51
|
Lee YJ, Jo DH. Retinal Organoids from Induced Pluripotent Stem Cells of Patients with Inherited Retinal Diseases: A Systematic Review. Stem Cell Rev Rep 2025; 21:167-197. [PMID: 39422807 PMCID: PMC11762450 DOI: 10.1007/s12015-024-10802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Currently, most inherited retinal diseases lack curative interventions, and available treatment modalities are constrained to symptomatic approaches. Retinal organoid technology has emerged as a method for treating inherited retinal diseases, with growing academic interest in recent years. The purpose of this review was to systematically organize the current protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal disease and to investigate the application of retinal organoids in inherited retinal disease research. METHODS Data were collected from the PubMed, Scopus, and Web of Science databases using a keyword search. The main search term used was "retinal organoid," accompanied by secondary keywords such as "optic cup," "three-dimensional," and "self-organizing." The final search was conducted on October 2, 2024. RESULTS Of the 2,129 studies retrieved, 130 were included in the qualitative synthesis. The protocols for the generation of retinal organoids in inherited retinal disease research use five major approaches, categorized into 3D and a combination of 2D/3D approaches, implemented with modifications. Disease phenotypes have been successfully reproduced via the generation of retinal organoids from the induced pluripotent stem cells of individuals with inherited retinal diseases, facilitating the progression of research into novel therapeutic developments. Cells have been obtained from retinal organoids for cell therapy, and progress toward their potential integration into clinical practice is underway. Considering their potential applications, retinal organoid technology has shown promise across various domains. CONCLUSION In this systematic review, we organized protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal diseases. Retinal organoid technology has various applications including disease modeling, screening for novel therapies, and cell replacement therapy. Further advancements would make this technology a clinically significant tool for patients with inherited retinal diseases.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
52
|
Kong D, Ryu JC, Shin N, Lee SE, Kim NG, Kim HY, Kim MJ, Choi J, Kim DH, Kang KS. In Vitro Modeling of Atherosclerosis Using iPSC-Derived Blood Vessel Organoids. Adv Healthc Mater 2025; 14:e2400919. [PMID: 39580678 DOI: 10.1002/adhm.202400919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 11/07/2024] [Indexed: 11/26/2024]
Abstract
As modeling of atherosclerosis requires recapitulating complex interactions with vasculature and immune cells, previous in vitro models have limitations due to their insufficient 3D vascular structures. However, induced pluripotent stem cell-derived blood vessel organoids (BVOs) are applicable for modeling vascular diseases, containing multiple cell types, including endothelial and vascular smooth muscle cells self-assembled into a blood vessel structure. Atherosclerotic BVOs with a microenvironment associated with atherogenesis, such as shear stress, low-density lipoprotein, pro-inflammatory cytokine, and monocyte co-culture are successfully developed. In atherosclerotic BVOs, representative atherosclerotic phenotypes, including endothelial dysfunction, inflammatory responses, formation of foam cells and fibrous plaque, and moreover, calcification of the plaques are observed. To verify the drug response in this model, it is treated with clinically used lovastatin and confirm phenotype attenuation. Furthermore, the therapeutic efficacy of nano-sized graphene oxides (NGOs) is evaluated on atherosclerosis. Due to their anti-inflammatory effects, NGOs effectively alleviate the pathologic lesions in atherosclerotic BVOs by promoting macrophage polarization toward M2. These results suggest that atherosclerotic BVOs are advanced in vitro models suitable for drug discovery and elucidation of therapeutic mechanisms. From the perspective of precision medicine, this platform using patient-derived BVOs can be further employed for personalized drug screening in the future.
Collapse
Affiliation(s)
- Dasom Kong
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Chul Ryu
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Bio and Nano Convergence, Biogo Co., LTD, Seoul, 08826, Republic of Korea
| | - Nari Shin
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Eun Lee
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nam Gyo Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Yeong Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Ji Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungju Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Da-Hyun Kim
- Department of Biotechnology, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
53
|
Zhang Q, He J, Zhu D, Chen Y, Fu M, Lu S, Qiu Y, Zhou G, Yang G, Jiang Z. Genetically modified organoids for tissue engineering and regenerative medicine. Adv Colloid Interface Sci 2025; 335:103337. [PMID: 39547125 DOI: 10.1016/j.cis.2024.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
To date, genetically modified organoids are emerging as a promising 3D modeling tool aimed at solving genetically relevant clinical and biomedical problems for regenerative medicine and tissue engineering. As an optimal vehicle for gene delivery, genetically modified organoids can enhance or reduce the expression of target genes through virus and non-virus-based gene transfection methods to achieve tissue regeneration. Animal experiments and preclinical studies have demonstrated the beneficial role of genetically modified organoids in various aspects of organ regeneration, including thymus, lacrimal glands, brain, lung, kidney, photoreceptors, etc. Furthermore, the technology offers a potential treatment option for various diseases, such as Fabry disease, non-alcoholic steatohepatitis, and Lynch syndrome. Nevertheless, the uncertain safety of genetic modification, the risk of organoid application, and bionics of current genetically modified organoids are still challenging. This review summarizes the researches on genetically modified organoids in recent years, and describes the transfection methods and functions of genetically modified organoids, then introduced their applications at length. Also, the limitations and future development directions of genetically modified organoids are included.
Collapse
Affiliation(s)
- Qinmeng Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yunxuan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Shifan Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yuesheng Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guodong Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
54
|
Nogueira Pinto H, Zarekiani P, de Vries HE. Neuroglia and the blood-brain barrier. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:127-141. [PMID: 40122621 DOI: 10.1016/b978-0-443-19104-6.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The blood-brain barrier (BBB) is a highly dynamic and complex structure, present throughout the brain vasculature, that safeguards the brain against blood-borne insults. Neuroglial cells play a major role in its development, function, and homeostasis of the BBB by establishing intricate interactions via direct cell-cell contacts and paracrine signaling. Astrocytes, pericytes, oligodendrocytes, and microglia, alongside specialized brain endothelial cells, orchestrate key events in the brain in health and disease, which can be partially recapitulated by in vitro and in vivo models for biomedical research. This chapter presents a detailed description of the main cellular and molecular mechanisms that govern the neuroglia-BBB crosstalk and the available models for its investigation, emphasizing the importance of each cell population and the synergistic roles they play in the brain.
Collapse
Affiliation(s)
- Henrique Nogueira Pinto
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands; Amsterdam Neuroscience, Neuroinfection & Inflammation, Amsterdam, The Netherlands
| | - Parand Zarekiani
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands; Amsterdam Neuroscience, Neuroinfection & Inflammation, Amsterdam, The Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Helga E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands; Amsterdam Neuroscience, Neuroinfection & Inflammation, Amsterdam, The Netherlands; MS Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
55
|
Boutom SM, Silva TP, Palecek SP, Shusta EV, Fernandes TG, Ashton RS. Central nervous system vascularization in human embryos and neural organoids. Cell Rep 2024; 43:115068. [PMID: 39693224 PMCID: PMC11975460 DOI: 10.1016/j.celrep.2024.115068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
In recent years, neural organoids derived from human pluripotent stem cells (hPSCs) have offered a transformative pre-clinical platform for understanding central nervous system (CNS) development, disease, drug effects, and toxicology. CNS vasculature plays an important role in all these scenarios; however, most published studies describe CNS organoids that lack a functional vasculature or demonstrate rudimentary incorporation of endothelial cells or blood vessel networks. Here, we review the existing knowledge of vascularization during the development of different CNS regions, including the brain, spinal cord, and retina, and compare it to vascularized CNS organoid models. We highlight several areas of contrast where further bioengineering innovation is needed and discuss potential applications of vascularized neural organoids in modeling human CNS development, physiology, and disease.
Collapse
Affiliation(s)
- Sarah M Boutom
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Teresa P Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tiago G Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Randolph S Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
56
|
Göksu AY. A review article on the development of dopaminergic neurons and establishment of dopaminergic neuron-based in vitro models by using immortal cell lines or stem cells to study and treat Parkinson's disease. Int J Dev Neurosci 2024; 84:817-842. [PMID: 39379284 DOI: 10.1002/jdn.10383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
The primary pathological hallmark of Parkinson's disease (PD) is the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta, a critical midbrain region. In vitro models based on DA neurons provide a powerful platform for investigating the cellular and molecular mechanisms of PD and testing novel therapeutic strategies. A deep understanding of DA neuron development, including the signalling pathways and transcription factors involved, is essential for advancing PD research. This article first explores the differentiation and maturation processes of DA neurons in the midbrain, detailing the relevant signalling pathways. It then compares various in vitro models, including primary cells, immortalized cell lines, and stem cell-based models, focusing on the advantages and limitations of each. Special attention is given to the role of immortalized and stem cell models in PD research. This review aims to guide researchers in selecting the most appropriate model for their specific research goals. Ethical considerations and clinical implications of using stem cells in PD research are also discussed.
Collapse
Affiliation(s)
- Azize Yasemin Göksu
- Department of Histology and Embryology, Department of Gene and Cell Therapy, Akdeniz University, School of Medicine, Antalya, Turkey
| |
Collapse
|
57
|
Kuzinska MZ, Lin SYY, Klämbt V, Bufler P, Rezvani M. Ciliopathy organoid models: a comprehensive review. Am J Physiol Cell Physiol 2024; 327:C1604-C1625. [PMID: 39495251 DOI: 10.1152/ajpcell.00343.2024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Cilia are membrane-bound organelles found on the surface of most mammalian cell types and play numerous roles in human physiology and development, including osmo- and mechanosensation, as well as signal transduction. Ciliopathies are a large group of, usually rare, genetic disorders resulting from abnormal ciliary structure or ciliary dysfunction that have a high collective prevalence. Autosomal dominant or recessive polycystic kidney disease (ADPKD/ARPKD), Bardet-Biedl-Syndrome, and primary ciliary dyskinesia (PCD) are the most frequent etiologies. Rodent and zebrafish models have improved the understanding of ciliopathy pathophysiology. Yet, the limitations of these genetically modified animal strains include the inability to fully replicate the phenotypic heterogeneity found in humans, including variable multiorgan involvement. Organoids, self-assembled three-dimensional cell-based models derived from human induced pluripotent stem cells (iPSCs) or primary tissues, can recapitulate certain aspects of the development, architecture, and function of the target organ "in the dish." The potential of organoids to model patient-specific genotype-phenotype correlations has increased their popularity in ciliopathy research and led to the first preclinical organoid-based ciliopathy drug screens. This review comprehensively summarizes and evaluates current ciliopathy organoid models, focusing on kidney, airway, liver, and retinal organoids, as well as the specific methodologies used for their cultivation and for interrogating ciliary dysfunction.
Collapse
Affiliation(s)
- Matylda Zofia Kuzinska
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany
- Berlin School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Sally Yuan-Yin Lin
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany
| | - Verena Klämbt
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, Germany
| | - Philip Bufler
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany
| | - Milad Rezvani
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, Germany
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Berlin Institute of Health, Center for Regenerative Therapies (BCRT), Berlin, Germany
| |
Collapse
|
58
|
Maggiore JC, LeGraw R, Przepiorski A, Velazquez J, Chaney C, Vanichapol T, Streeter E, Almuallim Z, Oda A, Chiba T, Silva-Barbosa A, Franks J, Hislop J, Hill A, Wu H, Pfister K, Howden SE, Watkins SC, Little MH, Humphreys BD, Kiani S, Watson A, Stolz DB, Davidson AJ, Carroll T, Cleaver O, Sims-Lucas S, Ebrahimkhani MR, Hukriede NA. A genetically inducible endothelial niche enables vascularization of human kidney organoids with multilineage maturation and emergence of renin expressing cells. Kidney Int 2024; 106:1086-1100. [PMID: 38901605 PMCID: PMC11912416 DOI: 10.1016/j.kint.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
Vascularization plays a critical role in organ maturation and cell-type development. Drug discovery, organ mimicry, and ultimately transplantation hinge on achieving robust vascularization of in vitro engineered organs. Here, focusing on human kidney organoids, we overcame this hurdle by combining a human induced pluripotent stem cell (iPSC) line containing an inducible ETS translocation variant 2 (ETV2) (a transcription factor playing a role in endothelial cell development) that directs endothelial differentiation in vitro, with a non-transgenic iPSC line in suspension organoid culture. The resulting human kidney organoids show extensive endothelialization with a cellular identity most closely related to human kidney endothelia. Endothelialized kidney organoids also show increased maturation of nephron structures, an associated fenestrated endothelium with de novo formation of glomerular and venous subtypes, and the emergence of drug-responsive renin expressing cells. The creation of an engineered vascular niche capable of improving kidney organoid maturation and cell type complexity is a significant step forward in the path to clinical translation. Thus, incorporation of an engineered endothelial niche into a previously published kidney organoid protocol allowed the orthogonal differentiation of endothelial and parenchymal cell types, demonstrating the potential for applicability to other basic and translational organoid studies.
Collapse
Affiliation(s)
- Joseph C Maggiore
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Integrative Organ Systems, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aneta Przepiorski
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeremy Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christopher Chaney
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Evan Streeter
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Integrative Organ Systems, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zainab Almuallim
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Integrative Organ Systems, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Akira Oda
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Takuto Chiba
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Anne Silva-Barbosa
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Jonathan Franks
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joshua Hislop
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex Hill
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Katherine Pfister
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Sara E Howden
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melissa H Little
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Samira Kiani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan Watson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Tom Carroll
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sunder Sims-Lucas
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Neil A Hukriede
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Integrative Organ Systems, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
59
|
Sabogal-Guaqueta AM, Mitchell-Garcia T, Hunneman J, Voshart D, Thiruvalluvan A, Foijer F, Kruyt F, Trombetta-Lima M, Eggen BJL, Boddeke E, Barazzuol L, Dolga AM. Brain organoid models for studying the function of iPSC-derived microglia in neurodegeneration and brain tumours. Neurobiol Dis 2024; 203:106742. [PMID: 39581553 DOI: 10.1016/j.nbd.2024.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Microglia represent the main resident immune cells of the brain. The interplay between microglia and other cells in the central nervous system, such as neurons or other glial cells, influences the function and ability of microglia to respond to various stimuli. These cellular communications, when disrupted, can affect the structure and function of the brain, and the initiation and progression of neurodegenerative diseases including Alzheimer's disease and Parkinson's disease, as well as the progression of other brain diseases like glioblastoma. Due to the difficult access to patient brain tissue and the differences reported in the murine models, the available models to study the role of microglia in disease progression are limited. Pluripotent stem cell technology has facilitated the generation of highly complex models, allowing the study of control and patient-derived microglia in vitro. Moreover, the ability to generate brain organoids that can mimic the 3D tissue environment and intercellular interactions in the brain provide powerful tools to study cellular pathways under homeostatic conditions and various disease pathologies. In this review, we summarise the most recent developments in modelling degenerative diseases and glioblastoma, with a focus on brain organoids with integrated microglia. We provide an overview of the most relevant research on intercellular interactions of microglia to evaluate their potential to study brain pathologies.
Collapse
Affiliation(s)
- Angelica Maria Sabogal-Guaqueta
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Teresa Mitchell-Garcia
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Jasmijn Hunneman
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Daniëlle Voshart
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Arun Thiruvalluvan
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Faculty of Science and Engineering, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Erik Boddeke
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Department Pathology and Medical biology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
60
|
Patel S, Liu W, K R, McCormick C, Fan Y. Engineering immune organoids to regenerate host immune system. Curr Opin Genet Dev 2024; 89:102276. [PMID: 39509964 PMCID: PMC11588509 DOI: 10.1016/j.gde.2024.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Recent advances in immunotherapy have underscored the potential of harnessing the immune system to treat disorders associated with immune dysregulation, such as primary and secondary immunodeficiencies, cancer, transplantation rejection, and aging. Owing to the cellular and structural complexity and the dynamic nature of immune responses, engineering immune organoids that replicate the function and key features of their corresponding immune organs continues to be a formidable challenge. In this overview, we will discuss the recent progress in bioengineering organoids of key primary and secondary immune organs and tissues, focusing particularly on their contributions to the host's immune system in animal models and highlighting their potential roles in regenerative medicine.
Collapse
Affiliation(s)
- Sefali Patel
- AHN Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Wen Liu
- AHN Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Ravikumar K
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Yong Fan
- AHN Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
61
|
Jalali H, Rahimian S, Shahsavarian N, Norouzi R, Ahmadiyeh Z, Najafi H, Golchin H. The organoid modeling approach to understanding the mechanisms underlying neurodegeneration: A comprehensive review. Life Sci 2024; 358:123198. [PMID: 39486620 DOI: 10.1016/j.lfs.2024.123198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Neurodegenerative diseases (NDs) are severe disorders of the nervous system, and their causes are still not completely understood. Modeling the complex pathological mechanisms underlying NDs has long posed a significant challenge, as traditional in vitro and animal models often fail to accurately recapitulate the disease phenotypes observed in humans; however, the rise of organoid technology has opened new approaches for developing innovative disease models that can better capture the nuances of the human nervous system. Organoid platforms hold promise for contributing to the design of future clinical trials and advancing our understanding of these devastating neurological conditions and accelerate the discovery of effective, personalized therapies. This comprehensive review discusses the recent advancements in neural organoid technology and explores the potential of patient-derived organoids for modeling NDs conditions and presents findings related to the mechanisms of their development or progress.
Collapse
Affiliation(s)
- Hanieh Jalali
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Sana Rahimian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nasim Shahsavarian
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Rozhan Norouzi
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Zahra Ahmadiyeh
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hossein Najafi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hasti Golchin
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
62
|
Yang H, Niu S, Guo M, Xue Y. Molecular mechanisms of silver nanoparticle-induced neurotoxic injury and new perspectives for its neurotoxicity studies: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124934. [PMID: 39260546 DOI: 10.1016/j.envpol.2024.124934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Silver nanoparticles (AgNPs) garnered significant attention and applications in the field of nanotechnology due to their unique physicochemical properties. However, with the increasing exposure of AgNPs in the environment and biological systems, concerns about their potential neurotoxicity have also risen. Recent studies on the neurotoxic effects and mechanisms of AgNPs have often relied on traditional toxicological research methods and perspectives. This reliance has limited the extrapolation of these findings to the human brain environment and hindered a deep understanding of the neurotoxicity of AgNPs. This review first outlines the molecular mechanisms of AgNPs-induced neurotoxic injury from a traditional research perspective, identifying oxidative stress, inflammatory responses, and autophagy disorders as key areas of current research. Related molecular signaling pathways, including the nuclear transcription factor-κB (NF-κB) signaling pathway, the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the calcium signaling pathway, have been implicated in the neurotoxic injury process induced by AgNPs. Subsequently, we elucidated the unique advantages of the 3D brain organoids applied to the neurotoxicity study of AgNPs by drawing on relevant studies in the same field. We also emphasize that establishing a standardized 3D brain organoids construction platform is a crucial prerequisite for its widespread application. Furthermore, we suggest that future studies should explore the neurotoxicity mechanisms of AgNPs through the lenses of "adaptive homeostasis" and "structure-activity relationship analysis". In conclusion, the neurotoxicity of AgNPs should be comprehensively evaluated by integrating new research techniques and perspectives, ultimately allowing these nanoparticles to better serve human society.
Collapse
Affiliation(s)
- Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
63
|
Ge JY, Wang Y, Li QL, Liu FK, Lei QK, Zheng YW. Trends and challenges in organoid modeling and expansion with pluripotent stem cells and somatic tissue. PeerJ 2024; 12:e18422. [PMID: 39619184 PMCID: PMC11608026 DOI: 10.7717/peerj.18422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/08/2024] [Indexed: 03/10/2025] Open
Abstract
The increasing demand for disease modeling, preclinical drug testing, and long waiting lists for alternative organ substitutes has posed significant challenges to current limitations in organoid technology. Consequently, organoid technology has emerged as a cutting-edge tool capable of accurately recapitulating the complexity of actual organs in physiology and functionality. To bridge the gaps between basic research and pharmaceutical as well as clinical applications, efforts have been made to develop organoids from tissue-derived stem cells or pluripotent stem cells. These developments include optimizing starting cells, refining culture systems, and introducing genetic modifications. With the rapid development of organoid technology, organoid composition has evolved from single-cell to multi-cell types, enhancing their level of biomimicry. Tissue structure has become more refined, and core challenges like vascularization are being addressed actively. These improvements are expected to pave the way for the construction of organoid atlases, automated large-scale cultivation, and universally compatible organoid biobanks. However, major obstacles remain to be overcome before urgently proof-of-concept organoids can be readily converted to practical applications. These obstacles include achieving structural and functional summarily to native tissue, remodeling the microenvironment, and scaling up production. This review aims to summarize the status of organoid development and applications, highlight recent progress, acknowledge existing limitations and challenges, and provide insights into future advancements. It is expected that this will contribute to the establishment of a reliable, scalable, and practical platform for organoid production and translation, further promoting their use in the pharmaceutical industry and regenerative medicine.
Collapse
Affiliation(s)
- Jian-Yun Ge
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
- Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Chinese Academy of Medical Sciences, Tianjin, China
- Innovation and Transformation Center, University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yun Wang
- Institute of Regenerative Medicine, and Department of Dermatology, Affilated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Dermatology, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Qi-Lin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fan-Kai Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Quan-Kai Lei
- Institute of Regenerative Medicine, and Department of Dermatology, Affilated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
- Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Chinese Academy of Medical Sciences, Tianjin, China
- Institute of Regenerative Medicine, and Department of Dermatology, Affilated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
64
|
Nishimura H, Li Y. Human pluripotent stem cell-derived models of the hippocampus. Int J Biochem Cell Biol 2024; 177:106695. [PMID: 39557338 DOI: 10.1016/j.biocel.2024.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The hippocampus is a crucial structure of the brain, recognised for its roles in the formation of memory, and our ability to navigate the world. Despite its importance, clear understanding of how the human hippocampus develops and its contribution to disease is limited due to the inaccessible nature of the human brain. In this regard, the advent of human pluripotent stem cell (hPSC) technologies has enabled the study of human biology in an unprecedented manner, through the ability to model development and disease as both 2D monolayers and 3D organoids. In this review, we explore the existing efforts to derive the hippocampal lineage from hPSCs and evaluate the various aspects of the in vivo hippocampus that are replicated in vitro. In addition, we highlight key diseases that have been modelled using hPSC-derived cultures and offer our perspective on future directions for this emerging field.
Collapse
Affiliation(s)
- Haruka Nishimura
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
65
|
Onesto MM, Kim JI, Pasca SP. Assembloid models of cell-cell interaction to study tissue and disease biology. Cell Stem Cell 2024; 31:1563-1573. [PMID: 39454582 DOI: 10.1016/j.stem.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Neurodevelopment involves the migration, projection, and integration of various cell types across different regions of the nervous system. Assembloids are self-organizing systems formed by the integration of multiple organoids or cell types. Here, we outline the generation and application of assembloids. We illustrate how assembloids recapitulate critical neurodevelopmental steps, like migration, axon projection, and circuit formation, and how they are starting to provide biological insights into neuropsychiatric disorders. Additionally, we review how assembloids can be used to study properties emerging from cell-cell interactions within non-neural tissues. Overall, assembloid platforms represent a powerful tool for discovering human biology and developing therapeutics.
Collapse
Affiliation(s)
- Massimo M Onesto
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA
| | - Ji-Il Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA
| | - Sergiu P Pasca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA.
| |
Collapse
|
66
|
Li XH, Guo D, Chen LQ, Chang ZH, Shi JX, Hu N, Chen C, Zhang XW, Bao SQ, Chen MM, Ming D. Low-intensity ultrasound ameliorates brain organoid integration and rescues microcephaly deficits. Brain 2024; 147:3817-3833. [PMID: 38739753 DOI: 10.1093/brain/awae150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Human brain organoids represent a remarkable platform for modelling neurological disorders and a promising brain repair approach. However, the effects of physical stimulation on their development and integration remain unclear. Here, we report that low-intensity ultrasound significantly increases neural progenitor cell proliferation and neuronal maturation in cortical organoids. Histological assays and single-cell gene expression analyses revealed that low-intensity ultrasound improves the neural development in cortical organoids. Following organoid grafts transplantation into the injured somatosensory cortices of adult mice, longitudinal electrophysiological recordings and histological assays revealed that ultrasound-treated organoid grafts undergo advanced maturation. They also exhibit enhanced pain-related gamma-band activity and more disseminated projections into the host brain than the untreated groups. Finally, low-intensity ultrasound ameliorates neuropathological deficits in a microcephaly brain organoid model. Hence, low-intensity ultrasound stimulation advances the development and integration of brain organoids, providing a strategy for treating neurodevelopmental disorders and repairing cortical damage.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Di Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Li-Qun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang-Qing Bao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Meng-Meng Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
67
|
Li M, Yuan Y, Hou Z, Hao S, Jin L, Wang B. Human brain organoid: trends, evolution, and remaining challenges. Neural Regen Res 2024; 19:2387-2399. [PMID: 38526275 PMCID: PMC11090441 DOI: 10.4103/1673-5374.390972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/26/2023] [Accepted: 10/28/2023] [Indexed: 03/26/2024] Open
Abstract
Advanced brain organoids provide promising platforms for deciphering the cellular and molecular processes of human neural development and diseases. Although various studies and reviews have described developments and advancements in brain organoids, few studies have comprehensively summarized and analyzed the global trends in this area of neuroscience. To identify and further facilitate the development of cerebral organoids, we utilized bibliometrics and visualization methods to analyze the global trends and evolution of brain organoids in the last 10 years. First, annual publications, countries/regions, organizations, journals, authors, co-citations, and keywords relating to brain organoids were identified. The hotspots in this field were also systematically identified. Subsequently, current applications for brain organoids in neuroscience, including human neural development, neural disorders, infectious diseases, regenerative medicine, drug discovery, and toxicity assessment studies, are comprehensively discussed. Towards that end, several considerations regarding the current challenges in brain organoid research and future strategies to advance neuroscience will be presented to further promote their application in neurological research.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zongkun Hou
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
68
|
Werschler N, Quintard C, Nguyen S, Penninger J. Engineering next generation vascularized organoids. Atherosclerosis 2024; 398:118529. [PMID: 39304390 DOI: 10.1016/j.atherosclerosis.2024.118529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 09/22/2024]
Abstract
Organoids are self-organizing 3D cell culture models that are valuable for studying the mechanisms underlying both development and disease in multiple species, particularly, in humans. These 3D engineered tissues can mimic the structure and function of human organs in vitro. Methods to generate organoids have substantially improved to better resemble, in various ways, their in vivo counterpart. One of the major limitations in current organoid models is the lack of a functional vascular compartment. Here we discuss methodological approaches to generating perfusable blood vessel networks in organoid systems. Inclusion of perfused vascular compartments markedly enhances the physiological relevance of organoid systems and is a critical step in the establishment of next generation, higher-complexity in vitro systems for use in developmental, clinical, and drug-development settings.
Collapse
Affiliation(s)
- Nicolas Werschler
- University of British Columbia, Life Sciences Institute, Vancouver, Canada; University of British Columbia, School of Biomedical Engineering, Vancouver, Canada.
| | - Clement Quintard
- University of British Columbia, Life Sciences Institute, Vancouver, Canada; University of British Columbia, Medical Genetics, Vancouver, Canada
| | - Stephanie Nguyen
- University of British Columbia, School of Biomedical Engineering, Vancouver, Canada
| | - Josef Penninger
- University of British Columbia, Life Sciences Institute, Vancouver, Canada; University of British Columbia, School of Biomedical Engineering, Vancouver, Canada; University of British Columbia, Medical Genetics, Vancouver, Canada; Helmholtz Centre for Infection Research, Germany; Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Austria; IMBA Institute of Molecular Biotechnology, Vienna, Austria
| |
Collapse
|
69
|
Cui X, Li X, Zheng H, Su Y, Zhang S, Li M, Hao X, Zhang S, Hu Z, Xia Z, Shi C, Xu Y, Mao C. Human midbrain organoids: a powerful tool for advanced Parkinson's disease modeling and therapy exploration. NPJ Parkinsons Dis 2024; 10:189. [PMID: 39428415 PMCID: PMC11491477 DOI: 10.1038/s41531-024-00799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by the loss of dopaminergic neurons in the substantia nigra. Despite progress, the pathogenesis remains unclear. Human midbrain organoids (hMLOs) have emerged as a promising model for studying PD, drug screening, and potential treatments. This review discusses the development of hMLOs, their application in PD research, and current challenges in organoid construction, highlighting possible optimization strategies.
Collapse
Affiliation(s)
- Xin Cui
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuyu Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Clinical Systems Biology Laboratories, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
70
|
Rieck S, Sharma K, Altringer C, Hesse M, Triantafyllou C, Zhang Y, Busskamp V, Fleischmann BK. Forward programming of human induced pluripotent stem cells via the ETS variant transcription factor 2: rapid, reproducible, and cost-effective generation of highly enriched, functional endothelial cells. Cardiovasc Res 2024; 120:1472-1484. [PMID: 38916487 DOI: 10.1093/cvr/cvae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/13/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
AIMS Endothelial cell (EC) dysfunction plays a key role in the initiation and progression of cardiovascular disease. However, studying these disorders in ECs from patients is challenging; hence, the use of human induced pluripotent stem cells (hiPSCs) and their in vitro differentiation into ECs represents a very promising approach. Still, the generation of hiPSC-derived ECs (hECs) remains demanding as a cocktail of growth factors and an intermediate purification step are required for hEC enrichment. Therefore, we probed the utility of a forward programming approach using transgenic hiPSC lines. METHODS AND RESULTS We have used the transgenic hiPSC line PGP1 ETV2 isoform 2 to explore the in vitro differentiation of hECs via doxycycline-dependent induction of the ETS variant transcription factor 2 (ETV2) and compared these with a standard differentiation protocol for hECs using non-transgenic control hiPSCs. The transgenic hECs were highly enriched without an intermediate purification step and expressed-as non-transgenic hECs and human umbilical vein endothelial cells-characteristic EC markers. The viability and yield of transgenic hECs were strongly improved by applying EC growth medium during differentiation. This protocol was successfully applied in two more transgenic hiPSC lines yielding reproducible results with low line-to-line variability. Transgenic hECs displayed typical functional properties, such as tube formation and LDL uptake, and a more mature phenotype than non-transgenic hECs. Transgenic hiPSCs preferentially differentiated into the arterial lineage; this was further enhanced by adding a high concentration of vascular endothelial growth factor to the medium. We also demonstrate that complexing lentivirus with magnetic nanoparticles and application of a magnetic field enables efficient transduction of transgenic hECs. CONCLUSION We have established a highly efficient, cost-effective, and reproducible differentiation protocol for the generation of functional hECs via forward programming. The transgenic hECs can be genetically modified and are a powerful tool for disease modelling, tissue engineering, and translational purposes.
Collapse
Affiliation(s)
- Sarah Rieck
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kritika Sharma
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Carlotta Altringer
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Michael Hesse
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christos Triantafyllou
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Yanhui Zhang
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
71
|
Pang W, Zhu J, Yang K, Zhu X, Zhou W, Jiang L, Zhuang X, Liu Y, Wei J, Lu X, Yin Y, Chen Z, Xiang Y. Generation of human region-specific brain organoids with medullary spinal trigeminal nuclei. Cell Stem Cell 2024; 31:1501-1512.e8. [PMID: 39208804 DOI: 10.1016/j.stem.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/16/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Brain organoids with nucleus-specific identities provide unique platforms for studying human brain development and diseases at a finer resolution. Despite its essential role in vital body functions, the medulla of the hindbrain has seen a lack of in vitro models, let alone models resembling specific medullary nuclei, including the crucial spinal trigeminal nucleus (SpV) that relays peripheral sensory signals to the thalamus. Here, we report a method to differentiate human pluripotent stem cells into region-specific brain organoids resembling the dorsal domain of the medullary hindbrain. Importantly, organoids specifically recapitulated the development of the SpV derived from the dorsal medulla. We also developed an organoid system to create the trigeminothalamic projections between the SpV and the thalamus by fusing these organoids, namely human medullary SpV-like organoids (hmSpVOs), with organoids representing the thalamus (hThOs). Our study provides a platform for understanding SpV development, nucleus-based circuit organization, and related disorders in the human brain.
Collapse
Affiliation(s)
- Wei Pang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinkui Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kexin Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaona Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Linlin Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuran Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yantong Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianfeng Wei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoxiang Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yao Yin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziling Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| |
Collapse
|
72
|
Summers RA, Fagiani F, Rowitch DH, Absinta M, Reich DS. Novel human iPSC models of neuroinflammation in neurodegenerative disease and regenerative medicine. Trends Immunol 2024; 45:799-813. [PMID: 39307583 PMCID: PMC11471369 DOI: 10.1016/j.it.2024.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 10/13/2024]
Abstract
The importance of neuroinflammation in neurodegenerative diseases is becoming increasingly evident, and, in parallel, human induced pluripotent stem cell (hiPSC) models of physiology and pathology are emerging. Here, we review new advancements in the differentiation of hiPSCs into glial, neural, and blood-brain barrier (BBB) cell types, and the integration of these cells into complex organoids and chimeras. These advancements are relevant for modeling neuroinflammation in the context of prevalent neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). With awareness of current limitations, recent progress in the development and application of various hiPSC-derived models shows potential for aiding the identification of candidate therapeutic targets and immunotherapy approaches.
Collapse
Affiliation(s)
- Rose Ana Summers
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Fagiani
- Translational Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - David H Rowitch
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Martina Absinta
- Translational Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
73
|
Cadena MA, Sing A, Taylor K, Jin L, Ning L, Amoli MS, Singh Y, The Brain Organoid Hub, Lanjewar SN, Tomov ML, Serpooshan V, Sloan SA. A 3D Bioprinted Cortical Organoid Platform for Modeling Human Brain Development. Adv Healthc Mater 2024; 13:e2401603. [PMID: 38815975 PMCID: PMC11518656 DOI: 10.1002/adhm.202401603] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Indexed: 06/01/2024]
Abstract
The ability to promote three-dimensional (3D) self-organization of induced pluripotent stem cells into complex tissue structures called organoids presents new opportunities for the field of developmental biology. Brain organoids have been used to investigate principles of neurodevelopment and neuropsychiatric disorders and serve as a drug screening and discovery platform. However, brain organoid cultures are currently limited by a lacking ability to precisely control their extracellular environment. Here, this work employs 3D bioprinting to generate a high-throughput, tunable, and reproducible scaffold for controlling organoid development and patterning. Additionally, this approach supports the coculture of organoids and vascular cells in a custom architecture containing interconnected endothelialized channels. Printing fidelity and mechanical assessments confirm that fabricated scaffolds closely match intended design features and exhibit stiffness values reflective of the developing human brain. Using organoid growth, viability, cytoarchitecture, proliferation, and transcriptomic benchmarks, this work finds that organoids cultured within the bioprinted scaffold long-term are healthy and have expected neuroectodermal differentiation. Lastly, this work confirms that the endothelial cells (ECs) in printed channel structures can migrate toward and infiltrate into the embedded organoids. This work demonstrates a tunable 3D culturing platform that can be used to create more complex and accurate models of human brain development and underlying diseases.
Collapse
Affiliation(s)
- Melissa A. Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anson Sing
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kylie Taylor
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, United States
| | - Mehdi Salar Amoli
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Yamini Singh
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - The Brain Organoid Hub
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Samantha N. Lanjewar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Martin L. Tomov
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, US
| | - Steven A. Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
74
|
Gerson J, Erdal MK, Dauphin-Ducharme P, Idili A, Hespanha JP, Plaxco KW, Kippin TE. A high-precision view of intercompartmental drug transport via simultaneous, seconds-resolved, in situ measurements in the vein and brain. Br J Pharmacol 2024; 181:3869-3885. [PMID: 38877797 PMCID: PMC11890181 DOI: 10.1111/bph.16471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The ability to measure specific molecules at multiple sites within the body simultaneously, and with a time resolution of seconds, could greatly advance our understanding of drug transport and elimination. EXPERIMENTAL APPROACH As a proof-of-principle demonstration, here we describe the use of electrochemical aptamer-based (EAB) sensors to measure transport of the antibiotic vancomycin from the plasma (measured in the jugular vein) to the cerebrospinal fluid (measured in the lateral ventricle) of live rats with temporal resolution of a few seconds. KEY RESULTS In our first efforts, we made measurements solely in the ventricle. Doing so we find that, although the collection of hundreds of concentration values over a single drug lifetime enables high-precision estimates of the parameters describing intracranial transport, due to a mathematical equivalence, the data produce two divergent descriptions of the drug's plasma pharmacokinetics that fit the in-brain observations equally well. The simultaneous collection of intravenous measurements, however, resolves this ambiguity, enabling high-precision (typically of ±5 to ±20% at 95% confidence levels) estimates of the key pharmacokinetic parameters describing transport from the blood to the cerebrospinal fluid in individual animals. CONCLUSIONS AND IMPLICATIONS The availability of simultaneous, high-density 'in-vein' (plasma) and 'in-brain' (cerebrospinal fluid) measurements provides unique opportunities to explore the assumptions almost universally employed in earlier compartmental models of drug transport, allowing the quantitative assessment of, for example, the pharmacokinetic effects of physiological processes such as the bulk transport of the drug out of the CNS via the dural venous sinuses.
Collapse
Affiliation(s)
- Julian Gerson
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Murat Kaan Erdal
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Philippe Dauphin-Ducharme
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Andrea Idili
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, USA
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Joao P. Hespanha
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, USA
- Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, California, USA
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, USA
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, USA
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
75
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
76
|
Yan Y, Yang Z, Chen L. High-quality models for assessing the effects of environmental pollutants on the nervous system: 3D brain organoids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116876. [PMID: 39146594 DOI: 10.1016/j.ecoenv.2024.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The prevalence of environmental problems and the increasing risk of human exposure to environmental pollutants have become a global concern. The increasing environmental pollution is one of the main reasons for the rising incidence of most neurological-related diseases in recent years. However, the ethical constraints of direct human research and the racial limitations of animal models have slowed the progress of research in this area. The purpose of this study is to review the neurotoxicity of different environmental pollutants on the brain using brain organoids as a new model and to conclude that brain organoids may play a key role in assessing the mechanisms by which environmental pollutants affect neurogenesis and cause neurological pathogenesis. To accurately determine the negative effects of environmental pollutants on the nervous system, self-organizing brain organoids that are highly similar to the developing brain have become a new model system for studying the effects of environmental pollutants on human brain development and disease. This study uses brain organoids as a model to summarize the neurotoxicity of different environmental pollutants on the nervous system, including structural changes in brain organoids, inhibition of neuronal differentiation and migration, impairment of mitochondrial function, damage to cellular cilia, and influence on signaling pathways. In conclusion, exposure to environmental pollutants may cause different neurotoxicity to the nervous system. Therefore, it is crucial to understand how to use brain organoids to ameliorate neurological disorders caused by environmental pollution.
Collapse
Affiliation(s)
- Yu Yan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Ziye Yang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
77
|
Koh B, Kim YE, Park SB, Kim SS, Lee J, Jo JH, Lee K, Bae DH, Kim TY, Cho SH, Bae MA, Kang D, Kim KY. Unraveling the Molecular Landscape of SCN1A Gene Knockout in Cerebral Organoids: A Multiomics Approach Utilizing Proteomics, Lipidomics, and Transcriptomics. ACS OMEGA 2024; 9:39804-39816. [PMID: 39346820 PMCID: PMC11425820 DOI: 10.1021/acsomega.4c05039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
This study investigates the impact of sodium channel protein type 1 subunit alpha (SCN1A) gene knockout (SCN1A KO) on brain development and function using cerebral organoids coupled with a multiomics approach. From comprehensive omics analyses, we found that SCN1A KO organoids exhibit decreased growth, dysregulated neurotransmitter levels, and altered lipidomic, proteomic, and transcriptomic profiles compared to controls under matrix-free differentiation conditions. Neurochemical analysis reveals reduced levels of key neurotransmitters, and lipidomic analysis highlights changes in ether phospholipids and sphingomyelin. Furthermore, quantitative profiling of the SCN1A KO organoid proteome shows perturbations in cholesterol metabolism and sodium ion transportation, potentially affecting synaptic transmission. These findings suggest dysregulation of cholesterol metabolism and sodium ion transport, with implications for synaptic transmission. Overall, these insights shed light on the molecular mechanisms underlying SCN1A-associated disorders, such as Dravet syndrome, and offer potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Byumseok Koh
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Young Eun Kim
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sung Bum Park
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Seong Soon Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jangjae Lee
- Chemical Platform Technology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong Hyeon Jo
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - KyungJin Lee
- Department of Microbiology, CHA University School of Medicine, 335 Pangyo-ro, Seongnam 13488, Republic of Korea
- ORGANOIDSCIENCES, 335 Pangyo-ro, Seongnam 13488, Republic of Korea
| | - Dong Hyuck Bae
- Department of Microbiology, CHA University School of Medicine, 335 Pangyo-ro, Seongnam 13488, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sung-Hee Cho
- Chemical Platform Technology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Myung Ae Bae
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Dukjin Kang
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ki Young Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
78
|
Xu L, Ding H, Wu S, Xiong N, Hong Y, Zhu W, Chen X, Han X, Tao M, Wang Y, Wang D, Xu M, Huo D, Gu Z, Liu Y. Artificial Meshed Vessel-Induced Dimensional Breaking Growth of Human Brain Organoids and Multiregional Assembloids. ACS NANO 2024; 18. [PMID: 39270300 PMCID: PMC11440649 DOI: 10.1021/acsnano.4c07844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Brain organoids are widely used to model brain development and diseases. However, a major challenge in their application is the insufficient supply of oxygen and nutrients to the core region, restricting the size and maturation of the organoids. In order to vascularize brain organoids and enhance the nutritional supply to their core areas, two-photon polymerization (TPP) 3D printing is employed to fabricate high-resolution meshed vessels in this study. These vessels made of photoresist with densely distributed micropores with a diameter of 20 μm on the sidewall, are cocultured with brain organoids to facilitate the diffusion of culture medium into the organoids. The vascularized organoids exhibit dimensional breaking growth and enhanced proliferation, reduced hypoxia and apoptosis, suggesting that the 3D-printed meshed vessels partially mimic vascular function to promote the culture of organoids. Furthermore, cortical, striatal and medial ganglionic eminence (MGE) organoids are respectively differentiated to generate Cortico-Striatal-MGE assembloids by 3D-printed vessels. The enhanced migration, projection and excitatory signaling transduction are observed between different brain regional organoids in the assembloids. This study presents an approach using TPP 3D printing to construct vascularized brain organoids and assembloids for enhancing the development and assembly, offering a research model and platform for neurological diseases.
Collapse
Affiliation(s)
- Lei Xu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Haibo Ding
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Shanshan Wu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Nankun Xiong
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yuan Hong
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Wanying Zhu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xingyi Chen
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Mengdan Tao
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yuanhao Wang
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Da Wang
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Min Xu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Da Huo
- Key
Laboratory of Cardiovascular and Cerebrovascular Medicine, Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, Nanjing 211166, China
| | - Zhongze Gu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yan Liu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
79
|
Cai H, Tian C, Chen L, McCracken K, Tchieu J, Gu M, Mackie K, Guo F. Vascular network-inspired diffusible scaffolds for engineering functional neural organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610649. [PMID: 39282292 PMCID: PMC11398381 DOI: 10.1101/2024.08.31.610649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Organoids, three-dimensional in vitro organ-like tissue cultures derived from stem cells, show promising potential for developmental biology, drug discovery, and regenerative medicine. However, the function and phenotype of current organoids, especially neural organoids, are still limited by insufficient diffusion of oxygen, nutrients, metabolites, signaling molecules, and drugs. Herein, we present Vascular network-Inspired Diffusible (VID) scaffolds to fully recapture the benefits of physiological diffusion physics for generating functional organoids and phenotyping their drug response. In a proof-of-concept application, the VID scaffolds, 3D-printed meshed tubular channel networks, support the successful generation of engineered human midbrain organoids almost without necrosis and hypoxia in commonly used well-plates. Compared to conventional organoids, these engineered organoids develop with more physiologically relevant features and functions including midbrain-specific identity, oxygen metabolism, neuronal maturation, and network activity. Moreover, these engineered organoids also better recapitulate pharmacological responses, such as neural activity changes to fentanyl exposure, compared to conventional organoids with significant diffusion limits. Combining these unique scaffolds and engineered organoids may provide insights for organoid development and therapeutic innovation.
Collapse
|
80
|
Xing L, Huttner WB, Namba T. Role of cell metabolism in the pathophysiology of brain size-associated neurodevelopmental disorders. Neurobiol Dis 2024; 199:106607. [PMID: 39029564 DOI: 10.1016/j.nbd.2024.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Cell metabolism is a key regulator of human neocortex development and evolution. Several lines of evidence indicate that alterations in neural stem/progenitor cell (NPC) metabolism lead to abnormal brain development, particularly brain size-associated neurodevelopmental disorders, such as microcephaly. Abnormal NPC metabolism causes impaired cell proliferation and thus insufficient expansion of NPCs for neurogenesis. Therefore, the production of neurons, which is a major determinant of brain size, is decreased and the size of the brain, especially the size of the neocortex, is significantly reduced. This review discusses recent progress understanding NPC metabolism, focusing in particular on glucose metabolism, fatty acid metabolism and amino acid metabolism (e.g., glutaminolysis and serine metabolism). We provide an overview of the contributions of these metabolic pathways to brain development and evolution, as well as to the etiology of neurodevelopmental disorders. Furthermore, we discuss the advantages and disadvantages of various experimental models to study cell metabolism in the developing brain.
Collapse
Affiliation(s)
- Lei Xing
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Developmental Biology, Fujita Health University School of Medicine, Toyoake, Japan; International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Japan.
| |
Collapse
|
81
|
Lambert EG, O'Keeffe CJ, Ward AO, Anderson TA, Yip Q, Newman PLH. Enhancing the palatability of cultivated meat. Trends Biotechnol 2024; 42:1112-1127. [PMID: 38531694 DOI: 10.1016/j.tibtech.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Cultivated meat (CM) has transitioned from a futuristic concept to a present reality, with select products approved for consumption and sale in Singapore, Israel, and the USA. This evolution has emphasized scalable, cost-effective, and sustainable production, as well as navigation of regulatory pathways. As CM develops, a crucial challenge lies in delivering products that are highly appealing to consumers. Central to this will be refining CM palatability, a term encompassing food's taste, aroma, texture, tenderness, juiciness, and color. We explore the scientific and engineering approaches to producing palatable CM, including cell-line selection, cell differentiation, and post-processing techniques. This includes a discussion of the structural and compositional properties of meat that are intrinsically coupled to palatability.
Collapse
Affiliation(s)
- Ella G Lambert
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2008, Australia; School of Materials Science and Engineering, University of New South Wales Sydney, Sydney, NSW 2052, Australia
| | | | - Alexander O Ward
- Vow Group Pty Ltd., Sydney, NSW 2015, Australia; Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia; ARTA Bioanalytics, Sydney, NSW 2000, Australia
| | - Tim A Anderson
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2008, Australia
| | - Queenie Yip
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2008, Australia
| | - Peter L H Newman
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2008, Australia; EMBL Australia, Single Molecule Science Node, School of Biomedical Sciences, University of New South Wales Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
82
|
Rizzuti M, Melzi V, Brambilla L, Quetti L, Sali L, Ottoboni L, Meneri M, Ratti A, Verde F, Ticozzi N, Comi GP, Corti S, Abati E. Shaping the Neurovascular Unit Exploiting Human Brain Organoids. Mol Neurobiol 2024; 61:6642-6657. [PMID: 38334812 PMCID: PMC11338975 DOI: 10.1007/s12035-024-03998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Brain organoids, three-dimensional cell structures derived from pluripotent stem cells, closely mimic key aspects of the human brain in vitro, providing a powerful tool for studying neurodevelopment and disease. The neuroectodermal induction protocol employed for brain organoid generation primarily gives rise to the neural cellular component but lacks the vital vascular system, which is crucial for the brain functions by regulating differentiation, migration, and circuit formation, as well as delivering oxygen and nutrients. Many neurological diseases are caused by dysfunctions of cerebral microcirculation, making vascularization of human brain organoids an important tool for pathogenetic and translational research. Experimentally, the creation of vascularized brain organoids has primarily focused on the fusion of vascular and brain organoids, on organoid transplantation in vivo, and on the use of microfluidic devices to replicate the intricate microenvironment of the human brain in vitro. This review summarizes these efforts and highlights the importance of studying the neurovascular unit in a forward-looking perspective of leveraging their use for understanding and treating neurological disorders.
Collapse
Affiliation(s)
- Mafalda Rizzuti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Melzi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Brambilla
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Quetti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Sali
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Linda Ottoboni
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
| | - Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Federico Verde
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nicola Ticozzi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
83
|
Aili Y, Maimaitiming N, Wang Z, Wang Y. Brain organoids: A new tool for modelling of neurodevelopmental disorders. J Cell Mol Med 2024; 28:e18560. [PMID: 39258535 PMCID: PMC11388061 DOI: 10.1111/jcmm.18560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024] Open
Abstract
Neurodevelopmental disorders are mostly studied using mice as models. However, the mouse brain lacks similar cell types and structures as those of the human brain. In recent years, emergence of three-dimensional brain organoids derived from human embryonic stem cells or induced pluripotent stem cells allows for controlled monitoring and evaluation of early neurodevelopmental processes and has opened a window for studying various aspects of human brain development. However, such organoids lack original anatomical structure of the brain during maturation, and neurodevelopmental maturation processes that rely on unique cellular interactions and neural network connections are limited. Consequently, organoids are difficult to be used extensively and effectively while modelling later stages of human brain development and disease progression. To address this problem, several methods and technologies have emerged that aim to enhance the sophisticated regulation of brain organoids developmental processes through bioengineering approaches, which may alleviate some of the current limitations. This review discusses recent advances and application areas of human brain organoid culture methods, aiming to generalize optimization strategies for organoid systems, improve the ability to mimic human brain development, and enhance the application value of organoids.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| | | | - Zengliang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| | - Yongxin Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| |
Collapse
|
84
|
Ren K, Wang Q, Jiang D, Liu E, Alsmaan J, Jiang R, Rutkove SB, Tian F. A comprehensive review of electrophysiological techniques in amyotrophic lateral sclerosis research. Front Cell Neurosci 2024; 18:1435619. [PMID: 39280794 PMCID: PMC11393746 DOI: 10.3389/fncel.2024.1435619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, is characterized by progressive motor neuron degeneration, leading to widespread weakness and respiratory failure. While a variety of mechanisms have been proposed as causes of this disease, a full understanding remains elusive. Electrophysiological alterations, including increased motor axon excitability, likely play an important role in disease progression. There remains a critical need for non-animal disease models that can integrate electrophysiological tools to better understand underlying mechanisms, track disease progression, and evaluate potential therapeutic interventions. This review explores the integration of electrophysiological technologies with ALS disease models. It covers cellular and clinical electrophysiological tools and their applications in ALS research. Additionally, we examine conventional animal models and highlight advancements in humanized models and 3D organoid technologies. By bridging the gap between these models, we aim to enhance our understanding of ALS pathogenesis and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Keyuan Ren
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Qinglong Wang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Douglas Jiang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Scripps Institution of Oceanography, San Diego, CA, United States
| | - Ethan Liu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Julie Alsmaan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Arts and Science, Harvard College, Cambridge, MA, United States
| | - Rui Jiang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Arts and Science, Harvard College, Cambridge, MA, United States
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Feng Tian
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
85
|
Su Y, Liu A, Chen H, Chen Q, Zhao B, Gao R, Zhang K, Peng T, Zhang Z, Ouyang C, Zhu D. Research progress of brain organoids in the field of diabetes. Mol Brain 2024; 17:53. [PMID: 39107846 PMCID: PMC11304585 DOI: 10.1186/s13041-024-01123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Human embryonic stem cells and human induced pluripotent stem cells may be used to create 3D tissues called brain organoids. They duplicate the physiological and pathological characteristics of human brain tissue more faithfully in terms of both structure and function, and they more precisely resemble the morphology and cellular structure of the human embryonic brain. This makes them valuable models for both drug screening and in vitro studies on the development of the human brain and associated disorders. The technical breakthroughs enabled by brain organoids have a significant impact on the research of different brain regions, brain development and sickness, the connections between the brain and other tissues and organs, and brain evolution. This article discusses the development of brain organoids, their use in diabetes research, and their progress.
Collapse
Affiliation(s)
- Ying Su
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Aimei Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Hongguang Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Bo Zhao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Runze Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Kangwei Zhang
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Tie Peng
- Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China.
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
| |
Collapse
|
86
|
Morales Pantoja IE, Ding L, Leite PEC, Marques SA, Romero JC, Alam El Din DM, Zack DJ, Chamling X, Smirnova L. A Novel Approach to Increase Glial Cell Populations in Brain Microphysiological Systems. Adv Biol (Weinh) 2024; 8:e2300198. [PMID: 38062868 PMCID: PMC11156795 DOI: 10.1002/adbi.202300198] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/14/2023] [Indexed: 12/19/2023]
Abstract
Brain microphysiological systems (bMPS) recapitulate human brain cellular architecture and functionality more closely than traditional monolayer cultures and have become increasingly relevant for the study of neurological function in health and disease. Existing 3D brain models vary in reflecting the relative populations of different cell types present in the human brain. Most models consist mainly of neurons, while glial cells represent a smaller portion of the cell populations. Here, by means of a chemically defined glial-enriched medium (GEM), an improved method to expand the population of astrocytes and oligodendrocytes without compromising neuronal differentiation in bMPS, is presented. An important finding is that astrocytes also change in morphology when cultured in GEM, more closely recapitulating primary culture astrocytes. GEM bMPS are electro-chemically active and show different patterns of calcium staining and flux. Synaptic vesicles and terminals observed by electron microscopy are also present. No significant changes in neuronal differentiation are observed by gene expression, however, GEM enhanced neurite outgrowth and cell migration, and differentially modulated neuronal maturation in two different cell lines. These results have the potential to significantly improve functionality of bMPS for the study of neurological diseases and drug discovery, contributing to the unmet need for safe human models.
Collapse
Affiliation(s)
- Itzy E Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lixuan Ding
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Paulo E C Leite
- Clinical Research Unit of the Antonio Pedro Hospital, Fluminense Federal University, Niteroi, 24033-900, Brazil
| | - Suelen A Marques
- Laboratory of Neural Regeneration and Function, Neurobiology Department, Biology Institute, Fluminense Federal University, Niteroi, 24210-201, Brazil
| | - July Carolina Romero
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Dowlette-Mary Alam El Din
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
87
|
Yang H, Niu S, Guo M, Xue Y. Applications of 3D organoids in toxicological studies: a comprehensive analysis based on bibliometrics and advances in toxicological mechanisms. Arch Toxicol 2024; 98:2309-2330. [PMID: 38806717 DOI: 10.1007/s00204-024-03777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
A mechanism exploration is an important part of toxicological studies. However, traditional cell and animal models can no longer meet the current needs for in-depth studies of toxicological mechanisms. The three-dimensional (3D) organoid derived from human embryonic stem cells (hESC) or induced pluripotent stem cells (hiPSC) is an ideal experimental model for the study of toxicological effects and mechanisms, which further recapitulates the human tissue microenvironment and provides a reliable method for studying complex cell-cell interactions. This article provides a comprehensive overview of the state of the 3D organoid technology in toxicological studies, including a bibliometric analysis of the existing literature and an exploration of the latest advances in toxicological mechanisms. The use of 3D organoids in toxicology research is growing rapidly, with applications in disease modeling, organ-on-chips, and drug toxicity screening being emphasized, but academic communications among countries/regions, institutions, and research scholars need to be further strengthened. Attempts to study the toxicological mechanisms of exogenous chemicals such as heavy metals, nanoparticles, drugs and organic pollutants are also increasing. It can be expected that 3D organoids can be better applied to the safety evaluation of exogenous chemicals by establishing a standardized methodology.
Collapse
Affiliation(s)
- Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
88
|
Patel D, Shetty S, Acha C, Pantoja IEM, Zhao A, George D, Gracias DH. Microinstrumentation for Brain Organoids. Adv Healthc Mater 2024; 13:e2302456. [PMID: 38217546 DOI: 10.1002/adhm.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/10/2023] [Indexed: 01/15/2024]
Abstract
Brain organoids are three-dimensional aggregates of self-organized differentiated stem cells that mimic the structure and function of human brain regions. Organoids bridge the gaps between conventional drug screening models such as planar mammalian cell culture, animal studies, and clinical trials. They can revolutionize the fields of developmental biology, neuroscience, toxicology, and computer engineering. Conventional microinstrumentation for conventional cellular engineering, such as planar microfluidic chips; microelectrode arrays (MEAs); and optical, magnetic, and acoustic techniques, has limitations when applied to three-dimensional (3D) organoids, primarily due to their limits with inherently two-dimensional geometry and interfacing. Hence, there is an urgent need to develop new instrumentation compatible with live cell culture techniques and with scalable 3D formats relevant to organoids. This review discusses conventional planar approaches and emerging 3D microinstrumentation necessary for advanced organoid-machine interfaces. Specifically, this article surveys recently developed microinstrumentation, including 3D printed and curved microfluidics, 3D and fast-scan optical techniques, buckling and self-folding MEAs, 3D interfaces for electrochemical measurements, and 3D spatially controllable magnetic and acoustic technologies relevant to two-way information transfer with brain organoids. This article highlights key challenges that must be addressed for robust organoid culture and reliable 3D spatiotemporal information transfer.
Collapse
Affiliation(s)
- Devan Patel
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Saniya Shetty
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chris Acha
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Itzy E Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alice Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
89
|
Wu J, Zhang J, Chen X, Wettschurack K, Que Z, Deming BA, Olivero-Acosta MI, Cui N, Eaton M, Zhao Y, Li SM, Suzuki M, Chen I, Xiao T, Halurkar MS, Mandal P, Yuan C, Xu R, Koss WA, Du D, Chen F, Wu LJ, Yang Y. Microglial over-pruning of synapses during development in autism-associated SCN2A-deficient mice and human cerebral organoids. Mol Psychiatry 2024; 29:2424-2437. [PMID: 38499656 DOI: 10.1038/s41380-024-02518-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Autism spectrum disorder (ASD) is a major neurodevelopmental disorder affecting 1 in 36 children in the United States. While neurons have been the focus of understanding ASD, an altered neuro-immune response in the brain may be closely associated with ASD, and a neuro-immune interaction could play a role in the disease progression. As the resident immune cells of the brain, microglia regulate brain development and homeostasis via core functions including phagocytosis of synapses. While ASD has been traditionally considered a polygenic disorder, recent large-scale human genetic studies have identified SCN2A deficiency as a leading monogenic cause of ASD and intellectual disability. We generated a Scn2a-deficient mouse model, which displays major behavioral and neuronal phenotypes. However, the role of microglia in this disease model is unknown. Here, we reported that Scn2a-deficient mice have impaired learning and memory, accompanied by reduced synaptic transmission and lower spine density in neurons of the hippocampus. Microglia in Scn2a-deficient mice are partially activated, exerting excessive phagocytic pruning of post-synapses related to the complement C3 cascades during selective developmental stages. The ablation of microglia using PLX3397 partially restores synaptic transmission and spine density. To extend our findings from rodents to human cells, we established a microglia-incorporated human cerebral organoid model carrying an SCN2A protein-truncating mutation identified in children with ASD. We found that human microglia display increased elimination of post-synapse in cerebral organoids carrying the SCN2A mutation. Our study establishes a key role of microglia in multi-species autism-associated models of SCN2A deficiency from mouse to human cells.
Collapse
Affiliation(s)
- Jiaxiang Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Jingliang Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaoling Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Kyle Wettschurack
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhefu Que
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Brody A Deming
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Maria I Olivero-Acosta
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Ningren Cui
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Muriel Eaton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuanrui Zhao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Sophia M Li
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Matthew Suzuki
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Ian Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Tiange Xiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Manasi S Halurkar
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Purba Mandal
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ranjie Xu
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Wendy A Koss
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Dongshu Du
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
90
|
Li K, Gu L, Cai H, Lu HC, Mackie K, Guo F. Human brain organoids for understanding substance use disorders. Drug Metab Pharmacokinet 2024; 58:101031. [PMID: 39146603 DOI: 10.1016/j.dmpk.2024.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Substance use disorders (SUDs) are complex mental health conditions involving a problematic pattern of substance use. Challenges remain in understanding their neural mechanisms, which are likely to lead to improved SUD treatments. Human brain organoids, brain-like 3D in vitro cultures derived from human stem cells, show unique potential in recapitulating the response of a developing human brain to substances. Here, we review the recent progress in understanding SUDs using human brain organoid models focusing on neurodevelopmental perspectives. We first summarize the background of SUDs in humans. Moreover, we introduce the development of various human brain organoid models and then discuss current progress and findings underlying the abuse of substances like nicotine, alcohol, and other addictive drugs using organoid models. Furthermore, we review efforts to develop organ chips and microphysiological systems to engineer better human brain organoids for advancing SUD studies. Lastly, we conclude by elaborating on the current challenges and future directions of SUD studies using human brain organoids.
Collapse
Affiliation(s)
- Kangle Li
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States
| | - Longjun Gu
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States
| | - Hui-Chen Lu
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, 47405, United States
| | - Ken Mackie
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, 47405, United States
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States.
| |
Collapse
|
91
|
Urrestizala-Arenaza N, Cerchio S, Cavaliere F, Magliaro C. Limitations of human brain organoids to study neurodegenerative diseases: a manual to survive. Front Cell Neurosci 2024; 18:1419526. [PMID: 39049825 PMCID: PMC11267621 DOI: 10.3389/fncel.2024.1419526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
In 2013, M. Lancaster described the first protocol to obtain human brain organoids. These organoids, usually generated from human-induced pluripotent stem cells, can mimic the three-dimensional structure of the human brain. While they recapitulate the salient developmental stages of the human brain, their use to investigate the onset and mechanisms of neurodegenerative diseases still faces crucial limitations. In this review, we aim to highlight these limitations, which hinder brain organoids from becoming reliable models to study neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Specifically, we will describe structural and biological impediments, including the lack of an aging footprint, angiogenesis, myelination, and the inclusion of functional and immunocompetent microglia—all important factors in the onset of neurodegeneration in AD, PD, and ALS. Additionally, we will discuss technical limitations for monitoring the microanatomy and electrophysiology of these organoids. In parallel, we will propose solutions to overcome the current limitations, thereby making human brain organoids a more reliable tool to model neurodegeneration.
Collapse
Affiliation(s)
- Nerea Urrestizala-Arenaza
- Achucarro Basque Center for Neuroscience, The Basque Biomodels Platform for Human Research (BBioH), Leioa, Spain
| | - Sonia Cerchio
- Centro di Ricerca “E. Piaggio” – University of Pisa, Pisa, Italy
| | - Fabio Cavaliere
- Achucarro Basque Center for Neuroscience, The Basque Biomodels Platform for Human Research (BBioH), Leioa, Spain
- Fundación Biofisica Bizkaia, Leioa, Spain
| | - Chiara Magliaro
- Centro di Ricerca “E. Piaggio” – University of Pisa, Pisa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
92
|
Saiki N, Nio Y, Yoneyama Y, Kawamura S, Iwasawa K, Kawakami E, Araki K, Fukumura J, Sakairi T, Kono T, Ohmura R, Koido M, Funata M, Thompson WL, Cruz-Encarnacion P, Chen YW, Takebe T. Self-Organization of Sinusoidal Vessels in Pluripotent Stem Cell-derived Human Liver Bud Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601804. [PMID: 39005378 PMCID: PMC11245015 DOI: 10.1101/2024.07.02.601804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The induction of tissue-specific vessels in in vitro living tissue systems remains challenging. Here, we directly differentiated human pluripotent stem cells into CD32b+ putative liver sinusoidal progenitors (iLSEP) by dictating developmental pathways. By devising an inverted multilayered air-liquid interface (IMALI) culture, hepatic endoderm, septum mesenchyme, arterial and sinusoidal quadruple progenitors self-organized to generate and sustain hepatocyte-like cells neighbored by divergent endothelial subsets composed of CD32blowCD31high, LYVE1+STAB1+CD32bhighCD31lowTHBD-vWF-, and LYVE1-THBD+vWF+ cells. Wnt2 mediated sinusoidal-to-hepatic intercellular crosstalk potentiates hepatocyte differentiation and branched endothelial network formation. Intravital imaging revealed iLSEP developed fully patent human vessels with functional sinusoid-like features. Organoid-derived hepatocyte- and sinusoid-derived coagulation factors enabled correction of in vitro clotting time with Factor V, VIII, IX, and XI deficient patients' plasma and rescued the severe bleeding phenotype in hemophilia A mice upon transplantation. Advanced organoid vascularization technology allows for interrogating key insights governing organ-specific vessel development, paving the way for coagulation disorder therapeutics.
Collapse
Affiliation(s)
- Norikazu Saiki
- Institute of Research, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasunori Nio
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shuntaro Kawamura
- Institute of Research, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Eri Kawakami
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Kohei Araki
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Junko Fukumura
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuyoshi Sakairi
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Tamaki Kono
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Rio Ohmura
- Institute of Research, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaru Koido
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaaki Funata
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Wendy L. Thompson
- Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | - Ya-Wen Chen
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Epithelial and Airway Biology and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Takanori Takebe
- Institute of Research, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
- Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- The Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
- Department of Genome Biology, Graduate School of Medicine, and Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
93
|
Wang C, Nagayach A, Patel H, Dao L, Zhu H, Wasylishen AR, Fan Y, Kendler A, Guo Z. Utilizing human cerebral organoids to model breast cancer brain metastasis in culture. Breast Cancer Res 2024; 26:108. [PMID: 38951862 PMCID: PMC11218086 DOI: 10.1186/s13058-024-01865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Metastasis, the spread, and growth of malignant cells at secondary sites within a patient's body, accounts for over 90% of cancer-related mortality. Breast cancer is the most common tumor type diagnosed and the leading cause of cancer lethality in women in the United States. It is estimated that 10-16% breast cancer patients will have brain metastasis. Current therapies to treat patients with breast cancer brain metastasis (BCBM) remain palliative. This is largely due to our limited understanding of the fundamental molecular and cellular mechanisms through which BCBM progresses, which represents a critical barrier for the development of efficient therapies for affected breast cancer patients. METHODS Previous research in BCBM relied on co-culture assays of tumor cells with rodent neural cells or rodent brain slice ex vivo. Given the need to overcome the obstacle for human-relevant host to study cell-cell communication in BCBM, we generated human embryonic stem cell-derived cerebral organoids to co-culture with human breast cancer cell lines. We used MDA-MB-231 and its brain metastatic derivate MDA-MB-231 Br-EGFP, other cell lines of MCF-7, HCC-1806, and SUM159PT. We leveraged this novel 3D co-culture platform to investigate the crosstalk of human breast cancer cells with neural cells in cerebral organoid. RESULTS We found that MDA-MB-231 and SUM159PT breast cancer cells formed tumor colonies in human cerebral organoids. Moreover, MDA-MB-231 Br-EGFP cells showed increased capacity to invade and expand in human cerebral organoids. CONCLUSIONS Our co-culture model has demonstrated a remarkable capacity to discern the brain metastatic ability of human breast cancer cells in cerebral organoids. The generation of BCBM-like structures in organoid will facilitate the study of human tumor microenvironment in culture.
Collapse
Affiliation(s)
- Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Aarti Nagayach
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Harsh Patel
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Lan Dao
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hui Zhu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Amanda R Wasylishen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ady Kendler
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ziyuan Guo
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
94
|
Xu C, Alameri A, Leong W, Johnson E, Chen Z, Xu B, Leong KW. Multiscale engineering of brain organoids for disease modeling. Adv Drug Deliv Rev 2024; 210:115344. [PMID: 38810702 PMCID: PMC11265575 DOI: 10.1016/j.addr.2024.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Brain organoids hold great potential for modeling human brain development and pathogenesis. They recapitulate certain aspects of the transcriptional trajectory, cellular diversity, tissue architecture and functions of the developing brain. In this review, we explore the engineering strategies to control the molecular-, cellular- and tissue-level inputs to achieve high-fidelity brain organoids. We review the application of brain organoids in neural disorder modeling and emerging bioengineering methods to improve data collection and feature extraction at multiscale. The integration of multiscale engineering strategies and analytical methods has significant potential to advance insight into neurological disorders and accelerate drug development.
Collapse
Affiliation(s)
- Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Alia Alameri
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Wei Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Emily Johnson
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Zaozao Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Bin Xu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
95
|
Fan C, Cai H, Zhang L, Wu X, Yan J, Jin L, Hu B, He J, Chen Y, Zhao Y, Dai J. Constructing Linear-Oriented Pre-Vascularized Human Spinal Cord Tissues for Spinal Cord Injury Repair. Adv Healthc Mater 2024; 13:e2303388. [PMID: 38537119 DOI: 10.1002/adhm.202303388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Repairing spinal cord injury (SCI) is a global medical challenge lacking effective clinical treatment. Developing human-engineered spinal cord tissues that can replenish lost cells and restore a regenerative microenvironment offers promising potential for SCI therapy. However, creating vascularized human spinal cord-like tissues (VSCT) that mimic the diverse cell types and longitudinal parallel structural features of spinal cord tissues remains a significant hurdle. In the present study, VSCTs are engineered using embryonic human spinal cord-derived neural and endothelial cells on linear-ordered collagen scaffolds (LOCS). Studies have shown that astrocytes and endothelial cells align along the scaffolds in VSCT, supporting axon extension from various human neurons myelinated by oligodendrocytes. After transplantation into SCI rats, VSCT survives at the injury sites and promotes endogenous neural regeneration and vascularization, ultimately reducing scarring and enhancing behavioral functional recovery. It suggests that pre-vascularization of engineered spinal cord tissues is beneficial for SCI treatment and highlights the important role of exogenous endothelial cells in tissue engineering.
Collapse
Affiliation(s)
- Caixia Fan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Hui Cai
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lulu Zhang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Junyan Yan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Lifang Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Baowei Hu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Jiaxiong He
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Yanyan Chen
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jianwu Dai
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| |
Collapse
|
96
|
Coronel R, García-Moreno E, Siendones E, Barrero MJ, Martínez-Delgado B, Santos-Ocaña C, Liste I, Cascajo-Almenara MV. Brain organoid as a model to study the role of mitochondria in neurodevelopmental disorders: achievements and weaknesses. Front Cell Neurosci 2024; 18:1403734. [PMID: 38978706 PMCID: PMC11228165 DOI: 10.3389/fncel.2024.1403734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 07/10/2024] Open
Abstract
Mitochondrial diseases are a group of severe pathologies that cause complex neurodegenerative disorders for which, in most cases, no therapy or treatment is available. These organelles are critical regulators of both neurogenesis and homeostasis of the neurological system. Consequently, mitochondrial damage or dysfunction can occur as a cause or consequence of neurodevelopmental or neurodegenerative diseases. As genetic knowledge of neurodevelopmental disorders advances, associations have been identified between genes that encode mitochondrial proteins and neurological symptoms, such as neuropathy, encephalomyopathy, ataxia, seizures, and developmental delays, among others. Understanding how mitochondrial dysfunction can alter these processes is essential in researching rare diseases. Three-dimensional (3D) cell cultures, which self-assemble to form specialized structures composed of different cell types, represent an accessible manner to model organogenesis and neurodevelopmental disorders. In particular, brain organoids are revolutionizing the study of mitochondrial-based neurological diseases since they are organ-specific and model-generated from a patient's cell, thereby overcoming some of the limitations of traditional animal and cell models. In this review, we have collected which neurological structures and functions recapitulate in the different types of reported brain organoids, focusing on those generated as models of mitochondrial diseases. In addition to advancements in the generation of brain organoids, techniques, and approaches for studying neuronal structures and physiology, drug screening and drug repositioning studies performed in brain organoids with mitochondrial damage and neurodevelopmental disorders have also been reviewed. This scope review will summarize the evidence on limitations in studying the function and dynamics of mitochondria in brain organoids.
Collapse
Affiliation(s)
- Raquel Coronel
- Neural Regeneration Unit, Functional Unit for Research on Chronic Diseases (UFIEC), National Institute of Health Carlos III (ISCIII), Madrid, Spain
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcalá (UAH), Alcalá de Henares, Spain
| | - Enrique García-Moreno
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| | - Emilio Siendones
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| | - Maria J. Barrero
- Models and Mechanisms Unit, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), CIBER of Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Carlos Santos-Ocaña
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| | - Isabel Liste
- Neural Regeneration Unit, Functional Unit for Research on Chronic Diseases (UFIEC), National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - M. V. Cascajo-Almenara
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| |
Collapse
|
97
|
Kural MH, Djakbarova U, Cakir B, Tanaka Y, Chan ET, Arteaga Muniz VI, Madraki Y, Qian H, Park J, Sewanan LR, Park IH, Niklason LE, Kural C. Mechano-inhibition of endocytosis sensitizes cancer cells to Fas-induced Apoptosis. Cell Death Dis 2024; 15:440. [PMID: 38909035 PMCID: PMC11193792 DOI: 10.1038/s41419-024-06822-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
The transmembrane death receptor Fas transduces apoptotic signals upon binding its ligand, FasL. Although Fas is highly expressed in cancer cells, insufficient cell surface Fas expression desensitizes cancer cells to Fas-induced apoptosis. Here, we show that the increase in Fas microaggregate formation on the plasma membrane in response to the inhibition of endocytosis sensitizes cancer cells to Fas-induced apoptosis. We used a clinically accessible Rho-kinase inhibitor, fasudil, that reduces endocytosis dynamics by increasing plasma membrane tension. In combination with exogenous soluble FasL (sFasL), fasudil promoted cancer cell apoptosis, but this collaborative effect was substantially weaker in nonmalignant cells. The combination of sFasL and fasudil prevented glioblastoma cell growth in embryonic stem cell-derived brain organoids and induced tumor regression in a xenograft mouse model. Our results demonstrate that sFasL has strong potential for apoptosis-directed cancer therapy when Fas microaggregate formation is augmented by mechano-inhibition of endocytosis.
Collapse
Affiliation(s)
- Mehmet H Kural
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA.
- Humacyte Inc., Durham, NC, 27213, USA.
| | | | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, H1T 2M4, Canada
| | - Emily T Chan
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Hong Qian
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA
- Humacyte Inc., Durham, NC, 27213, USA
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Lorenzo R Sewanan
- Department of Internal Medicine, Columbia University, New York, NY, 10032, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Laura E Niklason
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA.
- Humacyte Inc., Durham, NC, 27213, USA.
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
98
|
Deng D, Zhang Y, Tang B, Zhang Z. Sources and applications of endothelial seed cells: a review. Stem Cell Res Ther 2024; 15:175. [PMID: 38886767 PMCID: PMC11184868 DOI: 10.1186/s13287-024-03773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Endothelial cells (ECs) are widely used as donor cells in tissue engineering, organoid vascularization, and in vitro microvascular model development. ECs are invaluable tools for disease modeling and drug screening in fundamental research. When treating ischemic diseases, EC engraftment facilitates the restoration of damaged blood vessels, enhancing therapeutic outcomes. This article presents a comprehensive overview of the current sources of ECs, which encompass stem/progenitor cells, primary ECs, cell lineage conversion, and ECs derived from other cellular sources, provides insights into their characteristics, potential applications, discusses challenges, and explores strategies to mitigate these issues. The primary aim is to serve as a reference for selecting suitable EC sources for preclinical research and promote the translation of basic research into clinical applications.
Collapse
Affiliation(s)
- Dan Deng
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yu Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Bo Tang
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
99
|
Nwokoye PN, Abilez OJ. Bioengineering methods for vascularizing organoids. CELL REPORTS METHODS 2024; 4:100779. [PMID: 38759654 PMCID: PMC11228284 DOI: 10.1016/j.crmeth.2024.100779] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
Organoids, self-organizing three-dimensional (3D) structures derived from stem cells, offer unique advantages for studying organ development, modeling diseases, and screening potential therapeutics. However, their translational potential and ability to mimic complex in vivo functions are often hindered by the lack of an integrated vascular network. To address this critical limitation, bioengineering strategies are rapidly advancing to enable efficient vascularization of organoids. These methods encompass co-culturing organoids with various vascular cell types, co-culturing lineage-specific organoids with vascular organoids, co-differentiating stem cells into organ-specific and vascular lineages, using organoid-on-a-chip technology to integrate perfusable vasculature within organoids, and using 3D bioprinting to also create perfusable organoids. This review explores the field of organoid vascularization, examining the biological principles that inform bioengineering approaches. Additionally, this review envisions how the converging disciplines of stem cell biology, biomaterials, and advanced fabrication technologies will propel the creation of increasingly sophisticated organoid models, ultimately accelerating biomedical discoveries and innovations.
Collapse
Affiliation(s)
- Peter N Nwokoye
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oscar J Abilez
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; Division of Pediatric CT Surgery, Stanford University, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University, Stanford, CA 94305, USA; Bio-X Program, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
100
|
Yan Y, Cho AN. Human Brain In Vitro Model for Pathogen Infection-Related Neurodegeneration Study. Int J Mol Sci 2024; 25:6522. [PMID: 38928228 PMCID: PMC11204318 DOI: 10.3390/ijms25126522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Recent advancements in stem cell biology and tissue engineering have revolutionized the field of neurodegeneration research by enabling the development of sophisticated in vitro human brain models. These models, including 2D monolayer cultures, 3D organoids, organ-on-chips, and bioengineered 3D tissue models, aim to recapitulate the cellular diversity, structural organization, and functional properties of the native human brain. This review highlights how these in vitro brain models have been used to investigate the effects of various pathogens, including viruses, bacteria, fungi, and parasites infection, particularly in the human brain cand their subsequent impacts on neurodegenerative diseases. Traditional studies have demonstrated the susceptibility of different 2D brain cell types to infection, elucidated the mechanisms underlying pathogen-induced neuroinflammation, and identified potential therapeutic targets. Therefore, current methodological improvement brought the technology of 3D models to overcome the challenges of 2D cells, such as the limited cellular diversity, incomplete microenvironment, and lack of morphological structures by highlighting the need for further technological advancements. This review underscored the significance of in vitro human brain cell from 2D monolayer to bioengineered 3D tissue model for elucidating the intricate dynamics for pathogen infection modeling. These in vitro human brain cell enabled researchers to unravel human specific mechanisms underlying various pathogen infections such as SARS-CoV-2 to alter blood-brain-barrier function and Toxoplasma gondii impacting neural cell morphology and its function. Ultimately, these in vitro human brain models hold promise as personalized platforms for development of drug compound, gene therapy, and vaccine. Overall, we discussed the recent progress in in vitro human brain models, their applications in studying pathogen infection-related neurodegeneration, and future directions.
Collapse
Affiliation(s)
- Yuwei Yan
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia;
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ann-Na Cho
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia;
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|