51
|
Keefe JA, Zhao S, Wehrens XHT. A mechanistic LNK between inflammation and atrial fibrillation? Cardiovasc Res 2024; 120:814-816. [PMID: 38713542 PMCID: PMC11218683 DOI: 10.1093/cvr/cvae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Affiliation(s)
- Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, BCM335, One Baylor Plaza, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shuai Zhao
- Cardiovascular Research Institute, Baylor College of Medicine, BCM335, One Baylor Plaza, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, BCM335, One Baylor Plaza, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Center for Space Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
52
|
Pandey KN. Genetic and Epigenetic Mechanisms Regulating Blood Pressure and Kidney Dysfunction. Hypertension 2024; 81:1424-1437. [PMID: 38545780 PMCID: PMC11168895 DOI: 10.1161/hypertensionaha.124.22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The pioneering work of Dr Lewis K. Dahl established a relationship between kidney, salt, and high blood pressure (BP), which led to the major genetic-based experimental model of hypertension. BP, a heritable quantitative trait affected by numerous biological and environmental stimuli, is a major cause of morbidity and mortality worldwide and is considered to be a primary modifiable factor in renal, cardiovascular, and cerebrovascular diseases. Genome-wide association studies have identified monogenic and polygenic variants affecting BP in humans. Single nucleotide polymorphisms identified in genome-wide association studies have quantified the heritability of BP and the effect of genetics on hypertensive phenotype. Changes in the transcriptional program of genes may represent consequential determinants of BP, so understanding the mechanisms of the disease process has become a priority in the field. At the molecular level, the onset of hypertension is associated with reprogramming of gene expression influenced by epigenomics. This review highlights the specific genetic variants, mutations, and epigenetic factors associated with high BP and how these mechanisms affect the regulation of hypertension and kidney dysfunction.
Collapse
Affiliation(s)
- Kailash N. Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA
| |
Collapse
|
53
|
Liu X, Zhao F, Yuan W, Xu J. Causal relationships between height, screen time, physical activity, sleep and myopia: univariable and multivariable Mendelian randomization. Front Public Health 2024; 12:1383449. [PMID: 38966704 PMCID: PMC11222599 DOI: 10.3389/fpubh.2024.1383449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024] Open
Abstract
Background This study aims to investigate the independent causal relation between height, screen time, physical activity, sleep and myopia. Methods Instrumental variables (IVs) for exposures and outcome were obtained from the largest publicly available genome-wide association studies (GWAS) databases. First, we performed a bidirectional univariate MR analysis using primarily the inverse variance weighted method (IVW) with height, screen time, physical activity and sleep as the exposure and myopia as the outcome to investigate the causal relationship between exposures and myopia. Sensitivity analysis was used to demonstrate its robustness. Then the multivariable MR (MVMR) and MR-based mediation approach was further used to estimate the mediating effect of potential confounders (education and time outdoors) on causality. Results The results of univariate MR analysis showed that taller height (OR = 1.009, 95% CI = 1.005-1.012, p = 3.71 × 10-7), longer time on computer (OR = 1.048, 95% CI = 1.029-1.047, p = 3.87 × 10-7) and less moderate physical activity (OR = 0.976, 95% CI = 0.96-0.991 p = 2.37 × 10-3) had a total effect on the increased risk of developing myopia. Meanwhile our results did not have sufficient evidence to support the causal relationship between chronotype (p = 0.637), sleep duration (p = 0.952) and myopia. After adjusting for education, only taller height remains an independent risk factor for myopia. After adjusting for education, the causal relationship between height, screen and myopia still had statistical significance. A reverse causal relationship was not found in our study. Most of the sensitivity analyses showed consistent results with those of the IVW method. Conclusion Our MR study revealed that genetically predicted taller height, longer time on computer, less moderate physical activity increased the risk of myopia. After full adjustment for confounders, only height remained independently associated with myopia. As a complement to observational studies, the results of our analysis provide strong evidence for the improvement of myopia risk factors and provide a theoretical basis for future measures to prevent and control myopia in adolescents.
Collapse
Affiliation(s)
- Xiaoyu Liu
- The Third People’s Hospital of Dalian, Dalian Municipal Eye Hospital, Dalian Municipal Cancer Hospital, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Weichen Yuan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jun Xu
- The Third People’s Hospital of Dalian, Dalian Municipal Eye Hospital, Dalian Municipal Cancer Hospital, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning, China
| |
Collapse
|
54
|
Fegraeus K, Rosengren MK, Naboulsi R, Orlando L, Åbrink M, Jouni A, Velie BD, Raine A, Egner B, Mattsson CM, Lång K, Zhigulev A, Björck HM, Franco-Cereceda A, Eriksson P, Andersson G, Sahlén P, Meadows JRS, Lindgren G. An endothelial regulatory module links blood pressure regulation with elite athletic performance. PLoS Genet 2024; 20:e1011285. [PMID: 38885195 PMCID: PMC11182536 DOI: 10.1371/journal.pgen.1011285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/02/2024] [Indexed: 06/20/2024] Open
Abstract
The control of transcription is crucial for homeostasis in mammals. A previous selective sweep analysis of horse racing performance revealed a 19.6 kb candidate regulatory region 50 kb downstream of the Endothelin3 (EDN3) gene. Here, the region was narrowed to a 5.5 kb span of 14 SNVs, with elite and sub-elite haplotypes analyzed for association to racing performance, blood pressure and plasma levels of EDN3 in Coldblooded trotters and Standardbreds. Comparative analysis of human HiCap data identified the span as an enhancer cluster active in endothelial cells, interacting with genes relevant to blood pressure regulation. Coldblooded trotters with the sub-elite haplotype had significantly higher blood pressure compared to horses with the elite performing haplotype during exercise. Alleles within the elite haplotype were part of the standing variation in pre-domestication horses, and have risen in frequency during the era of breed development and selection. These results advance our understanding of the molecular genetics of athletic performance and vascular traits in both horses and humans.
Collapse
Affiliation(s)
- Kim Fegraeus
- Department of Medical Sciences, Science for life laboratory, Uppsala University, Sweden
| | - Maria K. Rosengren
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Rakan Naboulsi
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, Stockholm
| | - Ludovic Orlando
- Centre d’Anthropobiologie et de Génomique de Toulouse (CNRS UMR 5288), Université Paul Sabatier, Toulouse, France
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ahmad Jouni
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Brandon D. Velie
- School of Life & Environmental Sciences, University of Sydney, Sydney, Australia
| | - Amanda Raine
- Department of Medical Sciences, Science for life laboratory, Uppsala University, Sweden
| | - Beate Egner
- Department of Cardio-Vascular Research, Veterinary Academy of Higher Learning, Babenhausen, Germany
| | - C Mikael Mattsson
- Silicon Valley Exercise Analytics (svexa), MenloPark, CA, United States of America
| | - Karin Lång
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Artemy Zhigulev
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Hanna M. Björck
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Anders Franco-Cereceda
- Section of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Eriksson
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Göran Andersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Pelin Sahlén
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gabriella Lindgren
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
55
|
Šetinc M, Celinšćak Ž, Bočkor L, Zajc Petranović M, Stojanović Marković A, Peričić Salihović M, Deelen J, Škarić-Jurić T. The role of longevity-related genetic variant interactions as predictors of survival after 85 years of age. Mech Ageing Dev 2024; 219:111926. [PMID: 38484896 PMCID: PMC11166054 DOI: 10.1016/j.mad.2024.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Genome-wide association studies and candidate gene studies have identified several genetic variants that might play a role in achieving longevity. This study investigates interactions between pairs of those single nucleotide polymorphisms (SNPs) and their effect on survival above the age of 85 in a sample of 327 Croatian individuals. Although none of the SNPs individually showed a significant effect on survival in this sample, 14 of the 359 interactions tested (between SNPs not in LD) reached the level of nominal significance (p<0.05), showing a potential effect on late-life survival. Notably, SH2B3 rs3184504 interacted with different SNPs near TERC, TP53 rs1042522 with different SNPs located near the CDKN2B gene, and CDKN2B rs1333049 with different SNPs in FOXO3, as well as with LINC02227 rs2149954. The other interaction pairs with a possible effect on survival were FOXO3 rs2802292 and ERCC2 rs50871, IL6 rs1800795 and GHRHR rs2267723, LINC02227 rs2149954 and PARK7 rs225119, as well as PARK7 rs225119 and PTPN1 rs6067484. These interactions remained significant when tested together with a set of health-related variables that also had a significant effect on survival above 85 years. In conclusion, our results confirm the central role of genetic regulation of insulin signalling and cell cycle control in longevity.
Collapse
Affiliation(s)
- Maja Šetinc
- Institute for Anthropological Research, Zagreb 10000, Croatia; Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb 10000, Croatia.
| | | | - Luka Bočkor
- Institute for Anthropological Research, Zagreb 10000, Croatia; Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb 10000, Croatia
| | | | | | | | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.
| | | |
Collapse
|
56
|
Zhang H, Chen Y, Xu P, Liu D, Wu N, Wang L, Mo X. Unveiling blood pressure-associated genes in aortic cells through integrative analysis of GWAS and RNA modification-associated variants. Chronic Dis Transl Med 2024; 10:118-129. [PMID: 38872756 PMCID: PMC11166679 DOI: 10.1002/cdt3.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 06/15/2024] Open
Abstract
Background Genome-wide association studies (GWAS) have identified more than a thousand loci for blood pressure (BP). Functional genes in these loci are cell-type specific. The aim of this study was to elucidate potentially functional genes associated with BP in the aorta through the utilization of RNA modification-associated single-nucleotide polymorphisms (RNAm-SNPs). Methods Utilizing large-scale genetic data of 757,601 individuals from the UK Biobank and International Consortium of Blood Pressure consortium, we identified associations between RNAm-SNPs and BP. The association between RNAm-SNPs, gene expression, and BP were examined. Results A total of 355 RNAm-SNPs related to m6A, m1A, m5C, m7G, and A-to-I modification were associated with BP. The related genes were enriched in the pancreatic secretion pathway and renin secretion pathway. The BP GWAS signals were significantly enriched with m6A-SNPs, highlighting the potential functional relevance of m6A in physiological processes influencing BP. Notably, m6A-SNPs in CYP11B1, PDE3B, HDAC7, ACE, SLC4A7, PDE1A, FRK, MTHFR, NPPA, CACNA1D, and HDAC9 were identified. Differential methylation and differential expression of the BP genes in FTO-overexpression and METTL14-knockdown vascular smooth muscle cells were detected. RNAm-SNPs were associated with ascending and descending aorta diameter and the genes showed differential methylation between aortic dissection (AD) cases and controls. In scRNA-seq study, we identified ARID5A, HLA-DPB1, HLA-DRA, IRF1, LINC01091, MCL1, MLF1, MLXIPL, NAA16, NADK, RERG, SRM, and USP53 as differential expression genes for AD in aortic cells. Conclusion The present study identified RNAm-SNPs in BP loci and elucidated the associations between the RNAm-SNPs, gene expression, and BP. The identified BP-associated genes in aortic cells were associated with AD.
Collapse
Affiliation(s)
- Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public HealthMedical College of Soochow UniversitySuzhouJiangsuChina
| | - Yuxi Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public HealthMedical College of Soochow UniversitySuzhouJiangsuChina
| | - Peng Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public HealthMedical College of Soochow UniversitySuzhouJiangsuChina
| | - Dan Liu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Naqiong Wu
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Laiyuan Wang
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public HealthMedical College of Soochow UniversitySuzhouJiangsuChina
- MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Center for Genetic Epidemiology and GenomicsMedical College of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
57
|
Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol 2024; 21:396-416. [PMID: 38172242 DOI: 10.1038/s41569-023-00964-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Hypertension is a global health problem, with >1.3 billion individuals with high blood pressure worldwide. In this Review, we present an inflammatory paradigm for hypertension, emphasizing the crucial roles of immune cells, cytokines and chemokines in disease initiation and progression. T cells, monocytes, macrophages, dendritic cells, B cells and natural killer cells are all implicated in hypertension. Neoantigens, the NLRP3 inflammasome and increased sympathetic outflow, as well as cytokines (including IL-6, IL-7, IL-15, IL-18 and IL-21) and a high-salt environment, can contribute to immune activation in hypertension. The activated immune cells migrate to target organs such as arteries (especially the perivascular fat and adventitia), kidneys, the heart and the brain, where they release effector cytokines that elevate blood pressure and cause vascular remodelling, renal damage, cardiac hypertrophy, cognitive impairment and dementia. IL-17 secreted by CD4+ T helper 17 cells and γδ T cells, and interferon-γ and tumour necrosis factor secreted by immunosenescent CD8+ T cells, exert crucial effector roles in hypertension, whereas IL-10 and regulatory T cells are protective. Effector mediators impair nitric oxide bioavailability, leading to endothelial dysfunction and increased vascular contractility. Inflammatory effector mediators also alter renal sodium and water balance and promote renal fibrosis. These mechanisms link hypertension with obesity, autoimmunity, periodontitis and COVID-19. A comprehensive understanding of the immune and inflammatory mechanisms of hypertension is crucial for safely and effectively translating the findings to clinical practice.
Collapse
Affiliation(s)
- Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK.
- Department of Medicine and Omicron Medical Genomics Laboratory, Jagiellonian University, Collegium Medicum, Kraków, Poland.
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK.
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Pasquale Maffia
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
58
|
Climent M, García-Giménez JL. Special Issue "The Role of Non-Coding RNAs Involved in Cardiovascular Diseases and Cellular Communication". Int J Mol Sci 2024; 25:6034. [PMID: 38892220 PMCID: PMC11172417 DOI: 10.3390/ijms25116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Despite the great progress in diagnosis, prevention, and treatment, cardiovascular diseases (CVDs) are still the most prominent cause of death worldwide [...].
Collapse
Affiliation(s)
- Montserrat Climent
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - José Luis García-Giménez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
| |
Collapse
|
59
|
Zappa M, Golino M, Verdecchia P, Angeli F. Genetics of Hypertension: From Monogenic Analysis to GETomics. J Cardiovasc Dev Dis 2024; 11:154. [PMID: 38786976 PMCID: PMC11121881 DOI: 10.3390/jcdd11050154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Arterial hypertension is the most frequent cardiovascular risk factor all over the world, and it is one of the leading drivers of the risk of cardiovascular events and death. It is a complex trait influenced by heritable and environmental factors. To date, the World Health Organization estimates that 1.28 billion adults aged 30-79 years worldwide have arterial hypertension (defined by European guidelines as office systolic blood pressure ≥ 140 mmHg or office diastolic blood pressure ≥ 90 mmHg), and 7.1 million die from this disease. The molecular genetic basis of primary arterial hypertension is the subject of intense research and has recently yielded remarkable progress. In this review, we will discuss the genetics of arterial hypertension. Recent studies have identified over 900 independent loci associated with blood pressure regulation across the genome. Comprehending these mechanisms not only could shed light on the pathogenesis of the disease but also hold the potential for assessing the risk of developing arterial hypertension in the future. In addition, these findings may pave the way for novel drug development and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Martina Zappa
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Michele Golino
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23223, USA
| | - Paolo Verdecchia
- Fondazione Umbra Cuore e Ipertensione-ONLUS, 06100 Perugia, Italy
- Division of Cardiology, Hospital S. Maria della Misericordia, 06100 Perugia, Italy
| | - Fabio Angeli
- Department of Medicine and Technological Innovation (DiMIT), University of Insubria, 21100 Varese, Italy
- Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institutes, IRCCS, 21049 Tradate, Italy
| |
Collapse
|
60
|
MacCarthy G, Pazoki R. Using Machine Learning to Evaluate the Value of Genetic Liabilities in the Classification of Hypertension within the UK Biobank. J Clin Med 2024; 13:2955. [PMID: 38792496 PMCID: PMC11122671 DOI: 10.3390/jcm13102955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Background and Objective: Hypertension increases the risk of cardiovascular diseases (CVD) such as stroke, heart attack, heart failure, and kidney disease, contributing to global disease burden and premature mortality. Previous studies have utilized statistical and machine learning techniques to develop hypertension prediction models. Only a few have included genetic liabilities and evaluated their predictive values. This study aimed to develop an effective hypertension classification model and investigate the potential influence of genetic liability for multiple risk factors linked to CVD on hypertension risk using the random forest and the neural network. Materials and Methods: The study involved 244,718 European participants, who were divided into training and testing sets. Genetic liabilities were constructed using genetic variants associated with CVD risk factors obtained from genome-wide association studies (GWAS). Various combinations of machine learning models before and after feature selection were tested to develop the best classification model. The models were evaluated using area under the curve (AUC), calibration, and net reclassification improvement in the testing set. Results: The models without genetic liabilities achieved AUCs of 0.70 and 0.72 using the random forest and the neural network methods, respectively. Adding genetic liabilities improved the AUC for the random forest but not for the neural network. The best classification model was achieved when feature selection and classification were performed using random forest (AUC = 0.71, Spiegelhalter z score = 0.10, p-value = 0.92, calibration slope = 0.99). This model included genetic liabilities for total cholesterol and low-density lipoprotein (LDL). Conclusions: The study highlighted that incorporating genetic liabilities for lipids in a machine learning model may provide incremental value for hypertension classification beyond baseline characteristics.
Collapse
Affiliation(s)
- Gideon MacCarthy
- Cardiovascular and Metabolic Research Group, Division of Biomedical Sciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London UB8 3PH, UK
| | - Raha Pazoki
- Cardiovascular and Metabolic Research Group, Division of Biomedical Sciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London UB8 3PH, UK
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, St Mary’s Campus, Norfolk Place, Imperial College London, London W2 1PG, UK
| |
Collapse
|
61
|
Rudman-Melnick V, Vanhoutte D, Stowers K, Sargent M, Adam M, Ma Q, Perl AKT, Miethke AG, Burg A, Shi T, Hildeman DA, Woodle ESS, Kofron JM, Devarajan P. Gucy1α1 specifically marks kidney, heart, lung and liver fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594404. [PMID: 38798483 PMCID: PMC11118280 DOI: 10.1101/2024.05.15.594404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Fibrosis is a common outcome of numerous pathologies, including chronic kidney disease (CKD), a progressive renal function deterioration. Current approaches to target activated fibroblasts, key effector contributors to fibrotic tissue remodeling, lack specificity. Here, we report Gucy1α1 as a specific kidney fibroblast marker. Gucy1α1 levels significantly increased over the course of two clinically relevant murine CKD models and directly correlated with established fibrosis markers. Immunofluorescent (IF) imaging showed that Gucy1α1 comprehensively labelled cortical and medullary quiescent and activated fibroblasts in the control kidney and throughout injury progression, respectively. Unlike traditionally used markers platelet derived growth factor receptor beta (Pdgfrβ) and vimentin (Vim), Gucy1α1 did not overlap with off-target populations such as podocytes. Notably, Gucy1α1 labelled kidney fibroblasts in both male and female mice. Furthermore, we observed elevated GUCY1α1 expression in the human fibrotic kidney and lung. Studies in the murine models of cardiac and liver fibrosis revealed Gucy1α1 elevation in activated Pdgfrβ-, Vim- and alpha smooth muscle actin (αSma)-expressing fibroblasts paralleling injury progression and resolution. Overall, we demonstrate Gucy1α1 as an exclusive fibroblast marker in both sexes. Due to its multiorgan translational potential, GUCY1α1 might provide a novel promising strategy to specifically target and mechanistically examine fibroblasts.
Collapse
|
62
|
Yanik EL, Saccone NL, Aleem AW, Chamberlain AM, Zmistowski B, Sefko JA, Keener JD. Factors associated with genetic markers for rotator cuff disease in patients with atraumatic rotator cuff tears. J Orthop Res 2024; 42:934-941. [PMID: 38041210 PMCID: PMC11009082 DOI: 10.1002/jor.25754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/06/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023]
Abstract
For atraumatic rotator cuff tears, genetics contributes to symptomatic tear risk and may influence rotator cuff healing after surgical repair. But little is known about how genetic factors influence rotator cuff tear patient characteristics at presentation. We collected saliva samples for genotyping from atraumatic rotator cuff tear patients. We examined nine single nucleotide polymorphisms (SNPs) associated with cuff tears in prior literature. We estimated associations of SNP dosage with (1) age at tear diagnosis, (2) bilateral atraumatic tear prevalence, and (3) tear size. Linear regression was used to estimate associations with diagnosis age adjusted for sex and principal components. Logistic regression and ordinal logistic regression were used to estimate associations with bilateral tear prevalence and tear size category, respectively, adjusting for age, sex, and principal components. Of 344 eligible patients, 336 provided sufficient samples for genotyping. Median age at tear diagnosis was 61, 22% (N = 74) had bilateral atraumatic tears, and 9% (N = 29) had massive tears. SNP rs13107325 in the SLC39A8 gene and rs11850957 in the STXBP6 gene were associated with younger diagnosis age even after accounting for multiple comparisons (rs13107325: -4 years, 95% CI = -6.5, -1.4; rs11850957: -2.7 years, 95% CI = -4.3, -1.1). No other significant associations were observed with diagnosis age, tear size, or bilateral tear prevalence. SLC39A8 encodes a Mn transporter. STXBP6 may play a role in inflammatory responses by altering phagocytosis and antigen presentation of monocytes and macrophages. Further research is needed to determine if genetic markers can be used alongside patient characteristics to aid in identifying optimal surgical repair candidates.
Collapse
Affiliation(s)
- Elizabeth L. Yanik
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Nancy L. Saccone
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Alexander W. Aleem
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Aaron M. Chamberlain
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Benjamin Zmistowski
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Julianne A. Sefko
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Jay D. Keener
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
63
|
Keaton JM, Kamali Z, Xie T, Vaez A, Williams A, Goleva SB, Ani A, Evangelou E, Hellwege JN, Yengo L, Young WJ, Traylor M, Giri A, Zheng Z, Zeng J, Chasman DI, Morris AP, Caulfield MJ, Hwang SJ, Kooner JS, Conen D, Attia JR, Morrison AC, Loos RJF, Kristiansson K, Schmidt R, Hicks AA, Pramstaller PP, Nelson CP, Samani NJ, Risch L, Gyllensten U, Melander O, Riese H, Wilson JF, Campbell H, Rich SS, Psaty BM, Lu Y, Rotter JI, Guo X, Rice KM, Vollenweider P, Sundström J, Langenberg C, Tobin MD, Giedraitis V, Luan J, Tuomilehto J, Kutalik Z, Ripatti S, Salomaa V, Girotto G, Trompet S, Jukema JW, van der Harst P, Ridker PM, Giulianini F, Vitart V, Goel A, Watkins H, Harris SE, Deary IJ, van der Most PJ, Oldehinkel AJ, Keavney BD, Hayward C, Campbell A, Boehnke M, Scott LJ, Boutin T, Mamasoula C, Järvelin MR, Peters A, Gieger C, Lakatta EG, Cucca F, Hui J, Knekt P, Enroth S, De Borst MH, Polašek O, Concas MP, Catamo E, Cocca M, Li-Gao R, Hofer E, Schmidt H, Spedicati B, Waldenberger M, Strachan DP, Laan M, Teumer A, Dörr M, Gudnason V, Cook JP, Ruggiero D, Kolcic I, Boerwinkle E, Traglia M, et alKeaton JM, Kamali Z, Xie T, Vaez A, Williams A, Goleva SB, Ani A, Evangelou E, Hellwege JN, Yengo L, Young WJ, Traylor M, Giri A, Zheng Z, Zeng J, Chasman DI, Morris AP, Caulfield MJ, Hwang SJ, Kooner JS, Conen D, Attia JR, Morrison AC, Loos RJF, Kristiansson K, Schmidt R, Hicks AA, Pramstaller PP, Nelson CP, Samani NJ, Risch L, Gyllensten U, Melander O, Riese H, Wilson JF, Campbell H, Rich SS, Psaty BM, Lu Y, Rotter JI, Guo X, Rice KM, Vollenweider P, Sundström J, Langenberg C, Tobin MD, Giedraitis V, Luan J, Tuomilehto J, Kutalik Z, Ripatti S, Salomaa V, Girotto G, Trompet S, Jukema JW, van der Harst P, Ridker PM, Giulianini F, Vitart V, Goel A, Watkins H, Harris SE, Deary IJ, van der Most PJ, Oldehinkel AJ, Keavney BD, Hayward C, Campbell A, Boehnke M, Scott LJ, Boutin T, Mamasoula C, Järvelin MR, Peters A, Gieger C, Lakatta EG, Cucca F, Hui J, Knekt P, Enroth S, De Borst MH, Polašek O, Concas MP, Catamo E, Cocca M, Li-Gao R, Hofer E, Schmidt H, Spedicati B, Waldenberger M, Strachan DP, Laan M, Teumer A, Dörr M, Gudnason V, Cook JP, Ruggiero D, Kolcic I, Boerwinkle E, Traglia M, Lehtimäki T, Raitakari OT, Johnson AD, Newton-Cheh C, Brown MJ, Dominiczak AF, Sever PJ, Poulter N, Chambers JC, Elosua R, Siscovick D, Esko T, Metspalu A, Strawbridge RJ, Laakso M, Hamsten A, Hottenga JJ, de Geus E, Morris AD, Palmer CNA, Nolte IM, Milaneschi Y, Marten J, Wright A, Zeggini E, Howson JMM, O'Donnell CJ, Spector T, Nalls MA, Simonsick EM, Liu Y, van Duijn CM, Butterworth AS, Danesh JN, Menni C, Wareham NJ, Khaw KT, Sun YV, Wilson PWF, Cho K, Visscher PM, Denny JC, Levy D, Edwards TL, Munroe PB, Snieder H, Warren HR. Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk scores for blood pressure traits. Nat Genet 2024; 56:778-791. [PMID: 38689001 PMCID: PMC11096100 DOI: 10.1038/s41588-024-01714-w] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/11/2024] [Indexed: 05/02/2024]
Abstract
Hypertension affects more than one billion people worldwide. Here we identify 113 novel loci, reporting a total of 2,103 independent genetic signals (P < 5 × 10-8) from the largest single-stage blood pressure (BP) genome-wide association study to date (n = 1,028,980 European individuals). These associations explain more than 60% of single nucleotide polymorphism-based BP heritability. Comparing top versus bottom deciles of polygenic risk scores (PRSs) reveals clinically meaningful differences in BP (16.9 mmHg systolic BP, 95% CI, 15.5-18.2 mmHg, P = 2.22 × 10-126) and more than a sevenfold higher odds of hypertension risk (odds ratio, 7.33; 95% CI, 5.54-9.70; P = 4.13 × 10-44) in an independent dataset. Adding PRS into hypertension-prediction models increased the area under the receiver operating characteristic curve (AUROC) from 0.791 (95% CI, 0.781-0.801) to 0.826 (95% CI, 0.817-0.836, ∆AUROC, 0.035, P = 1.98 × 10-34). We compare the 2,103 loci results in non-European ancestries and show significant PRS associations in a large African-American sample. Secondary analyses implicate 500 genes previously unreported for BP. Our study highlights the role of increasingly large genomic studies for precision health research.
Collapse
Affiliation(s)
- Jacob M Keaton
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tian Xie
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ahmad Vaez
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ariel Williams
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Slavina B Goleva
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alireza Ani
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - Jacklyn N Hellwege
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Loic Yengo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - William J Young
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Matthew Traylor
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Ayush Giri
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhili Zheng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jian Zeng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Daniel I Chasman
- Division of Preventive Medicine Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shih-Jen Hwang
- Population Sciences Branch, NHLBI Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Jaspal S Kooner
- National Heart and Lung Institute, Imperial College London, London, UK
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - John R Attia
- Faculty of Health and Medicine, University of Newcastle, New Lambton Heights, Newcastle, New South Wales, Australia
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kati Kristiansson
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
- University of Lübeck, Lübeck, Germany
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
- University of Lübeck, Lübeck, Germany
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Lorenz Risch
- Faculty of Medical Sciences, Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Department of Laboratory Medicine, Dr. Risch Anstalt, Vaduz, Liechtenstein
| | - Ulf Gyllensten
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Harriette Riese
- Interdisciplinary Center Psychopathology and Emotional Regulation (ICPE), Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Yingchang Lu
- Vanderbilt Genetic Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
- Leicester NIHR Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zoltan Kutalik
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Stella Trompet
- Department Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Pim van der Harst
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paul M Ridker
- Division of Preventive Medicine Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Franco Giulianini
- Division of Preventive Medicine Brigham and Women's Hospital, Boston, MA, USA
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Anuj Goel
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah E Harris
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Albertine J Oldehinkel
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Heart Institute, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
- Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Michael Boehnke
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Laura J Scott
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Thibaud Boutin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Epidemiologie, Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie (IBE), Ludwig-Maximilians-Universität München, Neuherberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Francesco Cucca
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Monserrato, Italy
| | - Jennie Hui
- Busselton Population Medical Research Institute, Perth, Western Australia, Australia
- School of Population and Global Health, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Paul Knekt
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory (SciLifeLab) Uppsala, Uppsala University, Uppsala, Sweden
| | - Martin H De Borst
- Department of Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Eulalia Catamo
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Massimiliano Cocca
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Helena Schmidt
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - David P Strachan
- Population Health Sciences Institute St George's, University of London, London, UK
| | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Kopavogur, Iceland
| | - James P Cook
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Daniela Ruggiero
- IRCCS Neuromed, Pozzilli, Italy
- Institute of Genetics and Biophysics - 'A. Buzzati-Traverso', National Research Council of Italy, Naples, Italy
| | - Ivana Kolcic
- Algebra University College, Zagreb, Croatia
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Andrew D Johnson
- Population Sciences Branch, NHLBI Framingham Heart Study, Framingham, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Christopher Newton-Cheh
- Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Morris J Brown
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Peter J Sever
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Neil Poulter
- School of Public Health, Imperial College London, London, UK
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Roberto Elosua
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- CIBER Enfermedades Cardiovasculares (CIBERCV), Barcelona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | | | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Rona J Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Health Data Research UK, Glasgow, UK
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Kuopio University Hospital, Kuopio, Finland
| | - Anders Hamsten
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Eco de Geus
- Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Andrew D Morris
- Data Science, University of Edinburgh, Edinburgh, UK
- Health Data Research UK, London, UK
| | - Colin N A Palmer
- Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yuri Milaneschi
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Jonathan Marten
- Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK
| | - Alan Wright
- Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich, Germany
| | - Joanna M M Howson
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Christopher J O'Donnell
- VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tim Spector
- Department of Twin Research, King's College London, London, UK
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, NIA/NINDS, NIH, Bethesda, MD, USA
- Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Eleanor M Simonsick
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yongmei Liu
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Cornelia M van Duijn
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - John N Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, London, UK
| | | | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
- VA Atlanta Healthcare System, Decatur, GA, USA
| | - Peter W F Wilson
- Emory Clinical Cardiovascular Research Institute, Atlanta, GA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Kelly Cho
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | - Peter M Visscher
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Joshua C Denny
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Levy
- Population Sciences Branch, NHLBI Framingham Heart Study, Framingham, MA, USA
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
64
|
Chan II, Wu AM. Assessing the Role of Cortisol in Anxiety, Major Depression, and Neuroticism: A Mendelian Randomization Study Using SERPINA6/ SERPINA1 Variants. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100294. [PMID: 38525495 PMCID: PMC10959652 DOI: 10.1016/j.bpsgos.2024.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 03/26/2024] Open
Abstract
Background Previous evidence informed by the toxic stress model suggests that higher cortisol causes anxiety and major depression, but clinical success is lacking. To clarify the role of cortisol, we used Mendelian randomization to estimate its associations with anxiety, major depression, and neuroticism, leveraging the largest available genome-wide association studies including from the Psychiatric Genomics Consortium, the UK Biobank, and FinnGen. Methods After meta-analyzing 2 genome-wide association studies on morning plasma cortisol (n = 32,981), we selected single nucleotide polymorphisms (SNPs) at p < 5 × 10-8 and r2 < 0.3 in the SERPINA6/SERPINA1 gene region encoding proteins that influence cortisol bioavailability. We applied these SNPs to summary genetic associations with the outcomes considered (n = 17,310-449,484), and systolic blood pressure as a positive outcome, using inverse-variance weighted meta-analysis accounting for correlation. Sensitivity analyses addressing SNP correlation and confounding by childhood maltreatment and follow-up analyses using only SNPs that colocalized with SERPINA6 expression were conducted. Results Cortisol was associated with anxiety (pooled odds ratio [OR] 1.16 per cortisol z score; 95% CI, 1.04 to 1.31), but not major depression (pooled OR 1.02, 95% CI, 0.95 to 1.10) or neuroticism (β -0.025; 95% CI, -0.071 to 0.022). Sensitivity analyses yielded similar estimates. Cortisol was positively associated with systolic blood pressure, as expected. Using rs9989237 and rs2736898, selected using colocalization, cortisol was associated with anxiety in the UK Biobank (OR 1.32; 95% CI, 1.01 to 1.74) but not with major depression in FinnGen (OR 1.14; 95% CI, 0.95 to 1.37). Conclusions Cortisol was associated with anxiety and may be a potential target for prevention. Other targets may be more relevant to major depression and neuroticism.
Collapse
Affiliation(s)
- Io Ieong Chan
- Department of Public Health and Medicinal Administration, Faculty of Health Science, University of Macau, Macao, China
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, China
| | - Anise M.S. Wu
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, China
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, China
| |
Collapse
|
65
|
Ahmed W. Additive interaction of family medical history of diabetes with hypertension on the diagnosis of diabetes among older adults in India: longitudinal ageing study in India. BMC Public Health 2024; 24:999. [PMID: 38600575 PMCID: PMC11005278 DOI: 10.1186/s12889-024-18146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/18/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The present study aimed to estimate the additive interaction of family history of diabetes and hypertension on the diagnosis of diabetes among individuals aged 45 years and above in India. The coexistence of these two exposures may act synergistically on the risk of diabetes, leading to adverse health outcomes. METHODS The study utilized the data from the Longitudinal Ageing Study in India (LASI) Wave 1 (2017-2018). The total sample size for the current study was 58,612 individuals aged 45 years and above. Multivariable logistic regression models were employed to determine the individual and joint effect of a family history of diabetes with hypertension on diabetes. An additive model was applied to assess the interaction effect of the family medical history of diabetes with hypertension on the diagnosis of diabetes by calculating three different measures of additive interaction such as the relative excess risk ratio (RERI), attribution proportion due to interaction (AP), and synergy index (S). RESULTS The prevalence of diabetes was three times higher among individuals with family history of diabetes (27.8% vs. 9.2%) than those without family history. Individuals with family history of diabetes (AOR: 2.47, CI: 2.11 2.89) had 2.47 times higher odds of having diabetes than those without family history. The prevalence of diabetes was significantly higher among individuals with hypertension and family history of diabetes (46.6%, 95% CI: 39.7-53.6) than those without the coexistence of family history of diabetes and hypertension (9.9%, 95% CI: 9.5-10.4), individuals with hypertension and without a family history of diabetes (22.7%, 95% CI: 21.2-24.2), and individuals with family history of diabetes and without hypertension (16.5%, 95% CI: 14.5-18.7). Moreover, the adjusted odds ratio (AOR) of the joint effect between family medical history of diabetes and hypertension on diabetes was 9.28 (95% CI: 7.51-11.46). In the adjusted model, the RERI, AP, and S for diabetes were 3.5 (95% CI: 1.52-5.47), 37% (0.37; 95% CI: 0.22-0.51), and 1.69 (95% CI: 1.31-2.18) respectively, which indicates that there is a significant positive interaction between family history of diabetes and hypertension on the diagnosis of diabetes. The study findings on interaction effects further demonstrate consistent results for two models of hypertension (self-reported hypertension and hypertensive individuals receiving medication) even after adjustment with potential confounding factors on diabetes (self-reported diabetes and individuals with diabetes receiving medication). CONCLUSIONS The study findings strongly suggest that the interaction of family history of diabetes with hypertension has a positive and significant effect on the risk of diabetes even after adjustment with potential confounding factors. Furthermore, the findings indicate a synergistic effect, emphasizing the importance of considering both family medical history of diabetes and hypertension when assessing diabetes risk and designing preventive strategies or interventions.
Collapse
Affiliation(s)
- Waquar Ahmed
- School of Health Systems Studies, Tata Institute of Social Sciences, Mumbai, India.
| |
Collapse
|
66
|
Boedtkjer E, Ara T. Strengthening the basics: acids and bases influence vascular structure and function, tissue perfusion, blood pressure, and human cardiovascular disease. Pflugers Arch 2024; 476:623-637. [PMID: 38383822 DOI: 10.1007/s00424-024-02926-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Acids and their conjugate bases accumulate in or dissipate from the interstitial space when tissue perfusion does not match the metabolic demand. Extracellular acidosis dilates most arterial beds, but associated acid-base disturbances-e.g., intracellular acidification and decreases in HCO3- concentration-can also elicit pro-contractile influences that diminish vasodilation and even dominate in some vascular beds to cause vasoconstriction. The ensemble activities of the acid-base-sensitive reactions in vascular smooth muscle and endothelial cells optimize vascular resistance for blood pressure control and direct the perfusion towards active tissue. In this review, we describe the mechanisms of intracellular pH regulation in the vascular wall and discuss how vascular smooth muscle and endothelial cells sense acid-base disturbances. We further deliberate on the functional effects of local acid-base disturbances and their integrated cardiovascular consequences under physiological and pathophysiological conditions. Finally, we address how mutations and polymorphisms in the molecular machinery that regulates pH locally and senses acid-base disturbances in the vascular wall can result in cardiovascular disease. Based on the emerging molecular insight, we propose that targeting local pH-dependent effectors-rather than systemic acid-base disturbances-has therapeutic potential to interfere with the progression and reduce the severity of cardiovascular disease.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, DK-8000, Aarhus, Denmark.
| | - Tarannum Ara
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, DK-8000, Aarhus, Denmark
| |
Collapse
|
67
|
Bakris GL, Weber MA. Overview of the Evolution of Hypertension: From Ancient Chinese Emperors to Today. Hypertension 2024; 81:717-726. [PMID: 38507509 DOI: 10.1161/hypertensionaha.124.21953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hypertension is one of the most commonly treated conditions in modern medical practice, but despite its long history, it was largely ignored until the midpoint of the 20th century. This article will review the origins of elevated blood pressure from when it was first appreciated in 2600 BC to its most recent emerging treatments. Awareness of sustained elevations in blood pressure goes back to the Chinese Yellow Emperor's Classic of Internal Medicine (2600 BC); even then, salt was appreciated as a contributor to elevated pressure. Early treatments included acupuncture, venesection, and bleeding by leeches. About 1000 years later, the association between the palpated pulse and the development of heart and brain diseases was described by Ebers Papyrus (1550 BC). But really, it has only been since well after World War II that hypertension has finally been appreciated as the cause of so much heart, stroke, and kidney disease. We review the development of effective treatments for hypertension while acknowledging that so many people with hypertension in need of treatment have unacceptably poor blood pressure control. We explore why, despite our considerable and growing knowledge of hypertension, it remains a significant public health problem globally.
Collapse
Affiliation(s)
- George L Bakris
- Department of Medicine, University of Chicago Medicine, American Heart Association's Comprehensive Hypertension Center, IL (G.L.B.)
| | - Michael A Weber
- Division of Cardiovascular Medicine, State University of New York, Downstate Medical Center, Brooklyn (M.A.W.)
| |
Collapse
|
68
|
Kobayashi Y, Yatsu K, Haruna A, Kawano R, Ozawa M, Haze T, Komiya S, Suzuki S, Ohki Y, Fujiwara A, Saka S, Hirawa N, Toya Y, Tamura K. ATP2B1 gene polymorphisms associated with resistant hypertension in the Japanese population. J Clin Hypertens (Greenwich) 2024; 26:355-362. [PMID: 38430457 PMCID: PMC11007809 DOI: 10.1111/jch.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/03/2024]
Abstract
Single-nucleotide polymorphisms (SNP) of ATP2B1 gene are associated with essential hypertension but their association with resistant hypertension (RHT) remains unexplored. The authors examined the relationship between ATP2B1 SNPs and RHT by genotyping 12 SNPs in ATP2B1 gene of 1124 Japanese individuals with lifestyle-related diseases. Patients with RHT had inadequate blood pressure (BP) control using three antihypertensive drugs or used ≥4 antihypertensive drugs. Patients with controlled hypertension had BP controlled using ≤3 antihypertensive drugs. The association between each SNP and RHT was analyzed by logistic regression. The final cohort had 888 (79.0%) and 43 (3.8%) patients with controlled hypertension and RHT, respectively. Compared with patients homozygous for the minor allele of each SNP in ATP2B1, a significantly higher number of patients carrying the major allele at 10 SNPs exhibited RHT (most significant at rs1401982: 5.8% vs. 0.8%, p = .014; least significant at rs11105378: 5.7% vs. 0.9%, p = .035; most nonsignificant at rs12817819: 5.1% vs. 10%, p = .413). After multivariate adjustment for age, sex, systolic BP, and other confounders, the association remained significant for rs2681472 and rs1401982 (OR: 7.60, p < .05 and OR: 7.62, p = .049, respectively). Additionally, rs2681472 and rs1401982 were in linkage disequilibrium with rs11105378. This study identified two ATP2B1 SNPs associated with RHT in the Japanese population. rs1401982 was most closely associated with RHT, and major allele carriers of rs1401982 required significantly more antihypertensive medications. Analysis of ATP2B1 SNPs in patients with hypertension can help in early prediction of RHT and identification of high-risk patients who are more likely to require more antihypertensive medications.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Center for Novel and Exploratory Clinical Trials (Y‐NEXT)Yokohama City UniversityYokohamaJapan
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | | | - Aiko Haruna
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Rina Kawano
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Moe Ozawa
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
- Department of Nephrology and HypertensionSaiseikai Yokohamashi Nanbu HospitalYokohamaJapan
| | - Tatsuya Haze
- Center for Novel and Exploratory Clinical Trials (Y‐NEXT)Yokohama City UniversityYokohamaJapan
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Shiro Komiya
- Department of Nephrology and HypertensionSaiseikai Yokohamashi Nanbu HospitalYokohamaJapan
| | - Shota Suzuki
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Yuki Ohki
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Akira Fujiwara
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Sanae Saka
- Department of Nephrology and HypertensionSaiseikai Yokohamashi Nanbu HospitalYokohamaJapan
| | - Nobuhito Hirawa
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Yoshiyuki Toya
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| |
Collapse
|
69
|
Magavern EF, Kapil V, Saxena M, Gupta A, Caulfield MJ. Use of Genomics to Develop Novel Therapeutics and Personalize Hypertension Therapy. Arterioscler Thromb Vasc Biol 2024; 44:784-793. [PMID: 38385287 DOI: 10.1161/atvbaha.123.319220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Hypertension is a prevalent public health problem, contributing to >10 million deaths annually. Though multiple therapeutics exist, many patients suffer from treatment-resistant hypertension or try several medications before achieving blood pressure control. Genomic advances offer mechanistic understanding of blood pressure variability, therapeutic targets, therapeutic response, and promise a stratified approach to treatment of primary hypertension. Cyclic guanosine monophosphate augmentation, aldosterone synthase inhibitors, and angiotensinogen blockade with silencing RNA and antisense therapies are among the promising novel approaches. Pharmacogenomic studies have also been done to explore the genetic bases underpinning interindividual variability in response to existing therapeutics. A polygenic approach using risk scores is likely to be the next frontier in stratifying responses to existing therapeutics.
Collapse
Affiliation(s)
- Emma F Magavern
- Centre of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, United Kingdom
| | - Vikas Kapil
- Centre of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, United Kingdom
| | - Manish Saxena
- Centre of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, United Kingdom
| | - Ajay Gupta
- Centre of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, United Kingdom
| | - Mark J Caulfield
- Centre of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, United Kingdom
| |
Collapse
|
70
|
Manuello J, Min J, McCarthy P, Alfaro-Almagro F, Lee S, Smith S, Elliott LT, Winkler AM, Douaud G. The effects of genetic and modifiable risk factors on brain regions vulnerable to ageing and disease. Nat Commun 2024; 15:2576. [PMID: 38538590 PMCID: PMC10973379 DOI: 10.1038/s41467-024-46344-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/22/2024] [Indexed: 11/03/2024] Open
Abstract
We have previously identified a network of higher-order brain regions particularly vulnerable to the ageing process, schizophrenia and Alzheimer's disease. However, it remains unknown what the genetic influences on this fragile brain network are, and whether it can be altered by the most common modifiable risk factors for dementia. Here, in ~40,000 UK Biobank participants, we first show significant genome-wide associations between this brain network and seven genetic clusters implicated in cardiovascular deaths, schizophrenia, Alzheimer's and Parkinson's disease, and with the two antigens of the XG blood group located in the pseudoautosomal region of the sex chromosomes. We further reveal that the most deleterious modifiable risk factors for this vulnerable brain network are diabetes, nitrogen dioxide - a proxy for traffic-related air pollution - and alcohol intake frequency. The extent of these associations was uncovered by examining these modifiable risk factors in a single model to assess the unique contribution of each on the vulnerable brain network, above and beyond the dominating effects of age and sex. These results provide a comprehensive picture of the role played by genetic and modifiable risk factors on these fragile parts of the brain.
Collapse
Affiliation(s)
- Jordi Manuello
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Joosung Min
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada
| | - Paul McCarthy
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Fidel Alfaro-Almagro
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Soojin Lee
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Pacific Parkinson's Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Stephen Smith
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Lloyd T Elliott
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada
| | - Anderson M Winkler
- National Institutes of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Gwenaëlle Douaud
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
71
|
Melton HJ, Zhang Z, Wu C. SUMMIT-FA: a new resource for improved transcriptome imputation using functional annotations. Hum Mol Genet 2024; 33:624-635. [PMID: 38129112 PMCID: PMC10954367 DOI: 10.1093/hmg/ddad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Transcriptome-wide association studies (TWAS) integrate gene expression prediction models and genome-wide association studies (GWAS) to identify gene-trait associations. The power of TWAS is determined by the sample size of GWAS and the accuracy of the expression prediction model. Here, we present a new method, the Summary-level Unified Method for Modeling Integrated Transcriptome using Functional Annotations (SUMMIT-FA), which improves gene expression prediction accuracy by leveraging functional annotation resources and a large expression quantitative trait loci (eQTL) summary-level dataset. We build gene expression prediction models in whole blood using SUMMIT-FA with the comprehensive functional database MACIE and eQTL summary-level data from the eQTLGen consortium. We apply these models to GWAS for 24 complex traits and show that SUMMIT-FA identifies significantly more gene-trait associations and improves predictive power for identifying "silver standard" genes compared to several benchmark methods. We further conduct a simulation study to demonstrate the effectiveness of SUMMIT-FA.
Collapse
Affiliation(s)
- Hunter J Melton
- Department of Statistics, Florida State University, 214 Rogers Building, 117 N. Woodward Avenue, Tallahassee, FL 32306, United States
| | - Zichen Zhang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 7007 Bertner Avenue, Unit 1689, Houston, TX 77030, United States
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 7007 Bertner Avenue, Unit 1689, Houston, TX 77030, United States
| |
Collapse
|
72
|
Xu X, Khunsriraksakul C, Eales JM, Rubin S, Scannali D, Saluja S, Talavera D, Markus H, Wang L, Drzal M, Maan A, Lay AC, Prestes PR, Regan J, Diwadkar AR, Denniff M, Rempega G, Ryszawy J, Król R, Dormer JP, Szulinska M, Walczak M, Antczak A, Matías-García PR, Waldenberger M, Woolf AS, Keavney B, Zukowska-Szczechowska E, Wystrychowski W, Zywiec J, Bogdanski P, Danser AHJ, Samani NJ, Guzik TJ, Morris AP, Liu DJ, Charchar FJ, Tomaszewski M. Genetic imputation of kidney transcriptome, proteome and multi-omics illuminates new blood pressure and hypertension targets. Nat Commun 2024; 15:2359. [PMID: 38504097 PMCID: PMC10950894 DOI: 10.1038/s41467-024-46132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Genetic mechanisms of blood pressure (BP) regulation remain poorly defined. Using kidney-specific epigenomic annotations and 3D genome information we generated and validated gene expression prediction models for the purpose of transcriptome-wide association studies in 700 human kidneys. We identified 889 kidney genes associated with BP of which 399 were prioritised as contributors to BP regulation. Imputation of kidney proteome and microRNAome uncovered 97 renal proteins and 11 miRNAs associated with BP. Integration with plasma proteomics and metabolomics illuminated circulating levels of myo-inositol, 4-guanidinobutanoate and angiotensinogen as downstream effectors of several kidney BP genes (SLC5A11, AGMAT, AGT, respectively). We showed that genetically determined reduction in renal expression may mimic the effects of rare loss-of-function variants on kidney mRNA/protein and lead to an increase in BP (e.g., ENPEP). We demonstrated a strong correlation (r = 0.81) in expression of protein-coding genes between cells harvested from urine and the kidney highlighting a diagnostic potential of urinary cell transcriptomics. We uncovered adenylyl cyclase activators as a repurposing opportunity for hypertension and illustrated examples of BP-elevating effects of anticancer drugs (e.g. tubulin polymerisation inhibitors). Collectively, our studies provide new biological insights into genetic regulation of BP with potential to drive clinical translation in hypertension.
Collapse
Affiliation(s)
- Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | | | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sebastien Rubin
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Scannali
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sushant Saluja
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Havell Markus
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Lida Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Maciej Drzal
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Akhlaq Maan
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Abigail C Lay
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Priscilla R Prestes
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Jeniece Regan
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Avantika R Diwadkar
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Grzegorz Rempega
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Jakub Ryszawy
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Robert Król
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - John P Dormer
- Department of Cellular Pathology, University Hospitals of Leicester, Leicester, UK
| | - Monika Szulinska
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Marta Walczak
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Antczak
- Department of Urology and Uro-oncology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Pamela R Matías-García
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK
| | | | - Wojciech Wystrychowski
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Zywiec
- Department of Internal Medicine, Diabetology and Nephrology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Pawel Bogdanski
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Tomasz J Guzik
- Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Fadi J Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK.
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK.
| |
Collapse
|
73
|
Jefferis J, Mallett AJ. Exploring the impact and utility of genomic sequencing in established CKD. Clin Kidney J 2024; 17:sfae043. [PMID: 38464959 PMCID: PMC10921391 DOI: 10.1093/ckj/sfae043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 03/12/2024] Open
Abstract
Clinical genetics is increasingly recognized as an important area within nephrology care. Clinicians require awareness of genetic kidney disease to recognize clinical phenotypes, consider use of genomics to aid diagnosis, and inform treatment decisions. Understanding the broad spectrum of clinical phenotypes and principles of genomic sequencing is becoming increasingly required in clinical nephrology, with nephrologists requiring education and support to achieve meaningful patient outcomes. Establishment of effective clinical resources, multi-disciplinary teams and education is important to increase application of genomics in clinical care, for the benefit of patients and their families. Novel applications of genomics in chronic kidney disease include pharmacogenomics and clinical translation of polygenic risk scores. This review explores established and emerging impacts and utility of genomics in kidney disease.
Collapse
Affiliation(s)
- Julia Jefferis
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Andrew J Mallett
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Department of Renal Medicine, Townsville University Hospital, Douglas, Australia
- College of Medicine and Dentistry, James Cook University, Douglas, Australia
| |
Collapse
|
74
|
Habudele Z, Chen G, Qian SE, Vaughn MG, Zhang J, Lin H. High Dietary Intake of Iron Might Be Harmful to Atrial Fibrillation and Modified by Genetic Diversity: A Prospective Cohort Study. Nutrients 2024; 16:593. [PMID: 38474722 DOI: 10.3390/nu16050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Some studies suggest an association between iron overload and cardiovascular diseases (CVDs). However, the relationship between dietary iron intake and atrial fibrillation (AF) remains uncertain, as does the role of genetic loci on this association. The study involved 179,565 participants from UK Biobank, tracking incident atrial fibrillation (AF) cases. Iron intake was categorized into low, moderate, and high groups based on dietary surveys conducted from 2009 to 2012. The Cox regression model was used to estimate the risk of AF in relation to iron intake, assessing the hazard ratio (HR) and 95% confidence interval (95% CI). It also examined the impact of 165 AF-related and 20 iron-related genetic variants on this association. Pathway enrichment analyses were performed using Metascape and FUMA. During a median follow-up period of 11.6 years, 6693 (3.97%) incident AF cases were recorded. A total of 35,874 (20.0%) participants had high iron intake. High iron intake was associated with increased risk of AF [HR: 1.13 (95% CI: 1.05, 1.22)] in a fully adjusted model. Importantly, there were 83 SNPs (11 iron-related SNPs) that could enhance the observed associations. These genes are mainly involved in cardiac development and cell signal transduction pathways. High dietary iron intake increases the risk of atrial fibrillation, especially when iron intake exceeds 16.95 mg. The association was particularly significant among the 83 SNPs associated with AF and iron, the individuals with these risk genes. Gene enrichment analysis revealed that these genes are significantly involved in cardiac development and cell signal transduction processes.
Collapse
Affiliation(s)
- Zierdi Habudele
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510275, China
| | - Samantha E Qian
- College of Arts and Sciences, Saint Louis University, St. Louis, MO 63108, USA
| | - Michael G Vaughn
- School of Social Work, Saint Louis University, St. Louis, MO 63103, USA
| | - Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
75
|
Chappell E, Arbour L, Laksman Z. The Inclusion of Underrepresented Populations in Cardiovascular Genetics and Epidemiology. J Cardiovasc Dev Dis 2024; 11:56. [PMID: 38392270 PMCID: PMC10888590 DOI: 10.3390/jcdd11020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Novel genetic risk markers have helped us to advance the field of cardiovascular epidemiology and refine our current understanding and risk stratification paradigms. The discovery and analysis of variants can help us to tailor prognostication and management. However, populations underrepresented in cardiovascular epidemiology and cardiogenetics research may experience inequities in care if prediction tools are not applicable to them clinically. Therefore, the purpose of this article is to outline the barriers that underrepresented populations can face in participating in genetics research, to describe the current efforts to diversify cardiogenetics research, and to outline strategies that researchers in cardiovascular epidemiology can implement to include underrepresented populations. Mistrust, a lack of diverse research teams, the improper use of sensitive biodata, and the constraints of genetic analyses are all barriers for including diverse populations in genetics studies. The current work is beginning to address the paucity of ethnically diverse genetics research and has already begun to shed light on the potential benefits of including underrepresented and diverse populations. Reducing barriers for individuals, utilizing community-driven research processes, adopting novel recruitment strategies, and pushing for organizational support for diverse genetics research are key steps that clinicians and researchers can take to develop equitable risk stratification tools and improve patient care.
Collapse
Affiliation(s)
- Elias Chappell
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Laura Arbour
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Zachary Laksman
- Department of Medicine and the School of Biomedical Engineering, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
76
|
Liu W, Yang C, Lei F, Huang X, Cai J, Chen S, She ZG, Li H. Major lipids and lipoprotein levels and risk of blood pressure elevation: a Mendelian Randomisation study. EBioMedicine 2024; 100:104964. [PMID: 38181703 PMCID: PMC10789600 DOI: 10.1016/j.ebiom.2023.104964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Quantitative nuclear magnetic resonance (NMR) metabolomics techniques provide detailed measurements of lipoprotein particle concentration. Metabolic dysfunction often represents a cluster of conditions, including dyslipidaemia, hypertension, and diabetes, that increase the risk of cardiovascular diseases (CVDs). However, the causal relationship between lipid profiles and blood pressure (BP) remains unclear. We performed a Mendelian Randomisation (MR) study to disentangle and prioritize the potential causal effects of major lipids, lipoprotein particles, and circulating metabolites on BP and pulse pressure (PP). METHODS We employed single-nucleotide polymorphisms (SNPs) associated with major lipids, lipoprotein particles, and other metabolites from the UK Biobank as instrumental variables. Summary-level data for BP and PP were obtained from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Two-sample MR and MR Bayesian model averaging approaches (MR-BMA) were conducted to analyse and rank causal associations. FINDINGS Genetically predicted TG was the most likely causal exposure among the major lipids to increase systolic blood pressure (SBP) and diastolic blood pressure (DBP), with marginal inclusion probabilities (MIPs) of 0.993 and 0.847, respectively. Among the majority of lipoproteins and their containing lipids, including major lipids, genetically elevated TG in small high-density lipoproteins (S_HDL_TG) had the strongest association with the increase of SBP and DBP, with MIPs of 0.416 and 0.397, respectively. HDL cholesterol (HDL_C) and low-density lipoprotein cholesterol (LDL_C) were potential causal factors for PP elevation among the major lipids (MIP = 0.927 for HDL_C and MIP = 0.718 for LDL_C). Within the sub-lipoproteins, genetically predicted atherogenic lipoprotein particles (i.e., sub-very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and LDL particles) had the most likely causal impact on increasing PP. INTERPRETATION This study provides genetic evidence for the causality of lipids on BP indicators. However, the effect size on SBP, DBP, and PP varies depending on the lipids' components and sizes. Understanding this potential relationship may inform the potential benefits of comprehensive management of lipid profiles for BP control. FUNDING Key Research and Development Program of Hubei Province, Science and Technology Innovation Project of Huanggang Central Hospital of Yangtze University, the Hubei Industrial Technology Research Institute of Heart-Brain Diseases, and the Hubei Provincial Engineering Research Centre of Comprehensive Care for Heart-Brain Diseases.
Collapse
Affiliation(s)
- Weifang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Chengzhang Yang
- Department of Cardiology, Huanggang Central Hospital of Yangtze University, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China; Medical Science Research Centre, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuewei Huang
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shaoze Chen
- Department of Cardiology, Huanggang Central Hospital of Yangtze University, Huanggang, China.
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Institute of Model Animal, Wuhan University, Wuhan, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Institute of Model Animal, Wuhan University, Wuhan, China.
| |
Collapse
|
77
|
Nebert DW. Gene-Environment Interactions: My Unique Journey. Annu Rev Pharmacol Toxicol 2024; 64:1-26. [PMID: 37788491 DOI: 10.1146/annurev-pharmtox-022323-082311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
I am deeply honored to be invited to write this scientific autobiography. As a physician-scientist, pediatrician, molecular biologist, and geneticist, I have authored/coauthored more than 600 publications in the fields of clinical medicine, biochemistry, biophysics, pharmacology, drug metabolism, toxicology, molecular biology, cancer, standardized gene nomenclature, developmental toxicology and teratogenesis, mouse genetics, human genetics, and evolutionary genomics. Looking back, I think my career can be divided into four distinct research areas, which I summarize mostly chronologically in this article: (a) discovery and characterization of the AHR/CYP1 axis, (b) pharmacogenomics and genetic prediction of response to drugs and other environmental toxicants, (c) standardized drug-metabolizing gene nomenclature based on evolutionary divergence, and (d) discovery and characterization of the SLC39A8 gene encoding the ZIP8 metal cation influx transporter. Collectively, all four topics embrace gene-environment interactions, hence the title of my autobiography.
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA;
| |
Collapse
|
78
|
Nemtsova V, Vischer AS, Burkard T. Hypertensive Heart Disease: A Narrative Review Series-Part 3: Vasculature, Biomarkers and the Matrix of Hypertensive Heart Disease. J Clin Med 2024; 13:505. [PMID: 38256639 PMCID: PMC10816030 DOI: 10.3390/jcm13020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Over the last few decades, research efforts have resulted in major advances in our understanding of the pathophysiology of hypertensive heart disease (HHD). This is the third part of a three-part review series. Here, we focus on the influence of high blood pressure on the micro- and macroalterations that occur in the vasculature in HHD. We also provide an overview of circulating cardiac biomarkers that may prove useful for a better understanding of the pathophysiology, development and progression of HHD, and may play a unique role in the diagnostic and prognostic evaluation of patients with HHD, taking into account their properties showing as abnormal long before the onset of the disease. In the conclusion, we propose an updated definition of HHD and a matrix for clinical classification, which we suspect will be useful in practice, allowing an individual approach to HHD patients.
Collapse
Affiliation(s)
- Valeriya Nemtsova
- Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence, University Hospital Basel, 4031 Basel, Switzerland; (V.N.); (A.S.V.)
- Internal Diseases and Family Medicine Department, Educational and Scientific Medical Institute of National Technical University «Kharkiv Polytechnic Institute», 61000 Kharkiv, Ukraine
| | - Annina S. Vischer
- Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence, University Hospital Basel, 4031 Basel, Switzerland; (V.N.); (A.S.V.)
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| | - Thilo Burkard
- Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence, University Hospital Basel, 4031 Basel, Switzerland; (V.N.); (A.S.V.)
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
- Department of Cardiology, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
79
|
Peters U, Tomlinson I. Utilizing Human Genetics to Develop Chemoprevention for Cancer-Too Good an Opportunity to be Missed. Cancer Prev Res (Phila) 2024; 17:7-12. [PMID: 38173394 DOI: 10.1158/1940-6207.capr-22-0523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/20/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Large-scale genetic studies are reliably identifying many risk factors for disease in the general population. Several of these genetic risk factors encode potential drug targets, and genetics has already helped to introduce targeted agents for some diseases, an example being lipid-lowering drugs to reduce the incidence of cardiovascular disease. Multiple drugs have been developed to treat cancers based on somatic mutations and genomics, but in stark contrast, there seems to be a reluctance to use germline genetic data to develop drugs to prevent malignancy, despite the large numbers of people who could benefit, the potential for lowering cancer rates, and the widespread current use of non-pharmaceutical measures to reduce cancer risk factors such as tobacco, alcohol, and infectious diseases. We argue that concerted efforts for cancer prevention based on genetics, including genes influenced by common polymorphisms that modulate cancer risk, are urgently needed. There are enormous, yet underutilized, opportunities to develop novel targeted agents for chemoprevention of cancer based on human germline genetics. Such efforts are likely to require the support of a dedicated funding program by national and international agencies. See related commentary by Winham and Sherman, p. 13.
Collapse
Affiliation(s)
- Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center and Department of Epidemiology, University of Washington, Seattle, Washington
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
80
|
Jefferis J, Hudson R, Lacaze P, Bakshi A, Hawley C, Patel C, Mallett A. Monogenic and polygenic concepts in chronic kidney disease (CKD). J Nephrol 2024; 37:7-21. [PMID: 37989975 PMCID: PMC10920206 DOI: 10.1007/s40620-023-01804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Kidney function is strongly influenced by genetic factors with both monogenic and polygenic factors contributing to kidney function. Monogenic disorders with primarily autosomal dominant inheritance patterns account for 10% of adult and 50% of paediatric kidney diseases. However, kidney function is also a complex trait with polygenic architecture, where genetic factors interact with environment and lifestyle factors. Family studies suggest that kidney function has significant heritability at 35-69%, capturing complexities of the genome with shared environmental factors. Genome-wide association studies estimate the single nucleotide polymorphism-based heritability of kidney function between 7.1 and 20.3%. These heritability estimates, measuring the extent to which genetic variation contributes to CKD risk, indicate a strong genetic contribution. Polygenic Risk Scores have recently been developed for chronic kidney disease and kidney function, and validated in large populations. Polygenic Risk Scores show correlation with kidney function but lack the specificity to predict individual-level changes in kidney function. Certain kidney diseases, such as membranous nephropathy and IgA nephropathy that have significant genetic components, may benefit most from polygenic risk scores for improved risk stratification. Genetic studies of kidney function also provide a potential avenue for the development of more targeted therapies and interventions. Understanding the development and validation of genomic scores is required to guide their implementation and identify the most appropriate potential implications in clinical practice. In this review, we provide an overview of the heritability of kidney function traits in population studies, explore both monogenic and polygenic concepts in kidney disease, with a focus on recently developed polygenic risk scores in kidney function and chronic kidney disease, and review specific diseases which are most amenable to incorporation of genomic scores.
Collapse
Affiliation(s)
- Julia Jefferis
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, Australia.
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.
| | - Rebecca Hudson
- Faculty of Medicine, University of Queensland, Brisbane, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Paul Lacaze
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Andrew Bakshi
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Carmel Hawley
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Andrew Mallett
- Institutional for Molecular Bioscience and Faculty of Medicine, The University of Queensland, Saint Lucia, Australia.
- Department of Renal Medicine, Townsville University Hospital, Douglas, QLD, Australia.
- College of Medicine and Dentistry, James Cook University, Douglas, QLD, Australia.
| |
Collapse
|
81
|
Aherrahrou R, Eschenhagen T, König IR, Samani NJ, Schunkert H, Aherrahrou Z. Jeanette Erdmann (1965-2023). Nat Genet 2023; 55:2016-2017. [PMID: 37985820 DOI: 10.1038/s41588-023-01599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Affiliation(s)
- Redouane Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Inke R König
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Lübeck, Germany
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.
| |
Collapse
|
82
|
Knihtilä HM, Kachroo P, Shadid I, Raissadati A, Peng C, McElrath TF, Litonjua AA, Demeo DL, Loscalzo J, Weiss ST, Mirzakhani H. Cord blood DNA methylation signatures associated with preeclampsia are enriched for cardiovascular pathways: insights from the VDAART trial. EBioMedicine 2023; 98:104890. [PMID: 37995466 PMCID: PMC10709000 DOI: 10.1016/j.ebiom.2023.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Preeclampsia has been associated with maternal epigenetic changes, in particular DNA methylation changes in the placenta. It has been suggested that preeclampsia could also cause DNA methylation changes in the neonate. We examined DNA methylation in relation to gene expression in the cord blood of offspring born to mothers with preeclampsia. METHODS This study included 128 mother-child pairs who participated in the Vitamin D Antenatal Asthma Reduction Trial (VDAART), where assessment of preeclampsia served as secondary outcome. We performed an epigenome-wide association study of preeclampsia and cord blood DNA methylation (Illumina 450 K chip). We then examined gene expression of the same subjects for validation and replicated the gene signatures in independent DNA methylation datasets. Lastly, we applied functional enrichment and network analyses to identify biological pathways that could potentially be involved in preeclampsia. FINDINGS In the cord blood samples (n = 128), 263 CpGs were differentially methylated (FDR <0.10) in preeclampsia (n = 16), of which 217 were annotated. Top pathways in the functional enrichment analysis included apelin signaling pathway and other endothelial and cardiovascular pathways. Of the 217 genes, 13 showed differential expression (p's < 0.001) in preeclampsia and 11 had been previously related to preeclampsia (p's < 0.0001). These genes were linked to apelin, cGMP and Notch signaling pathways, all having a role in angiogenic process and cardiovascular function. INTERPRETATION Preeclampsia is related to differential cord blood DNA methylation signatures of cardiovascular pathways, including the apelin signaling pathway. The association of these cord blood DNA methylation signatures with offspring's long-term morbidities due to preeclampsia should be further investigated. FUNDING VDAART is funded by National Heart, Lung, and Blood Institute grants of R01HL091528 and UH3OD023268. HMK is supported by Jane and Aatos Erkko Foundation, Paulo Foundation, and the Pediatric Research Foundation. HM is supported by K01 award from NHLBI (1K01HL146977-01A1). PK is supported by K99HL159234 from NIH/NHLBI.
Collapse
Affiliation(s)
- Hanna M Knihtilä
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Iskander Shadid
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alireza Raissadati
- Department of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cheng Peng
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY, USA
| | - Dawn L Demeo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hooman Mirzakhani
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
83
|
D’Urso S, Hwang LD. New Insights into Polygenic Score-Lifestyle Interactions for Cardiometabolic Risk Factors from Genome-Wide Interaction Analyses. Nutrients 2023; 15:4815. [PMID: 38004209 PMCID: PMC10675788 DOI: 10.3390/nu15224815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The relationship between lifestyles and cardiometabolic outcomes varies between individuals. In 382,275 UK Biobank Europeans, we investigate how lifestyles interact with polygenic scores (PGS) of cardiometabolic risk factors. We identify six interactions (PGS for body mass index with meat diet, physical activity, sedentary behaviour and insomnia; PGS for high-density lipoprotein cholesterol with sedentary behaviour; PGS for triglycerides with meat diet) in multivariable linear regression models including an interaction term and show stronger associations between lifestyles and cardiometabolic risk factors among individuals with high PGSs than those with low PGSs. Genome-wide interaction analyses pinpoint three genetic variants (FTO rs72805613 for BMI; CETP rs56228609 for high-density lipoprotein cholesterol; TRIB2 rs4336630 for triglycerides; PInteraction < 5 × 10-8). The associations between lifestyles and cardiometabolic risk factors differ between individuals grouped by the genotype of these variants, with the degree of differences being similar to that between individuals with high and low values for the corresponding PGSs. This study demonstrates that associations between lifestyles and cardiometabolic risk factors can differ between individuals based upon their genetic profiles. It further suggests that genetic variants with interaction effects contribute more to such differences compared to those without interaction effects, which has potential implications for developing PGSs for personalised intervention.
Collapse
Affiliation(s)
| | - Liang-Dar Hwang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia;
| |
Collapse
|
84
|
Hughes ZH, Hughes LM, Khan SS. Genetic contributions to risk of adverse pregnancy outcomes. CURRENT CARDIOVASCULAR RISK REPORTS 2023; 17:185-193. [PMID: 38186860 PMCID: PMC10768680 DOI: 10.1007/s12170-023-00729-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 01/09/2024]
Abstract
Purpose of Review Adverse pregnancy outcomes (APOs), including hypertensive disorders of pregnancy (HDP), low birthweight (LBW), and preterm birth (PTB), along with peripartum cardiomyopathy (PPCM) are associated with short- and long-term maternal and fetal cardiovascular risks. This review focuses on the genetic contributions to the risk of APOs and PPCM. Recent Findings The expansion of genome-wide association studies (GWAS) has led to better understanding of the biologic mechanisms underpinning APO, PPCM, and the predisposition to cardiovascular disease across the life course. Genetic loci known to be involved with the risk of hypertension (FTO, ZNF831) have been associated with the development of overall HDP and preeclampsia. Additionally, four loci significantly associated with type 2 diabetes have been associated with GDM (CDKAL1, MTNR1B, TCF7L2, CDK2NA-CDKN2B). Variants in loci known to affect genes coding for proteins involved in immune cell function and placental health (EBF1, EEFSEC, AGTR2, 2q13) have been implicated in the development of PTB and future cardiovascular risks for both the mother and the offspring. Genetic similarities in rare variants between PPCM and dilated cardiomyopathy have been described suggesting shared pathophysiologic origins as well as predisposition for future risk of heart failure, highlighting the need for the development PPCM genetic counseling guidelines. Summary Genetics may inform mechanisms, risk, and counseling for individuals after an APO or PPCM. Through recent advances in genetic techniques and analytic approaches, new insights into the underlying biologic mechanisms and genetic variants leading to these risks have been discovered.
Collapse
Affiliation(s)
- Zachary H. Hughes
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, UA
| | - Lydia M. Hughes
- Department of Obstetrics & Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, UA
| | - Sadiya S. Khan
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
85
|
Alam S, Doherty E, Ortega-Prieto P, Arizanova J, Fets L. Membrane transporters in cell physiology, cancer metabolism and drug response. Dis Model Mech 2023; 16:dmm050404. [PMID: 38037877 PMCID: PMC10695176 DOI: 10.1242/dmm.050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
By controlling the passage of small molecules across lipid bilayers, membrane transporters influence not only the uptake and efflux of nutrients, but also the metabolic state of the cell. With more than 450 members, the Solute Carriers (SLCs) are the largest transporter super-family, clustering into families with different substrate specificities and regulatory properties. Cells of different types are, therefore, able to tailor their transporter expression signatures depending on their metabolic requirements, and the physiological importance of these proteins is illustrated by their mis-regulation in a number of disease states. In cancer, transporter expression is heterogeneous, and the SLC family has been shown to facilitate the accumulation of biomass, influence redox homeostasis, and also mediate metabolic crosstalk with other cell types within the tumour microenvironment. This Review explores the roles of membrane transporters in physiological and malignant settings, and how these roles can affect drug response, through either indirect modulation of sensitivity or the direct transport of small-molecule therapeutic compounds into cells.
Collapse
Affiliation(s)
- Sara Alam
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Emily Doherty
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Paula Ortega-Prieto
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Julia Arizanova
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Louise Fets
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
86
|
van Duijvenboden S, Ramírez J, Young WJ, Olczak KJ, Ahmed F, Alhammadi MJAY, Bell CG, Morris AP, Munroe PB. Integration of genetic fine-mapping and multi-omics data reveals candidate effector genes for hypertension. Am J Hum Genet 2023; 110:1718-1734. [PMID: 37683633 PMCID: PMC10577090 DOI: 10.1016/j.ajhg.2023.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
Genome-wide association studies of blood pressure (BP) have identified >1,000 loci, but the effector genes and biological pathways at these loci are mostly unknown. Using published association summary statistics, we conducted annotation-informed fine-mapping incorporating tissue-specific chromatin segmentation and colocalization to identify causal variants and candidate effector genes for systolic BP, diastolic BP, and pulse pressure. We observed 532 distinct signals associated with ≥2 BP traits and 84 with all three. For >20% of signals, a single variant accounted for >75% posterior probability, 65 were missense variants in known (SLC39A8, ADRB2, and DBH) and previously unreported BP candidate genes (NRIP1 and MMP14). In disease-relevant tissues, we colocalized >80 and >400 distinct signals for each BP trait with cis-eQTLs and regulatory regions from promoter capture Hi-C, respectively. Integrating mouse, human disorder, gene expression and tissue abundance data, and literature review, we provide consolidated evidence for 436 BP candidate genes for future functional validation and discover several potential drug targets.
Collapse
Affiliation(s)
- Stefan van Duijvenboden
- William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK; Institute of Cardiovascular Science, University College London, London, UK; Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Julia Ramírez
- William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK; Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain
| | - William J Young
- William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK; Barts Heart Centre, St Bartholomew's Hospital, EC1A 7BE London, UK
| | - Kaya J Olczak
- William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Farah Ahmed
- William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | | | - Christopher G Bell
- William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK; National Institute of Health and Care Research, Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK; National Institute of Health and Care Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, EC1M 6BQ London, UK.
| |
Collapse
|
87
|
Lu YY, Li SJ, Zhang Z, He S, Guo YT, Hong MN, Shao S, Wang RQ, Zhang J, Wang JG, Gao PJ, Li XD. C-atrial natriuretic peptide (ANP) 4-23 attenuates renal fibrosis in deoxycorticosterone-acetate-salt hypertensive mice. Exp Cell Res 2023; 431:113738. [PMID: 37572787 DOI: 10.1016/j.yexcr.2023.113738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/08/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays a critical role in hypertension-induced renal fibrosis, a final pathway that leads to end-stage renal failure. C-Atrial natriuretic peptide (ANP)4-23, a specific agonist of natriuretic peptide receptor-C (NPR-C), has been reported to have protective effects against hypertension. However, the role of C-ANP4-23 in hypertension-associated renal fibrosis has not yet been elucidated. In this study, mice were randomly divided into SHAM group, DOCA-salt group and DOCA-salt + C-ANP4-23 group. Renal morphology changes, renal function and fibrosis were detected. Human proximal tubular epithelial cells (HK2) stimulated by aldosterone were used for cell function and mechanism study. The DOCA-salt treated mice exhibited hypertension, kidney fibrosis and renal dysfunction, which were attenuated by C-ANP4-23. Moreover, C-ANP4-23 inhibited DOCA-salt treatment-induced renal EMT as evidenced by decrease of the mesenchymal marker alpha-smooth muscle actin (ACTA2) and vimentin and increase of epithelial cell marker E-cadherin. In HK2 cells, aldosterone induced EMT response, which was also suppressed by C-ANP4-23. The key transcription factors (twist, snail, slug and ZEB1) involved in EMT were increased in the kidney of DOCA-salt-treated mice, which were also suppressed by C-ANP4-23. Mechanistically, C-ANP4-23 inhibited the aldosterone-induced translocation of MR from cytosol to nucleus without change of MR expression. Furthermore, C-ANP4-23 rescued the enhanced expression of NADPH oxidase (NOX) 4 and oxidative stress after aldosterone stimulation. Aldosterone-induced Akt and Erk1/2 activation was also suppressed by C-ANP4-23. Our data suggest that C-ANP4-23 attenuates renal fibrosis, likely through inhibition of MR activation, enhanced oxidative stress and Akt and Erk1/2 signaling pathway.
Collapse
Affiliation(s)
- Yuan-Yuan Lu
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China; Shanghai Geriatric Medical Center, Shanghai, China; Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Jin Li
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China; State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Zhong Zhang
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Shun He
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yue-Tong Guo
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Mo-Na Hong
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Shuai Shao
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Rui-Qi Wang
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jia Zhang
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Xiao-Dong Li
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
88
|
Martens LG, van Hamersveld D, le Cessie S, Willems van Dijk K, van Heemst D, Noordam R. The impact of sociodemographic status on the association of classical cardiovascular risk factors with coronary artery disease: a stratified Mendelian randomization study. J Clin Epidemiol 2023; 162:56-62. [PMID: 37500025 DOI: 10.1016/j.jclinepi.2023.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/02/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES Low socioeconomic status (SES) is associated with cardiovascular risk factors and increased coronary artery disease (CAD) risk. We tested whether SES is an effect modifier of the association between classical cardiovascular risk factors and CAD using SES-stratified Mendelian Randomization in European-ancestry participants from UK Biobank. STUDY DESIGN AND SETTING We calculated weighted genetic risk scores (GRS) for the risk factors body mass index (BMI), systolic blood pressure, low-density lipoprotein cholesterol, and triglycerides. Participants were stratified by Townsend deprivation index score. Logistic regression models were used to investigate associations between GRSs and CAD occurrence. Additionally, stratification based on GRS-adjusted Townsend deprivation index residuals was conducted to correct for possible collider-stratification bias. RESULTS In a total sample size of N = 446,485, with 52,946 cases, the risk for CAD per standard deviation increase in genetically influenced BMI was highest in the group with the lowest 25% SES (odds ratio: 1.126, 95% confidence interval: 1.106-1.145; odds ratio: 1.081, 95% confidence interval: 1.059-1.103 in high SES), remaining similar after controlling for possible collider-stratification bias. The effects of genetically influenced systolic blood pressure, low-density lipoprotein cholesterol, and triglyceride on CAD were similar between SES groups. CONCLUSION CAD risk attributable to increased BMI is not homogenous and could be modified by SES. This emphasizes the need of tailor-made approaches for BMI-associated CAD risk reduction.
Collapse
Affiliation(s)
- Leon G Martens
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Daan van Hamersveld
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Saskia le Cessie
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Diana van Heemst
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
89
|
Jia H, Miyoshi M, Li X, Furukawa K, Otani L, Shirahige K, Miura F, Ito T, Kato H. The Epigenetic Legacy of Maternal Protein Restriction: Renal Ptger1 DNA Methylation Changes in Hypertensive Rat Offspring. Nutrients 2023; 15:3957. [PMID: 37764741 PMCID: PMC10535296 DOI: 10.3390/nu15183957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Nutrient imbalances during gestation are a risk factor for hypertension in offspring. Although the effects of prenatal nutritional deficiency on the development of hypertension and cardiovascular diseases in adulthood have been extensively documented, its underlying mechanisms remain poorly understood. In this study, we aimed to elucidate the precise role and functional significance of epigenetic modifications in the pathogenesis of hypertension. To this end, we integrated methylome and transcriptome data to identify potential salt-sensitive hypertension genes using the kidneys of stroke-prone spontaneously hypertensive rat (SHRSP) pups exposed to a low-protein diet throughout their fetal life. Maternal protein restriction during gestation led to a positive correlation between DNA hypermethylation of the renal prostaglandin E receptor 1 (Ptger1) CpG island and high mRNA expression of Ptger1 in offspring, which is consistently conserved. Furthermore, post-weaning low-protein or high-protein diets modified the Ptger1 DNA hypermethylation caused by fetal malnutrition. Here, we show that this epigenetic variation in Ptger1 is linked to disease susceptibility established during fetal stages and could be reprogrammed by manipulating the postnatal diet. Thus, our findings clarify the developmental origins connecting the maternal nutritional environment and potential epigenetic biomarkers for offspring hypertension. These findings shed light on hypertension prevention and prospective therapeutic strategies.
Collapse
Affiliation(s)
- Huijuan Jia
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Moe Miyoshi
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Xuguang Li
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kyohei Furukawa
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Lila Otani
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Fumihito Miura
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hisanori Kato
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
90
|
Si Y, Fei Y, Ma H, Xu Y, Ning L, Li X, Ren Q. The causal association between polycystic ovary syndrome and susceptibility and severity of COVID-19: a bidirectional Mendelian randomization study using genetic data. Front Endocrinol (Lausanne) 2023; 14:1229900. [PMID: 37745707 PMCID: PMC10515223 DOI: 10.3389/fendo.2023.1229900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Observational studies have reported an association between polycystic ovary syndrome (PCOS) and COVID-19, but a definitive causal relationship has not been established. This study aimed to assess this association using two-way two-sample Mendelian randomization (MR). Methods A summary of PCOS characteristics was compiled using the PCOS summary statistics from the Apollo University of Cambridge Repository. COVID-19 susceptibility and severity statistics, including hospitalization and extremely severe disease, were obtained from genome-wide association studies from the COVID-19 Host Genetics Initiative. The primary analysis used the inverse variance-weighted method, supplemented by the weighted median, MR-Egger, and MR-PRESSO methods. Results The forward MR analysis showed no significant impact of PCOS on COVID-19 susceptibility, hospitalization, or severity (OR = 0.983, 1.011, 1.014; 95% CI = 0.958-1.008, 0.958-1.068, 0.934-1.101; and p = 0.173, 0.68, 0.733; respectively). Similarly, reverse MR analysis found no evidence supporting COVID-19 phenotypes as risk or protective factors for PCOS (OR = 1.041, 0.995, 0.944; 95% CI = 0.657-1.649, 0.85-1.164, 0.843-1.058; and p = 0.864, 0.945, 0.323; respectively). Consequently, no significant association between any COVID-19 phenotype and PCOS was established. Conclusion This MR study suggested that PCOS is not a causal risk factor for the susceptibility and severity of COVID-19. The associations identified in previous observational studies might be attributable to the presence of comorbidities in the patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qingling Ren
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
91
|
Marjani A, Poursharifi N, Hashemi MM, Sajedi A, Tatari M. The association of paraoxonase I gene polymorphisms Q192R (rs662) and L55M (rs854560) and its activity with metabolic syndrome components in fars ethnic group. Horm Mol Biol Clin Investig 2023; 44:295-303. [PMID: 36793191 DOI: 10.1515/hmbci-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/22/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVES Metabolic syndrome (MetS) may cause premature development of some diseases. PON1 genes may be involved in the pathogenesis of MetS. The aim of study was to evaluate the association between Q192R and L55M gene polymorphisms and its enzyme activity with the MetS components in subjects with and without MetS. METHODS Polymerase Chain Reaction and Restriction Fragment Length Polymorphism analysis were performed to determine polymorphisms of the paraoxonase1 gene in subjects with and without metabolic syndrome. Biochemical parameters were measured by spectrophotometer. RESULTS The MM, LM, and LL genotype frequencies of the PON1 L55M polymorphism were 10.5, 43.4, and 46.1%, and 22.4, 46.6, and 31% and; the QQ, QR, and RR genotype frequencies of the PON1 Q192R polymorphism were 55.4, 38.6 and 6%; and 56.5, 34.8 and 8.7% in subjects with and without MetS, respectively. The L and M allele frequencies were 68 and 53%; and 32 and 47% for PON1 L55M in subjects with and without MetS, respectively. The Q and R allele frequencies for PON1 Q192R were 74 and 26% in both groups. There were significant differences in HDL-cholesterol level and PON1 activity in the genotypes QQ, QR, and RR of the PON1 Q192R polymorphism in subjects with MetS. CONCLUSIONS The PON1 Q192R genotypes had only effected on PON1 activity and HDL-cholesterol level in subjects with MetS. Different genotypes of the PON1 Q192R seem to be important candidates to make the subjects susceptible to MetS in the Fars ethnic group.
Collapse
Affiliation(s)
- Abdoljalal Marjani
- Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Golestan, Gorgan, Iran
| | - Nahid Poursharifi
- Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Golestan, Gorgan, Iran
| | - Mohammad Mostakhdem Hashemi
- Student Research Committee, Department of Biochemistry and Biophysics, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Golestan, Gorgan, Iran
| | - Atefe Sajedi
- Student Research Committee, Department of Biochemistry and Biophysics, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Golestan, Gorgan, Iran
| | - Mahin Tatari
- Bioistatistics Counseling and Reproductive Health Research Center, Golestan University of Medical Sciences, Golestan, Gorgan, Iran
| |
Collapse
|
92
|
Navarese EP, Vine D, Proctor S, Grzelakowska K, Berti S, Kubica J, Raggi P. Independent Causal Effect of Remnant Cholesterol on Atherosclerotic Cardiovascular Outcomes: A Mendelian Randomization Study. Arterioscler Thromb Vasc Biol 2023; 43:e373-e380. [PMID: 37439258 DOI: 10.1161/atvbaha.123.319297] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Observational studies suggested that residual risk of cardiovascular events after LDL (low-density lipoprotein) cholesterol lowering may be linked to remnant cholesterol (RC). We conducted a large-scale Mendelian randomization study to investigate the causal role of RC to predict coronary artery disease (CAD), myocardial infarction (MI), and stroke risk. METHODS We extracted single-nucleotide polymorphisms for RC and LDL from large-scale genome-wide association databases. We estimated the genetic association with outcomes from the CARDIoGRAMplusC4D consortium (Coronary Artery Disease Genome-Wide Replication and Meta-Analysis Plus the Coronary Artery Disease Genetics), the Metastroke consortium, as well as the GLGC (Global Lipids Genetics Consortium). Genetic variants were used as instruments, thereby minimizing residual confounding and reverse causation biases of observational studies. RESULTS By leveraging data from a combined sample of 958 434 participants, we found evidence for a significant causal effect of RC on the risk of CAD (odds ratio [OR], 1.51 per SD unit increase in RC [95% CI, 1.42-1.60]; P=5.3×10-5), MI (OR, 1.57 [95% CI, 1.21-2.05]; P=9.5×10-4), and stroke (OR, 1.23 [95% CI, 1.12-1.35]; P=3.72×10-6). There was no evidence of pleiotropy. The effect of RC on CAD and MI remained consistent after accounting for the effects of RC-associated genetic variants on LDL cholesterol: OR, 1.49 (95% CI, 1.37-1.61) for CAD and OR, 1.80 (95% CI, 1.70-19.1) for MI without a meaningful indirect effect exerted on these outcomes via the LDL cholesterol mediator. CONCLUSIONS This large-scale Mendelian randomization study showed a robust genetic causal association between RC and cardiovascular outcomes. The effect on CAD and MI is independent of LDL cholesterol. Early screening for RC along with long-term inhibition of RC should be the focus of future therapeutic interventions.
Collapse
Affiliation(s)
- Eliano P Navarese
- Interventional Cardiology and Cardiovascular Medicine Research, Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland (E.P.N., K.G., J.K.)
- Division of Cardiology and Department of Medicine (E.P.N., P.R.), University of Alberta, Edmonton, Canada
- SIRIO MEDICINE Research Network, Poland (E.P.N., J.K.)
- Now with Clinical and Interventional Cardiology, Sassari University Hospital, Italy (E.P.N.)
| | - Donna Vine
- Metabolic and Cardiovascular Diseases Laboratory (D.V., S.P.), University of Alberta, Edmonton, Canada
| | - Spencer Proctor
- Metabolic and Cardiovascular Diseases Laboratory (D.V., S.P.), University of Alberta, Edmonton, Canada
| | - Klaudyna Grzelakowska
- Interventional Cardiology and Cardiovascular Medicine Research, Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland (E.P.N., K.G., J.K.)
| | - Sergio Berti
- Cardiology Unit, Ospedale del Cuore, Fondazione Toscana "G. Monasterio," Massa, Italy (S.B.)
| | - Jacek Kubica
- Interventional Cardiology and Cardiovascular Medicine Research, Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland (E.P.N., K.G., J.K.)
- SIRIO MEDICINE Research Network, Poland (E.P.N., J.K.)
| | - Paolo Raggi
- Division of Cardiology and Department of Medicine (E.P.N., P.R.), University of Alberta, Edmonton, Canada
| |
Collapse
|
93
|
Abstract
Riboflavin, in its cofactor forms flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), plays fundamental roles in energy metabolism, cellular antioxidant potential, and metabolic interactions with other micronutrients, including iron, vitamin B6, and folate. Severe riboflavin deficiency, largely confined to low-income countries, clinically manifests as cheilosis, angular stomatitis, glossitis, seborrheic dermatitis, and severe anemia with erythroid hypoplasia. Subclinical deficiency may be much more widespread, including in high-income countries, but typically goes undetected because riboflavin biomarkers are rarely measured in human studies. There are adverse health consequences of low and deficient riboflavin status throughout the life cycle, including anemia and hypertension, that could contribute substantially to the global burden of disease. This review considers the available evidence on causes, detection, and consequences of riboflavin deficiency, ranging from clinical deficiency signs to manifestations associated with less severe deficiency, and the related research, public health, and policy priorities.
Collapse
Affiliation(s)
- Helene McNulty
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland;
| | - Kristina Pentieva
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland;
| | - Mary Ward
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland;
| |
Collapse
|
94
|
Rakicevic L. DNA and RNA Molecules as a Foundation of Therapy Strategies for Treatment of Cardiovascular Diseases. Pharmaceutics 2023; 15:2141. [PMID: 37631355 PMCID: PMC10459020 DOI: 10.3390/pharmaceutics15082141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
There has always been a tendency of medicine to take an individualised approach to treating patients, but the most significant advances were achieved through the methods of molecular biology, where the nucleic acids are in the limelight. Decades of research of molecular biology resulted in setting medicine on a completely new platform. The most significant current research is related to the possibilities that DNA and RNA analyses can offer in terms of more precise diagnostics and more subtle stratification of patients in order to identify patients for specific therapy treatments. Additionally, principles of structure and functioning of nucleic acids have become a motive for creating entirely new therapy strategies and an innovative generation of drugs. All this also applies to cardiovascular diseases (CVDs) which are the leading cause of mortality in developed countries. This review considers the most up-to-date achievements related to the use of translatory potential of DNA and RNA in treatment of cardiovascular diseases, and considers the challenges and prospects in this field. The foundations which allow the use of translatory potential are also presented. The first part of this review focuses on the potential of the DNA variants which impact conventional therapies and on the DNA variants which are starting points for designing new pharmacotherapeutics. The second part of this review considers the translatory potential of non-coding RNA molecules which can be used to formulate new generations of therapeutics for CVDs.
Collapse
Affiliation(s)
- Ljiljana Rakicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| |
Collapse
|
95
|
Umano GR, Cirillo G, Rondinelli G, Sanchez G, Marzuillo P, Guarino S, Di Sessa A, Papparella A, Miraglia del Giudice E. LSS rs2254524 Increases the Risk of Hypertension in Children and Adolescents with Obesity. Genes (Basel) 2023; 14:1618. [PMID: 37628669 PMCID: PMC10454860 DOI: 10.3390/genes14081618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Childhood obesity and its related comorbidities have become major health issues over the last century. Among these comorbidities, cardiovascular diseases, especially hypertension, are the most significant. Recently, a polymorphism affecting the activity of lanosterol synthase has been associated with an increased risk of hypertension in adolescents. In this study, we aimed to investigate the effect of LSS rs2254524 polymorphism on blood pressure in children and adolescents with obesity. We enrolled 828 obese children aged 6-17 years. Subjects carrying the A allele showed higher rates of systolic and diastolic stage I hypertension and stage II hypertension. Carriers of the A allele showed a 2.4-fold (95% C.I. 1.5-4.7, p = 0.01) higher risk for stage II hypertension and a 1.9-fold higher risk for stage I hypertension (95% C.I. 1.4-2.6, p < 0.0001). The risk was independent of confounding factors. In conclusion, LSS rs2254524 worsens the cardiovascular health of children and adolescents with obesity, increasing their blood pressure.
Collapse
Affiliation(s)
- Giuseppina Rosaria Umano
- Department of the Woman, the Child, of General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.C.); (G.R.); (G.S.); (P.M.); (S.G.); (A.D.S.); (A.P.); (E.M.d.G.)
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Cruz LA, Cooke Bailey JN, Crawford DC. Importance of Diversity in Precision Medicine: Generalizability of Genetic Associations Across Ancestry Groups Toward Better Identification of Disease Susceptibility Variants. Annu Rev Biomed Data Sci 2023; 6:339-356. [PMID: 37196357 PMCID: PMC10720270 DOI: 10.1146/annurev-biodatasci-122220-113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Genome-wide association studies (GWAS) revolutionized our understanding of common genetic variation and its impact on common human disease and traits. Developed and adopted in the mid-2000s, GWAS led to searchable genotype-phenotype catalogs and genome-wide datasets available for further data mining and analysis for the eventual development of translational applications. The GWAS revolution was swift and specific, including almost exclusively populations of European descent, to the neglect of the majority of the world's genetic diversity. In this narrative review, we recount the GWAS landscape of the early years that established a genotype-phenotype catalog that is now universally understood to be inadequate for a complete understanding of complex human genetics. We then describe approaches taken to augment the genotype-phenotype catalog, including the study populations, collaborative consortia, and study design approaches aimed to generalize and then ultimately discover genome-wide associations in non-European descent populations. The collaborations and data resources established in the efforts to diversify genomic findings undoubtedly provide the foundations of the next chapters of genetic association studies with the advent of budget-friendly whole-genome sequencing.
Collapse
Affiliation(s)
- Lauren A Cruz
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA;
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA;
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dana C Crawford
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA;
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
97
|
de Ruiter SC, Schmidt AF, Grobbee DE, den Ruijter HM, Peters SAE. Sex-specific Mendelian randomisation to assess the causality of sex differences in the effects of risk factors and treatment: spotlight on hypertension. J Hum Hypertens 2023; 37:602-608. [PMID: 37024639 PMCID: PMC10403357 DOI: 10.1038/s41371-023-00821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
Hypertension is a key modifiable risk factor for cardiovascular disease. Several observational studies have found a stronger association of blood pressure and cardiovascular disease risk in women compared to men. Since observational studies can be affected by sex-specific residual confounding and reverse causation, it remains unclear whether these differences reflect actual differential effects. Other study designs are needed to uncover the causality of sex differences in the strength of risk factor and treatment effects. Mendelian randomisation (MR) uses genetic variants as instrumental variables to provide evidence about putative causal relations between risk factors and outcomes. By exploiting the random allocation of genes at gamete forming, MR is unaffected by confounding and results in more reliable causal effect estimates. In this review, we discuss why and how sex-specific MR and cis-MR could be used to study sex differences in risk factor and drug target effects. Sex-specific MR can be helpful to strengthen causal inferences in the field of sex differences, where it is often challenging to distinguish nature from nurture. The challenge of sex-specific (drug target) MR lays in leveraging robust genetic instruments from sex-specific GWAS studies which are not commonly available. Knowledge on sex-specific causal effects of hypertension, or other risk factors, could improve clinical practice and health policies by tailoring interventions based on personalised risk. Drug target MR can help to determine the anticipated on-target effects of a drug compound and to identify targets to pursue in drug development.
Collapse
Affiliation(s)
- Sophie C de Ruiter
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - A Floriaan Schmidt
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL British Heart Foundation Research Accelerator Centre, London, UK
| | - Diederick E Grobbee
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sanne A E Peters
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
- The George Institute for Global Health, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
98
|
Noordam R, Brochard TA, Drewes YM, Gussekloo J, Mooijaart SP, Willems van Dijk K, Trompet S, Jukema JW, van Heemst D. Cardiovascular risk factors and major recurrent coronary events: A genetic liability study in patients with coronary artery disease in the UK Biobank. Atherosclerosis 2023; 376:19-25. [PMID: 37257353 DOI: 10.1016/j.atherosclerosis.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND AIMS Mendelian randomization confirmed multiple risk factors for primary events of coronary artery disease (CAD), but no such studies have been performed on recurrent major coronary events despite interesting insights derived from other designs. We examined the associations between genetically-influenced classical cardiovascular risk factors and the risk of recurrent major coronary events in a cohort of CAD patients. METHODS We included all first-time CAD cases (defined as angina pectoris, chronic ischemic heart disease or acute myocardial infarction) of European ancestry from the UK Biobank. Cases were followed till the end of follow-up, death or when they developed a recurrent major coronary event (chronic ischemic heart disease or acute myocardial infarction). Standardized weighted genetic risk scores were calculated for body mass index (BMI), systolic blood pressure, LDL cholesterol and triglycerides. RESULTS From a total of 22,949 CAD patients (mean age at first diagnosis 59.8 (SD 7.3) years, 71.1% men), 12,539 (54.6%) reported a recurrent major coronary event within a period of maximum 17.8 years. One standard deviation higher genetically-determined LDL cholesterol was associated with a higher risk of a recurrent major coronary event (odds ratio: 1.08 [95% confidence interval: 1.05, 1.11]). No associations were observed for genetically-influenced BMI (1.00 [0.98, 1.03]), systolic blood pressure (1.01 [0.98, 1.03]) and triglycerides (1.02 [0.995, 1.05]). CONCLUSIONS Despite the use risk-reducing medications following a first coronary event, this study provided genetic evidence that, of the classical risk factors, mainly high LDL cholesterol was associated with a higher risk of developing recurrent major coronary events.
Collapse
Affiliation(s)
- Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Thomas Ag Brochard
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Yvonne M Drewes
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands; Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacobijn Gussekloo
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands; Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Simon P Mooijaart
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
99
|
Siedlinski M, Carnevale L, Xu X, Carnevale D, Evangelou E, Caulfield MJ, Maffia P, Wardlaw J, Samani NJ, Tomaszewski M, Lembo G, Holmes MV, Guzik TJ. Genetic analyses identify brain structures related to cognitive impairment associated with elevated blood pressure. Eur Heart J 2023; 44:2114-2125. [PMID: 36972688 PMCID: PMC10281555 DOI: 10.1093/eurheartj/ehad101] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/07/2023] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND AND AIMS Observational studies have linked elevated blood pressure (BP) to impaired cognitive function. However, the functional and structural changes in the brain that mediate the relationship between BP elevation and cognitive impairment remain unknown. Using observational and genetic data from large consortia, this study aimed to identify brain structures potentially associated with BP values and cognitive function. METHODS AND RESULTS Data on BP were integrated with 3935 brain magnetic resonance imaging-derived phenotypes (IDPs) and cognitive function defined by fluid intelligence score. Observational analyses were performed in the UK Biobank and a prospective validation cohort. Mendelian randomisation (MR) analyses used genetic data derived from the UK Biobank, International Consortium for Blood Pressure, and COGENT consortium. Mendelian randomisation analysis identified a potentially adverse causal effect of higher systolic BP on cognitive function [-0.044 standard deviation (SD); 95% confidence interval (CI) -0.066, -0.021] with the MR estimate strengthening (-0.087 SD; 95% CI -0.132, -0.042), when further adjusted for diastolic BP. Mendelian randomisation analysis found 242, 168, and 68 IDPs showing significant (false discovery rate P < 0.05) association with systolic BP, diastolic BP, and pulse pressure, respectively. Most of these IDPs were inversely associated with cognitive function in observational analysis in the UK Biobank and showed concordant effects in the validation cohort. Mendelian randomisation analysis identified relationships between cognitive function and the nine of the systolic BP-associated IDPs, including the anterior thalamic radiation, anterior corona radiata, or external capsule. CONCLUSION Complementary MR and observational analyses identify brain structures associated with BP, which may be responsible for the adverse effects of hypertension on cognitive performance.
Collapse
Affiliation(s)
- Mateusz Siedlinski
- Department of Internal Medicine, Jagiellonian University Medical College, ul. Skarbowa 1, 31-121 Krakow, Poland
- Centre for Cardiovascular Sciences, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7c, 31-034 Kraków, Poland
| | - Lorenzo Carnevale
- Department of Angiocardioneurology and Translational Medicine, I.R.C.C.S. INM Neuromed, Via Atinense, 18, 86077 Pozzilli, Italy
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, I.R.C.C.S. INM Neuromed, Via Atinense, 18, 86077 Pozzilli, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291 - 00161 Roma, Italy
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, University Campus, University of Ioannina, P.O. Box: 1186, 451 10, Ioannina, Greece
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus GR -451 15, Ioannina, Greece
| | - Mark J Caulfield
- William Harvey Research Institute, NIHR Biomedical Research Centre at Barts, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
- Division of Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, I.R.C.C.S. INM Neuromed, Via Atinense, 18, 86077 Pozzilli, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291 - 00161 Roma, Italy
| | - Michael V Holmes
- Bristol Medical School, Population Health Sciences, University of Bristol, Queens Road, Bristol BS8 1QU, UK
- Medical Research Council, Integrative Epidemiology Unit, University of Bristol, Queens Road, Bristol BS8 1QU, UK
| | - Tomasz J Guzik
- Department of Internal Medicine, Jagiellonian University Medical College, ul. Skarbowa 1, 31-121 Krakow, Poland
- Centre for Cardiovascular Sciences, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7c, 31-034 Kraków, Poland
| |
Collapse
|
100
|
Liu F, Liu Y, Xu S, Wang Q, Xu F, Liu Y. Mendelian randomization study reveals a causal relationship between serum iron status and coronary heart disease and related cardiovascular diseases. Front Cardiovasc Med 2023; 10:1152201. [PMID: 37383700 PMCID: PMC10294586 DOI: 10.3389/fcvm.2023.1152201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/29/2023] [Indexed: 06/30/2023] Open
Abstract
Background Growing observational studies have shown that abnormal systemic iron status is associated with Coronary heart disease (CHD). However, these results from observational studies was not entirely consistent.It remains unclear whether this relationship represents causality.It is necessary to explore the causal relationship between iron status and CHD and related cardiovascular diseases (CVD). Objective We aimed to investigate the potential casual relationship between serum iron status and CHD and related CVD using a two-sample Mendelian randomization (MR) approach. Methods Genetic statistics for single nucleotide polymorphisms (SNPs) between four iron status parameters were identified in a large-scale genome-wide association study (GWAS) conducted by the Iron Status Genetics organization. Three independent single nucleotide polymorphisms (SNPs) (rs1800562, rs1799945, and rs855791) aligned with four iron status biomarkers were used as instrumental variables. CHD and related CVD genetic statistics We used publicly available summary-level GWAS data. Five different MR methods random effects inverse variance weighting (IVW), MR Egger, weighted median, weighted mode, and Wald ratio were used to explore the causal relationship between serum iron status and CHD and related CVD. Results In the MR analysis, we found that the causal effect of serum iron (OR = 0.995, 95% CI = 0.992-0.998, p = 0.002) was negatively associated with the odds of coronary atherosclerosis (AS). Transferrin saturation (TS) (OR = 0.885, 95% CI = 0.797-0.982, p = 0.02) was negatively associated with the odds of Myocardial infarction (MI). Conclusion This MR analysis provides evidence for a causal relationship between whole-body iron status and CHD development. Our study suggests that a high iron status may be associated with a reduced risk of developing CHD.
Collapse
Affiliation(s)
- Fenglan Liu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanfei Liu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shihan Xu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Wang
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|