51
|
Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus. Nat Commun 2021; 12:6544. [PMID: 34764268 PMCID: PMC8585978 DOI: 10.1038/s41467-021-26820-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Legumes balance nitrogen acquisition from soil nitrate with symbiotic nitrogen fixation. Nitrogen fixation requires establishment of a new organ, which is a cytokinin dependent developmental process in the root. We found cytokinin biosynthesis is a central integrator, balancing nitrate signalling with symbiotic acquired nitrogen. Low nitrate conditions provide a permissive state for induction of cytokinin by symbiotic signalling and thus nodule development. In contrast, high nitrate is inhibitory to cytokinin accumulation and nodule establishment in the root zone susceptible to nodule formation. This reduction of symbiotic cytokinin accumulation was further exacerbated in cytokinin biosynthesis mutants, which display hypersensitivity to nitrate inhibition of nodule development, maturation and nitrogen fixation. Consistent with this, cytokinin application rescues nodulation and nitrogen fixation of biosynthesis mutants in a concentration dependent manner. These inhibitory impacts of nitrate on symbiosis occur in a Nlp1 and Nlp4 dependent manner and contrast with the positive influence of nitrate on cytokinin biosynthesis that occurs in species that do not form symbiotic root nodules. Altogether this shows that legumes, as exemplified by Lotus japonicus, have evolved a different cytokinin response to nitrate compared to non-legumes.
Collapse
|
52
|
Leonardo B, Emanuela T, Letizia MM, Antonella M, Marco M, Fabrizio A, Beatrice BM, Adriana C. Cadmium affects cell niches maintenance in Arabidopsis thaliana post-embryonic shoot and root apical meristem by altering the expression of WUS/WOX homolog genes and cytokinin accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:785-794. [PMID: 34530323 DOI: 10.1016/j.plaphy.2021.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is one of the most widespread polluting heavy metals in both terrestrial and aquatic environments and represents an extremely significant pollutant causing severe environmental and social problems due to its high toxicity and large solubility in water. In plants, the root is the first organ that get in contact with Cd. It is absorbed by the root system and translocated to the shoot and leaves through xylem loading, causing a variety of genetic, biochemical, and physiological damages. Cd inhibits both the root and shoot growth, but the mechanisms underlying this inhibition remain elusive. In this context in the present work we focused the attention on the effects of Cd on meristem size and organization of both shoot and root. To this aim morpho-histological and molecular analyses were carried out on 5 days old seedlings exposed or not to Cd (100 μM and 150 μM for 24) of wild type and transgenic lines expressing molecular markers with an important role in shoot and root pattern organization. More precisely, we monitored the expression pattern of WUS/CLV3 and WOX5 transcription factors involved in the establishment and maintenance of stem cell niche and the control of meristem size and of TCSn::GFP cytokinin-sensitive sensor as relevant components of hormone circuit controlling shoot and root growth. The results highlighted that the treatments with Cd impacts shoot and root size and shape by altering the paralogous WOX genes expression via cytokinin accumulation.
Collapse
Affiliation(s)
- Bruno Leonardo
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), Arcavacata di Rende, Italy.
| | - Talarico Emanuela
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), Arcavacata di Rende, Italy
| | - Madeo Maria Letizia
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), Arcavacata di Rende, Italy
| | - Muto Antonella
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), Arcavacata di Rende, Italy
| | - Minervino Marco
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), Arcavacata di Rende, Italy
| | - Araniti Fabrizio
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria n°2, 20133, Milano, Italy
| | - Bitonti Maria Beatrice
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), Arcavacata di Rende, Italy
| | - Chiappetta Adriana
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), Arcavacata di Rende, Italy
| |
Collapse
|
53
|
Chu X, Wang JG, Li M, Zhang S, Gao Y, Fan M, Han C, Xiang F, Li G, Wang Y, Yu X, Xiang CB, Bai MY. HBI transcription factor-mediated ROS homeostasis regulates nitrate signal transduction. THE PLANT CELL 2021; 33:3004-3021. [PMID: 34129038 PMCID: PMC8462818 DOI: 10.1093/plcell/koab165] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/09/2021] [Indexed: 05/20/2023]
Abstract
Nitrate is both an important nutrient and a critical signaling molecule that regulates plant metabolism, growth, and development. Although several components of the nitrate signaling pathway have been identified, the molecular mechanism of nitrate signaling remains unclear. Here, we showed that the growth-related transcription factors HOMOLOG OF BRASSINOSTEROID ENHANCED EXPRESSION2 INTERACTING WITH IBH1 (HBI1) and its three closest homologs (HBIs) positively regulate nitrate signaling in Arabidopsis thaliana. HBI1 is rapidly induced by nitrate through NLP6 and NLP7, which are master regulators of nitrate signaling. Mutations in HBIs result in the reduced effects of nitrate on plant growth and ∼22% nitrate-responsive genes no longer to be regulated by nitrate. HBIs increase the expression levels of a set of antioxidant genes to reduce the accumulation of reactive oxygen species (ROS) in plants. Nitrate treatment induces the nuclear localization of NLP7, whereas such promoting effects of nitrate are significantly impaired in the hbi-q and cat2 cat3 mutants, which accumulate high levels of H2O2. These results demonstrate that HBI-mediated ROS homeostasis regulates nitrate signal transduction through modulating the nucleocytoplasmic shuttling of NLP7. Overall, our findings reveal that nitrate treatment reduces the accumulation of H2O2, and H2O2 inhibits nitrate signaling, thereby forming a feedback regulatory loop to regulate plant growth and development.
Collapse
Affiliation(s)
- Xiaoqian Chu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jia-Gang Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Mingzhe Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Shujuan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yangyang Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Fengning Xiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Genying Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Xiang Yu
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng-Bin Xiang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
- Author for correspondence:
| |
Collapse
|
54
|
Abstract
Plants exhibit remarkable lineage plasticity, allowing them to regenerate organs that differ from their respective origins. Such developmental plasticity is dependent on the activity of pluripotent founder cells or stem cells residing in meristems. At the shoot apical meristem (SAM), the constant flow of cells requires continuing cell specification governed by a complex genetic network, with the WUSCHEL transcription factor and phytohormone cytokinin at its core. In this review, I discuss some intriguing recent discoveries that expose new principles and mechanisms of patterning and cell specification acting both at the SAM and, prior to meristem organogenesis during shoot regeneration. I also highlight unanswered questions and future challenges in the study of SAM and meristem regeneration. Finally, I put forward a model describing stochastic events mediated by epigenetic factors to explain how the gene regulatory network might be initiated at the onset of shoot regeneration. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| |
Collapse
|
55
|
Yan Y, Shi Q, Gong B. S-nitrosoglutathione Reductase-Mediated Nitric Oxide Affects Axillary Buds Outgrowth of Solanum lycopersicum L. by Regulating Auxin and Cytokinin Signaling. PLANT & CELL PHYSIOLOGY 2021; 62:458-471. [PMID: 33493306 DOI: 10.1093/pcp/pcab002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Auxin and cytokinin are two kinds of important phytohormones that mediate outgrowth of axillary buds in plants. How nitric oxide and its regulator of S-nitrosoglutathione reductase (GSNOR) take part in auxin and cytokinin signaling for controlling axillary buds outgrowth remains elusive. We investigated the roles of GSNOR during tomato axillary bud outgrowth by using physiological, biochemical and genetic approaches. GSNOR negatively regulated NO homeostasis. Suppression of GSNOR promoted axillary bud outgrowth by inhibiting the expression of FZY in both apical and axillary buds. Meanwhile, AUX1 and PIN1 were down-regulated in apical buds but up-regulated in axillary buds in GSNOR-suppressed plants. Thus, reduced IAA accumulation was shown in both apical buds and axillary buds of GSNOR-suppressed plants. GSNOR-mediated changes of NO and auxin affected cytokinin biosynthesis, transport, and signaling. And a decreased ratio of auxin: cytokinin was shown in axillary buds of GSNOR-suppressed plants, leading to bud dormancy breaking. We also found that the original NO signaling was generated by nitrate reductase (NR) catalyzing nitrate as substrate. NR-mediated NO reduced the GSNOR activity through S-nitrosylation of Cys-10, then induced a further NO burst, which played the above roles to promote axillary buds outgrowth. Together, GSNOR-mediated NO played important roles in controlling axillary buds outgrowth by altering the homeostasis and signaling of auxin and cytokinin in tomato plants.
Collapse
Affiliation(s)
- Yanyan Yan
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, P.R. China
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, P.R. China
| | - Biao Gong
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, P.R. China
| |
Collapse
|
56
|
D'Ario M, Tavares R, Schiessl K, Desvoyes B, Gutierrez C, Howard M, Sablowski R. Cell size controlled in plants using DNA content as an internal scale. Science 2021; 372:1176-1181. [PMID: 34112688 DOI: 10.1126/science.abb4348] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 03/16/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
How eukaryotic cells assess and maintain sizes specific for their species and cell type remains unclear. We show that in the Arabidopsis shoot stem cell niche, cell size variability caused by asymmetric divisions is corrected by adjusting the growth period before DNA synthesis. KIP-related protein 4 (KRP4) inhibits progression to DNA synthesis and associates with mitotic chromosomes. The F BOX-LIKE 17 (FBL17) protein removes excess KRP4. Consequently, daughter cells are born with comparable amounts of KRP4. Inhibitor dilution models predicted that KRP4 inherited through chromatin would robustly regulate size, whereas inheritance of excess free KRP4 would disrupt size homeostasis, as confirmed by mutant analyses. We propose that a cell cycle regulator, stabilized by association with mitotic chromosomes, reads DNA content as a cell size-independent scale.
Collapse
Affiliation(s)
- Marco D'Ario
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Rafael Tavares
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Robert Sablowski
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
57
|
Sheng H, Jiang Y, Rahmati M, Chia JC, Dokuchayeva T, Kavulych Y, Zavodna TO, Mendoza PN, Huang R, Smieshka LM, Miller J, Woll AR, Terek OI, Romanyuk ND, Piñeros M, Zhou Y, Vatamaniuk OK. YSL3-mediated copper distribution is required for fertility, seed size and protein accumulation in Brachypodium. PLANT PHYSIOLOGY 2021; 186:655-676. [PMID: 33576792 PMCID: PMC8154065 DOI: 10.1093/plphys/kiab054] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/18/2021] [Indexed: 05/05/2023]
Abstract
Addressing the looming global food security crisis requires the development of high-yielding crops. In agricultural soils, deficiency in the micronutrient copper significantly decreases grain yield in wheat (Triticum aestivum), a globally important crop. In cereals, grain yield is determined by inflorescence architecture, flower fertility, grain size, and weight. Whether copper is involved in these processes, and how it is delivered to the reproductive organs is not well understood. We show that copper deficiency alters not only the grain set but also flower development in both wheat and its recognized model, Brachypodium distachyon. We then show that the Brachypodium yellow stripe-like 3 (YSL3) transporter localizes to the phloem, transports copper in frog (Xenopus laevis) oocytes, and facilitates copper delivery to reproductive organs and grains. Failure to deliver copper, but not iron, zinc, or manganese to these structures in the ysl3 CRISPR-Cas9 mutant results in delayed flowering, altered inflorescence architecture, reduced floret fertility, grain size, weight, and protein accumulation. These defects are rescued by copper supplementation and are complemented by YSL3 cDNA. This knowledge will help to devise sustainable approaches for improving grain yield in regions where soil quality is a major obstacle for crop production. Copper distribution by a phloem-localized transporter is essential for the transition to flowering, inflorescence architecture, floret fertility, size, weight, and protein accumulation in seeds.
Collapse
Affiliation(s)
- Huajin Sheng
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Yulin Jiang
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Maryam Rahmati
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Tatyana Dokuchayeva
- Cornell Nutrient Analysis Laboratory, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Yana Kavulych
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Department of Biology, Ivan Franko National University of Lviv, Lviv 79005, Ukraine
| | - Tetiana-Olena Zavodna
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Patrick N Mendoza
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Rong Huang
- Cornell University, Cornell High Energy Synchrotron Source (CHESS), Ithaca, NY 14853, USA
| | - Louisa M Smieshka
- Cornell University, Cornell High Energy Synchrotron Source (CHESS), Ithaca, NY 14853, USA
| | - Julia Miller
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Arthur R Woll
- Cornell University, Cornell High Energy Synchrotron Source (CHESS), Ithaca, NY 14853, USA
| | - Olga I Terek
- Department of Biology, Ivan Franko National University of Lviv, Lviv 79005, Ukraine
| | - Nataliya D Romanyuk
- Department of Biology, Ivan Franko National University of Lviv, Lviv 79005, Ukraine
| | - Miguel Piñeros
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Olena K Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Author for communication:
| |
Collapse
|
58
|
da Silva VCH, Martins MCM, Calderan-Rodrigues MJ, Artins A, Monte Bello CC, Gupta S, Sobreira TJP, Riaño-Pachón DM, Mafra V, Caldana C. Shedding Light on the Dynamic Role of the "Target of Rapamycin" Kinase in the Fast-Growing C 4 Species Setaria viridis, a Suitable Model for Biomass Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:637508. [PMID: 33927734 PMCID: PMC8078139 DOI: 10.3389/fpls.2021.637508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The Target of Rapamycin (TOR) kinase pathway integrates energy and nutrient availability into metabolism promoting growth in eukaryotes. The overall higher efficiency on nutrient use translated into faster growth rates in C4 grass plants led to the investigation of differential transcriptional and metabolic responses to short-term chemical TOR complex (TORC) suppression in the model Setaria viridis. In addition to previously described responses to TORC inhibition (i.e., general growth arrest, translational repression, and primary metabolism reprogramming) in Arabidopsis thaliana (C3), the magnitude of changes was smaller in S. viridis, particularly regarding nutrient use efficiency and C allocation and partitioning that promote biosynthetic growth. Besides photosynthetic differences, S. viridis and A. thaliana present several specificities that classify them into distinct lineages, which also contribute to the observed alterations mediated by TOR. Indeed, cell wall metabolism seems to be distinctly regulated according to each cell wall type, as synthesis of non-pectic polysaccharides were affected in S. viridis, whilst assembly and structure in A. thaliana. Our results indicate that the metabolic network needed to achieve faster growth seems to be less stringently controlled by TORC in S. viridis.
Collapse
Affiliation(s)
| | | | | | - Anthony Artins
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Saurabh Gupta
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | | | | | - Valéria Mafra
- National Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Camila Caldana
- National Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
59
|
Liu Y, Duan X, Zhao X, Ding W, Wang Y, Xiong Y. Diverse nitrogen signals activate convergent ROP2-TOR signaling in Arabidopsis. Dev Cell 2021; 56:1283-1295.e5. [PMID: 33831352 DOI: 10.1016/j.devcel.2021.03.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/24/2021] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
The evolutionarily conserved target-of-rapamycin (TOR) kinase coordinates cellular and organismal growth in all eukaryotes. Amino acids (AAs) are key upstream signals for mammalian TOR activation, but how nitrogen-related nutrients regulate TOR signaling in plants is poorly understood. Here, we discovered that, independent of nitrogen assimilation, nitrate and ammonium function as primary nitrogen signals to activate TOR in the Arabidopsis leaf primordium. We further identified that a total of 15 proteinogenic AAs are also able to activate TOR, and the first AAs generated from plant specific nitrogen assimilation (glutamine), sulfur assimilation (cysteine), and glycolate cycle (glycine), exhibit the highest potency. Interestingly, nitrate, ammonium, and glutamine all activate the small GTPase Rho-related protein from plants 2 (ROP2), and constitutively active ROP2 restores TOR activation under nitrogen-starvation conditions. Our findings suggest that specific evolutionary adaptations of the nitrogen-TOR signaling pathway occurred in plant lineages, and ROP2 can integrate diverse nitrogen and hormone signals for plant TOR activation.
Collapse
Affiliation(s)
- Yanlin Liu
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, P. R. China
| | - Xiaoli Duan
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, P. R. China
| | - Xiaodi Zhao
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, P. R. China
| | - Wenlong Ding
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, P. R. China
| | - Yaowei Wang
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, P. R. China
| | - Yan Xiong
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, P. R. China.
| |
Collapse
|
60
|
Fichtner F, Dissanayake IM, Lacombe B, Barbier F. Sugar and Nitrate Sensing: A Multi-Billion-Year Story. TRENDS IN PLANT SCIENCE 2021; 26:352-374. [PMID: 33281060 DOI: 10.1016/j.tplants.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 05/03/2023]
Abstract
Sugars and nitrate play a major role in providing carbon and nitrogen in plants. Understanding how plants sense these nutrients is crucial, most notably for crop improvement. The mechanisms underlying sugar and nitrate sensing are complex and involve moonlighting proteins such as the nitrate transporter NRT1.1/NFP6.3 or the glycolytic enzyme HXK1. Major components of nutrient signaling, such as SnRK1, TOR, and HXK1, are relatively well conserved across eukaryotes, and the diversification of components such as the NRT1 family and the SWEET sugar transporters correlates with plant terrestrialization. In plants, Tre6P plays a hormone-like role in plant development. In addition, nutrient signaling has evolved to interact with the more recent hormone signaling, allowing fine-tuning of physiological and developmental responses.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Benoit Lacombe
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Francois Barbier
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
61
|
Gautrat P, Laffont C, Frugier F, Ruffel S. Nitrogen Systemic Signaling: From Symbiotic Nodulation to Root Acquisition. TRENDS IN PLANT SCIENCE 2021; 26:392-406. [PMID: 33358560 DOI: 10.1016/j.tplants.2020.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 05/27/2023]
Abstract
Plant nutrient acquisition is tightly regulated by resource availability and metabolic needs, implying the existence of communication between roots and shoots to ensure their integration at the whole-plant level. Here, we focus on systemic signaling pathways controlling nitrogen (N) nutrition, achieved both by the root import of mineral N and, in legume plants, through atmospheric N fixation by symbiotic bacteria inside dedicated root nodules. We explore features conserved between systemic pathways repressing or enhancing symbiotic N fixation and the regulation of mineral N acquisition by roots, as well as their integration with other environmental factors, such as phosphate, light, and CO2 availability.
Collapse
Affiliation(s)
- Pierre Gautrat
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRAe, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France
| | - Carole Laffont
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRAe, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France
| | - Florian Frugier
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRAe, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France.
| | - Sandrine Ruffel
- BPMP, Univ Montpellier, CNRS, INRAe, Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
62
|
de Bang TC, Husted S, Laursen KH, Persson DP, Schjoerring JK. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. THE NEW PHYTOLOGIST 2021; 229:2446-2469. [PMID: 33175410 DOI: 10.1111/nph.17074] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 05/22/2023]
Abstract
The visual deficiency symptoms developing on plants constitute the ultimate manifestation of suboptimal nutrient supply. In classical plant nutrition, these symptoms have been extensively used as a tool to characterise the nutritional status of plants and to optimise fertilisation. Here we expand this concept by bridging the typical deficiency symptoms for each of the six essential macronutrients to their molecular and physiological functionalities in higher plants. We focus on the most recent insights obtained during the last decade, which now allow us to better understand the links between symptom and function for each element. A deep understanding of the mechanisms underlying the visual deficiency symptoms enables us to thoroughly understand how plants react to nutrient limitations and how these disturbances may affect the productivity and biodiversity of terrestrial ecosystems. A proper interpretation of visual deficiency symptoms will support the potential for sustainable crop intensification through the development of new technologies that facilitate automatised management practices based on imaging technologies, remote sensing and in-field sensors, thereby providing the basis for timely application of nutrients via smart and more efficient fertilisation.
Collapse
Affiliation(s)
- Thomas Christian de Bang
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Søren Husted
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Kristian Holst Laursen
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Daniel Pergament Persson
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Jan Kofod Schjoerring
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| |
Collapse
|
63
|
An overview of recent advancement in phytohormones-mediated stress management and drought tolerance in crop plants. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.plgene.2020.100264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
64
|
Lopes FL, Galvan-Ampudia C, Landrein B. WUSCHEL in the shoot apical meristem: old player, new tricks. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1527-1535. [PMID: 33332559 DOI: 10.1093/jxb/eraa572] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/01/2020] [Indexed: 05/21/2023]
Abstract
The maintenance of the stem cell niche in the shoot apical meristem, the structure that generates all of the aerial organs of the plant, relies on a canonical feedback loop between WUSCHEL (WUS) and CLAVATA3 (CLV3). WUS is a homeodomain transcription factor expressed in the organizing centre that moves to the central zone to promote stem cell fate. CLV3 is a peptide whose expression is induced by WUS in the central zone and that can move back to the organizing centre to inhibit WUS expression. Within the past 20 years since the initial formulation of the CLV-WUS feedback loop, the mechanisms of stem cell maintenance have been intensively studied and the function of WUS has been redefined. In this review, we highlight the most recent advances in our comprehension of the molecular mechanisms of WUS function, of its interaction with other transcription factors and hormonal signals, and of its connection to environmental signals. Through this, we will show how WUS can integrate both internal and external cues to adapt meristem function to the plant environment.
Collapse
Affiliation(s)
- Filipa Lara Lopes
- Plant Stress Signaling, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Carlos Galvan-Ampudia
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, INRAE, Lyon Cedex, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, INRAE, Lyon Cedex, France
| |
Collapse
|
65
|
Souza LA, Tavares R. Nitrogen and Stem Development: A Puzzle Still to Be Solved. FRONTIERS IN PLANT SCIENCE 2021; 12:630587. [PMID: 33659017 PMCID: PMC7917133 DOI: 10.3389/fpls.2021.630587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 05/14/2023]
Abstract
High crop yields are generally associated with high nitrogen (N) fertilizer rates. A growing tendency that is urgently demanding the adoption of precision technologies that manage N more efficiently, combined with the advances of crop genetics to meet the needs of sustainable farm systems. Among the plant traits, stem architecture has been of paramount importance to enhance harvest index in the cereal crops. Nonetheless, the reduced stature also brought undesirable effect, such as poor N-uptake, which has led to the overuse of N fertilizer. Therefore, a better understanding of how N signals modulate the initial and late stages of stem development might uncover novel semi-dwarf alleles without pleiotropic effects. Our attempt here is to review the most recent advances on this topic.
Collapse
Affiliation(s)
- Lucas Anjos Souza
- Innovation Centre in Bioenergy and Grains, Goiano Federal Institute of Education, Science and Technology, Goiás, Brazil
| | - Rafael Tavares
- Department of Cell and Development Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
66
|
The Hulks and the Deadpools of the Cytokinin Universe: A Dual Strategy for Cytokinin Production, Translocation, and Signal Transduction. Biomolecules 2021; 11:biom11020209. [PMID: 33546210 PMCID: PMC7913349 DOI: 10.3390/biom11020209] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cytokinins are plant hormones, derivatives of adenine with a side chain at the N6-position. They are involved in many physiological processes. While the metabolism of trans-zeatin and isopentenyladenine, which are considered to be highly active cytokinins, has been extensively studied, there are others with less obvious functions, such as cis-zeatin, dihydrozeatin, and aromatic cytokinins, which have been comparatively neglected. To help explain this duality, we present a novel hypothesis metaphorically comparing various cytokinin forms, enzymes of CK metabolism, and their signalling and transporter functions to the comics superheroes Hulk and Deadpool. Hulk is a powerful but short-lived creation, whilst Deadpool presents a more subtle and enduring force. With this dual framework in mind, this review compares different cytokinin metabolites, and their biosynthesis, translocation, and sensing to illustrate the different mechanisms behind the two CK strategies. This is put together and applied to a plant developmental scale and, beyond plants, to interactions with organisms of other kingdoms, to highlight where future study can benefit the understanding of plant fitness and productivity.
Collapse
|
67
|
Convergence and Divergence of Sugar and Cytokinin Signaling in Plant Development. Int J Mol Sci 2021; 22:ijms22031282. [PMID: 33525430 PMCID: PMC7865218 DOI: 10.3390/ijms22031282] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plants adjust their growth and development through a sophisticated regulatory system integrating endogenous and exogenous cues. Many of them rely on intricate crosstalk between nutrients and hormones, an effective way of coupling nutritional and developmental information and ensuring plant survival. Sugars in their different forms such as sucrose, glucose, fructose and trehalose-6-P and the hormone family of cytokinins (CKs) are major regulators of the shoot and root functioning throughout the plant life cycle. While their individual roles have been extensively investigated, their combined effects have unexpectedly received little attention, resulting in many gaps in current knowledge. The present review provides an overview of the relationship between sugars and CKs signaling in the main developmental transition during the plant lifecycle, including seed development, germination, seedling establishment, root and shoot branching, leaf senescence, and flowering. These new insights highlight the diversity and the complexity of the crosstalk between sugars and CKs and raise several questions that will open onto further investigations of these regulation networks orchestrating plant growth and development.
Collapse
|
68
|
Sakakibara H. Cytokinin biosynthesis and transport for systemic nitrogen signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:421-430. [PMID: 33015901 DOI: 10.1111/tpj.15011] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
The plasticity of growth and development in response to environmental changes is one of the essential aspects of plant behavior. Cytokinins play an important role as signaling molecules in the long-distance communication between organs in systemic growth regulation in response to nitrogen. The spatial distribution of the expression sites of cytokinin biosynthesis genes leads to structural differences in the molecular species transported through the xylem and phloem, giving root-borne trans-hydroxylated cytokinins, namely trans-zeatin (tZ) type, a specialized efficacy in regulating shoot growth. Furthermore, root-to-shoot translocation via the xylem, tZ, and its precursor, the tZ riboside, controls different sets of shoot growth traits to fine-tune shoot growth in response to nitrogen availability. In addition to nitrogen, photosynthetically generated sugars positively regulate de novo cytokinin biosynthesis in the roots, and contribute to plant growth under elevated CO2 conditions. In shoot-to-root signaling, cytokinins also play a role in the regulation of nutrient acquisition and root system growth in cooperation with other types of signaling molecules, such as C-TERMINALLY ENCODED PEPTIDE DOWNSTREAMs. As cytokinin is a key regulator for the maintenance of shoot apical meristem, deepening our understanding of the regulatory mechanisms of cytokinin biosynthesis and transport in response to nitrogen is important not only for basic comprehension of plant growth, but also to ensure the stability of agricultural production.
Collapse
Affiliation(s)
- Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
69
|
Kinoshita A, Vayssières A, Richter R, Sang Q, Roggen A, van Driel AD, Smith RS, Coupland G. Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis. eLife 2020; 9:60661. [PMID: 33315012 PMCID: PMC7771970 DOI: 10.7554/elife.60661] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/12/2020] [Indexed: 11/23/2022] Open
Abstract
Floral transition, the onset of plant reproduction, involves changes in shape and identity of the shoot apical meristem (SAM). The change in shape, termed doming, occurs early during floral transition when it is induced by environmental cues such as changes in day-length, but how it is regulated at the cellular level is unknown. We defined the morphological and cellular features of the SAM during floral transition of Arabidopsis thaliana. Both cell number and size increased during doming, and these changes were partially controlled by the gene regulatory network (GRN) that triggers flowering. Furthermore, dynamic modulation of expression of gibberellin (GA) biosynthesis and catabolism enzymes at the SAM contributed to doming. Expression of these enzymes was regulated by two MADS-domain transcription factors implicated in flowering. We provide a temporal and spatial framework for integrating the flowering GRN with cellular changes at the SAM and highlight the role of local regulation of GA.
Collapse
Affiliation(s)
- Atsuko Kinoshita
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Alice Vayssières
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - René Richter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,School of Agriculture and Food, University of Melbourne, Melbourne, Australia
| | - Qing Sang
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Adrian Roggen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Richard S Smith
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
70
|
Effects of Phosphate Shortage on Root Growth and Hormone Content of Barley Depend on Capacity of the Roots to Accumulate ABA. PLANTS 2020; 9:plants9121722. [PMID: 33297400 PMCID: PMC7762276 DOI: 10.3390/plants9121722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023]
Abstract
Although changes in root architecture in response to the environment can optimize mineral and water nutrient uptake, mechanisms regulating these changes are not well-understood. We investigated whether P deprivation effects on root development are mediated by abscisic acid (ABA) and its interactions with other hormones. The ABA-deficient barley mutant Az34 and its wild-type (WT) were grown in P-deprived and P-replete conditions, and hormones were measured in whole roots and root tips. Although P deprivation decreased growth in shoot mass similarly in both genotypes, only the WT increased primary root length and number of lateral roots. The effect was accompanied by ABA accumulation in root tips, a response not seen in Az34. Increased ABA in P-deprived WT was accompanied by decreased concentrations of cytokinin, an inhibitor of root extension. Furthermore, P-deficiency in the WT increased auxin concentration in whole root systems in association with increased root branching. In the ABA-deficient mutant, P-starvation failed to stimulate root elongation or promote branching, and there was no decline in cytokinin and no increase in auxin. The results demonstrate ABA’s ability to mediate in root growth responses to P starvation in barley, an effect linked to its effects on cytokinin and auxin concentrations.
Collapse
|
71
|
Fouracre JP, Poethig RS. Lonely at the top? Regulation of shoot apical meristem activity by intrinsic and extrinsic factors. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:17-24. [PMID: 33099210 PMCID: PMC7752823 DOI: 10.1016/j.pbi.2020.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 08/28/2020] [Indexed: 05/22/2023]
Abstract
All the above-ground organs of a plant are derived from stem cells that reside in shoot apical meristems (SAM). Over the past 25 years, the genetic pathways that control the proliferation of stem cells within the SAM, and the differentiation of their progenitors into lateral organs, have been described in great detail. However, longstanding questions regarding the importance of communication between cells within the SAM and lateral organs have, until recently, remained unanswered. In this review, we describe recent investigations into the extent, nature and significance of signaling both to and from the SAM.
Collapse
Affiliation(s)
- Jim P Fouracre
- Biology Department, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA, 19104, USA
| | - Richard Scott Poethig
- Biology Department, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA, 19104, USA.
| |
Collapse
|
72
|
Guo W, Chen L, Herrera-Estrella L, Cao D, Tran LSP. Altering Plant Architecture to Improve Performance and Resistance. TRENDS IN PLANT SCIENCE 2020; 25:1154-1170. [PMID: 32595089 DOI: 10.1016/j.tplants.2020.05.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
High-stress resistance and yield are major goals in crop cultivation, which can be addressed by modifying plant architecture. Significant progress has been made in recent years to understand how plant architecture is controlled under various growth conditions, recognizing the central role phytohormones play in response to environmental stresses. miRNAs, transcription factors, and other associated proteins regulate plant architecture, mainly via the modulation of hormone homeostasis and signaling. To generate crop plants of ideal architecture, we propose simultaneous editing of multiple genes involved in the regulatory networks associated with plant architecture as a feasible strategy. This strategy can help to address the need to increase grain yield and/or stress resistance under the pressures of the ever-increasing world population and climate change.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Luis Herrera-Estrella
- The Unidad de Genomica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico; Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, TX, USA
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
73
|
MIR2111-5 locus and shoot-accumulated mature miR2111 systemically enhance nodulation depending on HAR1 in Lotus japonicus. Nat Commun 2020; 11:5192. [PMID: 33060582 PMCID: PMC7562733 DOI: 10.1038/s41467-020-19037-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/17/2020] [Indexed: 11/09/2022] Open
Abstract
Legumes utilize a shoot-mediated signaling system to maintain a mutualistic relationship with nitrogen-fixing bacteria in root nodules. In Lotus japonicus, shoot-to-root transfer of microRNA miR2111 that targets TOO MUCH LOVE, a nodulation suppressor in roots, has been proposed to explain the mechanism underlying nodulation control from shoots. However, the role of shoot-accumulating miR2111s for the systemic regulation of nodulation was not clearly shown. Here, we find L. japonicus has seven miR2111 loci, including those mapped through RNA-seq. MIR2111-5 expression in leaves is the highest among miR2111 loci and repressed after rhizobial infection depending on a shoot-acting HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1) receptor. MIR2111-5 knockout mutants show significantly decreased nodule numbers and miR2111 levels. Furthermore, grafting experiments using transformants demonstrate scions with altered miR2111 levels influence nodule numbers in rootstocks in a dose-dependent manner. Therefore, miR2111 accumulation in leaves through MIR2111-5 expression is required for HAR1-dependent systemic optimization of nodule number.
Collapse
|
74
|
Han X, Wu K, Fu X, Liu Q. Improving coordination of plant growth and nitrogen metabolism for sustainable agriculture. ABIOTECH 2020; 1:255-275. [PMID: 36304130 PMCID: PMC9590520 DOI: 10.1007/s42994-020-00027-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/20/2020] [Indexed: 01/25/2023]
Abstract
The agricultural green revolution of the 1960s boosted cereal crop yield was in part due to cultivation of semi-dwarf green revolution varieties. The semi-dwarf plants resist lodging and require high nitrogen (N) fertilizer inputs to maximize yield. To produce higher grain yield, inorganic fertilizer has been overused by Chinese farmers in intensive crop production. With the ongoing increase in the food demand of global population and the environmental pollution, improving crop productivity with reduced N supply is a pressing challenge. Despite a great deal of research efforts, to date only a few genes that improve N use efficiency (NUE) have been identified. The molecular mechanisms underlying the coordination of plant growth, carbon (C) and N assimilation is still not fully understood, thus preventing significant improvement. Recent advances have shed light on how explore NUE within an overall plant biology system that considered the co-regulation of plant growth, C and N metabolisms as a whole, rather than focusing specifically on N uptake and assimilation. There are several potential approaches to improve NUE discussed in this review. Increasing knowledge of how plants sense and respond to changes in N availability, as well as identifying new targets for breeding strategies to simultaneously improve NUE and grain yield, could usher in a new green revolution.
Collapse
Affiliation(s)
- Xiang Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Kun Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qian Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
75
|
Luo L, Zhang Y, Xu G. How does nitrogen shape plant architecture? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4415-4427. [PMID: 32279073 PMCID: PMC7475096 DOI: 10.1093/jxb/eraa187] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/09/2020] [Indexed: 05/20/2023]
Abstract
Plant nitrogen (N), acquired mainly in the form of nitrate and ammonium from soil, dominates growth and development, and high-yield crop production relies heavily on N fertilization. The mechanisms of root adaptation to altered supply of N forms and concentrations have been well characterized and reviewed, while reports concerning the effects of N on the architecture of vegetative and reproductive organs are limited and are widely dispersed in the literature. In this review, we summarize the nitrate and amino acid regulation of shoot branching, flowering, and panicle development, as well as the N regulation of cell division and expansion in shaping plant architecture, mainly in cereal crops. The basic regulatory steps involving the control of plant architecture by the N supply are auxin-, cytokinin-, and strigolactone-controlled cell division in shoot apical meristem and gibberellin-controlled inverse regulation of shoot height and tillering. In addition, transport of amino acids has been shown to be involved in the control of shoot branching. The N supply may alter the timing and duration of the transition from the vegetative to the reproductive growth phase, which in turn may affect cereal crop architecture, particularly the structure of panicles for grain yield. Thus, proper manipulation of N-regulated architecture can increase crop yield and N use efficiency.
Collapse
Affiliation(s)
- Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| |
Collapse
|
76
|
Vidal EA, Alvarez JM, Araus V, Riveras E, Brooks MD, Krouk G, Ruffel S, Lejay L, Crawford NM, Coruzzi GM, Gutiérrez RA. Nitrate in 2020: Thirty Years from Transport to Signaling Networks. THE PLANT CELL 2020; 32:2094-2119. [PMID: 32169959 PMCID: PMC7346567 DOI: 10.1105/tpc.19.00748] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 05/18/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plants and a major limiting factor for plant growth and crop production. Nitrate is the main source of N available to plants in agricultural soils and in many natural environments. Sustaining agricultural productivity is of paramount importance in the current scenario of increasing world population, diversification of crop uses, and climate change. Plant productivity for major crops around the world, however, is still supported by excess application of N-rich fertilizers with detrimental economic and environmental impacts. Thus, understanding how plants regulate nitrate uptake and metabolism is key for developing new crops with enhanced N use efficiency and to cope with future world food demands. The study of plant responses to nitrate has gained considerable interest over the last 30 years. This review provides an overview of key findings in nitrate research, spanning biochemistry, molecular genetics, genomics, and systems biology. We discuss how we have reached our current view of nitrate transport, local and systemic nitrate sensing/signaling, and the regulatory networks underlying nitrate-controlled outputs in plants. We hope this summary will serve not only as a timeline and information repository but also as a baseline to define outstanding questions for future research.
Collapse
Affiliation(s)
- Elena A Vidal
- Millennium Institute for Integrative Biology, Santiago, Chile, 7500565
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile, 8580745
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile, 8580745
| | - José M Alvarez
- Millennium Institute for Integrative Biology, Santiago, Chile, 7500565
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile, 8580745
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - Viviana Araus
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - Eleodoro Riveras
- Millennium Institute for Integrative Biology, Santiago, Chile, 7500565
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, 8331150
- FONDAP Center for Genome Regulation, Santiago, Chile, 8370415
| | - Matthew D Brooks
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - Gabriel Krouk
- Biochemistry and Plant Molecular Physiology, CNRS, INRA, Montpellier SupAgro, Universite Montpellier, Montpellier, France, 34060
| | - Sandrine Ruffel
- Biochemistry and Plant Molecular Physiology, CNRS, INRA, Montpellier SupAgro, Universite Montpellier, Montpellier, France, 34060
| | - Laurence Lejay
- Biochemistry and Plant Molecular Physiology, CNRS, INRA, Montpellier SupAgro, Universite Montpellier, Montpellier, France, 34060
| | - Nigel M Crawford
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, 92093
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - Rodrigo A Gutiérrez
- Millennium Institute for Integrative Biology, Santiago, Chile, 7500565
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, 8331150
- FONDAP Center for Genome Regulation, Santiago, Chile, 8370415
| |
Collapse
|
77
|
Ye J, Tian R, Meng X, Tao P, Li C, Liu G, Chen W, Wang Y, Li H, Ye Z, Zhang Y. Tomato SD1, encoding a kinase-interacting protein, is a major locus controlling stem development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3575-3587. [PMID: 32249906 PMCID: PMC7307856 DOI: 10.1093/jxb/eraa144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/16/2020] [Indexed: 05/20/2023]
Abstract
Stems serve as key determinants of plant development by connecting and supporting parts of the plant body, transporting nutrients important for long-distance communication that affect crop yield, and producing new organs. Nonetheless, studies on the regulation of stem development in crops are rather limited. Here, we found a significant correlation (P<0.001) between stem diameter (SD) and fruit size in tomato (Solanum lycopersicum). We performed a genome-wide association study and identified a novel quantitative trait locus (QTL), SDR9 (stem diameter regulator on CHROMOSOME 9), that co-localized with a gene encoding a kinase-interacting family protein (KIP), which is the most likely candidate gene related to SD (hereafter referred to as SD1). Overexpression of SD1 in thin-stem accessions resulted in increased SD. In contrast, suppressed expression of SD1 in thick-stem accessions using RNA interference exhibited the opposite effect. Further microscopic analyses showed that SD1 affected the stem diameter by controlling the size and number of secondary phloem cells. An 11-bp indel in the promoter region of SD1 that disrupts a gibberellin-responsive cis-element was linked to SD. Expression analysis revealed that SD1 was mainly expressed at the cambium of the stem and positively regulates stem development. Evolutionary analysis revealed that the thick-stem allele of SD1 was selected during the recent process of tomato improvement. Our results provide novel genetic and molecular insight into natural variation of SD in tomato and may accelerate the breeding of high yield tomato.
Collapse
Affiliation(s)
- Jie Ye
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Ranwen Tian
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiangfei Meng
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Peiwen Tao
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changxing Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Genzhong Liu
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Weifang Chen
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Ying Wang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hanxia Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Correspondence: or
| | - Yuyang Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Correspondence: or
| |
Collapse
|
78
|
Wheeldon CD, Bennett T. There and back again: An evolutionary perspective on long-distance coordination of plant growth and development. Semin Cell Dev Biol 2020; 109:55-67. [PMID: 32576500 DOI: 10.1016/j.semcdb.2020.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022]
Abstract
Vascular plants, unlike bryophytes, have a strong root-shoot dichotomy in which the tissue systems are mutually interdependent; roots are completely dependent on shoots for photosynthetic sugars, and shoots are completely dependent on roots for water and mineral nutrients. Long-distance communication between shoot and root is therefore critical for the growth, development and survival of vascular plants, especially with regard to variable environmental conditions. However, this long-distance signalling does not appear an ancestral feature of land plants, and has likely arisen in vascular plants to service the radical alterations in body-plan seen in this taxon. In this review, we examine the defined hormonal root-to-shoot and shoot-to-root signalling pathways that coordinate the growth of vascular plants, with a particular view to understanding how these pathways may have evolved. We highlight the completely divergent roles of isopentenyl-adenine and trans-zeatin cytokinin species in long-distance signalling, and ask whether cytokinin can really be considered as a single class of hormones in the light of recent research. We also discuss the puzzlingly sparse evidence for auxin as a shoot-to-root signal, the evolutionary re-purposing of strigolactones and gibberellins as hormonal signals, and speculate on the possible role of sugars as long-distance signals. We conclude by discussing the 'design principles' of long-distance signalling in vascular plants.
Collapse
Affiliation(s)
- Cara D Wheeldon
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
79
|
Moreno S, Canales J, Hong L, Robinson D, Roeder AH, Gutiérrez RA. Nitrate Defines Shoot Size through Compensatory Roles for Endoreplication and Cell Division in Arabidopsis thaliana. Curr Biol 2020; 30:1988-2000.e3. [DOI: 10.1016/j.cub.2020.03.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/29/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
|
80
|
Zhang Z, Gao S, Chu C. Improvement of nutrient use efficiency in rice: current toolbox and future perspectives. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1365-1384. [PMID: 31919537 DOI: 10.1007/s00122-019-03527-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/24/2019] [Indexed: 05/03/2023]
Abstract
Modern agriculture relies heavily on chemical fertilizers, especially in terms of cereal production. The excess application of fertilizers not only increases production cost, but also causes severe environmental problems. As one of the major cereal crops, rice (Oryza sativa L.) provides the staple food for nearly half of population worldwide, especially in developing countries. Therefore, improving rice yield is always the priority for rice breeding. Macronutrients, especially nitrogen (N) and phosphorus (P), are two most important players for the grain yield of rice. However, with economic development and improved living standard, improving nutritional quality such as micronutrient contents in grains has become a new goal in order to solve the "hidden hunger." Micronutrients, such as iron (Fe), zinc (Zn), and selenium (Se), are critical nutritional elements for human health. Therefore, breeding the rice varieties with improved nutrient use efficiency (NUE) is thought to be one of the most feasible ways to increase both grain yield and nutritional quality with limited fertilizer input. In this review, we summarized the progresses in molecular dissection of genes for NUE by reverse genetics on macronutrients (N and P) and micronutrients (Fe, Zn, and Se), exploring natural variations for improving NUE in rice; and also, the current genetic toolbox and future perspectives for improving rice NUE are discussed.
Collapse
Affiliation(s)
- Zhihua Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
81
|
Regulation of Shoot Apical Meristem and Axillary Meristem Development in Plants. Int J Mol Sci 2020; 21:ijms21082917. [PMID: 32326368 PMCID: PMC7216077 DOI: 10.3390/ijms21082917] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 01/13/2023] Open
Abstract
Plants retain the ability to produce new organs throughout their life cycles. Continuous aboveground organogenesis is achieved by meristems, which are mainly organized, established, and maintained in the shoot apex and leaf axils. This paper will focus on reviewing the recent progress in understanding the regulation of shoot apical meristem and axillary meristem development. We discuss the genetics of plant meristems, the role of plant hormones and environmental factors in meristem development, and the impact of epigenetic factors on meristem organization and function.
Collapse
|
82
|
Oldroyd GED, Leyser O. A plant's diet, surviving in a variable nutrient environment. Science 2020; 368:368/6486/eaba0196. [PMID: 32241923 DOI: 10.1126/science.aba0196] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
As primary producers, plants rely on a large aboveground surface area to collect carbon dioxide and sunlight and a large underground surface area to collect the water and mineral nutrients needed to support their growth and development. Accessibility of the essential nutrients nitrogen (N) and phosphorus (P) in the soil is affected by many factors that create a variable spatiotemporal landscape of their availability both at the local and global scale. Plants optimize uptake of the N and P available through modifications to their growth and development and engagement with microorganisms that facilitate their capture. The sensing of these nutrients, as well as the perception of overall nutrient status, shapes the plant's response to its nutrient environment, coordinating its development with microbial engagement to optimize N and P capture and regulate overall plant growth.
Collapse
Affiliation(s)
- Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK. .,Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
83
|
Conesa CM, Saez A, Navarro-Neila S, de Lorenzo L, Hunt AG, Sepúlveda EB, Baigorri R, Garcia-Mina JM, Zamarreño AM, Sacristán S, del Pozo JC. Alternative Polyadenylation and Salicylic Acid Modulate Root Responses to Low Nitrogen Availability. PLANTS (BASEL, SWITZERLAND) 2020; 9:E251. [PMID: 32079121 PMCID: PMC7076428 DOI: 10.3390/plants9020251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
Abstract
Nitrogen (N) is probably the most important macronutrient and its scarcity limits plant growth, development and fitness. N starvation response has been largely studied by transcriptomic analyses, but little is known about the role of alternative polyadenylation (APA) in such response. In this work, we show that N starvation modifies poly(A) usage in a large number of transcripts, some of them mediated by FIP1, a component of the polyadenylation machinery. Interestingly, the number of mRNAs isoforms with poly(A) tags located in protein-coding regions or 5'-UTRs significantly increases in response to N starvation. The set of genes affected by APA in response to N deficiency is enriched in N-metabolism, oxidation-reduction processes, response to stresses, and hormone responses, among others. A hormone profile analysis shows that the levels of salicylic acid (SA), a phytohormone that reduces nitrate accumulation and root growth, increase significantly upon N starvation. Meta-analyses of APA-affected and fip1-2-deregulated genes indicate a connection between the nitrogen starvation response and salicylic acid (SA) signaling. Genetic analyses show that SA may be important for preventing the overgrowth of the root system in low N environments. This work provides new insights on how plants interconnect different pathways, such as defense-related hormonal signaling and the regulation of genomic information by APA, to fine-tune the response to low N availability.
Collapse
Affiliation(s)
- Carlos M. Conesa
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.M.C.); (S.N.-N.)
- Centro de Biotecnología y Genómica de Plantas (CBGP) and Escuela Técnica Superior de Ingeniería Agronómica, Agroambiental y de Biosistemas (ETSIAAB), Universidad Polictécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Angela Saez
- DTD Development and Technical Department, Timac Agro Spain, 31580 Lodosa, Navarra, Spain; (A.S.); (R.B.)
| | - Sara Navarro-Neila
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.M.C.); (S.N.-N.)
| | - Laura de Lorenzo
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA; (L.d.L.); (A.G.H.)
| | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA; (L.d.L.); (A.G.H.)
| | - Edgar B. Sepúlveda
- Departamento de Biotecnología y Bioingeniería CINVESTAV Instituto Politécnico Nacional, 07360 Ciudad de Mexico, Mexico;
| | - Roberto Baigorri
- DTD Development and Technical Department, Timac Agro Spain, 31580 Lodosa, Navarra, Spain; (A.S.); (R.B.)
| | - Jose M. Garcia-Mina
- Environmental Biology Department, University of Navarra, 31008 Navarra, Spain; (J.M.G.-M.); (A.M.Z.)
| | - Angel M. Zamarreño
- Environmental Biology Department, University of Navarra, 31008 Navarra, Spain; (J.M.G.-M.); (A.M.Z.)
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas (CBGP) and Escuela Técnica Superior de Ingeniería Agronómica, Agroambiental y de Biosistemas (ETSIAAB), Universidad Polictécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Juan C. del Pozo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.M.C.); (S.N.-N.)
| |
Collapse
|
84
|
Han H, Liu X, Zhou Y. Transcriptional circuits in control of shoot stem cell homeostasis. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:50-56. [PMID: 31766002 DOI: 10.1016/j.pbi.2019.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 05/02/2023]
Abstract
Plant shoot apical meristems (SAMs) play essential roles in plant growth and development. Located at the growing tip of a plant stem, these dome-like structures contain stem cells, which serve to perpetuate themselves in an undifferentiated state while continually adding new cells that differentiate and eventually form all above-ground tissues. In a SAM, the pool of stem cells is dynamically maintained through a balance between cell division (self-renewal) and differentiation (loss of stem-cell identity). In the model plant Arabidopsis thaliana, a negative feedback loop between WUSCHEL (WUS) and the CLAVATA3 (CLV3) plays important roles in maintaining the stem cell population. In this review, we highlight recent findings mainly from studies in Arabidopsis, and summarize the research progress on understanding how multiple transcriptional circuits integrate and function at different cell layers to control the WUS-CLV3 loop and stem cell homeostasis.
Collapse
Affiliation(s)
- Han Han
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, United States
| | - Xing Liu
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, United States; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
85
|
Naulin PA, Armijo GI, Vega AS, Tamayo KP, Gras DE, de la Cruz J, Gutiérrez RA. Nitrate Induction of Primary Root Growth Requires Cytokinin Signaling in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2020; 61:342-352. [PMID: 31730198 DOI: 10.1093/pcp/pcz199] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/16/2019] [Indexed: 05/27/2023]
Abstract
Nitrate can act as a potent signal to control growth and development in plants. In this study, we show that nitrate is able to stimulate primary root growth via increased meristem activity and cytokinin signaling. Cytokinin perception and biosynthesis mutants displayed shorter roots as compared with wild-type plants when grown with nitrate as the only nitrogen source. Histological analysis of the root tip revealed decreased cell division and elongation in the cytokinin receptor double mutant ahk2/ahk4 as compared with wild-type plants under a sufficient nitrate regime. Interestingly, a nitrate-dependent root growth arrest was observed between days 5 and 6 after sowing. Wild-type plants were able to recover from this growth arrest, while cytokinin signaling or biosynthesis mutants were not. Transcriptome analysis revealed significant changes in gene expression after, but not before, this transition in contrasting genotypes and nitrate regimes. We identified genes involved in both cell division and elongation as potentially important for primary root growth in response to nitrate. Our results provide evidence linking nitrate and cytokinin signaling for the control of primary root growth in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Pamela A Naulin
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Grace I Armijo
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Andrea S Vega
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Karem P Tamayo
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Diana E Gras
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Javiera de la Cruz
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
86
|
Chen X, Yin Z, Yin Y, Xu C, Wang W, Liu Y, Li T. Effects of Elevated Root-Zone CO 2 on Root Morphology and Nitrogen Metabolism Revealed by Physiological and Transcriptome Analysis in Oriental Melon Seedling Roots. Int J Mol Sci 2020; 21:E803. [PMID: 31991847 PMCID: PMC7037942 DOI: 10.3390/ijms21030803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Rhizosphere CO2 is vital for crop growth, development, and productivity. However, the mechanisms of plants' responses to root-zone CO2 are unclear. Oriental melons are sensitive to root-zone gas, often encountering high root-zone CO2 during cultivation. We investigated root growth and nitrogen metabolism in oriental melons under T1 (0.5%) and T2 (1.0%) root-zone CO2 concentrations using physiology and comparative transcriptome analysis. T1 and T2 increased root vigor and the nitrogen content in the short term. With increased treatment time and CO2 concentration, root inhibition increased, characterized by decreased root absorption, incomplete root cell structure, accelerated starch accumulation and hydrolysis, and cell aging. We identified 1280 and 1042 differentially expressed genes from T1 and T2, respectively, compared with 0.037% CO2-grown plants. Among them, 683 co-expressed genes are involved in stress resistance and nitrogen metabolism (enhanced phenylpropanoid biosynthesis, hormone signal transduction, glutathione metabolism, and starch and sucrose metabolism). Nitrogen metabolism gene expression, enzyme activity, and nitrogen content analyses showed that short-term elevated root-zone CO2 mainly regulated plant nitrogen metabolism post-transcriptionally, and directly inhibited it transcriptionally in the long term. These findings provided a basis for further investigation of nitrogen regulation by candidate genes in oriental melons under elevated root-zone CO2.
Collapse
Affiliation(s)
- Xinyu Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.C.); (Z.Y.); (Y.Y.); (C.X.); (W.W.)
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Zepeng Yin
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.C.); (Z.Y.); (Y.Y.); (C.X.); (W.W.)
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yang Yin
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.C.); (Z.Y.); (Y.Y.); (C.X.); (W.W.)
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Chuanqiang Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.C.); (Z.Y.); (Y.Y.); (C.X.); (W.W.)
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Wanxin Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.C.); (Z.Y.); (Y.Y.); (C.X.); (W.W.)
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yiling Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.C.); (Z.Y.); (Y.Y.); (C.X.); (W.W.)
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.C.); (Z.Y.); (Y.Y.); (C.X.); (W.W.)
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| |
Collapse
|
87
|
Wany A, Pathak PK, Gupta KJ. Methods for Measuring Nitrate Reductase, Nitrite Levels, and Nitric Oxide from Plant Tissues. Methods Mol Biol 2020; 2057:15-26. [PMID: 31595466 DOI: 10.1007/978-1-4939-9790-9_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitrogen (N) is one of the most important nutrients which exist in both inorganic and organic forms. Plants assimilate inorganic form of N [nitrate (NO3-), nitrite (NO2-) or ammonium (NH4+)] and incorporate into amino acids. The metabolism of N involves a series of events such as sensing, uptake, and assimilation. The initial stage is sensing, triggered by nitrate or ammonium signals initiating signal transduction processes in N metabolism. The assimilation pathway initiates with NO3-/NH4+ transport to roots via specific high and low affinity (HATs and LATs) nitrate transporters or directly via ammonium transporters (AMTs). In cytosol the NO3- is reduced to NO2- by cytosolic nitrate reductase (NR) and the produced NO2- is further reduced to NH4+ by nitrite reductase (NiR) in plastids. NR has capability to reduce NO2- to nitric oxide (NO) under specific conditions such as hypoxia, low pH, and pathogen infection. The produced NO acts as a signal for wide range of processes such as plant growth development and stress. Here, we provide methods to measure NR activity, NO2- levels, and NO production in plant tissues.
Collapse
Affiliation(s)
- Aakanksha Wany
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India.
| | - Pradeep Kumar Pathak
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
88
|
Vega A, O'Brien JA, Gutiérrez RA. Nitrate and hormonal signaling crosstalk for plant growth and development. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:155-163. [PMID: 31726384 DOI: 10.1016/j.pbi.2019.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 05/22/2023]
Abstract
Nitrate is an essential macronutrient for plants, a primary nitrogen source in natural and human-made ecosystems. Nitrate can also act as a signaling molecule that directs genome-wide gene expression changes with an impact on plant metabolism, physiology, growth and development. Nitrate and phytohormone signaling pathways crosstalk to modulate growth and developmental programs in a multifactorial manner. Nitrate-signaling controls plant growth and development using molecular mechanisms that involve phytohormone-signaling pathways. In contrast, many phytohormones modulate or impact nitrate signaling in interconnected pathways. In this review, we explore recent progress in our understanding of well-documented connections between nitrate and phytohormones such as auxin, cytokinin and abscisic acid. We also discuss recent studies connecting nitrate to other phytohormones such as ethylene, salicylic acid, gibberellins and brassinosteroids. While many molecular details remain to be elucidated, a number of core signaling components at the intersection between nitrate and the major hormonal pathways have been described. We focus on established interactions of nitrate and different hormonal pathways to bring about cellular, growth and developmental processes in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Andrea Vega
- FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile
| | - José Antonio O'Brien
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile.
| |
Collapse
|
89
|
Kitagawa M, Balkunde R, Bui H, Jackson D. An Aminoacyl tRNA Synthetase, OKI1, Is Required for Proper Shoot Meristem Size in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:2597-2608. [PMID: 31393575 DOI: 10.1093/pcp/pcz153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
In plants, the stem cells that form the shoot system reside within the shoot apical meristem (SAM), which is regulated by feedback signaling between the WUSCHEL (WUS) homeobox protein and CLAVATA (CLV) peptides and receptors. WUS-CLV feedback signaling can be modulated by various endogenous or exogenous factors, such as chromatin state, hormone signaling, reactive oxygen species (ROS) signaling and nutrition, leading to a dynamic control of SAM size corresponding to meristem activity. Despite these insights, however, the knowledge of genes that control SAM size is still limited, and in particular, the regulation by ROS signaling is only beginning to be comprehended. In this study, we report a new function in maintenance of SAM size, encoded by the OKINA KUKI1 (OKI1) gene. OKI1 is expressed in the SAM and encodes a mitochondrial aspartyl tRNA synthetase (AspRS). oki1 mutants display enlarged SAMs with abnormal expression of WUS and CLV3 and overaccumulation of ROS in the meristem. Our findings support the importance of normal AspRS function in the maintenance of the WUS-CLV3 feedback loop and SAM size.
Collapse
Affiliation(s)
- Munenori Kitagawa
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
| | - Rachappa Balkunde
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, USA
| | - Huyen Bui
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
- Center of Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
| |
Collapse
|
90
|
Fal K, Cortes M, Liu M, Collaudin S, Das P, Hamant O, Trehin C. Paf1c defects challenge the robustness of flower meristem termination in Arabidopsis thaliana. Development 2019; 146:dev.173377. [PMID: 31540913 PMCID: PMC6826038 DOI: 10.1242/dev.173377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 09/11/2019] [Indexed: 11/20/2022]
Abstract
Although accumulating evidence suggests that gene regulation is highly stochastic, genetic screens have successfully uncovered master developmental regulators, questioning the relationship between transcriptional noise and intrinsic robustness of development. To identify developmental modules that are more or less resilient to large-scale genetic perturbations, we used the Arabidopsis polymerase II-associated factor 1 complex (Paf1c) mutant vip3, which is impaired in several RNA polymerase II-dependent transcriptional processes. We found that the control of flower termination was not as robust as classically pictured. In angiosperms, the floral female organs, called carpels, display determinate growth: their development requires the arrest of stem cell maintenance. In vip3 mutant flowers, carpels displayed a highly variable morphology, with different degrees of indeterminacy defects up to wild-type size inflorescence emerging from carpels. This phenotype was associated with variable expression of two key regulators of flower termination and stem cell maintenance in flowers, WUSCHEL and AGAMOUS. The phenotype was also dependent on growth conditions. Together, these results highlight the surprisingly plastic nature of stem cell maintenance in plants and its dependence on Paf1c. Summary: Using a mutant with increased transcriptional noise, we reveal that stem cell maintenance is not as robust as anticipated in plants, even leading to major defects in essential developmental processes such as flower indeterminacy.
Collapse
Affiliation(s)
- Kateryna Fal
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Matthieu Cortes
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mengying Liu
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Sam Collaudin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Pradeep Das
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
91
|
Shimotohno A, Scheres B. Topology of regulatory networks that guide plant meristem activity: similarities and differences. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:74-80. [PMID: 31102928 DOI: 10.1016/j.pbi.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Plants adapt their morphology in response to variable environmental conditions such as nitrate availability, drought, and temperature shifts. Three crucial aspects to this developmental plasticity are the control of initiation, identity and activity of meristems. At the cellular level, the activity of meristems is controlled by balancing self-renewal in stem cells, amplifying divisions in their daughter cells, and cell differentiation. Recent studies in plants have uncovered transcription factors regulating meristem activity at cellular resolution, and regulatory networks that couple these factors with phytohormone signalling for global plant growth regulation. Here, we highlight selected recent advances in our understanding of the multidimensional transcriptional networks that regulate meristem activity and discuss emerging insights on how a selection of environmental cues impinges on these networks.
Collapse
Affiliation(s)
- Akie Shimotohno
- Department of Biological Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Ben Scheres
- Department of Plant Sciences, Wageningen University and Research, Wageningen 6708PB, The Netherlands; Rijk Zwaan Research and Development, Fijnaart 4793 RS, The Netherlands.
| |
Collapse
|
92
|
Osorio MB, Ng S, Berkowitz O, De Clercq I, Mao C, Shou H, Whelan J, Jost R. SPX4 Acts on PHR1-Dependent and -Independent Regulation of Shoot Phosphorus Status in Arabidopsis. PLANT PHYSIOLOGY 2019; 181:332-352. [PMID: 31262954 PMCID: PMC6716250 DOI: 10.1104/pp.18.00594] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/21/2019] [Indexed: 05/19/2023]
Abstract
Phosphorus (P) is an essential macronutrient for all living organisms and limits plant growth. Four proteins comprising a single SYG1/Pho81/XPR1 (SPX) domain, SPX1 to SPX4, are putative phosphate-dependent inhibitors of Arabidopsis (Arabidopsis thaliana) PHOSPHATE STARVATION RESPONSE1 (PHR1), the master transcriptional activator of phosphate starvation responses. This work demonstrated that SPX4 functions as a negative regulator not only of PHR1-dependent but also of PHR1-independent responses in P-replete plants. Transcriptomes of P-limited spx4 revealed that, unlike SPX1 and SPX2, SPX4 modulates the shoot phosphate starvation response but not short-term recovery after phosphate resupply. In roots, transcriptional regulation of P status is SPX4 independent. Genes misregulated in spx4 shoots intersect with both PHR1-dependent and PHOSPHATE2-dependent signaling networks associated with plant development, senescence, and ion/metabolite transport. Gene regulatory network analyses suggested that SPX4 interacts with transcription factors other than PHR1, such as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN55, known regulators of shoot development. Transient expression studies in protoplasts indicated that PHR1 retention in the cytosol by SPX4 occurs in a dose- and P-status-dependent manner. Using a luciferase reporter in vivo, SPX4 expression kinetics and stability revealed that SPX4 is a short-lived protein with P-status-dependent turnover. SPX4 protein levels were quickly restored by phosphate resupply to P-limited plants. Unlike its monocot ortholog, AtSPX4 was not stabilized by the phosphate analog phosphite, implying that intracellular P status is sensed by its SPX domain via phosphate-rich metabolite signals.
Collapse
Affiliation(s)
- Marina Borges Osorio
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Sophia Ng
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Inge De Clercq
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zi Jin Gang Campus, Zhejiang University, Hangzhou 310058, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zi Jin Gang Campus, Zhejiang University, Hangzhou 310058, China
| | - James Whelan
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Ricarda Jost
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
93
|
Lee ZH, Hirakawa T, Yamaguchi N, Ito T. The Roles of Plant Hormones and Their Interactions with Regulatory Genes in Determining Meristem Activity. Int J Mol Sci 2019; 20:ijms20164065. [PMID: 31434317 PMCID: PMC6720427 DOI: 10.3390/ijms20164065] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
Plants, unlike animals, have developed a unique system in which they continue to form organs throughout their entire life cycle, even after embryonic development. This is possible because plants possess a small group of pluripotent stem cells in their meristems. The shoot apical meristem (SAM) plays a key role in forming all of the aerial structures of plants, including floral meristems (FMs). The FMs subsequently give rise to the floral organs containing reproductive structures. Studies in the past few decades have revealed the importance of transcription factors and secreted peptides in meristem activity using the model plant Arabidopsis thaliana. Recent advances in genomic, transcriptomic, imaging, and modeling technologies have allowed us to explore the interplay between transcription factors, secreted peptides, and plant hormones. Two different classes of plant hormones, cytokinins and auxins, and their interaction are particularly important for controlling SAM and FM development. This review focuses on the current issues surrounding the crosstalk between the hormonal and genetic regulatory network during meristem self-renewal and organogenesis.
Collapse
Affiliation(s)
- Ze Hong Lee
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Takeshi Hirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
94
|
Thomas HR, Frank MH. Connecting the pieces: uncovering the molecular basis for long-distance communication through plant grafting. THE NEW PHYTOLOGIST 2019; 223:582-589. [PMID: 30834529 DOI: 10.1111/nph.15772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/19/2019] [Indexed: 05/23/2023]
Abstract
Vascular plants are wired with a remarkable long-distance communication system. This network can span from as little as a few centimeters (or less) in species like Arabidopsis, up to 100 m in the tallest giant sequoia, linking distant organ systems into a unified, multicellular organism. Grafting is a fundamental technique that allows researchers to physically break apart and reassemble the long-distance transport system, enabling the discovery of molecular signals that underlie intraorganismal communication. In this review, we highlight how plant grafting has facilitated the discovery of new long-distance signaling molecules that function in coordinating developmental transitions, abiotic and biotic responses, and cross-species interactions. This rapidly expanding area of research offers sustainable approaches for improving plant performance in the laboratory, the field, the orchard, and beyond.
Collapse
Affiliation(s)
- Hannah R Thomas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Margaret H Frank
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
95
|
Olas JJ, Van Dingenen J, Abel C, Działo MA, Feil R, Krapp A, Schlereth A, Wahl V. Nitrate acts at the Arabidopsis thaliana shoot apical meristem to regulate flowering time. THE NEW PHYTOLOGIST 2019; 223:814-827. [PMID: 30903620 PMCID: PMC6618062 DOI: 10.1111/nph.15812] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/15/2019] [Indexed: 05/12/2023]
Abstract
Optimal timing of flowering, a major determinant for crop productivity, is controlled by environmental and endogenous cues. Nutrients are known to modify flowering time; however, our understanding of how nutrients interact with the known pathways, especially at the shoot apical meristem (SAM), is still incomplete. Given the negative side-effects of nitrogen fertilization, it is essential to understand its mode of action for sustainable crop production. We investigated how a moderate restriction by nitrate is integrated into the flowering network at the SAM, to which plants can adapt without stress symptoms. This condition delays flowering by decreasing expression of SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) at the SAM. Measurements of nitrate and the responses of nitrate-responsive genes suggest that nitrate functions as a signal at the SAM. The transcription factors NIN-LIKE PROTEIN 7 (NLP7) and NLP6, which act as master regulators of nitrate signaling by binding to nitrate-responsive elements (NREs), are expressed at the SAM and flowering is delayed in single and double mutants. Two upstream regulators of SOC1 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) and SPL5) contain functional NREs in their promoters. Our results point at a tissue-specific, nitrate-mediated flowering time control in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Justyna Jadwiga Olas
- Department of Metabolic NetworksMax Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476PotsdamGermany
| | - Judith Van Dingenen
- Department of Metabolic NetworksMax Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476PotsdamGermany
| | - Christin Abel
- Department of Metabolic NetworksMax Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476PotsdamGermany
| | - Magdalena Anna Działo
- Department of Metabolic NetworksMax Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476PotsdamGermany
| | - Regina Feil
- Department of Metabolic NetworksMax Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476PotsdamGermany
| | - Anne Krapp
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐Saclay78000VersaillesFrance
| | - Armin Schlereth
- Department of Metabolic NetworksMax Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476PotsdamGermany
| | - Vanessa Wahl
- Department of Metabolic NetworksMax Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
96
|
Liu CJ, Zhao Y, Zhang K. Cytokinin Transporters: Multisite Players in Cytokinin Homeostasis and Signal Distribution. FRONTIERS IN PLANT SCIENCE 2019; 10:693. [PMID: 31214217 PMCID: PMC6555093 DOI: 10.3389/fpls.2019.00693] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/08/2019] [Indexed: 05/04/2023]
Abstract
Cytokinins (CKs) are a group of mobile adenine derivatives that act as chemical signals regulating a variety of biological processes implicated in plant development and stress responses. Their synthesis, homeostasis, and signaling perception evoke complicated intracellular traffic, intercellular movement, and in short- and long-distance translocation. Over nearly two decades, subsets of membrane transporters have been recognized and implicated in the transport of CKs as well as the related adenylates. In this review, we aim to recapitulate the key progresses in exploration of the transporter proteins involved in cytokinin traffic and translocation, discuss their functional implications in the cytokinin-mediated paracrine and long-distance communication, and highlight some knowledge gaps and open issues toward comprehensively understanding the molecular mechanism of membrane transporters in controlling spatiotemporal distribution of cytokinin species.
Collapse
Affiliation(s)
- Chang-Jun Liu
- Department of Biology, Brookhaven National Laboratory, Upton, NY, United States
| | - Yunjun Zhao
- Department of Biology, Brookhaven National Laboratory, Upton, NY, United States
| | - Kewei Zhang
- Department of Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
97
|
Miri M, Janakirama P, Huebert T, Ross L, McDowell T, Orosz K, Markmann K, Szczyglowski K. Inside out: root cortex-localized LHK1 cytokinin receptor limits epidermal infection of Lotus japonicus roots by Mesorhizobium loti. THE NEW PHYTOLOGIST 2019; 222:1523-1537. [PMID: 30636324 DOI: 10.1111/nph.15683] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/03/2019] [Indexed: 05/27/2023]
Abstract
During Lotus japonicus-Mesorhizobium loti symbiosis, the LOTUS HISTIDINE KINASE1 (LHK1) cytokinin receptor regulates both the initiation of nodule formation and the scope of root infection. However, the exact spatiotemporal mechanism by which this receptor exerts its symbiotic functions has remained elusive. In this study, we performed cell type-specific complementation experiments in the hyperinfected lhk1-1 mutant background, targeting LHK1 to either the root epidermis or the root cortex. We also utilized various genetic backgrounds to characterize expression of several genes regulating symbiotic infection. We show here that expression of LHK1 in the root cortex is required and sufficient to regulate both nodule formation and epidermal infections. The LHK1-dependent signalling that restricts subsequent infection events is triggered before initial cell divisions for nodule primordium formation. We also demonstrate that AHK4, the Arabidopsis orthologue of LHK1, is able to regulate M. loti infection in L. japonicus, suggesting that an endogenous cytokinin receptor could be sufficient for engineering nitrogen-fixing root nodule symbiosis in nonlegumes. Our data provide experimental evidence for the existence of an LHK1-dependent root cortex-to-epidermis feedback mechanism regulating rhizobial infection. This root-localized regulatory module functionally links with the systemic autoregulation of nodulation (AON) to maintain the homeostasis of symbiotic infection.
Collapse
Affiliation(s)
- Mandana Miri
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, ON, N6A 5BF, Canada
| | - Preetam Janakirama
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - Terry Huebert
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - Loretta Ross
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - Tim McDowell
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - Kathleen Orosz
- Fanshawe College, 1001 Fanshawe College Boulevard, London, ON, N5Y 5R6, Canada
| | - Katharina Markmann
- The Center for Plant Molecular Biology, Tübingen University, 72076, Tübingen, Germany
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, ON, N6A 5BF, Canada
| |
Collapse
|
98
|
Abstract
A fascinating feature of plant growth and development is that plants initiate organs continually throughout their lifespan. The ability to do this relies on specialized groups of pluripotent stem cells termed meristems, which allow for the elaboration of the shoot, root, and vascular systems. We now have a deep understanding of the genetic networks that control meristem initiation and stem cell maintenance, including the roles of receptors and their ligands, transcription factors, and integrated hormonal and chromatin control. This review describes these networks and discusses how this knowledge is being applied to improve crop productivity by increasing fruit size and seed number.
Collapse
Affiliation(s)
- Munenori Kitagawa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
99
|
Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmülling T. Cytokinin action in response to abiotic and biotic stresses in plants. PLANT, CELL & ENVIRONMENT 2019; 42:998-1018. [PMID: 30488464 DOI: 10.1111/pce.13494] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 05/20/2023]
Abstract
The phytohormone cytokinin was originally discovered as a regulator of cell division. Later, it was described to be involved in regulating numerous processes in plant growth and development including meristem activity, tissue patterning, and organ size. More recently, diverse functions for cytokinin in the response to abiotic and biotic stresses have been reported. Cytokinin is required for the defence against high light stress and to protect plants from a novel type of abiotic stress caused by an altered photoperiod. Additionally, cytokinin has a role in the response to temperature, drought, osmotic, salt, and nutrient stress. Similarly, the full response to certain plant pathogens and herbivores requires a functional cytokinin signalling pathway. Conversely, different types of stress impact cytokinin homeostasis. The diverse functions of cytokinin in responses to stress and crosstalk with other hormones are described. Its emerging roles as a priming agent and as a regulator of growth-defence trade-offs are discussed.
Collapse
Affiliation(s)
- Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Jan Erik Leuendorf
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Manuel Frank
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Daniela Pezzetta
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Sylvia Bolt
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| |
Collapse
|
100
|
Uchida N, Torii KU. Stem cells within the shoot apical meristem: identity, arrangement and communication. Cell Mol Life Sci 2019; 76:1067-1080. [PMID: 30523363 PMCID: PMC11105333 DOI: 10.1007/s00018-018-2980-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
Stem cells are specific cells that renew themselves and also provide daughter cells for organ formation. In plants, primary stem cell populations are nurtured within shoot and root apical meristems (SAM and RAM) for the production of aerial and underground parts, respectively. This review article summarizes recent progress on control of stem cells in the SAM from studies of the model plant Arabidopsis thaliana. To that end, a brief overview of the RAM is provided first to emphasize similarities and differences between the two apical meristems, which would help in better understanding of stem cells in the SAM. Subsequently, we will discuss in depth how stem cells are arranged in an organized manner in the SAM, how dynamically the stem cell identity is regulated, what factors participate in stem cell control, and how intercellular communication by mobile signals modulates stem cell behaviors within the SAM. Remaining questions and perspectives are also presented for future studies.
Collapse
Affiliation(s)
- Naoyuki Uchida
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|