51
|
Pilley SE, Esparza E, Mullen PJ. The aging tumor metabolic microenvironment. Curr Opin Biotechnol 2023; 84:102995. [PMID: 37783168 DOI: 10.1016/j.copbio.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 10/04/2023]
Abstract
Despite the higher incidence of cancer with increasing age, few preclinical or clinical studies incorporate age. This, coupled with an aging world population, requires that we improve our understanding of how aging affects cancer development, progression, and treatment. One key area will be how the tumor microenvironment (TME) changes with age. Metabolite levels are an essential component of the TME, and they are affected by the metabolic requirements of the cells present and systemic metabolite availability. These factors are affected by aging, causing different TME metabolic states between young and older adults. In this review, we will summarize what is known about how aging impacts the TME metabolic state, and suggest how we can improve our understanding of it.
Collapse
Affiliation(s)
- Steven E Pilley
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Edgar Esparza
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter J Mullen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
52
|
Papalazarou V, Newman AC, Huerta-Uribe A, Legrave NM, Falcone M, Zhang T, McGarry L, Athineos D, Shanks E, Blyth K, Vousden KH, Maddocks ODK. Phenotypic profiling of solute carriers characterizes serine transport in cancer. Nat Metab 2023; 5:2148-2168. [PMID: 38066114 PMCID: PMC10730406 DOI: 10.1038/s42255-023-00936-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
Serine is a vital amino acid in tumorigenesis. While cells can perform de novo serine synthesis, most transformed cells rely on serine uptake to meet their increased biosynthetic requirements. Solute carriers (SLCs), a family of transmembrane nutrient transport proteins, are the gatekeepers of amino acid acquisition and exchange in mammalian cells and are emerging as anticancer therapeutic targets; however, the SLCs that mediate serine transport in cancer cells remain unknown. Here we perform an arrayed RNAi screen of SLC-encoding genes while monitoring amino acid consumption and cell proliferation in colorectal cancer cells using metabolomics and high-throughput imaging. We identify SLC6A14 and SLC25A15 as major cytoplasmic and mitochondrial serine transporters, respectively. We also observe that SLC12A4 facilitates serine uptake. Dual targeting of SLC6A14 and either SLC25A15 or SLC12A4 diminishes serine uptake and growth of colorectal cancer cells in vitro and in vivo, particularly in cells with compromised de novo serine biosynthesis. Our results provide insight into the mechanisms that contribute to serine uptake and intracellular handling.
Collapse
Affiliation(s)
- Vasileios Papalazarou
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK.
- Francis Crick Institute, London, UK.
| | - Alice C Newman
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | - Alejandro Huerta-Uribe
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Nathalie M Legrave
- Francis Crick Institute, London, UK
- Metabolomics Platform, Luxembourg Institute of Health, Department of Cancer Research, Strassen, Luxembourg
| | - Mattia Falcone
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tong Zhang
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
- Novartis Institutes for Biomedical Research, Shanghai, China
| | - Lynn McGarry
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Emma Shanks
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Karen Blyth
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Oliver D K Maddocks
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
53
|
Muranaka H, Billet S, Cruz-Hernández C, Ten Hoeve J, Gonzales G, Elmadbouh O, Zhang L, Smith B, Tighiouart M, You S, Edderkaoui M, Hendifar A, Pandol S, Gong J, Bhowmick N. Supraphysiological glutamine as a means of depleting intracellular amino acids to enhance pancreatic cancer chemosensitivity. RESEARCH SQUARE 2023:rs.3.rs-3647514. [PMID: 38076821 PMCID: PMC10705710 DOI: 10.21203/rs.3.rs-3647514/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Limited efficacy of systemic therapy for pancreatic ductal adenocarcinoma (PDAC) patients contributes to high mortality. Cancer cells develop strategies to secure nutrients in nutrient-deprived conditions and chemotherapy treatment. Despite the dependency of PDAC on glutamine (Gln) for growth and survival, strategies designed to suppress Gln metabolism have limited effects. Here, we demonstrated that supraphysiological concentrations of glutamine (SPG) could produce paradoxical responses leading to tumor growth inhibition alone and in combination with chemotherapy. Integrated metabolic and transcriptomic analysis revealed that the growth inhibitory effect of SPG was the result of a decrease in intracellular amino acid and nucleotide pools. Mechanistically, disruption of the sodium gradient, plasma membrane depolarization, and competitive inhibition of amino acid transport mediated amino acid deprivation. Among standard chemotherapies given to PDAC patients, gemcitabine treatment resulted in a significant enrichment of amino acid and nucleoside pools, exposing a metabolic vulnerability to SPG-induced metabolic alterations. Further analysis highlighted a superior anticancer effect of D-glutamine, a non-metabolizable enantiomer of the L-glutamine, by suppressing both amino acid uptake and glutaminolysis, in gemcitabine-treated preclinical models with no apparent toxicity. Our study suggests supraphysiological glutamine could be a means of inhibiting amino acid uptake and nucleotide biosynthesis, potentiating gemcitabine sensitivity in PDAC.
Collapse
|
54
|
Van Dingenen L, Segers C, Wouters S, Mysara M, Leys N, Kumar-Singh S, Malhotra-Kumar S, Van Houdt R. Dissecting the role of the gut microbiome and fecal microbiota transplantation in radio- and immunotherapy treatment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1298264. [PMID: 38035338 PMCID: PMC10687483 DOI: 10.3389/fcimb.2023.1298264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and poses a major burden on the human health worldwide. At the moment, treatment of CRC consists of surgery in combination with (neo)adjuvant chemotherapy and/or radiotherapy. More recently, immune checkpoint blockers (ICBs) have also been approved for CRC treatment. In addition, recent studies have shown that radiotherapy and ICBs act synergistically, with radiotherapy stimulating the immune system that is activated by ICBs. However, both treatments are also associated with severe toxicity and efficacy issues, which can lead to temporary or permanent discontinuation of these treatment programs. There's growing evidence pointing to the gut microbiome playing a role in these issues. Some microorganisms seem to contribute to radiotherapy-associated toxicity and hinder ICB efficacy, while others seem to reduce radiotherapy-associated toxicity or enhance ICB efficacy. Consequently, fecal microbiota transplantation (FMT) has been applied to reduce radio- and immunotherapy-related toxicity and enhance their efficacies. Here, we have reviewed the currently available preclinical and clinical data in CRC treatment, with a focus on how the gut microbiome influences radio- and immunotherapy toxicity and efficacy and if these treatments could benefit from FMT.
Collapse
Affiliation(s)
- Lena Van Dingenen
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Charlotte Segers
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Shari Wouters
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Bioinformatics Group, Center for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Rob Van Houdt
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| |
Collapse
|
55
|
Violi JP, Pu L, Pravadali-Cekic S, Bishop DP, Phillips CR, Rodgers KJ. Effects of the Toxic Non-Protein Amino Acid β-Methylamino-L-Alanine (BMAA) on Intracellular Amino Acid Levels in Neuroblastoma Cells. Toxins (Basel) 2023; 15:647. [PMID: 37999510 PMCID: PMC10674354 DOI: 10.3390/toxins15110647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
The cyanobacterial non-protein amino acid (AA) β-Methylamino-L-alanine (BMAA) is considered to be a neurotoxin. BMAA caused histopathological changes in brains and spinal cords of primates consistent with some of those seen in early motor neuron disease; however, supplementation with L-serine protected against some of those changes. We examined the impact of BMAA on AA concentrations in human neuroblastoma cells in vitro. Cells were treated with 1000 µM BMAA and intracellular free AA concentrations in treated and control cells were compared at six time-points over a 48 h culture period. BMAA had a profound effect on intracellular AA levels at specific time points but in most cases, AA homeostasis was re-established in the cell. The most heavily impacted amino acid was serine which was depleted in BMAA-treated cells from 9 h onwards. Correction of serine depletion could be a factor in the observation that supplementation with L-serine protects against BMAA toxicity in vitro and in vivo. AAs that could potentially be involved in protection against BMAA-induced oxidation such as histidine, tyrosine, and phenylalanine were depleted in cells at later time points.
Collapse
Affiliation(s)
- Jake P. Violi
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.P.V.); (L.P.); (C.R.P.)
| | - Lisa Pu
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.P.V.); (L.P.); (C.R.P.)
| | - Sercan Pravadali-Cekic
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia (D.P.B.)
| | - David P. Bishop
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia (D.P.B.)
| | - Connor R. Phillips
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.P.V.); (L.P.); (C.R.P.)
| | - Kenneth J. Rodgers
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.P.V.); (L.P.); (C.R.P.)
| |
Collapse
|
56
|
Hu Y, Liu Y, Zhang J, Zhou Z, Wang J, Chen H, Huang M, Hu H, Dai Z, Jia K. Depletion of L-Methionine in Foods with an Engineered Thermophilic Methionine γ-lyase Efficiently Inhibits Tumor Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37909421 DOI: 10.1021/acs.jafc.3c05293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Dietary restriction of l-methionine, an essential amino acid, exerts potent antitumor effects on l-methionine-dependent cancers. However, dietary restriction of l-methionine has not been practical for human therapy because of the problem with the administration of l-methionine concentration in foods. Here, a thermophilic methionine γ-lyase (MGL), that catalyzes the cleavage of the C-S bond in l-methionine to produce α-ketobutyric acid, methanethiol, and ammonia was engineered from human cystathionine γ-lyase and almost completely depleted l-methionine at 65 °C, a temperature that accelerates the volatilization of methanethiol and its oxidation products. The high efficiency of l-methionine lysis may be attributed to the cooperative fluctuation and moderate the structural rigidity of 4 monomers in the thermophilic MGL, which facilitates l-methionine access to the entrance of the active site. Experimental diets treated with thermophilic MGL markedly inhibited prostate tumor growth in mice, and in parallel, the in vivo concentrations of l-methionine, its transformation product l-cysteine, and the oxidative stress indicator malondialdehyde significantly decreased. These findings provide a technology for the depletion of l-methionine in foods with an engineered thermophilic MGL, which efficiently inhibits tumor growth in mice.
Collapse
Affiliation(s)
- Yangming Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Yan Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Jiulin Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Zhijing Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Jiaxue Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Hongyang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Meina Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Han Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Zongjie Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Kaizhi Jia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
57
|
Wei F, Locasale JW. Lysine metabolism at the nexus of crotonylation and tumor immunity. Cell Res 2023; 33:813-814. [PMID: 37380809 PMCID: PMC10624859 DOI: 10.1038/s41422-023-00841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Affiliation(s)
- Fangchao Wei
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
58
|
Bailleul J, Vlashi E. Glioblastomas: Hijacking Metabolism to Build a Flexible Shield for Therapy Resistance. Antioxid Redox Signal 2023; 39:957-979. [PMID: 37022791 PMCID: PMC10655009 DOI: 10.1089/ars.2022.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Significance: Glioblastomas (GBMs) are among the most lethal tumors despite the almost exclusive localization to the brain. This is largely due to therapeutic resistance. Radiation and chemotherapy significantly increase the survival for GBM patients, however, GBMs always recur, and the median overall survival is just over a year. Proposed reasons for such intractable resistance to therapy are numerous and include tumor metabolism, in particular, the ability of tumor cells to reconfigure metabolic fluxes on demand (metabolic plasticity). Understanding how the hard-wired, oncogene-driven metabolic tendencies of GBMs intersect with flexible, context-induced metabolic rewiring promises to reveal novel approaches for combating therapy resistance. Recent Advances: Personalized genome-scale metabolic flux models have recently provided evidence that metabolic flexibility promotes radiation resistance in cancer and identified tumor redox metabolism as a major predictor for resistance to radiation therapy (RT). It was demonstrated that radioresistant tumors, including GBM, reroute metabolic fluxes to boost the levels of reducing factors of the cell, thus enhancing clearance of reactive oxygen species that are generated during RT and promoting survival. Critical Issues: The current body of knowledge from published studies strongly supports the notion that robust metabolic plasticity can act as a (flexible) shield against the cytotoxic effects of standard GBM therapies, thus driving therapy resistance. The limited understanding of the critical drivers of such metabolic plasticity hampers the rational design of effective combination therapies. Future Directions: Identifying and targeting regulators of metabolic plasticity, rather than specific metabolic pathways, in combination with standard-of-care treatments have the potential to improve therapeutic outcomes in GBM. Antioxid. Redox Signal. 39, 957-979.
Collapse
Affiliation(s)
- Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
59
|
Sindhu R, Supreeth M, Prasad SK, Thanmaya M. Shuttle between arginine and lysine: influence on cancer immunonutrition. Amino Acids 2023; 55:1461-1473. [PMID: 37728630 DOI: 10.1007/s00726-023-03327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Amino acids which are essential nutrients for all cell types' survival are also recognised to serve as opportunistic/alternative fuels in cancers auxotrophic for specific amino acids. Accordingly, restriction of amino acids has been utilised as a therapeutic strategy in these cancers. Contrastingly, amino acid deficiencies in cancer are found to greatly impair immune functions, increasing mortality and morbidity rates. Dietary and supplemental amino acids in such conditions have revealed their importance as 'immunonutrients' by modulating cellular homeostasis processes and halting malignant progression. L-arginine specifically has attracted interest as an immunonutrient by acting as a nodal regulator of immune responses linked to carcinogenesis processes through its versatile signalling molecule, nitric oxide (NO). The quantum of NO generated directly influences the cytotoxic and cytostatic processes of cell cycle arrest, apoptosis, and senescence. However, L-lysine, a CAT transporter competitor for arginine effectively limits arginine input at high L-lysine concentrations by limiting arginine-mediated effects. The phenomenon of arginine-lysine antagonism can, therefore, be hypothesised to influence the immunonutritional effects exerted by arginine. The review highlights aspects of lysine's interference with arginine-mediated NO generation and its consequences on immunonutritional and anti-cancer effects, and discusses possible alternatives to manage the condition. However, further research that considers monitoring lysine levels in arginine immunonutritional therapy is essential to conclude the hypothesis.
Collapse
Affiliation(s)
- R Sindhu
- Department of Microbiology, JSS-Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India.
| | - M Supreeth
- Department of Microbiology, JSS-Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| | - Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, JSS-Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| | - M Thanmaya
- Department of Microbiology, JSS-Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| |
Collapse
|
60
|
Li Y, Chaurasia B, Rahman MM, Kaddai V, Maschek JA, Berg JA, Wilkerson JL, Mahmassani ZS, Cox J, Wei P, Meikle PJ, Atkinson D, Wang L, Poss AM, Playdon MC, Tippetts TS, Mousa EM, Nittayaboon K, Anandh Babu PV, Drummond MJ, Clevers H, Shayman JA, Hirabayashi Y, Holland WL, Rutter J, Edgar BA, Summers SA. Ceramides Increase Fatty Acid Utilization in Intestinal Progenitors to Enhance Stemness and Increase Tumor Risk. Gastroenterology 2023; 165:1136-1150. [PMID: 37541526 PMCID: PMC10592225 DOI: 10.1053/j.gastro.2023.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND & AIMS Cancers of the alimentary tract, including esophageal adenocarcinomas, colorectal cancers, and cancers of the gastric cardia, are common comorbidities of obesity. Prolonged, excessive delivery of macronutrients to the cells lining the gut can increase one's risk for these cancers by inducing imbalances in the rate of intestinal stem cell proliferation vs differentiation, which can produce polyps and other aberrant growths. We investigated whether ceramides, which are sphingolipids that serve as a signal of nutritional excess, alter stem cell behaviors to influence cancer risk. METHODS We profiled sphingolipids and sphingolipid-synthesizing enzymes in human adenomas and tumors. Thereafter, we manipulated expression of sphingolipid-producing enzymes, including serine palmitoyltransferase (SPT), in intestinal progenitors of mice, cultured organoids, and Drosophila to discern whether sphingolipids altered stem cell proliferation and metabolism. RESULTS SPT, which diverts dietary fatty acids and amino acids into the biosynthetic pathway that produces ceramides and other sphingolipids, is a critical modulator of intestinal stem cell homeostasis. SPT and other enzymes in the sphingolipid biosynthesis pathway are up-regulated in human intestinal adenomas. They produce ceramides, which serve as prostemness signals that stimulate peroxisome-proliferator activated receptor-α and induce fatty acid binding protein-1. These actions lead to increased lipid utilization and enhanced proliferation of intestinal progenitors. CONCLUSIONS Ceramides serve as critical links between dietary macronutrients, epithelial regeneration, and cancer risk.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Bhagirath Chaurasia
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah; Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa.
| | - M Mahidur Rahman
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - Vincent Kaddai
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - J Alan Maschek
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Jordan A Berg
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
| | - Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
| | - Peng Wei
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Donald Atkinson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Liping Wang
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Annelise M Poss
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Mary C Playdon
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Trevor S Tippetts
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Esraa M Mousa
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah; Faculty of Science, Tanta University, Tanta, Egypt
| | - Kesara Nittayaboon
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah; Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands; Princess Maxima Center (PMC) for Pediatric Oncology, Utrecht, The Netherlands
| | - James A Shayman
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yoshio Hirabayashi
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako-shi, Saitama Japan
| | - William L Holland
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, Utah; Howard Hughes Medical Institute, Salt Lake City, Utah
| | - Bruce A Edgar
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
61
|
Conger KO, Chidley C, Ozgurses ME, Zhao H, Kim Y, Semina SE, Burns P, Rawat V, Sheldon R, Ben-Sahra I, Frasor J, Sorger PK, DeNicola GM, Coloff JL. ASCT2 is the primary serine transporter in cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561530. [PMID: 37873453 PMCID: PMC10592681 DOI: 10.1101/2023.10.09.561530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The non-essential amino acid serine is a critical nutrient for cancer cells due to its diverse biosynthetic functions. While some tumors can synthesize serine de novo, others are auxotrophic for serine and therefore reliant on the uptake of exogenous serine. Importantly, however, the transporter(s) that mediate serine uptake in cancer cells are not known. Here, we characterize the amino acid transporter ASCT2 (coded for by the gene SLC1A5) as the primary serine transporter in cancer cells. ASCT2 is well-known as a glutamine transporter in cancer, and our work demonstrates that serine and glutamine compete for uptake through ASCT2. We further show that ASCT2-mediated serine uptake is essential for purine nucleotide biosynthesis and that ERα promotes serine uptake by directly activating SLC1A5 transcription. Together, our work defines an additional important role for ASCT2 as a serine transporter in cancer and evaluates ASCT2 as a potential therapeutic target in serine metabolism.
Collapse
Affiliation(s)
- Kelly O. Conger
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Christopher Chidley
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Huiping Zhao
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yumi Kim
- Department of Cancer Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Svetlana E. Semina
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Philippa Burns
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ryan Sheldon
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Issam Ben-Sahra
- Robert H. Lurie Cancer Center, Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Peter K. Sorger
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Gina M. DeNicola
- Department of Cancer Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
62
|
Wang J, Wang H, Gao M, Zhang Y, Zhang L, Huang D, Tu K, Xu Q. The regulation of amino acid metabolism in tumor cell death: from the perspective of physiological functions. Apoptosis 2023; 28:1304-1314. [PMID: 37523039 DOI: 10.1007/s10495-023-01875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Amino acids (AAs) are crucial molecules for the synthesis of mammalian proteins as well as a source of energy and redox equilibrium maintenance. The development of tumors also requires AAs as nutrients. Increased AAs metabolism is frequently seen in tumor cells to produce enough biomass, energy, and reduction agents. However, increased AA demand may result in auxotrophy in some cancer cells, highlighting the vulnerabilities of cancers and exposing the AA metabolism as a potential target for cancer therapy. The dynamic balance of cell survival and death is required for cellular homeostasis, growth, and development. Malignant cells manage to avoid cell death through a range of mechanisms, such as developing an addiction to amino acids through metabolic adaptation. In order to offer some guidance for AA-targeted cancer therapy, we have outlined the function of AA metabolism in tumor progression, the modalities of cell death, and the regulation of AA metabolism on tumor cell death in this review.
Collapse
Affiliation(s)
- Jin Wang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 311300, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 311300, Zhejiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hongying Wang
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Min Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Yilei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Lei Zhang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710065, Shaanxi, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 311300, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 311300, Zhejiang, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710065, Shaanxi, China.
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 311300, Zhejiang, China.
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
63
|
Li AM, He B, Karagiannis D, Li Y, Jiang H, Srinivasan P, Ramirez Y, Zhou MN, Curtis C, Gruber JJ, Lu C, Rankin EB, Ye J. Serine starvation silences estrogen receptor signaling through histone hypoacetylation. Proc Natl Acad Sci U S A 2023; 120:e2302489120. [PMID: 37695911 PMCID: PMC10515173 DOI: 10.1073/pnas.2302489120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
Loss of estrogen receptor (ER) pathway activity promotes breast cancer progression, yet how this occurs remains poorly understood. Here, we show that serine starvation, a metabolic stress often found in breast cancer, represses estrogen receptor alpha (ERα) signaling by reprogramming glucose metabolism and epigenetics. Using isotope tracing and time-resolved metabolomic analyses, we demonstrate that serine is required to maintain glucose flux through glycolysis and the TCA cycle to support acetyl-CoA generation for histone acetylation. Consequently, limiting serine depletes histone H3 lysine 27 acetylation (H3K27ac), particularly at the promoter region of ER pathway genes including the gene encoding ERα, ESR1. Mechanistically, serine starvation impairs acetyl-CoA-dependent gene expression by inhibiting the entry of glycolytic carbon into the TCA cycle and down-regulating the mitochondrial citrate exporter SLC25A1, a critical enzyme in the production of nucleocytosolic acetyl-CoA from glucose. Consistent with this model, total H3K27ac and ERα expression are suppressed by SLC25A1 inhibition and restored by acetate, an alternate source of acetyl-CoA, in serine-free conditions. We thus uncover an unexpected role for serine in sustaining ER signaling through the regulation of acetyl-CoA metabolism.
Collapse
Affiliation(s)
- Albert M Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305
| | - Bo He
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
| | - Yang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
| | - Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
| | - Preethi Srinivasan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Yaniel Ramirez
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
| | - Meng-Ning Zhou
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
| | - Christina Curtis
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Joshua J Gruber
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
64
|
Bel’skaya LV, Gundyrev IA, Solomatin DV. The Role of Amino Acids in the Diagnosis, Risk Assessment, and Treatment of Breast Cancer: A Review. Curr Issues Mol Biol 2023; 45:7513-7537. [PMID: 37754258 PMCID: PMC10527988 DOI: 10.3390/cimb45090474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
This review summarizes the role of amino acids in the diagnosis, risk assessment, imaging, and treatment of breast cancer. It was shown that the content of individual amino acids changes in breast cancer by an average of 10-15% compared with healthy controls. For some amino acids (Thr, Arg, Met, and Ser), an increase in concentration is more often observed in breast cancer, and for others, a decrease is observed (Asp, Pro, Trp, and His). The accuracy of diagnostics using individual amino acids is low and increases when a number of amino acids are combined with each other or with other metabolites. Gln/Glu, Asp, Arg, Leu/Ile, Lys, and Orn have the greatest significance in assessing the risk of breast cancer. The variability in the amino acid composition of biological fluids was shown to depend on the breast cancer phenotype, as well as the age, race, and menopausal status of patients. In general, the analysis of changes in the amino acid metabolism in breast cancer is a promising strategy not only for diagnosis, but also for developing new therapeutic agents, monitoring the treatment process, correcting complications after treatment, and evaluating survival rates.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Ivan A. Gundyrev
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Denis V. Solomatin
- Department of Mathematics and Mathematics Teaching Methods, Omsk State Pedagogical University, 644043 Omsk, Russia;
| |
Collapse
|
65
|
Szoka L, Nazaruk J, Giegiel J, Isidorov V. Prolidase-proline oxidase axis is engaged in apoptosis induction by birch buds flavonol santin in endometrial adenocarcinoma cell line. Front Mol Biosci 2023; 10:1247536. [PMID: 37745688 PMCID: PMC10512030 DOI: 10.3389/fmolb.2023.1247536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer of the corpus uteri and cervix uteri, collectively ranks second among new cancer cases in women after breast cancer. Therefore, investigation of new anticancer agents and identifying new molecular targets presents a challenge to improve effectiveness of chemotherapy. In this study, antiproliferative activity of flavonoids derived from the buds of silver birch and downy birch was evaluated in endometrial cancer Ishikawa cells and cervical cancer HeLa cells. It was found that flavanol santin reduced viability of both cell lines better than other flavonoids, including apigenin and luteolin. Moreover, this activity was slightly higher than that induced by the chemotherapy drug, cisplatin. Santin promoted intrinsic and extrinsic apoptosis pathways in cancer cells, but it had low toxicity in normal fibroblasts. The mechanisms of impairing cancer cell viability included induction of oxidative proline catabolism, however in different ways in the cell lines used. In HeLa cells, increase of proline oxidation was due to activation of p53 leading to proline oxidase upregulation. In contrast, in Ishikawa cells, having basal proline oxidase level significantly higher than HeLa cells, santin treatment decreased its expression. Nevertheless, proline oxidation was induced in these cells since santin increased expression and activity of prolidase, an enzyme providing proline from protein degradation. In both cell lines, proline oxidation was associated with generation of reactive oxygen species leading to reduction in cell viability. Our findings reveal the involvement of proline oxidase in induction of apoptosis by santin and identify a role of prolidase in proline oxidase-dependent apoptosis.
Collapse
Affiliation(s)
- Lukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, Białystok, Poland
| | - Jolanta Nazaruk
- Department of Pharmacognosy, Medical University of Bialystok, Białystok, Poland
| | - Joanna Giegiel
- Department of Medicinal Chemistry, Medical University of Bialystok, Białystok, Poland
| | - Valery Isidorov
- Institute of Forest Sciences, Białystok University of Technology, Białystok, Poland
| |
Collapse
|
66
|
Yu H, Hu X, Zhang Y, Wang J, Ni Z, Wang Y, Zhu H. GLDC promotes colorectal cancer metastasis through epithelial-mesenchymal transition mediated by Hippo signaling pathway. Med Oncol 2023; 40:293. [PMID: 37668829 DOI: 10.1007/s12032-023-02076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/08/2023] [Indexed: 09/06/2023]
Abstract
Cancer metastasis remains a major cause of death in cancer patients, and epithelial-mesenchymal transition (EMT) plays a decisive role in cancer metastasis. Recently, abnormal expression of Glycine Decarboxylase (GLDC) has been demonstrated in tumor progression, and GLDC is up-regulated in cancers, such as lung, prostate, bladder, and cervical cancers. However, the exact role of GLDC in colorectal cancer (CRC) progression remains to be elucidated. The aim of our study was to explore the role of GLDC in CRC metastasis. The GSE75117 database was used to investigate GLDC expression in tumor center and invasive front tissues and we found that GLDC expression levels were higher in the invasive front tissue. GLDC expression levels were negatively correlated with the prognosis of CRC patients. In vitro studies have showed that GLDC can promote invasion and migration of CRC cells by inhibiting the Hippo signaling pathway and regulating the EMT process. Blocking the Hippo signaling pathway with Verteporfin reduced the effect of GLDC on CRC metastasis. In vivo metastasis assays further confirmed that tail vein injection of GLDC+/+ cells induced more lung metastasis, compared to normal CRC cells. The results of this study suggest that GLDC promotes EMT through the Hippo signaling pathway, providing a new therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Hao Yu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xueqing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiajia Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhongya Ni
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Huirong Zhu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
67
|
Pan Q, Yu F, Jin H, Zhang P, Huang X, Peng J, Xie X, Li X, Ma N, Wei Y, Wen W, Zhang J, Zhang B, Yu H, Xiao Y, Liu R, Liu Q, Meng X, Lee M. eIF3f Mediates SGOC Pathway Reprogramming by Enhancing Deubiquitinating Activity in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300759. [PMID: 37544925 PMCID: PMC10520677 DOI: 10.1002/advs.202300759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Indexed: 08/08/2023]
Abstract
Numerous studies have demonstrated that individual proteins can moonlight. Eukaryotic Initiation translation factor 3, f subunit (eIF3f) is involved in critical biological functions; however, its role independent of protein translation in regulating colorectal cancer (CRC) is not characterized. Here, it is demonstrated that eIF3f is upregulated in CRC tumor tissues and that both Wnt and EGF signaling pathways are participating in eIF3f's oncogenic impact on targeting phosphoglycerate dehydrogenase (PHGDH) during CRC development. Mechanistically, EGF blocks FBXW7β-mediated PHGDH ubiquitination through GSK3β deactivation, and eIF3f antagonizes FBXW7β-mediated PHGDH ubiquitination through its deubiquitinating activity. Additionally, Wnt signals transcriptionally activate the expression of eIF3f, which also exerts its deubiquitinating activity toward MYC, thereby increasing MYC-mediated PHGDH transcription. Thereby, both impacts allow eIF3f to elevate the expression of PHGDH, enhancing Serine-Glycine-One-Carbon (SGOC) signaling pathway to facilitate CRC development. In summary, the study uncovers the intrinsic role and underlying molecular mechanism of eIF3f in SGOC signaling, providing novel insight into the strategies to target eIF3f-PHGDH axis in CRC.
Collapse
Affiliation(s)
- Qihao Pan
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of Obstetrics and GynecologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Fenghai Yu
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Huilin Jin
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Peng Zhang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Xiaoling Huang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Jingxuan Peng
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Xiaoshan Xie
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Xiangli Li
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Ning Ma
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Yue Wei
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Weijie Wen
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Jieping Zhang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Boyu Zhang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Hongyan Yu
- Department of Clinical Biological Resource BankGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Yuanxun Xiao
- Burn Plastic SurgeryYue bei People's HospitalWujiang512099China
| | - Ran‐yi Liu
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Qingxin Liu
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Xiangqi Meng
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Mong‐Hong Lee
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of OncologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| |
Collapse
|
68
|
Wei F, Locasale JW. Methionine restriction and antitumor immunity. Trends Cancer 2023; 9:705-706. [PMID: 37517954 PMCID: PMC10458792 DOI: 10.1016/j.trecan.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Fang et al. recently reported in Cancer Cell that methionine restriction increases antitumor immunity by enhancing cyclic GMP-AMP synthase (cGAS) activity and promoting its dissociation from chromatin. This finding identifies a potential strategy to target cGAS demethylation in cancer therapy by altering methionine metabolism.
Collapse
Affiliation(s)
- Fangchao Wei
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
69
|
Shunxi W, Xiaoxue Y, Guanbin S, Li Y, Junyu J, Wanqian L. Serine Metabolic Reprogramming in Tumorigenesis, Tumor Immunity, and Clinical Treatment. Adv Nutr 2023; 14:1050-1066. [PMID: 37187454 PMCID: PMC10509429 DOI: 10.1016/j.advnut.2023.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
Serine has been recently identified as an essential metabolite for oncogenesis, progression, and adaptive immunity. Influenced by many physiologic or tumor environmental factors, the metabolic pathways of serine synthesis, uptake, and usage are heterogeneously reprogrammed and frequently amplified in tumor or tumor-associated cells. The hyperactivation of serine metabolism promotes abnormal cellular nucleotide/protein/lipid synthesis, mitochondrial function, and epigenetic modifications, which drive malignant transformation, unlimited proliferation, metastasis, immunosuppression, and drug resistance of tumor cells. Dietary restriction of serine or phosphoglycerate dehydrogenase depletion mitigates tumor growth and extends the survival of tumor patients. Correspondingly, these findings triggered a boom in the development of novel therapeutic agents targeting serine metabolism. In this study, recent discoveries in the underlying mechanism and cellular function of serine metabolic reprogramming are summarized. The vital role of serine metabolism in oncogenesis, tumor stemness, tumor immunity, and therapeutic resistance is outlined. Finally, some potential tumor therapeutic concepts, strategies, and limitations of targeting the serine metabolic pathway are described in detail. Taken together, this review underscores the importance of serine metabolic reprogramming in tumorigenesis and progression and highlights new opportunities for dietary restriction or selective pharmacologic intervention.
Collapse
Affiliation(s)
- Wang Shunxi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yuan Xiaoxue
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Song Guanbin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Jin Junyu
- Department of Oncology, Chenjiaqiao Hospital, Shapingba, Chongqing, China.
| | - Liu Wanqian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.
| |
Collapse
|
70
|
Hýsková V, Jakl M, Jaklová Dytrtová J, Ćavar Zeljković S, Vrobel O, Bělonožníková K, Kavan D, Křížek T, Šimonová A, Vašková M, Kovač I, Račko Žufić A, Ryšlavá H. Triazoles as a Potential Threat to the Nutritional Quality of Tomato Fruits. Metabolites 2023; 13:988. [PMID: 37755268 PMCID: PMC10536328 DOI: 10.3390/metabo13090988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Triazole fungicides can threaten plants as abiotic stressors but can also positively affect plant defense by inducing priming. Thus, plant yield is also both protected and endangered by triazoles that may influence several metabolic pathways during maturation processes, such as the biosynthesis of saccharides or secondary metabolites. Here, Solanum lycopersicum L. plants were exposed to foliar and soil applications of penconazole, tebuconazole, or their combination, and their resulting effect on tomato fruits was followed. The exposure to the equimolar mixture of both triazoles influenced the representation of free proteinogenic amino acids, especially Gln, Glu, Gly, Ile, Lys, Ser and Pro, saccharide content, and led to a significant increase in the contents of total phenolics and flavonoids as well as positive stimulation of the non-enzymatic antioxidant system. Among the identified secondary metabolites, the most abundant was naringenin, followed by chlorogenic acid in tomato peel. In turn, all triazole-treated groups showed a significantly lower content of rosmarinic acid in comparison with the control. Foliar application of penconazole affected the fruit more than other single triazole applications, showing a significant decrease in antioxidant capacity, the total content of secondary metabolites, and the activities of total membrane-bound peroxidases and ascorbate peroxidase.
Collapse
Affiliation(s)
- Veronika Hýsková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| | - Michal Jakl
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| | - Jana Jaklová Dytrtová
- Sport Sciences—Biomedical Department, Faculty of Physical Education and Sport, Charles University, José Martího 269, 162 52 Prague, Czech Republic; (J.J.D.); (I.K.)
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 241/27, 783 71 Olomouc, Czech Republic; (S.Ć.Z.); (O.V.)
- Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Ondřej Vrobel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 241/27, 783 71 Olomouc, Czech Republic; (S.Ć.Z.); (O.V.)
- Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Kateřina Bělonožníková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| | - Daniel Kavan
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University Albertov 6, 128 00 Prague, Czech Republic; (T.K.); (A.Š.)
| | - Alice Šimonová
- Department of Analytical Chemistry, Faculty of Science, Charles University Albertov 6, 128 00 Prague, Czech Republic; (T.K.); (A.Š.)
| | - Marie Vašková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| | - Ishak Kovač
- Sport Sciences—Biomedical Department, Faculty of Physical Education and Sport, Charles University, José Martího 269, 162 52 Prague, Czech Republic; (J.J.D.); (I.K.)
| | - Antoniana Račko Žufić
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| | - Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| |
Collapse
|
71
|
Su WY, Tian LY, Guo LP, Huang LQ, Gao WY. PI3K signaling-regulated metabolic reprogramming: From mechanism to application. Biochim Biophys Acta Rev Cancer 2023; 1878:188952. [PMID: 37499988 DOI: 10.1016/j.bbcan.2023.188952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Oncogenic signaling involved in tumor metabolic reprogramming. Tumorigenesis was not only determined by the mutations or deletion of oncogenes but also accompanied by the reprogramming of cellular metabolism. Metabolic alterations play a crucial regulatory role in the development and progression of tumors. Oncogenic PI3K/AKT signaling mediates the metabolic switch in cancer cells and immune cells in the tumor microenvironment. PI3K/AKT and its downstream effector branch off and connect to multiple steps of metabolism, such as glucose, lipids, and amino acids. Thus, PI3K inhibitor could effectively regulate metabolic pathway and impede the oncogenic process and some key metabolic proteins or critical enzymes also constitute biomarkers for tumor diagnosis and treatment. In the current review, we summarize the significant effect of PI3K/AKT signaling toward tumor metabolism, it enables us to obtain the better understanding for this interaction and develop more effective therapeutic strategies targeting cancer cell metabolism.
Collapse
Affiliation(s)
- Wen Ya Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lu Yao Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lan Pin Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Qi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wen Yuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
72
|
Li J, Luo X, Wei M, Li Z, Li Y, Zhao H, Miyagishi M, Kasim V, Wu S. YY2/PHGDH axis suppresses tumorigenesis by inhibiting tumor cell de novo serine biosynthesis. Biomed Pharmacother 2023; 165:115006. [PMID: 37327589 DOI: 10.1016/j.biopha.2023.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023] Open
Abstract
Metabolic reprogramming is one of the key features of tumors facilitating their rapid proliferation and adaptation to harsh microenvironments. Yin Yang 2 (YY2) has recently been reported as a tumor suppressor downregulated in various types of tumors; however, the molecular mechanisms underlying its tumor-suppressive activity remain poorly understood. Furthermore, the involvement of YY2 in tumor cell metabolic reprogramming remains unclear. Herein, we aimed to elucidate the novel regulatory mechanism of YY2 in the suppression of tumorigenesis. Using transcriptomic analysis, we uncovered an unprecedented link between YY2 and tumor cell serine metabolism. YY2 alteration could negatively regulate the expression level of phosphoglycerate dehydrogenase (PHGDH), the first enzyme in the serine biosynthesis pathway, and consequently, tumor cell de novo serine biosynthesis. Mechanistically, we revealed that YY2 binds to the PHGDH promoter and suppresses its transcriptional activity. This, in turn, leads to decreased production of serine, nucleotides, and cellular reductants NADH and NADPH, which subsequently suppresses tumorigenic potential. These findings reveal a novel function of YY2 as a regulator of the serine metabolic pathway in tumor cells and provide new insights into its tumor suppressor activity. Furthermore, our findings suggest the potential of YY2 as a target for metabolic-based antitumor therapeutic strategies.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xinxin Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Mankun Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhuolin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yanjun Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hezhao Zhao
- Department of Gastrointestinal Surgery, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Makoto Miyagishi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China.
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
73
|
Abstract
Amino acid dysregulation has emerged as an important driver of disease progression in various contexts. l-Serine lies at a central node of metabolism, linking carbohydrate metabolism, transamination, glycine, and folate-mediated one-carbon metabolism to protein synthesis and various downstream bioenergetic and biosynthetic pathways. l-Serine is produced locally in the brain but is sourced predominantly from glycine and one-carbon metabolism in peripheral tissues via liver and kidney metabolism. Compromised regulation or activity of l-serine synthesis and disposal occurs in the context of genetic diseases as well as chronic disease states, leading to low circulating l-serine levels and pathogenesis in the nervous system, retina, heart, and aging muscle. Dietary interventions in preclinical models modulate sensory neuropathy, retinopathy, tumor growth, and muscle regeneration. A serine tolerance test may provide a quantitative readout of l-serine homeostasis that identifies patients who may be susceptible to neuropathy or responsive to therapy.
Collapse
Affiliation(s)
- Michal K Handzlik
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; ,
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; ,
| |
Collapse
|
74
|
Zhang J, Bai J, Gong C, Wang J, Cheng Y, Zhao J, Xiong H. Serine-associated one-carbon metabolic reprogramming: a new anti-cancer therapeutic strategy. Front Oncol 2023; 13:1184626. [PMID: 37664062 PMCID: PMC10471886 DOI: 10.3389/fonc.2023.1184626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Tumour metabolism is a major focus of cancer research, and metabolic reprogramming is an important feature of malignant tumours. Serine is an important non-essential amino acid, which is a main resource of one-carbon units in tumours. Cancer cells proliferate more than normal cells and require more serine for proliferation. The cancer-related genes that are involved in serine metabolism also show changes corresponding to metabolic alterations. Here, we reviewed the serine-associated one-carbon metabolism and its potential as a target for anti-tumour therapeutic strategies.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Bai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Cheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
75
|
Yang C, Ou Y, Zhou Q, Liang Y, Li W, Chen Y, Chen W, Wu S, Chen Y, Dai X, Chen X, Chen T, Jin S, Liu Y, Zhang L, Liu S, Hu Y, Zou L, Mao S, Jiang H. Methionine orchestrates the metabolism vulnerability in cisplatin resistant bladder cancer microenvironment. Cell Death Dis 2023; 14:525. [PMID: 37582769 PMCID: PMC10427658 DOI: 10.1038/s41419-023-06050-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Metabolism vulnerability of cisplatin resistance in BCa cells remains to be discovered, which we applied integrated multi-omics analysis to elucidate the metabolism related regulation mechanism in bladder cancer (BCa) microenvironment. Integrated multi-omics analysis of metabolomics and proteomics revealed that MAT2A regulated methionine metabolism contributes to cisplatin resistance in BCa cells. We further validated MAT2A and cancer stem cell markers were up-regulated and circARHGAP10 was down-regulated through the regulation of MAT2A protein stability in cisplatin resistant BCa cells. circARHGAP10 formed a complex with MAT2A and TRIM25 to accelerate the degradation of MAT2A through ubiquitin-proteasome pathway. Knockdown of MAT2A through overexpression of circARHGAP10 and restriction of methionine up-take was sufficient to overcome cisplatin resistance in vivo in immuno-deficiency model but not in immuno-competent model. Tumor-infiltrating CD8+ T cells characterized an exhausted phenotype in tumors with low methionine. High expression of SLC7A6 in BCa negatively correlated with expression of CD8. Synergistic inhibition of MAT2A and SLC7A6 could overcome cisplatin resistance in immuno-competent model in vivo. Cisplatin resistant BCa cells rely on methionine for survival and stem cell renewal. circARHGAP10/TRIM25/MAT2A regulation pathway plays an important role in cisplatin resistant BCa cells while circARHGAP10 and SLC7A6 should be evaluated as one of the therapeutic target of cisplatin resistant BCa.
Collapse
Affiliation(s)
- Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Quan Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Wensun Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yifan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Tian Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Shengming Jin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yufei Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Limin Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Shenghua Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China.
| | - Shanhua Mao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
76
|
Dang CV. Cancer Metabolism Historical Perspectives: A Chronicle of Controversies and Consensus. Cold Spring Harb Perspect Med 2023; 13:a041530. [PMID: 37553212 PMCID: PMC10691493 DOI: 10.1101/cshperspect.a041530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A century ago, Otto Warburg's work sparked the field of cancer metabolism, which has since taken a tortuous path. As evidence accumulated over the decades, consensus views of causes of cancer emerged, whereby genetic and epigenetic oncogenic drivers promoted immune evasion and induced new blood vessels and neoplastic metabolism to support tumor growth. Neoplastic cells abandon social cues of intercellular cooperation, escape tissue confinement, metastasize, and ultimately kill the host. Herein, key milestones in the study of cancer metabolism are chronicled with an emphasis on carbohydrate metabolism. The field began with a cancer cell-autonomous view that has been refined by a richer understanding of solid cancers as growing, immune-suppressive, complex organs comprising different cell types that are nourished by a variety of nutrients and variable amounts of oxygen through abnormal neovasculatures. Based on foundational historical studies, our current understanding of cancer metabolism offers a hopeful outlook for targeting metabolism to enhance cancer therapy.
Collapse
Affiliation(s)
- Chi V Dang
- Ludwig Institute for Cancer Research, New York, New York 10017, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21287, USA
| |
Collapse
|
77
|
Xiao Y, Yu TJ, Xu Y, Ding R, Wang YP, Jiang YZ, Shao ZM. Emerging therapies in cancer metabolism. Cell Metab 2023; 35:1283-1303. [PMID: 37557070 DOI: 10.1016/j.cmet.2023.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Metabolic reprogramming in cancer is not only a biological hallmark but also reveals treatment vulnerabilities. Numerous metabolic molecules have shown promise as treatment targets to impede tumor progression in preclinical studies, with some advancing to clinical trials. However, the intricacy and adaptability of metabolic networks hinder the effectiveness of metabolic therapies. This review summarizes the metabolic targets for cancer treatment and provides an overview of the current status of clinical trials targeting cancer metabolism. Additionally, we decipher crucial factors that limit the efficacy of metabolism-based therapies and propose future directions. With advances in integrating multi-omics, single-cell, and spatial technologies, as well as the ability to track metabolic adaptation more precisely and dynamically, clinicians can personalize metabolic therapies for improved cancer treatment.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tian-Jian Yu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rui Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
78
|
Tardito S, MacKay C. Rethinking our approach to cancer metabolism to deliver patient benefit. Br J Cancer 2023; 129:406-415. [PMID: 37340094 PMCID: PMC10403540 DOI: 10.1038/s41416-023-02324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Altered cellular metabolism is a major mechanism by which tumours support nutrient consumption associated with increased cellular proliferation. Selective dependency on specific metabolic pathways provides a therapeutic vulnerability that can be targeted in cancer therapy. Anti-metabolites have been used clinically since the 1940s and several agents targeting nucleotide metabolism are now well established as standard of care treatment in a range of indications. However, despite great progress in our understanding of the metabolic requirements of cancer and non-cancer cells within the tumour microenvironment, there has been limited clinical success for novel agents targeting pathways outside of nucleotide metabolism. We believe that there is significant therapeutic potential in targeting metabolic processes within cancer that is yet to be fully realised. However, current approaches to identify novel targets, test novel therapies and select patient populations most likely to benefit are sub-optimal. We highlight recent advances in technologies and understanding that will support the identification and validation of novel targets, re-evaluation of existing targets and design of optimal clinical positioning strategies to deliver patient benefit.
Collapse
Affiliation(s)
- Saverio Tardito
- The Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Craig MacKay
- Cancer Research Horizons, The Cancer Research UK Beatson Institute, Glasgow, UK.
| |
Collapse
|
79
|
Rawat V, DeLear P, Prashanth P, Ozgurses ME, Tebeje A, Burns PA, Conger KO, Solís C, Hasnain Y, Novikova A, Endress JE, González-Sánchez P, Dong W, Stephanopoulos G, DeNicola GM, Harris IS, Sept D, Mason FM, Coloff JL. Drug screening in human physiologic medium identifies uric acid as an inhibitor of rigosertib efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550731. [PMID: 37546939 PMCID: PMC10402161 DOI: 10.1101/2023.07.26.550731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The non-physiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels impact therapeutic response by performing drug screening in human plasma-like medium (HPLM). We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that has recently failed in phase 3 clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism waste product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. Structural modelling studies suggest that uric acid interacts with the tubulin-rigosertib complex and may act as an uncompetitive inhibitor of rigosertib. These results offer a possible explanation for the failure of rigosertib in clinical trials and demonstrate the utility of physiological media to achieve in vitro results that better represent human therapeutic responses.
Collapse
Affiliation(s)
- Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Patrick DeLear
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Prarthana Prashanth
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Anteneh Tebeje
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Philippa A. Burns
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Kelly O. Conger
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Christopher Solís
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL
| | - Yasir Hasnain
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Anna Novikova
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | | | | | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Greg Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL
| | - Isaac S. Harris
- Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Frank M. Mason
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| |
Collapse
|
80
|
Ferrer M, Mourikis N, Davidson EE, Kleeman SO, Zaccaria M, Habel J, Rubino R, Gao Q, Flint TR, Young L, Connell CM, Lukey MJ, Goncalves MD, White EP, Venkitaraman AR, Janowitz T. Ketogenic diet promotes tumor ferroptosis but induces relative corticosterone deficiency that accelerates cachexia. Cell Metab 2023; 35:1147-1162.e7. [PMID: 37311455 PMCID: PMC11037504 DOI: 10.1016/j.cmet.2023.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/03/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Glucose dependency of cancer cells can be targeted with a high-fat, low-carbohydrate ketogenic diet (KD). However, in IL-6-producing cancers, suppression of the hepatic ketogenic potential hinders the utilization of KD as energy for the organism. In IL-6-associated murine models of cancer cachexia, we describe delayed tumor growth but accelerated cachexia onset and shortened survival in mice fed KD. Mechanistically, this uncoupling is a consequence of the biochemical interaction of two NADPH-dependent pathways. Within the tumor, increased lipid peroxidation and, consequently, saturation of the glutathione (GSH) system lead to the ferroptotic death of cancer cells. Systemically, redox imbalance and NADPH depletion impair corticosterone biosynthesis. Administration of dexamethasone, a potent glucocorticoid, increases food intake, normalizes glucose levels and utilization of nutritional substrates, delays cachexia onset, and extends the survival of tumor-bearing mice fed KD while preserving reduced tumor growth. Our study emphasizes the need to investigate the effects of systemic interventions on both the tumor and the host to accurately assess therapeutic potential. These findings may be relevant to clinical research efforts that investigate nutritional interventions such as KD in patients with cancer.
Collapse
Affiliation(s)
- Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | | | - Emma E Davidson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sam O Kleeman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Jill Habel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Rachel Rubino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Qing Gao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Thomas R Flint
- Department of Oncology, CRUK Cambridge Institute, Cambridge Biomedical Campus, Cambridge CB2 0RE, UK
| | - Lisa Young
- Department of Oncology, CRUK Cambridge Institute, Cambridge Biomedical Campus, Cambridge CB2 0RE, UK
| | - Claire M Connell
- Department of Oncology, CRUK Cambridge Institute, Cambridge Biomedical Campus, Cambridge CB2 0RE, UK
| | - Michael J Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eileen P White
- Department of Molecular Biology and Biochemistry, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Ashok R Venkitaraman
- MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Institute for Molecular & Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Northwell Health Cancer Institute, Northwell Health, New Hyde Park, NY 11042, USA.
| |
Collapse
|
81
|
Anu RI, Shiu KK, Khan KH. The immunomodulatory role of IDO1-Kynurenine-NAD + pathway in switching cold tumor microenvironment in PDAC. Front Oncol 2023; 13:1142838. [PMID: 37456260 PMCID: PMC10348419 DOI: 10.3389/fonc.2023.1142838] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common exocrine tumor of the pancreas characterized by late diagnosis, adverse overall 5-year survival, a higher propensity for metastatic disease, and lack of efficacy of systemic therapy options. These adverse outcomes can be partly attributed to complex tumor microenvironment (TME). Over the past decade, immunotherapy has revolutionized the management of certain cancers; thus far, the immunologically 'non-inflamed' tumor microenvironment in PDACs has proven to be challenging. Indolamine 2,3-dioxygenase 1 (IDO1) is the rate-limiting enzyme in the catabolic pathway of L-Tryptophan, an essential amino acid, that gives rise to the immunosuppressive metabolite Kynurenine. IDO1, Indolamine 2,3-dioxygenase 2 (IDO2), and Tryptophan 2,3-dioxygenase (TDO) are the key enzymes in the tryptophan catabolic pathway but we focus on the role of the predominant enzyme form IDO1 in this review. Nicotinamide phosphoribosyl transferase (iNAMPT) regulates the intracellular concentration of NAD and is upregulated in the tumor. In light of the potential role of IDO1 as a driver of hostile TME in PDAC and NAD+ as a key coenzyme in anti-tumor immune response, this review urges focus on extensive research and initiation of clinical trials using IDO1 and NAMPT inhibitors in pancreatic cancer in the future.
Collapse
Affiliation(s)
- R. I. Anu
- Department of Cancer Biology and Therapeutics, Precision Oncology and Multi-Omics Clinic, Genetic Counseling Clinic, Department of Clinical Biochemistry, MVR Cancer Centre and Research Institute, Calicut, Kerala, India
| | - Kai-Keen Shiu
- Gastrointestinal Oncology Service, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
- Universtiy College London (UCL) Cancer Institute, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
| | - Khurum Hayat Khan
- Gastrointestinal Oncology Service, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
- Universtiy College London (UCL) Cancer Institute, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
- Whittington Health, National Health Services (NHS), London, United Kingdom
| |
Collapse
|
82
|
Hennequart M, Pilley SE, Labuschagne CF, Coomes J, Mervant L, Driscoll PC, Legrave NM, Lee Y, Kreuzaler P, Macintyre B, Panina Y, Blagih J, Stevenson D, Strathdee D, Schneider-Luftman D, Grönroos E, Cheung EC, Yuneva M, Swanton C, Vousden KH. ALDH1L2 regulation of formate, formyl-methionine, and ROS controls cancer cell migration and metastasis. Cell Rep 2023; 42:112562. [PMID: 37245210 DOI: 10.1016/j.celrep.2023.112562] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/10/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023] Open
Abstract
Mitochondrial 10-formyltetrahydrofolate (10-formyl-THF) is utilized by three mitochondrial enzymes to produce formate for nucleotide synthesis, NADPH for antioxidant defense, and formyl-methionine (fMet) to initiate mitochondrial mRNA translation. One of these enzymes-aldehyde dehydrogenase 1 family member 2 (ALDH1L2)-produces NADPH by catabolizing 10-formyl-THF into CO2 and THF. Using breast cancer cell lines, we show that reduction of ALDH1L2 expression increases ROS levels and the production of both formate and fMet. Both depletion of ALDH1L2 and direct exposure to formate result in enhanced cancer cell migration that is dependent on the expression of the formyl-peptide receptor (FPR). In various tumor models, increased ALDH1L2 expression lowers formate and fMet accumulation and limits metastatic capacity, while human breast cancer samples show a consistent reduction of ALDH1L2 expression in metastases. Together, our data suggest that loss of ALDH1L2 can support metastatic progression by promoting formate and fMet production, resulting in enhanced FPR-dependent signaling.
Collapse
Affiliation(s)
- Marc Hennequart
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steven E Pilley
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christiaan F Labuschagne
- Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), 11 Hoffman Street, Potchesfstoom 2531, South Africa
| | - Jack Coomes
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Loic Mervant
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Paul C Driscoll
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Younghwan Lee
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Kreuzaler
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Yulia Panina
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Julianna Blagih
- Department of Obstetrics-Gynaecology, University of Montreal, Maisonneuve-Rosemont Hospital Research Centre, 5414 Assomption Blvd, Montreal, QC H1T 2M4, Canada
| | | | | | | | - Eva Grönroos
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eric C Cheung
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mariia Yuneva
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Charles Swanton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
83
|
Jiménez-Alonso JJ, López-Lázaro M. Dietary Manipulation of Amino Acids for Cancer Therapy. Nutrients 2023; 15:2879. [PMID: 37447206 DOI: 10.3390/nu15132879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer cells cannot proliferate and survive unless they obtain sufficient levels of the 20 proteinogenic amino acids (AAs). Unlike normal cells, cancer cells have genetic and metabolic alterations that may limit their capacity to obtain adequate levels of the 20 AAs in challenging metabolic environments. However, since normal diets provide all AAs at relatively constant levels and ratios, these potentially lethal genetic and metabolic defects are eventually harmless to cancer cells. If we temporarily replace the normal diet of cancer patients with artificial diets in which the levels of specific AAs are manipulated, cancer cells may be unable to proliferate and survive. This article reviews in vivo studies that have evaluated the antitumor activity of diets restricted in or supplemented with the 20 proteinogenic AAs, individually and in combination. It also reviews our recent studies that show that manipulating the levels of several AAs simultaneously can lead to marked survival improvements in mice with metastatic cancers.
Collapse
Affiliation(s)
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| |
Collapse
|
84
|
Trajkovic-Arsic M, Subramani E. Is metabolism the magic bullet for targeted cancer therapy? BMC Cancer 2023; 23:484. [PMID: 37254076 DOI: 10.1186/s12885-023-10999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023] Open
Abstract
Altered cellular metabolism has long been recognized as a hallmark of cancer. Oncogenic signaling cascades induce metabolic rewiring that further supports tumorigenesis, therapy resistance and metastasis. In view of this, the Collection on 'Cancer Metabolism' highlights the current views and focus of research on personalized medicine approach to target metabolism for cancer therapy.
Collapse
Affiliation(s)
- Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.
- West German Cancer Center, Bridge Institute of Experimental Tumor Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Elavarasan Subramani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
85
|
Kim SY, Ong Q, Liao Y, Ding Z, Tan AQL, Lim LTR, Tan HM, Lim SL, Lee QY, Han W. Genetic Ablation of LAT1 Inhibits Growth of Liver Cancer Cells and Downregulates mTORC1 Signaling. Int J Mol Sci 2023; 24:ijms24119171. [PMID: 37298123 DOI: 10.3390/ijms24119171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Through a comprehensive analysis of the gene expression and dependency in HCC patients and cell lines, LAT1 was identified as the top amino acid transporter candidate supporting HCC tumorigenesis. To assess the suitability of LAT1 as a HCC therapeutic target, we used CRISPR/Cas9 to knockout (KO) LAT1 in the epithelial HCC cell line, Huh7. Knockout of LAT1 diminished its branched chain amino acid (BCAA) transport activity and significantly reduced cell proliferation in Huh7. Consistent with in vitro studies, LAT1 ablation led to suppression of tumor growth in a xenograft model. To elucidate the mechanism underlying the observed inhibition of cell proliferation upon LAT1 KO, we performed RNA-sequencing analysis and investigated the changes in the mTORC1 signaling pathway. LAT1 ablation resulted in a notable reduction in phosphorylation of p70S6K, a downstream target of mTORC1, as well as its substrate S6RP. This reduced cell proliferation and mTORC1 activity were rescued when LAT1 was overexpressed. These findings imply an essential role of LAT1 for maintenance of tumor cell growth and additional therapeutic angles against liver cancer.
Collapse
Affiliation(s)
- Sun-Yee Kim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02, Helios, Singapore 138667, Singapore
| | - Qunxiang Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02, Helios, Singapore 138667, Singapore
| | - Yilie Liao
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Zhaobing Ding
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02, Helios, Singapore 138667, Singapore
| | - Alicia Qian Ler Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02, Helios, Singapore 138667, Singapore
| | - Ler Ting Rachel Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02, Helios, Singapore 138667, Singapore
| | - Hui Min Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02, Helios, Singapore 138667, Singapore
| | - Siew Lan Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02, Helios, Singapore 138667, Singapore
| | - Qian Yi Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02, Helios, Singapore 138667, Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02, Helios, Singapore 138667, Singapore
| |
Collapse
|
86
|
Sun W, Liu R, Gao X, Lin Z, Tang H, Cui H, Zhao E. Targeting serine-glycine-one-carbon metabolism as a vulnerability in cancers. Biomark Res 2023; 11:48. [PMID: 37147729 PMCID: PMC10161514 DOI: 10.1186/s40364-023-00487-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
The serine-glycine-one-carbon (SGOC) metabolic pathway is critical for DNA methylation, histone methylation, and redox homeostasis, in addition to protein, lipid, and nucleotide biosynthesis. The SGOC pathway is a crucial metabolic network in tumorigenesis, wherein the outputs are required for cell survival and proliferation and are particularly likely to be co-opted by aggressive cancers. SGOC metabolism provides an integration point in cell metabolism and is of crucial clinical significance. The mechanism of how this network is regulated is the key to understanding tumor heterogeneity and overcoming the potential mechanism of tumor recurrence. Herein, we review the role of SGOC metabolism in cancer by focusing on key enzymes with tumor-promoting functions and important products with physiological significance in tumorigenesis. In addition, we introduce the ways in which cancer cells acquire and use one-carbon unit, and discuss the recently clarified role of SGOC metabolic enzymes in tumorigenesis and development, as well as their relationship with cancer immunotherapy and ferroptosis. The targeting of SGOC metabolism may be a potential therapeutic strategy to improve clinical outcomes in cancers.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xinyue Gao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Zini Lin
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Hongao Tang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
87
|
Kumar N, Rachagani S, Natarajan G, Crook A, Gopal T, Rajamanickam V, Kaushal JB, Nagabhishek SN, Powers R, Batra SK, Saraswathi V. Histidine Enhances the Anticancer Effect of Gemcitabine against Pancreatic Cancer via Disruption of Amino Acid Homeostasis and Oxidant-Antioxidant Balance. Cancers (Basel) 2023; 15:cancers15092593. [PMID: 37174059 PMCID: PMC10177467 DOI: 10.3390/cancers15092593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Due to the severe toxicity posed by chemotherapeutic drugs, adjuvant nutritional intervention has gained increased attention in the treatment of pancreatic cancer (PC). Amino acid (AA) metabolism is aberrantly regulated in PC and circulating histidine (His) levels are low in PC patients. We hypothesized that His uptake and/or metabolism is dysregulated in PC and that combining His with gemcitabine (Gem), a drug used in the treatment of PC, will enhance the anti-cancer effects of Gem. We performed in vitro and in vivo studies to determine the anticancer effect of the combination of His and Gem against lethal PC. We demonstrate that circulating His levels are low in both human subjects and genetically engineered mice exhibiting pancreatic tumors. Interestingly, the expression of histidine ammonia lyase, an enzyme involved in His catabolism, is higher in PC compared to normal subjects. His + Gem exerts a more potent cytotoxic effect in PC cells compared to individual treatments. His treatment results in a profound increase in His accumulation, accompanied by a depletion of a number of AAs, promoting cancer cell survival and/or glutathione (GSH) synthesis. His but not Gem increases hydrogen peroxide and depletes cellular GSH. Supplementation with GSH protects cells against His + Gem-induced cytotoxicity. Further, our in vivo studies demonstrate that His + Gem potently reduced tumor mass and improved mouse survival. Taken together, our data suggest that PC cells exhibit an aberrant His uptake/accumulation which, in turn, leads to oxidative stress and depletion of AA pool, thereby enhancing the anticancer effect of Gem.
Collapse
Affiliation(s)
- Narendra Kumar
- The Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alexandra Crook
- The Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Thiyagarajan Gopal
- The Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Vinothkumar Rajamanickam
- The Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sirpu N Nagabhishek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert Powers
- The Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Viswanathan Saraswathi
- The Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
88
|
Yuan H, Wu X, Wu Q, Chatoff A, Megill E, Gao J, Huang T, Duan T, Yang K, Jin C, Yuan F, Wang S, Zhao L, Zinn PO, Abdullah KG, Zhao Y, Snyder NW, Rich JN. Lysine catabolism reprograms tumour immunity through histone crotonylation. Nature 2023; 617:818-826. [PMID: 37198486 PMCID: PMC11089809 DOI: 10.1038/s41586-023-06061-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023]
Abstract
Cancer cells rewire metabolism to favour the generation of specialized metabolites that support tumour growth and reshape the tumour microenvironment1,2. Lysine functions as a biosynthetic molecule, energy source and antioxidant3-5, but little is known about its pathological role in cancer. Here we show that glioblastoma stem cells (GSCs) reprogram lysine catabolism through the upregulation of lysine transporter SLC7A2 and crotonyl-coenzyme A (crotonyl-CoA)-producing enzyme glutaryl-CoA dehydrogenase (GCDH) with downregulation of the crotonyl-CoA hydratase enoyl-CoA hydratase short chain 1 (ECHS1), leading to accumulation of intracellular crotonyl-CoA and histone H4 lysine crotonylation. A reduction in histone lysine crotonylation by either genetic manipulation or lysine restriction impaired tumour growth. In the nucleus, GCDH interacts with the crotonyltransferase CBP to promote histone lysine crotonylation. Loss of histone lysine crotonylation promotes immunogenic cytosolic double-stranded RNA (dsRNA) and dsDNA generation through enhanced H3K27ac, which stimulates the RNA sensor MDA5 and DNA sensor cyclic GMP-AMP synthase (cGAS) to boost type I interferon signalling, leading to compromised GSC tumorigenic potential and elevated CD8+ T cell infiltration. A lysine-restricted diet synergized with MYC inhibition or anti-PD-1 therapy to slow tumour growth. Collectively, GSCs co-opt lysine uptake and degradation to shunt the production of crotonyl-CoA, remodelling the chromatin landscape to evade interferon-induced intrinsic effects on GSC maintenance and extrinsic effects on immune response.
Collapse
Affiliation(s)
- Huairui Yuan
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xujia Wu
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Qiulian Wu
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Adam Chatoff
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Emily Megill
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jinjun Gao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Tengfei Huang
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tingting Duan
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Chunyu Jin
- Department and School of Medicine, University of California, San Diego, CA, USA
| | - Fanen Yuan
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shuai Wang
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Linjie Zhao
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Pascal O Zinn
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kalil G Abdullah
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Nathaniel W Snyder
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jeremy N Rich
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
89
|
Zhang X, Su Y, Lane AN, Stromberg AJ, Fan TWM, Wang C. Bayesian kinetic modeling for tracer-based metabolomic data. BMC Bioinformatics 2023; 24:108. [PMID: 36949395 PMCID: PMC10035190 DOI: 10.1186/s12859-023-05211-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Stable Isotope Resolved Metabolomics (SIRM) is a new biological approach that uses stable isotope tracers such as uniformly [Formula: see text]-enriched glucose ([Formula: see text]-Glc) to trace metabolic pathways or networks at the atomic level in complex biological systems. Non-steady-state kinetic modeling based on SIRM data uses sets of simultaneous ordinary differential equations (ODEs) to quantitatively characterize the dynamic behavior of metabolic networks. It has been increasingly used to understand the regulation of normal metabolism and dysregulation in the development of diseases. However, fitting a kinetic model is challenging because there are usually multiple sets of parameter values that fit the data equally well, especially for large-scale kinetic models. In addition, there is a lack of statistically rigorous methods to compare kinetic model parameters between different experimental groups. RESULTS We propose a new Bayesian statistical framework to enhance parameter estimation and hypothesis testing for non-steady-state kinetic modeling of SIRM data. For estimating kinetic model parameters, we leverage the prior distribution not only to allow incorporation of experts' knowledge but also to provide robust parameter estimation. We also introduce a shrinkage approach for borrowing information across the ensemble of metabolites to stably estimate the variance of an individual isotopomer. In addition, we use a component-wise adaptive Metropolis algorithm with delayed rejection to perform efficient Monte Carlo sampling of the posterior distribution over high-dimensional parameter space. For comparing kinetic model parameters between experimental groups, we propose a new reparameterization method that converts the complex hypothesis testing problem into a more tractable parameter estimation problem. We also propose an inference procedure based on credible interval and credible value. Our method is freely available for academic use at https://github.com/xuzhang0131/MCMCFlux . CONCLUSIONS Our new Bayesian framework provides robust estimation of kinetic model parameters and enables rigorous comparison of model parameters between experimental groups. Simulation studies and application to a lung cancer study demonstrate that our framework performs well for non-steady-state kinetic modeling of SIRM data.
Collapse
Affiliation(s)
- Xu Zhang
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, 40536, USA.
| | - Ya Su
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, 23220, USA
| | - Andrew N Lane
- Markey Cancer Center, University of Kentucky, Lexington, 40536, USA
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, 40536, USA
| | - Arnold J Stromberg
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, 40536, USA
| | - Teresa W M Fan
- Markey Cancer Center, University of Kentucky, Lexington, 40536, USA
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, 40536, USA
| | - Chi Wang
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, 40536, USA.
- Markey Cancer Center, University of Kentucky, Lexington, 40536, USA.
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, 40536, USA.
| |
Collapse
|
90
|
Transcription factor NKX2-1 drives serine and glycine synthesis addiction in cancer. Br J Cancer 2023; 128:1862-1878. [PMID: 36932191 PMCID: PMC10147615 DOI: 10.1038/s41416-023-02216-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND One-third of cancers activate endogenous synthesis of serine/glycine, and can become addicted to this pathway to sustain proliferation and survival. Mechanisms driving this metabolic rewiring remain largely unknown. METHODS NKX2-1 overexpressing and NKX2-1 knockdown/knockout T-cell leukaemia and lung cancer cell line models were established to study metabolic rewiring using ChIP-qPCR, immunoblotting, mass spectrometry, and proliferation and invasion assays. Findings and therapeutic relevance were validated in mouse models and confirmed in patient datasets. RESULTS Exploring T-cell leukaemia, lung cancer and neuroendocrine prostate cancer patient datasets highlighted the transcription factor NKX2-1 as putative driver of serine/glycine metabolism. We demonstrate that transcription factor NKX2-1 binds and transcriptionally upregulates serine/glycine synthesis enzyme genes, enabling NKX2-1 expressing cells to proliferate and invade in serine/glycine-depleted conditions. NKX2-1 driven serine/glycine synthesis generates nucleotides and redox molecules, and is associated with an altered cellular lipidome and methylome. Accordingly, NKX2-1 tumour-bearing mice display enhanced tumour aggressiveness associated with systemic metabolic rewiring. Therapeutically, NKX2-1-expressing cancer cells are more sensitive to serine/glycine conversion inhibition by repurposed anti-depressant sertraline, and to etoposide chemotherapy. CONCLUSION Collectively, we identify NKX2-1 as a novel transcriptional regulator of serine/glycine synthesis addiction across cancers, revealing a therapeutic vulnerability of NKX2-1-driven cancers. Transcription factor NKX2-1 fuels cancer cell proliferation and survival by hyperactivating serine/glycine synthesis, highlighting this pathway as a novel therapeutic target in NKX2-1-positive cancers.
Collapse
|
91
|
Samec M, Mazurakova A, Lucansky V, Koklesova L, Pecova R, Pec M, Golubnitschaja O, Al-Ishaq RK, Caprnda M, Gaspar L, Prosecky R, Gazdikova K, Adamek M, Büsselberg D, Kruzliak P, Kubatka P. Flavonoids attenuate cancer metabolism by modulating Lipid metabolism, amino acids, ketone bodies and redox state mediated by Nrf2. Eur J Pharmacol 2023; 949:175655. [PMID: 36921709 DOI: 10.1016/j.ejphar.2023.175655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Metabolic reprogramming of cancer cells is a common hallmark of malignant transformation. The preference for aerobic glycolysis over oxidative phosphorylation in tumors is a well-studied phenomenon known as the Warburg effect. Importantly, metabolic transformation of cancer cells also involves alterations in signaling cascades contributing to lipid metabolism, amino acid flux and synthesis, and utilization of ketone bodies. Also, redox regulation interacts with metabolic reprogramming during malignant transformation. Flavonoids, widely distributed phytochemicals in plants, exert various beneficial effects on human health through modulating molecular cascades altered in the pathological cancer phenotype. Recent evidence has identified numerous flavonoids as modulators of critical components of cancer metabolism and associated pathways interacting with metabolic cascades such as redox balance. Flavonoids affect lipid metabolism by regulating fatty acid synthase, redox balance by modulating nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activity, or amino acid flux and synthesis by phosphoglycerate mutase 1. Here, we discuss recent preclinical evidence evaluating the impact of flavonoids on cancer metabolism, focusing on lipid and amino acid metabolic cascades, redox balance, and ketone bodies.
Collapse
Affiliation(s)
- Marek Samec
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Comenius University in Bratislava, Martin, Slovakia
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Renata Pecova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Martin Caprnda
- 1(st) Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Ludovit Gaspar
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Robert Prosecky
- 2(nd) Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovakia; Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Mariusz Adamek
- Department of Thoracic Surgery, Medical University of Silesia, Katowice, Poland
| | | | - Peter Kruzliak
- 2(nd) Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
92
|
Pang Y, Lu T, Xu-Monette ZY, Young KH. Metabolic Reprogramming and Potential Therapeutic Targets in Lymphoma. Int J Mol Sci 2023; 24:5493. [PMID: 36982568 PMCID: PMC10052731 DOI: 10.3390/ijms24065493] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Lymphoma is a heterogeneous group of diseases that often require their metabolism program to fulfill the demand of cell proliferation. Features of metabolism in lymphoma cells include high glucose uptake, deregulated expression of enzymes related to glycolysis, dual capacity for glycolytic and oxidative metabolism, elevated glutamine metabolism, and fatty acid synthesis. These aberrant metabolic changes lead to tumorigenesis, disease progression, and resistance to lymphoma chemotherapy. This metabolic reprogramming, including glucose, nucleic acid, fatty acid, and amino acid metabolism, is a dynamic process caused not only by genetic and epigenetic changes, but also by changes in the microenvironment affected by viral infections. Notably, some critical metabolic enzymes and metabolites may play vital roles in lymphomagenesis and progression. Recent studies have uncovered that metabolic pathways might have clinical impacts on the diagnosis, characterization, and treatment of lymphoma subtypes. However, determining the clinical relevance of biomarkers and therapeutic targets related to lymphoma metabolism is still challenging. In this review, we systematically summarize current studies on metabolism reprogramming in lymphoma, and we mainly focus on disorders of glucose, amino acids, and lipid metabolisms, as well as dysregulation of molecules in metabolic pathways, oncometabolites, and potential metabolic biomarkers. We then discuss strategies directly or indirectly for those potential therapeutic targets. Finally, we prospect the future directions of lymphoma treatment on metabolic reprogramming.
Collapse
Affiliation(s)
- Yuyang Pang
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Hematology, Ninth People’s Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Tingxun Lu
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Zijun Y. Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Ken H. Young
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
93
|
Zhang D, Li AM, Hu G, Huang M, Yang F, Zhang L, Wellen KE, Xu X, Conn CS, Zou W, Kahn M, Rhoades SD, Weljie AM, Fuchs SY, Amankulor N, Yoshor D, Ye J, Koumenis C, Gong Y, Fan Y. PHGDH-mediated endothelial metabolism drives glioblastoma resistance to chimeric antigen receptor T cell immunotherapy. Cell Metab 2023; 35:517-534.e8. [PMID: 36804058 PMCID: PMC10088869 DOI: 10.1016/j.cmet.2023.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/24/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
The efficacy of immunotherapy is limited by the paucity of T cells delivered and infiltrated into the tumors through aberrant tumor vasculature. Here, we report that phosphoglycerate dehydrogenase (PHGDH)-mediated endothelial cell (EC) metabolism fuels the formation of a hypoxic and immune-hostile vascular microenvironment, driving glioblastoma (GBM) resistance to chimeric antigen receptor (CAR)-T cell immunotherapy. Our metabolome and transcriptome analyses of human and mouse GBM tumors identify that PHGDH expression and serine metabolism are preferentially altered in tumor ECs. Tumor microenvironmental cues induce ATF4-mediated PHGDH expression in ECs, triggering a redox-dependent mechanism that regulates endothelial glycolysis and leads to EC overgrowth. Genetic PHGDH ablation in ECs prunes over-sprouting vasculature, abrogates intratumoral hypoxia, and improves T cell infiltration into the tumors. PHGDH inhibition activates anti-tumor T cell immunity and sensitizes GBM to CAR T therapy. Thus, reprogramming endothelial metabolism by targeting PHGDH may offer a unique opportunity to improve T cell-based immunotherapy.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Albert M Li
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Guanghui Hu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Menggui Huang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Crystal S Conn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Kahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth D Rhoades
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Yoshor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Gong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
94
|
Nwosu ZC, Song MG, di Magliano MP, Lyssiotis CA, Kim SE. Nutrient transporters: connecting cancer metabolism to therapeutic opportunities. Oncogene 2023; 42:711-724. [PMID: 36739364 PMCID: PMC10266237 DOI: 10.1038/s41388-023-02593-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Cancer cells rely on certain extracellular nutrients to sustain their metabolism and growth. Solute carrier (SLC) transporters enable cells to acquire extracellular nutrients or shuttle intracellular nutrients across organelles. However, the function of many SLC transporters in cancer is unknown. Determining the key SLC transporters promoting cancer growth could reveal important therapeutic opportunities. Here we summarize recent findings and knowledge gaps on SLC transporters in cancer. We highlight existing inhibitors for studying these transporters, clinical trials on treating cancer by blocking transporters, and compensatory transporters used by cancer cells to evade treatment. We propose targeting transporters simultaneously or in combination with targeted therapy or immunotherapy as alternative strategies for effective cancer therapy.
Collapse
Affiliation(s)
- Zeribe Chike Nwosu
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Mun Gu Song
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | | | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Sung Eun Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea.
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
95
|
Wang K, Luo L, Fu S, Wang M, Wang Z, Dong L, Wu X, Dai L, Peng Y, Shen G, Chen HN, Nice EC, Wei X, Huang C. PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma. Nat Commun 2023; 14:1011. [PMID: 36823188 PMCID: PMC9950448 DOI: 10.1038/s41467-023-36708-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Serine synthesis is crucial for tumor growth and survival, but its regulatory mechanism in cancer remains elusive. Here, using integrative metabolomics and transcriptomics analyses, we show a heterogeneity between metabolite and transcript profiles. Specifically, the level of serine in hepatocellular carcinoma (HCC) tissues is increased, whereas the expression of phosphoglycerate dehydrogenase (PHGDH), the first rate-limiting enzyme in serine biosynthesis pathway, is markedly downregulated. Interestingly, the increased serine level is obtained by enhanced PHGDH catalytic activity due to protein arginine methyltransferase 1 (PRMT1)-mediated methylation of PHGDH at arginine 236. PRMT1-mediated PHGDH methylation and activation potentiates serine synthesis, ameliorates oxidative stress, and promotes HCC growth in vitro and in vivo. Furthermore, PRMT1-mediated PHGDH methylation correlates with PHGDH hyperactivation and serine accumulation in human HCC tissues, and is predictive of poor prognosis of HCC patients. Notably, blocking PHGDH methylation with a TAT-tagged nonmethylated peptide inhibits serine synthesis and restrains HCC growth in an HCC patient-derived xenograft (PDX) model and subcutaneous HCC cell-derived xenograft model. Overall, our findings reveal a regulatory mechanism of PHGDH activity and serine synthesis, and suggest PHGDH methylation as a potential therapeutic vulnerability in HCC.
Collapse
Affiliation(s)
- Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, PR China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, PR China
| | - Shuyue Fu
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Mao Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zihao Wang
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Lixia Dong
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xingyun Wu
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Lunzhi Dai
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yong Peng
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Guobo Shen
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard Collins Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| |
Collapse
|
96
|
Zhang J, Zou S, Fang L. Metabolic reprogramming in colorectal cancer: regulatory networks and therapy. Cell Biosci 2023; 13:25. [PMID: 36755301 PMCID: PMC9906896 DOI: 10.1186/s13578-023-00977-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
With high prevalence and mortality, together with metabolic reprogramming, colorectal cancer is a leading cause of cancer-related death. Metabolic reprogramming gives tumors the capacity for long-term cell proliferation, making it a distinguishing feature of cancer. Energy and intermediate metabolites produced by metabolic reprogramming fuel the rapid growth of cancer cells. Aberrant metabolic enzyme-mediated tumor metabolism is regulated at multiple levels. Notably, tumor metabolism is affected by nutrient levels, cell interactions, and transcriptional and posttranscriptional regulation. Understanding the crosstalk between metabolic enzymes and colorectal carcinogenesis factors is particularly important to advance research for targeted cancer therapy strategies via the investigation into the aberrant regulation of metabolic pathways. Hence, the abnormal roles and regulation of metabolic enzymes in recent years are reviewed in this paper, which provides an overview of targeted inhibitors for targeting metabolic enzymes in colorectal cancer that have been identified through tumor research or clinical trials.
Collapse
Affiliation(s)
- Jieping Zhang
- grid.12981.330000 0001 2360 039XDepartment of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655 Guangdong China ,Guangdong Institute of Gastroenterology, Guangzhou, 510655 China
| | - Shaomin Zou
- grid.12981.330000 0001 2360 039XDepartment of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655 Guangdong China ,Guangdong Institute of Gastroenterology, Guangzhou, 510655 China
| | - Lekun Fang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangzhou, 510655, China.
| |
Collapse
|
97
|
McBride MJ, Hunter CJ, Rabinowitz JD. Glycine homeostasis requires reverse SHMT flux. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523668. [PMID: 36711816 PMCID: PMC9882094 DOI: 10.1101/2023.01.11.523668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The folate-dependent enzyme serine hydroxymethyltransferase (SHMT) reversibly converts serine into glycine and a tetrahydrofolate-bound one-carbon unit. Such one-carbon unit production plays a critical role in development, the immune system, and cancer. Here we show that the whole-body SHMT flux acts to net consume rather than produce glycine. Pharmacological inhibition of whole-body SHMT1/2 and genetic knockout of liver SHMT2 elevated circulating glycine levels up to eight-fold. Stable isotope tracing revealed that the liver converts glycine to serine, which is then converted by serine dehydratase into pyruvate and burned in the tricarboxylic acid cycle. In response to diets deficient in serine and glycine, de novo biosynthetic flux was unaltered but SHMT2- and serine dehydratase-mediated catabolic flux was lower. Thus, glucose-derived serine synthesis does not respond to systemic demand. Instead, circulating serine and glycine homeostasis is maintained through variable consumption, with liver SHMT2 as a major glycine-consuming enzyme.
Collapse
|
98
|
Hsu DJ, Gao J, Yamaguchi N, Pinzaru A, Wu Q, Mandayam N, Liberti M, Heissel S, Alwaseem H, Tavazoie S, Tavazoie SF. Arginine limitation drives a directed codon-dependent DNA sequence evolution response in colorectal cancer cells. SCIENCE ADVANCES 2023; 9:eade9120. [PMID: 36608131 PMCID: PMC9821863 DOI: 10.1126/sciadv.ade9120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/01/2022] [Indexed: 05/18/2023]
Abstract
Utilization of specific codons varies between organisms. Cancer represents a model for understanding DNA sequence evolution and could reveal causal factors underlying codon evolution. We found that across human cancer, arginine codons are frequently mutated to other codons. Moreover, arginine limitation-a feature of tumor microenvironments-is sufficient to induce arginine codon-switching mutations in human colon cancer cells. Such DNA codon switching events encode mutant proteins with arginine residue substitutions. Mechanistically, arginine limitation caused rapid reduction of arginine transfer RNAs and the stalling of ribosomes over arginine codons. Such selective pressure against arginine codon translation induced an adaptive proteomic shift toward low-arginine codon-containing genes, including specific amino acid transporters, and caused mutational evolution away from arginine codons-reducing translational bottlenecks that occurred during arginine starvation. Thus, environmental availability of a specific amino acid can influence DNA sequence evolution away from its cognate codons and generate altered proteins.
Collapse
Affiliation(s)
- Dennis J. Hsu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jenny Gao
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Alexandra Pinzaru
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Qiushuang Wu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Nandan Mandayam
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Maria Liberti
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Saeed Tavazoie
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Sohail F. Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
99
|
Hsu DJ, Gao J, Yamaguchi N, Pinzaru A, Mandayam N, Liberti M, Heissel S, Alwaseem H, Tavazoie S, Tavazoie SF. Arginine limitation causes a directed DNA sequence evolution response in colorectal cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.521806. [PMID: 36711568 PMCID: PMC9881871 DOI: 10.1101/2023.01.02.521806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Utilization of specific codons varies significantly across organisms. Cancer represents a model for understanding DNA sequence evolution and could reveal causal factors underlying codon evolution. We found that across human cancer, arginine codons are frequently mutated to other codons. Moreover, arginine restriction-a feature of tumor microenvironments-is sufficient to induce arginine codon-switching mutations in human colon cancer cells. Such DNA codon switching events encode mutant proteins with arginine residue substitutions. Mechanistically, arginine limitation caused rapid reduction of arginine transfer RNAs and the stalling of ribosomes over arginine codons. Such selective pressure against arginine codon translation induced a proteomic shift towards low arginine codon containing genes, including specific amino acid transporters, and caused mutational evolution away from arginine codons-reducing translational bottlenecks that occurred during arginine starvation. Thus, environmental availability of a specific amino acid can influence DNA sequence evolution away from its cognate codons and generate altered proteins.
Collapse
Affiliation(s)
- Dennis J. Hsu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jenny Gao
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Alexandra Pinzaru
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Nandan Mandayam
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Maria Liberti
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Saeed Tavazoie
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY USA
| | - Sohail F. Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
100
|
Hu D, Li T, Liang W, Wang Y, Feng M, Sun J. Silk sericin as building blocks of bioactive materials for advanced therapeutics. J Control Release 2023; 353:303-316. [PMID: 36402235 DOI: 10.1016/j.jconrel.2022.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
Silk sericin is a class of protein biopolymers produced by silkworms. Increasing attention has been paid to silk sericin for biomedical applications in the last decade, not only because of its excellent biocompatibility and biodegradability but also due to the pharmacological activities stemming from its unique amino acid compositions. In this review, the biological properties of silk sericin, including curing specific diseases and promoting tissue regeneration, as well as underlying mechanisms are summarized. We consider the antioxidant activity of silk sericin as a fundamental property, which could account for partial biological activities, despite the exact mechanisms of silk sericin's effect remaining unknown. Based on the reactive groups on silk sericin, approaches of bottom-up fabrication of silk sericin-based biomaterials are highlighted, including non-covalent interactions and chemical reactions (reduction, crosslinking, bioconjugation, and polymerization). We then briefly present the cutting-edge advances of silk sericin-based biomaterials applied in tissue engineering and drug delivery. The challenges of silk sericin-based biomaterials are proposed. With more bioactivities and underlying mechanisms of silk sericin uncovered, it is going to boost the therapeutic potential of silk sericin-based biomaterials.
Collapse
Affiliation(s)
- Doudou Hu
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Tiandong Li
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wen'an Liang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yeyuan Wang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Min Feng
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jingchen Sun
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|