51
|
Razolli DS, Moura-Assis A, Bombassaro B, Velloso LA. Hypothalamic neuronal cellular and subcellular abnormalities in experimental obesity. Int J Obes (Lond) 2019; 43:2361-2369. [PMID: 31548571 DOI: 10.1038/s41366-019-0451-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 01/15/2023]
Abstract
The characterization of the hypothalamic neuronal network, that controls food intake and energy expenditure, has provided great advances in the understanding of the pathophysiology of obesity. Most of the advances in this field were obtained thanks to the development of a number of genetic and nongenetic animal models that, at least in part, overtook the anatomical constraints that impair the study of the human hypothalamus. Despite the undisputed differences between human and rodent physiology, most seminal studies undertaken in rodents that have unveiled details of the neural regulation of energy homeostasis were eventually confirmed in humans; thus, placing experimental studies in the forefront of obesity research. During the last 15 years, researchers have provided extensive experimental proof that supports the existence of hypothalamic dysfunction, which leads to a progressive whole-body positive energy balance, and thus, to obesity. Here, we review the experimental work that unveiled the mechanisms behind hypothalamic dysfunction in obesity.
Collapse
Affiliation(s)
- Daniela S Razolli
- Laboratory of Cell Signaling, Obesity and Comorbidities Center University of Campinas, Campinas, São Paulo, 13084-970, Brazil
| | - Alexandre Moura-Assis
- Laboratory of Cell Signaling, Obesity and Comorbidities Center University of Campinas, Campinas, São Paulo, 13084-970, Brazil
| | - Bruna Bombassaro
- Laboratory of Cell Signaling, Obesity and Comorbidities Center University of Campinas, Campinas, São Paulo, 13084-970, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Center University of Campinas, Campinas, São Paulo, 13084-970, Brazil.
| |
Collapse
|
52
|
Physical exercise and liver "fitness": Role of mitochondrial function and epigenetics-related mechanisms in non-alcoholic fatty liver disease. Mol Metab 2019; 32:1-14. [PMID: 32029220 PMCID: PMC6931125 DOI: 10.1016/j.molmet.2019.11.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Modern lifestyles, especially high-caloric intake and physical inactivity, contribute to the increased prevalence of non-alcoholic fatty liver disease (NAFLD), which becomes a significant health problem worldwide. Lifestyle changes, however, affect not only parental generation, but also their offspring, reinforcing the need for efficient preventive approaches to deal with this disease. This transgenerational influence of phenotypes dependent on parents (particularly maternal) behaviours may open additional research avenues. Despite persistent attempts to design an effective pharmacological therapy against NAFLD, physical activity, as a non-pharmacological approach, emerges as an exciting strategy. SCOPE OF REVIEW Here we briefly review the effect of physical exercise on liver mitochondria adaptations in NAFLD, highlighting the importance of mitochondrial metabolism and transgenerational and epigenetic mechanisms in liver diseases. MAJOR CONCLUSIONS A deeper look into cellular mechanisms sheds a light on possible effects of physical activity in the prevention and treatment of NAFLD through modulation of function and structure of particular organelles, namely mitochondria. Additionally, despite of increasing evidence regarding the contribution of epigenetic mechanisms in the pathogenesis of different diseases, the role of microRNAs, DNA methylation, and histone modification in NAFLD pathogenesis still needs to be elucidated.
Collapse
|
53
|
Lu G, Lai Y, Wang T, Lin W, Lu J, Ma Y, Chen Y, Ma H, Liu R, Li J. Mitochondrial fission regulator 2 (MTFR2) promotes growth, migration, invasion and tumour progression in breast cancer cells. Aging (Albany NY) 2019; 11:10203-10219. [PMID: 31740625 PMCID: PMC6914410 DOI: 10.18632/aging.102442] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Introduction: Mitochondrial fission regulator 2 (MTFR2) belongs to the MTFR family, and 2 isoforms of MTFR2 are produced by alternative splicing. The role of MTFR2 in breast cancer (BC) remains unknown. Results: MTFR2 was upregulated in BC tissues and was strongly associated with tumor characteristics. Moreover, Kaplan-Meier and Cox proportional hazards analyses indicated that high MTFR2 expression was related to poor overall survival. In addition, the capacity for migration and invasion decreased in two BC cell lines after knockdown of MTFR2. The epithelial-mesenchymal transition pathway was inhibited in MTFR2-silenced cells. MTFR2 can switch glucose metabolism from OXPHS to glycolysis in a HIF1α- and HIF2α-dependent manner. Conclusion: Taken together, our results indicate that increased expression of MTFR2 is associated with tumour progression in breast cancer cells through switching glucose metabolism from OXPHS to glycolysis in a HIF1α- and HIF2α-dependent manner. Materials and methods: We obtained data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) to analyse MTFR2 expression in BC. The prognostic value of MTFR2 expression was assessed using the Kaplan-Meier method. The biological influence of MTFR2 on BC cell lines was studied using proliferation, Transwell migration, invasion and mitochondrial function assays.
Collapse
Affiliation(s)
- Guanming Lu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Basie, Guangxi, China
| | - Yuanhui Lai
- Department of Breast and Thyroid Surgery, Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tiantian Wang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan, Shandong, China
| | - Weihao Lin
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinlan Lu
- Department of Stomatology, Affiliated Hospital of Youjiang Medical University for Nationalities, Basie, Guangxi, China
| | - Yanfei Ma
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Basie, Guangxi, China
| | - Yongcheng Chen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Basie, Guangxi, China
| | - Haiqing Ma
- Department of Oncology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Ruilei Liu
- Department of Breast and Thyroid Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Division of Thyroid and Parathyroid Endocrine Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
54
|
Tang W, Zhang B, Wang H, Li M, Wang H, Liu F, Zhu D, Bi Y. Improved skeletal muscle energy metabolism relates to the recovery of β cell function by intensive insulin therapy in drug naïve type 2 diabetes. Diabetes Metab Res Rev 2019; 35:e3177. [PMID: 31077529 DOI: 10.1002/dmrr.3177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022]
Abstract
AIMS Diminished energy turnover of skeletal muscle is involved in the development of type 2 diabetes. Intensive insulin therapy has been reported to maintain glycaemic control in newly diagnosed type 2 diabetes, while the underlying mechanism remains unclear. Herein, we aimed to characterize the contribution of muscular mitochondrial oxidative phosphorylation (OxPhos) activity to insulin-induced glycaemic control. MATERIALS AND METHODS There were 21 drug naïve patients with type 2 diabetes receiving continuous subcutaneous insulin infusion for 7 days. Nine nondiabetics matched for age, body mass index, and physical activity were recruited as controls. We applied 31 P magnetic resonance spectroscopy to record in vivo muscular phosphocreatine (PCr) flux in controls and diabetics before and after insulin therapy. The mitochondrial OxPhos rate was calculated as ΔPCr / Δtime during the first 50 seconds after cessation of exercise. RESULTS In drug naïve type 2 diabetes, muscular mitochondrial OxPhos rate was restored after insulin therapy. Notably, this alteration was positively associated with the improvements of 1,5-anhydroglucitol, a serum marker for glucose control over the last 1 week, as well as homeostasis model assessment of β cell function and C-peptide/glucose ratio t0 , two indices for basal insulin secretion. Furthermore, patients with diabetes family history and more severe glucotoxicity tend to achieve greater improvement in mitochondrial function by insulin. CONCLUSIONS This study provides evidence that intensive insulin therapy facilitates muscular energy metabolism in drug naïve type 2 diabetes. It correlates to the recovery of β cell function, contributing to insulin-induced glucose control.
Collapse
Affiliation(s)
- Wenjuan Tang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Huiting Wang
- Department of Radiology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Ming Li
- Department of Radiology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Hongdong Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Fangcen Liu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| |
Collapse
|
55
|
Takahashi K, Kitaoka Y, Matsunaga Y, Hatta H. Effects of lactate administration on mitochondrial enzyme activity and monocarboxylate transporters in mouse skeletal muscle. Physiol Rep 2019; 7:e14224. [PMID: 31512405 PMCID: PMC6739509 DOI: 10.14814/phy2.14224] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Growing evidence shows that lactate is not merely an intermediate metabolite, but also a potential signaling molecule. However, whether daily lactate administration induces physiological adaptations in skeletal muscle remains to be elucidated. In this study, we first investigated the effects of daily lactate administration (equivalent to 1 g/kg of body weight) for 3 weeks on mitochondrial adaptations in skeletal muscle. We demonstrated that 3-week lactate administration increased mitochondrial enzyme activity (citrate synthase, 3-hydroxyacyl CoA dehydrogenase, and cytochrome c oxidase) in the plantaris muscle, but not in the soleus muscle. MCT1 and MCT4 protein contents were not different after 3-week lactate administration. Next, we examined whether lactate administration enhances training-induced adaptations in skeletal muscle. Lactate administration prior to endurance exercise training (treadmill running, 20 m/min, 60 min/day), which increased blood lactate concentration during exercise, enhanced training-induced mitochondrial enzyme activity in the skeletal muscle after 3 weeks. MCT protein content and blood lactate removal were not different after 3-week lactate administration with exercise training compared to exercise training alone. In a single bout experiment, lactate administration did not change the phosphorylation state of AMPK, ACC, p38 MAPK, and CaMKII in skeletal muscle. Our results suggest that lactate can be a key factor for exercise-induced mitochondrial adaptations, and that the efficacy of high-intensity training is, at least partly, attributed to elevated blood lactate concentration.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports SciencesThe University of TokyoTokyoJapan
| | - Yu Kitaoka
- Department of Human SciencesKanagawa UniversityKanagawaJapan
| | | | - Hideo Hatta
- Department of Sports SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
56
|
Tebbenkamp ATN, Varela L, Choi J, Paredes MI, Giani AM, Song JE, Sestan-Pesa M, Franjic D, Sousa AMM, Liu ZW, Li M, Bichsel C, Koch M, Szigeti-Buck K, Liu F, Li Z, Kawasawa YI, Paspalas CD, Mineur YS, Prontera P, Merla G, Picciotto MR, Arnsten AFT, Horvath TL, Sestan N. The 7q11.23 Protein DNAJC30 Interacts with ATP Synthase and Links Mitochondria to Brain Development. Cell 2019; 175:1088-1104.e23. [PMID: 30318146 DOI: 10.1016/j.cell.2018.09.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/01/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022]
Abstract
Despite the known causality of copy-number variations (CNVs) to human neurodevelopmental disorders, the mechanisms behind each gene's contribution to the constellation of neural phenotypes remain elusive. Here, we investigated the 7q11.23 CNV, whose hemideletion causes Williams syndrome (WS), and uncovered that mitochondrial dysfunction participates in WS pathogenesis. Dysfunction is facilitated in part by the 7q11.23 protein DNAJC30, which interacts with mitochondrial ATP-synthase machinery. Removal of Dnajc30 in mice resulted in hypofunctional mitochondria, diminished morphological features of neocortical pyramidal neurons, and altered behaviors reminiscent of WS. The mitochondrial features are consistent with our observations of decreased integrity of oxidative phosphorylation supercomplexes and ATP-synthase dimers in WS. Thus, we identify DNAJC30 as an auxiliary component of ATP-synthase machinery and reveal mitochondrial maladies as underlying certain defects in brain development and function associated with WS.
Collapse
Affiliation(s)
- Andrew T N Tebbenkamp
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Luis Varela
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jinmyung Choi
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Miguel I Paredes
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Alice M Giani
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jae Eun Song
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Matija Sestan-Pesa
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel Franjic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - André M M Sousa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zhong-Wu Liu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mingfeng Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Candace Bichsel
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Marco Koch
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Klara Szigeti-Buck
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fuchen Liu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zhuo Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yuka I Kawasawa
- Institute for Personalized Medicine and Departments of Biochemistry and Molecular Biology and Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Constantinos D Paspalas
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yann S Mineur
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Paolo Prontera
- Medical Genetics Unit, Hospital "Santa Maria della Misericordia," 06129 Perugia, Italy
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Marina R Picciotto
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Amy F T Arnsten
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tamas L Horvath
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Anatomy and Histology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Genetics and of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
57
|
Chudoba C, Wardelmann K, Kleinridders A. Molecular effects of dietary fatty acids on brain insulin action and mitochondrial function. Biol Chem 2019; 400:991-1003. [PMID: 30730834 DOI: 10.1515/hsz-2018-0477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/28/2019] [Indexed: 01/17/2023]
Abstract
The prevalence of obesity and its co-morbidities such as insulin resistance and type 2 diabetes are tightly linked to increased ingestion of palatable fat enriched food. Thus, it seems intuitive that the brain senses elevated amounts of fatty acids (FAs) and affects adaptive metabolic response, which is connected to mitochondrial function and insulin signaling. This review will address the effect of dietary FAs on brain insulin and mitochondrial function with a special emphasis on the impact of different FAs on brain function and metabolism.
Collapse
Affiliation(s)
- Chantal Chudoba
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Kristina Wardelmann
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - André Kleinridders
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| |
Collapse
|
58
|
Gu Y, Yu X, Li X, Wang X, Gao X, Wang M, Wang S, Li X, Zhang Y. Inhibitory effect of mabuterol on proliferation of rat ASMCs induced by PDGF-BB via regulating [Ca2+]i and mitochondrial fission/fusion. Chem Biol Interact 2019; 307:63-72. [DOI: 10.1016/j.cbi.2019.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/19/2019] [Accepted: 04/17/2019] [Indexed: 02/08/2023]
|
59
|
Hu L, Ding M, Tang D, Gao E, Li C, Wang K, Qi B, Qiu J, Zhao H, Chang P, Fu F, Li Y. Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy. Am J Cancer Res 2019; 9:3687-3706. [PMID: 31281507 PMCID: PMC6587356 DOI: 10.7150/thno.33684] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/24/2019] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence has implicated the important role of mitochondrial pathology in diabetic cardiomyopathy (DCM), while the underlying mechanism remains largely unclear. The aim of this study was to investigate the role of mitochondrial dynamics in the pathogenesis of DCM and its underlying mechanisms. Methods: Obese diabetic (db/db) and lean control (db/+) mice were used in this study. Mitochondrial dynamics were analyzed by transmission electron microscopy in vivo and by confocal microscopy in vitro. Results: Diabetic hearts from 12-week-old db/db mice showed excessive mitochondrial fission and significant reduced expression of Mfn2, while there was no significant alteration or slight change in the expression of other dynamic-related proteins. Reconstitution of Mfn2 in diabetic hearts inhibited mitochondrial fission and prevented the progression of DCM. In an in-vitro study, cardiomyocytes cultured in high-glucose and high-fat (HG/HF) medium showed excessive mitochondrial fission and decreased Mfn2 expression. Reconstitution of Mfn2 restored mitochondrial membrane potential, suppressed mitochondrial oxidative stress and improved mitochondrial function in HG/HF-treated cardiomyocytes through promoting mitochondrial fusion. In addition, the down-regulation of Mfn2 expression in HG/HF-treated cardiomyocytes was induced by reduced expression of PPARα, which positively regulated the expression of Mfn2 by directly binding to its promoter. Conclusion: Our study provides the first evidence that imbalanced mitochondrial dynamics induced by down-regulated Mfn2 contributes to the development of DCM. Targeting mitochondrial dynamics by regulating Mfn2 might be a potential therapeutic strategy for DCM.
Collapse
|
60
|
Simão AL, Afonso MB, Rodrigues PM, Gama-Carvalho M, Machado MV, Cortez-Pinto H, Rodrigues CMP, Castro RE. Skeletal muscle miR-34a/SIRT1:AMPK axis is activated in experimental and human non-alcoholic steatohepatitis. J Mol Med (Berl) 2019; 97:1113-1126. [DOI: 10.1007/s00109-019-01796-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/22/2019] [Accepted: 05/08/2019] [Indexed: 01/01/2023]
|
61
|
Engelhart EA, Hoppins S. A catalytic domain variant of mitofusin requiring a wildtype paralog for function uncouples mitochondrial outer-membrane tethering and fusion. J Biol Chem 2019; 294:8001-8014. [PMID: 30936207 DOI: 10.1074/jbc.ra118.006347] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/27/2019] [Indexed: 11/06/2022] Open
Abstract
Mitofusins (Mfns) are dynamin-related GTPases that mediate mitochondrial outer-membrane fusion, a process that is required for mitochondrial and cellular health. In Mfn1 and Mfn2 paralogs, a conserved phenylalanine (Phe-202 (Mfn1) and Phe-223 (Mfn2)) located in the GTPase domain on a conserved β strand is part of an aromatic network in the core of this domain. To gain insight into the poorly understood mechanism of Mfn-mediated membrane fusion, here we characterize a Mitofusin mutant variant etiologically linked to Charcot-Marie-Tooth syndrome. From analysis of mitochondrial structure in cells and mitochondrial fusion in vitro, we found that conversion of Phe-202 to leucine in either Mfn1 or Mfn2 diminishes the fusion activity of heterotypic complexes with both Mfn1 and Mfn2 and abolishes fusion activity of homotypic complexes. Using coimmunoprecipitation and native gel analysis, we further dissect the steps of mitochondrial fusion and demonstrate that the mutant variant has normal tethering activity but impaired higher-order nucleotide-dependent assembly. The defective coupling of tethering to membrane fusion observed here suggests that nucleotide-dependent self-assembly of Mitofusin is required after tethering to promote membrane fusion.
Collapse
Affiliation(s)
- Emily A Engelhart
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington 98195
| | - Suzanne Hoppins
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington 98195.
| |
Collapse
|
62
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
63
|
Jiao XF, Liang QM, Wu D, Ding ZM, Zhang JY, Chen F, Wang YS, Zhang SX, Miao YL, Huo LJ. Effects of Acute Fluorene-9-Bisphenol Exposure on Mouse Oocyte in vitro Maturation and Its Possible Mechanisms. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:243-253. [PMID: 30499614 DOI: 10.1002/em.22258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/29/2018] [Accepted: 10/03/2018] [Indexed: 05/15/2023]
Abstract
Fluorene-9-bisphenol (BHPF), a substitute of bisphenol A (BPA) used in the production of the so-called "BPA-free" plastics, has now been shown to be released from commercial plastic bottles into drinking water and has strong anti-estrogenic activity in mice, which suggests that BHPF is also an environmental toxin. However, whether BHPF exposure has effects on mouse oocyte development is unknown. In this study, the influence of acute exposure to BHPF (50-150 μM, 12 hr) on mouse oocyte maturation and its possible mechanisms were investigated. Of note, 50-μM BHPF had no effects on the maturation of mouse oocytes, whereas 100- and 150-μM BHPF significantly blocked germinal vesicle breakdown and led to the failure of first polar body extrusion. Particularly, 100-μM BHPF exposure severely decreased the cellular adenosine triphosphate in a time-dependent manner, which finally brought out the loss of spindles. In addition, the actin cytoskeleton was also impaired. The defective mitochondrial dynamics and decreased mitochondrial DNA implied the damage of mitochondria in BHPF-treated oocytes. Increased PINK1, Beclin1, and LC3B protein level and decreased TOMM20 and TOMM17A protein level illustrated that mitophagy was induced, which also confirmed that BHPF exposure impaired the cellular mitochondria. Moreover, BHPF induced reactive oxygen species accumulation and early apoptosis. Oocyte quality was also impaired by BHPF exposure through altering histone modifications evidenced by increased H3K9me3 and H3K27me3 levels. Collectively, our results indicated that BHPF exposure disrupted mouse oocyte maturation and reduced oocyte quality through affecting cytoskeleton architecture, mitochondrial function, oxidative stress, apoptosis, and histone modifications. Environ. Mol. Mutagen. 60:243-253, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiu-Man Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Yu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
64
|
Desmoulins L, Chrétien C, Paccoud R, Collins S, Cruciani-Guglielmacci C, Galinier A, Liénard F, Quinault A, Grall S, Allard C, Fenech C, Carneiro L, Mouillot T, Fournel A, Knauf C, Magnan C, Fioramonti X, Pénicaud L, Leloup C. Mitochondrial Dynamin-Related Protein 1 (DRP1) translocation in response to cerebral glucose is impaired in a rat model of early alteration in hypothalamic glucose sensing. Mol Metab 2019; 20:166-177. [PMID: 30553770 PMCID: PMC6358535 DOI: 10.1016/j.molmet.2018.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Hypothalamic glucose sensing (HGS) initiates insulin secretion (IS) via a vagal control, participating in energy homeostasis. This requires mitochondrial reactive oxygen species (mROS) signaling, dependent on mitochondrial fission, as shown by invalidation of the hypothalamic DRP1 protein. Here, our objectives were to determine whether a model with a HGS defect induced by a short, high fat-high sucrose (HFHS) diet in rats affected the fission machinery and mROS signaling within the mediobasal hypothalamus (MBH). METHODS Rats fed a HFHS diet for 3 weeks were compared with animals fed a normal chow. Both in vitro (calcium imaging) and in vivo (vagal nerve activity recordings) experiments to measure the electrical activity of isolated MBH gluco-sensitive neurons in response to increased glucose level were performed. In parallel, insulin secretion to a direct glucose stimulus in isolated islets vs. insulin secretion resulting from brain glucose stimulation was evaluated. Intra-carotid glucose load-induced hypothalamic DRP1 translocation to mitochondria and mROS (H2O2) production were assessed in both groups. Finally, compound C was intracerebroventricularly injected to block the proposed AMPK-inhibited DRP1 translocation in the MBH to reverse the phenotype of HFHS fed animals. RESULTS Rats fed a HFHS diet displayed a decreased HGS-induced IS. Responses of MBH neurons to glucose exhibited an alteration of their electrical activity, whereas glucose-induced insulin secretion in isolated islets was not affected. These MBH defects correlated with a decreased ROS signaling and glucose-induced translocation of the fission protein DRP1, as the vagal activity was altered. AMPK-induced inhibition of DRP1 translocation increased in this model, but its reversal through the injection of the compound C, an AMPK inhibitor, failed to restore HGS-induced IS. CONCLUSIONS A hypothalamic alteration of DRP1-induced fission and mROS signaling in response to glucose was observed in HGS-induced IS of rats exposed to a 3 week HFHS diet. Early hypothalamic modifications of the neuronal activity could participate in a primary defect of the control of IS and ultimately, the development of diabetes.
Collapse
Affiliation(s)
- Lucie Desmoulins
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Chloé Chrétien
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Romain Paccoud
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Stephan Collins
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Céline Cruciani-Guglielmacci
- CNRS UMR 8251, Unit of Functional and Adaptive Biology, Paris, France; Department of Physiology, Université Paris Diderot, Paris, France.
| | - Anne Galinier
- STROMALab, UMR CNRS 5273, EFS Pyrénées-Méditerranée, Université Paul Sabatier, Toulouse, France.
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Aurore Quinault
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Sylvie Grall
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Camille Allard
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Claire Fenech
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Lionel Carneiro
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Thomas Mouillot
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; Service d'Hépato-Gastroentérologie, hôpital du Bocage, Dijon, France.
| | - Audren Fournel
- Institut de Recherche en Santé Digestive, INSERM U1220, Université Paul Sabatier, Toulouse, France.
| | - Claude Knauf
- Institut de Recherche en Santé Digestive, INSERM U1220, Université Paul Sabatier, Toulouse, France.
| | - Christophe Magnan
- CNRS UMR 8251, Unit of Functional and Adaptive Biology, Paris, France.
| | - Xavier Fioramonti
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; UMR 1286, NutriNeuro, INRA, Université de Bordeaux, Bordeaux INP, Bordeaux, France.
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Corinne Leloup
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
65
|
Nair S, Sobotka KS, Joshi P, Gressens P, Fleiss B, Thornton C, Mallard C, Hagberg H. Lipopolysaccharide-induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia 2019; 67:1047-1061. [PMID: 30637805 DOI: 10.1002/glia.23587] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that changes in the metabolic signature of microglia underlie their response to inflammation. We sought to increase our knowledge of how pro-inflammatory stimuli induce metabolic changes. Primary microglia exposed to lipopolysaccharide (LPS)-expressed excessive fission leading to more fragmented mitochondria than tubular mitochondria. LPS-mediated Toll-like receptor 4 (TLR4) activation also resulted in metabolic reprogramming from oxidative phosphorylation to glycolysis. Blockade of mitochondrial fission by Mdivi-1, a putative mitochondrial division inhibitor led to the reversal of the metabolic shift. Mdivi-1 treatment also normalized the changes caused by LPS exposure, namely an increase in mitochondrial reactive oxygen species production and mitochondrial membrane potential as well as accumulation of key metabolic intermediate of TCA cycle succinate. Moreover, Mdivi-1 treatment substantially reduced LPS induced cytokine and chemokine production. Finally, we showed that Mdivi-1 treatment attenuated expression of genes related to cytotoxic, repair, and immunomodulatory microglia phenotypes in an in vivo neuroinflammation paradigm. Collectively, our data show that the activation of microglia to a classically pro-inflammatory state is associated with a switch to glycolysis that is mediated by mitochondrial fission, a process which may be a pharmacological target for immunomodulation.
Collapse
Affiliation(s)
- Syam Nair
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina S Sobotka
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pooja Joshi
- PROTECT, INSERM, Université Paris Diderot, Paris, France
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Paris, France
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Bobbi Fleiss
- PROTECT, INSERM, Université Paris Diderot, Paris, France
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Claire Thornton
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
- Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
66
|
Naik PP, Birbrair A, Bhutia SK. Mitophagy-driven metabolic switch reprograms stem cell fate. Cell Mol Life Sci 2019; 76:27-43. [PMID: 30267101 PMCID: PMC11105479 DOI: 10.1007/s00018-018-2922-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022]
Abstract
"Cellular reprogramming" facilitates the generation of desired cellular phenotype through the cell fate transition by affecting the mitochondrial dynamics and metabolic reshuffle in the embryonic and somatic stem cells. Interestingly, both the processes of differentiation and dedifferentiation witness a drastic and dynamic alteration in the morphology, number, distribution, and respiratory capacity of mitochondria, which are tightly regulated by the fission/fusion cycle, and mitochondrial clearance through autophagy following mitochondrial fission. Intriguingly, mitophagy is said to be essential in the differentiation of stem cells into various lineages such as erythrocytes, eye lenses, neurites, myotubes, and M1 macrophages. Mitophagy is also believed to play a central role in the dedifferentiation of a terminally differentiated cell into an induced pluripotent cell and in the acquisition of 'stemness' in cancer cells. Mitophagy-induced alteration in the mitochondrial dynamics facilitates metabolic shift, either into a glycolytic phenotype or into an OXPHOS phenotype, depending on the cellular demand. Mitophagy-induced rejuvenation of mitochondria regulates the transition of bioenergetics and metabolome, remodeling which facilitates an alteration in their cellular developmental capability. This review describes the detailed mechanism of the process of mitophagy and its association with cellular programming through alteration in the mitochondrial energetics. The metabolic shift post mitophagy is suggested to be a key factor in the cell fate transition during differentiation and dedifferentiation.
Collapse
Affiliation(s)
- Prajna Paramita Naik
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
- P.G. Department of Zoology, Vikram Deb (Auto) College, Jeypore, Odisha, 764001, India
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
67
|
Kang JJ, Guo B, Liang WH, Lam CS, Wu SX, Huang XF, Wong-Riley MTT, Fung ML, Liu YY. Daily acute intermittent hypoxia induced dynamic changes in dendritic mitochondrial ultrastructure and cytochrome oxidase activity in the pre-Bötzinger complex of rats. Exp Neurol 2018; 313:124-134. [PMID: 30586594 DOI: 10.1016/j.expneurol.2018.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/18/2018] [Indexed: 12/29/2022]
Abstract
Mitochondria, as primary energy generators and Ca2+ biosensor, are dynamically coupled to neuronal activities, and thus play a role in neuroplasticity. Here we report that respiratory neuroplasticity induced by daily acute intermittent hypoxia (dAIH) evoked adaptive changes in the ultrastructure and postsynaptic distribution of mitochondria in the pre-Bötzinger complex (pre-BötC). The metabolic marker of neuronal activity, cytochrome c oxidase (CO), and dendritic mitochondria were examined in pre-BötC neurons of adult Sprague-Dawley rats preconditioned with dAIH, which is known to induce long-term facilitation (LTF) in respiratory neural activities. We performed neurokinin 1 receptor (NK1R) pre-embedding immunocytochemistry to define pre-BötC neurons, in combination with CO histochemistry, to depict ultrastructural alterations and CO activity in dendritic mitochondria. We found that the dAIH challenge significantly increased CO activity in pre-BötC neurons. Darkly CO-reactive mitochondria at postsynaptic sites in the dAIH group were much more prevalent than those in the normoxic control. In addition, the length and area of mitochondria were significantly increased in the dAIH group, implying a larger surface area of cristae for ATP generation. There was a fine, structural remodeling, notably enlarged and branching mitochondria or tapered mitochondria extending into dendritic spines. Mitochondrial cristae were mainly in parallel-lamellar arrangement, indicating a high efficiency of energy generation. Moreover, flocculent or filament-like elements were noted between the mitochondria and the postsynaptic membrane. These morphological evidences, together with increased CO activity, demonstrate that dendritic mitochondria in the pre-BötC responded dynamically to respiratory plasticity. Hence, plastic neuronal changes are closely coupled to active mitochondrial bioenergetics, leading to enhanced energy production and Ca2+ buffering that may drive the LTF expression.
Collapse
Affiliation(s)
- Jun-Jun Kang
- Department of Neurobiology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Baolin Guo
- Department of Neurobiology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Wei-Hua Liang
- Department of Pathology and Pathophysiology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Chun-Sing Lam
- School of Biomedical Sciences, The University of Hong Kong, PR China
| | - Sheng-Xi Wu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Xiao-Feng Huang
- Department of Pathology and Pathophysiology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Man-Lung Fung
- School of Biomedical Sciences, The University of Hong Kong, PR China.
| | - Ying-Ying Liu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
68
|
Qi Z, Huang Z, Xie F, Chen L. Dynamin-related protein 1: A critical protein in the pathogenesis of neural system dysfunctions and neurodegenerative diseases. J Cell Physiol 2018; 234:10032-10046. [PMID: 30515821 DOI: 10.1002/jcp.27866] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria play a key role in the maintenance of neuronal function by continuously providing energy. Here, we will give a detailed review about the recent developments in regards to dynamin-related protein 1 (Drp1) induced unbalanced mitochondrial dynamics, excessive mitochondrial division, and neuronal injury in neural system dysfunctions and neurodegenerative diseases, including the Drp1 knockout induced mice embryonic death, the dysfunction of the Drp1-dependent mitochondrial division induced neuronal cell apoptosis and impaired neuronal axonal transportation, the abnormal interaction between Drp1 and amyloid β (Aβ) in Alzheimer's disease (AD), the mutant Huntingtin (Htt) in Huntington's disease (HD), and the Drp1-associated pathogenesis of other neurodegenerative diseases such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Drp1 is required for mitochondrial division determining the size, shape, distribution, and remodeling as well as maintaining of mitochondrial integrity in mammalian cells. In addition, increasing reports indicate that the Drp1 is involved in some cellular events of neuronal cells causing some neural system dysfunctions and neurodegenerative diseases, including impaired mitochondrial dynamics, apoptosis, and several posttranslational modification induced increased mitochondrial divisions. Recent studies also revealed that the Drp1 can interact with Aβ, phosphorylated τ, and mutant Htt affecting the mitochondrial shape, size, distribution, axonal transportation, and energy production in the AD and HD neuronal cells. These changes can affect the health of mitochondria and the function of synapses causing neuronal injury and eventually leading to the dysfunction of memory, cognitive impairment, resting tremor, posture instability, involuntary movements, and progressive muscle atrophy and paralysis in patients.
Collapse
Affiliation(s)
- Zhihao Qi
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Zhen Huang
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Feng Xie
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Linxi Chen
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|
69
|
Jin S, Diano S. Mitochondrial Dynamics and Hypothalamic Regulation of Metabolism. Endocrinology 2018; 159:3596-3604. [PMID: 30203064 PMCID: PMC6157417 DOI: 10.1210/en.2018-00667] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/02/2018] [Indexed: 01/22/2023]
Abstract
Mitochondria are cellular organelles that play an important role in bioenergetic processes. In the central nervous system, high energy-demanding neurons are critically dependent on mitochondria to fulfill their appropriate functions. The hypothalamus is a key brain area for maintaining glucose and energy homeostasis via the ability of hypothalamic neurons to sense, integrate, and respond to numerous metabolic signals. Mitochondrial function has emerged as an important component in the regulation of hypothalamic neurons controlling glucose and energy homeostasis. Although the underlying mechanisms are not fully understood, emerging evidence indicates that mitochondrial dysfunction in hypothalamic neurons may contribute to the development of various metabolic diseases, including obesity and type 2 diabetes mellitus (T2DM). In this review, we summarize recent studies demonstrating the link between mitochondria and hypothalamic neural control of glucose and energy homeostasis. Finally, this review provides an insight to understand how mitochondria in hypothalamic neurons may contribute to the development of metabolic disorders, such as T2DM and obesity.
Collapse
Affiliation(s)
- Sungho Jin
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Sabrina Diano
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| |
Collapse
|
70
|
Idelevich A, Baron R. Brain to bone: What is the contribution of the brain to skeletal homeostasis? Bone 2018; 115:31-42. [PMID: 29777919 PMCID: PMC6110971 DOI: 10.1016/j.bone.2018.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
The brain, which governs most, if not all, physiological functions in the body, from the complexities of cognition, learning and memory, to the regulation of basal body temperature, heart rate and breathing, has long been known to affect skeletal health. In particular, the hypothalamus - located at the base of the brain in close proximity to the medial eminence, where the blood-brain-barrier is not as tight as in other regions of the brain but rather "leaky", due to fenestrated capillaries - is exposed to a variety of circulating body cues, such as nutrients (glucose, fatty acids, amino acids), and hormones (insulin, glucagon, leptin, adiponectin) [1-3].Information collected from the body via these peripheral cues is integrated by hypothalamic sensing neurons and glial cells [4-7], which express receptors for these nutrients and hormones, transforming these cues into physiological outputs. Interestingly, many of the same molecules, including leptin, adiponectin and insulin, regulate both energy and skeletal homeostasis. Moreover, they act on a common set of hypothalamic nuclei and their residing neurons, activating endocrine and neuronal systems, which ultimately fine-tune the body to new physiological states. This review will focus exclusively on the brain-to-bone pathway, highlighting the most important anatomical sites within the brain, which are known to affect bone, but not covering the input pathways and molecules informing the brain of the energy and bone metabolic status, covered elsewhere [8-10]. The discussion in each section will present side by side the metabolic and bone-related functions of hypothalamic nuclei, in an attempt to answer some of the long-standing questions of whether energy is affected by bone remodeling and homeostasis and vice versa.
Collapse
Affiliation(s)
- Anna Idelevich
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
71
|
Dodd GT, Michael NJ, Lee-Young RS, Mangiafico SP, Pryor JT, Munder AC, Simonds SE, Brüning JC, Zhang ZY, Cowley MA, Andrikopoulos S, Horvath TL, Spanswick D, Tiganis T. Insulin regulates POMC neuronal plasticity to control glucose metabolism. eLife 2018; 7:38704. [PMID: 30230471 PMCID: PMC6170188 DOI: 10.7554/elife.38704] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022] Open
Abstract
Hypothalamic neurons respond to nutritional cues by altering gene expression and neuronal excitability. The mechanisms that control such adaptive processes remain unclear. Here we define populations of POMC neurons in mice that are activated or inhibited by insulin and thereby repress or inhibit hepatic glucose production (HGP). The proportion of POMC neurons activated by insulin was dependent on the regulation of insulin receptor signaling by the phosphatase TCPTP, which is increased by fasting, degraded after feeding and elevated in diet-induced obesity. TCPTP-deficiency enhanced insulin signaling and the proportion of POMC neurons activated by insulin to repress HGP. Elevated TCPTP in POMC neurons in obesity and/or after fasting repressed insulin signaling, the activation of POMC neurons by insulin and the insulin-induced and POMC-mediated repression of HGP. Our findings define a molecular mechanism for integrating POMC neural responses with feeding to control glucose metabolism.
Collapse
Affiliation(s)
- Garron T Dodd
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Natalie J Michael
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Victoria, Australia
| | - Robert S Lee-Young
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia.,Monash Metabolic Phenotyping Facility, Monash University, Victoria, Australia
| | - Salvatore P Mangiafico
- Department of Medicine (Austin Hospital), The University of Melbourne, Melbourne, Australia
| | - Jack T Pryor
- Department of Physiology, Monash University, Victoria, Australia.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Astrid C Munder
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Victoria, Australia
| | - Stephanie E Simonds
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Victoria, Australia
| | - Jens Claus Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes, and Preventive Medicine, University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,National Center for Diabetes Research, Neuherberg, Germany
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, United States
| | - Michael A Cowley
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Victoria, Australia
| | - Sofianos Andrikopoulos
- Department of Medicine (Austin Hospital), The University of Melbourne, Melbourne, Australia
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, United States.,Department of Anatomy and Histology, University of Veterinary Medicine, Hungary, Europe
| | - David Spanswick
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Victoria, Australia.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Tony Tiganis
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia.,Monash Metabolic Phenotyping Facility, Monash University, Victoria, Australia
| |
Collapse
|
72
|
Perron IJ, Keenan BT, Chellappa K, Lahens NF, Yohn NL, Shockley KR, Pack AI, Veasey SC. Dietary challenges differentially affect activity and sleep/wake behavior in mus musculus: Isolating independent associations with diet/energy balance and body weight. PLoS One 2018; 13:e0196743. [PMID: 29746501 PMCID: PMC5945034 DOI: 10.1371/journal.pone.0196743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Associated with numerous metabolic and behavioral abnormalities, obesity is classified by metrics reliant on body weight (such as body mass index). However, overnutrition is the common cause of obesity, and may independently contribute to these obesity-related abnormalities. Here, we use dietary challenges to parse apart the relative influence of diet and/or energy balance from body weight on various metabolic and behavioral outcomes. MATERIALS AND METHODS Seventy male mice (mus musculus) were subjected to the diet switch feeding paradigm, generating groups with various body weights and energetic imbalances. Spontaneous activity patterns, blood metabolite levels, and unbiased gene expression of the nutrient-sensing ventral hypothalamus (using RNA-sequencing) were measured, and these metrics were compared using standardized multivariate linear regression models. RESULTS Spontaneous activity patterns were negatively related to body weight (p<0.0001) but not diet/energy balance (p = 0.63). Both body weight and diet/energy balance predicted circulating glucose and insulin levels, while body weight alone predicted plasma leptin levels. Regarding gene expression within the ventral hypothalamus, only two genes responded to diet/energy balance (neuropeptide y [npy] and agouti-related peptide [agrp]), while others were related only to body weight. CONCLUSIONS Collectively, these results demonstrate that individual components of obesity-specifically obesogenic diets/energy imbalance and elevated body mass-can have independent effects on metabolic and behavioral outcomes. This work highlights the shortcomings of using body mass-based indices to assess metabolic health, and identifies novel associations between blood biomarkers, neural gene expression, and animal behavior following dietary challenges.
Collapse
Affiliation(s)
- Isaac J. Perron
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: ,
| | - Brendan T. Keenan
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karthikeyani Chellappa
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicholas F. Lahens
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicole L. Yohn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Keith R. Shockley
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Allan I. Pack
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sigrid C. Veasey
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
73
|
Nobis S, Goichon A, Achamrah N, Guérin C, Azhar S, Chan P, Morin A, Bôle-Feysot C, do Rego JC, Vaudry D, Déchelotte P, Belmonte L, Coëffier M. Alterations of proteome, mitochondrial dynamic and autophagy in the hypothalamus during activity-based anorexia. Sci Rep 2018; 8:7233. [PMID: 29740148 PMCID: PMC5940678 DOI: 10.1038/s41598-018-25548-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Restrictive anorexia nervosa is associated with reduced eating and severe body weight loss leading to a cachectic state. Hypothalamus plays a major role in the regulation of food intake and energy homeostasis. In the present study, alterations of hypothalamic proteome and particularly of proteins involved in energy and mitochondrial metabolism have been observed in female activity-based anorexia (ABA) mice that exhibited a reduced food intake and a severe weight loss. In the hypothalamus, mitochondrial dynamic was also modified during ABA with an increase of fission without modification of fusion. In addition, increased dynamin-1, and LC3II/LC3I ratio signed an activation of autophagy while protein synthesis was increased. In conclusion, proteomic analysis revealed an adaptive hypothalamic protein response in ABA female mice with both altered mitochondrial response and activated autophagy.
Collapse
Affiliation(s)
- Séverine Nobis
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Alexis Goichon
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Najate Achamrah
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Rouen University Hospital, Nutrition Department, Rouen, France
| | - Charlène Guérin
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Saida Azhar
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Philippe Chan
- Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Normandie University, UNIROUEN, Platform in proteomics PISSARO, Rouen, France
| | - Aline Morin
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Christine Bôle-Feysot
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jean Claude do Rego
- Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Normandie University, UNIROUEN, Animal Behaviour Platform SCAC, Rouen, France
| | - David Vaudry
- Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Normandie University, UNIROUEN, Platform in proteomics PISSARO, Rouen, France.,Normandie University, UNIROUEN, INSERM Unit 1239, Mont-Saint-Aignan, France
| | - Pierre Déchelotte
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Rouen University Hospital, Nutrition Department, Rouen, France
| | - Liliana Belmonte
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France.,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Rouen University Hospital, Nutrition Department, Rouen, France
| | - Moïse Coëffier
- Normandie University, UNIROUEN, INSERM Unit 1073, Rouen, France. .,Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France. .,Rouen University Hospital, Nutrition Department, Rouen, France.
| |
Collapse
|
74
|
Timper K, Brüning JC. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech 2018; 10:679-689. [PMID: 28592656 PMCID: PMC5483000 DOI: 10.1242/dmm.026609] [Citation(s) in RCA: 474] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ‘obesity epidemic’ represents a major global socioeconomic burden that urgently calls for a better understanding of the underlying causes of increased weight gain and its associated metabolic comorbidities, such as type 2 diabetes mellitus and cardiovascular diseases. Improving our understanding of the cellular basis of obesity could set the stage for the development of new therapeutic strategies. The CNS plays a pivotal role in the regulation of energy and glucose homeostasis. Distinct neuronal cell populations, particularly within the arcuate nucleus of the hypothalamus, sense the nutrient status of the organism and integrate signals from peripheral hormones including pancreas-derived insulin and adipocyte-derived leptin to regulate calorie intake, glucose metabolism and energy expenditure. The arcuate neurons are tightly connected to other specialized neuronal subpopulations within the hypothalamus, but also to various extrahypothalamic brain regions, allowing a coordinated behavioral response. This At a Glance article gives an overview of the recent knowledge, mainly derived from rodent models, regarding the CNS-dependent regulation of energy and glucose homeostasis, and illustrates how dysregulation of the neuronal networks involved can lead to overnutrition and obesity. The potential impact of recent research findings in the field on therapeutic treatment strategies for human obesity is also discussed. Summary: This at a glance article gives an overview of the recent knowledge mainly derived from rodent models regarding the CNS-dependent regulation of energy and glucose homeostasis, and depicts how dysregulation of the involved neuronal networks promotes overnutrition and obesity.
Collapse
Affiliation(s)
- Katharina Timper
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, Cologne 50931, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, Cologne 50924, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, Cologne 50931, Germany .,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, Cologne 50924, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany.,National Center for Diabetes Research (DZD), Ingolstädter Land Str. 1, Neuherberg 85764, Germany
| |
Collapse
|
75
|
Li Y, Ma Y, Song L, Yu L, Zhang L, Zhang Y, Xing Y, Yin Y, Ma H. SIRT3 deficiency exacerbates p53/Parkin‑mediated mitophagy inhibition and promotes mitochondrial dysfunction: Implication for aged hearts. Int J Mol Med 2018. [PMID: 29532856 DOI: 10.3892/ijmm.2018.3555] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial dynamics have critical roles in aging, and their impairment represents a prominent risk factor for myocardial dysfunction. Mitochondrial deacetylase sirtuin (SIRT)3 contributes greatly to the prevention of redox stress and cell aging. The present study explored the role of SIRT3 on myocardium aging. Western blot analysis demonstrated that SIRT3 expression levels were significantly lower in the myocardia of aged mice compared with young mice. Immunoprecipitation and western blot assays indicated that the activity of mitochondrial manganese superoxide dismutase (MnSOD) and peroxisome proliferator‑activated receptor γ coactivator (PGC)‑1α was reduced in the aged heart. To further explore the association between SIRT3 and myocardial senescence, SIRT3 heart‑specific knockout (SIRT3-/-) mice were used in the present study. The results revealed that obvious features of aging were present in the myocardium of SIRT3-/- mice, including mitochondrial protein dysfunction, enhanced oxidative stress, and energy metabolism dysfunction. SIRT3 deficiency impaired Parkin‑mediated mitophagy by increasing p53‑Parkin binding and blocking the mitochondrial translocation of Parkin in cardiomyocytes. Injection of autophagy agonist CCCP significantly increased the mitochondrial Parkin level in young wild‑type hearts but not in aged hearts; the effect was less pronounced in SIRT3-/- hearts. These data suggest that CCCP‑induced Parkin translocation was reduced in aged and SIRT3-/- hearts. CCCP‑induced mitochondrial clearance, which could be rescued by autophagy antagonist bafilomycin‑A1, was markedly weakened in aged and SIRT3-/- hearts vs. young hearts. SIRT3 deficiency exacerbated p53/Parkin‑mediated mitophagy inhibition and disrupted mitochondrial homeostasis, suggesting that loss of SIRT3 may increase the susceptibility of aged hearts to cardiac dysfunction. Therapeutic activation of SIRT3 and improved mitochondrial function may ameliorate the symptoms of cardiac aging.
Collapse
Affiliation(s)
- Yan Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ying Ma
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liqiang Song
- Department of Respirology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lu Yu
- Department of Pathology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Le Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yingmei Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuan Xing
- Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yue Yin
- Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Heng Ma
- Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
76
|
Mukherjee A, Patra U, Bhowmick R, Chawla-Sarkar M. Rotaviral nonstructural protein 4 triggers dynamin-related protein 1-dependent mitochondrial fragmentation during infection. Cell Microbiol 2018; 20:e12831. [PMID: 29444369 DOI: 10.1111/cmi.12831] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/06/2018] [Accepted: 02/06/2018] [Indexed: 12/16/2022]
Abstract
Dynamic equilibrium between mitochondrial fission and mitochondrial fusion serves as an important quality control system within cells ensuring cellular vitality and homeostasis. Viruses often target mitochondrial dynamics as a part of their obligatory cellular reprogramming. The present study was undertaken to assess the status and regulation of mitochondrial dynamics during rotavirus infection. Distinct fragmentation of mitochondrial syncytia was observed during late hours of RV (SA11, Wa, A5-13) infection. RV nonstructural protein 4 (NSP4) was identified as the viral trigger for disrupted mitochondrial morphology. Severance of mitochondrial interconnections was found to be a dynamin-related protein 1 (Drp1)-dependent process resulting synergistically from augmented mitochondrial fission and attenuated mitochondrial fusion. Cyclin-dependent kinase 1 was subsequently identified as the cellular kinase responsible for fission-active Ser616 phosphorylation of Drp1. In addition to its positive role in mitochondrial fission, Drp1 also resulted in mitochondrial translocation of E3-ubiquitin ligase Parkin leading to degradation of mitochondrial fusion protein Mitofusin 1. Interestingly, RV-NSP4 was found to interact with and be involved in recruiting fission-active pool of Serine 616 phosphoDrp1 (Ser616 pDrp1) to mitochondria independent of accessory adaptors Mitochondrial fission factor and Fission protein 1 (Fis1). Inhibition of either Drp1 or Ser616 pDrp1 resulted in significant decrease in RV-NSP4-induced intrinsic apoptotic pathway. Overall, this study underscores an efficient strategy utilised by RV to couple apoptosis to mitochondrial fission facilitating dissemination of viral progeny.
Collapse
Affiliation(s)
- Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rahul Bhowmick
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
77
|
Szabo A, Sumegi K, Fekete K, Hocsak E, Debreceni B, Setalo G, Kovacs K, Deres L, Kengyel A, Kovacs D, Mandl J, Nyitrai M, Febbraio MA, Gallyas F, Sumegi B. Activation of mitochondrial fusion provides a new treatment for mitochondria-related diseases. Biochem Pharmacol 2018; 150:86-96. [PMID: 29378182 DOI: 10.1016/j.bcp.2018.01.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
Mitochondria fragmentation destabilizes mitochondrial membranes, promotes oxidative stress and facilitates cell death, thereby contributing to the development and the progression of several mitochondria-related diseases. Accordingly, compounds that reverse mitochondrial fragmentation could have therapeutic potential in treating such diseases. BGP-15, a hydroxylamine derivative, prevents insulin resistance in humans and protects against several oxidative stress-related diseases in animal models. Here we show that BGP-15 promotes mitochondrial fusion by activating optic atrophy 1 (OPA1), a GTPase dynamin protein that assist fusion of the inner mitochondrial membranes. Suppression of Mfn1, Mfn2 or OPA1 prevents BGP-15-induced mitochondrial fusion. BGP-15 activates Akt, S6K, mTOR, ERK1/2 and AS160, and reduces JNK phosphorylation which can contribute to its protective effects. Furthermore, BGP-15 protects lung structure, activates mitochondrial fusion, and stabilizes cristae membranes in vivo determined by electron microscopy in a model of pulmonary arterial hypertension. These data provide the first evidence that a drug promoting mitochondrial fusion in in vitro and in vivo systems can reduce or prevent the progression of mitochondria-related disorders.
Collapse
Affiliation(s)
- Aliz Szabo
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Katalin Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Katalin Fekete
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Eniko Hocsak
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Balazs Debreceni
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Gyorgy Setalo
- Department of Medical Biology, University of Pécs Medical School, Pécs, Hungary; Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Laszlo Deres
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary; 1st Department of Medicine, Division of Cardiology, University of Pecs Medical School, Pecs, Hungary
| | - Andras Kengyel
- Department of Biophysics, University of Pécs Medical School, Pécs, Hungary
| | - Dominika Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Jozsef Mandl
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Miklos Nyitrai
- Department of Biophysics, University of Pécs Medical School, Pécs, Hungary
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary; Szentagothai Research Centre, University of Pécs, Pécs, Hungary; Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary; Szentagothai Research Centre, University of Pécs, Pécs, Hungary; Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
78
|
Abstract
To survive, organisms require mechanisms that enable them to sense changes in the outside environment, introduce necessary responses, and resist unfavorable distortion. Consequently, through evolutionary adaptation, cells have become equipped with the apparatus required to monitor their fundamental intracellular processes and the mechanisms needed to try to offset malfunction without receiving any direct signals from the outside environment. It has been shown recently that eukaryotic cells are equipped with a special mechanism that monitors their fundamental cellular functions and that some pathogenic proteobacteria can override this monitoring mechanism to cause harm. The monitored cellular activities involved in the stressed intracellular response have been researched extensively in Caenorhabditis elegans, where discovery of an association between key mitochondrial activities and innate immune responses was named "cellular associated detoxification and defenses (cSADD)." This cellular surveillance pathway (cSADD) oversees core cellular activities such as mitochondrial respiration and protein transport into mitochondria, detects xenobiotics and invading pathogens, and activates the endocrine pathways controlling behavior, detoxification, and immunity. The cSADD pathway is probably associated with cellular responses to stress in human inflammatory diseases. In the critical care field, the pathogenesis of lethal inflammatory syndromes (e.g., respiratory distress syndromes and sepsis) involves the disturbance of mitochondrial respiration leading to cell death. Up-to-date knowledge about monitored cellular activities and cSADD, especially focusing on mitochondrial involvement, can probably help fill a knowledge gap regarding the pathogenesis of lethal inflammatory syndromes in the critical care field.
Collapse
|
79
|
Wang J, Huang Y, Cai J, Ke Q, Xiao J, Huang W, Li H, Qiu Y, Wang Y, Zhang B, Wu H, Zhang Y, Sui X, Bardeesi ASA, Xiang AP. A Nestin-Cyclin-Dependent Kinase 5-Dynamin-Related Protein 1 Axis Regulates Neural Stem/Progenitor Cell Stemness via a Metabolic Shift. Stem Cells 2018; 36:589-601. [DOI: 10.1002/stem.2769] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/22/2017] [Accepted: 11/21/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Jiancheng Wang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Yinong Huang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Sun Yat-Sen University; Guangzhou People's Republic of China
- Department of Neurology; The Third Affiliated Hospital of Sun Yat-sen University; Guangzhou People's Republic of China
| | - Jianye Cai
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Sun Yat-Sen University; Guangzhou People's Republic of China
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital; Organ Transplantation Institute of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province; Guangzhou People's Republic of China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Jiaqi Xiao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Hongyu Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Yi Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Bin Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Haoxiang Wu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Yanan Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Xin Sui
- The First Affiliated Hospital of Xi'an Jiaotong University Medical College; Xi'an Shaanxi People's Republic of China
| | - Adham Sameer A. Bardeesi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Andy Peng Xiang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Sun Yat-Sen University; Guangzhou People's Republic of China
- Department of Biochemistry, Zhongshan School of Medicine
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Guangzhou People's Republic of China
| |
Collapse
|
80
|
Pesaresi M, Giatti S, Spezzano R, Romano S, Diviccaro S, Borsello T, Mitro N, Caruso D, Garcia-Segura LM, Melcangi RC. Axonal transport in a peripheral diabetic neuropathy model: sex-dimorphic features. Biol Sex Differ 2018; 9:6. [PMID: 29351809 PMCID: PMC5775621 DOI: 10.1186/s13293-018-0164-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
Background Disruption of axonal transport plays a pivotal role in diabetic neuropathy. A sex-dimorphism exists in the incidence and symptomatology of diabetic neuropathy; however, no studies so far have addressed sex differences in axonal motor proteins expression in early diabetes as well as the possible involvement of neuroactive steroids. Interestingly, recent data point to a role for mitochondria in the sexual dimorphism of neurodegenerative diseases. Mitochondria have a fundamental role in axonal transport by producing the motors’ energy source, ATP. Moreover, neuroactive steroids can also regulate mitochondrial function. Methods Here, we investigated the impact of short-term diabetes in the peripheral nervous system of male and female rats on key motor proteins important for axonal transport, mitochondrial function, and neuroactive steroids levels. Results We show that short-term diabetes alters mRNA levels and axoplasm protein contents of kinesin family member KIF1A, KIF5B, KIF5A and Myosin Va in male but not in female rats. Similarly, the expression of peroxisome proliferator-activated receptor γ co-activator-1α, a subunit of the respiratory chain complex IV, ATP levels and the key regulators of mitochondrial dynamics were affected in males but not in females. Concomitant analysis of neuroactive steroid levels in sciatic nerve showed an alteration of testosterone, dihydrotestosterone, and allopregnanolone in diabetic males, whereas no changes were observed in female rats. Conclusions These findings suggest that sex-specific decrease in neuroactive steroid levels in male diabetic animals may cause an alteration in their mitochondrial function that in turn might impact in axonal transport, contributing to the sex difference observed in diabetic neuropathy.
Collapse
Affiliation(s)
- Marzia Pesaresi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto Spezzano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Simone Romano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Tiziana Borsello
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.,Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
81
|
Baltatu OC, Amaral FG, Campos LA, Cipolla-Neto J. Melatonin, mitochondria and hypertension. Cell Mol Life Sci 2017; 74:3955-3964. [PMID: 28791422 PMCID: PMC11107636 DOI: 10.1007/s00018-017-2613-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022]
Abstract
Melatonin, due to its multiple means and mechanisms of action, plays a fundamental role in the regulation of the organismal physiology by fine tunning several functions. The cardiovascular system is an important site of action as melatonin regulates blood pressure both by central and peripheral interventions, in addition to its relation with the renin-angiotensin system. Besides, the systemic management of several processes, melatonin acts on mitochondria regulation to maintain a healthy cardiovascular system. Hypertension affects target organs in different ways and cellular energy metabolism is frequently involved due to mitochondrial alterations that include a rise in reactive oxygen species production and an ATP synthesis decrease. The discussion that follows shows the role played by melatonin in the regulation of mitochondrial physiology in several levels of the cardiovascular system, including brain, heart, kidney, blood vessels and, particularly, regulating the renin-angiotensin system. This discussion shows the putative importance of using melatonin as a therapeutic tool involving its antioxidant potential and its action on mitochondrial physiology in the cardiovascular system.
Collapse
Affiliation(s)
- Ovidiu C Baltatu
- Center of Innovation, Technology and Education (CITE) at Anhembi Morumbi University-Laureate International Universities, 500 Dr. Altino Bondensan Ave, São José dos Campos, SP, 12247-016, Brazil
| | - Fernanda G Amaral
- Department of Physiology, Federal University of São Paulo, 862 Botucatu St, 5th Floor, São Paulo, SP, 04023-901, Brazil
| | - Luciana A Campos
- Center of Innovation, Technology and Education (CITE) at Anhembi Morumbi University-Laureate International Universities, 500 Dr. Altino Bondensan Ave, São José dos Campos, SP, 12247-016, Brazil
| | - Jose Cipolla-Neto
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1524, room 115/118, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
82
|
Mayo JC, Sainz RM, González-Menéndez P, Hevia D, Cernuda-Cernuda R. Melatonin transport into mitochondria. Cell Mol Life Sci 2017; 74:3927-3940. [PMID: 28828619 PMCID: PMC11107582 DOI: 10.1007/s00018-017-2616-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022]
Abstract
Melatonin is a well-known, nighttime-produced indole found in bacteria, eukaryotic unicellulars, animals or vascular plants. In vertebrates, melatonin is the major product of the pineal gland, which accounts for its increase in serum during the dark phase, but it is also produced by many other organs and cell types. Such a wide distribution is consistent with its multiple and well-described functions which include from the circadian regulation and adaptation to seasonal variations to immunomodulatory and oncostatic actions in different types of tumors. The discovery of its antioxidant properties in the early 1990s opened a new field of potential protective functions in multiple tissues. A special mention should be made regarding the nervous system, where the indole is considered a major neuroprotector. Furthermore, mitochondria appear as one of the most important targets for the indole's protective actions. Melatonin's mechanisms of action vary from the direct molecular interaction with free radicals (free radical scavenger) to the binding to membrane (MLT1A and MLT1B) or nuclear receptors (RZR/RORα). Receptor binding has been associated with some, but not all of the indole functions reported to date. Recently, two new mechanisms of cellular uptake involving the facilitative glucose transporters GLUT/SLC2A and the proton-driven oligopeptide transporter PEPT1/2 have been reported. Here we discuss the potential importance that these newly discovered transport systems could have in determining the actions of melatonin, particularly in the mitochondria. We also argue the relative importance of passive diffusion vs active transport in different parts of the cell.
Collapse
Affiliation(s)
- Juan C Mayo
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain.
- Instituto Universitario Oncológico del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.
| | - Rosa M Sainz
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain
- Instituto Universitario Oncológico del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Pedro González-Menéndez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain
- Instituto Universitario Oncológico del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - David Hevia
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain
- Instituto Universitario Oncológico del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Rafael Cernuda-Cernuda
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain
| |
Collapse
|
83
|
Zhang H, Yu P, Ren JX, Li XB, Wang HL, Ding L, Kong WB. Development of novel prediction model for drug-induced mitochondrial toxicity by using naïve Bayes classifier method. Food Chem Toxicol 2017; 110:122-129. [PMID: 29042293 DOI: 10.1016/j.fct.2017.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 02/05/2023]
Abstract
Mitochondrial dysfunction has been considered as an important contributing factor in the etiology of drug-induced organ toxicity, and even plays an important role in the pathogenesis of some diseases. The objective of this investigation was to develop a novel prediction model of drug-induced mitochondrial toxicity by using a naïve Bayes classifier. For comparison, the recursive partitioning classifier prediction model was also constructed. Among these methods, the prediction performance of naïve Bayes classifier established here showed best, which yielded average overall prediction accuracies for the internal 5-fold cross validation of the training set and external test set were 95 ± 0.6% and 81 ± 1.1%, respectively. In addition, four important molecular descriptors and some representative substructures of toxicants produced by ECFP_6 fingerprints were identified. We hope the established naïve Bayes prediction model can be employed for the mitochondrial toxicity assessment, and these obtained important information of mitochondrial toxicants can provide guidance for medicinal chemists working in drug discovery and lead optimization.
Collapse
Affiliation(s)
- Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Peng Yu
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Ji-Xia Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, PR China; College of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Xi-Bo Li
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - He-Li Wang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Lan Ding
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - Wei-Bao Kong
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| |
Collapse
|
84
|
Ko SH, Choi GE, Oh JY, Lee HJ, Kim JS, Chae CW, Choi D, Han HJ. Succinate promotes stem cell migration through the GPR91-dependent regulation of DRP1-mediated mitochondrial fission. Sci Rep 2017; 7:12582. [PMID: 28974722 PMCID: PMC5626702 DOI: 10.1038/s41598-017-12692-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/13/2017] [Indexed: 12/24/2022] Open
Abstract
The role of metabolites produced from stem cell metabolism has been emerged as signaling molecules to regulate stem cell behaviors such as migration. The mitochondrial morphology is closely associated with the metabolic balance and stem cell function. However, the physiological role of succinate on human mesenchymal stem cell (hMSC) migration by regulating the mitochondrial morphology remains unclear. Here, we investigate the effect of succinate on hMSC migration via regulation of mitochondrial dynamics and its related signaling pathway. Succinate (50 μM) significantly accelerates hMSC migration. Succinate increases phosphorylation of pan-PKC, especially the atypical PKCζ level which was blocked by the knockdown of Gαq and Gα12. Activated PKCζ subsequently phosphorylates p38 MAPK. Cytosolic DRP1 is phosphorylated by p38 MAPK and results in DRP1 translocation to the mitochondria outer membrane, eventually inducing mitochondrial fragmentation. Mitochondrial fission-induced mitochondrial function elevates mitochondrial ROS (mtROS) levels and activates Rho GTPases, which then induces F-actin formation. Furthermore, in a skin excisional wound model, we found the effects of succinate-pretreated hMSC enhanced wound closure, vascularization and re-epithelialization and confirmed that DRP1 has a vital role in injured tissue regeneration. Overall, succinate promotes DRP1-mediated mitochondrial fission via GPR91, consequently stimulating the hMSC migration through mtROS-induced F-actin formation.
Collapse
Affiliation(s)
- So Hee Ko
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS program for Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS program for Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Ji Young Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life science, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS program for Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS program for Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS program for Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Diana Choi
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts, 01075, USA
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS program for Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
85
|
A comprehensive analysis of mitochondrial genes variants and their association with antipsychotic-induced weight gain. Schizophr Res 2017; 187:67-73. [PMID: 28693754 PMCID: PMC5660917 DOI: 10.1016/j.schres.2017.06.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 01/09/2023]
Abstract
Antipsychotic Induced Weight Gain (AIWG) is a common and severe side effect of many antipsychotic medications. Mitochondria play a vital role for whole-body energy homeostasis and there is increasing evidence that antipsychotics modulate mitochondrial function. This study aimed to examine the role of variants in nuclear-encoded mitochondrial genes and the mitochondrial DNA (mtDNA) in conferring risk for AIWG. We selected 168 European-Caucasian individuals from the CATIE sample based upon meeting criteria of multiple weight measures while taking selected antipsychotics (risperidone, quetiapine or olanzapine). We tested the association of 670 nuclear-encoded mitochondrial genes with weight change (%) using MAGMA software. Thirty of these genes showed nominally significant P-values (<0.05). We were able to replicate the association of three genes, CLPB, PARL, and ACAD10, with weight change (%) in an independent prospectively assessed AIWG sample. We analyzed mtDNA variants in a subset of 74 of these individuals using next-generation sequencing. No common or rare mtDNA variants were found to be significantly associated with weight change (%) in our sample. Additionally, analysis of mitochondrial haplogroups showed no association with weight change (%). In conclusion, our findings suggest nuclear-encoded mitochondrial genes play a role in AIWG. Replication in larger sample is required to validate our initial report of mtDNA variants in AIWG.
Collapse
|
86
|
Bohnsack MT, Sloan KE. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease. Cell Mol Life Sci 2017; 75:241-260. [PMID: 28752201 PMCID: PMC5756263 DOI: 10.1007/s00018-017-2598-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/08/2017] [Accepted: 07/17/2017] [Indexed: 11/28/2022]
Abstract
Mitochondrial protein synthesis is essential for the production of components of the oxidative phosphorylation system. RNA modifications in the mammalian mitochondrial translation apparatus play key roles in facilitating mitochondrial gene expression as they enable decoding of the non-conventional genetic code by a minimal set of tRNAs, and efficient and accurate protein synthesis by the mitoribosome. Intriguingly, recent transcriptome-wide analyses have also revealed modifications in mitochondrial mRNAs, suggesting that the concept of dynamic regulation of gene expression by the modified RNAs (the “epitranscriptome”) extends to mitochondria. Furthermore, it has emerged that defects in RNA modification, arising from either mt-DNA mutations or mutations in nuclear-encoded mitochondrial modification enzymes, underlie multiple mitochondrial diseases. Concomitant advances in the identification of the mitochondrial RNA modification machinery and recent structural views of the mitochondrial translation apparatus now allow the molecular basis of such mitochondrial diseases to be understood on a mechanistic level.
Collapse
Affiliation(s)
- Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| | - Katherine E Sloan
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
87
|
Michael NJ, Simonds SE, van den Top M, Cowley MA, Spanswick D. Mitochondrial uncoupling in the melanocortin system differentially regulates NPY and POMC neurons to promote weight-loss. Mol Metab 2017; 6:1103-1112. [PMID: 29031712 PMCID: PMC5641603 DOI: 10.1016/j.molmet.2017.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Objective The mitochondrial uncoupling agent 2,4-dinitrophenol (DNP), historically used as a treatment for obesity, is known to cross the blood-brain-barrier, but its effects on central neural circuits controlling body weight are largely unknown. As hypothalamic melanocortin neuropeptide Y/agouti-related protein (NPY/AgRP) and pro-opiomelanocortin (POMC) neurons represent key central regulators of food intake and energy expenditure we investigated the effects of DNP on these neurons, food intake and energy expenditure. Method C57BL/6 and melanocortin-4 receptor (MC4R) knock-out mice were administered DNP intracerebroventricularly (ICV) and the metabolic changes were characterized. The specific role of NPY and POMC neurons and the ionic mechanisms mediating the effects of uncoupling were examined with in vitro electrophysiology performed on NPY hrGFP or POMC eGFP mice. Results Here we show DNP-induced differential effects on melanocortin neurons including inhibiting orexigenic NPY and activating anorexigenic POMC neurons through independent ionic mechanisms coupled to mitochondrial function, consistent with an anorexigenic central effect. Central administration of DNP induced weight-loss, increased BAT thermogenesis and browning of white adipose tissue, and decreased food intake, effects that were absent in MC4R knock-out mice and blocked by the MC4R antagonist, AgRP. Conclusion These data show a novel central anti-obesity mechanism of action of DNP and highlight the potential for selective melanocortin mitochondrial uncoupling to target metabolic disorders. Mitochondrial uncoupling of the melanocortin system with DNP induced weight-loss. DNP inhibited NPY neurones via activation of ATP-sensitive potassium channels. DNP activated POMC neurones via block of inwardly rectifying potassium channels. Central DNP reduced food intake and increased WAT browning and BAT thermogenesis.
Collapse
Affiliation(s)
- Natalie Jane Michael
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Australia(5).
| | - Stephanie Elise Simonds
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Australia(5).
| | | | - Michael Alexander Cowley
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Australia(5).
| | - David Spanswick
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Australia(5); Neurosolutions, Coventry, P.O. 3517, UK; Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
88
|
Aung LHH, Li R, Prabhakar BS, Li P. Knockdown of Mtfp1 can minimize doxorubicin cardiotoxicity by inhibiting Dnm1l-mediated mitochondrial fission. J Cell Mol Med 2017. [PMID: 28643438 PMCID: PMC5706585 DOI: 10.1111/jcmm.13250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The long-term usage of doxorubicin (DOX) is largely limited due to the development of severe cardiomyopathy. Many studies indicate that DOX-induced cardiac injury is related to reactive oxygen species generation and ultimate activation of apoptosis. The role of novel mitochondrial fission protein 1 (Mtfp1) in DOX-induced cardiotoxicity remains elusive. Here, we report the pro-mitochondrial fission and pro-apoptotic roles of Mtfp1 in DOX-induced cardiotoxicity. DOX up-regulates the Mtfp1 expression in HL-1 cardiac myocytes. Knockdown of Mtfp1 prevents cardiac myocyte from undergoing mitochondrial fission, and subsequently reduces the DOX-induced apoptosis by preventing dynamin 1-like (Dnm1l) accumulation in mitochondria. In contrast, when Mtfp1 is overexpressed, a suboptimal dose of DOX can induce a significant percentage of cells to undergo mitochondrial fission and apoptosis. These data suggest that knocking down of Mtfp1 can minimize the cardiomyocytes loss in DOX-induced cardiotoxicity. Thus, the regulation of Mtfp1 expression could be a novel therapeutic approach in chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Lynn H H Aung
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ruibei Li
- School of Professional Studies, Northwestern University, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Peifeng Li
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
89
|
Longhi R, Almeida RF, Pettenuzzo LF, Souza DG, Machado L, Quincozes-Santos A, Souza DO. Effect of a trans fatty acid-enriched diet on mitochondrial, inflammatory, and oxidative stress parameters in the cortex and hippocampus of Wistar rats. Eur J Nutr 2017; 57:1913-1924. [PMID: 28567576 DOI: 10.1007/s00394-017-1474-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 05/19/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE Previously showed that dietary trans fatty acids (TFAs) may cause systemic inflammation and affect the central nervous system (CNS) in Wistar rats by increased levels of cytokines in the cerebrospinal fluid (CSF) and serum (Longhi et al. Eur J Nutr 56(3):1003-1016, 1). Here, we aimed to clarifying the impact of diets with different TFA concentrations on cerebral tissue, focusing on hippocampus and cortex and behavioral performance. METHODS Wistar rats were fed either a normolipidic or a hyperlipidic diet for 90 days; diets had the same ingredients except for fat compositions, concentrations, and calories. We used lard in the cis fatty acid (CFA) group and PHSO in the TFA group. The intervention groups were as follows: (1) low lard (LL), (2) high lard (HL), (3) low partially hydrogenated soybean oil (LPHSO), and (4) high partially hydrogenated soybean oil (HPHSO). Mitochondrial parameters, tumor necrosis factor alpha (TNF-α), 2'7'-dichlorofluorescein (DCFH) levels in brain tissue, and open field task were analyzed. RESULTS A worse brain tissue response was associated with oxidative stress in cortex and hippocampus as well as impaired inflammatory and mitochondrial parameters at both PHSO concentrations and there were alterations in the behavioral performance. In many analyses, there were no significant differences between the LPHSO and HPHSO diets. CONCLUSIONS Partially hydrogenated soybean oil impaired cortical mitochondrial parameters and altered inflammatory and oxidative stress responses, and the hyperlipidic treatment caused locomotor and exploratory effects, but no differences on weight gain in all treatments. These findings suggest that quality is more important than the quantity of fat consumed in terms of CFA and TFA diets.
Collapse
Affiliation(s)
- Rafael Longhi
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Roberto Farina Almeida
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Leticia Ferreira Pettenuzzo
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Débora Guerini Souza
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Letiane Machado
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - André Quincozes-Santos
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo Onofre Souza
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
90
|
The Interplay between Oncogenic Signaling Networks and Mitochondrial Dynamics. Antioxidants (Basel) 2017; 6:antiox6020033. [PMID: 28513539 PMCID: PMC5488013 DOI: 10.3390/antiox6020033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are dynamic organelles that alter their organization in response to a variety of cellular cues. Mitochondria are central in many biologic processes, such as cellular bioenergetics and apoptosis, and mitochondrial network morphology can contribute to those physiologic processes. Some of the biologic processes that are in part governed by mitochondria are also commonly deregulated in cancers. Furthermore, patient tumor samples from a variety of cancers have revealed that mitochondrial dynamics machinery may be deregulated in tumors. In this review, we will discuss how commonly mutated oncogenes and their downstream effector pathways regulate the mitochondrial dynamics machinery to promote changes in mitochondrial morphology as well as the physiologic consequences of altered mitochondrial morphology for tumorigenic growth.
Collapse
|
91
|
Aouacheria A, Baghdiguian S, Lamb HM, Huska JD, Pineda FJ, Hardwick JM. Connecting mitochondrial dynamics and life-or-death events via Bcl-2 family proteins. Neurochem Int 2017; 109:141-161. [PMID: 28461171 DOI: 10.1016/j.neuint.2017.04.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
Abstract
The morphology of a population of mitochondria is the result of several interacting dynamical phenomena, including fission, fusion, movement, elimination and biogenesis. Each of these phenomena is controlled by underlying molecular machinery, and when defective can cause disease. New understanding of the relationships between form and function of mitochondria in health and disease is beginning to be unraveled on several fronts. Studies in mammals and model organisms have revealed that mitochondrial morphology, dynamics and function appear to be subject to regulation by the same proteins that regulate apoptotic cell death. One protein family that influences mitochondrial dynamics in both healthy and dying cells is the Bcl-2 protein family. Connecting mitochondrial dynamics with life-death pathway forks may arise from the intersection of Bcl-2 family proteins with the proteins and lipids that determine mitochondrial shape and function. Bcl-2 family proteins also have multifaceted influences on cells and mitochondria, including calcium handling, autophagy and energetics, as well as the subcellular localization of mitochondrial organelles to neuronal synapses. The remarkable range of physical or functional interactions by Bcl-2 family proteins is challenging to assimilate into a cohesive understanding. Most of their effects may be distinct from their direct roles in apoptotic cell death and are particularly apparent in the nervous system. Dual roles in mitochondrial dynamics and cell death extend beyond BCL-2 family proteins. In this review, we discuss many processes that govern mitochondrial structure and function in health and disease, and how Bcl-2 family proteins integrate into some of these processes.
Collapse
Affiliation(s)
- Abdel Aouacheria
- Institute of Evolutionary Sciences of Montpellier (ISEM), CNRS UMR 5554, University of Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Stephen Baghdiguian
- Institute of Evolutionary Sciences of Montpellier (ISEM), CNRS UMR 5554, University of Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Heather M Lamb
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA
| | - Jason D Huska
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA
| | - Fernando J Pineda
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA; Department of Biostatistics, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
92
|
FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis. Cell Death Dis 2017; 8:e2702. [PMID: 28333151 PMCID: PMC5386528 DOI: 10.1038/cddis.2017.122] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 02/05/2023]
Abstract
Global germ line loss of fat mass- and obesity-associated (FTO) gene results in both the reduction of fat mass and lean mass in mice. The role of FTO in adipogenesis has been proposed, however, that in myogenesis has not. Skeletal muscle is the main component of body lean mass, so its connection with FTO physiologic significance need to be clarified. Here, we assessed the impact of FTO on murine skeletal muscle differentiation by in vitro and in vivo experiments. We found that FTO expression increased during myoblasts differentiation, while the silence of FTO inhibited the differentiation; in addition, skeletal muscle development was impaired in skeletal muscle FTO-deficient mice. Significantly, FTO-promoted myogenic differentiation was dependent on its m6A demethylase activity. Mechanically, we found that FTO downregulation suppressed mitochondria biogenesis and energy production, showing as the decreased mitochondria mass and mitochondrial DNA (mtDNA) content, the downregulated expression of mtDNA-encoding genes and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) gene, together with declined ATP level. Moreover, the involvement of mTOR-PGC-1α pathway in the connection between FTO and muscle differentiation is displayed, since the expression of FTO affected the activity of mTOR and rapamycin blocked FTO-induced PGC-1α transcription, along with the parallel alteration pattern of FTO expression and mTOR phosphorylation during myoblasts differentiation. Summarily, our findings provide the first evidence for the contribution of FTO for skeletal muscle differentiation and a new insight to study the physiologic significance of RNA methylation.
Collapse
|
93
|
Santoro A, Campolo M, Liu C, Sesaki H, Meli R, Liu ZW, Kim JD, Diano S. DRP1 Suppresses Leptin and Glucose Sensing of POMC Neurons. Cell Metab 2017; 25:647-660. [PMID: 28190775 PMCID: PMC5366041 DOI: 10.1016/j.cmet.2017.01.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 11/24/2022]
Abstract
Hypothalamic pro-opiomelanocortin (POMC) neurons regulate energy and glucose metabolism. Intracellular mechanisms that enable these neurons to respond to changes in metabolic environment are ill defined. Here we show reduced expression of activated dynamin-related protein (pDRP1), a mitochondrial fission regulator, in POMC neurons of fed mice. These POMC neurons displayed increased mitochondrial size and aspect ratio compared to POMC neurons of fasted animals. Inducible deletion of DRP1 of mature POMC neurons (Drp1fl/fl-POMC-cre:ERT2) resulted in improved leptin sensitivity and glucose responsiveness. In Drp1fl/fl-POMC-cre:ERT2 mice, POMC neurons showed increased mitochondrial size, ROS production, and neuronal activation with increased expression of Kcnj11 mRNA regulated by peroxisome proliferator-activated receptor (PPAR). Furthermore, deletion of DRP1 enhanced the glucoprivic stimulus in these neurons, causing their stronger inhibition and a greater activation of counter-regulatory responses to hypoglycemia that were PPAR dependent. Together, these data unmasked a role for mitochondrial fission in leptin sensitivity and glucose sensing of POMC neurons.
Collapse
Affiliation(s)
- Anna Santoro
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Michela Campolo
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chen Liu
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rosaria Meli
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pharmacy, University of Naples "Federico II," 80131 Napoli, Italy
| | - Zhong-Wu Liu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jung Dae Kim
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sabrina Diano
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
94
|
López-Lluch G. Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity. Mech Ageing Dev 2017; 162:108-121. [DOI: 10.1016/j.mad.2016.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/24/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
|
95
|
Popov LD. Mitochondrial networking in diabetic left ventricle cardiomyocytes. Mitochondrion 2016; 34:24-31. [PMID: 28007605 DOI: 10.1016/j.mito.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/07/2016] [Accepted: 12/16/2016] [Indexed: 12/17/2022]
Abstract
Cardiomyocyte mitochondria preserve "the quorum sensing" attribute of their aerobic bacterial ancestors, as shown by the transient physical connectivity and communication not only with each other, but also with other intracellular organelles and with cytosol, ensuing cellular homeostasis. In this review, we present original electron microscopy evidence on mitochondrial networking within diabetic left ventricular cardiomyocytes, focusing on: (i) the inter-mitochondrial communication, allowing electrochemical signals transfer and outer membrane components or matrix proteins exchange, (ii) the interplay between mitochondria and the cardiomyocyte nucleus, nucleolus, sarcoplasmic reticulum, lysosomes, and lipid droplets viewed as attributes of mitochondrial "quality control" and "retrograde signaling function", and (iii) the crosstalk between mitochondria and cardiomyocyte cytosol, as part of the adaptive responses that allow cells survival. Confirmation of such interactions in diabetic myocardium and identification of molecules involved are ongoing, foreseeing the alleviation of heart contractile dysfunction in cardiomyopathy.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- "Nicolae Simionescu" Institute of Cellular Biology and Pathology of the Romanian Academy, 8, B.P. Hasdeu Street, Bucharest 050568, Romania.
| |
Collapse
|
96
|
Morozov YM, Datta D, Paspalas CD, Arnsten AFT. Ultrastructural evidence for impaired mitochondrial fission in the aged rhesus monkey dorsolateral prefrontal cortex. Neurobiol Aging 2016; 51:9-18. [PMID: 28027494 DOI: 10.1016/j.neurobiolaging.2016.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/19/2022]
Abstract
Dorsolateral prefrontal cortex mediates high-order cognitive functions that are impaired early in the aging process in monkeys and humans. Here, we report pronounced changes in mitochondrial morphology in dendrites of dorsolateral prefrontal cortex neurons from aged rhesus macaques. Electron microscopy paired with 3D reconstruction from serial sections revealed an age-related increase in mitochondria with thin segments that intermingled with enlarged ones, the 'mitochondria-on-a-string' phenotype, similar to those recently reported in patients with Alzheimer's disease. The thin mitochondrial segments were associated with endoplasmic reticulum cisterns, and the mitochondrial proteins Fis1 and Drp1, all of which initiate mitochondrial fission. These data suggest that the 'mitochondria-on-a-string' phenotype may reflect malfunction in mitochondrial dynamics, whereby fission is initiated, but the process is incomplete due to malfunction of subsequent step(s). Thus, aged rhesus monkeys may be particularly helpful in exploring the age-related changes that render higher cortical circuits so vulnerable to degeneration.
Collapse
Affiliation(s)
- Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | | | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
97
|
Shin HJ, Kwon HK, Lee JH, Anwar MA, Choi S. Etoposide induced cytotoxicity mediated by ROS and ERK in human kidney proximal tubule cells. Sci Rep 2016; 6:34064. [PMID: 27666530 PMCID: PMC5036097 DOI: 10.1038/srep34064] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022] Open
Abstract
Etoposide (ETO) is a commonly used chemotherapeutic drug that inhibits topoisomerase II activity, thereby leading to genotoxicity and cytotoxicity. However, ETO has limited application due to its side effects on normal organs, especially the kidney. Here, we report the mechanism of ETO-induced cytotoxicity progression in human kidney proximal tubule (HK-2) cells. Our results show that ETO perpetuates DNA damage, activates mitogen-activated protein kinase (MAPK), and triggers morphological changes, such as cell and nuclear swelling. When NAC, a well-known reactive oxygen species (ROS) scavenger, is co-treated with ETO, it inhibits an ETO-induced increase in mitochondrial mass, mitochondrial DNA (ND1 and ND4) copy number, intracellular ATP level, and mitochondrial biogenesis activators (TFAM, PGC-1α and PGC-1β). Moreover, co-treatment with ETO and NAC inhibits ETO-induced necrosis and cell swelling, but not apoptosis. Studies using MAPK inhibitors reveal that inhibition of extracellular signal regulated kinase (ERK) protects ETO-induced cytotoxicity by inhibiting DNA damage and caspase 3/7 activity. Eventually, ERK inhibitor treated cells are protected from ETO-induced nuclear envelope (NE) rupture and DNA leakage through inhibition of caspase activity. Taken together, these data suggest that ETO mediates cytotoxicity in HK-2 cells through ROS and ERK pathways, which highlight the preventive avenues in ETO-induced cytotoxicity in kidney.
Collapse
Affiliation(s)
- Hyeon-Jun Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Hyuk-Kwon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Jae-Hyeok Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| |
Collapse
|
98
|
Doghman-Bouguerra M, Granatiero V, Sbiera S, Sbiera I, Lacas-Gervais S, Brau F, Fassnacht M, Rizzuto R, Lalli E. FATE1 antagonizes calcium- and drug-induced apoptosis by uncoupling ER and mitochondria. EMBO Rep 2016; 17:1264-80. [PMID: 27402544 PMCID: PMC5007562 DOI: 10.15252/embr.201541504] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 11/09/2022] Open
Abstract
Several stimuli induce programmed cell death by increasing Ca(2+) transfer from the endoplasmic reticulum (ER) to mitochondria. Perturbation of this process has a special relevance in pathologies as cancer and neurodegenerative disorders. Mitochondrial Ca(2+) uptake mainly takes place in correspondence of mitochondria-associated ER membranes (MAM), specialized contact sites between the two organelles. Here, we show the important role of FATE1, a cancer-testis antigen, in the regulation of ER-mitochondria distance and Ca(2+) uptake by mitochondria. FATE1 is localized at the interface between ER and mitochondria, fractionating into MAM FATE1 expression in adrenocortical carcinoma (ACC) cells under the control of the transcription factor SF-1 decreases ER-mitochondria contact and mitochondrial Ca(2+) uptake, while its knockdown has an opposite effect. FATE1 also decreases sensitivity to mitochondrial Ca(2+)-dependent pro-apoptotic stimuli and to the chemotherapeutic drug mitotane. In patients with ACC, FATE1 expression in their tumor is inversely correlated with their overall survival. These results show that the ER-mitochondria uncoupling activity of FATE1 is harnessed by cancer cells to escape apoptotic death and resist the action of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Mabrouka Doghman-Bouguerra
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275 Sophia Antipolis, Valbonne, France NEOGENEX CNRS International Associated Laboratory, Valbonne, France University of Nice - Sophia Antipolis, Valbonne, France
| | - Veronica Granatiero
- Department of Biomedical Sciences, University of Padova, Padova, Italy CNR Neuroscience Institute, Padova, Italy
| | - Silviu Sbiera
- Department of Internal Medicine I - Endocrine Unit, University Hospital University of Würzburg, Würzburg, Germany
| | - Iuliu Sbiera
- Department of Internal Medicine I - Endocrine Unit, University Hospital University of Würzburg, Würzburg, Germany
| | | | - Frédéric Brau
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275 Sophia Antipolis, Valbonne, France University of Nice - Sophia Antipolis, Valbonne, France
| | - Martin Fassnacht
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy CNR Neuroscience Institute, Padova, Italy
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275 Sophia Antipolis, Valbonne, France NEOGENEX CNRS International Associated Laboratory, Valbonne, France University of Nice - Sophia Antipolis, Valbonne, France
| |
Collapse
|
99
|
Wang J, Aung LHH, Prabhakar BS, Li P. The mitochondrial ubiquitin ligase plays an anti-apoptotic role in cardiomyocytes by regulating mitochondrial fission. J Cell Mol Med 2016; 20:2278-2288. [PMID: 27444773 PMCID: PMC5134389 DOI: 10.1111/jcmm.12914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
Apoptosis plays a critical role in the development of myocardial infarction. Cardiomyocytes are enriched with mitochondria and excessive mitochondrial fission can trigger cellular apoptosis. Recently, the mitochondrial ubiquitin ligase (MITOL), localized in the mitochondrial outer membrane, was reported to play an important role in the regulation of mitochondrial dynamics and apoptosis. However, the underlying mechanism of its action remains uncertain. The present study was aimed at uncovering the role of MITOL in the regulation of cardiomyocyte apoptosis. Our results showed that MITOL expression was up-regulated in cardiomyocytes in response to apoptotic stimulation. Mitochondrial ubiquitin ligase overexpression blocked dynamin-related protein 1 accumulation in the mitochondria, and attenuated the mitochondrial fission induced by hydrogen peroxide. Conversely, MITOL knockdown sensitized cardiomyocytes to undergo mitochondrial fission, resulting in subsequent apoptosis. These findings suggest that MITOL plays a protective role against apoptosis in cardiomyocytes, and may serve as a potential therapeutic target for apoptosis-related cardiac diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Lynn H H Aung
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Peifeng Li
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
100
|
Moon YM, Kim MK, Kim SG, Kim TW. Apoptotic action of botulinum toxin on masseter muscle in rats: early and late changes in the expression of molecular markers. SPRINGERPLUS 2016; 5:991. [PMID: 27398270 PMCID: PMC4936988 DOI: 10.1186/s40064-016-2680-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/26/2016] [Indexed: 12/24/2022]
Abstract
The purpose of this study was to compare the early or late expression levels of p65, Bcl-2, and type II myosin and the frequency of TUNEL-positive nuclei in the rat masseter muscle after injection of different concentrations of botulinum toxin-A (BTX-A). We injected either 5 U or 10 U of BTX-A into both masseter muscles of the rat. As a control group, the same volume of saline was injected. After 2 or 12 weeks, the animals were sacrificed. Subsequently, a biopsy and immunohistochemical staining of the samples were performed using a p65, Bcl-2, or type II myosin antibody. Additionally, a TUNEL assay and transmission electron microscopic analysis were performed. The expression of p65, Bcl-2, and type II myosin increased significantly with increasing concentrations of BTX-A at 2 weeks after BTX-A injection (P < 0.05). The number of TUNEL-positive nuclei was also significantly increased in the BTX-A-treated groups in comparison to the saline-treated control at 2 weeks after BTX-A injection (P < 0.05). Elevated expression of Bcl-2 was also observed in 10-unit BTX-A-treated group at 12 weeks after injection (P < 0.05). At 12 weeks after injection, the number of enlarged mitochondria was increased, and many mitochondria displayed aberrations in cristae morphology after BTX-A injection. In conclusion, BTX-A injection into the masseter muscle increased the expression level of p65, Bcl-2, and type II myosin at an early stage. The morphological changes of mitochondria were more evident at 12 weeks after injection.
Collapse
Affiliation(s)
- Young-Min Moon
- Department of Orthodontics, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea
| | - Min-Keun Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, 7 Jukhyun-gil, Gangneung, 210-702 Korea
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, 7 Jukhyun-gil, Gangneung, 210-702 Korea
| | - Tae-Woo Kim
- Department of Orthodontics, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|