01627] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The physiochemical properties of nanoparticles (NPs), including surface charge, will affect their uptake, transformation, translocation, and final fate in the environment. In this study, we compared the phytoxoxicity and transport behaviors of nano CeO2 (nCeO2) functionalized with positively charged (Cs-nCeO2) and negatively charged (PAA-nCeO2) coatings. Cucumber seedlings were hydroponically exposed to 0-1000 mg/L of Cs-nCeO2 and PAA-nCeO2 for 14 days and the contents, distribution, translocation, and transformation of Ce in plants were analyzed using inductively coupled plasma mass spectrometry, micro X-ray fluorescence (μ-XRF), and X-ray absorption near-edge spectroscopy (XANES), respectively. Results showed that the seedling growth and Ce contents in plant tissues were functions of exposure concentrations and surface charge. Cs-nCeO2 was adsorbed strongly on a negatively charged root surface, which led to significantly higher Ce contents in the roots and lower translocation factors of Ce from the roots to shoots in Cs-nCeO2 group than in PAA-nCeO2 group. The results of μ-XRF showed that Ce elements were mainly accumulated at the root tips and lateral roots, as well as in the veins and at the edge of leaves. XANES results revealed that the proportion of Ce(III) was comparable in the plant tissues of the two groups. We speculated that Cs-nCeO2 and PAA-nCeO2 were partially dissolved under the effect of root exudates, releasing Ce3+ ions as a result. Then, the Ce3+ ions were transported upward in the form of Ce(III) complexes along the vascular bundles and eventually accumulated in the veins. The other portion of Cs-nCeO2 and PAA-nCeO2 entered the roots through the gap of a Casparian strip at root tips/lateral roots and was transported upward as intact NPs and finally accumulated at the edge of the blade. This study will greatly advance our information on how the properties of NPs influence their phytotoxicity, uptake, and subsequent trophic transfer in terrestrial food webs.
Collapse
Affiliation(s)
- Mengyao Liu
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Sheng Feng
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Changjian Xie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Yayun Ding
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Junzhe Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Wenhe Luo
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Dongliang Chen
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Fang Yang
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Zhifang Chai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
- School of Physical Sciences , University of the Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
68
|
Shrivastava M, Srivastav A, Gandhi S, Rao S, Roychoudhury A, Kumar A, Singhal R, Jha SK, Singh S. Monitoring of engineered nanoparticles in soil-plant system: A review. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.enmm.2019.100218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
69
|
Swift TA, Oliver TAA, Galan MC, Whitney HM. Functional nanomaterials to augment photosynthesis: evidence and considerations for their responsible use in agricultural applications. Interface Focus 2019; 9:20180048. [PMID: 30603068 PMCID: PMC6304006 DOI: 10.1098/rsfs.2018.0048] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
At the current population growth rate, we will soon be unable to meet increasing food demands. As a consequence of this potential problem, considerable efforts have been made to enhance crop productivity by breeding, genetics and improving agricultural practices. While these techniques have traditionally been successful, their efficacy since the 'green revolution' has begun to significantly plateau. This stagnation of gains combined with the negative effects of climate change on crop yields has prompted researchers to develop novel and radical methods to increase crop productivity. Recent work has begun exploring the use of nanomaterials as synthetic probes to augment how plants use light. Photosynthesis in crops is often limited by their ability to absorb and exploit solar energy for photochemistry. The capacity to interact with and optimize how plants use light has the potential to increase the productivity of crops and enable the tailoring of crops for different environments and to compensate for predicted climate changes. Advances in the synthesis and surface modification of nanomaterials have overcome previous drawbacks and renewed their potential use as synthetic probes to enhance crop yields. Here, we review the current applications of functional nanomaterials in plants and will make an argument for the continued development of promising new nanomaterials and future applications in agriculture. This will highlight that functional nanomaterials have the clear potential to provide a much-needed route to enhanced future food security. In addition, we will discuss the often-ignored current evidence of nanoparticles present in the environment as well as inform and encourage caution on the regulation of nanomaterials in agriculture.
Collapse
Affiliation(s)
- Thomas A. Swift
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TL, UK
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - Thomas A. A. Oliver
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - M. Carmen Galan
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - Heather M. Whitney
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TL, UK
| |
Collapse
|
70
|
Zhang TR, Wang CX, Dong FQ, Gao ZY, Zhang CJ, Zhang XJ, Fu LM, Wang Y, Zhang JP. Uptake and Translocation of Styrene Maleic Anhydride Nanoparticles in Murraya exotica Plants As Revealed by Noninvasive, Real-Time Optical Bioimaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1471-1481. [PMID: 30605315 DOI: 10.1021/acs.est.8b05689] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This work reports the in vivo uptake and translocation of PNPs in the one-year grown terrestrial plant, Murraya exotica ( M. exotica), as investigated by two-photon excitation and time-resolved (TPE-TR) optical imaging with a large field of view (FOV, 32 × 32 mm2) in a noninvasive and real-time manner. The PNPs (⟨ Rh⟩ = 12 ± 4.5 nm) synthesized from poly(styrene- co-maleic anhydride) (SMA) were Eu-luminescence labeled (λL ≈ 617 nm). On exposing the roots of living M. exotica plants to the colloidal suspension of SMA PNPs at different concentrations, the spatiotemporal evolution of SMA PNPs along plant stems (60 mm in length) were monitored by TPE-TR imaging, which rendered rich information on the uptake and translocation of PNPs without any interference from the autofluorescence of the plant tissues. The TPE-TR imaging combined with the high-resolution anatomy revealed an intercell-wall route in the lignified epidermis of M. exotica plants for SMA PNP uptake and translocation, as well as the similar accumulation kinetics at different positions along the plant stems. We modeled the accumulation kinetics with Gaussian distribution to account for the trapping probability of a SMA PNP by the lignified cell walls, allowing the statistical parameters, the average trapping time ( tm) and its variance (σ), to be derived for the quantification of the PNP accumulation in individual plants. The TPE-TR imaging and the analysis protocols established herein will be helpful in exploring the mechanism of plant-PNP interaction under physiological condition.
Collapse
Affiliation(s)
- Tai-Ran Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Chuan-Xi Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100871 , China
| | - Feng-Qin Dong
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany , Chinese Academy of Sciences , Beijing 100093 , China
| | - Zhi-Yue Gao
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100871 , China
| | - Chao-Jie Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Xian-Juan Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Li-Min Fu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100871 , China
| | - Jian-Ping Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| |
Collapse
|
71
|
Abdolahpur Monikh F, Chupani L, Zusková E, Peters R, Vancová M, Vijver MG, Porcal P, Peijnenburg WJGM. Method for Extraction and Quantification of Metal-Based Nanoparticles in Biological Media: Number-Based Biodistribution and Bioconcentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:946-953. [PMID: 30532971 DOI: 10.1021/acs.est.8b03715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A multistep sample preparation method was developed to separate metal-based engineered nanoparticles (ENPs) from biological samples. The method was developed using spiked zebrafish tissues and standard titanium dioxide (TiO2) and cerium dioxide (CeO2) ENPs. Single-particle inductively coupled plasma mass spectrometry was used to quantify the separated particles in terms of number concentration. This method demonstrated mass recoveries of more than 90% and did not strikingly alter the median particles size. High number recoveries were calculated for CeO2 ENPs (>84%). Particle number recoveries were poor for TiO2 ENPs (<25%), which could be due to the interference of 48Ca with the measured isotope 48Ti. The method was verified using zebrafish exposed to CeO2 ENPs to test its applicability for nanotoxicokinetic investigations. Total mass of Ce and particle number concentration of CeO2 ENPs were measured in different tissues. Notably, the mass-based biodistribution of Ce in the tissues did not follow the number-based biodistribution of CeO2. Moreover, the calculated mass-based bioconcentration factors showed a different pattern in comparison to the number-based bioconcentration factors. Our findings suggest that considering mass as the sole dose-metric may not provide sufficient information to investigate toxicity and toxicokinetics of ENPs.
Collapse
Affiliation(s)
- Fazel Abdolahpur Monikh
- Institute of Environmental Sciences (CML) , Leiden University , P.O. Box 9518, 2300 RA Leiden , Netherlands
| | - Latifeh Chupani
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters , University of South Bohemia in České Budějovice , Vodňany , Czech Republic
| | - Eliska Zusková
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters , University of South Bohemia in České Budějovice , Vodňany , Czech Republic
| | - Ruud Peters
- RIKILT Wageningen UR , Akkermaalsbos 2 , 6708 WB Wageningen , Netherlands
| | - Marie Vancová
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Parasitology, Faculty of Science , University of South Bohemia , Branišovská 31 , 37005 České Budějovice , Czech Republic
| | - Martina G Vijver
- Institute of Environmental Sciences (CML) , Leiden University , P.O. Box 9518, 2300 RA Leiden , Netherlands
| | - Petr Porcal
- Biology Centre CAS , Institute of Hydrobiology and Soil & Water Research Infrastructure, Faculty of Science , Na Sádkách 7 , České Budějovice , Czech Republic
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML) , Leiden University , P.O. Box 9518, 2300 RA Leiden , Netherlands
- National Institute of Public Health and the Environment (RIVM) , Center for Safety of Substances and Products , Bilthoven , Netherlands
| |
Collapse
|
72
|
Phytotoxic and Genotoxic Effects of Copper Nanoparticles in Coriander ( Coriandrum sativum-Apiaceae). PLANTS 2019; 8:plants8010019. [PMID: 30646494 PMCID: PMC6358933 DOI: 10.3390/plants8010019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/30/2018] [Accepted: 01/05/2019] [Indexed: 12/13/2022]
Abstract
Engineered metal nanoparticles have been widely used in several applications that may lead to increased exposure to the environment. In this study, we assessed the phytotoxic effect of various concentrations of copper nanoparticles CuNP, (200, 400 and 800 mg/L) on coriander (Coriandrum sativum) plants grown hydroponically. C. sativum plants treated with CuNP demonstrated decreased biomass and root length in comparison to control untreated plants. Additionally, decreased levels of photosynthetic pigments (chlorophyll a and b) were also seen in C. sativum plants treated with CuNP, as well as damage to the C. sativum root plasma membrane as demonstrated by Evan’s blue dye and increased electrolyte leakage. Moreover, our results exhibited increased levels of H2O2 and MDA on C. Sativum plants treated with CuNP. X-Ray Fluorescence (XRF) analysis confirmed that C. sativum treated with CuNP accumulated the latter in plant root tissues. Random amplified polymorphic DNA (RAPD) analysis confirmed the genotoxic effect of CuNP, which altered the C. sativum genome. This was shown by the different banding pattern of RAPD. Overall, our results exhibited that CuNP is toxic to C. sativum plants.
Collapse
|
73
|
Petersen EJ, Mortimer M, Burgess RM, Handy R, Hanna S, Ho KT, Johnson M, Loureiro S, Selck H, Scott-Fordsmand JJ, Spurgeon D, Unrine J, van den Brink N, Wang Y, White J, Holden P. Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. ENVIRONMENTAL SCIENCE. NANO 2019; 6:10.1039/C8EN01378K. [PMID: 31579514 PMCID: PMC6774209 DOI: 10.1039/c8en01378k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
One of the key components for environmental risk assessment of engineered nanomaterials (ENMs) is data on bioaccumulation potential. Accurately measuring bioaccumulation can be critical for regulatory decision making regarding material hazard and risk, and for understanding the mechanism of toxicity. This perspective provides expert guidance for performing ENM bioaccumulation measurements across a broad range of test organisms and species. To accomplish this aim, we critically evaluated ENM bioaccumulation within three categories of organisms: single-celled species, multicellular species excluding plants, and multicellular plants. For aqueous exposures of suspended single-celled and small multicellular species, it is critical to perform a robust procedure to separate suspended ENMs and small organisms to avoid overestimating bioaccumulation. For many multicellular organisms, it is essential to differentiate between the ENMs adsorbed to external surfaces or in the digestive tract and the amount absorbed across epithelial tissues. For multicellular plants, key considerations include how exposure route and the role of the rhizosphere may affect the quantitative measurement of uptake, and that the efficiency of washing procedures to remove loosely attached ENMs to the roots is not well understood. Within each organism category, case studies are provided to illustrate key methodological considerations for conducting robust bioaccumulation experiments for different species within each major group. The full scope of ENM bioaccumulation measurements and interpretations are discussed including conducting the organism exposure, separating organisms from the ENMs in the test media after exposure, analytical methods to quantify ENMs in the tissues or cells, and modeling the ENM bioaccumulation results. One key finding to improve bioaccumulation measurements was the critical need for further analytical method development to identify and quantify ENMs in complex matrices. Overall, the discussion, suggestions, and case studies described herein will help improve the robustness of ENM bioaccumulation studies.
Collapse
Affiliation(s)
- Elijah J. Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Robert M. Burgess
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Richard Handy
- Plymouth University, School of Biological Sciences, United Kingdom
| | - Shannon Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Kay T. Ho
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Monique Johnson
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Henriette Selck
- Roskilde University, Dept. of Science and Environment, Denmark
| | | | - David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Nico van den Brink
- Department of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ying Wang
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Jason White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Patricia Holden
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
74
|
Cai L, Liu M, Liu Z, Yang H, Sun X, Chen J, Xiang S, Ding W. MgONPs Can Boost Plant Growth: Evidence from Increased Seedling Growth, Morpho-Physiological Activities, and Mg Uptake in Tobacco ( Nicotiana tabacum L.). Molecules 2018; 23:E3375. [PMID: 30572666 PMCID: PMC6321585 DOI: 10.3390/molecules23123375] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022] Open
Abstract
In this study, we documented the impact of magnesium oxide nanoparticles (MgONPs) on the various morpho-physiological changes by root irrigation in tobacco plants in the matrix media, as well as the uptake and accumulation of the NPs over a range of concentrations (50⁻250 μg/mL). Our results showed that the seed germination rate was not affected following exposure to MgONPs for 5 days. Enhanced plant growth together with increased peroxidase activity (39.63 U mg-1 protein in the 250 μg/mL MgONPs treatment, 36.63 U mg-1 protein in the control), superoxide dismutase activity (30.15 U mg-1 protein compared to 26.95 U mg-1 protein in the control), and chlorophyll content (the chlorophyll a and b contents in 0 and 250 μg/mL of MgONPs were 0.21, 0.12 μg/g to 1.21, 0.67 μg/g, respectively) were observed after 30 days of MgONP treatment. However, the malondialdehyde, protein, and relative water contents did not differ significantly, indicating that the NPs in the test concentrations had no phytotoxicity and even promoted plant growth. Scanning electron microscopy and paraffin section observations indicated that the MgONPs did not affect the plant tissue structures and cells. In addition, an elevated Mg content was detected in the plant tissues exposed to MgONPs, suggesting that the Mg was taken up by the tobacco roots and translocated to the shoots and leaves, which were probably the most important tools to cause an increase in the chlorophyll content and stimulate growth. In particular, compared with the controls, a substantially higher Mg content was observed in the leaves (12.93 mg/g in the MgONPs treatment, 9.30 mg/g in the control) exposed to 250 μg/mL MgONPs, especially in the lower and middle leaves. This result confirmed that the contents of plant Mg-element in the old leaves were increased by MgONPs. In summary, this study investigated increased Mg uptake and growth stimulation, as well as the induction of various positive morpho-physiological changes to tobacco plants when exposed to MgONPs. Results elucidate the promotional impact of the NPs on plant health and their implications for agricultural safety and security.
Collapse
Affiliation(s)
- Lin Cai
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Minghong Liu
- Zunyi Branch Company, Guizhou Tobacco Company, Zunyi 563000, China.
| | - Zhongwei Liu
- Guizhou Key Lab of Agro-Bioengineering, Guizhou University, Guiyang 550025, China.
| | - Huikuan Yang
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Juanni Chen
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Shunyu Xiang
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
75
|
Ke M, Qu Q, Peijnenburg WJGM, Li X, Zhang M, Zhang Z, Lu T, Pan X, Qian H. Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1070-1079. [PMID: 30743820 DOI: 10.1016/j.scitotenv.2018.07.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 06/09/2023]
Abstract
The acute (3 days) and chronic (whole life history) responses of Arabidopsis thaliana following exposure to silver nanoparticles (AgNPs) and Ag+ ions (AgNO3) in respectively a hydroponic medium and in soil were studied. After 3 days of hydroponic exposure, AgNPs (1.0 and 2.5 mg/L) exerted more severe inhibitory effects on plant (shoot and root) growth and photosynthesis than the same concentrations of Ag+ ions. In soil cultivation, the photoperiod, the autonomous, and the vernalization pathways were down-regulated to 0.15- to 0.5-fold of the control after 12.5 mg/kg AgNPs treatment. This exposure caused a decrease of approximately 25%-40% as compared to the control of the transcription of flowering key genes including AP1, LFY, FT and SOC1, and finally resulted in a delayed flowering time of 5 days. Only autonomous and vernalization pathways were inhibited by Ag+ ion treatment and ultimately the time of flowering in treated plants was delayed by 3 days. The energy production related metabolic pathways in the tricarboxylic acid cycle and in sugar metabolism were stimulated stronger by AgNPs than by Ag+ ion treatment, thus releasing more energy and accelerating the physiological metabolic responses against stress in the AgNPs treatment while subsequently reducing the plant growth and yield at the maturation stage. Importantly, shikimate-phenylpropanoid biosynthesis, and tryptophan and galactose metabolisms were regulated only by the AgNPs treatment, which was a specific effect of nanoparticles. This work provides a systematic understanding at the molecular, physiological as well as metabolic level of the effects of AgNPs and Ag+ ions in A. thaliana.
Collapse
Affiliation(s)
- Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, The Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, The Netherlands
| | - Xingxing Li
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Meng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Chinese Academy of Sciences, Urumqi, PR China.
| |
Collapse
|
76
|
Peng C, Chen S, Shen C, He M, Zhang Y, Ye J, Liu J, Shi J. Iron Plaque: A Barrier Layer to the Uptake and Translocation of Copper Oxide Nanoparticles by Rice Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12244-12254. [PMID: 30351042 DOI: 10.1021/acs.est.8b02687] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The waterlogging environment generally results in the deposition of iron plaque on plant roots, which may impact the fate of metal-based nanoparticles. Here, we investigated the influence of iron plaque on the uptake, translocation, and transformation of copper oxide nanoparticles (CuO NPs) in rice plants. The results show that the presence of iron plaque dramatically reduced the Cu contents in roots and shoots by 89% and 78% of those without iron plaque under 100 mg/L CuO NP treatment. Meanwhile, the Cu accumulation in plants was negatively related to the amount of iron plaque. X-ray absorption near edge structure (XANES) analysis demonstrated lower percentage of CuO but higher proportion of Cu(I) in shoots exposed to CuO NPs with the formation of iron plaque. Furthermore, micro X-ray fluorescence (μ-XRF) combined with μ-XANES revealed that the iron plaque in the root epidermis and exodermis consisted of goethite and ferrihydrite, which hindered the uptake of CuO NPs by roots. However, a few CuO NPs were still absorbed by roots via root hairs or lateral roots, and further translocated to shoots. But eventually, more than 90% of total Cu(II) was reduced to Cu(I)-cysteine and Cu2O in leaf veins of rice plants with iron plaque.
Collapse
Affiliation(s)
- Cheng Peng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering , Donghua University , Shanghai 201620 , China
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province , Zhejiang University , Hangzhou 310058 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
| | - Si Chen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering , Donghua University , Shanghai 201620 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
| | - Miao He
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Yunqi Zhang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Jien Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering , Donghua University , Shanghai 201620 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
| | - Jiyan Shi
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province , Zhejiang University , Hangzhou 310058 , China
- Department of Environmental Engineering, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
77
|
Djanaguiraman M, Nair R, Giraldo JP, Prasad PVV. Cerium Oxide Nanoparticles Decrease Drought-Induced Oxidative Damage in Sorghum Leading to Higher Photosynthesis and Grain Yield. ACS OMEGA 2018; 3:14406-14416. [PMID: 30411067 PMCID: PMC6217696 DOI: 10.1021/acsomega.8b01894] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 05/21/2023]
Abstract
Drought is a major abiotic stress affecting crop growth and yield worldwide. Drought-induced oxidative stress results in the reduction of plant photosynthesis and reproductive success. Cerium oxide nanoparticles (nanoceria) possess potent antioxidant properties that can alleviate drought-induced oxidative stress by catalytic scavenging reactive oxygen species (ROS), thereby protecting sorghum [Sorghum bicolor (L.) Moench] photosynthesis and grain yield. Drought was imposed at the booting stage by withholding water for 21 d. Foliar-sprayed nanoceria (10 mg L-1) efficiently reduced leaf superoxide radical (41%) and hydrogen peroxide (36%) levels and decreased cell membrane lipid peroxidation (37%) under drought. Nanoceria increased leaf carbon assimilation rates (38%), pollen germination (31%), and seed yield per plant (31%) in drought-stressed plants relative to water-sprayed controls. Translocation study indicated that nanoceria can move from root to shoot of sorghum plants. Toxicity assays in mammalian cells indicated that nanoceria effective concentration (EC)50 of >250 mg L-1 is well above the concentration used in this study. Foliar-sprayed nanoceria protect sorghum plants from oxidative damage under drought stress leading to higher grain yield.
Collapse
Affiliation(s)
- Maduraimuthu Djanaguiraman
- Department
of Agronomy, Throckmorton Plant Science Center, Kansas State University, Manhattan, Kansas 66506, United States
- Department
of Nano Science and Technology, Tamil Nadu
Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Remya Nair
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Juan Pablo Giraldo
- Department
of Botany and Plant Sciences, University
of California, Riverside, California 92521, United States
| | - Pagadala Venkata Vara Prasad
- Department
of Agronomy, Throckmorton Plant Science Center, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
78
|
Reddy Pullagurala VL, Adisa IO, Rawat S, Kim B, Barrios AC, Medina-Velo IA, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. Finding the conditions for the beneficial use of ZnO nanoparticles towards plants-A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1175-1181. [PMID: 30029327 DOI: 10.1016/j.envpol.2018.06.036] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 05/18/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have a wide range of applications in cosmetics, electrical, and optical industries. The wide range of applications of ZnO NPs, especially in personal care products, suggest they can reach major environmental matrices causing unforeseen effects. Recent literature has shown conflicting findings regarding the beneficial or detrimental effects of ZnO NPs towards terrestrial biota. In this review we carried out a comprehensive survey about beneficial, as well as detrimental aspects, of the ZnO NPs exposure toward various terrestrial plants. A careful scrutiny of the literature indicates that at low concentrations (about 50 mg/kg), ZnO NPs have beneficial effects on plants. Conversely, at concentrations above 500 mg/kg they may have detrimental effects, unless there is a deficiency of Zn in the growing medium. This review also remarks the critical role of the biotic and abiotic factors that may elevate or ameliorate the impact of ZnO NPs in terrestrial plants.
Collapse
Affiliation(s)
- Venkata L Reddy Pullagurala
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA
| | - Ishaq O Adisa
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA; The Center for Nanotechnology and Agricultural Pathogen Suppression (CeNAPS), USA
| | - Swati Rawat
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA
| | - Bojeong Kim
- Department of Earth and Environmental Science, Temple University, 1901N. 13th Street, Philadelphia, PA, 19122, USA
| | - Ana C Barrios
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA
| | - Illya A Medina-Velo
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA
| | - Jose A Hernandez-Viezcas
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA
| | - Jose R Peralta-Videa
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA; Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA
| | - Jorge L Gardea-Torresdey
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA; Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West Univ. Ave, El Paso, TX, 79968, USA; The Center for Nanotechnology and Agricultural Pathogen Suppression (CeNAPS), USA.
| |
Collapse
|
79
|
Rai PK, Kumar V, Lee S, Raza N, Kim KH, Ok YS, Tsang DCW. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. ENVIRONMENT INTERNATIONAL 2018; 119:1-19. [PMID: 29909166 DOI: 10.1016/j.envint.2018.06.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/24/2018] [Accepted: 06/09/2018] [Indexed: 05/25/2023]
Abstract
In the recent techno-scientific revolution, nanotechnology has gained popularity at a rapid pace in different sectors and disciplines, specifically environmental, sensing, bioenergy, and agricultural systems. Controlled, easy, economical, and safe synthesis of nanomaterials is desired for the development of new-age nanotechnology. In general, nanomaterial synthesis techniques, such as chemical synthesis, are not completely safe or environmentally friendly due to harmful chemicals used or to toxic by-products produced. Moreover, a few nanomaterials are present as by-product during washing process, which may accumulate in water, air, and soil system to pose serious threats to plants, animals, and microbes. In contrast, using plants for nanomaterial (especially nanoparticle) synthesis has proven to be environmentally safe and economical. The role of plants as a source of nanoparticles is also likely to expand the number of options for sustainable green renewable energy, especially in biorefineries. Despite several advantages of nanotechnology, the nano-revolution has aroused concerns in terms of the fate of nanoparticles in the environment because of the potential health impacts caused by nanotoxicity upon their release. In the present panoramic review, we discuss the possibility that a multitudinous array of nanoparticles may find applications convergent with human welfare based on the synthesis of diverse nanoparticles from plants and their extracts. The significance of plant-nanoparticle interactions has been elucidated further for nanoparticle synthesis, applications of nanoparticles, and the disadvantages of using plants for synthesizing nanoparticles. Finally, we discuss future prospects of plant-nanoparticle interactions in relation to the environment, energy, and agriculture with implications in nanotechnology.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 140306, India
| | - SangSoo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Nadeem Raza
- Govt. Emerson College, affiliated with Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
80
|
Chen H. Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants. CHEMICAL SPECIATION & BIOAVAILABILITY 2018. [DOI: 10.1080/09542299.2018.1520050] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR, USA
| |
Collapse
|
81
|
Dwivedi AD, Yoon H, Singh JP, Chae KH, Rho SC, Hwang DS, Chang YS. Uptake, Distribution, and Transformation of Zerovalent Iron Nanoparticles in the Edible Plant Cucumis sativus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10057-10066. [PMID: 30078317 DOI: 10.1021/acs.est.8b01960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, we investigated the fate of nanoscale zerovalent iron (nZVI) on the Cucumis sativus under both hydroponic and soil conditions. Seedlings were exposed to 0, 250, and 1000 mg/L (or mg/kg soil) nZVI during 6-9 weeks of a growth period. Ionic controls were prepared using Fe-EDTA. None of the nZVI treatments affected the plant biomass. On the basis of the total iron contents and the superparamagnetic property of nZVI-exposed roots, there was no evidence of pristine nZVI translocation from the roots to shoots. Electron microscopy revealed that the transformed iron nanoparticles are stored in the root cell membrane and the vacuoles of the leaf parenchymal cells. X-ray absorption spectroscopy identified ferric citrate (41%) and iron (oxyhydr)oxides (59%) as the main transformed products in the roots. The shoot samples indicated a larger proportion of ferric citrate (60%) compared to iron (oxyhydr)oxides (40%). The 1.8-fold higher expression of the CsHA1 gene indicated that the plant-promoted transformation of nZVI was driven by protons released from the root layers. The current data provide a basis for two potential nZVI transformation pathways in Cucumis sativus: (1) interaction with low molecular weight organic acid ligands and (2) dissolution-precipitation of the mineral products.
Collapse
Affiliation(s)
- Amarendra Dhar Dwivedi
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
- Division of Integrative Bioscience and Biotechnology , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| | - Hakwon Yoon
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| | - Jitendra Pal Singh
- Advanced Analysis Center , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
| | - Sang-Chul Rho
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
- Division of Integrative Bioscience and Biotechnology , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
- Division of Integrative Bioscience and Biotechnology , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| |
Collapse
|
82
|
Ma Y, Yao Y, Yang J, He X, Ding Y, Zhang P, Zhang J, Wang G, Xie C, Luo W, Zhang J, Zheng L, Chai Z, Zhao Y, Zhang Z. Trophic Transfer and Transformation of CeO 2 Nanoparticles along a Terrestrial Food Chain: Influence of Exposure Routes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7921-7927. [PMID: 29929364 DOI: 10.1021/acs.est.8b00596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The trophic transfer and transformation of CeO2 nanoparticles (NPs) through a simulated terrestrial food chain were investigated using a radiotracer technique and X-ray absorption near edge structure (XANES). Radioactive 141CeO2 NPs were applied to head lettuce ( Lactuca sativa), treated via root exposure in its potting soil (5.5 or 11 mg/plant) for 30 days or foliar exposure (7.2 mg/plant, with half of the leaves treated and the other half not) for 7 days. Subsequently, two groups of land snails ( Achatina fulica) were exposed to 141Ce via either a direct (i.e., feeding on the lettuce leaves with 141Ce-contaminated surfaces) or an indirect/trophic (i.e., feeding on the lettuce leaves with systemically distributed 141Ce) route. To evaluate the influence of exposure routes, the Ce contents of the lettuce, snail tissues, and feces were determined by radioactivity measurements. The results show that both assimilation efficiencies (AEs) and food ingestion rates of Ce are greater for the trophic (indirect) exposure. The low AEs indicate that the CeO2 NPs ingested by snails were mostly excreted subsequently, and those that remained in the body were mainly concentrated in the digestive gland. XANES analysis shows that >85% of Ce was reduced to Ce(III) in the digestive gland under direct exposure, whereas Ce in the rest of the food chain (including feces) was largely in its original oxidized (IV) state. This study suggests that CeO2 NPs present in the environment may be taken up by producers and transferred to consumers along food chains and trophic transfer may affect food safety.
Collapse
Affiliation(s)
- Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Yao Yao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Jie Yang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Yayun Ding
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Peng Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Junzhe Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Guohua Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Changjian Xie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Wenhe Luo
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhifang Chai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
- School of Physical Sciences , University of the Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
83
|
Mosa KA, El-Naggar M, Ramamoorthy K, Alawadhi H, Elnaggar A, Wartanian S, Ibrahim E, Hani H. Copper Nanoparticles Induced Genotoxicty, Oxidative Stress, and Changes in Superoxide Dismutase (SOD) Gene Expression in Cucumber ( Cucumis sativus) Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:872. [PMID: 30061904 PMCID: PMC6055047 DOI: 10.3389/fpls.2018.00872] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/04/2018] [Indexed: 05/20/2023]
Abstract
With the increased use of metal nanoparticles (NPs), their access to the food chain has become a main concern to scientists and holds controversial social implications. This research particularly sheds light on copper nanoparticles (CuNP), as they have been commonly used in several industries nowadays. In this study, we investigated the phytotoxicity of CuNP on cucumber (Cucumis sativus) plants grown hydroponically. Atomic Absorption Spectroscopy (AAS), X-Ray Fluorescence (XRF), and Scanning Electron Microscopy (SEM) analysis confirmed that C. sativus treated with CuNP accumulated CuNP in the plant tissues, with higher levels in roots, with amounts that were concentration dependent. Furthermore, genotoxicity was assessed using Random amplified polymorphic DNA (RAPD) technique, and our results showed that CuNP caused genomic alterations in C. sativus. Phenotypical, physiological, and biochemical changes were assessed by determining the CuNP treated plant's total biomass, chlorophyll, H2O2 and MDA contents, and electrolyte leakage percentage. The results revealed notable adverse phenotypical changes along with decreased biomass and decreased levels of the photosynthetic pigments (Chlorophyll a and b) in a concentration-dependent manner. Moreover, CuNP induced damage to the root plasma membrane as determined by the increased electrolyte leakage. A significant increase in H2O2 and MDA contents were detected in C. sativus CuNP treated plants. Additionally, copper-zinc superoxide dismutase (Cu-Zn SOD) gene expression was induced under CuNP treatment. Overall, our results demonstrated that CuNP of 10-30 nm size were toxic to C. sativus plants. This finding will encourage the safe production and disposal NPs. Thus, reducing nano-metallic bioaccumulation into our food chain through crop plants; that possesses a threat to the ecological system.
Collapse
Affiliation(s)
- Kareem A. Mosa
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Mohamed El-Naggar
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Kalidoss Ramamoorthy
- Environmental and Chemical Biology Research Group, Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Hussain Alawadhi
- Center of Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Attiat Elnaggar
- Environmental and Chemical Biology Research Group, Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Sylvie Wartanian
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Emy Ibrahim
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hala Hani
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
84
|
Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S. Engineered nanomaterials for plant growth and development: A perspective analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1413-1435. [PMID: 29554761 DOI: 10.1016/j.scitotenv.2018.02.313] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
With the overwhelmingly rapid advancement in the field of nanotechnology, the engineered nanomaterials (ENMs) have been extensively used in various areas of the plant system, including quality improvement, growth and nutritional value enhancement, gene preservation etc. There are several recent reports on the ENMs' influence on growth enhancements, growth inhibition as well as certain toxic impacts on plant. However, translocation, growth responses and stress modulation mechanisms of ENMs in the plant systems call for better and in-depth understanding. Herein, we are presenting a comprehensive and critical account of different types of ENMs, their applications and their positive, negative and null impacts on physiological and molecular aspects of plant growth, development and stress responses. Recent reports revealed mixed effects on plants, ranging from enhanced crop yield, epi/genetic alterations, and phytotoxicity, resulting from the ENMs' exposure. Creditable research in recent years has revealed that the effects of ENMs on plants are species specific and are variable among plant species. ENM exposures are reported to trigger free radical formation, responsive scavenging, and antioxidant armories in the exposed plants. The ENMs are also reported to induce aberrant expressions of microRNAs, the key post-transcriptional regulators of plant growth, development and stress-responses of plants. However, these modulations, if judiciously done, may lead to improved plant growth and yield. A better understanding of the interactions between ENMs and plant responses, including their uptake transport, internalization, and activity, could revolutionize crop production through increased disease resistance, nutrient utilization, and crop yield. Therefore, in this review, we are presenting a critical account of the different selected ENMs, their uptake by the plants, their positive/negative impacts on plant growth and development, along with the resultant ENM-responsive post-transcriptional modifications, especially, aberrant miRNA expressions. In addition, underlying mechanisms of various ENM-plant cell interactions have been discussed.
Collapse
Affiliation(s)
- Sandeep Kumar Verma
- Department of Biotechnology, Innovate Mediscience India, Vijay Nagar, Indore 452010, Madhya Pradesh, India.
| | - Ashok Kumar Das
- Center for Superfunctional Materials, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Manoj Kumar Patel
- School of Studies in Life Sciences, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Ashish Shah
- Department of Biotechnology, Innovate Mediscience India, Vijay Nagar, Indore 452010, Madhya Pradesh, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, 411016 Pune, Maharashtra, India; Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, 411016 Pune, Maharashtra, India
| | - Saikat Gantait
- All India Coordinated Research Project on Groundnut, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia 741235, West Bengal, India; Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| |
Collapse
|
85
|
Li J, Song Y, Wu K, Tao Q, Liang Y, Li T. Effects of Cr 2O 3 nanoparticles on the chlorophyll fluorescence and chloroplast ultrastructure of soybean (Glycine max). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19446-19457. [PMID: 29728974 DOI: 10.1007/s11356-018-2132-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Chromic oxide nanoparticles (Cr2O3 NPs) are widely used in commercial factories and can cause serious environmental problems. However, the mechanism behind Cr2O3 NP-induced phytotoxicity remains unknown. In this study, the effects of Cr2O3 NPs on the growth, chlorophyll fluorescence, SEM-EDS analysis, and chloroplast ultrastructure of soybean (Glycine max) were investigated to evaluate its phytotoxicity. The growth of soybean treated with various Cr2O3 NP suspensions (0.01, 0.05, 0.1, and 0.5 g L-1) was significantly inhibited. Specially, shoot and root biomass decreased by 9.9 and 46.3%, respectively. Besides, the maximum quantum yield of PSII (Fv/Fm) as well as the photochemical quenching (qP) decreased by 8-22 and 30-37%, respectively, indicating that the photosynthetic system was damaged when treated with Cr2O3 NPs. Moreover, the inhibition was confirmed by the reduction of Rubisco and MDH enzyme activity (by 54.5-86.4 and 26.7-96.5%, respectively). Overall, results indicated that the damage was caused by the destruction of chloroplast thylakoid structure, which subsequently reduced the photosynthetic rate. Our research suggests that Cr2O3 NPs can be transported and cause irreversible damage to soybean plants by inhibiting the activity of electron acceptors (NADP+) and destroying ultrastructure of chloroplasts, providing insights into plant toxicity issues. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuchao Song
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Keren Wu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi Tao
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
86
|
Rico CM, Johnson MG, Marcus MA. Cerium oxide nanoparticles transformation at the root-soil interface of barley ( Hordeum vulgare L.). ENVIRONMENTAL SCIENCE. NANO 2018; 5:1807-1812. [PMID: 36161269 PMCID: PMC9504423 DOI: 10.1039/c8en00316e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The transformation of cerium oxide nanoparticles (CeO2-NPs) in soil and its role in plant uptake is a critical knowledge gap in the literature. This study investigated the reduction and speciation of CeO2-NPs in barley (Hordeum vulgare L.) cultivated in soil amended with 250 mg CeO2-NPs kg-1 soil. Synchrotron micro-X-ray fluorescence (μXRF) was employed for spatial localization and speciation of CeO2-NPs in thin sections of intact roots at the soil-root interface. Results revealed that Ce was largely localized in soil and at the root surface in nanoparticulate form (84-89%). However, a few hot spots on root surfaces revealed highly significant reduction (55-98%) of CeO2-NPs [Ce(IV)] to Ce(III) species. Interestingly, only roots in close proximity to hot spots showed Ce uptake which was largely CeO2 (89-91%) with very little amount Ce(III) (9-10%). These results suggest that the reduction of CeO2-NPs to Ce(III) is needed to facilitate uptake of Ce.
Collapse
Affiliation(s)
- Cyren M. Rico
- National Research Council, Research Associateship Program, 500 Fifth Street, NW, Washington, DC 20001, USA
- US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333, USA
- Missouri State University, Department of Chemistry, 901 S National Ave., Springfield, MO 65897, USA
- Corresponding author. Tel: 417 836 3304; Fax: 417 836 5507; (C. M. Rico)
| | - Mark G. Johnson
- US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333, USA
| | - Matthew A. Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
87
|
Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2017.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
88
|
Zhang T, Sun H, Lv Z, Cui L, Mao H, Kopittke PM. Using Synchrotron-Based Approaches To Examine the Foliar Application of ZnSO 4 and ZnO Nanoparticles for Field-Grown Winter Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2572-2579. [PMID: 29091444 DOI: 10.1021/acs.jafc.7b04153] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The effects of foliar-applied ZnO nanoparticles (ZnO NPs) and ZnSO4 on the winter wheat ( Triticum aestivum L.) grain yield and grain quality were studied under field conditions, with the distribution and speciation of Zn within the grain examined using synchrotron-based X-ray fluorescence microscopy and X-ray absorption spectroscopy. Although neither of the two Zn compounds improved the grain yield or quality, both increased the grain Zn concentration (average increments were 5 and 10 mg/kg for ZnSO4 and ZnO NP treatments, respectively). Across all treatments, this Zn was mainly located within the aleurone layer and crease of the grain, although the application of ZnO NPs also slightly increased Zn within the endosperm. This Zn within the grain was found to be present as Zn phosphate, regardless of the form in which Zn was applied. These results indicate that the foliar application of ZnO NPs appears to be a promising approach for Zn biofortification, as required to improve human health.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter M Kopittke
- School of Agriculture and Food Sciences , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| |
Collapse
|
89
|
Adele NC, Ngwenya BT, Heal KV, Mosselmans JFW. Soil Bacteria Override Speciation Effects on Zinc Phytotoxicity in Zinc-Contaminated Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3412-3421. [PMID: 29466659 DOI: 10.1021/acs.est.7b05094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effects of zinc (Zn) speciation on plant growth in Zn-contaminated soil in the presence of bacteria are unknown but are critical to our understanding of metal biodynamics in the rhizosphere where bacteria are abundant. A 6-week pot experiment investigated the effects of two plant growth promoting bacteria (PGPB), Rhizobium leguminosarum and Pseudomonas brassicacearum, on Zn accumulation and speciation in Brassica juncea grown in soil amended with 600 mg kg-1 elemental Zn as three Zn species: soluble ZnSO4 and nanoparticles of ZnO and ZnS. Measures of plant growth were higher across all Zn treatments inoculated with PGPB compared to uninoculated controls, but Zn species effects were not significant. Transmission electron microscopy identified dense particles in the epidermis and intracellular spaces in roots, suggesting Zn uptake in both dissolved and particulate forms. X-ray absorption near-edge structure (XANES) analysis of roots revealed differences in Zn speciation between treatments. Uninoculated plants exposed to ZnSO4 contained Zn predominantly in the form of Zn phytate (35%) and Zn polygalacturonate (30%), whereas Zn cysteine (57%) and Zn polygalacturonate (37%) dominated in roots exposed to ZnO nanoparticles. Inoculation with PGPB increased (>50%) the proportion of Zn cysteine under all Zn treatments, suggesting Zn coordination with cysteine as the predominant mechanism of Zn toxicity reduction by PGPB. Using this approach, we show, for the first time, that although speciation is important, the presence of rhizospheric bacteria completely overrides speciation effects such that most of the Zn in plant tissue exists as complexes other than the original form.
Collapse
Affiliation(s)
- Nyekachi C Adele
- School of GeoSciences , University of Edinburgh , Edinburgh , U.K
| | - Bryne T Ngwenya
- School of GeoSciences , University of Edinburgh , Edinburgh , U.K
| | - Kate V Heal
- School of GeoSciences , University of Edinburgh , Edinburgh , U.K
| | | |
Collapse
|
90
|
Xu L, Liang HW, Yang Y, Yu SH. Stability and Reactivity: Positive and Negative Aspects for Nanoparticle Processing. Chem Rev 2018. [DOI: 10.1021/acs.chemrev.7b00208] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Liang Xu
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Hefei Science Centre of CAS, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Wei Liang
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Hefei Science Centre of CAS, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yuan Yang
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Hefei Science Centre of CAS, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Hefei Science Centre of CAS, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
91
|
Ma C, White JC, Zhao J, Zhao Q, Xing B. Uptake of Engineered Nanoparticles by Food Crops: Characterization, Mechanisms, and Implications. Annu Rev Food Sci Technol 2018; 9:129-153. [PMID: 29580140 DOI: 10.1146/annurev-food-030117-012657] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the rapidly increasing demand for and use of engineered nanoparticles (NPs) in agriculture and related sectors, concerns over the risks to agricultural systems and to crop safety have been the focus of a number of investigations. Significant evidence exists for NP accumulation in soils, including potential particle transformation in the rhizosphere and within terrestrial plants, resulting in subsequent uptake by plants that can yield physiological deficits and molecular alterations that directly undermine crop quality and food safety. In this review, we document in vitro and in vivo characterization of NPs in both growth media and biological matrices; discuss NP uptake patterns, biotransformation, and the underlying mechanisms of nanotoxicity; and summarize the environmental implications of the presence of NPs in agricultural ecosystems. A clear understanding of nano-impacts, including the advantages and disadvantages, on crop plants will help to optimize the safe and sustainable application of nanotechnology in agriculture for the purposes of enhanced yield production, disease suppression, and food quality.
Collapse
Affiliation(s)
- Chuanxin Ma
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, USA.,Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, USA;
| | - Jason C White
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, USA
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266100, China
| | - Qing Zhao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, USA;
| |
Collapse
|
92
|
Ko JA, Furuta N, Lim HB. Quantitative mapping of elements in basil leaves (Ocimum basilicum) based on cesium concentration and growth period using laser ablation ICP-MS. CHEMOSPHERE 2018; 190:368-374. [PMID: 29024882 DOI: 10.1016/j.chemosphere.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/20/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
Quantitative elemental mapping of metallic pollutants in sweet basil was studied by laser ablation (LA)-ICP-MS. For this, the sweet basil was cultivated in Hoagland nutrient solution spiked with 100 and 1000 ng mL-1 of Cs for 10-60 days. Then, the Cs distribution in collected leaves was determined by LA-ICP-MS using lab-synthesized standard pellets based on NIST 1573a tomato leaves. For comparison, S, Ca, and K were also simultaneously determined in this measurement with a13C+ signal from the leaves as an internal standard. The obtained calibration curves showed linear coefficient of determination (R2) of 0.991 for K and 0.999 for Cs. The concentration of Cs measured in the basil leaves increased with growth period and pollutant concentration, and accumulation followed the order of leaf margin, petiole, midrib, and veins. Although no visible symptom was detected, significant suppression of the growth rate was observed due to the presence of high-concentration Cs. The experimental model demonstrated herein showed potential for studying the influence of radioactive pollutants on plants and other organisms in the food chain.
Collapse
Affiliation(s)
- Jung Aa Ko
- Department of Chemistry, Dankook University, Yongin-si, Gyeonggi-do 448-701, South Korea; Future Environmental Research Center, Korea Institute of Toxicology, Jinju 660-844, South Korea
| | - Naoki Furuta
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - Heung Bin Lim
- Department of Chemistry, Dankook University, Yongin-si, Gyeonggi-do 448-701, South Korea.
| |
Collapse
|
93
|
Tang J, Zhu N, Zhu Y, Zamir SM, Wu Y. Sustainable pollutant removal by periphytic biofilm via microbial composition shifts induced by uneven distribution of CeO 2 nanoparticles. BIORESOURCE TECHNOLOGY 2018; 248:75-81. [PMID: 28743614 DOI: 10.1016/j.biortech.2017.07.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
The responses of periphytic biofilm to CeO2 nanoparticle (CNP) exposure were explored by investigating community shifts and pollutant removal. Results showed that CNPs entered the sensitive microbial cells in the periphytic biofilm, leading to cytomembrane damage and intracellular reactive oxygen species (ROS) generation. The periphytic biofilm communities were, however, able to adapt to the prolonged exposure and maintain their pollutant removal (i.e., phosphorus, nitrogen and copper, organic matter) performance. Observations under synchrotron radiation scanning transmission X-ray microscopy revealed that fewer CNPs were distributed in algal cells compared to bacterial cells, wherein the transformation between Ce(IV) and Ce(III) occurred. High-throughput sequencing further showed that the proportion of algae, such as Leptolyngbya and Nostoc, significantly increased in the periphytic biofilm exposed to CNPs while the proportion of bacteria, such as Bacilli and Gemmatimonadetes, decreased. This change in community composition might be the primary reason for the sustained pollutant removal performance of the periphytic biofilm.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningyuan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Seyed Morteza Zamir
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
94
|
Wang L, Yan L, Liu J, Chen C, Zhao Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal Chem 2017; 90:589-614. [DOI: 10.1021/acs.analchem.7b04765] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liming Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- The
College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuliang Zhao
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
95
|
Pulido-Reyes G, Leganes F, Fernández-Piñas F, Rosal R. Bio-nano interface and environment: A critical review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3181-3193. [PMID: 28731222 DOI: 10.1002/etc.3924] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/19/2017] [Indexed: 05/25/2023]
Abstract
The bio-nano interface is the boundary where engineered nanomaterials (ENMs) meet the biological system, exerting the biological function for which they have been designed or inducing adverse effects on other cells or organisms when they reach nontarget scenarios (i.e., the natural environment). Research has been performed to determine the fate, transport, and toxic properties of ENMs, but much of it is focused on pristine or so-called as-manufactured ENMs, or else modifications of the materials were not assessed. We review the most recent progress regarding the bio-nano interface and the transformations that ENMs undergo in the environment, paying special attention to the adsorption of environmental biomolecules on the surface of ENMs. Whereas the protein corona has received considerable attention in the fields of biomedics and human toxicology, its environmental analogue (the eco-corona) has been much less studied. A section dedicated to the analytical methods for studying and characterizing the eco-corona is also presented. We conclude by presenting and discussing the key problems and knowledge gaps that need to be resolved in the near future regarding the bio-nano interface and the eco-corona. Environ Toxicol Chem 2017;36:3181-3193. © 2017 SETAC.
Collapse
Affiliation(s)
- Gerardo Pulido-Reyes
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Francisco Leganes
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Roberto Rosal
- Departamento de Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
96
|
Siddiqi KS, Husen A. Plant Response to Engineered Metal Oxide Nanoparticles. NANOSCALE RESEARCH LETTERS 2017; 12:92. [PMID: 28168616 PMCID: PMC5293712 DOI: 10.1186/s11671-017-1861-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 01/19/2017] [Indexed: 05/21/2023]
Abstract
All metal oxide nanoparticles influence the growth and development of plants. They generally enhance or reduce seed germination, shoot/root growth, biomass production and physiological and biochemical activities. Some plant species have not shown any physiological change, although significant variations in antioxidant enzyme activity and upregulation of heat shock protein have been observed. Plants have evolved antioxidant defence mechanism which involves enzymatic as well as non-enzymatic components to prevent oxidative damage and enhance plant resistance to metal oxide toxicity. The exact mechanism of plant defence against the toxicity of nanomaterials has not been fully explored. The absorption and translocation of metal oxide nanoparticles in different parts of the plant depend on their bioavailability, concentration, solubility and exposure time. Further, these nanoparticles may reach other organisms, animals and humans through food chain which may alter the entire biodiversity. This review attempts to summarize the plant response to a number of metal oxide nanoparticles and their translocation/distribution in root/shoot. The toxicity of metal oxide nanoparticles has also been considered to see if they affect the production of seeds, fruits and the plant biomass as a whole.
Collapse
Affiliation(s)
| | - Azamal Husen
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, PO Box #196, Gondar, Ethiopia
| |
Collapse
|
97
|
Amde M, Liu JF, Tan ZQ, Bekana D. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:250-267. [PMID: 28662490 DOI: 10.1016/j.envpol.2017.06.064] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 05/24/2023]
Abstract
Metal oxide nanoparticles (MeO-NPs) are among the most consumed NPs and also have wide applications in various areas which increased their release into the environmental system. Aquatic (water and sediments) and terrestrial compartments are predicted to be the destination of the released MeO-NPs. In these compartments, the particles are subjected to various dynamic processes such as physical, chemical and biological processes, and undergo transformations which drive them away from their pristine state. These transformation pathways can have strong implications for the fate, transport, persistence, bioavailability and toxic-effects of the NPs. In this critical review, we provide the state-of-the-knowledge on the transformation processes and bioavailability of MeO-NPs in the environment, which is the topic of interest to researchers. We also recommend future research directions in the area which will support future risk assessments by enhancing our knowledge of the transformation and bioavailability of MeO-NPs.
Collapse
Affiliation(s)
- Meseret Amde
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Qiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Deribachew Bekana
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
98
|
Pradhan S, Mailapalli DR. Interaction of Engineered Nanoparticles with the Agri-environment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8279-8294. [PMID: 28876911 DOI: 10.1021/acs.jafc.7b02528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoparticles with their unique surface properties can modulate the physiological, biochemical, and physicochemical pathways, such as photosynthesis, respiration, nitrogen metabolism, and solute transport. In this context, researchers have developed a wide range of engineered nanomaterials (ENMs) for the improvement of growth and productivity by modulating the metabolic pathways in plants. This class of tailor-made materials can potentially lead to the development of a new group of agrochemical nanofertilizers. However, there are reports that engineered nanomaterials could impart phytotoxicity to edible and medicinal plants. On the contrary, there is a series of ENMs that might be detrimental when applied directly and/or indirectly to the plants. These particles can sometimes readily aggregate and dissolute in the immediate vicinity; the free ions released from the nanomatrix can cause serious tissue injury and membrane dysfunction to the plant cell through oxidative stress. On that note, thorough studies on uptake, translocation, internalization, and nutritional quality assessment must be carried out to understand ENM-plant interactions. This review critically discusses the possible beneficial or adverse aftereffect of nanofertilizers in the immediate environment to interrelate the impacts of ENMs on the crop health and food security management.
Collapse
Affiliation(s)
- Saheli Pradhan
- Agricultural and Food Engineering Department, Indian Institute of Technology (IIT) Kharagpur , Kharagpur, West Bengal 721302, India
| | - Damodhara Rao Mailapalli
- Agricultural and Food Engineering Department, Indian Institute of Technology (IIT) Kharagpur , Kharagpur, West Bengal 721302, India
| |
Collapse
|
99
|
Duran NM, Savassa SM, Lima RGD, de Almeida E, Linhares FS, van Gestel CAM, Pereira de Carvalho HW. X-ray Spectroscopy Uncovering the Effects of Cu Based Nanoparticle Concentration and Structure on Phaseolus vulgaris Germination and Seedling Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7874-7884. [PMID: 28817280 DOI: 10.1021/acs.jafc.7b03014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanoparticles properties such as solubility, tunable surface charges, and singular reactivity might be explored to improve the performance of fertilizers. Nevertheless, these unique properties may also bring risks to the environment since the fate of nanoparticles is poorly understood. This study investigated the impact of a range of CuO nanoparticles sizes and concentrations on the germination and seedling development of Phaseolus vulgaris L. Nanoparticles did not affect seed germination, but seedling weight gain was promoted by 100 mg Cu L-1 and inhibited by 1 000 mg Cu L-1 of 25 nm CuO and CuSO4. Most of the Cu taken up remained in the seed coat with Cu hotspots in the hilum. X-ray absorption spectroscopy unraveled that most of the Cu remained in its pristine form. The higher surface reactivity of the 25 nm CuO nanoparticles might be responsible for its deleterious effects. The present study therefore highlights the importance of the nanoparticle structure for its physiological impacts.
Collapse
Affiliation(s)
- Nádia M Duran
- Laboratory of Nuclear Instrumentation (LIN), Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP) , Piracicaba, São Paulo 13416000, Brazil
| | - Susilaine M Savassa
- Laboratory of Nuclear Instrumentation (LIN), Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP) , Piracicaba, São Paulo 13416000, Brazil
| | - Rafael Giovanini de Lima
- Laboratory of Nuclear Instrumentation (LIN), Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP) , Piracicaba, São Paulo 13416000, Brazil
| | - Eduardo de Almeida
- Laboratory of Nuclear Instrumentation (LIN), Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP) , Piracicaba, São Paulo 13416000, Brazil
| | - Francisco S Linhares
- Laboratory of Plant Development and Structure (LaBDEV), Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP) , Piracicaba, São Paulo 13416-000, Brazil
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit , De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Hudson W Pereira de Carvalho
- Laboratory of Nuclear Instrumentation (LIN), Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP) , Piracicaba, São Paulo 13416000, Brazil
| |
Collapse
|
100
|
Layet C, Auffan M, Santaella C, Chevassus-Rosset C, Montes M, Ortet P, Barakat M, Collin B, Legros S, Bravin MN, Angeletti B, Kieffer I, Proux O, Hazemann JL, Doelsch E. Evidence that Soil Properties and Organic Coating Drive the Phytoavailability of Cerium Oxide Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9756-9764. [PMID: 28777564 DOI: 10.1021/acs.est.7b02397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The ISO-standardized RHIZOtest is used here for the first time to decipher how plant species, soil properties, and physical-chemical properties of the nanoparticles and their transformation regulate the phytoavailability of nanoparticles. Two plants, tomato and fescue, were exposed to two soils with contrasted properties: a sandy soil poor in organic matter and a clay soil rich in organic matter, both contaminated with 1, 15, and 50 mg·kg-1 of dissolved Ce2(SO4)3, bare and citrate-coated CeO2 nanoparticles. All the results demonstrate that two antagonistic soil properties controlled Ce uptake. The clay fraction enhanced the retention of the CeO2 nanoparticles and hence reduced Ce uptake, whereas the organic matter content enhanced Ce uptake. Moreover, in the soil poor in organic matter, the organic citrate coating significantly enhanced the phytoavailability of the cerium by forming smaller aggregates thereby facilitating the transport of nanoparticles to the roots. By getting rid of the dissimilarities between the root systems of the different plants and the normalizing the surfaces exposed to nanoparticles, the RHIZOtest demonstrated that the species of plant did not drive the phytoavailability, and provided evidence for soil-plant transfers at concentrations lower than those usually cited in the literature and closer to predicted environmental concentrations.
Collapse
Affiliation(s)
- Clément Layet
- Aix Marseille Univ, CNRS , IRD, Coll France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of NanoTechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Mélanie Auffan
- Aix Marseille Univ, CNRS , IRD, Coll France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of NanoTechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Catherine Santaella
- iCEINT, International Center for the Environmental Implications of NanoTechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
- Aix Marseille Univ , CEA, CNRS, UMR7265, LEMIRE, Laboratoire d'Ecologie Microbienne de la Rhizosphère et Environnement Extrêmes, ECCOREV FR3098, F-13108 Saint-Paul-lès-Durance, France
| | | | - Mélanie Montes
- CIRAD , UPR Recyclage et Risque, F-34398 Montpellier, France
| | - Philippe Ortet
- Aix Marseille Univ , CEA, CNRS, UMR7265, LEMIRE, Laboratoire d'Ecologie Microbienne de la Rhizosphère et Environnement Extrêmes, ECCOREV FR3098, F-13108 Saint-Paul-lès-Durance, France
| | - Mohamed Barakat
- Aix Marseille Univ , CEA, CNRS, UMR7265, LEMIRE, Laboratoire d'Ecologie Microbienne de la Rhizosphère et Environnement Extrêmes, ECCOREV FR3098, F-13108 Saint-Paul-lès-Durance, France
| | - Blanche Collin
- Aix Marseille Univ, CNRS , IRD, Coll France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of NanoTechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Samuel Legros
- CIRAD , UPR Recyclage et Risque, 18524 Dakar, Senegal
| | - Matthieu N Bravin
- CIRAD , UPR Recyclage et Risque, F-97408, Saint-Denis, Réunion, France
| | - Bernard Angeletti
- Aix Marseille Univ, CNRS , IRD, Coll France, CEREGE, Aix en Provence, France
| | - Isabelle Kieffer
- OSUG, UMS 832 CNRS-Université Grenoble Alpes , F-38041 Grenoble, France
| | - Olivier Proux
- OSUG, UMS 832 CNRS-Université Grenoble Alpes , F-38041 Grenoble, France
| | - Jean-Louis Hazemann
- Institut Néel, UPR 2940 CNRS-Université Grenoble Alpes , F-38000 Grenoble, France
| | | |
Collapse
|