51
|
La Sala L, Carlini V, Conte C, Macas-Granizo MB, Afzalpour E, Martin-Delgado J, D'Anzeo M, Pedretti RFE, Naselli A, Pontiroli AE, Cappato R. Metabolic disorders affecting the liver and heart: Therapeutic efficacy of miRNA-based therapies? Pharmacol Res 2024; 201:107083. [PMID: 38309383 DOI: 10.1016/j.phrs.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Liver and heart disease are major causes of death worldwide. It is known that metabolic alteration causing type 2 diabetes (T2D) and Nonalcoholic fatty liver (NAFLD) coupled with a derangement in lipid homeostasis, may exacerbate hepatic and cardiovascular diseases. Some pharmacological treatments can mitigate organ dysfunctions but the important side effects limit their efficacy leading often to deterioration of the tissues. It needs to develop new personalized treatment approaches and recent progresses of engineered RNA molecules are becoming increasingly viable as alternative treatments. This review outlines the current use of antisense oligonucleotides (ASOs), RNA interference (RNAi) and RNA genome editing as treatment for rare metabolic disorders. However, the potential for small non-coding RNAs to serve as therapeutic agents for liver and heart diseases is yet to be fully explored. Although miRNAs are recognized as biomarkers for many diseases, they are also capable of serving as drugs for medical intervention; several clinical trials are testing miRNAs as therapeutics for type 2 diabetes, nonalcoholic fatty liver as well as cardiac diseases. Recent advances in RNA-based therapeutics may potentially facilitate a novel application of miRNAs as agents and as druggable targets. In this work, we sought to summarize the advancement and advantages of miRNA selective therapy when compared to conventional drugs. In particular, we sought to emphasise druggable miRNAs, over ASOs or other RNA therapeutics or conventional drugs. Finally, we sought to address research questions related to efficacy, side-effects, and range of use of RNA therapeutics. Additionally, we covered hurdles and examined recent advances in the use of miRNA-based RNA therapy in metabolic disorders such as diabetes, liver, and heart diseases.
Collapse
Affiliation(s)
- Lucia La Sala
- IRCCS MultiMedica, 20138 Milan, Italy; Dept. of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | | | - Caterina Conte
- IRCCS MultiMedica, 20138 Milan, Italy; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | | | - Elham Afzalpour
- Dept. of Biomedical Sciences and Clinic, University of Milan, Milan, Italy
| | - Jimmy Martin-Delgado
- Hospital Luis Vernaza, Junta de Beneficiencia de Guayaquil, 090603 Guayaquil, Ecuador; Instituto de Investigacion e Innovacion en Salud Integral, Universidad Catolica de Santiago de Guayaquil, Guayaquil 090603, Ecuador
| | - Marco D'Anzeo
- AUO delle Marche, SOD Medicina di Laboratorio, Ancona, Italy
| | | | | | | | | |
Collapse
|
52
|
Bates EA, Kipp ZA, Lee WH, Martinez GJ, Weaver L, Becker KN, Pauss SN, Creeden JF, Anspach GB, Helsley RN, Xu M, Bruno MEC, Starr ME, Hinds TD. FOXS1 is increased in liver fibrosis and regulates TGFβ responsiveness and proliferation pathways in human hepatic stellate cells. J Biol Chem 2024; 300:105691. [PMID: 38280429 PMCID: PMC10878791 DOI: 10.1016/j.jbc.2024.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
Liver fibrosis commences with liver injury stimulating transforming growth factor beta (TGFβ) activation of hepatic stellate cells (HSCs), causing scarring and irreversible damage. TGFβ induces expression of the transcription factor Forkhead box S1 (FOXS1) in hepatocytes and may have a role in the pathogenesis of hepatocellular carcinoma (HCC). To date, no studies have determined how it affects HSCs. We analyzed human livers with cirrhosis, HCC, and a murine fibrosis model and found that FOXS1 expression is significantly higher in fibrotic livers but not in HCC. Next, we treated human LX2 HSC cells with TGFβ to activate fibrotic pathways, and FOXS1 mRNA was significantly increased. To study TGFβ-FOXS1 signaling, we developed human LX2 FOXS1 CRISPR KO and scrambled control HSCs. To determine differentially expressed gene transcripts controlled by TGFβ-FOXS1, we performed RNA-seq in the FOXS1 KO and control cells and over 400 gene responses were attenuated in the FOXS1 KO HSCs with TGFβ-activation. To validate the RNA-seq findings, we used our state-of-the-art PamGene PamStation kinase activity technology that measures hundreds of signaling pathways nonselectively in real time. Using our RNA-seq data, kinase activity data, and descriptive measurements, we found that FOXS1 controls pathways mediating TGFβ responsiveness, protein translation, and proliferation. Our study is the first to identify that FOXS1 may serve as a biomarker for liver fibrosis and HSC activation, which may help with early detection of hepatic fibrosis or treatment options for end-stage liver disease.
Collapse
Affiliation(s)
- Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Lauren Weaver
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kathryn N Becker
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Sally N Pauss
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Garrett B Anspach
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Robert N Helsley
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Maria E C Bruno
- Division of Research, Department of Surgery, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Marlene E Starr
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Division of Research, Department of Surgery, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| |
Collapse
|
53
|
Jeong KJ, Mukae M, Lee SR, Kim SY, Kim SH, Cho YE, An BS, Ko JW, Kwun HJ, Baek IJ, Hong EJ. Progesterone increases hepatic lipid content and plasma lipid levels through PR- B-mediated lipogenesis. Biomed Pharmacother 2024; 172:116281. [PMID: 38364736 DOI: 10.1016/j.biopha.2024.116281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Progesterone (P4) is a crucial reproductive hormone that acts as a precursor for all other endogenous steroids. P4 modulates transcriptional activity during reproduction by binding to progesterone receptors (PR). However, the physiological role of P4 in the liver is understudied. P4-mediated lipid metabolism in the liver was investigated in this study, as P4 facilitates insulin resistance and influences energy metabolism. While exogenous lipids are mainly obtained from food, the liver synthesizes endogenous triglycerides and cholesterol from a carbohydrate diet. Hepatic de novo lipogenesis (DNL) is primarily determined by acetyl-CoA and its biosynthetic pathways, which involve fatty acid and cholesterol synthesis. While P4 increased the hepatic levels of sterol regulatory element-binding protein 1 C (SREBP-1 C), peroxisome proliferator-activated receptor-gamma (PPARγ), acetyl-CoA carboxylase (ACC), and CD36, co-treatment with the P4 receptor antagonist RU486 blocked these proteins and P4-mediated lipogenesis. RNA sequencing was used to assess the role of P4 in lipogenic events, such as fatty liver and fatty acid metabolism, lipoprotein signaling, and cholesterol metabolism. P4 induced hepatic DNL and lipid anabolism were confirmed in the liver of ovarian resection mice fed a high-fat diet or in pregnant mice. P4 increased lipogenesis directly in mice exposed to P4 and indirectly in fetuses exposed to maternal P4. The lipid balance between lipogenesis and lipolysis determines fat build-up and is linked to lipid metabolism dysfunction, which involves the breakdown and storage of fats for energy and the synthesis of structural and functional lipids. Therefore, P4 may impact the lipid metabolism and reproductive development during gestation.
Collapse
Affiliation(s)
- Kang Ju Jeong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moeka Mukae
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sang R Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sang-Yun Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Seong Hyeon Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, Korea
| | - Beum-Soo An
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyo-Jung Kwun
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - In-Jeoung Baek
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
54
|
Yang F, Zhou L, Shen Y, Wang X, Fan X, Yang L. Multi-omics approaches for drug-response characterization in primary biliary cholangitis and autoimmune hepatitis variant syndrome. J Transl Med 2024; 22:214. [PMID: 38424613 PMCID: PMC10902991 DOI: 10.1186/s12967-024-05029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) and autoimmune hepatitis (AIH) variant syndrome (VS) exhibit a complex overlap of AIH features with PBC, leading to poorer prognoses than those with PBC or AIH alone. The biomarkers associated with drug response and potential molecular mechanisms in this syndrome have not been fully elucidated. METHODS Whole-transcriptome sequencing was employed to discern differentially expressed (DE) RNAs within good responders (GR) and poor responders (PR) among patients with PBC/AIH VS. Subsequent gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted for the identified DE RNAs. Plasma metabolomics was employed to delineate the metabolic profiles distinguishing PR and GR groups. The quantification of immune cell profiles and associated cytokines was achieved through flow cytometry and immunoassay technology. Uni- and multivariable logistic regression analyses were conducted to construct a predictive model for insufficient biochemical response. The performance of the model was assessed by computing the area under the receiver operating characteristic (AUC) curve, sensitivity, and specificity. FINDINGS The analysis identified 224 differentially expressed (DE) mRNAs, 189 DE long non-coding RNAs, 39 DE circular RNAs, and 63 DE microRNAs. Functional pathway analysis revealed enrichment in lipid metabolic pathways and immune response. Metabolomics disclosed dysregulated lipid metabolism and identified PC (18:2/18:2) and PC (16:0/20:3) as predictors. CD4+ T helper (Th) cells, including Th2 cells and regulatory T cells (Tregs), were upregulated in the GR group. Pro-inflammatory cytokines (IFN-γ, TNF-α, IL-9, and IL-17) were downregulated in the GR group, while anti-inflammatory cytokines (IL-10, IL-4, IL-5, and IL-22) were elevated. Regulatory networks were constructed, identifying CACNA1H and ACAA1 as target genes. A predictive model based on these indicators demonstrated an AUC of 0.986 in the primary cohort and an AUC of 0.940 in the validation cohort for predicting complete biochemical response. CONCLUSION A combined model integrating genomic, metabolic, and cytokinomic features demonstrated high accuracy in predicting insufficient biochemical response in patients with PBC/AIH VS. Early recognition of individuals at elevated risk for insufficient response allows for the prompt initiation of additional treatments.
Collapse
Affiliation(s)
- Fan Yang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, #37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Leyu Zhou
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, #37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Yi Shen
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, #37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Xianglin Wang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, #37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, #37 Guoxue Road, Chengdu, 610041, Sichuan, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, #37 Guoxue Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
55
|
Tang S, Luo S, Wu Z, Su J. Association between blood heavy metal exposure levels and risk of metabolic dysfunction associated fatty liver disease in adults: 2015-2020 NHANES large cross-sectional study. Front Public Health 2024; 12:1280163. [PMID: 38435294 PMCID: PMC10904630 DOI: 10.3389/fpubh.2024.1280163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Background The relationships between heavy metals and fatty liver, especially the threshold values, have not been fully elucidated. The objective of this research was to further investigate the correlation between blood heavy metal exposures and the risk of Metabolic dysfunction Associated Fatty Liver Disease (MAFLD) in adults. Methods Laboratory data on blood metal exposure levels were obtained from National Health and Nutrition Examination Survey (NHANES) data for the period 2015 to 2020 for a cross-sectional study in adults. Associations between blood levels of common heavy metals and the risk of MAFLD in adults were analyzed using multifactorial logistic regression and ranked for heavy metal importance using a random forest model. Finally, thresholds for important heavy metals were calculated using piecewise linear regression model. Results In a multifactorial logistic regression model, we found that elevated levels of selenium (Se) and manganese (Mn) blood exposure were strongly associated with the risk of MAFLD in adults. The random forest model importance ranking also found that Se and Mn blood exposure levels were in the top two positions of importance for the risk of disease in adults. The restricted cubic spline suggested a non-linear relationship between Se and Mn blood exposure and adult risk of disease. The OR (95% CI) for MAFLD prevalence was 3.936 (2.631-5.887) for every 1 unit increase in Log Mn until serum Mn levels rose to the turning point (Log Mn = 1.10, Mn = 12.61 μg/L). This correlation was not significant (p > 0.05) after serum Mn levels rose to the turning point. A similar phenomenon was observed for serum Se levels, with a turning point of (Log Se = 2.30, Se = 199.55 μg/L). Conclusion Blood heavy metals, especially Se and Mn, are significantly associated with MAFLD in adults. They have a non-linear relationship with a clear threshold.
Collapse
Affiliation(s)
- Song Tang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Simin Luo
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhendong Wu
- Department of Gastroenterology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Jiandong Su
- Department of Gastroenterology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| |
Collapse
|
56
|
Rad NK, Heydari Z, Tamimi AH, Zahmatkesh E, Shpichka A, Barekat M, Timashev P, Hossein-Khannazer N, Hassan M, Vosough M. Review on Kidney-Liver Crosstalk: Pathophysiology of Their Disorders. CELL JOURNAL 2024; 26:98-111. [PMID: 38459727 PMCID: PMC10924833 DOI: 10.22074/cellj.2023.2007757.1376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 03/10/2024]
Abstract
Kidney-liver crosstalk plays a crucial role in normal and certain pathological conditions. In pathologic states, both renal-induced liver damage and liver-induced kidney diseases may happen through these kidney-liver interactions. This bidirectional crosstalk takes place through the systemic conditions that mutually influence both the liver and kidneys. Ischemia and reperfusion, cytokine release and pro-inflammatory signaling pathways, metabolic acidosis, oxidative stress, and altered enzyme activity and metabolic pathways establish the base of this interaction between the kidneys and liver. In these concomitant kidney-liver diseases, the survival rates strongly correlate with early intervention and treatment of organ dysfunction. Proper care of a nephrologist and hepatologist and the identification of pathological conditions using biomarkers at early stages are necessary to prevent the complications induced by this complex and potentially vicious cycle. Therefore, understanding the characteristics of this crosstalk is essential for better management. In this review, we discussed the available literature concerning the detrimental effects of kidney failure on liver functions and liver-induced kidney diseases.
Collapse
Affiliation(s)
- Niloofar Khoshdel Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Heydari
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | - Amir Hossein Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensieh Zahmatkesh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Maryam Barekat
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. ,
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
57
|
Yang N, Zhang J, Guo J, Xiang Q, Huang Y, Wen J, Liu Q, Hu T, Chen Y, Rao C. Revealing the mechanism of Zanthoxylum armatum DC. extract-induced liver injury in mice based on lipidomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117086. [PMID: 37634752 DOI: 10.1016/j.jep.2023.117086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum armatum DC. (Z. armatum) is an herbal medicine with various active ingredients and pharmacological effects. However, modern studies found that Z. armatum is hepatotoxic. The liver is the target organ for toxic effects and an important site for lipid metabolism. The effects of Z. armatum on lipid level and metabolism in the liver are still unclear. AIM OF THE STUDY This study aimed to analyze hepatic lipid levels, lipid metabolites and metabolic pathways of action of Z. armatum based on lipidomics, to investigate the potential hepatotoxic mechanism of Z. armatum. MATERIALS AND METHODS Different doses (62, 96, and 150 mg/kg) of the methanolic extract of Z. armatum (MZADC) were administered to ICR mice by gavage. The hepatotoxicity of MZADC was assessed by the liver index, serum biochemical measurements, and histopathological examination. Lipid levels measured by the serum lipid index were evaluated in the mice. Lipidomics was used to screen for differential lipid metabolism markers and lipid metabolism pathways in the liver. Western blot analysis was performed to investigate the effects of MZADC on the liver. RESULTS Liver index values and serum alanine transaminase and aspartate transaminase levels were increased in the MZADC group. Histopathology examination revealed hepatocyte necrosis, watery degeneration of the hepatocytes, and hepatic cord rupture in the livers of mice. Serum levels of low-density lipoprotein cholesterol, cholesterol, and triglycerides were elevated, and high-density lipoprotein cholesterol levels were decreased. Lipidomics screening for markers of differential lipid metabolism in the liver, and altered profiles of differential metabolites indicated that glycerophospholipid metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, glycosylphosphatidylinositol-anchored biosynthesis, sphingolipid metabolism and arachidonic acid metabolic pathways were significantly associated with MZADC-induced liver injury. Western blots confirmed that the protein expression of LC3, Beclin-1, ATG5, ATG12 and ATG16L1 was decreased, and p62 was increased in the MZADC group. The proportion of p-PI3K/PI3K and p-AKT/AKT was increased. CONCLUSIONS The liver injury induced by MZADC involved many different lipid metabolites and lipid metabolic pathways, which may be related to autophagy. This study provides a new perspective on the hepatotoxicity study of Z. armatum and provides a reference for the safe application of Z. armatum in the medicine and food fields.
Collapse
Affiliation(s)
- Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
58
|
Jiang X, Tang N, Liu Y, Wang Z, Chen J, Liu F, Zhang P, Sui M, Xu W. Integrating network analysis and pharmacokinetics to investigate the mechanisms of Danzhi Tiaozhi Decoction in metabolic-associated fatty liver disease (MAFLD). JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117008. [PMID: 37549861 DOI: 10.1016/j.jep.2023.117008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Based on ancient classics, Danzhi Tiaozhi Decoction has been successfully used to treat nonalcoholic fatty liver disease for decades. However, its therapeutic mechanisms remain unclear. AIM OF THE STUDY This study aimed to investigate the effects of Danzhi Tiaozhi Decoction (DZTZD) on metabolic-associated fatty liver disease (MAFLD). MATERIALS AND METHODS First, we identified the active ingredients of DZTZD and their potential targets in the Traditional Chinese Medicine System Pharmacology database. Using the overlapped genes, we selected the key MAFLD-associated genes, then conducted GO and KEGG pathway enrichment analyses. Furthermore, DZTZD was administered orally to rats, and their serum and liver tissues were examined for absorbed compounds using pharmacochemistry. UPLC-Q-Exactive Orbitrap/MS was used to determine the main compounds. Then, we validated the binding association of the key targets with their active compounds with AutoDock Tools and other software. Finally, the predicted hub targets were experimentally validated. RESULTS We found 254 active compounds in DZTZD corresponding to 208 targets. Sixteen key genes were identified, and the enrichment analysis revealed multiple signaling pathways, including the AGE-RAGE pathway in diabetic complications and the lipid and atherosclerosis signaling pathway. Next, 160 absorbed components and metabolites were characterized in vivo, and 53 absorbed components and metabolites were characterized in liver tissue. Thirteen parent compounds were identified, including coptisine, quercetin, luteolin, and aloe-emodin. The molecular docking data demonstrated the strongest binding between the active compounds and the core proteins. Moreover, the animal experiments showed that DZTZD decreased body weight, liver weight, lipid accumulation, and ALT, AST, CRP, FFA, IL-6, PEPCK, G6P, TG, TC, and LDL-c serum levels, and increased serum HDL-c levels compared to high-fat induced rats. Besides, the RT-PCR and Western blot showed that DZTZD inhibited the SREBP1c and FAS and increased hyperlipidemia-induced CPT-1A levels. In the high-fat group, JNK phosphorylation increased, and AKT protein phosphorylation decreased, while DZTZD reversed these effects. CONCLUSION Based on the pharmacological network analysis, pharmacochemistry, and experimental validation, DZTZD can potentially improve MAFLD via the JNK/AKT pathway.
Collapse
Affiliation(s)
- Xiaofei Jiang
- Department of Gynecology, Xuzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, 221003, Jiangsu, China
| | - Nannan Tang
- Graduate School of Anhui University of Traditional Chinese Medicine, Hefei, 230000, Anhui, China
| | - Yuyu Liu
- Graduate School of Anhui University of Traditional Chinese Medicine, Hefei, 230000, Anhui, China
| | - Zhiming Wang
- Department of Endocrinology, Xuzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, 221003, Jiangsu, China
| | - Jun Chen
- Department of Endocrinology, Xuzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, 221003, Jiangsu, China
| | - Fang Liu
- Department of Endocrinology, Xuzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, 221003, Jiangsu, China
| | - Ping Zhang
- Department of Endocrinology, Xuzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, 221003, Jiangsu, China
| | - Miao Sui
- Department of Endocrinology, Xuzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, 221003, Jiangsu, China.
| | - Wei Xu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, 221003, Jiangsu, China.
| |
Collapse
|
59
|
Liu J, Wang C, Wang Y, Yao S. Association of Uric Acid to Creatinine Ratio with Metabolic Dysfunction-Associated Fatty Liver in Non-Obese Individuals Without Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:131-142. [PMID: 38222031 PMCID: PMC10786728 DOI: 10.2147/dmso.s445916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease, which is usually associated with type 2 diabetes mellitus (T2DM) and obesity. However, the incidence of MALFD in non-obese individuals without T2DM is increasing, and the pathogenesis is unclear. Serum uric acid to creatinine ratio (sUA/Cr) can reflect overall metabolic status. This study aims to observe the association between sUA/Cr and MAFLD in non-obese individuals without T2DM. Methods A total of 21,996 individuals were included in this study. The subjects were divided into four subgroups: non-obese patients without T2DM, obese patients without T2DM, non-obese patients with T2DM, and obese patients with T2DM. Logistic regression analyzed the correlation between sUA/Cr and MAFLD subgroups. Receiver operating characteristics analyzed the predictive value of sUA/Cr for MAFLD subgroups. The stratified analyses by sex and age were performed. Results Non-obese MAFLD individuals without T2DM had higher sUA/Cr levels than their counterparts. sUA/Cr was significantly correlated positively with MAFLD in non-obese patients. Similar results were observed in both males and females and in populations at all age stages (all p<0.01). sUA/Cr was capable of discriminating MAFLD in non-obese individuals without T2DM (AUC: 0.667), especially for patients over 60 years old (AUC: 0.704). Conclusion The sUA/Cr ratio was correlated with MAFLD in non-obese patients without T2DM. The predictive value of sUA/Cr for MAFLD was observed. Hence, the sUA/Cr ratio might be given more concern for the risk of MAFLD in non-obese individuals without T2DM.
Collapse
Affiliation(s)
- Jing Liu
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Che Wang
- School of Qi Huang, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yutong Wang
- School of Qi Huang, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shukun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| |
Collapse
|
60
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
61
|
Hyötyläinen T, McGlinchey A, Salihovic S, Schubert A, Douglas A, Hay DC, O'Shaughnessy PJ, Iredale JP, Shaw S, Fowler PA, Orešič M. In utero exposures to perfluoroalkyl substances and the human fetal liver metabolome in Scotland: a cross-sectional study. Lancet Planet Health 2024; 8:e5-e17. [PMID: 38199723 DOI: 10.1016/s2542-5196(23)00257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances are classed as endocrine disrupting compounds but continue to be used in many products such as firefighting foams, flame retardants, utensil coatings, and waterproofing of food packaging. Perfluoroalkyl exposure aberrantly modulates lipid, metabolite, and bile acid levels, increasing susceptibility to onset and severity of metabolic diseases, such as diabetes and metabolic dysfunction-associated steatotic liver disease. To date, most studies in humans have focused on perfluoroalkyl-exposure effects in adults. In this study we aimed to show if perfluoroalkyls are present in the human fetal liver and if they have metabolic consequences for the human fetus. METHODS In this cross-sectional study, human fetal livers from elective termination of pregnancies at the Aberdeen Pregnancy Counselling Service, Aberdeen, UK, were analysed by both targeted (bile acids and perfluoroalkyl substances) and combined targeted and untargeted (lipids and polar metabolites) mass spectrometry based metabolomic analyses, as well as with RNA-Seq. Only fetuses from normally progressing pregnancies (determined at ultrasound scan before termination), terminated for non-medical reasons, from women older than 16 years, fluent in English, and between 11 and 21 weeks of gestation were collected. Women exhibiting considerable emotional distress or whose fetuses had anomalies identified at ultrasound scan were excluded. Stringent bioinformatic and statistical methods such as partial correlation network analysis, linear regression, and pathway analysis were applied to this data to investigate the association of perfluoroalkyl exposure with hepatic metabolic pathways. FINDINGS Fetuses included in this study were collected between Dec 2, 2004, and Oct 27, 2014. 78 fetuses were included in the study: all 78 fetuses were included in the metabolomics analysis (40 female and 38 male) and 57 fetuses were included in the RNA-Seq analysis (28 female and 29 male). Metabolites associated with perfluoroalkyl were identified in the fetal liver and these varied with gestational age. Conjugated bile acids were markedly positively associated with fetal age. 23 amino acids, fatty acids, and sugar derivatives in fetal livers were inversely associated with perfluoroalkyl exposure, and the bile acid glycolithocholic acid was markedly positively associated with all quantified perfluoroalkyl. Furthermore, 7α-hydroxy-4-cholesten-3-one, a marker of bile acid synthesis rate, was strongly positively associated with perfluoroalkyl levels and was detectable as early as gestational week 12. INTERPRETATION Our study shows direct evidence for the in utero effects of perfluoroalkyl exposure on specific key hepatic products. Our results provide evidence that perfluoroalkyl exposure, with potential future consequences, manifests in the human fetus as early as the first trimester of gestation. Furthermore, the profiles of metabolic changes resemble those observed in perinatal perfluoroalkyl exposures. Such exposures are already linked with susceptibility, initiation, progression, and exacerbation of a wide range of metabolic diseases. FUNDING UK Medical Research Council, Horizon Europe Program of the European Union, Seventh Framework Programme of the European Union, NHS Grampian Endowments grants, European Partnership for the Assessment of Risks from Chemicals, Swedish Research Council, Formas, Novo Nordisk Foundation, and the Academy of Finland.
Collapse
Affiliation(s)
| | - Aidan McGlinchey
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Samira Salihovic
- School of Science and Technology, Örebro University, Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Antonia Schubert
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Alex Douglas
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - David C Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | | | | | - Sophie Shaw
- All Wales Medical Genomics Service, Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Paul A Fowler
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
62
|
Ali H, Shahzil M, Moond V, Shahzad M, Thandavaram A, Sehar A, Waseem H, Siddiqui T, Dahiya DS, Patel P, Tillmann H. Non-Pharmacological Approach to Diet and Exercise in Metabolic-Associated Fatty Liver Disease: Bridging the Gap between Research and Clinical Practice. J Pers Med 2024; 14:61. [PMID: 38248762 PMCID: PMC10817352 DOI: 10.3390/jpm14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
This review provides a practical and comprehensive overview of non-pharmacological interventions for metabolic-associated fatty liver disease (MASLD), focusing on dietary and exercise strategies. It highlights the effectiveness of coffee consumption, intermittent fasting, and Mediterranean and ketogenic diets in improving metabolic and liver health. The review emphasizes the importance of combining aerobic and resistance training as a critical approach to reducing liver fat and increasing insulin sensitivity. Additionally, it discusses the synergy between diet and exercise in enhancing liver parameters and the role of gut microbiota in MASLD. The paper underscores the need for a holistic, individualized approach, integrating diet, exercise, gut health, and patient motivation. It also highlights the long-term benefits and minimal risks of lifestyle interventions compared to the side effects of pharmacological and surgical options. The review calls for personalized treatment strategies, continuous patient education, and further research to optimize therapeutic outcomes in MASLD management.
Collapse
Affiliation(s)
- Hassam Ali
- Department of Gastroenterology, Hepatology & Nutrition, ECU Health Medical Center, Brody School of Medicine, Greenville, NC 27834, USA
- Division of Gastroenterology, Hepatology & Nutrition, East Carolina University, Greenville, NC 27834, USA
| | - Muhammad Shahzil
- Department of Internal Medicine, Weiss Memorial Hospital, Chicago, IL 60640, USA;
| | - Vishali Moond
- Department of Internal Medicine, Saint Peter’s University Hospital, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Maria Shahzad
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Abhay Thandavaram
- Department of Internal Medicine, Kamineni Academy of Medical Sciences and Research Centre, Hyderabad 500068, Telangana, India
| | - Alina Sehar
- Department of Internal Medicine, University of Alabama at Birmingham-Huntsville Campus, Huntsville, AL 35801, USA
| | - Haniya Waseem
- Department of Internal Medicine, Advent Health Tampa, Tampa, FL 33613, USA
| | - Taha Siddiqui
- Department of Internal Medicine, Mather Hospital, Hofstra University Zucker School of Medicine, Port Jefferson, NY 11777, USA;
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66103, USA
| | - Pratik Patel
- Department of Gastroenterology, Mather Hospital, Hofstra University Zucker School of Medicine, Port Jefferson, NY 11777, USA
| | - Hans Tillmann
- Department of Gastroenterology, Hepatology & Nutrition, ECU Health Medical Center, Brody School of Medicine, Greenville, NC 27834, USA
| |
Collapse
|
63
|
Yang JW, Zou Y, Chen J, Cui C, Song J, Yang MM, Gao J, Hu HQ, Xia LQ, Wang LM, Lv XY, Chen L, Hou XG. Didymin alleviates metabolic dysfunction-associated fatty liver disease (MAFLD) via the stimulation of Sirt1-mediated lipophagy and mitochondrial biogenesis. J Transl Med 2023; 21:921. [PMID: 38115075 PMCID: PMC10731721 DOI: 10.1186/s12967-023-04790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the most prevalent metabolic syndromes worldwide. However, no approved pharmacological treatments are available for MAFLD. Chenpi, one kind of dried peel of citrus fruits, has traditionally been utilized as a medicinal herb for liver diseases. Didymin is a newly identified oral bioactive dietary flavonoid glycoside derived from Chenpi. In this study, we investigated the therapeutic potential of Didymin as an anti-MAFLD drug and elucidated its underlying mechanisms. METHODS High-fat diet (HFD)-induced MAFLD mice and alpha mouse liver 12 (AML12) cells were utilized to evaluate the effects and mechanisms of Didymin in the treatment of MAFLD. Liver weight, serum biochemical parameters, and liver morphology were examined to demonstrate the therapeutic efficacy of Didymin in MAFLD treatment. RNA-seq analysis was performed to identify potential pathways that could be affected by Didymin. The impact of Didymin on Sirt1 was corroborated through western blot, molecular docking analysis, microscale thermophoresis (MST), and deacetylase activity assay. Then, a Sirt1 inhibitor (EX-527) was utilized to confirm that Didymin alleviates MAFLD via Sirt1. Western blot and additional assays were used to investigate the underlying mechanisms. RESULTS Our results suggested that Didymin may possess therapeutic potential against MAFLD in vitro and in vivo. By promoting Sirt1 expression as well as directly binding to and activating Sirt1, Didymin triggers downstream pathways that enhance mitochondrial biogenesis and function while reducing apoptosis and enhancing lipophagy. CONCLUSIONS These suggest that Didymin could be a promising medication for MAFLD treatment. Furthermore, its therapeutic effects are mediated by Sirt1.
Collapse
Affiliation(s)
- Jing-Wen Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chen Cui
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Meng-Meng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Gao
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hui-Qing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Long-Qing Xia
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li-Ming Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiao-Yu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Xin-Guo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China.
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
64
|
Yang B, Li X. Unveiling the hub genes associated with aflatoxin B 1-induced hepatotoxicity in chicken. ENVIRONMENTAL RESEARCH 2023; 239:117294. [PMID: 37832762 DOI: 10.1016/j.envres.2023.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Aflatoxin B1 (AFB1), a ubiquitous and toxic mycotoxin in human food and animal feedstuff, can impair the function and health of some organs, especially the liver. However, the knowledge about the potential mechanisms of AFB1-induced hepatotoxicity in chickens is limited. Therefore, we analyzed the gene expression data of chicken embryo primary hepatocytes (CEPHs) treated with and without AFB1 at the dose of 0.1 μg/mL which were cultured at 37 °C in Medium 199 (Life Technologies, Shanghai, China) with 5.0% CO2 for 48 h. Totally 1,711 differentially expressed genes (DEGs) were identified, in which 1,170 and 541 genes were up- and down-regulated in AFB1-administrated CEPHs compared to the control, respectively. Biological process analysis suggested that these DEGs might take part in angiogenesis, cell adhesion, immune response, cell differentiation, inflammatory response, cell migration regulation, and blood coagulation. Signaling pathways analysis revealed that these DEGs were mainly linked to metabolic pathways, MAPK, TLR2, and actin cytoskeleton regulation pathways. Moreover, the hub genes, including GYS2, NR1H4, ALDH8A1, and ANGPTL3, might participate in AFB1-induced hepatotoxicity. Taken together, our study offers a new insight into the mechanisms of the AFB1-induced hepatotoxicity.
Collapse
Affiliation(s)
- Bing Yang
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Xiaofeng Li
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, Anhui Science and Technology University, Chuzhou, 233100, China.
| |
Collapse
|
65
|
Zang L, Kagotani K, Hayakawa T, Tsuji T, Okumura K, Shimada Y, Nishimura N. The Hexane Extract of Citrus sphaerocarpa Ameliorates Visceral Adiposity by Regulating the PI3K/AKT/FoxO1 and AMPK/ACC Signaling Pathways in High-Fat-Diet-Induced Obese Mice. Molecules 2023; 28:8026. [PMID: 38138517 PMCID: PMC10745821 DOI: 10.3390/molecules28248026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity is an emerging global health issue with an increasing risk of disease linked to lifestyle choices. Previously, we reported that the hexane extract of Citrus sphaerocarpa (CSHE) suppressed lipid accumulation in differentiated 3T3-L1 adipocytes. In this study, we conducted in vivo experiments to assess whether CSHE suppressed obesity in zebrafish and mouse models. We administered 10 and 20 μg/mL CSHE to obese zebrafish juveniles. CSHE significantly inhibited visceral fat accumulation compared to untreated obese fish. Moreover, the oral administration (100 μg/g body weight/day) of CSHE to high-fat-diet-induced obese mice significantly reduced their body weight, visceral fat volume, and hepatic lipid accumulation. The expression analyses of key regulatory genes involved in lipid metabolism revealed that CSHE upregulated the mRNA expression of lipolysis-related genes in the mouse liver (Pparα and Acox1) and downregulated lipogenesis-related gene (Fasn) expression in epididymal white adipose tissue (eWAT). Fluorescence immunostaining demonstrated the CSHE-mediated enhanced phosphorylation of AKT, AMPK, ACC, and FoxO1, which are crucial factors regulating adipogenesis. CSHE-treated differentiated 3T3L1 adipocytes also exhibited an increased phosphorylation of ACC. Therefore, we propose that CSHE suppresses adipogenesis and enhances lipolysis by regulating the PI3K/AKT/FoxO1 and AMPK/ACC signaling pathways. These findings suggested that CSHE is a promising novel preventive and therapeutic agent for managing obesity.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Mie, Japan;
- Mie University Zebrafish Drug Screening Center, Mie University, Tsu 514-8507, Mie, Japan; (K.K.); (Y.S.)
| | - Kazuhiro Kagotani
- Mie University Zebrafish Drug Screening Center, Mie University, Tsu 514-8507, Mie, Japan; (K.K.); (Y.S.)
- Tsuji Health & Beauty Science Laboratory, Mie University, Tsu 514-8507, Mie, Japan; (T.H.); (T.T.)
- Tsuji Oil Mills Co., Ltd., Matsusaka 515-0053, Mie, Japan
| | - Takuya Hayakawa
- Tsuji Health & Beauty Science Laboratory, Mie University, Tsu 514-8507, Mie, Japan; (T.H.); (T.T.)
- Tsuji Oil Mills Co., Ltd., Matsusaka 515-0053, Mie, Japan
| | - Takehiko Tsuji
- Tsuji Health & Beauty Science Laboratory, Mie University, Tsu 514-8507, Mie, Japan; (T.H.); (T.T.)
- Tsuji Oil Mills Co., Ltd., Matsusaka 515-0053, Mie, Japan
| | - Katsuzumi Okumura
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu 514-8507, Mie, Japan;
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center, Mie University, Tsu 514-8507, Mie, Japan; (K.K.); (Y.S.)
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Centre, Tsu 514-8507, Mie, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Mie, Japan;
- Mie University Zebrafish Drug Screening Center, Mie University, Tsu 514-8507, Mie, Japan; (K.K.); (Y.S.)
| |
Collapse
|
66
|
Wayal V, Hsieh CC. Bioactive dipeptides mitigate high-fat and high-fructose corn syrup diet-induced metabolic-associated fatty liver disease via upregulation of Nrf2/HO-1 expressions in C57BL/6J mice. Biomed Pharmacother 2023; 168:115724. [PMID: 37852102 DOI: 10.1016/j.biopha.2023.115724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), formerly referred to as non-alcoholic fatty liver disease (NAFLD), is a common liver disease characterized by an abnormal buildup of fat in liver. This study aimed to investigate whether bioactive dipeptides mitigate high-fat and high-fructose corn syrup diet (HFFD)-induced MAFLD in C57BL/6J mice. Sixty male C57BL/6J mice were randomly divided into six groups. The naïve group (untreated) was fed a standard chow diet and other groups were fed with HFFD along with vehicle and bioactive dipeptides treatment throughout experiment period. The control group received vehicle, YF10 and YF50 groups received Tyr-Phe, 10 and 50 mg/kg/day, FY10 and FY50 groups received Phe-Tyr, 10 and 50 mg/kg/day. At the end of experiment, body weight was recorded, and glucose homeostasis was assessed. Mice were sacrificed and blood samples were collected to measure biochemical parameters. Further, liver, visceral fat pads, and other organs were acutely dissected, weighed, and processed. Histopathological and immunohistochemical changes were analyzed. Long-term HFFD feeding resulted in elevated body weight gain, liver weight, visceral adiposity, liver injury, fasting hyperglycemia, hyperinsulinemia, and hyperlipidemia. It also increased severe hepatic steatosis, chronic low-grade inflammation, oxidative stress, mitochondrial dysfunction, and lipid peroxidation. However, bioactive dipeptides dose-dependently alleviated these complications which are associated with MAFLD by modulating adipokines secretion and antioxidant defense system via upregulation of Nrf2/HO-1 expressions. This study highlights potential of bioactive dipeptides as a promising approach for prevention and/or treatment of MAFLD induced by HFFD, providing novel insights into alternative therapeutic strategies.
Collapse
Affiliation(s)
- Vipul Wayal
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407224, Taiwan
| | - Chang-Chi Hsieh
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407224, Taiwan.
| |
Collapse
|
67
|
Zelows MM, Cady C, Dharanipragada N, Mead AE, Kipp ZA, Bates EA, Varadharajan V, Banerjee R, Park SH, Shelman NR, Clarke HA, Hawkinson TR, Medina T, Sun RC, Lydic TA, Hinds TD, Brown JM, Softic S, Graf GA, Helsley RN. Loss of carnitine palmitoyltransferase 1a reduces docosahexaenoic acid-containing phospholipids and drives sexually dimorphic liver disease in mice. Mol Metab 2023; 78:101815. [PMID: 37797918 PMCID: PMC10568566 DOI: 10.1016/j.molmet.2023.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND AND AIMS Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the role of liver-specific CPT1a on hepatic lipid metabolism. APPROACH AND RESULTS Male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (60% kcal fat) for 15 weeks. Mice were necropsied after a 16 h fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging, kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis (Plin2, Cidec, G0S2) and in polyunsaturated fatty acid metabolism (Elovl5, Fads1, Elovl2), while only female LKO mice increased genes involved in inflammation (Ly6d, Mmp12, Cxcl2). Kinase profiling showed decreased protein kinase A activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. CONCLUSIONS Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury.
Collapse
Affiliation(s)
- Mikala M Zelows
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Corissa Cady
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Nikitha Dharanipragada
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Anna E Mead
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | - Rakhee Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Nathan R Shelman
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Harrison A Clarke
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Tara R Hawkinson
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Terrymar Medina
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - J Mark Brown
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Samir Softic
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Gregory A Graf
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Robert N Helsley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
68
|
Jiang C, Peng M, Dai Z, Chen Q. Screening of Lipid Metabolism-Related Genes as Diagnostic Indicators in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:2739-2754. [PMID: 38046983 PMCID: PMC10693249 DOI: 10.2147/copd.s428984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2023] Open
Abstract
Objective It has been observed that local and systemic disorders of lipid metabolism occur during the development of chronic obstructive pulmonary disease (COPD), but no specific mechanism has yet been identified. Methods The mRNA microarray dataset GSE76925 of COPD patients was downloaded from the Gene Expression Omnibus database and screened for differentially expressed genes (DEGs). Lipid metabolism-related genes (LMRGs) were extracted from the Kyoto Encyclopedia of Genes and Genomes database and Molecular Signature Database. The DEGs were intersected with LMRGs to obtain differentially expressed lipid metabolism-related genes (DeLMRGs). GO enrichment analysis and KEGG pathway analysis were performed on DeLMRGs, and protein-protein interaction networks were constructed and screened to identify hub genes. The GSE8581 validation set and further ELISA experiments were used to validate key DeLMRG expression. Results Differential analysis of dataset GSE76925 identified 587 DEGs, of which 62 genes were up-regulated and 525 were down-regulated. Taking the intersection of 587 DEGs with 1102 LMRGs, 20 DeLMRGs were obtained, including 1 up-regulated gene and 19 down-regulated genes. 10 hub genes were screened by cytohubba plugin, including 9 down-regulated genes PLA2G4A, HPGDS, LEP, PTGES3, LEPR, PLA2G2D, MED21, SPTLC1 and BCHE, as well as the only up-regulated gene PLA2G7. Validation of the identified 10 DeLMRGs using the validation set GSE8581 revealed that BCHE and PLA2G7 expression levels differed between the two groups. We further constructed the ceRNA network of BCHE and PLA2G7. Cell experiments also showed that PLA2G7 expression was up-regulated and BCHE expression was down-regulated in CSE-treated RAW264.7 and THP-1 cells. Conclusion Based on a comprehensive bioinformatic analysis of lipid metabolism genes, we identified BCHE and PLA2G7 as potentially significant biomarkers of COPD. These biomarkers may represent promising targets for COPD diagnosis and treatment.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Meijuan Peng
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziyu Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
69
|
Craciunescu O, Seciu-Grama AM, Mihai E, Utoiu E, Negreanu-Pirjol T, Lupu CE, Artem V, Ranca A, Negreanu-Pirjol BS. The Chemical Profile, Antioxidant, and Anti-Lipid Droplet Activity of Fluid Extracts from Romanian Cultivars of Haskap Berries, Bitter Cherries, and Red Grape Pomace for the Management of Liver Steatosis. Int J Mol Sci 2023; 24:16849. [PMID: 38069172 PMCID: PMC10706173 DOI: 10.3390/ijms242316849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
This study aimed to investigate, for the first time, the chemical composition and antioxidant activity of fluid extracts obtained from three Romanian cultivars of haskap berries (Lonicera caerulea L.) var. Loni, bitter cherries (Prunus avium var. sylvestris Ser.) var. Silva, and pomace from red grapes (Vitis vinifera L.) var. Mamaia, and their capacity to modulate in vitro steatosis, in view of developing novel anti-obesity products. Total phenolic, flavonoid, anthocyanin, and ascorbic acid content of fluid extracts was spectrophotometrically assessed and their free radical scavenging capacity was evaluated using Trolox Equivalent Antioxidant Capacity (TEAC) and free 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition assays. The Pearson coefficients showed a moderate correlation between the antioxidant activity of fluid extracts and their phenolic content, but a strong correlation between anthocyanin and ascorbic acid content. HPLC analysis identified and quantified the main phenolic compounds of chlorogenic and syringic acid, catechin, and glycosylated kaempferol, apigenin, and quercetin, in variable proportions. An in vitro experimental model of steatosis was developed in HepG2 hepatocytes treated with a mixture of free fatty acids. Cell culture analyses showed that cytocompatible concentrations of fluid extracts could significantly reduce the lipid accumulation and inhibit the reactive oxygen species, malondialdehyde, and nitric oxide secretion in stressed hepatocytes. In conclusion, these results put an emphasis on the chemical compounds' high antioxidant and liver protection capacity of unstudied fluid extracts obtained from Romanian cultivars of bitter cherries var. Silva and pomace of red grapes var. Mamaia, similar to the fluid extract of haskap berries var. Loni, in particular, the positive modulation of fat deposition next to oxidative stress and the lipid peroxidation process triggered by fatty acids in HepG2 hepatocytes. Consequently, this study indicated that these fluid extracts could be further exploited as hepatoprotective agents in liver steatosis, which provides a basis for the further development of novel extract mixtures with synergistic activity as anti-obesity products.
Collapse
Affiliation(s)
- Oana Craciunescu
- National Institute of R&D for Biological Sciences, 060031 Bucharest, Romania; (A.-M.S.-G.); (E.M.); (E.U.)
| | - Ana-Maria Seciu-Grama
- National Institute of R&D for Biological Sciences, 060031 Bucharest, Romania; (A.-M.S.-G.); (E.M.); (E.U.)
| | - Elena Mihai
- National Institute of R&D for Biological Sciences, 060031 Bucharest, Romania; (A.-M.S.-G.); (E.M.); (E.U.)
| | - Elena Utoiu
- National Institute of R&D for Biological Sciences, 060031 Bucharest, Romania; (A.-M.S.-G.); (E.M.); (E.U.)
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, University Ovidius of Constanta, 900470 Constanta, Romania; (C.E.L.); (B.-S.N.-P.)
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Carmen Elena Lupu
- Faculty of Pharmacy, University Ovidius of Constanta, 900470 Constanta, Romania; (C.E.L.); (B.-S.N.-P.)
| | - Victoria Artem
- Research-Development Station for Viticulture and Winemaking of Murfatlar, 905100 Murfatlar, Romania; (V.A.); (A.R.)
| | - Aurora Ranca
- Research-Development Station for Viticulture and Winemaking of Murfatlar, 905100 Murfatlar, Romania; (V.A.); (A.R.)
| | | |
Collapse
|
70
|
Hou JZ, Wu QW, Zhang L. Association between micronutrients intake and metabolic-associated fatty liver disease: a cross-sectional study based on the National Health and Nutrition Examination Survey. J Nutr Sci 2023; 12:e117. [PMID: 38033509 PMCID: PMC10685258 DOI: 10.1017/jns.2023.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) has been proposed to replace the term non-alcoholic fatty liver disease (NAFLD) in 2020. The association between micronutrients and MAFLD has not been reported. Therefore, this study aims to explore the association between micronutrients intake and MAFLD. This was a cross-section study based on the National Health and Nutrition Examination Survey (NHANES). The dietary intake of copper, zinc, iron, and selenium was evaluated using the 24-h dietary recall interview. Logistic regression analysis was used to explore the association between micronutrients and MAFLD, and the results were shown as odds ratio (OR) with 95 % confidence intervals (CIs). A total of 5976 participants were finally included for analysis, with 3437 participants in the MAFLD group. After adjusting potential confounders, copper intake at quartile Q3 (OR = 0⋅68, 95 % CI 0⋅50, 0⋅93) and Q4 (OR = 0⋅60, 95 % CI 0⋅45, 0⋅80) was found to be associated with lower odds of MAFLD. Iron intake at Q2 (OR = 0⋅64, 95 % CI 0⋅45, 0⋅92) and Q3 (OR = 0⋅61, 95 % CI 0⋅41, 0⋅91) was associated with the lower odds of MAFLD. Our findings found that high intake of copper and adequate intake of iron were associated with MAFLD, which may provide guidance for the management of MAFLD.
Collapse
Affiliation(s)
- Jun-zhen Hou
- Department of Gastroenterology, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| | - Qi-wei Wu
- Department of Gastroenterology, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| | - Li Zhang
- Department of Gastroenterology, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| |
Collapse
|
71
|
Cao Y, Li J, Qiu S, Ni S, Duan Y. ACSM5 inhibits ligamentum flavum hypertrophy by regulating lipid accumulation mediated by FABP4/PPAR signaling pathway. Biol Direct 2023; 18:75. [PMID: 37957699 PMCID: PMC10644428 DOI: 10.1186/s13062-023-00436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Ligamentum flavum (LF) hypertrophy is the main cause of lumbar spinal canal stenosis (LSCS). Previous studies have shown that LF hypertrophy tissue exhibits abnormal lipid accumulation, but the regulatory mechanism remains unclear. The objective of this study was to explore the function and potential mechanism of ACSM5 in LF lipid accumulation. METHODS To assess the ACSM5 expression levels, lipid accumulation and triglyceride (TG) level in LF hypertrophy and normal tissue, we utilized RT-qPCR, western blot, oil red O staining, and TG assay kit. The pearson correlation coefficient assay was used to analyze the correlation between ACSM5 levels and lipid accumulation or TG levels in LF hypertrophy tissue. The role of ACSM5 in free fatty acids (FFA)-induced lipid accumulation in LF cells was assessed in vitro, and the role of ACSM5 in LF hypertrophy in mice was verified in vivo. To investigate the underlying mechanisms of ACSM5 regulating lipid accumulation in LF, we conducted the mRNA sequencing, bioinformatics analysis, and rescue experiments. RESULTS In this study, we found that ACSM5, which was significantly down-regulated in LF tissues, correlated with lipid accumulation. In vitro cell experiments demonstrated that overexpression of ACSM5 significantly inhibited FFA-induced lipid accumulation and fibrosis in LF cells. In vivo animal experiments further confirmed that overexpression of ACSM5 inhibited LF thickening, lipid accumulation, and fibrosis. Mechanistically, ACSM5 inhibited lipid accumulation of LF cells by inhibiting FABP4-mediated PPARγ signaling pathway, thereby improving hypertrophy and fibrosis of LF. CONCLUSIONS our findings elucidated the important role of ACSM5 in the regulation of LF lipid accumulation and provide insight into potential therapeutic interventions for the treatment of LF hypertrophy. This study further suggested that therapeutic strategies targeting lipid deposition may be an effective potential approach to treat LF hypertrophy-induced LSCS.
Collapse
Affiliation(s)
- Yanlin Cao
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
72
|
Kountouras J, Kazakos E, Polyzos SA, Papaefthymiou A, Zavos C, Tzitiridou-Chatzopoulou M, Chatzopoulos D, Vardaka E, Gatopoulou A, Kyrailidi F, Mouratidou MC, Doulberis M. Potential impact of trained innate immunity on the pathophysiology of metabolic dysfunction-associated fatty liver disease. Clin Immunol 2023; 256:109776. [PMID: 37742792 DOI: 10.1016/j.clim.2023.109776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) occurs in a low-grade inflammatory milieu dependent on highly complex networks that span well-beyond the hepatic tissue injury. Dysfunctional systemic metabolism that characterizes the disease, is further induced in response to environmental cues that modify energy and metabolic cellular demands, thereby altering the availability of specific substrates that profoundly regulate, through epigenetic mechanisms, the phenotypic heterogeneity of immune cells and influence hematopoietic stem cell differentiation fate. This immuno-metabolic signaling drives the initiation of downstream effector pathways and results in the decompensation of hepatic homeostasis that precedes pro-fibrotic events. Recent evidence suggests that innate immune cells reside in different tissues in a memory effector state, a phenomenon termed trained immunity, that may be activated by subsequent exogenous (e.g., microbial, dietary) or endogenous (e.g., metabolic, apoptotic) stmuli. This process leads to long-term modifications in the epigenetic landscape that ultimately precondition the cells towards enhanced transcription of inflammatory mediators that accelerates MAFLD development and/or progression. In this mini review we aimed to present current evidence on the potential impact of trained immunity on the pathophysiology of MAFLD, shedding light on the complex immunobiology of the disease and providing novel potential therapeutic strategies to restrain the burden of the disease.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki 54642, Macedonia, Greece.
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki 54642, Macedonia, Greece; Department of Midwifery, School of Healthcare Sciences, University of West Macedonia, Koila, Kozani 50100, Macedonia, Greece
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Apostolis Papaefthymiou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki 54642, Macedonia, Greece; First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece; Pancreaticobiliary Medicine Unit, University College London Hospitals (UCLH), London W1W 6DN, UK
| | - Christos Zavos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki 54642, Macedonia, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki 54642, Macedonia, Greece; Department of Midwifery, School of Healthcare Sciences, University of West Macedonia, Koila, Kozani 50100, Macedonia, Greece
| | - Dimitrios Chatzopoulos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki 54642, Macedonia, Greece
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki 54642, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 57400 Thessaloniki, Macedonia, Greece
| | - Anthia Gatopoulou
- 2nd Department of Internal Medicine, General University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Foteini Kyrailidi
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki 54642, Macedonia, Greece
| | - Maria C Mouratidou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki 54642, Macedonia, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki 54642, Macedonia, Greece; First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece; Gastroklinik, Private Gastroenterological Practice, Horgen 8810, Switzerland; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001 Aarau, Switzerland
| |
Collapse
|
73
|
Ramírez-Manent JI, López-González ÁA, Tomás-Gil P, Riutord-Sbert P, Garrido-Sepulveda L, Vicente-Herrero MT. Relationship between Abdominal Volume Index and Body Adiposity Index and Scales of Insulin Resistance and Metabolic Syndrome. Diagnostics (Basel) 2023; 13:3356. [PMID: 37958252 PMCID: PMC10649100 DOI: 10.3390/diagnostics13213356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Introduction, objectives: Obesity is a global health problem with a great negative impact on health. Among the pathologies caused by obesity are insulin resistance and metabolic syndrome, which constitute an increasingly common health problem in both developed and developing countries. The aim of this study was to examine the relationship between two scales that assess obesity-based on hip circumference-and metabolic syndrome (MetS) and insulin resistance risk scales as predictors of these alterations. MATERIALS, METHODS A descriptive, cross-sectional study was carried out on 193,462 workers from different Spanish regions and work groups between January 2019 and September 2021. Abdominal volume index (AVI) and body adiposity index (BAI) were evaluated to assess obesity and its association with insulin resistance using three risk scales (TyG index, Triglycerides/HDL, and METS-IR), while their association with metabolic syndrome was determined using the NCEP ATP III, IDF, and JIS models. RESULTS The results of the ROC curves to determine the predictive value of BAI and AVI in relation to the three criteria evaluated to calculate MetS in all instances presented a higher area under the curve (AUC) for AVI. The high values of AVI stand out for predicting MetS when applying the IDF criteria. The cut-off point in women was 13.70 with a Youden index of 0.802, whereas in men, the cut-off point was set at 17.59 with a Youden index of 0.672. Regarding the relationship of BAI and AVI with insulin resistance risk scales for both sexes, the AUC only revealed high values when using the METS-IR formula for both AVI and BAI. The AVI cut-off points to predict high values of insulin resistance risk scales in women were established at 13.12 with a Youden index of 0.722. In men, the cut-off point was 17.59, with a Youden index of 0.626. The BAI cut-off points in women were set at 33.88 with a Youden index of 0.748. In men, the cut-off point was 27.91, with a Youden index of 0.598. CONCLUSIONS AVI demonstrated its value as a predictor of metabolic syndrome while exclusively applying the IDF criteria. AVI and BAI demonstrated their value as predictors of high values of insulin resistance risk scales only in the case of METS-IR. This predictive value is also higher in women.
Collapse
Affiliation(s)
- José Ignacio Ramírez-Manent
- ADEMA-Health Group, IUNICS University of Balearic Islands, 07009 Palma, Spain; (J.I.R.-M.); (P.T.-G.); (P.R.-S.); (M.T.V.-H.)
- Faculty of Medicine, University of the Balearic Islands, 07009 Palma, Spain
- Institut d’Investigació Sanitària de les Illes Balears (IDISBA), Balearic Islands Health Research Institute Foundation, 07004 Palma, Spain
- General Practitioner Department, Balearic Islands Health Service, 07003 Palma, Spain
| | - Ángel Arturo López-González
- ADEMA-Health Group, IUNICS University of Balearic Islands, 07009 Palma, Spain; (J.I.R.-M.); (P.T.-G.); (P.R.-S.); (M.T.V.-H.)
| | - Pilar Tomás-Gil
- ADEMA-Health Group, IUNICS University of Balearic Islands, 07009 Palma, Spain; (J.I.R.-M.); (P.T.-G.); (P.R.-S.); (M.T.V.-H.)
| | - Pere Riutord-Sbert
- ADEMA-Health Group, IUNICS University of Balearic Islands, 07009 Palma, Spain; (J.I.R.-M.); (P.T.-G.); (P.R.-S.); (M.T.V.-H.)
| | | | - María Teofila Vicente-Herrero
- ADEMA-Health Group, IUNICS University of Balearic Islands, 07009 Palma, Spain; (J.I.R.-M.); (P.T.-G.); (P.R.-S.); (M.T.V.-H.)
| |
Collapse
|
74
|
Myint M, Oppedisano F, De Giorgi V, Kim BM, Marincola FM, Alter HJ, Nesci S. Inflammatory signaling in NASH driven by hepatocyte mitochondrial dysfunctions. J Transl Med 2023; 21:757. [PMID: 37884933 PMCID: PMC10605416 DOI: 10.1186/s12967-023-04627-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Liver steatosis, inflammation, and variable degrees of fibrosis are the pathological manifestations of nonalcoholic steatohepatitis (NASH), an aggressive presentation of the most prevalent chronic liver disease in the Western world known as nonalcoholic fatty liver (NAFL). Mitochondrial hepatocyte dysfunction is a primary event that triggers inflammation, affecting Kupffer and hepatic stellate cell behaviour. Here, we consider the role of impaired mitochondrial function caused by lipotoxicity during oxidative stress in hepatocytes. Dysfunction in oxidative phosphorylation and mitochondrial ROS production cause the release of damage-associated molecular patterns from dying hepatocytes, leading to activation of innate immunity and trans-differentiation of hepatic stellate cells, thereby driving fibrosis in NASH.
Collapse
Affiliation(s)
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Valeria De Giorgi
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, USA
| | | | | | - Harvey J Alter
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, USA
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy.
| |
Collapse
|
75
|
Tsutsui Y, Mori T, Yoshio S, Sato M, Sakata T, Yoshida Y, Kawai H, Yoshikawa S, Yamazoe T, Matsuda M, Kakazu E, Osawa Y, Oyama C, Tamura-Nakano M, Kawaguchi T, Yoshizumi T, Kanto T. Exercise changes the intrahepatic immune cell profile and inhibits the progression of nonalcoholic steatohepatitis in a mouse model. Hepatol Commun 2023; 7:e0236. [PMID: 37756046 PMCID: PMC10531194 DOI: 10.1097/hc9.0000000000000236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/10/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND NASH is an increasingly common cause of chronic liver disease and can progress to cirrhosis and HCC. Although exercise suppresses inflammation during acute hepatitis, its impact on the progression of chronic liver disease remains unclear. Here, we investigated the effects of exercise on disease progression and intrahepatic immune cell composition in a mouse model of NASH. METHOD Mice were assigned to 4 groups: 2 control groups (normal diet) and 2 NASH groups (western diet and low-dose carbon tetrachloride injection). One of each group remained sedentary and one was exercised on a treadmill for 12 weeks (60 min/d, 5 times/wk). All mice were then analyzed for liver histomorphology, steatosis, inflammation, and fibrosis; liver, adipose tissue, and skeletal muscle expression of genes related to metabolism and inflammation; and intrahepatic immune cell composition. RESULT Compared with the normal diet mice, NASH mice exhibited enhanced liver steatosis, inflammation, and fibrosis; upregulated expression of liver lipogenesis-related and inflammation-related genes; and increased frequencies of intrahepatic F4/80 int CD11b hi bone marrow-derived macrophages and programmed death receptor-1 (PD-1) + CD8 + T cells. Expression of inflammatory cytokines and the frequencies of bone marrow-derived macrophages and PD-1 + CD8 + T cells correlated positively with liver steatosis, inflammation, and fibrosis. Exercise was shown to reduce NASH-induced hepatic steatosis, liver inflammation, and fibrosis; induce alterations in metabolism-related genes and inflammatory cytokines in the liver; and suppress accumulation of liver bone marrow-derived macrophages and PD-1 + CD8 + T cells. In addition, we showed that exercise induced increased expression of IL-15 in muscle and its deficiency exacerbated the pathology of NASH. CONCLUSIONS Exercise alters the intrahepatic immune cell profile and protects against disease progression in a mouse model of NASH.
Collapse
Affiliation(s)
- Yuriko Tsutsui
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taizo Mori
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Sachiyo Yoshio
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Miku Sato
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Toshihiro Sakata
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Yuichi Yoshida
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Hironari Kawai
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Shiori Yoshikawa
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Taiji Yamazoe
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Michitaka Matsuda
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Eiji Kakazu
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Yosuke Osawa
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
- Department of Gastroenterology, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Chinatsu Oyama
- Communal Laboratory, National Center for Global Health and Medicine, Tokyo, Japan
| | - Miwa Tamura-Nakano
- Communal Laboratory, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takumi Kawaguchi
- Department of Medicine, Division of Gastroenterology, Kurume University School of Medicine, Kurume, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuya Kanto
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
76
|
Zelows MM, Cady C, Dharanipragada N, Mead AE, Kipp ZA, Bates EA, Varadharajan V, Banerjee R, Park SH, Shelman NR, Clarke HA, Hawkinson TR, Medina T, Sun RC, Lydic TA, Hinds TD, Brown JM, Softic S, Graf GA, Helsley RN. Loss of Carnitine Palmitoyltransferase 1a Reduces Docosahexaenoic Acid-Containing Phospholipids and Drives Sexually Dimorphic Liver Disease in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553705. [PMID: 37645721 PMCID: PMC10462091 DOI: 10.1101/2023.08.17.553705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background and Aims Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the impact by which liver-specific CPT1a deletion impacts hepatic lipid metabolism. Approach and Results Six-to-eight-week old male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (HFD; 60% kcal fat) for 15 weeks. Mice were necropsied after a 16 hour fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase (ALT) levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in both whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis ( Plin2 , Cidec , G0S2 ) and in polyunsaturated fatty acid (PUFA) metabolism ( Elovl5, Fads1, Elovl2 ), while only female LKO mice increased genes involved in inflammation ( Ly6d, Mmp12, Cxcl2 ). Kinase profiling showed decreased protein kinase A (PKA) activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. Conclusions Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury. Graphical Summary
Collapse
|
77
|
Liu J, Li Y, Ma J, Wan X, Zhao M, Zhang Y, Shang D. Identification and immunological characterization of lipid metabolism-related molecular clusters in nonalcoholic fatty liver disease. Lipids Health Dis 2023; 22:124. [PMID: 37559129 PMCID: PMC10410946 DOI: 10.1186/s12944-023-01878-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is now the major contributor to chronic liver disease. Disorders of lipid metabolism are a major element in the emergence of NAFLD. This research intended to explore lipid metabolism-related clusters in NAFLD and establish a prediction biomarker. METHODS The expression mode of lipid metabolism-related genes (LMRGs) and immune characteristics in NAFLD were examined. The "ConsensusClusterPlus" package was utilized to investigate the lipid metabolism-related subgroup. The WGCNA was utilized to determine hub genes and perform functional enrichment analysis. After that, a model was constructed by machine learning techniques. To validate the predictive effectiveness, receiver operating characteristic curves, nomograms, decision curve analysis (DCA), and test sets were used. Lastly, gene set variation analysis (GSVA) was utilized to investigate the biological role of biomarkers in NAFLD. RESULTS Dysregulated LMRGs and immunological responses were identified between NAFLD and normal samples. Two LMRG-related clusters were identified in NAFLD. Immune infiltration analysis revealed that C2 had much more immune infiltration. GSVA also showed that these two subtypes have distinctly different biological features. Thirty cluster-specific genes were identified by two WGCNAs. Functional enrichment analysis indicated that cluster-specific genes are primarily engaged in adipogenesis, signalling by interleukins, and the JAK-STAT signalling pathway. Comparing several models, the random forest model exhibited good discrimination performance. Importantly, the final five-gene random forest model showed excellent predictive power in two test sets. In addition, the nomogram and DCA confirmed the precision of the model for NAFLD prediction. GSVA revealed that model genes were down-regulated in several immune and inflammatory-related routes. This suggests that these genes may inhibit the progression of NAFLD by inhibiting these pathways. CONCLUSIONS This research thoroughly emphasized the complex relationship between LMRGs and NAFLD and established a five-gene biomarker to evaluate the risk of the lipid metabolism phenotype and the pathologic results of NAFLD.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yiming Li
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyuan Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xing Wan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mingjian Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Yunshu Zhang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
78
|
Lee WH, Najjar SM, Kahn CR, Hinds TD. Hepatic insulin receptor: new views on the mechanisms of liver disease. Metabolism 2023; 145:155607. [PMID: 37271372 PMCID: PMC10330768 DOI: 10.1016/j.metabol.2023.155607] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
Over 65 % of people with obesity display the metabolic-associated fatty liver disease (MAFLD), which can manifest as steatohepatitis, fibrosis, cirrhosis, or liver cancer. The development and progression of MAFLD involve hepatic insulin resistance and reduced insulin clearance. This review discusses the relationships between altered insulin signaling, hepatic insulin resistance, and reduced insulin clearance in the development of MAFLD and how this provides the impetus for exploring the use of insulin sensitizers to curb this disease. The review also explores the role of the insulin receptor in hepatocytes and hepatic stellate cells and how it signals in metabolic and end-stage liver diseases. Finally, we discuss new research findings that indicate that advanced hepatic diseases may be an insulin-sensitive state in the liver and deliberate whether insulin sensitizers should be used to manage late-stage liver diseases.
Collapse
Affiliation(s)
- Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences and the Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
79
|
Buniam J, Chansela P, Weerachayaphorn J, Saengsirisuwan V. Dietary Supplementation with 20-Hydroxyecdysone Ameliorates Hepatic Steatosis and Reduces White Adipose Tissue Mass in Ovariectomized Rats Fed a High-Fat, High-Fructose Diet. Biomedicines 2023; 11:2071. [PMID: 37509710 PMCID: PMC10377470 DOI: 10.3390/biomedicines11072071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is defined as hepatic steatosis in combination with overweight, diabetes, or other metabolic risk factors. MAFLD affects a significant number of the global population and imposes substantial clinical and economic burdens. With no approved pharmacotherapy, current treatment options are limited to diet and exercise. Therefore, the development of medicines for MAFLD treatment or prevention is necessary. 20-Hydroxyecdysone (20E) is a natural steroid found in edible plants and has been shown to improve metabolism and dyslipidemia. Therefore, it may be useful for MAFLD treatment. Here, we aimed to determine how dietary supplementation with 20E affects fat accumulation and lipogenesis in the liver and adipose tissue of ovariectomized rats fed a high-fat, high-fructose diet (OHFFD). We found that 20E reduced hepatic triglyceride content and visceral fat deposition. 20E increased the phosphorylation of AMP-activated protein kinase and acetyl CoA carboxylase while reducing the expression of fatty acid synthase in the liver and adipose tissue. Additionally, 20E increased hepatic expression of carnitine palmitoyltransferase-1 and reduced adipose expression of sterol regulatory element-binding protein-1. In conclusion, 20E demonstrated beneficial effects in rats with OHFFD-induced MAFLD. These findings suggest that 20E may represent a promising option for MAFLD prevention or treatment.
Collapse
Affiliation(s)
- Jariya Buniam
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Piyachat Chansela
- Department of Anatomy, Phramongkutklao College of Medicine, Bangkok 10400, Thailand
| | | | - Vitoon Saengsirisuwan
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
80
|
Souza-Tavares H, Miranda CS, Vasques-Monteiro IML, Sandoval C, Santana-Oliveira DA, Silva-Veiga FM, Fernandes-da-Silva A, Souza-Mello V. Peroxisome proliferator-activated receptors as targets to treat metabolic diseases: Focus on the adipose tissue, liver, and pancreas. World J Gastroenterol 2023; 29:4136-4155. [PMID: 37475842 PMCID: PMC10354577 DOI: 10.3748/wjg.v29.i26.4136] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023] Open
Abstract
The world is experiencing reflections of the intersection of two pandemics: Obesity and coronavirus disease 2019. The prevalence of obesity has tripled since 1975 worldwide, representing substantial public health costs due to its comorbidities. The adipose tissue is the initial site of obesity impairments. During excessive energy intake, it undergoes hyperplasia and hypertrophy until overt inflammation and insulin resistance turn adipocytes into dysfunctional cells that send lipotoxic signals to other organs. The pancreas is one of the organs most affected by obesity. Once lipotoxicity becomes chronic, there is an increase in insulin secretion by pancreatic beta cells, a surrogate for type 2 diabetes mellitus (T2DM). These alterations threaten the survival of the pancreatic islets, which tend to become dysfunctional, reaching exhaustion in the long term. As for the liver, lipotoxicity favors lipogenesis and impairs beta-oxidation, resulting in hepatic steatosis. This silent disease affects around 30% of the worldwide population and can evolve into end-stage liver disease. Although therapy for hepatic steatosis remains to be defined, peroxisome proliferator-activated receptors (PPARs) activation copes with T2DM management. Peroxisome PPARs are transcription factors found at the intersection of several metabolic pathways, leading to insulin resistance relief, improved thermogenesis, and expressive hepatic steatosis mitigation by increasing mitochondrial beta-oxidation. This review aimed to update the potential of PPAR agonists as targets to treat metabolic diseases, focusing on adipose tissue plasticity and hepatic and pancreatic remodeling.
Collapse
Affiliation(s)
| | | | | | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Osorno 5310431, Chile
- Departamento de Ciencias Preclínicas, Universidad de la Frontera, Temuco 4780000, Chile
| | | | | | | | - Vanessa Souza-Mello
- Department of Anatomy, Rio de Janeiro State University, Rio de Janeiro 20551030, Brazil
| |
Collapse
|
81
|
Badmus OO, Kipp ZA, Bates EA, da Silva AA, Taylor LC, Martinez GJ, Lee WH, Creeden JF, Hinds TD, Stec DE. Loss of hepatic PPARα in mice causes hypertension and cardiovascular disease. Am J Physiol Regul Integr Comp Physiol 2023; 325:R81-R95. [PMID: 37212551 PMCID: PMC10292975 DOI: 10.1152/ajpregu.00057.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The leading cause of death in patients with nonalcoholic fatty liver disease (NAFLD) is cardiovascular disease (CVD). However, the mechanisms are unknown. Mice deficient in hepatocyte proliferator-activated receptor-α (PPARα) (PparaHepKO) exhibit hepatic steatosis on a regular chow diet, making them prone to manifesting NAFLD. We hypothesized that the PparaHepKO mice might be predisposed to poorer cardiovascular phenotypes due to increased liver fat content. Therefore, we used PparaHepKO and littermate control mice fed a regular chow diet to avoid complications with a high-fat diet, such as insulin resistance and increased adiposity. After 30 wk on a standard diet, male PparaHepKO mice exhibited elevated hepatic fat content compared with littermates as measured by Echo MRI (11.95 ± 1.4 vs. 3.74 ± 1.4%, P < 0.05), hepatic triglycerides (1.4 ± 0.10 vs. 0.3 ± 0.01 mM, P < 0.05), and Oil Red O staining, despite body weight, fasting blood glucose, and insulin levels being the same as controls. The PparaHepKO mice also displayed elevated mean arterial blood pressure (121 ± 4 vs. 108 ± 2 mmHg, P < 0.05), impaired diastolic function, cardiac remodeling, and enhanced vascular stiffness. To determine mechanisms controlling the increase in stiffness in the aorta, we used state-of-the-art PamGene technology to measure kinase activity in this tissue. Our data suggest that the loss of hepatic PPARα induces alterations in the aortas that reduce the kinase activity of tropomyosin receptor kinases and p70S6K kinase, which might contribute to the pathogenesis of NAFLD-induced CVD. These data indicate that hepatic PPARα protects the cardiovascular system through some as-of-yet undefined mechanism.
Collapse
Affiliation(s)
- Olufunto O Badmus
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lucy C Taylor
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
82
|
Hu W, Lyu X, Xu H, Guo X, Zhu H, Pan H, Wang L, Yang H, Gong F. Intragastric Safflower Yellow Alleviates HFD Induced Metabolic Dysfunction-Associated Fatty Liver Disease in Mice through Regulating Gut Microbiota and Liver Endoplasmic Reticulum Stress. Nutrients 2023; 15:2954. [PMID: 37447278 DOI: 10.3390/nu15132954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The gut microbiota was reported to play a significant role in the progression of the metabolic associated fatty liver disease (MAFLD). Our recent study suggested that gastrointestinal tract and liver were important targets mediating the anti-obesity effects of intragastric safflower yellow (SY). Therefore, our present study aims to investigate the effect of intragastric SY on MAFLD and possible mechanism. DIO mice were treated with 125 mg/kg/d SY for 12 weeks by gavage. We found intragastric SY significantly slowed weight gain of body, reduced the food intake and liver weight, improved hepatic steatosis, liver function and glucose metabolism in DIO mice. The comparison between OGTT and IPGTT illustrated OGTT produced a better improvement of glucose tolerance after SY treatment. We also found intragastric SY significantly increased the energy expenditure and locomotor activity of DIO mice. SY obviously decreased the expression of lipogenesis-associated and ERS-related genes in liver of DIO mice and PA-induced MAFLD hepatocyte model. Gut microbiota analysis demonstrated intragastric SY apparently changed the diversity and composition of gut microbiota of DIO mice. Further function prediction analysis indicated that gut microbiotas in SY-treated mice was positively related with energy metabolism, lipid metabolism and endocrine system. Intragastric SY has a significant therapeutic effect on MAFLD, which is mediated partly by modulating gut microbiota and improving liver ERS.
Collapse
Affiliation(s)
- Wenjing Hu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xiaorui Lyu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hanyuan Xu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xiaonan Guo
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
83
|
Li Z, Ouyang H, Zhu J. Traditional Chinese medicines and natural products targeting immune cells in the treatment of metabolic-related fatty liver disease. Front Pharmacol 2023; 14:1195146. [PMID: 37361209 PMCID: PMC10289001 DOI: 10.3389/fphar.2023.1195146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
MAFLD stands for metabolic-related fatty liver disease, which is a prevalent liver disease affecting one-third of adults worldwide, and is strongly associated with obesity, hyperlipidemia, and type 2 diabetes. It encompasses a broad spectrum of conditions ranging from simple liver fat accumulation to advanced stages like chronic inflammation, tissue damage, fibrosis, cirrhosis, and even hepatocellular carcinoma. With limited approved drugs for MAFLD, identifying promising drug targets and developing effective treatment strategies is essential. The liver plays a critical role in regulating human immunity, and enriching innate and adaptive immune cells in the liver can significantly improve the pathological state of MAFLD. In the modern era of drug discovery, there is increasing evidence that traditional Chinese medicine prescriptions, natural products and herb components can effectively treat MAFLD. Our study aims to review the current evidence supporting the potential benefits of such treatments, specifically targeting immune cells that are responsible for the pathogenesis of MAFLD. By providing new insights into the development of traditional drugs for the treatment of MAFLD, our findings may pave the way for more effective and targeted therapeutic approaches.
Collapse
|
84
|
Chen Q, Bao L, Yue Z, Wang L, Fan Z, Liu F. Adverse events after the transjugular intrahepatic portal shunt are linked to serum metabolomic changes following the procedure. Front Mol Biosci 2023; 10:1168782. [PMID: 37255539 PMCID: PMC10225654 DOI: 10.3389/fmolb.2023.1168782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Background and Objective: Transjugular intrahepatic portal shunt (TIPS) insertion could promote weight gain and muscle and fat mass increase in patients with cirrhosis. However, few studies have focused on metabolic changes after TIPS. This study aims to explore metabolic changes after TIPS and potential biomarkers of adverse events. Methods: Peripheral and portal serum samples were collected before and after TIPS insertion. Untargeted metabolomics was performed using ultra-high-performance liquid chromatography-mass spectrometry. Spearman's correlation analysis was used to determine the relationship between metabolites and clinical parameters. Metabolite set enrichment analysis was performed to explore enriched pathways. The predictive value of the metabolites was calculated by receiver operating characteristic curve (ROC) analysis. Results: Metabolites in the peripheral and portal serum significantly changed early after TIPS. Some lipid metabolites were significantly correlated with liver function parameters. Both elevated and depleted metabolites were mainly enriched in amino acid metabolism. Nine and 12 portal metabolites have moderate predictive value in post-TIPS liver function decline and hepatic encephalopathy (HE), separately (area under curve >0.7). Conclusion: Metabolites in the peripheral and portal veins significantly changed after TIPS. Some metabolic changes might be ascribed to liver function decline early after TIPS. Nine and 12 portal metabolites might be potential biomarkers in prediction of liver function decline and HE, separately.
Collapse
Affiliation(s)
- Quan Chen
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Li Bao
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhendong Yue
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Wang
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhenhua Fan
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Fuquan Liu
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
85
|
Sarmiento-Ortega VE, Moroni-González D, Diaz A, García-González MÁ, Brambila E, Treviño S. Hepatic Insulin Resistance Model in the Male Wistar Rat Using Exogenous Insulin Glargine Administration. Metabolites 2023; 13:metabo13040572. [PMID: 37110230 PMCID: PMC10144445 DOI: 10.3390/metabo13040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic diseases are a worldwide health problem. Insulin resistance (IR) is their distinctive hallmark. For their study, animal models that provide reliable information are necessary, permitting the analysis of the cluster of abnormalities that conform to it, its progression, and time-dependent molecular modifications. We aimed to develop an IR model by exogenous insulin administration. The effective dose of insulin glargine to generate hyperinsulinemia but without hypoglycemia was established. Then, two groups (control and insulin) of male Wistar rats of 100 g weight were formed. The selected dose (4 U/kg) was administered for 15, 30, 45, and 60 days. Zoometry, a glucose tolerance test, insulin response, IR, and the serum lipid profile were assessed. We evaluated insulin signaling, glycogenesis and lipogenesis, redox balance, and inflammation in the liver. Results showed an impairment of glucose tolerance, dyslipidemia, hyperinsulinemia, and peripheral and time-dependent selective IR. At the hepatic level, insulin signaling was impaired, resulting in reduced hepatic glycogen levels and triglyceride accumulation, an increase in the ROS level with MAPK-ERK1/2 response, and mild pro-oxidative microenvironmental sustained by MT, GSH, and GR activity. Hepatic IR coincides with additions in MAPK-p38, NF-κB, and zoometric changes. In conclusion, daily insulin glargine administration generated a progressive IR model. At the hepatic level, the IR was combined with oxidative conditions but without inflammation.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, Puebla City 72560, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, Puebla City 72560, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South, FCQ9, Ciudad Universitaria, Puebla City 72560, Mexico
| | - Miguel Ángel García-González
- Laboratory of Clinical Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South, FCQ10, Ciudad Universitaria, Puebla City 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, Puebla City 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, Puebla City 72560, Mexico
| |
Collapse
|
86
|
Hinds TD, Stec DE, Tiribelli C. Powering the powerhouse: Heme oxygenase-1 regulates mitochondrial function in non-alcoholic fatty liver disease (NAFLD). Acta Physiol (Oxf) 2023; 237:e13931. [PMID: 36622267 PMCID: PMC10877585 DOI: 10.1111/apha.13931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023]
Affiliation(s)
- Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | |
Collapse
|
87
|
Sotelo-González AM, Reynoso-Camacho R, Hernández-Calvillo AK, Castañón-Servín AP, García-Gutiérrez DG, Gómez-Velázquez HDDJ, Martínez-Maldonado MÁ, de los Ríos EA, Pérez-Ramírez IF. Strawberry, Blueberry, and Strawberry-Blueberry Blend Beverages Prevent Hepatic Steatosis in Obese Rats by Modulating Key Genes Involved in Lipid Metabolism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4418. [PMID: 36901426 PMCID: PMC10002361 DOI: 10.3390/ijerph20054418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
There is an increasing interest in developing natural herb-infused functional beverages with health benefits; therefore, in this study, we aimed to evaluate the effect of strawberry, blueberry, and strawberry-blueberry blend decoction-based functional beverages on obesity-related metabolic alterations in high-fat and high-fructose diet-fed rats. The administration of the three berry-based beverages for eighteen weeks prevented the development of hypertriglyceridemia in obese rats (1.29-1.78-fold) and hepatic triglyceride accumulation (1.38-1.61-fold), preventing the development of hepatic steatosis. Furthermore, all beverages significantly down-regulated Fasn hepatic expression, whereas the strawberry beverage showed the greatest down-regulation of Acaca, involved in fatty acid de novo synthesis. Moreover, the strawberry beverage showed the most significant up-regulation of hepatic Cpt1 and Acadm (fatty acid β-oxidation). In contrast, the blueberry beverage showed the most significant down-regulation of hepatic Fatp5 and Cd36 (fatty acid intracellular transport). Nevertheless, no beneficial effect was observed on biometric measurements, adipose tissue composition, and insulin resistance. On the other hand, several urolithins and their derivatives, and other urinary polyphenol metabolites were identified after the strawberry-based beverages supplementation. In contrast, enterolactone was found significantly increase after the intake of blueberry-based beverages. These results demonstrate that functional beverages elaborated with berry fruits prevent diet-induced hypertriglyceridemia and hepatic steatosis by modulating critical genes involved in fatty acid hepatic metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiku Daniel de Jesús Gómez-Velázquez
- Chemistry School, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
- Facultad de Estudios Superiores Cuautilán, Universidad Nacional Autónoma de México, Querétaro 76231, Mexico
| | | | | | | |
Collapse
|
88
|
Griffett K, Burris TP. Development of LXR inverse agonists to treat MAFLD, NASH, and other metabolic diseases. Front Med (Lausanne) 2023; 10:1102469. [PMID: 36817797 PMCID: PMC9932051 DOI: 10.3389/fmed.2023.1102469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Activation of LXR activity by synthetic agonists has been the focus of many drug discovery efforts with a focus on treatment of dyslipidemia and atherosclerosis. Many agonists have been developed, but all have been hindered due to their ability to efficaciously stimulate de novo lipogenesis. Here, we review the development of LXR inverse agonists that were originally optimized for their ability to enable recruitment of corepressors leading to silencing of genes that drive de novo lipogenesis. Such compounds have efficacy in animal models of MAFLD, dyslipidemia, and cancer. Several classes of LXR inverse agonists have been identified and one is now in clinical trials for treatment of severe dyslipidemia.
Collapse
Affiliation(s)
- Kristine Griffett
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Thomas P. Burris
- The University of Florida Genetics Institute, Gainesville, FL, United States,*Correspondence: Thomas P. Burris,
| |
Collapse
|
89
|
Kipp ZA, Martinez GJ, Bates EA, Maharramov AB, Flight RM, Moseley HNB, Morris AJ, Stec DE, Hinds TD. Bilirubin Nanoparticle Treatment in Obese Mice Inhibits Hepatic Ceramide Production and Remodels Liver Fat Content. Metabolites 2023; 13:215. [PMID: 36837834 PMCID: PMC9965094 DOI: 10.3390/metabo13020215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Studies have indicated that increasing plasma bilirubin levels might be useful for preventing and treating hepatic lipid accumulation that occurs with metabolic diseases such as obesity and diabetes. We have previously demonstrated that mice with hyperbilirubinemia had significantly less lipid accumulation in a diet-induced non-alcoholic fatty liver disease (NAFLD) model. However, bilirubin's effects on individual lipid species are currently unknown. Therefore, we used liquid chromatography-mass spectroscopy (LC-MS) to determine the hepatic lipid composition of obese mice with NAFLD treated with bilirubin nanoparticles or vehicle control. We placed the mice on a high-fat diet (HFD) for 24 weeks and then treated them with bilirubin nanoparticles or vehicle control for 4 weeks while maintaining the HFD. Bilirubin nanoparticles suppressed hepatic fat content overall. After analyzing the lipidomics data, we determined that bilirubin inhibited the accumulation of ceramides in the liver. The bilirubin nanoparticles significantly lowered the hepatic expression of two essential enzymes that regulate ceramide production, Sgpl1 and Degs1. Our results demonstrate that the bilirubin nanoparticles improve hepatic fat content by reducing ceramide production, remodeling the liver fat content, and improving overall metabolic health.
Collapse
Affiliation(s)
- Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Agil B Maharramov
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Robert M Flight
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - Hunter N B Moseley
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
- Institute for Biomedical Informatics, University of Kentucky, Lexington, KY 40508, USA
- Center for Clinical and Translational Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - David E Stec
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
90
|
Bates EA, Kipp ZA, Martinez GJ, Badmus OO, Soundarapandian MM, Foster D, Xu M, Creeden JF, Greer JR, Morris AJ, Stec DE, Hinds TD. Suppressing Hepatic UGT1A1 Increases Plasma Bilirubin, Lowers Plasma Urobilin, Reorganizes Kinase Signaling Pathways and Lipid Species and Improves Fatty Liver Disease. Biomolecules 2023; 13:252. [PMID: 36830621 PMCID: PMC9953728 DOI: 10.3390/biom13020252] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Several population studies have observed lower serum bilirubin levels in patients with non-alcoholic fatty liver disease (NAFLD). Yet, treatments to target this metabolic phenotype have not been explored. Therefore, we designed an N-Acetylgalactosamine (GalNAc) labeled RNAi to target the enzyme that clears bilirubin from the blood, the UGT1A1 glucuronyl enzyme (GNUR). In this study, male C57BL/6J mice were fed a high-fat diet (HFD, 60%) for 30 weeks to induce NAFLD and were treated subcutaneously with GNUR or sham (CTRL) once weekly for six weeks while continuing the HFD. The results show that GNUR treatments significantly raised plasma bilirubin levels and reduced plasma levels of the bilirubin catabolized product, urobilin. We show that GNUR decreased liver fat content and ceramide production via lipidomics and lowered fasting blood glucose and insulin levels. We performed extensive kinase activity analyses using our PamGene PamStation kinome technology and found a reorganization of the kinase pathways and a significant decrease in inflammatory mediators with GNUR versus CTRL treatments. These results demonstrate that GNUR increases plasma bilirubin and reduces plasma urobilin, reducing NAFLD and inflammation and improving overall liver health. These data indicate that UGT1A1 antagonism might serve as a treatment for NAFLD and may improve obesity-associated comorbidities.
Collapse
Affiliation(s)
- Evelyn A. Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Genesee J. Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Olufunto O. Badmus
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Justin F. Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Jennifer R. Greer
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Andrew J. Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
91
|
Lutsiv T, McGinley JN, Neil ES, Foster MT, Thompson HJ. Thwarting Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) with Common Bean: Dose- and Sex-Dependent Protection against Hepatic Steatosis. Nutrients 2023; 15:nu15030526. [PMID: 36771233 PMCID: PMC9920904 DOI: 10.3390/nu15030526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Hepatic steatosis signifies onset of metabolic dysfunction-associated fatty liver disease (MAFLD) caused by disrupted metabolic homeostasis compromising liver function. Regular consumption of common beans reduces the risk of metabolic impairment, but its effective dose, the impact of biological sex, and underlying mechanisms of action are unknown. We fed female and male C57BL6/J mice with obesogenic yet isocaloric diets containing 0%, 17.5%, 35%, and 70% of total dietary protein derived from cooked whole common beans. Liver tissue was collected for histopathology, lipid quantification, and RNA-seq analyses. Beans qualitatively and quantitatively diminished hepatic fat deposition at the 35% dose in female and 70% dose in male mice. Bean-induced differentially expressed genes (DEGs) most significantly mapped to hepatic steatosis and revealed dose-responsive inhibition of de novo lipogenesis markers (Acly, Acaca, Fasn, Elovl6, Scd1, etc.) and triacylglycerol biosynthesis, activation of triacylglycerol degradation, and downregulation of sterol regulatory element-binding transcription factor 1 (SREBF1) signaling. Upregulated fatty acid β-oxidation was more prominent in females, while suppression of Cd36-mediated fatty acid uptake-in males. Sex-dependent bean effects also involved DEGs patterns downstream of peroxisome proliferator-activated receptor α (PPARα) and MLX-interacting protein-like (MLXIPL). Therefore, biological sex determines amount of common bean in the diet required to prevent hepatic lipid accumulation.
Collapse
Affiliation(s)
- Tymofiy Lutsiv
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - John N. McGinley
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Elizabeth S. Neil
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Michelle T. Foster
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Henry J. Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
- Correspondence: ; Tel.: +1-970-491-7748 or +1-970-491-3542
| |
Collapse
|
92
|
Flack KD, Vítek L, Fry CS, Stec DE, Hinds TD. Cutting edge concepts: Does bilirubin enhance exercise performance? Front Sports Act Living 2023; 4:1040687. [PMID: 36713945 PMCID: PMC9874874 DOI: 10.3389/fspor.2022.1040687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Exercise performance is dependent on many factors, such as muscular strength and endurance, cardiovascular capacity, liver health, and metabolic flexibility. Recent studies show that plasma levels of bilirubin, which has classically been viewed as a liver dysfunction biomarker, are elevated by exercise training and that elite athletes may have significantly higher levels. Other studies have shown higher plasma bilirubin levels in athletes and active individuals compared to general, sedentary populations. The reason for these adaptions is unclear, but it could be related to bilirubin's antioxidant properties in response to a large number of reactive oxygen species (ROS) that originates from mitochondria during exercise. However, the mechanisms of these are unknown. Current research has re-defined bilirubin as a metabolic hormone that interacts with nuclear receptors to drive gene transcription, which reduces body weight. Bilirubin has been shown to reduce adiposity and improve the cardiovascular system, which might be related to the adaption of bilirubin increasing during exercise. No studies have directly tested if elevating bilirubin levels can influence athletic performance. However, based on the mechanisms proposed in the present review, this seems plausible and an area to consider for future studies. Here, we discuss the importance of bilirubin and exercise and how the combination might improve metabolic health outcomes and possibly athletic performance.
Collapse
Affiliation(s)
- Kyle D. Flack
- Department of Dietetics and Human Nutrition, University of Kentucky, Lexington, KY, United States,Correspondence: Kyle D. Flack Terry D. Hinds
| | - Libor Vítek
- 4th Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Christopher S. Fry
- Department of Athletic Training and Clinical Nutrition, University of Kentucky College of Medicine, Lexington, KY, United States,Center for Muscle Biology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States,Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky, Lexington, KY, United States,Correspondence: Kyle D. Flack Terry D. Hinds
| |
Collapse
|
93
|
Kipp ZA, Xu M, Bates EA, Lee WH, Kern PA, Hinds TD. Bilirubin Levels Are Negatively Correlated with Adiposity in Obese Men and Women, and Its Catabolized Product, Urobilin, Is Positively Associated with Insulin Resistance. Antioxidants (Basel) 2023; 12:170. [PMID: 36671031 PMCID: PMC9854555 DOI: 10.3390/antiox12010170] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Bilirubin levels in obese humans and rodents have been shown to be lower than in their lean counterparts. Some studies have proposed that the glucuronyl UGT1A1 enzyme that clears bilirubin from the blood increases in the liver with obesity. UGT1A1 clearance of bilirubin allows more conjugated bilirubin to enter the intestine, where it is catabolized into urobilin, which can be then absorbed via the hepatic portal vein. We hypothesized that when bilirubin levels are decreased, the urobilin increases in the plasma of obese humans, as compared to lean humans. To test this, we measured plasma levels of bilirubin and urobilin, body mass index (BMI), adiposity, blood glucose and insulin, and HOMA IR in a small cohort of obese and lean men and women. We found that bilirubin levels negatively correlated with BMI and adiposity in obese men and women, as compared to their lean counterparts. Contrarily, urobilin levels were positively associated with adiposity and BMI. Only obese women were found to be insulin resistant based on significantly higher HOMA IR, as compared to lean women. The urobilin levels were positively associated with HOMA IR in both groups, but women had a stronger linear correlation. These studies indicate that plasma urobilin levels are associated with obesity and its comorbidities, such as insulin resistance.
Collapse
Affiliation(s)
- Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Evelyn A. Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Philip A. Kern
- Department of Internal Medicine, Division of Endocrinology, University of Kentucky, Lexington, KY 40508, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
94
|
Hinds TD, Valoti M, Lai Y, Dorlo TPC, Li Y. Editorial: Emerging talents in Frontiers in Pharmacology: Drug metabolism and transport 2022. Front Pharmacol 2022; 13:1083163. [PMID: 36569302 PMCID: PMC9771452 DOI: 10.3389/fphar.2022.1083163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes Center, Markey Cancer Center, University of Kentucky, Lexington, KY, United States,*Correspondence: Terry D. Hinds Jr.,
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Yurong Lai
- Department of Drug Metabolism, Gilead Sciences Inc., Foster City, CA, United States
| | | | - Yan Li
- School of Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|