51
|
Song J, Ni Q, Sun J, Xie J, Liu J, Ning G, Wang W, Wang Q. Aging Impairs Adaptive Unfolded Protein Response and Drives Beta Cell Dedifferentiation in Humans. J Clin Endocrinol Metab 2022; 107:3231-3241. [PMID: 36125175 PMCID: PMC9693768 DOI: 10.1210/clinem/dgac535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Diabetes is an age-related disease; however, the mechanism underlying senescent beta cell failure is still unknown. OBJECTIVE The present study was designed to investigate whether and how the differentiated state was altered in senescent human beta cells by excluding the effects of impaired glucose tolerance. METHODS We calculated the percentage of hormone-negative/chromogranin A-positive endocrine cells and evaluated the expressions of forkhead box O1 (FoxO1) and Urocortin 3 (UCN3) in islets from 31 nondiabetic individuals, divided into young (<40 years), middle-aged (40-60 years) and elderly (>60 years) groups. We also assessed adaptive unfolded protein response markers glucose-regulated protein 94 (GRP94), and spliced X-box binding protein 1 (XBP1s) in senescent beta cells and their possible contributions to maintaining beta cell identity and differentiation state. RESULTS We found an almost 2-fold increase in the proportion of dedifferentiated cells in elderly and middle-aged groups compared with the young group (3.1 ± 1.0% and 3.0 ± 0.9% vs 1.7 ± 0.5%, P < .001). This was accompanied by inactivation of FoxO1 and loss of UCN3 expression in senescent human beta cells. In addition, we demonstrated that the expression levels of adaptive unfolded protein response (UPR) components GRP94 and XBP1s declined with age. In vitro data showed knockdown GRP94 in Min6-triggered cells to dedifferentiate and acquire progenitor features, while restored GRP94 levels in H2O2-induced senescent Min6 cells rescued beta cell identity. CONCLUSION Our finding highlights that the failure to establish proper adaptive UPR in senescent human beta cells shifts their differentiated states, possibly representing a crucial step in the pathogenesis of age-related beta cell failure.
Collapse
Affiliation(s)
| | | | - Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Correspondence: Qidi Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ; or Weiqing Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qidi Wang
- Correspondence: Qidi Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ; or Weiqing Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
52
|
PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53. Proc Natl Acad Sci U S A 2022; 119:e2206923119. [PMID: 36375063 PMCID: PMC9704710 DOI: 10.1073/pnas.2206923119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Senescence in pancreatic beta cells plays a major role in beta cell dysfunction, which leads to impaired glucose homeostasis and diabetes. Therefore, prevention of beta cell senescence could reduce the risk of diabetes. Treatment of nonobese diabetic (NOD) mice, a model of type 1 autoimmune diabetes (T1D), with palmitic acid hydroxy stearic acids (PAHSAs), a novel class of endogenous lipids with antidiabetic and antiinflammatory effects, delays the onset and reduces the incidence of T1D from 82% with vehicle treatment to 35% with PAHSAs. Here, we show that a major mechanism by which PAHSAs protect islets of the NOD mice is by directly preventing and reversing the initial steps of metabolic stress-induced senescence. In vitro PAHSAs increased Mdm2 expression, which decreases the stability of p53, a key inducer of senescence-related genes. In addition, PAHSAs enhanced expression of protective genes, such as those regulating DNA repair and glutathione metabolism and promoting autophagy. We demonstrate the translational relevance by showing that PAHSAs prevent and reverse early stages of senescence in metabolically stressed human islets by the same Mdm2 mechanism. Thus, a major mechanism for the dramatic effect of PAHSAs in reducing the incidence of type 1 diabetes in NOD mice is decreasing cellular senescence; PAHSAs may have a similar benefit in humans.
Collapse
|
53
|
Chen K, Zhang J, Huang Y, Tian X, Yang Y, Dong A. Single-cell RNA-seq transcriptomic landscape of human and mouse islets and pathological alterations of diabetes. iScience 2022; 25:105366. [PMID: 36339258 PMCID: PMC9626680 DOI: 10.1016/j.isci.2022.105366] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/13/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
Single-cell RNA sequencing has paved the way for delineating the pancreatic islet cell atlas and identifying hallmarks of diabetes. However, pathological alterations of type 2 diabetes (T2D) remain unclear. We isolated pancreatic islets from control and T2D mice for single-cell RNA sequencing (scRNA-seq) and retrieved multiple datasets from the open databases. The complete islet cell landscape and robust marker genes and transcription factors of each endocrine cell type were identified. GLRA1 was restricted to beta cells, and beta cells exhibited obvious heterogeneity. The beta subcluster in the T2D mice remarkably decreased the expression of Slc2a2, G6pc2, Mafa, Nkx6-1, Pdx1, and Ucn3 and had higher unfolded protein response (UPR) scores than in the control mice. Moreover, we developed a Web-based interactive tool, creating new opportunities for the data mining of pancreatic islet scRNA-seq datasets. In conclusion, our work provides a valuable resource for a deeper understanding of the pathological mechanism underlying diabetes. Cross-species scRNA-seq reveals the complete cell landscape of the islets of Langerhans We identify the robust marker genes and TFs of each endocrine and exocrine cell type Pathological alterations of beta cells in type 2 diabetes are explored A Web-based interactive tool is established for pancreatic islet scRNA-seq datasets
Collapse
|
54
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
55
|
Cuesta-Gomez N, Verhoeff K, Jasra IT, Pawlick R, Dadheech N, Shapiro AMJ. Characterization of stem-cell-derived islets during differentiation and after implantation. Cell Rep 2022; 40:111238. [PMID: 36001981 DOI: 10.1016/j.celrep.2022.111238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/26/2022] [Accepted: 07/27/2022] [Indexed: 12/11/2022] Open
Abstract
Recapitulation of embryonic pancreatic development has enabled development of methods for in vitro islet cell differentiation using human pluripotent stem cells (hPSCs), which have the potential to cure diabetes. Advanced methods for optimal generation of stem-cell-derived islets (SC-islets) has enabled successful diabetes reversal in rodents and shown promising early clinical trial outcomes. The main impediment for use of SC-islets is concern about safety because of off-target growth resulting from contaminated residual cells. In this review, we summarize the different endocrine and non-endocrine cell populations that have been described to emerge throughout β cell differentiation and after transplantation. We discuss the most recent approaches to enrich endocrine populations and remove off-target cells. Finally, we discuss the critical quality control and release criteria testing that we anticipate will be required prior to transplantation to ensure product safety.
Collapse
Affiliation(s)
- Nerea Cuesta-Gomez
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada
| | - Kevin Verhoeff
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada
| | - Ila Tewari Jasra
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada
| | - Rena Pawlick
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada
| | - Nidheesh Dadheech
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada.
| | - A M James Shapiro
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
56
|
Ni Q, Sun J, Wang Y, Wang Y, Liu J, Ning G, Wang W, Wang Q. mTORC1 is required for epigenetic silencing during β-cell functional maturation. Mol Metab 2022; 64:101559. [PMID: 35940555 PMCID: PMC9418906 DOI: 10.1016/j.molmet.2022.101559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/06/2022] Open
Abstract
Objective The mechanistic target of rapamycin complex 1 (mTORC1) is a key molecule that links nutrients, hormones, and growth factors to cell growth/function. Our previous studies have shown that mTORC1 is required for β-cell functional maturation and identity maintenance; however, the underlying mechanism is not fully understood. This work aimed to understand the underlying epigenetic mechanisms of mTORC1 in regulating β-cell functional maturation. Methods We performed Microarray, MeDIP-seq and ATAC-seq analysis to explore the abnormal epigenetic regulation in 8-week-old immature βRapKO islets. Moreover, DNMT3A was overexpressed in βRapKO islets by lentivirus, and the transcriptome changes and GSIS function were analyzed. Results We identified two major epigenetic silencing mechanisms, DNMT3A-dependent DNA methylation and PRC2-dependent H3K27me3 modification, which are responsible for functional immaturity of Raptor-deficient β-cell. Overexpression of DNMT3A partially reversed the immature transcriptome pattern and restored the impaired GSIS in Raptor-deficient β-cells. Moreover, we found that Raptor directly regulated PRC2/EED and H3K27me3 expression levels, as well as a group of immature genes marked with H3K27me3. Combined with ATAC-seq, MeDIP-seq and ChIP-seq, we identified β-cell immature genes with either DNA methylation and/or H3K27me3 modification. Conclusion The present study advances our understanding of the nutrient sensor mTORC1, by integrating environmental nutrient supply and epigenetic modification, i.e., DNMT3A-mediated DNA methylation and PRC2-mediated histone methylation in regulating β-cell identity and functional maturation, and therefore may impact the disease risk of type 2 diabetes. Rescued DNMT3A expression in Raptor-deficient islets partially reversed the abnormal induction of immature genes. EED/H3K27me3 were impaired in Raptor-ablated β-cell. DNA methylation and H3K27me3 are required for mTORC1-dependent epigenetic silencing of immature genes in β-cell.
Collapse
|
57
|
ZnT8 loss-of-function accelerates functional maturation of hESC-derived β cells and resists metabolic stress in diabetes. Nat Commun 2022; 13:4142. [PMID: 35842441 PMCID: PMC9288460 DOI: 10.1038/s41467-022-31829-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/04/2022] [Indexed: 12/21/2022] Open
Abstract
Human embryonic stem cell-derived β cells (SC-β cells) hold great promise for treatment of diabetes, yet how to achieve functional maturation and protect them against metabolic stresses such as glucotoxicity and lipotoxicity remains elusive. Our single-cell RNA-seq analysis reveals that ZnT8 loss of function (LOF) accelerates the functional maturation of SC-β cells. As a result, ZnT8 LOF improves glucose-stimulated insulin secretion (GSIS) by releasing the negative feedback of zinc inhibition on insulin secretion. Furthermore, we demonstrate that ZnT8 LOF mutations endow SC-β cells with resistance to lipotoxicity/glucotoxicity-triggered cell death by alleviating endoplasmic reticulum (ER) stress through modulation of zinc levels. Importantly, transplantation of SC-β cells with ZnT8 LOF into mice with preexisting diabetes significantly improves glycemia restoration and glucose tolerance. These findings highlight the beneficial effect of ZnT8 LOF on the functional maturation and survival of SC-β cells that are useful as a potential source for cell replacement therapies. Immature function and fragility hinder application of hESC-derived β cells (SC-β cell) for diabetes cell therapy. Here, the authors identify ZnT8 as a gene editing target to enhance the insulin secretion and cell survival under metabolic stress by abolishing zinc transport in SC-β cells.
Collapse
|
58
|
Stancill JS, Hansen PA, Mathison AJ, Schmidt EE, Corbett JA. Deletion of Thioredoxin Reductase Disrupts Redox Homeostasis and Impairs β-Cell Function. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac034. [PMID: 35873655 PMCID: PMC9301323 DOI: 10.1093/function/zqac034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) have been implicated as mediators of pancreatic β-cell damage. While β-cells are thought to be vulnerable to oxidative damage, we have shown, using inhibitors and acute depletion, that thioredoxin reductase, thioredoxin, and peroxiredoxins are the primary mediators of antioxidant defense in β-cells. However, the role of this antioxidant cycle in maintaining redox homeostasis and β-cell survival in vivo remains unclear. Here, we generated mice with a β-cell specific knockout of thioredoxin reductase 1 (Txnrd1fl/fl; Ins1Cre/+ , βKO). Despite blunted glucose-stimulated insulin secretion, knockout mice maintain normal whole-body glucose homeostasis. Unlike pancreatic islets with acute Txnrd1 inhibition, βKO islets do not demonstrate increased sensitivity to ROS. RNA-sequencing analysis revealed that Txnrd1-deficient β-cells have increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated genes, and altered expression of genes involved in heme and glutathione metabolism, suggesting an adaptive response. Txnrd1-deficient β-cells also have decreased expression of factors controlling β-cell function and identity which may explain the mild functional impairment. Together, these results suggest that Txnrd1-knockout β-cells compensate for loss of this essential antioxidant pathway by increasing expression of Nrf2-regulated antioxidant genes, allowing for protection from excess ROS at the expense of normal β-cell function and identity.
Collapse
Affiliation(s)
| | - Polly A Hansen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Edward E Schmidt
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MN 59717, USA,Redox Biology Laboratory, University of Veterinary Medicine, Budapest 1078, Hungary
| | | |
Collapse
|
59
|
D’Angelo CV, West HL, Whitticar NB, Corbin KL, Donovan LM, Stiadle BI, Nunemaker CS. Similarities in Calcium Oscillations Between Neonatal Mouse Islets and Mature Islets Exposed to Chronic Hyperglycemia. Endocrinology 2022; 163:6585503. [PMID: 35551371 PMCID: PMC9186310 DOI: 10.1210/endocr/bqac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/19/2022]
Abstract
Pulsatility is important to islet function. As islets mature into fully developed insulin-secreting micro-organs, their ability to produce oscillatory intracellular calcium ([Ca2+]i) patterns in response to glucose also matures. In this study, we measured [Ca2+]i using fluorescence imaging to characterize oscillations from neonatal mice on postnatal (PN) days 0, 4, and 12 in comparison to adult islets. Under substimulatory (3-mM) glucose levels, [Ca2+]i was low and quiescent for adult islets as expected, as well as for PN day 12 islets. In contrast, one-third of islets on PN day 0 and 4 displayed robust [Ca2+]i oscillations in low glucose. In stimulatory glucose (11 mM) conditions, oscillations were present on all neonatal days but differed from patterns in adults. By PN day 12, [Ca2+]i oscillations were approaching characteristics of fully developed islets. The immature response pattern of neonatal islets was due, at least in part, to differences in adenosine 5'-triphosphate (ATP)-sensitive K+-channel activity estimated by [Ca2+]i responses to KATP channel agents diazoxide and tolbutamide. Neonatal [Ca2+]i patterns were also strikingly similar to patterns observed in mature islets exposed to hyperglycemic conditions (20 mM glucose for 48 hours): elevated [Ca2+]i and oscillations in low glucose along with reduced pulse mass in high glucose. Since a hallmark of diabetic islets is dedifferentiation, we propose that diabetic islets display features of "reverse maturation," demonstrating similar [Ca2+]i dynamics as neonatal islets. Pulsatility is thus an important emergent feature of neonatal islets. Our findings may provide insight into reversing β-cell dedifferentiation and to producing better functioning β cells from pluripotent stem cells.
Collapse
Affiliation(s)
- Cathleen V D’Angelo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Hannah L West
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Honors Tutorial College, Ohio University, Athens, Ohio 45701, USA
| | - Nicholas B Whitticar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Translational Biomedical Sciences Program, Graduate College, Ohio University, Athens, Ohio 45701, USA
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Lauren M Donovan
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Benjamin I Stiadle
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Craig S Nunemaker
- Correspondence: Craig S. Nunemaker, PhD, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, 1 Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
60
|
Proprotein convertase PCSK9 affects expression of key surface proteins in human pancreatic beta cells via intra- and extracellular regulatory circuits. J Biol Chem 2022; 298:102096. [PMID: 35660019 PMCID: PMC9251788 DOI: 10.1016/j.jbc.2022.102096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/02/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is involved in the degradation of the low-density lipoprotein receptor. PCSK9 also targets proteins involved in lipid metabolism (very low–density lipoprotein receptor), immunity (major histocompatibility complex I), and viral infection (cluster of differentiation 81). Recent studies have also indicated that PCSK9 loss-of-function mutations are associated with an increased incidence of diabetes; however, the expression and function of PCSK9 in insulin-producing pancreatic beta cells remain unclear. Here, we studied PCSK9 regulation and function by performing loss- and gain-of-function experiments in the human beta cell line EndoC-βH1. We demonstrate that PCSK9 is expressed and secreted by EndoC-βH1 cells. We also found that PCSK9 expression is regulated by cholesterol and sterol regulatory element–binding protein transcription factors, as previously demonstrated in other cell types such as hepatocytes. Importantly, we show that PCSK9 knockdown using siRNA results in deregulation of various elements of the transcriptome, proteome, and secretome, and increases insulin secretion. We also observed that PCSK9 decreases low-density lipoprotein receptor and very low–density lipoprotein receptor levels via an extracellular signaling mechanism involving exogenous PCSK9, as well as levels of cluster of differentiation 36, a fatty acid transporter, through an intracellular signaling mechanism. Finally, we found that PCSK9 regulates the cell surface expression of PDL1 and HLA-ABC, proteins involved in cell–lymphocyte interaction, also via an intracellular mechanism. Collectively, these results highlight PCSK9 as a regulator of multiple cell surface receptors in pancreatic beta cells.
Collapse
|
61
|
Abderrahmani A, Jacovetti C, Regazzi R. Lessons from neonatal β-cell epigenomic for diabetes prevention and treatment. Trends Endocrinol Metab 2022; 33:378-389. [PMID: 35382967 DOI: 10.1016/j.tem.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/30/2022]
Abstract
Pancreatic β-cell expansion and functional maturation during the birth-to-weaning period plays an essential role in the adaptation of plasma insulin levels to metabolic needs. These events are driven by epigenetic programs triggered by growth factors, hormones, and nutrients. These mechanisms operating in the neonatal period can be at least in part reactivated in adult life to increase the functional β-cell mass and face conditions of increased insulin demand such as obesity or pregnancy. In this review, we will highlight the importance of studying these signaling pathways and epigenetic programs to understand the causes of different forms of diabetes and to permit the design of novel therapeutic strategies to prevent and treat this metabolic disorder affecting hundreds of millions of people worldwide.
Collapse
Affiliation(s)
- Amar Abderrahmani
- Universitéde Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Cécile Jacovetti
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland; Department of Biomedical Science, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
62
|
Abstract
The ability to maintain normoglycaemia, through glucose-sensitive insulin release, is a key aspect of postnatal beta cell function. However, terminally differentiated beta cell identity does not necessarily imply functional maturity. Beta cell maturation is therefore a continuation of beta cell development, albeit a process that occurs postnatally in mammals. Although many important features have been identified in the study of beta cell maturation, as of yet no unified mechanistic model of beta cell functional maturity exists. Here, we review recent findings about the underlying mechanisms of beta cell functional maturation. These findings include systemic hormonal and nutritional triggers that operate through energy-sensing machinery shifts within beta cells, resulting in primed metabolic states that allow for appropriate glucose trafficking and, ultimately, insulin release. We also draw attention to the expansive synergistic nature of these pathways and emphasise that beta cell maturation is dependent on overlapping regulatory and metabolic networks.
Collapse
Affiliation(s)
- Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
63
|
Abstract
The pancreatic β-cells are essential for regulating glucose homeostasis through the coordinated release of the insulin hormone. Dysfunction of the highly specialized β-cells results in diabetes mellitus, a growing global health epidemic. In this review, we describe the development and function of β-cells the emerging concept of heterogeneity within insulin-producing cells, and the potential of other cell types to assume β-cell functionality via transdifferentiation. We also discuss emerging routes to design cells with minimal β-cell properties and human stem cell differentiation efforts that carry the promise to restore normoglycemia in patients suffering from diabetes.
Collapse
Affiliation(s)
- Natanya Kerper
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | - Sudipta Ashe
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
64
|
Varghese SS, Dhawan S. Polycomb Repressive Complexes: Shaping Pancreatic Beta-Cell Destiny in Development and Metabolic Disease. Front Cell Dev Biol 2022; 10:868592. [PMID: 35602600 PMCID: PMC9116887 DOI: 10.3389/fcell.2022.868592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic beta-cells secrete the hormone insulin, which is essential for the regulation of systemic glucose homeostasis. Insufficiency of insulin due to loss of functional beta-cells results in diabetes. Epigenetic mechanisms orchestrate the stage-specific transcriptional programs that guide the differentiation, functional maturation, growth, and adaptation of beta-cells in response to growth and metabolic signals throughout life. Primary among these mechanisms is regulation by the Polycomb Repressive Complexes (PRC) that direct gene-expression via histone modifications. PRC dependent histone modifications are pliable and provide a degree of epigenetic plasticity to cellular processes. Their modulation dictates the spatio-temporal control of gene-expression patterns underlying beta-cell homeostasis. Emerging evidence shows that dysregulation of PRC-dependent epigenetic control is also a hallmark of beta-cell failure in diabetes. This minireview focuses on the multifaceted contributions of PRC modules in the specification and maintenance of terminally differentiated beta-cell phenotype, as well as beta-cell growth and adaptation. We discuss the interaction of PRC regulation with different signaling pathways and mechanisms that control functional beta-cell mass. We also highlight recent advances in our understanding of the epigenetic regulation of beta-cell homeostasis through the lens of beta-cell pathologies, namely diabetes and insulinomas, and the translational relevance of these findings. Using high-resolution epigenetic profiling and epigenetic engineering, future work is likely to elucidate the PRC regulome in beta-cell adaptation versus failure in response to metabolic challenges and identify opportunities for therapeutic interventions.
Collapse
|
65
|
Flisher MF, Shin D, Huising MO. Urocortin3: Local inducer of somatostatin release and bellwether of beta cell maturity. Peptides 2022; 151:170748. [PMID: 35065098 PMCID: PMC10881066 DOI: 10.1016/j.peptides.2022.170748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
Urocortin 3 (UCN3) is a peptide hormone expressed in pancreatic islets of Langerhans of both human alpha and human beta cells and solely in murine beta cells. UCN3 signaling acts locally within the islet to activate its cognate receptor, corticotropin releasing hormone receptor 2 (CRHR2), which is expressed by delta cells, to potentiate somatostatin (SST) negative feedback to reduce islet cell hormone output. The functional importance of UCN3 signaling in the islet is to modulate the amount of SST tone allowing for finely tuned regulation of insulin and glucagon secretion. UCN3 signaling is a hallmark of functional beta cell maturation, increasing the beta cell glucose threshold for insulin secretion. In doing so, UCN3 plays a relevant functional role in accurately maintaining blood glucose homeostasis. Additionally, UCN3 acts as an indicator of beta cell maturation and health, as UCN3 is not expressed in immature beta cells and is downregulated in dedifferentiated and dysfunctional beta cell states. Here, we review the mechanistic underpinnings of UCN3 signaling, its net effect on islet cell hormone output, as well as its value as a marker for beta cell maturation and functional status.
Collapse
Affiliation(s)
- Marcus F Flisher
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA, United States
| | - Donghan Shin
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA, United States
| | - Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA, United States; Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, United States.
| |
Collapse
|
66
|
Liu D, Yang KY, Chan VW, Ye W, Chong CC, Wang CC, Wang H, Zhou B, Cheng KK, Lui KO. YY1 Regulates Glucose Homeostasis Through Controlling Insulin Transcription in Pancreatic β-Cells. Diabetes 2022; 71:961-977. [PMID: 35113157 PMCID: PMC9044128 DOI: 10.2337/db21-0695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022]
Abstract
To date, identification of nonislet-specific transcriptional factors in the regulation of insulin gene expression has been little studied. Here, we report that the expression level of the transcription factor YY1 is increased dramatically in both human and mouse pancreatic β-cells after birth. Nevertheless, the physiological role of YY1 during β-cell development and its regulatory mechanism in β-cell function remain largely unknown. After β-cell ablation of Yy1, we observed rapid onset of hyperglycemia, impaired glucose tolerance, and reduced β-cell mass in neonatal and adult mice. These mice also had hypoinsulinemia with normal insulin sensitivity compared with their wild-type littermates, manifesting as a type 1 diabetic phenotype. Mechanistically, genome-wide RNA sequencing has defined dysregulated insulin signaling and defective glucose responsiveness in β-cells devoid of YY1. Integrative analyses coupled with chromatin immunoprecipitation assays targeting YY1, and histone modifications, including H3K4me1, H3K27ac, and H3K27me3, have further identified Ins1 and Ins2 as direct gene targets of YY1. Luciferase reporter assays and loss- and gain-of-function experiments also demonstrated that YY1 binds to the enhancer regions in exon 2 of Ins1 and Ins2, activating insulin transcription and, therefore, proinsulin and insulin production in pancreatic β-cells. YY1 also directly interacts with RNA polymerase II, potentially stabilizing the enhancer-promoter interaction in the multiprotein-DNA complex during transcription initiation. Taken together, our findings suggest a role for YY1 as a transcriptional activator of insulin gene expression, assisting β-cell maturation and function after birth. These analyses may advance our understanding of β-cell biology and provide clinically relevant insights targeting the pathophysiological origins of diabetes.
Collapse
Affiliation(s)
- Di Liu
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y. Yang
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Vicken W. Chan
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenchu Ye
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Charing C.N. Chong
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Li Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Kenneth K.Y. Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kathy O. Lui
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Corresponding author: Kathy O. Lui,
| |
Collapse
|
67
|
Laminin matrix regulates beta-cell FGFR5 expression to enhance glucose-stimulated metabolism. Sci Rep 2022; 12:6110. [PMID: 35414066 PMCID: PMC9005713 DOI: 10.1038/s41598-022-09804-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
We previously showed that pancreatic beta-cells plated on laminin matrix express reduced levels of FGFR1, a receptor linked to beta-cell metabolism and differentiation. Due to recent evidence that adult beta-cells also express FGFR5, a co-receptor for FGFR1, we now aim to determine the effect of laminin on FGFR5 expression and consequent effects on beta-cell metabolism. Using a genetically encoded sensor for NADPH/NADP+ redox state (Apollo-NADP+), we show overexpression of FGFR5 enhances glucose-stimulated NADPH metabolism in beta-cell lines as well as mouse and human beta-cells. This enhanced response was accompanied by increased insulin secretion as well as increased expression of transcripts for glycolytic enzymes (Glucokinase/GCK, PKM2) and the functional maturity marker Urocortin 3 (UCN3). Culturing beta-cells on laminin matrix also stimulated upregulation of endogenous FGFR5 expression, and similarly enhanced beta-cell glucose-stimulated NADPH-metabolism as well as GCK and PKM2 transcript expression. The metabolism and transcript responses triggered by laminin were disrupted by R5ΔC, a truncated receptor isoform that inhibits the FGFR5/FGFR1 signaling complex. Collectively these data reveal that beta-cells respond to laminin by increasing FGFR5 expression to enhance beta-cell glucose metabolism.
Collapse
|
68
|
Mitofusin2 Promotes β Cell Maturation from Mouse Embryonic Stem Cells via Sirt3/Idh2 Activation. Stem Cells Int 2022; 2022:1172795. [PMID: 35386849 PMCID: PMC8977338 DOI: 10.1155/2022/1172795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/02/2022] [Indexed: 12/01/2022] Open
Abstract
β cell dysfunction is the leading cause of diabetes. Adult β cells have matured glucose-stimulated insulin secretion (GSIS), whereas fetal and neonatal β cells are insensitive to glucose and are functionally immature. However, how β cells mature and acquire robust GSIS is not fully understood. Here, we explored the potential regulatory proteins of β cell maturation process and the capacity for GSIS. Combined with the data from public databases, we found that the gene expression of Mitofusin2 (Mfn2) showed an increasing trend from mouse neonatal β cells to mature β cells. Moreover, its protein expression increased during mouse embryonic pancreas development and β cell differentiation from mouse embryonic stem cells. Knocking down Mfn2 reduced Urocortin3 (Ucn3) expression, GSIS, and ATP production in induced β cells, while overexpressing it had the opposite effect. However, neither Mfn2 knockdown nor overexpression affected the differentiation rate of insulin-positive cells. In immature and mature β cells, Mfn2 and its correlated genes were enriched in tricarboxylic acid (TCA) cycle-related pathways. The expressions of Sirtuin 3 (Sirt3) and isocitrate dehydrogenase 2 (NADP+) and mitochondrial (Idh2) were Mfn2-regulated during β cell differentiation. Inhibiting Idh2 or Sirt3 reduced cellular ATP content and insulin secretion levels that increased by Mfn2 overexpression. Thus, Mfn2 modulated the induced β cell GSIS by influencing the TCA cycle through Sirt3/Idh2 activation. We demonstrated that Mfn2 promoted embryonic stem cell-derived β cell maturation via the Sirt3/Idh2 pathway, providing new insights into β cell development. Our data contribute to understanding diabetes pathogenesis and offer potential new targets for β cell regeneration therapies.
Collapse
|
69
|
Stanescu DL, Stanley CA. Advances in Understanding the Mechanism of Transitional Neonatal Hypoglycemia and Implications for Management. Clin Perinatol 2022; 49:55-72. [PMID: 35210009 DOI: 10.1016/j.clp.2021.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Our lack of basic knowledge about the basic mechanisms of transitional hypoglycemia and other forms of hypoglycemia in newborns underlies the ongoing controversies over standards for managing these conditions. To address this deficiency, the authors evaluated regulation of insulin secretion in fetal, newborn, and adult rats. The results demonstrate that transitional hypoglycemia in normal neonates and persistent hypoglycemia in high-risk infants both reflect altered beta-cell insulin regulation. These findings provide a new foundation for improving detection and management and preventing hypoglycemic brain injury in normal neonates and, especially, in infants with persistent hypoglycemia and genetic forms of congenital hyperinsulinism.
Collapse
Affiliation(s)
- Diana L Stanescu
- Division of Endocrinology, Department of Pediatrics, The Childrens Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 34th Street & Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Charles A Stanley
- Division of Endocrinology, Department of Pediatrics, The Childrens Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 34th Street & Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
70
|
Mechanisms Underlying the Expansion and Functional Maturation of β-Cells in Newborns: Impact of the Nutritional Environment. Int J Mol Sci 2022; 23:ijms23042096. [PMID: 35216239 PMCID: PMC8877060 DOI: 10.3390/ijms23042096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
The functional maturation of insulin-secreting β-cells is initiated before birth and is completed in early postnatal life. This process has a critical impact on the acquisition of an adequate functional β-cell mass and on the capacity to meet and adapt to insulin needs later in life. Many cellular pathways playing a role in postnatal β-cell development have already been identified. However, single-cell transcriptomic and proteomic analyses continue to reveal new players contributing to the acquisition of β-cell identity. In this review, we provide an updated picture of the mechanisms governing postnatal β-cell mass expansion and the transition of insulin-secreting cells from an immature to a mature state. We then highlight the contribution of the environment to β-cell maturation and discuss the adverse impact of an in utero and neonatal environment characterized by calorie and fat overload or by protein deficiency and undernutrition. Inappropriate nutrition early in life constitutes a risk factor for developing diabetes in adulthood and can affect the β-cells of the offspring over two generations. A better understanding of these events occurring in the neonatal period will help developing better strategies to produce functional β-cells and to design novel therapeutic approaches for the prevention and treatment of diabetes.
Collapse
|
71
|
Genetic manipulation of stress pathways can protect stem-cell-derived islets from apoptosis in vitro. Stem Cell Reports 2022; 17:766-774. [PMID: 35245439 PMCID: PMC9023776 DOI: 10.1016/j.stemcr.2022.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/20/2023] Open
Abstract
The in vitro production of stem-cell-derived islets (SC-islets) has brought forth the potential of transplanting these cells to restore glycemic control in people with diabetes. Nonetheless, alloimmune and autoimmune responses remain considerable challenges for a broad clinical implementation of β-cell replacement therapies. β-cell stress has been implicated in the onset of β-cell immunogenicity and death and is likely to contribute to β-cell failure following transplantation. We show that inducing stress and/or administering cytokines causes SC-islet apoptosis, cellular dysfunction, and an increased expression of β-cell stress- and immune-interaction-related genes. We then demonstrate that manipulating some of these genes results in enhanced protection of SC-islets from apoptosis in vitro. Stem-cell-derived islets (SC-islets) are vulnerable to stress in vitro Genetic manipulation protects SC-islets from stress-mediated apoptosis and dysfunction Genetic manipulation protects SC-islets from apoptosis mediated by allorecognition
Collapse
|
72
|
Carril Pardo CA, Massoz L, Dupont MA, Bergemann D, Bourdouxhe J, Lavergne A, Tarifeño-Saldivia E, Helker CSM, Stainier DYR, Peers B, Voz MM, Manfroid I. A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes. eLife 2022; 11:e67576. [PMID: 35060900 PMCID: PMC8820734 DOI: 10.7554/elife.67576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Restoring damaged β-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone zebrafish to study β-cells arising following destruction. We show that most new insulin cells differ from the original β-cells as they coexpress Somatostatin and Insulin. These bihormonal cells are abundant, functional and able to normalize glycemia. Their formation in response to β-cell destruction is fast, efficient, and age-independent. Bihormonal cells are transcriptionally close to a subset of δ-cells that we identified in control islets and that are characterized by the expression of somatostatin 1.1 (sst1.1) and by genes essential for glucose-induced Insulin secretion in β-cells such as pdx1, slc2a2 and gck. We observed in vivo the conversion of monohormonal sst1.1-expressing cells to sst1.1+ ins + bihormonal cells following β-cell destruction. Our findings support the conclusion that sst1.1 δ-cells possess a pro-β identity enabling them to contribute to the neogenesis of Insulin-producing cells during regeneration. This work unveils that abundant and functional bihormonal cells benefit to diabetes recovery in zebrafish.
Collapse
Affiliation(s)
| | - Laura Massoz
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Marie A Dupont
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - David Bergemann
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Jordane Bourdouxhe
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Arnaud Lavergne
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
- GIGA-Genomics core facility, University of LiègeLiègeBelgium
| | - Estefania Tarifeño-Saldivia
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
- Gene Expression and Regulation Laboratory, Department of Biochemistry and Molecular Biology, University of ConcepciónConcepciónChile
| | - Christian SM Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Didier YR Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Bernard Peers
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Marianne M Voz
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Isabelle Manfroid
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| |
Collapse
|
73
|
Cefalu WT, Andersen DK, Arreaza-Rubín G, Pin CL, Sato S, Verchere CB, Woo M, Rosenblum ND. Heterogeneity of Diabetes: β-Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes Care 2022; 45:3-22. [PMID: 34782355 PMCID: PMC8753760 DOI: 10.2337/dci21-0051] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/03/2023]
Abstract
One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.
Collapse
Affiliation(s)
- William T. Cefalu
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Guillermo Arreaza-Rubín
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Christopher L. Pin
- Departments of Physiology and Pharmacology, Paediatrics, and Oncology, University of Western Ontario, and Genetics and Development Division, Children’s Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Sheryl Sato
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - C. Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital, Vancouver, British Columbia, Canada
- UBC Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Minna Woo
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, University Health Network and Sinai Health System, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Norman D. Rosenblum
- Canadian Institutes of Health Research Institute of Nutrition, Metabolism and Diabetes, Toronto, Ontario, Canada
- Division of Nephrology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Program in Stem Cell and Developmental Biology, Research Institute, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
74
|
Marques ES, Formato E, Liang W, Leonard E, Timme‐Laragy AR. Relationships between type 2 diabetes, cell dysfunction, and redox signaling: A meta-analysis of single-cell gene expression of human pancreatic α- and β-cells. J Diabetes 2022; 14:34-51. [PMID: 34725923 PMCID: PMC8746116 DOI: 10.1111/1753-0407.13236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by insulin resistance and failure of β-cells to meet the metabolic demand for insulin. Recent advances in single-cell RNA sequencing (sc-RNA-Seq) have allowed for in-depth studies to further understand the underlying cellular mechanisms of T2DM. In β-cells, redox signaling is critical for insulin production. A meta-analysis of human pancreas islet sc-RNA-Seq data was conducted to evaluate how T2DM may modify the transcriptomes of α- and β-cells. METHODS Annotated sc-RNA-Seq data from six studies of human pancreatic islets from metabolically healthy and donors with T2DM were collected. α- and β-cells, subpopulations of proliferating α-cells, immature, and senescent β-cells were identified based on expression levels of key marker genes. Each dataset was analyzed individually before combining, using weighted comparisons. Pathways of significant genes and individual redox-related gene expression were then evaluated to further understand the role that redox signaling may play in T2DM-induced β-cell dysfunction. RESULTS α- and β-cells from T2DM donors modified genes involved in energy metabolism, immune response, autophagy, and cellular stress. α- and β-cells also had an increased nuclear factor erythroid 2-related factor 2 (NFE2L2)-mediated antioxidant response in T2DM donors. The proportion of immature and senescent β-cells increased in T2DM donors, and in immature and senescent β-cells, genes regulated by NFE2L2 were further upregulated. CONCLUSIONS These findings suggest that NFE2L2 plays a role in β-cell maturation and dysfunction. Redox singling maybe a key pathway for β-cell restoration and T2DM therapeutics.
Collapse
Affiliation(s)
- Emily Sara Marques
- Department of Environmental Health SciencesUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Emily Formato
- Molecular and Cellular Biology Graduate ProgramUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Wenle Liang
- Department of Environmental Health SciencesUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Emily Leonard
- Department of Environmental Health SciencesUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Alicia R. Timme‐Laragy
- Department of Environmental Health SciencesUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| |
Collapse
|
75
|
Benninger RKP, Kravets V. The physiological role of β-cell heterogeneity in pancreatic islet function. Nat Rev Endocrinol 2022; 18:9-22. [PMID: 34667280 PMCID: PMC8915749 DOI: 10.1038/s41574-021-00568-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 01/03/2023]
Abstract
Endocrine cells within the pancreatic islets of Langerhans are heterogeneous in terms of transcriptional profile, protein expression and the regulation of hormone release. Even though this heterogeneity has long been appreciated, only within the past 5 years have detailed molecular analyses led to an improved understanding of its basis. Although we are beginning to recognize why some subpopulations of endocrine cells are phenotypically different to others, arguably the most important consideration is how this heterogeneity affects the regulation of hormone release to control the homeostasis of glucose and other energy-rich nutrients. The focus of this Review is the description of how endocrine cell heterogeneity (and principally that of insulin-secreting β-cells) affects the regulation of hormone secretion within the islets of Langerhans. This discussion includes an overview of the functional characteristics of the different islet cell subpopulations and describes how they can communicate to influence islet function under basal and glucose-stimulated conditions. We further discuss how changes to the specific islet cell subpopulations or their numbers might underlie islet dysfunction in type 2 diabetes mellitus. We conclude with a discussion of several key open questions regarding the physiological role of islet cell heterogeneity.
Collapse
Affiliation(s)
- Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Vira Kravets
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
76
|
López-Pérez A, Norlin S, Steneberg P, Remeseiro S, Edlund H, Hörnblad A. Pan-AMPK activator O304 prevents gene expression changes and remobilisation of histone marks in islets of diet-induced obese mice. Sci Rep 2021; 11:24410. [PMID: 34949756 PMCID: PMC8702551 DOI: 10.1038/s41598-021-03567-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) has an important role in cellular energy homeostasis and has emerged as a promising target for treatment of Type 2 Diabetes (T2D) due to its beneficial effects on insulin sensitivity and glucose homeostasis. O304 is a pan-AMPK activator that has been shown to improve glucose homeostasis in both mouse models of diabetes and in human T2D subjects. Here, we describe the genome-wide transcriptional profile and chromatin landscape of pancreatic islets following O304 treatment of mice fed high-fat diet (HFD). O304 largely prevented genome-wide gene expression changes associated with HFD feeding in CBA mice and these changes were associated with remodelling of active and repressive chromatin marks. In particular, the increased expression of the β-cell stress marker Aldh1a3 in islets from HFD-mice is completely abrogated following O304 treatment, which is accompanied by loss of active chromatin marks in the promoter as well as distant non-coding regions upstream of the Aldh1a3 gene. Moreover, O304 treatment restored dysfunctional glucose homeostasis as well as expression of key markers associated with β-cell function in mice with already established obesity. Our findings provide preclinical evidence that O304 is a promising therapeutic compound not only for T2D remission but also for restoration of β-cell function following remission of T2D diabetes.
Collapse
Affiliation(s)
- Ana López-Pérez
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures väg 12, 90187, Umeå, Sweden
| | - Stefan Norlin
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures väg 12, 90187, Umeå, Sweden
| | - Pär Steneberg
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures väg 12, 90187, Umeå, Sweden
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures väg 12, 90187, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90187, Umeå, Sweden
| | - Helena Edlund
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures väg 12, 90187, Umeå, Sweden.
| | - Andreas Hörnblad
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures väg 12, 90187, Umeå, Sweden.
| |
Collapse
|
77
|
Insulin is expressed by enteroendocrine cells during human fetal development. Nat Med 2021; 27:2104-2107. [PMID: 34887578 DOI: 10.1038/s41591-021-01586-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022]
Abstract
Generation of beta cells via transdifferentiation of other cell types is a promising avenue for the treatment of diabetes. Here we reconstruct a single-cell atlas of the human fetal and neonatal small intestine. We identify a subset of fetal enteroendocrine K/L cells that express high levels of insulin and other beta cell genes. Our findings highlight a potential extra-pancreatic source of beta cells and expose its molecular blueprint.
Collapse
|
78
|
Scoville DW, Jetten AM. GLIS3: A Critical Transcription Factor in Islet β-Cell Generation. Cells 2021; 10:cells10123471. [PMID: 34943978 PMCID: PMC8700524 DOI: 10.3390/cells10123471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Understanding of pancreatic islet biology has greatly increased over the past few decades based in part on an increased understanding of the transcription factors that guide this process. One such transcription factor that has been increasingly tied to both β-cell development and the development of diabetes in humans is GLIS3. Genetic deletion of GLIS3 in mice and humans induces neonatal diabetes, while single nucleotide polymorphisms (SNPs) in GLIS3 have been associated with both Type 1 and Type 2 diabetes. As a significant progress has been made in understanding some of GLIS3’s roles in pancreas development and diabetes, we sought to compare current knowledge on GLIS3 within the pancreas to that of other islet enriched transcription factors. While GLIS3 appears to regulate similar genes and pathways to other transcription factors, its unique roles in β-cell development and maturation make it a key target for future studies and therapy.
Collapse
|
79
|
Cui C, Li T, Xie Y, Yang J, Fu C, Qiu Y, Shen L, Ni Q, Wang Q, Nie A, Ning G, Wang W, Gu Y. Enhancing Acsl4 in absence of mTORC2/Rictor drove β-cell dedifferentiation via inhibiting FoxO1 and promoting ROS production. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166261. [PMID: 34455055 DOI: 10.1016/j.bbadis.2021.166261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Rapamycin insensitive companion of mechanistic target of Rapamycin (Rictor), the key component of mTOR complex 2 (mTORC2), controls both β-cell proliferation and function. We sought to study whether long chain acyl-CoA synthetase 4 (Acsl4) worked downstream of Rictor/mTORC2 to maintain β-cell functional mass. We found Acsl4 was positively regulated by Rictor at transcriptional and posttranslational levels in mouse β-cell. Infecting adenovirus expressing Acsl4 in β-cell-specific-Rictor-knockout (βRicKO) islets and Min6 cells knocking down Rictor with lentivirus-expressing siRNA-oligos targeting Rictor(siRic), recovered the β-cell dysplasia but not dysfunction. Cell bioenergetic experiment performed with Seahorse XF showed that Acsl4 could not rescue the dampened glucose oxidation in Rictor-lacking β-cell, but further promoted lipid oxidation. Transposase-Accessible Chromatin (ATAC) and H3K27Ac chromatin immunoprecipitation (ChIP) sequencing studies reflected the epigenetic elevated molecular signature for β-cell dedifferentiation and mitigated oxidative defense/response. These results were confirmed by the observations of elevated acetylation and ubiquitination of FoxO1, increased protein levels of Gpx1 and Hif1an, excessive reactive oxygen species (ROS) production and diminished MafA in Acsl4 overexpressed Rictor-lacking β-cells. In these cells, antioxidant treatment significantly recovered MafA level and insulin content. Inducing lipid oxidation alone could not mimic the effect of Acsl4 in Rictor lacking β-cell. Our study suggested that Acsl4 function in β-cell was context dependent and might facilitate β-cell dedifferentiation with attenuated Rictor/mTORC2 activity or insulin signaling via posttranslational inhibiting FoxO1 and epigenetically enhancing ROS induced MafA degradation.
Collapse
Affiliation(s)
- Canqi Cui
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Li
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Xie
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yang
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Fu
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixuan Qiu
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linyan Shen
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qicheng Ni
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aifang Nie
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weiqing Wang
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyun Gu
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
80
|
Cefalu WT, Andersen DK, Arreaza-Rubín G, Pin CL, Sato S, Verchere CB, Woo M, Rosenblum ND. Heterogeneity of Diabetes: β-Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Can J Diabetes 2021; 45:697-713. [PMID: 34794897 DOI: 10.1016/j.jcjd.2021.09.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 10/19/2022]
Abstract
One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.
Collapse
Affiliation(s)
- William T Cefalu
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States.
| | - Dana K Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Guillermo Arreaza-Rubín
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Christopher L Pin
- Departments of Physiology and Pharmacology, Paediatrics, and Oncology, University of Western Ontario, and Genetics and Development Division, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Sheryl Sato
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - C Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital, Vancouver, British Columbia, Canada; UBC Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Minna Woo
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, University Health Network and Sinai Health System, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Norman D Rosenblum
- Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes, Toronto, Ontario, Canada; Division of Nephrology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; Program in Stem Cell and Developmental Biology, Research Institute, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
81
|
Stancill JS, Kasmani MY, Khatun A, Cui W, Corbett JA. Cytokine and Nitric Oxide-Dependent Gene Regulation in Islet Endocrine and Nonendocrine Cells. FUNCTION (OXFORD, ENGLAND) 2021; 3:zqab063. [PMID: 34927076 PMCID: PMC8674205 DOI: 10.1093/function/zqab063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 02/02/2023]
Abstract
While exposure to inflammatory cytokines is thought to contribute to pancreatic β-cell damage during diabetes, primarily because cytokine-induced nitric oxide impairs β-cell function and causes cell death with prolonged exposure, we hypothesize that there is a physiological role for cytokine signaling that protects β-cells from a number of environmental stresses. This hypothesis is derived from the knowledge that β-cells are essential for survival even though they have a limited capacity to replicate, yet they are exposed to high cytokine levels during infection as most of the pancreatic blood flow is directed to islets. Here, mouse islets were subjected to single-cell RNA sequencing following 18-h cytokine exposure. Treatment with IL-1β and IFN-γ stimulates expression of inducible nitric oxide synthase (iNOS) mRNA and antiviral and immune-associated genes as well as repression of islet identity factors in a subset of β- and non-β-endocrine cells in a nitric oxide-independent manner. Nitric oxide-dependent expression of genes encoding heat shock proteins was observed in both β- and non-β-endocrine cells. Interestingly, cells with high expression of heat shock proteins failed to increase antiviral and immune-associated gene expression, suggesting that nitric oxide may be an internal "off switch" to prevent the negative effects of prolonged cytokine signaling in islet endocrine cells. We found no evidence for pro-apoptotic gene expression following 18-h cytokine exposure. Our findings suggest that the primary functions of cytokines and nitric oxide are to protect islet endocrine cells from damage, and only when regulation of cytokine signaling is lost does irreversible damage occur.
Collapse
Affiliation(s)
| | - Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | | |
Collapse
|
82
|
Oppenländer L, Palit S, Stemmer K, Greisle T, Sterr M, Salinno C, Bastidas-Ponce A, Feuchtinger A, Böttcher A, Ansarullah, Theis FJ, Lickert H. Vertical sleeve gastrectomy triggers fast β-cell recovery upon overt diabetes. Mol Metab 2021; 54:101330. [PMID: 34500108 PMCID: PMC8487975 DOI: 10.1016/j.molmet.2021.101330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The effectiveness of bariatric surgery in restoring β-cell function has been described in type-2 diabetes (T2D) patients and animal models for years, whereas the mechanistic underpinnings are largely unknown. The possibility of vertical sleeve gastrectomy (VSG) to rescue far-progressed, clinically-relevant T2D and to promote β-cell recovery has not been investigated on a single-cell level. Nevertheless, characterization of the heterogeneity and functional states of β-cells after VSG is a fundamental step to understand mechanisms of glycaemic recovery and to ultimately develop alternative, less-invasive therapies. METHODS We performed VSG in late-stage diabetic db/db mice and analyzed the islet transcriptome using single-cell RNA sequencing (scRNA-seq). Immunohistochemical analyses and quantification of β-cell area and proliferation complement our findings from scRNA-seq. RESULTS We report that VSG was superior to calorie restriction in late-stage T2D and rapidly restored normoglycaemia in morbidly obese and overt diabetic db/db mice. Single-cell profiling of islets of Langerhans showed that VSG induced distinct, intrinsic changes in the β-cell transcriptome, but not in that of α-, δ-, and PP-cells. VSG triggered fast β-cell redifferentiation and functional improvement within only two weeks of intervention, which is not seen upon calorie restriction. Furthermore, VSG expanded β-cell area by means of redifferentiation and by creating a proliferation competent β-cell state. CONCLUSION Collectively, our study reveals the superiority of VSG in the remission of far-progressed T2D and presents paths of β-cell regeneration and molecular pathways underlying the glycaemic benefits of VSG.
Collapse
Affiliation(s)
- Lena Oppenländer
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Subarna Palit
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, TUM School of Life Sciences Weihenstephan, 85354, Freising, Germany
| | - Kerstin Stemmer
- Institute of Diabetes and Obesity, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392, Giessen, Germany
| | - Tobias Greisle
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Annette Feuchtinger
- Core Facility Pathology and Tissue Analytics, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Ansarullah
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany; Department of Mathematics, Technical University of Munich, 85748, Garching, Germany; Technical University of Munich, TUM School of Life Sciences Weihenstephan, 85354, Freising, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Department of Medicine, Technical University of Munich, 81675, Munich, Germany.
| |
Collapse
|
83
|
Trogden KP, Lee J, Bracey KM, Ho KH, McKinney H, Zhu X, Arpag G, Folland TG, Osipovich AB, Magnuson MA, Zanic M, Gu G, Holmes WR, Kaverina I. Microtubules regulate pancreatic β-cell heterogeneity via spatiotemporal control of insulin secretion hot spots. eLife 2021; 10:59912. [PMID: 34783306 PMCID: PMC8635970 DOI: 10.7554/elife.59912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Heterogeneity of glucose-stimulated insulin secretion (GSIS) in pancreatic islets is physiologically important but poorly understood. Here, we utilize mouse islets to determine how microtubules (MTs) affect secretion toward the vascular extracellular matrix at single cell and subcellular levels. Our data indicate that MT stability in the β-cell population is heterogenous, and that GSIS is suppressed in cells with highly stable MTs. Consistently, MT hyper-stabilization prevents, and MT depolymerization promotes the capacity of single β-cell for GSIS. Analysis of spatiotemporal patterns of secretion events shows that MT depolymerization activates otherwise dormant β-cells via initiation of secretion clusters (hot spots). MT depolymerization also enhances secretion from individual cells, introducing both additional clusters and scattered events. Interestingly, without MTs, the timing of clustered secretion is dysregulated, extending the first phase of GSIS and causing oversecretion. In contrast, glucose-induced Ca2+ influx was not affected by MT depolymerization yet required for secretion under these conditions, indicating that MT-dependent regulation of secretion hot spots acts in parallel with Ca2+ signaling. Our findings uncover a novel MT function in tuning insulin secretion hot spots, which leads to accurately measured and timed response to glucose stimuli and promotes functional β-cell heterogeneity.
Collapse
Affiliation(s)
- Kathryn P Trogden
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Justin Lee
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Kai M Bracey
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Kung-Hsien Ho
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Hudson McKinney
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Medicine, Vanderbilt University, Nashville, United States
| | - Goker Arpag
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Thomas G Folland
- Department of Mechanical Engineering, Vanderbilt University, Nashville, United States
| | - Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States.,Center for Stem Cell Biology, Vanderbilt University, Nashville, United States
| | - Mark A Magnuson
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States.,Center for Stem Cell Biology, Vanderbilt University, Nashville, United States
| | - Marija Zanic
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States.,Department of Biochemistry, Vanderbilt University, Nashville, United States
| | - Guoqiang Gu
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - William R Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, United States.,Department of Mathematics, Vanderbilt University, Nashville, United States.,Quantitative Systems Biology Center, Vanderbilt University, Nashville, United States
| | - Irina Kaverina
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
84
|
Cefalu WT, Andersen DK, Arreaza-Rubín G, Pin CL, Sato S, Verchere CB, Woo M, Rosenblum ND. Heterogeneity of Diabetes: β-Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes 2021; 71:db210777. [PMID: 34782351 PMCID: PMC8763877 DOI: 10.2337/db21-0777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022]
Abstract
One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.
Collapse
Affiliation(s)
- William T Cefalu
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Dana K Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Guillermo Arreaza-Rubín
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Christopher L Pin
- Departments of Physiology and Pharmacology, Paediatrics, and Oncology, University of Western Ontario, and Genetics and Development Division, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Sheryl Sato
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - C Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital, Vancouver, British Columbia, Canada
- UBC Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Minna Woo
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, University Health Network and Sinai Health System, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
85
|
Serra-Navarro B, Fernandez-Ruiz R, García-Alamán A, Pradas-Juni M, Fernandez-Rebollo E, Esteban Y, Mir-Coll J, Mathieu J, Dalle S, Hahn M, Ahlgren U, Weinstein LS, Vidal J, Gomis R, Gasa R. Gsα-dependent signaling is required for postnatal establishment of a functional β-cell mass. Mol Metab 2021; 53:101264. [PMID: 34091063 PMCID: PMC8239471 DOI: 10.1016/j.molmet.2021.101264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 05/30/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Early postnatal life is a critical period for the establishment of the functional β-cell mass that will sustain whole-body glucose homeostasis during the lifetime. β cells are formed from progenitors during embryonic development but undergo significant expansion in quantity and attain functional maturity after birth. The signals and pathways involved in these processes are not fully elucidated. Cyclic adenosine monophosphate (cAMP) is an intracellular signaling molecule that is known to regulate insulin secretion, gene expression, proliferation, and survival of adult β cells. The heterotrimeric G protein Gs stimulates the cAMP-dependent pathway by activating adenylyl cyclase. In this study, we sought to explore the role of Gs-dependent signaling in postnatal β-cell development. METHODS To study Gs-dependent signaling, we generated conditional knockout mice in which the α subunit of the Gs protein (Gsα) was ablated from β-cells using the Cre deleter line Ins1Cre. Mice were characterized in terms of glucose homeostasis, including in vivo glucose tolerance, glucose-induced insulin secretion, and insulin sensitivity. β-cell mass was studied using histomorphometric analysis and optical projection tomography. β-cell proliferation was studied by ki67 and phospho-histone H3 immunostatining, and apoptosis was assessed by TUNEL assay. Gene expression was determined in isolated islets and sorted β cells by qPCR. Intracellular cAMP was studied in isolated islets using HTRF-based technology. The activation status of the cAMP and insulin-signaling pathways was determined by immunoblot analysis of the relevant components of these pathways in isolated islets. In vitro proliferation of dissociated islet cells was assessed by BrdU incorporation. RESULTS Elimination of Gsα in β cells led to reduced β-cell mass, deficient insulin secretion, and severe glucose intolerance. These defects were evident by weaning and were associated with decreased proliferation and inadequate expression of key β-cell identity and maturation genes in postnatal β-cells. Additionally, loss of Gsα caused a broad multilevel disruption of the insulin transduction pathway that resulted in the specific abrogation of the islet proliferative response to insulin. CONCLUSION We conclude that Gsα is required for β-cell growth and maturation in the early postnatal stage and propose that this is partly mediated via its crosstalk with insulin signaling. Our findings disclose a tight connection between these two pathways in postnatal β cells, which may have implications for using cAMP-raising agents to promote β-cell regeneration and maturation in diabetes.
Collapse
Affiliation(s)
- Berta Serra-Navarro
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Rebeca Fernandez-Ruiz
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain; University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Ainhoa García-Alamán
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Marta Pradas-Juni
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Eduardo Fernandez-Rebollo
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Yaiza Esteban
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Joan Mir-Coll
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Julia Mathieu
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, Montpellier, France
| | - Stephane Dalle
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, Montpellier, France
| | - Max Hahn
- Umeå Centre for Molecular Medicine (UCMM), Umeå, Sweden
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine (UCMM), Umeå, Sweden
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Josep Vidal
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain; University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Department of Endocrinology and Nutrition, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ramon Gomis
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain; University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Rosa Gasa
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
86
|
Kalwat MA, Scheuner D, Rodrigues-dos-Santos K, Eizirik DL, Cobb MH. The Pancreatic ß-cell Response to Secretory Demands and Adaption to Stress. Endocrinology 2021; 162:bqab173. [PMID: 34407177 PMCID: PMC8459449 DOI: 10.1210/endocr/bqab173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic β cells dedicate much of their protein translation capacity to producing insulin to maintain glucose homeostasis. In response to increased secretory demand, β cells can compensate by increasing insulin production capability even in the face of protracted peripheral insulin resistance. The ability to amplify insulin secretion in response to hyperglycemia is a critical facet of β-cell function, and the exact mechanisms by which this occurs have been studied for decades. To adapt to the constant and fast-changing demands for insulin production, β cells use the unfolded protein response of the endoplasmic reticulum. Failure of these compensatory mechanisms contributes to both type 1 and 2 diabetes. Additionally, studies in which β cells are "rested" by reducing endogenous insulin demand have shown promise as a therapeutic strategy that could be applied more broadly. Here, we review recent findings in β cells pertaining to the metabolic amplifying pathway, the unfolded protein response, and potential advances in therapeutics based on β-cell rest.
Collapse
Affiliation(s)
- Michael A Kalwat
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Donalyn Scheuner
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | | | - Decio L Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
87
|
Title AC, Silva PN, Godbersen S, Hasenöhrl L, Stoffel M. The miR-200-Zeb1 axis regulates key aspects of β-cell function and survival in vivo. Mol Metab 2021; 53:101267. [PMID: 34116231 PMCID: PMC8258987 DOI: 10.1016/j.molmet.2021.101267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The miR-200-Zeb1 axis regulates the epithelial-to-mesenchymal transition (EMT), differentiation, and resistance to apoptosis. A better understanding of these processes in diabetes is highly relevant, as β-cell dedifferentiation and apoptosis contribute to the loss of functional β-cell mass and diabetes progression. Furthermore, EMT promotes the loss of β-cell identity in the in vitro expansion of human islets. Though the miR-200 family has previously been identified as a regulator of β-cell apoptosis in vivo, studies focusing on Zeb1 are lacking. The aim of this study was thus to investigate the role of Zeb1 in β-cell function and survival in vivo. METHODS miR-200 and Zeb1 are involved in a double-negative feedback loop. We characterized a mouse model in which miR-200 binding sites in the Zeb1 3'UTR are mutated (Zeb1200), leading to a physiologically relevant upregulation of Zeb1 mRNA expression. The role of Zeb1 was investigated in this model via metabolic tests and analysis of isolated islets. Further insights into the distinct contributions of the miR-200 and Zeb1 branches of the feedback loop were obtained by crossing the Zeb1200 allele into a background of miR-141-200c overexpression. RESULTS Mild Zeb1 derepression in vivo led to broad transcriptional changes in islets affecting β-cell identity, EMT, insulin secretion, cell-cell junctions, the unfolded protein response (UPR), and the response to ER stress. The aggregation and insulin secretion of dissociated islets of mice homozygous for the Zeb1200 mutation (Zeb1200M) were impaired, and Zeb1200M islets were resistant to thapsigargin-induced ER stress ex vivo. Zeb1200M mice had increased circulating proinsulin levels but no overt metabolic phenotype, reflecting the strong compensatory ability of islets to maintain glucose homeostasis. CONCLUSIONS This study signifies the importance of the miR-200-Zeb1 axis in regulating key aspects of β-cell function and survival. A better understanding of this axis is highly relevant in developing therapeutic strategies for inducing β-cell redifferentiation and maintaining β-cell identity in in vitro islet expansion.
Collapse
Affiliation(s)
- Alexandra C Title
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland; Competence Center Personalized Medicine, ETH Zürich, Voltastrasse 24, 8044, Zürich, Switzerland
| | - Pamuditha N Silva
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Lynn Hasenöhrl
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland; Competence Center Personalized Medicine, ETH Zürich, Voltastrasse 24, 8044, Zürich, Switzerland; Medical Faculty, University of Zürich, 8091, Zürich, Switzerland.
| |
Collapse
|
88
|
Campbell SA, Bégin J, McDonald CL, Vanderkruk B, Stephan TL, Hoffman BG. H3K4 Trimethylation Is Required for Postnatal Pancreatic Endocrine Cell Functional Maturation. Diabetes 2021; 70:2568-2579. [PMID: 34376477 DOI: 10.2337/db20-1214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/03/2021] [Indexed: 11/13/2022]
Abstract
During pancreas development, endocrine progenitors differentiate into the islet cell subtypes, which undergo further functional maturation in postnatal islet development. In islet β-cells, genes involved in glucose-stimulated insulin secretion are activated, and glucose exposure increases the insulin response as β-cells mature. We investigated the role of H3K4 trimethylation in endocrine cell differentiation and functional maturation by disrupting TrxG complex histone methyltransferase activity in mouse endocrine progenitors. In the embryo, genetic inactivation of TrxG component Dpy30 in NEUROG3+ cells did not affect the number of endocrine progenitors or endocrine cell differentiation. H3K4 trimethylation was progressively lost in postnatal islets, and the mice displayed elevated nonfasting and fasting glycemia as well as impaired glucose tolerance by postnatal day 24. Although postnatal endocrine cell proportions were equivalent to controls, islet RNA sequencing revealed a downregulation of genes involved in glucose-stimulated insulin secretion and an upregulation of immature β-cell genes. Comparison of histone modification enrichment profiles in NEUROG3+ endocrine progenitors and mature islets suggested that genes downregulated by loss of H3K4 trimethylation more frequently acquire active histone modifications during maturation. Taken together, these findings suggest that H3K4 trimethylation is required for the activation of genes involved in the functional maturation of pancreatic islet endocrine cells.
Collapse
Affiliation(s)
- Stephanie A Campbell
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Jocelyn Bégin
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Cassandra L McDonald
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ben Vanderkruk
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Tabea L Stephan
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brad G Hoffman
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
89
|
Docherty FM, Riemondy KA, Castro-Gutierrez R, Dwulet JM, Shilleh AH, Hansen MS, Williams SPM, Armitage LH, Santostefano KE, Wallet MA, Mathews CE, Triolo TM, Benninger RKP, Russ HA. ENTPD3 Marks Mature Stem Cell-Derived β-Cells Formed by Self-Aggregation In Vitro. Diabetes 2021; 70:2554-2567. [PMID: 34380694 PMCID: PMC8564403 DOI: 10.2337/db20-0873] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/03/2021] [Indexed: 11/13/2022]
Abstract
Stem cell-derived β-like cells (sBC) carry the promise of providing an abundant source of insulin-producing cells for use in cell replacement therapy for patients with diabetes, potentially allowing widespread implementation of a practical cure. To achieve their clinical promise, sBC need to function comparably with mature adult β-cells, but as yet they display varying degrees of maturity. Indeed, detailed knowledge of the events resulting in human β-cell maturation remains obscure. Here we show that sBC spontaneously self-enrich into discreet islet-like cap structures within in vitro cultures, independent of exogenous maturation conditions. Multiple complementary assays demonstrate that this process is accompanied by functional maturation of the self-enriched sBC (seBC); however, the seBC still contain distinct subpopulations displaying different maturation levels. Interestingly, the surface protein ENTPD3 (also known as nucleoside triphosphate diphosphohydrolase-3 [NDPTase3]) is a specific marker of the most mature seBC population and can be used for mature seBC identification and sorting. Our results illuminate critical aspects of in vitro sBC maturation and provide important insights toward developing functionally mature sBC for diabetes cell replacement therapy.
Collapse
Affiliation(s)
- Fiona M Docherty
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kent A Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - JaeAnn M Dwulet
- Barbara Davis Center for Diabetes, Bioengineering and Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ali H Shilleh
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Maria S Hansen
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Shane P M Williams
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Lucas H Armitage
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
- University of Florida Diabetes Institute, University of Florida, Gainesville, FL
| | - Katherine E Santostefano
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
- Center for Cellular Reprogramming, College of Medicine, University of Florida, Gainesville, FL
| | - Mark A Wallet
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
- University of Florida Diabetes Institute, University of Florida, Gainesville, FL
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
- University of Florida Diabetes Institute, University of Florida, Gainesville, FL
- Center for Cellular Reprogramming, College of Medicine, University of Florida, Gainesville, FL
| | - Taylor M Triolo
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Richard K P Benninger
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
- Barbara Davis Center for Diabetes, Bioengineering and Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Holger A Russ
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
90
|
Sakhneny L, Mueller L, Schonblum A, Azaria S, Burganova G, Epshtein A, Isaacson A, Wilson H, Spagnoli FM, Landsman L. The postnatal pancreatic microenvironment guides β cell maturation through BMP4 production. Dev Cell 2021; 56:2703-2711.e5. [PMID: 34499867 DOI: 10.1016/j.devcel.2021.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/11/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022]
Abstract
Glucose homeostasis depends on regulated insulin secretion from pancreatic β cells, which acquire their mature phenotype postnatally. The functional maturation of β cells is regulated by a combination of cell-autonomous and exogenous factors; the identity of the latter is mostly unknown. Here, we identify BMP4 as a critical component through which the pancreatic microenvironment regulates β cell function. By combining transgenic mouse models and human iPSCs, we show that BMP4 promotes the expression of core β cell genes and is required for proper insulin production and secretion. We identified pericytes as the primary pancreatic source of BMP4, which start producing this ligand midway through the postnatal period, at the age β cells mature. Overall, our findings show that the islet niche directly promotes β cell functional maturation through the timely production of BMP4. Our study highlights the need to recapitulate the physiological postnatal islet niche for generating fully functional stem-cell-derived β cells for cell replacement therapy for diabetes.
Collapse
Affiliation(s)
- Lina Sakhneny
- Department of Cell and Development Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Laura Mueller
- Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Anat Schonblum
- Department of Cell and Development Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sivan Azaria
- Department of Cell and Development Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guzel Burganova
- Department of Cell and Development Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alona Epshtein
- Department of Cell and Development Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Abigail Isaacson
- Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Heather Wilson
- Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Francesca M Spagnoli
- Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Limor Landsman
- Department of Cell and Development Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
91
|
In Vitro Disease Models of the Endocrine Pancreas. Biomedicines 2021; 9:biomedicines9101415. [PMID: 34680532 PMCID: PMC8533367 DOI: 10.3390/biomedicines9101415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The ethical constraints and shortcomings of animal models, combined with the demand to study disease pathogenesis under controlled conditions, are giving rise to a new field at the interface of tissue engineering and pathophysiology, which focuses on the development of in vitro models of disease. In vitro models are defined as synthetic experimental systems that contain living human cells and mimic tissue- and organ-level physiology in vitro by taking advantage of recent advances in tissue engineering and microfabrication. This review provides an overview of in vitro models and focuses specifically on in vitro disease models of the endocrine pancreas and diabetes. First, we briefly review the anatomy, physiology, and pathophysiology of the human pancreas, with an emphasis on islets of Langerhans and beta cell dysfunction. We then discuss different types of in vitro models and fundamental elements that should be considered when developing an in vitro disease model. Finally, we review the current state and breakthroughs in the field of pancreatic in vitro models and conclude with some challenges that need to be addressed in the future development of in vitro models.
Collapse
|
92
|
Yang J, Hammoud B, Li C, Ridler A, Yau D, Kim J, Won KJ, Stanley CA, Hoshi T, Stanescu DE. Decreased KATP Channel Activity Contributes to the Low Glucose Threshold for Insulin Secretion of Rat Neonatal Islets. Endocrinology 2021; 162:6301135. [PMID: 34134142 PMCID: PMC8276892 DOI: 10.1210/endocr/bqab121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Transitional hypoglycemia in normal newborns occurs in the first 3 days of life and has clinical features consistent with hyperinsulinism. We found a lower threshold for glucose-stimulated insulin secretion from freshly isolated embryonic day (E) 22 rat islets, which persisted into the first postnatal days. The threshold reached the adult level by postnatal day (P) 14. Culturing P14 islets also decreased the glucose threshold. Freshly isolated P1 rat islets had a lower threshold for insulin secretion in response to 2-aminobicyclo-(2, 2, 1)-heptane-2-carboxylic acid, a nonmetabolizable leucine analog, and diminished insulin release in response to tolbutamide, an inhibitor of β-cell KATP channels. These findings suggested that decreased KATP channel function could be responsible for the lower glucose threshold for insulin secretion. Single-cell transcriptomic analysis did not reveal a lower expression of KATP subunit genes in E22 compared with P14 β cells. The investigation of electrophysiological characteristics of dispersed β cells showed that early neonatal and cultured cells had fewer functional KATP channels per unit membrane area. Our findings suggest that decreased surface density of KATP channels may contribute to the observed differences in glucose threshold for insulin release.
Collapse
Affiliation(s)
- Juxiang Yang
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Batoul Hammoud
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Abigail Ridler
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daphne Yau
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Junil Kim
- Biotech Research & Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, South Korea
| | - Kyoung-Jae Won
- Biotech Research & Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Charles A Stanley
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Toshinori Hoshi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diana E Stanescu
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: Diana Elena Stanescu, MD, The Children's Hospital of Philadelphia, Abramson Pediatric Research Center, 3615 Civic Center Blvd, #802G, Philadelphia, PA 19104, USA.
| |
Collapse
|
93
|
Abstract
Beta cell dysfunction is central to the development of type 2 diabetes (T2D). In T2D, environmental and genetic influences can manifest beta cell dysfunction in many ways, including impaired glucose-sensing and secretion coupling mechanisms, insufficient adaptative responses to stress, and aberrant beta cell loss through increased cell death and/or beta cell de-differentiation. In recent years, circadian disruption has emerged as an important environmental risk factor for T2D. In support of this, genetic disruption of the circadian timing system in rodents impairs insulin secretion and triggers diabetes development, lending important evidence that the circadian timing system is intimately connected to, and essential for the regulation of pancreatic beta cell function; however, the role of the circadian timing system in the regulation of beta cell biology is only beginning to be unraveled. Here, we review the recent literature that explores the importance of the pancreatic islet/beta cell circadian clock in the regulation of various aspects of beta cell biology, including transcriptional and functional control of daily cycles of insulin secretion capacity, regulation of postnatal beta cell maturation, and control of the adaptive responses of the beta cell to metabolic stress and acute injury.
Collapse
Affiliation(s)
- Nivedita Seshadri
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Christine A Doucette
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Correspondence: Christine A. Doucette, PhD, University of Manitoba, Department of Physiology and Pathophysiology, Children’s Hospital Research Institute of Manitoba, John Buhler Research Centre 603, 715 McDermot Ave, Winnipeg, Manitoba, R3E 3P4, Canada.
| |
Collapse
|
94
|
Nimkulrat SD, Bernstein MN, Ni Z, Brown J, Kendziorski C, Blum B. The Anna Karenina Model of β-Cell Maturation in Development and Their Dedifferentiation in Type 1 and Type 2 Diabetes. Diabetes 2021; 70:2058-2066. [PMID: 34417264 PMCID: PMC8576426 DOI: 10.2337/db21-0211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022]
Abstract
Loss of mature β-cell function and identity, or β-cell dedifferentiation, is seen in both type 1 and type 2 diabetes. Two competing models explain β-cell dedifferentiation in diabetes. In the first model, β-cells dedifferentiate in the reverse order of their developmental ontogeny. This model predicts that dedifferentiated β-cells resemble β-cell progenitors. In the second model, β-cell dedifferentiation depends on the type of diabetogenic stress. This model, which we call the "Anna Karenina" model, predicts that in each type of diabetes, β-cells dedifferentiate in their own way, depending on how their mature identity is disrupted by any particular diabetogenic stress. We directly tested the two models using a β-cell-specific lineage-tracing system coupled with RNA sequencing in mice. We constructed a multidimensional map of β-cell transcriptional trajectories during the normal course of β-cell postnatal development and during their dedifferentiation in models of both type 1 diabetes (NOD) and type 2 diabetes (BTBR-Lepob/ob ). Using this unbiased approach, we show here that despite some similarities between immature and dedifferentiated β-cells, β-cell dedifferentiation in the two mouse models is not a reversal of developmental ontogeny and is different between different types of diabetes.
Collapse
Affiliation(s)
- Sutichot D Nimkulrat
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| | | | - Zijian Ni
- Department of Statistics, University of Wisconsin-Madison, Madison, WI
| | - Jared Brown
- Department of Statistics, University of Wisconsin-Madison, Madison, WI
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Barak Blum
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| |
Collapse
|
95
|
Siehler J, Blöchinger AK, Meier M, Lickert H. Engineering islets from stem cells for advanced therapies of diabetes. Nat Rev Drug Discov 2021; 20:920-940. [PMID: 34376833 DOI: 10.1038/s41573-021-00262-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus is a metabolic disorder that affects more than 460 million people worldwide. Type 1 diabetes (T1D) is caused by autoimmune destruction of β-cells, whereas type 2 diabetes (T2D) is caused by a hostile metabolic environment that leads to β-cell exhaustion and dysfunction. Currently, first-line medications treat the symptomatic insulin resistance and hyperglycaemia, but do not prevent the progressive decline of β-cell mass and function. Thus, advanced therapies need to be developed that either protect or regenerate endogenous β-cell mass early in disease progression or replace lost β-cells with stem cell-derived β-like cells or engineered islet-like clusters. In this Review, we discuss the state of the art of stem cell differentiation and islet engineering, reflect on current and future challenges in the area and highlight the potential for cell replacement therapies, disease modelling and drug development using these cells. These efforts in stem cell and regenerative medicine will lay the foundations for future biomedical breakthroughs and potentially curative treatments for diabetes.
Collapse
Affiliation(s)
- Johanna Siehler
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.,Technical University of Munich, Medical Faculty, Munich, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anna Karolina Blöchinger
- Technical University of Munich, Medical Faculty, Munich, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Meier
- Technical University of Munich, Medical Faculty, Munich, Germany.,Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany. .,Technical University of Munich, Medical Faculty, Munich, Germany. .,German Center for Diabetes Research (DZD), Neuherberg, Germany. .,Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
96
|
Wortham M, Sander M. Transcriptional mechanisms of pancreatic β-cell maturation and functional adaptation. Trends Endocrinol Metab 2021; 32:474-487. [PMID: 34030925 PMCID: PMC8259463 DOI: 10.1016/j.tem.2021.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Pancreatic β-cells secrete insulin commensurate to circulating nutrient levels to maintain normoglycemia. The ability of β-cells to couple insulin secretion to nutrient stimuli is acquired during a postnatal maturation process. In mature β-cells the insulin secretory response adapts to changes in nutrient state. Both β-cell maturation and functional adaptation rely on the interplay between extracellular cues and cell type-specific transcriptional programs. Here we review emerging evidence that developmental and homeostatic regulation of β-cell function involves collaboration between lineage-determining and signal-dependent transcription factors (LDTFs and SDTFs, respectively). A deeper understanding of β-cell SDTFs and their cognate signals would delineate mechanisms of β-cell maturation and functional adaptation, which has direct implications for diabetes therapies and for generating mature β-cells from stem cells.
Collapse
Affiliation(s)
- Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
97
|
Salinno C, Büttner M, Cota P, Tritschler S, Tarquis-Medina M, Bastidas-Ponce A, Scheibner K, Burtscher I, Böttcher A, Theis FJ, Bakhti M, Lickert H. CD81 marks immature and dedifferentiated pancreatic β-cells. Mol Metab 2021; 49:101188. [PMID: 33582383 PMCID: PMC7932895 DOI: 10.1016/j.molmet.2021.101188] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Islets of Langerhans contain heterogeneous populations of insulin-producing β-cells. Surface markers and respective antibodies for isolation, tracking, and analysis are urgently needed to study β-cell heterogeneity and explore the mechanisms to harness the regenerative potential of immature β-cells. METHODS We performed single-cell mRNA profiling of early postnatal mouse islets and re-analyzed several single-cell mRNA sequencing datasets from mouse and human pancreas and islets. We used mouse primary islets, iPSC-derived endocrine cells, Min6 insulinoma, and human EndoC-βH1 β-cell lines and performed FAC sorting, Western blotting, and imaging to support and complement the findings from the data analyses. RESULTS We found that all endocrine cell types expressed the cluster of differentiation 81 (CD81) during pancreas development, but the expression levels of this protein were gradually reduced in β-cells during postnatal maturation. Single-cell gene expression profiling and high-resolution imaging revealed an immature signature of β-cells expressing high levels of CD81 (CD81high) compared to a more mature population expressing no or low levels of this protein (CD81low/-). Analysis of β-cells from different diabetic mouse models and in vitro β-cell stress assays indicated an upregulation of CD81 expression levels in stressed and dedifferentiated β-cells. Similarly, CD81 was upregulated and marked stressed human β-cells in vitro. CONCLUSIONS We identified CD81 as a novel surface marker that labels immature, stressed, and dedifferentiated β-cells in the adult mouse and human islets. This novel surface marker will allow us to better study β-cell heterogeneity in healthy subjects and diabetes progression.
Collapse
Affiliation(s)
- Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Technische Universität München, School of Medicine, 81675, München, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Technische Universität München, School of Medicine, 81675, München, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, Department of Mathematics, 85748, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Technische Universität München, School of Medicine, 81675, München, Germany.
| |
Collapse
|
98
|
Stancill JS, Kasmani MY, Khatun A, Cui W, Corbett JA. Single-cell RNA sequencing of mouse islets exposed to proinflammatory cytokines. Life Sci Alliance 2021; 4:e202000949. [PMID: 33883217 PMCID: PMC8091599 DOI: 10.26508/lsa.202000949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Exposure to proinflammatory cytokines is believed to contribute to pancreatic β-cell damage during diabetes development. Although some cytokine-mediated changes in islet gene expression are known, the heterogeneity of the response is not well-understood. After 6-h treatment with IL-1β and IFN-γ alone or together, mouse islets were subjected to single-cell RNA sequencing. Treatment with both cytokines together led to expression of inducible nitric oxide synthase mRNA (Nos2) and antiviral and immune-associated genes in a subset of β-cells. Interestingly, IL-1β alone activated antiviral genes. Subsets of δ- and α-cells expressed Nos2 and exhibited similar gene expression changes as β-cells, including increased expression of antiviral genes and repression of identity genes. Finally, cytokine responsiveness was inversely correlated with expression of genes encoding heat shock proteins. Our findings show that all islet endocrine cell types respond to cytokines, IL-1β induces the expression of protective genes, and cellular stress gene expression is associated with inhibition of cytokine signaling.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
99
|
Gerst F, Kemter E, Lorza-Gil E, Kaiser G, Fritz AK, Nano R, Piemonti L, Gauder M, Dahl A, Nadalin S, Königsrainer A, Fend F, Birkenfeld AL, Wagner R, Heni M, Stefan N, Wolf E, Häring HU, Ullrich S. The hepatokine fetuin-A disrupts functional maturation of pancreatic beta cells. Diabetologia 2021; 64:1358-1374. [PMID: 33765181 PMCID: PMC8099843 DOI: 10.1007/s00125-021-05435-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023]
Abstract
AIMS/HYPOTHESIS Neonatal beta cells carry out a programme of postnatal functional maturation to achieve full glucose responsiveness. A partial loss of the mature phenotype of adult beta cells may contribute to a reduction of functional beta cell mass and accelerate the onset of type 2 diabetes. We previously found that fetuin-A, a hepatokine increasingly secreted by the fatty liver and a determinant of type 2 diabetes, inhibits glucose-stimulated insulin secretion (GSIS) of human islets. Since fetuin-A is a ubiquitous fetal glycoprotein that declines peripartum, we examined here whether fetuin-A interferes with the functional maturity of beta cells. METHODS The effects of fetuin-A were assessed during in vitro maturation of porcine neonatal islet cell clusters (NICCs) and in adult human islets. Expression alterations were examined via microarray, RNA sequencing and reverse transcription quantitative real-time PCR (qRT-PCR), proteins were analysed by western blotting and immunostaining, and insulin secretion was quantified in static incubations. RESULTS NICC maturation was accompanied by the gain of glucose-responsive insulin secretion (twofold stimulation), backed up by mRNA upregulation of genes governing beta cell identity and function, such as NEUROD1, UCN3, ABCC8 and CASR (Log2 fold change [Log2FC] > 1.6). An active TGFβ receptor (TGFBR)-SMAD2/3 pathway facilitates NICC maturation, since the TGFBR inhibitor SB431542 counteracted the upregulation of aforementioned genes and de-repressed ALDOB, a gene disallowed in mature beta cells. In fetuin-A-treated NICCs, upregulation of beta cell markers and the onset of glucose responsiveness were suppressed. Concomitantly, SMAD2/3 phosphorylation was inhibited. Transcriptome analysis confirmed inhibitory effects of fetuin-A and SB431542 on TGFβ-1- and SMAD2/3-regulated transcription. However, contrary to SB431542 and regardless of cMYC upregulation, fetuin-A inhibited beta cell proliferation (0.27 ± 0.08% vs 1.0 ± 0.1% Ki67-positive cells in control NICCs). This effect was sustained by reduced expression (Log2FC ≤ -2.4) of FOXM1, CENPA, CDK1 or TOP2A. In agreement, the number of insulin-positive cells was lower in fetuin-A-treated NICCs than in control NICCs (14.4 ± 1.2% and 22.3 ± 1.1%, respectively). In adult human islets fetuin-A abolished glucose responsiveness, i.e. 1.7- and 1.1-fold change over 2.8 mmol/l glucose in control- and fetuin-A-cultured islets, respectively. In addition, fetuin-A reduced SMAD2/3 phosphorylation and suppressed expression of proliferative genes. Of note, in non-diabetic humans, plasma fetuin-A was negatively correlated (p = 0.013) with islet beta cell area. CONCLUSIONS/INTERPRETATION Our results suggest that the perinatal decline of fetuin-A relieves TGFBR signalling in islets, a process that facilitates functional maturation of neonatal beta cells. Functional maturity remains revocable in later life, and the occurrence of a metabolically unhealthy milieu, such as liver steatosis and elevated plasma fetuin-A, can impair both function and adaptive proliferation of beta cells. DATA AVAILABILITY The RNAseq datasets and computer code produced in this study are available in the Gene Expression Omnibus (GEO): GSE144950; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144950.
Collapse
Affiliation(s)
- Felicia Gerst
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University of Tuebingen (IDM), Tuebingen, Germany.
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tuebingen, Tuebingen, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| | - Elisabeth Kemter
- Department of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig Maximilians University, Munich, Germany
| | - Estela Lorza-Gil
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University of Tuebingen (IDM), Tuebingen, Germany
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Gabriele Kaiser
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University of Tuebingen (IDM), Tuebingen, Germany
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Ann-Kathrin Fritz
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tuebingen, Tuebingen, Germany
| | - Rita Nano
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marie Gauder
- Quantitative Biology Center (QBiC) Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Andreas Dahl
- Biotechnology Center TU Dresden, Dresden, Germany
| | - Silvio Nadalin
- Department of General, Visceral and Transplant Surgery, University Hospital Tuebingen, Tuebingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tuebingen, Tuebingen, Germany
| | - Falko Fend
- Department of General Pathology and Pathological Anatomy, University Hospital Tuebingen, Tuebingen, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University of Tuebingen (IDM), Tuebingen, Germany
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Robert Wagner
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University of Tuebingen (IDM), Tuebingen, Germany
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University of Tuebingen (IDM), Tuebingen, Germany
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Norbert Stefan
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University of Tuebingen (IDM), Tuebingen, Germany
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Eckhard Wolf
- Department of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig Maximilians University, Munich, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University of Tuebingen (IDM), Tuebingen, Germany
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Susanne Ullrich
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University of Tuebingen (IDM), Tuebingen, Germany
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
100
|
Zhang L, Sheng C, Zhou F, Zhu K, Wang S, Liu Q, Yuan M, Xu Z, Liu Y, Lu J, Liu J, Zhou L, Wang X. CBP/p300 HAT maintains the gene network critical for β cell identity and functional maturity. Cell Death Dis 2021; 12:476. [PMID: 33980820 PMCID: PMC8116341 DOI: 10.1038/s41419-021-03761-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
Loss of β cell identity and functional immaturity are thought to be involved in β cell failure in type 2 diabetes. CREB-binding protein (CBP) and its paralogue p300 act as multifunctional transcriptional co-activators and histone acetyltransferases (HAT) with extensive biological functions. However, whether the regulatory role of CBP/p300 in islet β cell function depends on the HAT activity remains uncertain. In this current study, A-485, a selective inhibitor of CBP/p300 HAT activity, greatly impaired glucose-stimulated insulin secretion from rat islets in vitro and in vivo. RNA-sequencing analysis showed a comprehensive downregulation of β cell and α cell identity genes in A-485-treated islets, without upregulation of dedifferentiation markers and derepression of disallowed genes. A-485 treatment decreased the expressions of genes involved in glucose sensing, not in glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. In the islets of prediabetic db/db mice, CBP/p300 displayed a significant decrease with key genes for β cell function. The deacetylation of histone H3K27 as well as the transcription factors Hnf1α and Foxo1 was involved in CBP/p300 HAT inactivation-repressed expressions of β cell identity and functional genes. These findings highlight the dominant role of CBP/p300 HAT in the maintenance of β cell identity by governing transcription network.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxiang Sheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feiye Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kecheng Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shushu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miaomiao Yuan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoqian Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Libin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiao Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|