51
|
Minassian D, Shan L, Dong C, Charania AN, Orihuela CJ, He C. Neighborhood-level disadvantages increase risk for invasive pneumococcal disease. Am J Med Sci 2024; 367:304-309. [PMID: 38340982 PMCID: PMC10999322 DOI: 10.1016/j.amjms.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/21/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Streptococcus pneumoniae (Spn) infection remains common worldwide despite recent vaccine efforts. Invasive pneumococcal disease (IPD) is the most severe form of Spn infection. Known individual risk factors for IPD include male gender and African American race. However, area-level socioeconomic factors have not been assessed. We examined the association of neighborhood-level disadvantages and risk of IPD in a tertiary medical center located in a socioeconomic diverse urban area in the Southeastern United States. METHODS Patients hospitalized with culture-confirmed Streptococcus pneumoniae (Spn) infection from 01/01/2010 - 12/31/2019 were identified from electronic health record (EHR). The cohort's demographic and clinical information were obtained from EHR. Patients' residential address was geocoded and matched to 2015 area deprivation index (ADI). The association of ADI and IPD was evaluated using logistic regression after controlling for the demographic information (age, sex, race) and clinical factors (BMI, smoking status, alcoholism, immunosuppressive status, vaccination status, comorbidities). RESULTS A total of 268 patients were hospitalized with culture-positive Streptococcus pneumoniae infection and 92 (34.3%) of them had IPD. The analysis showed that higher neighborhood deprivation (ADI in 79-100) was associated with increased risk of developing IPD in younger patients with age less than 65 (p = 0.007) after controlling for the individual demographic information and clinical factors. CONCLUSIONS ADI is a risk factor for IPD in younger adults. Community-level socioeconomic risk factors should be considered when developing prevention strategies such as increasing vaccine uptake in high risk population to reduce the disease burden of IPD.
Collapse
Affiliation(s)
- Daniel Minassian
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Liang Shan
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chaoling Dong
- Division of Infectious Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Arzoo N Charania
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao He
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
52
|
Moon S, Han S, Jang IH, Ryu J, Rha MS, Cho HJ, Yoon SS, Nam KT, Kim CH, Park MS, Seong JK, Lee WJ, Yoon JH, Chung YW, Ryu JH. Airway epithelial CD47 plays a critical role in inducing influenza virus-mediated bacterial super-infection. Nat Commun 2024; 15:3666. [PMID: 38693120 PMCID: PMC11063069 DOI: 10.1038/s41467-024-47963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Respiratory viral infection increases host susceptibility to secondary bacterial infections, yet the precise dynamics within airway epithelia remain elusive. Here, we elucidate the pivotal role of CD47 in the airway epithelium during bacterial super-infection. We demonstrated that upon influenza virus infection, CD47 expression was upregulated and localized on the apical surface of ciliated cells within primary human nasal or bronchial epithelial cells. This induced CD47 exposure provided attachment sites for Staphylococcus aureus, thereby compromising the epithelial barrier integrity. Through bacterial adhesion assays and in vitro pull-down assays, we identified fibronectin-binding proteins (FnBP) of S. aureus as a key component that binds to CD47. Furthermore, we found that ciliated cell-specific CD47 deficiency or neutralizing antibody-mediated CD47 inactivation enhanced in vivo survival rates. These findings suggest that interfering with the interaction between airway epithelial CD47 and pathogenic bacterial FnBP holds promise for alleviating the adverse effects of super-infection.
Collapse
Affiliation(s)
- Sungmin Moon
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seunghan Han
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - In-Hwan Jang
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaechan Ryu
- Microenvironment and Immunity Unit, Institut Pasteur, INSERM U1224, Paris, France
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Airway Mucus Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ki Taek Nam
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Airway Mucus Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Vaccine Innovation Center, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, Republic of Korea
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won-Jae Lee
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Airway Mucus Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Youn Wook Chung
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Airway Mucus Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
53
|
Cohn O, Yankovitz G, Mandelboim M, Peshes-Yaloz N, Brandes R, Bacharach E, Gat-Viks I. The host transcriptional response to superinfection by influenza A virus and Streptococcus pneumoniae. mSystems 2024; 9:e0104823. [PMID: 38446104 PMCID: PMC11019783 DOI: 10.1128/msystems.01048-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Secondary bacterial challenges during influenza virus infection "superinfection") cause excessive mortality and hospitalization. Here, we present a longitudinal study of bulk gene expression changes in murine lungs during superinfection, with an initial influenza A virus infection and a subsequent Streptococcus pneumoniae infection. In addition to the well-characterized impairment of the host response, we identified superinfection-specific alterations in the global transcriptional program that are linked to the host's ability to resist the pathogens. Particularly, whereas superinfected mice manifested an excessive rapid induction of the resistance-to-infection program, there was a substantial tissue-level rewiring of this program: upon superinfection, interferon-regulated genes were switched from positive to negative correlations with the host's resistance state, whereas genes of fatty acid metabolism switched from negative to positive correlations with resistance states. Thus, the transcriptional resistance state in superinfection is reprogrammed toward repressed interferon signaling and induced fatty acid metabolism. Our findings suggest new insights into a tissue-level remodeling of the host defense upon superinfection, providing promising targets for future therapeutic interventions. IMPORTANCE Secondary bacterial infections are the most frequent complications during influenza A virus (IAV) pandemic outbreaks, contributing to excessive morbidity and mortality in the human population. Most IAV-related deaths are attributed to Streptococcus pneumoniae (SP) infections, which usually begin within the first week of IAV infection in the respiratory tracts. Here, we focused on longitudinal transcriptional responses during a superinfection model consisting of an SP infection that follows an initial IAV infection, comparing superinfection to an IAV-only infection, an SP-only infection, and control treatments. Our longitudinal data allowed a fine analysis of gene expression changes during superinfection. For instance, we found that superinfected mice exhibited rapid gene expression induction or reduction within the first 12 h after encountering the second pathogen. Cell proliferation and immune response activation processes were upregulated, while endothelial processes, vasculogenesis, and angiogenesis were downregulated, providing promising targets for future therapeutic interventions. We further analyzed the longitudinal transcriptional responses in the context of a previously defined spectrum of the host's resistance state, revealing superinfection-specific reprogramming of resistance states, such as reprogramming of fatty acid metabolism and interferon signaling. The reprogrammed functions are compelling new targets for switching the pathogenic superinfection state into a single-infection state.
Collapse
Affiliation(s)
- Ofir Cohn
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gal Yankovitz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naama Peshes-Yaloz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Brandes
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bacharach
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Irit Gat-Viks
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
54
|
Ma Y, Gao Q. Clinical characteristics and assessment of risk factors in patients with influenza A-induced severe pneumonia after the prevalence of SARS-CoV-2. Open Med (Wars) 2024; 19:20240953. [PMID: 38633219 PMCID: PMC11022039 DOI: 10.1515/med-2024-0953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose The aim of this study is to describe the novel epidemiological and clinical characteristics of influenza A-induced severe pneumonia occurring after the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to further assess its potential risk factors for mortality. Methods We retrospectively studied the consecutive case series of 30 patients with confirmed influenza A-induced severe pneumonia treated in the intensive care unit at Dazhou Central Hospital in Sichuan, China, from March 1 to April 30, 2023. Logistic regression was used to analyze the independent risk factors, and receiver operating characteristic (ROC) curves were applied to evaluate the predictive efficacy of associated risk factors for mortality. Results The mortality rate was 33.3% in this study. Independent risk factors for mortality of patients were acute respiratory distress syndrome (ARDS) (p = 0.044) and septic shock (p = 0.012). ROC statistics for ARDS and septic shock to predict mortality in patients with influenza A-induced severe pneumonia demonstrated an area under the curve of 0.800 (sensitivity 80.0%, specificity 80.0%) and 0.825 (sensitivity 70.0%, specificity 95.0%), respectively. Conclusion ARDS and septic shock were the independent risk factors for mortality in patients with influenza A-induced severe pneumonia following the end of the SARS-CoV-2 pandemic. But high level of next generation sequencing reads Aspergillus coinfection, and comorbidities did not increase death risk of the study population.
Collapse
Affiliation(s)
- Yujie Ma
- Department of Cardiovascular Medicine, Dazhou Dachuan District People’s Hospital (Dazhou Third People’s Hospital), Dazhou, China
| | - Qiang Gao
- Department of Critical Care Medicine, Dazhou Central Hospital, No. 56 Nanyuemiao Street, Tongchuan District, Dazhou, 635000, Sichuan, China
| |
Collapse
|
55
|
Majumder S, Li P, Das S, Nafiz TN, Kumar S, Bai G, Dellario H, Sui H, Guan Z, Curtiss R, Furuya Y, Sun W. A bacterial vesicle-based pneumococcal vaccine against influenza-mediated secondary Streptococcus pneumoniae pulmonary infection. Mucosal Immunol 2024; 17:169-181. [PMID: 38215909 PMCID: PMC11033695 DOI: 10.1016/j.mucimm.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Streptococcus pneumoniae (Spn) is a common pathogen causing a secondary bacterial infection following influenza, which leads to severe morbidity and mortality during seasonal and pandemic influenza. Therefore, there is an urgent need to develop bacterial vaccines that prevent severe post-influenza bacterial pneumonia. Here, an improved Yersinia pseudotuberculosis strain (designated as YptbS46) possessing an Asd+ plasmid pSMV92 could synthesize high amounts of the Spn pneumococcal surface protein A (PspA) antigen and monophosphoryl lipid A as an adjuvant. The recombinant strain produced outer membrane vesicles (OMVs) enclosing a high amount of PspA protein (designated as OMV-PspA). A prime-boost intramuscular immunization with OMV-PspA induced both memory adaptive and innate immune responses in vaccinated mice, reduced the viral and bacterial burden, and provided complete protection against influenza-mediated secondary Spn infection. Also, the OMV-PspA immunization afforded significant cross-protection against the secondary Spn A66.1 infection and long-term protection against the secondary Spn D39 challenge. Our study implies that an OMV vaccine delivering Spn antigens can be a new promising pneumococcal vaccine candidate.
Collapse
Affiliation(s)
- Saugata Majumder
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Peng Li
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Tanvir Noor Nafiz
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Hazel Dellario
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Yoichi Furuya
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA.
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
56
|
Agarwal A, Jayashree M, Angurana SK, Sharma R, Ghosh A, Singh MP, Nallasamy K, Bansal A. Clinical Profile, Intensive Care Needs and Predictors of Outcome Among Children Admitted with Non-COVID Severe Acute Respiratory Illness (SARI) During the Pandemic. Indian J Pediatr 2024; 91:329-336. [PMID: 37870740 DOI: 10.1007/s12098-023-04860-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/28/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVES To study the epidemiology of non-coronavirus disease-2019 (non-COVID-19) respiratory viral infections with respect to their clinical profile, intensive care needs and predictors of outcome once the non-pharmacological interventions (NPI) during the coronavirus disease-2019 (COVID-19) pandemic were relaxed. METHODS Retrospective analysis of children with Severe Acute Respiratory Illness (SARI) who were SARS-CoV-2 negative, admitted to the Pediatric Emergency/Intensive Care Unit (PICU) from July 2021 through October 2021 was conducted. RESULTS One hundred and thirty nine children with median age of 11 (4-28.5) mo were included. Besides respiratory symptoms in all, diarrhea was reported in 90 (64.7%) children. Nearly half (n = 66; 47%) presented in hypoxemic respiratory failure (SpO2 <88%). Fifty-two (37.4%) children had co-morbidities, commonest being congenital heart disease in 12 (23.1%). Baseline parameters revealed leukopenia (specifically lymphopenia) 39 (28%), elevated aspartate transaminase [Serum glutamic-oxaloacetic transaminase (SGOT)] in 108 (77.6%), elevated N-acetyl-cysteine-activated creatinine kinase (CK-NAC) 23 (79%) and lactate dehydrogenase (LDH) 15 (88%). Intensive care needs included mechanical ventilation 51 (36.6%), vasoactive support 34 (24.5%), and renal replacement therapy 10 (7.1%). Forty-two (30.2%) children developed multi-organ dysfunction syndrome (MODS). One hundred and three (74.1%) children were discharged, 31 (22.3%) died, and 5 (3.6%) left against medical advice. On multivariate regression analysis, elevated liver enzymes (>5 times normal), hypoxemic respiratory failure at admission, hypotensive shock and MODS predicted mortality. CONCLUSIONS A surge in non-COVID SARI was observed once lockdown measures were relaxed. Nearly 1/3rd progressed to multi-organ failure and died. Elevated liver enzymes, hypoxemic respiratory failure at admission, hypotensive shock and MODS predicted death.
Collapse
Affiliation(s)
- Ashish Agarwal
- Division of Pediatric Emergency and Intensive Care, Department of Pediatrics, Advanced Pediatrics Centre (APC), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Muralidharan Jayashree
- Division of Pediatric Emergency and Intensive Care, Department of Pediatrics, Advanced Pediatrics Centre (APC), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Suresh Kumar Angurana
- Division of Pediatric Emergency and Intensive Care, Department of Pediatrics, Advanced Pediatrics Centre (APC), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Raman Sharma
- Division of Pediatric Emergency and Intensive Care, Department of Pediatrics, Advanced Pediatrics Centre (APC), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arnab Ghosh
- Department of Virology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mini P Singh
- Department of Virology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Karthi Nallasamy
- Division of Pediatric Emergency and Intensive Care, Department of Pediatrics, Advanced Pediatrics Centre (APC), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arun Bansal
- Division of Pediatric Emergency and Intensive Care, Department of Pediatrics, Advanced Pediatrics Centre (APC), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
57
|
Colvin KL, Wolter-Warmerdam K, Hickey F, Yeager ME. Altered peripheral blood leukocyte subpopulations, function, and gene expression in children with Down syndrome: implications for respiratory tract infection. Eur J Med Genet 2024; 68:104922. [PMID: 38325643 DOI: 10.1016/j.ejmg.2024.104922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/12/2023] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVES We tested the hypothesis that aberrant expression of Hsa21-encoded interferon genes in peripheral blood immune cells would correlate to immune cell dysfunction in children with Down syndrome (DS). STUDY DESIGN We performed flow cytometry to quantify peripheral blood leukocyte subtypes and measured their ability to migrate and phagocytose. In matched samples, we measured gene expression levels for constituents of interferon signaling pathways. We screened 49 children, of which 29 were individuals with DS. RESULTS We show that the percentages of two peripheral blood myeloid cell subtypes (alternatively-activated macrophages and low-density granulocytes) in children with DS differed significantly from typical children, children with DS circulate a very different pattern of cytokines vs. typical individuals, and higher expression levels of type III interferon receptor Interleukin-10Rb in individuals with DS correlated with reduced migratory and phagocytic capacity of macrophages. CONCLUSIONS Increased susceptibility to severe and chronic infection in children with DS may result from inappropriate numbers and subtypes of immune cells that are phenotypically and functionally altered due to trisomy 21 associated interferonopathy.
Collapse
Affiliation(s)
- Kelley L Colvin
- Department of Bioengineering, University of Colorado Denver, Aurora, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Denver, Aurora, USA
| | | | - Francis Hickey
- Anna and John J. Sie Center for Down Syndrome, Children's Hospital Colorado, Aurora, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, USA
| | - Michael E Yeager
- Department of Bioengineering, University of Colorado Denver, Aurora, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Denver, Aurora, USA.
| |
Collapse
|
58
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
59
|
Cilloniz C, Dy-Agra G, Pagcatipunan RS, Torres A. Viral Pneumonia: From Influenza to COVID-19. Semin Respir Crit Care Med 2024; 45:207-224. [PMID: 38228165 DOI: 10.1055/s-0043-1777796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Respiratory viruses are increasingly recognized as a cause of community-acquired pneumonia (CAP). The implementation of new diagnostic technologies has facilitated their identification, especially in vulnerable population such as immunocompromised and elderly patients and those with severe cases of pneumonia. In terms of severity and outcomes, viral pneumonia caused by influenza viruses appears similar to that caused by non-influenza viruses. Although several respiratory viruses may cause CAP, antiviral therapy is available only in cases of CAP caused by influenza virus or respiratory syncytial virus. Currently, evidence-based supportive care is key to managing severe viral pneumonia. We discuss the evidence surrounding epidemiology, diagnosis, management, treatment, and prevention of viral pneumonia.
Collapse
Affiliation(s)
- Catia Cilloniz
- Hospital Clinic of Barcelona, IDIBAPS, CIBERESA, Barcelona, Spain
- Faculty of Health Sciences, Continental University, Huancayo, Peru
| | - Guinevere Dy-Agra
- Institute of Pulmonary Medicine, St Luke's Medical Center-Global City, Taguig, Metro Manila, Philippines
| | - Rodolfo S Pagcatipunan
- Institute of Pulmonary Medicine, St Luke's Medical Center-Global City, Taguig, Metro Manila, Philippines
| | - Antoni Torres
- Hospital Clinic of Barcelona, IDIBAPS, CIBERESA, Barcelona, Spain
- School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
60
|
Smits HH, Jochems SP. Diverging patterns in innate immunity against respiratory viruses during a lifetime: lessons from the young and the old. Eur Respir Rev 2024; 33:230266. [PMID: 39009407 PMCID: PMC11262623 DOI: 10.1183/16000617.0266-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/16/2024] [Indexed: 07/17/2024] Open
Abstract
Respiratory viral infections frequently lead to severe respiratory disease, particularly in vulnerable populations such as young children, individuals with chronic lung conditions and older adults, resulting in hospitalisation and, in some cases, fatalities. The innate immune system plays a crucial role in monitoring for, and initiating responses to, viruses, maintaining a state of preparedness through the constant expression of antimicrobial defence molecules. Throughout the course of infection, innate immunity remains actively involved, contributing to viral clearance and damage control, with pivotal contributions from airway epithelial cells and resident and newly recruited immune cells. In instances where viral infections persist or are not effectively eliminated, innate immune components prominently contribute to the resulting pathophysiological consequences. Even though both young children and older adults are susceptible to severe respiratory disease caused by various respiratory viruses, the underlying mechanisms may differ significantly. Children face the challenge of developing and maturing their immunity, while older adults contend with issues such as immune senescence and inflammaging. This review aims to compare the innate immune responses in respiratory viral infections across both age groups, identifying common central hubs that could serve as promising targets for innovative therapeutic and preventive strategies, despite the apparent differences in underlying mechanisms.
Collapse
Affiliation(s)
- Hermelijn H Smits
- Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Simon P Jochems
- Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
61
|
Modler J, Morris SK, Bettinger JA, Bancej C, Burton C, Foo C, Halperin SA, Jadavji T, Kazmi K, Sadarangani M, Schober T, Papenburg J. Bloodstream Infections in Children Hospitalized for Influenza, the Canadian Immunization Monitoring Program Active. Pediatr Infect Dis J 2024; 43:301-306. [PMID: 38048641 DOI: 10.1097/inf.0000000000004199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
BACKGROUND We aimed to estimate the proportion of children hospitalized for influenza whose illness was complicated by bloodstream infection, describe their clinical course, and identify the factors associated with bloodstream infection. METHODS We performed active surveillance for laboratory-confirmed influenza hospitalizations among children ≤16 years old at the 12 Canadian Immunization Monitoring Program Active hospitals, from the 2010-2011 to 2020-2021 influenza seasons. Factors associated with bloodstream infection were identified using multivariable logistic regression analyses. RESULTS Among 9179 laboratory-confirmed influenza hospital admissions, bloodstream infection occurred in 87 children (0.9%). Streptococcus pyogenes (22%), Staphylococcus aureus (18%) and Streptococcus pneumoniae (17%) were the most common bloodstream infection pathogens identified. Children with cancer [adjusted odds ratio (aOR): 2.78; 95% confidence interval (CI): 1.23-5.63], a laboratory-confirmed nonbloodstream bacterial infection (aOR: 14.1; 95% CI: 8.04-24.3) or radiographically-confirmed pneumonia (aOR: 1.87; 95% CI: 1.17-2.97) were more likely to experience a bloodstream infection, whereas children with chronic lung disorders were less likely (aOR: 0.41; 95% CI: 0.19-0.80). Disease severity markers such as intensive care unit admission (aOR: 2.11; 95% CI: 1.27-3.46), mechanical ventilation (aOR: 2.84; 95% CI: 1.63-4.80) and longer hospital length of stay (aOR: 1.02; 95% CI: 1.01-1.03) were associated with bloodstream infection. Bloodstream infection also increased the odds of death (aOR: 13.0; 95% CI: 4.84-29.1) after adjustment for age, influenza virus type and the presence of any at-risk chronic condition. CONCLUSIONS Bloodstream infections, although infrequent, are associated with intensive care unit admission, mechanical ventilation, increased hospital length of stay and in-hospital mortality, thus requiring increased levels of care among pediatric influenza hospitalizations.
Collapse
Affiliation(s)
- Jacqueline Modler
- From the Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montréal, Quebec, Canada
| | - Shaun K Morris
- Division of Pediatric Infectious Diseases, The Hospital for Sick Children, and Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Julie A Bettinger
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christina Bancej
- Center for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Catherine Burton
- Division of Pediatric Infectious Diseases, Department of Paediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Cheryl Foo
- Pediatric Infectious Diseases, Janeway Children's Health and Rehabilitation Centre, Eastern Health Regional Authority, St. John's, Newfoundland and Labrador, Canada
| | - Scott A Halperin
- Canadian Center for Vaccinology, IWK Health Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Taj Jadavji
- Section of Infectious Diseases, Department of Paediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Kescha Kazmi
- Division of Pediatric Infectious Diseases, The Hospital for Sick Children, and Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tilmann Schober
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre
- Division of Microbiology, Department of Clinical Laboratory Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| | - Jesse Papenburg
- From the Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montréal, Quebec, Canada
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre
- Division of Microbiology, Department of Clinical Laboratory Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| |
Collapse
|
62
|
Xiao Y, Sheng ZM, Williams SL, Taubenberger JK. Two complete 1918 influenza A/H1N1 pandemic virus genomes characterized by next-generation sequencing using RNA isolated from formalin-fixed, paraffin-embedded autopsy lung tissue samples along with evidence of secondary bacterial co-infection. mBio 2024; 15:e0321823. [PMID: 38349163 PMCID: PMC10936189 DOI: 10.1128/mbio.03218-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
The 1918 influenza pandemic was the most devastating respiratory pandemic in modern human history, with 50-100 million deaths worldwide. Here, we characterized the complete genomes of influenza A virus (IAV) from two fatal cases during the fall wave of 1918 influenza A (H1N1) pandemic in the United States, one from Walter Reed Army Hospital in Washington, DC, and the other from Camp Jackson, SC. The two complete IAV genomes were obtained by combining Illumina deep sequencing data from both total RNA and influenza viral genome-enriched libraries along with Sanger sequencing data from PCR across the sequencing gaps. This study confirms the previously reported 1918 IAV genomes and increases the total number of available complete or near-complete influenza viral genomes of the 1918 pandemic from four to six. Sequence comparisons among them confirm that the genomes of the 1918 pandemic virus were highly conserved during the main wave of the pandemic with geographic separation in North America and Europe. Metagenomic analyses revealed bacterial co-infections in both cases. Interestingly, in the Washington, DC, case, evidence is presented of the first reported Rhodococcus-influenza virus co-infection. IMPORTANCE This study applied modern molecular biotechnology and high-throughput sequencing to formalin-fixed, paraffin-embedded autopsy lung samples from two fatal cases during the fall wave of the 1918 influenza A (H1N1) pandemic in the United States. Complete influenza genomes were obtained from both cases, which increases the total number of available complete or near-complete influenza genomes of the 1918 pandemic virus from four to six. Sequence analysis confirms that the 1918 pandemic virus was highly conserved during the main wave of the pandemic with geographic separation in North America and Europe. Metagenomic analyses revealed bacterial co-infections in both cases, including the first reported evidence of Rhodococcus-influenza co-infection. Overall, this study offers a detailed view at the molecular level of the very limited samples from the most devastating influenza pandemic in modern human history.
Collapse
Affiliation(s)
- Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Zong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie L. Williams
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
63
|
Xie L, Luo G, Yang Z, Wu WC, Chen J, Ren Y, Zeng Z, Ye G, Pan Y, Zhao WJ, Chen YQ, Hou W, Sun Y, Guo D, Yang Z, Li J, Holmes EC, Li Y, Chen L, Shi M. The clinical outcome of COVID-19 is strongly associated with microbiome dynamics in the upper respiratory tract. J Infect 2024; 88:106118. [PMID: 38342382 DOI: 10.1016/j.jinf.2024.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVES The respiratory tract is the portal of entry for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a variety of respiratory pathogens other than SARS-CoV-2 have been associated with severe cases of COVID-19 disease, the dynamics of the upper respiratory microbiota during disease the course of disease, and how they impact disease manifestation, remain uncertain. METHODS We collected 349 longitudinal upper respiratory samples from a cohort of 65 COVID-19 patients (cohort 1), 28 samples from 28 recovered COVID-19 patients (cohort 2), and 59 samples from 59 healthy controls (cohort 3). All COVID-19 patients originated from the earliest stage of the epidemic in Wuhan. Based on a modified clinical scale, the disease course was divided into five clinical disease phases (pseudotimes): "Healthy" (pseudotime 0), "Incremental" (pseudotime 1), "Critical" (pseudotime 2), "Complicated" (pseudotime 3), "Convalescent" (pseudotime 4), and "Long-term follow-up" (pseudotime 5). Using meta-transcriptomics, we investigated the features and dynamics of transcriptionally active microbes in the upper respiratory tract (URT) over the course of COVID-19 disease, as well as its association with disease progression and clinical outcomes. RESULTS Our results revealed that the URT microbiome exhibits substantial heterogeneity during disease course. Two clusters of microbial communities characterized by low alpha diversity and enrichment for multiple pathogens or potential pathobionts (including Acinetobacter and Candida) were associated with disease progression and a worse clinical outcome. We also identified a series of microbial indicators that classified disease progression into more severe stages. Longitudinal analysis revealed that although the microbiome exhibited complex and changing patterns during COVID-19, a restoration of URT microbiomes from early dysbiosis toward more diverse status in later disease stages was observed in most patients. In addition, a group of potential pathobionts were strongly associated with the concentration of inflammatory indicators and mortality. CONCLUSION This study revealed strong links between URT microbiome dynamics and disease progression and clinical outcomes in COVID-19, implying that the treatment of severe disease should consider the full spectrum of microbial pathogens present.
Collapse
Affiliation(s)
- Linlin Xie
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gengyan Luo
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhongzhou Yang
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Wei-Chen Wu
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jintao Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yuting Ren
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhikun Zeng
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guangming Ye
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunbao Pan
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen-Jing Zhao
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Wei Hou
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Deying Guo
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Yirong Li
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Liangjun Chen
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Mang Shi
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
64
|
Lassnig S, Hennig-Pauka I, Bonilla MC, Mörgelin M, Imker R, von Köckritz-Blickwede M, de Buhr N. Impact of bronchoalveolar lavage from influenza A virus diseased pigs on neutrophil functions and growth of co-infecting pathogenic bacteria. Front Immunol 2024; 15:1325269. [PMID: 38449874 PMCID: PMC10914936 DOI: 10.3389/fimmu.2024.1325269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/26/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Influenza A viruses (IAVs) infect the respiratory tract of mainly humans, poultry, and pigs. Co-infections with pathogenic lung bacteria are a common event and contribute to the severity of disease progression. Neutrophils are a major cell type of the innate immune system and are rapidly recruited to the site of infection. They have several effector functions to fight invading pathogens such as the secretion of reactive oxygen species (ROS) or the release of neutrophil extracellular traps (NETs). NETs are known to promote the growth of Pasteurellaceae bacteria, especially if degraded by nucleases. Methods In this study, bronchoalveolar lavage fluid (BALF) from 45 field-infected pigs was analyzed for 1) NET markers, 2) influence on growth of lung bacteria, and 3) impact on neutrophil functions. BALF samples from 21 IAV-positive pigs and 24 lung diseased but IAV-negative pigs were compared. Results Here, we show that neutrophils in the lungs of IAV-positive pigs release vesicular NETs. Several NET markers were increased in the BALF of IAV-positive pigs compared with the BALF from IAV-negative pigs. The amount of NET markers positively correlated with the viral load of the IAV infection. Interestingly, the BALF of IAV-positive pigs enhanced the growth of bacteria belonging to the family of Pasteurellaceae as potential coinfecting bacteria. These effects were weaker with the BALF derived from IAV-negative pigs with other lung infections. The intensity of oxidative burst in neutrophils was significantly decreased by BALF from IAVpositive pigs, indicating impaired antimicrobial activity of neutrophils. Finally, the lung milieu reflected by IAV-positive BALF does not enable neutrophils to kill Actinobacillus pleuropneumoniae but rather enhances its growth. Discussion In summary, our data show that an IAV infection is affecting neutrophil functions, in particular the release of NETs and ROS. Furthermore, IAV infection seems to provide growth-enhancing factors for especially coinfecting Pasteurellaceae and reduces the killing efficiency of neutrophils.
Collapse
Affiliation(s)
- Simon Lassnig
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Isabel Hennig-Pauka
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Hannover, Germany
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Bakum, Germany
| | - Marta C. Bonilla
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Rabea Imker
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole de Buhr
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
65
|
Wada FW, Desta AF, Gebre M, Mihret W, Seyoum T, Melaku K, Alemu A, Howe R, Mulu A, Mihret A. Pneumococcal colonization and coinfecting respiratory viruses in children under 5 years in Addis Ababa, Ethiopia: a prospective case-control study. Sci Rep 2024; 14:4174. [PMID: 38378681 PMCID: PMC10879120 DOI: 10.1038/s41598-024-54256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024] Open
Abstract
A comprehensive understanding of the dynamics of Streptococcus pneumoniae colonization in conjunction with respiratory virus infections is essential for enhancing our knowledge of the pathogenesis and advancing the development of effective preventive strategies. Therefore, a case-control study was carried out in Addis Ababa, Ethiopia to investigate the colonization rate of S. pneumoniae and its coinfection dynamics with respiratory viruses among children under the age of 5 years. Samples from the nasopharyngeal and/or oropharyngeal, along with socio-demographic and clinical information, were collected from 420 children under 5 years old (210 cases with lower respiratory tract infections and 210 controls with conditions other than respiratory infections.). A one-step Multiplex real-time PCR using the Allplex Respiratory Panel Assays 1-4 was performed to identify respiratory viruses and bacteria. Data analysis was conducted using STATA software version 17. The overall colonization rate of S. pneumoniae in children aged less than 5 years was 51.2% (215/420). The colonization rates in cases and controls were 54.8% (115/210) and 47.6% (100/210), respectively (p = 0.14). Colonization rates were observed to commence at an early age in children, with a colonization rate of 48.9% and 52.7% among infants younger than 6 months controls and cases, respectively. The prevalence of AdV (OR, 3.11; 95% CI [1.31-8.19]), RSV B (OR, 2.53; 95% CI [1.01-6.78]) and HRV (OR, 1.7; 95% CI [1.04-2.78]) tends to be higher in children who tested positive for S. pneumoniae compared to those who tested negative for S. pneumoniae. Further longitudinal research is needed to understand and determine interaction mechanisms between pneumococci and viral pathogens and the clinical implications of this coinfection dynamics.
Collapse
Affiliation(s)
- Fiseha Wadilo Wada
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia.
- Department of Biomedical Sciences, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Medical Laboratory Sciences, College of Health Sciences and Medicine, Wolaita Sodo University, Wolaita Soddo, Ethiopia.
| | - Adey Feleke Desta
- Department of Biomedical Sciences, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Meseret Gebre
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Wude Mihret
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Tamrayehu Seyoum
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Kalkidan Melaku
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Ashenafi Alemu
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Andargachew Mulu
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology, and Parasitology, School of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
66
|
Basu Thakur P, Mrotz VJ, Maines TR, Belser JA. Ferrets as a Mammalian Model to Study Influenza Virus-Bacteria Interactions. J Infect Dis 2024; 229:608-615. [PMID: 37739789 PMCID: PMC10922577 DOI: 10.1093/infdis/jiad408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
Ferrets represent an invaluable model for the study of influenza virus pathogenicity and transmissibility. Ferrets are also employed for the study of bacterial pathogens that naturally infect humans at different anatomical sites. While viral and bacterial infection studies in isolation using animal models are important for furthering our understanding of pathogen biology and developing improved therapeutics, it is also critical to extend our knowledge to pathogen coinfections in vivo, to more closely examine interkingdom dynamics that may contribute to overall disease outcomes. We discuss how ferrets have been employed to study a diverse range of both influenza viruses and bacterial species and summarize key studies that have utilized the ferret model for primary influenza virus challenge followed by secondary bacterial infection. These copathogenesis studies have provided critical insight into the dynamic interplay between these pathogens, underscoring the utility of ferrets as a model system for investigating influenza virus-bacteria interactions.
Collapse
Affiliation(s)
- Poulami Basu Thakur
- Immunology and Pathogenesis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Victoria J Mrotz
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Taronna R Maines
- Immunology and Pathogenesis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica A Belser
- Immunology and Pathogenesis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
67
|
Ruckert A, Lake S, Van Katwyk SR. Developing a protocol on antimicrobial resistance through WHO's pandemic treaty will protect lives in future pandemics. Global Health 2024; 20:10. [PMID: 38297334 PMCID: PMC10829236 DOI: 10.1186/s12992-024-01015-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Addressing antimicrobial resistance (AMR) through the pandemic treaty is a crucial aspect of pandemic prevention, preparedness, and response. At the moment, AMR-related provisions in the draft text do not go far enough and will likely lead countries to commit to the status-quo of AMR action. We suggest that the protocol mechanism of the treaty proposed under Article 31 offers an opportunity to develop a subsidiary agreement (or protocol) to further codify the specific obligations and enforcement mechanisms necessary to meet the treaty's AMR provisions. We also highlight experiences with previous treaty implementation that relied on protocols to inform design of a future AMR protocol.
Collapse
Affiliation(s)
- Arne Ruckert
- Global Strategy Lab, School of Global Health, York University, M3J 1P3, Toronto, ON, Canada.
| | - Shajoe Lake
- Global Strategy Lab, School of Global Health, York University, M3J 1P3, Toronto, ON, Canada
| | | |
Collapse
|
68
|
Jordan PM, Günther K, Nischang V, Ning Y, Deinhardt-Emmer S, Ehrhardt C, Werz O. Influenza A virus selectively elevates prostaglandin E 2 formation in pro-resolving macrophages. iScience 2024; 27:108775. [PMID: 38261967 PMCID: PMC10797193 DOI: 10.1016/j.isci.2023.108775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Respiratory influenza A virus (IAV) infections are major health concerns worldwide, where bacterial superinfections substantially increase morbidity and mortality. The underlying mechanisms of how IAV impairs host defense remain elusive. Macrophages are pivotal for the innate immune response and crucially regulate the entire inflammatory process, occurring as inflammatory M1- or pro-resolving M2-like phenotypes. Lipid mediators (LM), produced from polyunsaturated fatty acids by macrophages, are potent immune regulators and impact all stages of inflammation. Using LM metabololipidomics, we show that human pro-resolving M2-macrophages respond to IAV infections with specific and robust production of prostaglandin (PG)E2 along with upregulation of cyclooxygenase-2 (COX-2), which persists after co-infection with Staphylococcus aureus. In contrast, cytokine/interferon production in macrophages was essentially unaffected by IAV infection, and the functionality of M1-macrophages was not influenced. Conclusively, IAV infection of M2-macrophages selectively elevates PGE2 formation, suggesting inhibition of the COX-2/PGE2 axis as strategy to limit IAV exacerbation.
Collapse
Affiliation(s)
- Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Kerstin Günther
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Vivien Nischang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Yuping Ning
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | | | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, 07745 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
69
|
Pai A, Kanji Z, Douglas JJ. Characterization of Coinfections in Patients with COVID-19. Can J Hosp Pharm 2024; 77:e3398. [PMID: 38204505 PMCID: PMC10754398 DOI: 10.4212/cjhp.3398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/21/2023] [Indexed: 01/12/2024]
Abstract
Background Little is known about coinfections in patients with COVID-19, with antibiotics often initiated empirically. Objectives To determine the rates and characteristics of early and late coinfections in COVID-19 patients and to characterize the use of anti-infective agents, especially antibiotics. Methods This retrospective chart review involved patients with COVID-19 who were admitted to Lions Gate Hospital (Vancouver, British Columbia) between January 1 and June 30, 2020. Data were extracted from electronic medical records, and descriptive statistics were used to analyze the data. Results Of the 48 patients admitted during the study period, 10 (21%) were determined to have coinfections: 3 (6%) had early coinfections and 7 (15%) had late coinfections. Early empiric use of antibiotics was observed in 32 (67%) patients; for 29 (91%) of these 32 patients, the therapy was deemed inappropriate. Patients with coinfections had longer hospital stays and more complications. Conclusions Despite low rates of early coinfection, empiric antibiotics were started for a majority of the patients. Most late coinfections occurred in patients in the intensive care unit who required mechanical ventilation. Patients with coinfections had poorer outcomes than those without coinfections.
Collapse
Affiliation(s)
- Alexander Pai
- , BSc(Biochem), ACPR, PharmD, is a Clinical Pharmacist with the Vancouver General Hospital, Vancouver, British Columbia
| | - Zahra Kanji
- , BSc(Pharm), ACPR, PharmD, FCSHP, is a Clinical Pharmacy Specialist - Critical Care with the Department of Pharmacy, Lions Gate Hospital, and a Clinical Professor with the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia
| | - James Joshua Douglas
- , MD, is an Infectious Disease and Critical Care Physician with Lions Gate Hospital, and a Clinical Instructor with the Division of Critical Care Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia
| |
Collapse
|
70
|
Mendes-Filho SPDM, de Souza Pinheiro R, Martins FS, Giroldi PJ, e Melo RH, de Oliveira EL, dos Santos AB, Medeiros DCO, Lopes JA, Chaves YO, Zuliani JP, Nogueira PA. Kinetics of IL-6, C-reactive Protein and Fibrinogen Levels in COVID-19 Outpatients Who Evolved to Hypoxemia. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2024; 17:2632010X231222795. [PMID: 38188270 PMCID: PMC10768631 DOI: 10.1177/2632010x231222795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024]
Abstract
Introduction Despite the efficacy of the COVID-19, the search for improvements in the management of severe/critical cases continues to be important. The aim is to demonstrate the kinetics of 4 serological markers in patients with COVID-19 who evolved in hypoxemia. Methods From June to December 2020, the Health Secretariat of Rondônia State, Brazil, established a home medical care service team (HMCS) that provided clinical follow-up for health professionals and military personnel with COVID-19. The clinical and laboratory monitoring was individualized at home by a nursing and medical team. In addition to laboratory parameters, C-reactive protein (CRP), interleukin-6 (IL-6), fibrinogen, and D-dimer levels were periodically taken to monitor the evolution of treatment. Results Of 218 patients telemonitored, 48 patients needed special care by the HMCS team due to shortness of breath. Chest tomography showed multiple ground-glass shadows and lung parenchymal condensations that was compatible with secondary bacterial infection associated with leukocytosis, for which antibiotics were prescribed. The symptoms were accompanied by increases of CRP and IL-6 levels followed by fibrinogen after a few days, for which an anticoagulant therapy was included. Thirty-three patients evolved to improvements in clinical signs and laboratory results. Between the sixth and eighth day of illness, 15 patients presented signs of hypoxemia with low O2 saturation accompanied with an increase in the respiratory rate, with some of them requiring oxygen therapy. As they did not present signs of clinical severity, but their laboratory markers showed an abrupt IL-6 peak that was higher than the increase in CRP and a new alteration in fibrinogen levels, they received a supplemental dose of anticoagulant and a high dose of corticosteroids, which resulted in clinical improvement. Conclusion Our study demonstrates that monitoring of IL-6 and CRP may identify precocious hypoxemia in COVID-19 patients and prevented the progressive deterioration of the lung injury.
Collapse
Affiliation(s)
| | - Rebeca de Souza Pinheiro
- Programa de Pós-graduação de Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus/AM, Brazil
| | - Fernanda Simão Martins
- Serviço de Assistência Médica Domiciliar (SAMD), Secretaria Estadual da Saúde (SESAU), Porto Velho/RO, Brazil
| | - Paulo Jose Giroldi
- Laboratório Estadual de Patologia e Análises Clínicas (LEPAC), Porto Velho/RO, Brazil
| | - Raul Honorato e Melo
- Serviço de Assistência Médica Domiciliar (SAMD), Secretaria Estadual da Saúde (SESAU), Porto Velho/RO, Brazil
- Hospital Cemetron, Porto Velho/RO, Brazil
| | | | - Anibal Borin dos Santos
- Serviço de Assistência Médica Domiciliar (SAMD), Secretaria Estadual da Saúde (SESAU), Porto Velho/RO, Brazil
| | | | | | - Yury Oliveira Chaves
- Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz – Amazonas (FIOCRUZ – AMAZONAS), Manaus/AM, Brazil
| | | | - Paulo Afonso Nogueira
- Programa de Pós-graduação de Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus/AM, Brazil
- Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz – Amazonas (FIOCRUZ – AMAZONAS), Manaus/AM, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus/AM, Brazil
| |
Collapse
|
71
|
Lotfi A, Hajian P, Abbasi L, Gargari MK, Fard NNG, Naderi D. A Review on Role of Inflammation in Coronavirus Disease. Endocr Metab Immune Disord Drug Targets 2024; 24:1488-1505. [PMID: 38303532 DOI: 10.2174/0118715303265274231204075802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 02/03/2024]
Abstract
The respiratory illness known as COVID-19 is caused by the novel coronavirus, SARS-CoV-2. While the precise pathogenic mechanism of COVID-19 remains unclear, the occurrence of a cytokine storm subsequent to viral infection plays a pivotal role in the initiation and advancement of the disease. The infection of SARS-CoV-2 induces a state of immune system hyperactivity, leading to an excessive production of inflammatory cytokines. Consequently, the identification of the various signaling pathways implicated in the inflammation induced by COVID-19 will enable researchers to investigate new targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Pouran Hajian
- Department of Anesthesiology, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Delaram Naderi
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
72
|
Jia L, Luo H, Li L, Wang M, Liu J, Liang Y, Li S, Jiang Y, Yang J, Song H. Targeting complement hyperactivation: a novel therapeutic approach for severe pneumonia induced by influenza virus/staphylococcus aureus coinfection. Signal Transduct Target Ther 2023; 8:467. [PMID: 38155175 PMCID: PMC10754916 DOI: 10.1038/s41392-023-01714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Affiliation(s)
- Leili Jia
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lizhong Li
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Mingyao Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, 100005, Beijing, China
| | - Jiangfeng Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, 100005, Beijing, China
| | - Yuan Liang
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Shan Li
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Juntao Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, 100005, Beijing, China.
| | - Hongbin Song
- Institute for Disease Control and Prevention of PLA, Beijing, China.
| |
Collapse
|
73
|
Kirk NM, Liang Y, Ly H. Comparative Pathology of Animal Models for Influenza A Virus Infection. Pathogens 2023; 13:35. [PMID: 38251342 PMCID: PMC10820042 DOI: 10.3390/pathogens13010035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Animal models are essential for studying disease pathogenesis and to test the efficacy and safety of new vaccines and therapeutics. For most diseases, there is no single model that can recapitulate all features of the human condition, so it is vital to understand the advantages and disadvantages of each. The purpose of this review is to describe popular comparative animal models, including mice, ferrets, hamsters, and non-human primates (NHPs), that are being used to study clinical and pathological changes caused by influenza A virus infection with the aim to aid in appropriate model selection for disease modeling.
Collapse
Affiliation(s)
| | | | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (N.M.K.); (Y.L.)
| |
Collapse
|
74
|
Li X, Liu Y, Li M, Bian J, Song D, Liu C. Epidemiological investigation of lower respiratory tract infections during influenza A (H1N1) pdm09 virus pandemic based on targeted next-generation sequencing. Front Cell Infect Microbiol 2023; 13:1303456. [PMID: 38162581 PMCID: PMC10755937 DOI: 10.3389/fcimb.2023.1303456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Background Co-infection has been a significant contributor to morbidity and mortality in previous influenza pandemics. However, the current influenza A (H1N1) pdm09 virus pandemic, as the first major outbreak following the SARS-CoV-2 pandemic, may differ epidemiologically. Further investigation is necessary to understand the specific features and impact of this influenza A pandemic. Study design: We conducted a retrospective cohort study at a Chinese hospital between January and April 2023, focusing on patients with lower respiratory tract infections. Pathogen detection employed targeted next-generation sequencing (tNGS) on bronchoalveolar lavage fluid (BALF) or sputum samples. Results This study enrolled 167 patients with lower respiratory tract infections, and the overall positivity rate detected through tNGS was around 80%. Among them, 40 patients had influenza A (H1N1) pdm09 virus infection, peaking in March. In these patients, 27.5% had sole infections, and 72.5% had co-infections, commonly with bacteria. The frequently detected pathogens were Aspergillus fumigatus, SARS-CoV-2, and Streptococcus pneumoniae. For non-influenza A virus-infected patients, the co-infection rate was 36.1%, with 42.3% having SARS-CoV-2. Patients with influenza A virus infection were younger, had more females and diabetes cases. Among them, those with sole infections were older, with less fever and asthma but more smoking history. Regarding prognosis, compared to sole influenza A virus infection, co-infected patients demonstrated higher 21-day recovery rates and a higher incidence of heart failure. However, they exhibited lower proportions of respiratory failure, acute kidney failure, septic shock, and hospital stays lasting more than 10 days. Interestingly, patients with non-influenza A virus infection had a significantly lower 21-day recovery rate. Correlation analysis indicated that the 21-day recovery rate was only associated with influenza A (H1N1) pdm09 virus. Conclusion During the current pandemic, the influenza A (H1N1) pdm09 virus may have been influenced by the SARS-CoV-2 pandemic and did not exhibit a strong pathogenicity. In fact, patients infected with influenza A virus showed better prognoses compared to those infected with other pathogens. Additionally, tNGS demonstrated excellent detection performance in this study and showed great potential, prompting clinical physicians to consider its use as an auxiliary diagnostic tool.
Collapse
Affiliation(s)
- Xiaodan Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Minzhe Li
- Department of Respiratory and Critical Care Medicine, The First Hospital of Jilin University-the Eastern Division, Changchun, China
| | - Jing Bian
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Demei Song
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Chaoying Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
75
|
Mochan E, Sego TJ. Mathematical Modeling of the Lethal Synergism of Coinfecting Pathogens in Respiratory Viral Infections: A Review. Microorganisms 2023; 11:2974. [PMID: 38138118 PMCID: PMC10745501 DOI: 10.3390/microorganisms11122974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza A virus (IAV) infections represent a substantial global health challenge and are often accompanied by coinfections involving secondary viruses or bacteria, resulting in increased morbidity and mortality. The clinical impact of coinfections remains poorly understood, with conflicting findings regarding fatality. Isolating the impact of each pathogen and mechanisms of pathogen synergy during coinfections is challenging and further complicated by host and pathogen variability and experimental conditions. Factors such as cytokine dysregulation, immune cell function alterations, mucociliary dysfunction, and changes to the respiratory tract epithelium have been identified as contributors to increased lethality. The relative significance of these factors depends on variables such as pathogen types, infection timing, sequence, and inoculum size. Mathematical biological modeling can play a pivotal role in shedding light on the mechanisms of coinfections. Mathematical modeling enables the quantification of aspects of the intra-host immune response that are difficult to assess experimentally. In this narrative review, we highlight important mechanisms of IAV coinfection with bacterial and viral pathogens and survey mathematical models of coinfection and the insights gained from them. We discuss current challenges and limitations facing coinfection modeling, as well as current trends and future directions toward a complete understanding of coinfection using mathematical modeling and computer simulation.
Collapse
Affiliation(s)
- Ericka Mochan
- Department of Computational and Chemical Sciences, Carlow University, Pittsburgh, PA 15213, USA
| | - T. J. Sego
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
76
|
Cohen B, Shapiro Ben David S, Rahamim-Cohen D, Nakhleh A, Shahar A, Yehoshua I, Bilitzky-Kopit A, Azuri J, Mizrahi Reuveni M, Adler L. Common Bacterial Infections during the 3-Month Period after SARS-CoV-2 Infection: A Retrospective Cohort Study. Healthcare (Basel) 2023; 11:3151. [PMID: 38132041 PMCID: PMC10742933 DOI: 10.3390/healthcare11243151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/12/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION Correlations between SARS-CoV-2 and bacterial infections have mainly been studied in hospitals, and these studies have shown that such interactions may be lethal for many. In the context of community flora, less is known of the trends and consequences of viral infections relative to subsequent bacterial infections. PURPOSE This study aims to explore the prevalence and characteristics of bacterial infections in the three months following SARS-CoV-2 infections, in a community, real-world setting. METHODS In this retrospective cohort study, we compared patients who completed a polymerase chain reaction (PCR) test or an antigen test for SARS-CoV-2 during January 2022, the peak of the Omicron wave, and examined bacterial infections following the test. We searched these cases for diagnoses of the following four bacterial infections for three months following the test: Group A Streptococcus (GAS) pharyngitis, pneumonia, cellulitis, and urinary tract infections (UTI). RESULTS During January 2022, 267,931 patients tested positive and 261,909 tested negative for SARS-CoV-2. Test-positive compared to test-negative patients were significantly younger (42.5 years old vs. 48.5 years old, p < 0.001), smoked less, and had fewer comorbidities (including ischemic heart disease, diabetes mellitus, hypertension, chronic obstructive pulmonary disease, and chronic renal failure). In the multivariable analysis, test-positive patients had an increased risk for GAS pharyngitis (adjusted odds ratio [aOR] = 1.25, 95% CI 1.14-1.38, p-value < 0.001) and pneumonia (aOR = 1.25, 95% CI 1.15-1.35, p-value < 0.001), a trend towards an increased prevalence of UTI (aOR = 1.05, 95% CI 0.99-1.12, p-value = 0.092), and lower risk for cellulitis (aOR = 0.92, 95% CI 0.86-0.99, p-value < 0.05). CONCLUSIONS A history of SARS-CoV-2 infection in the past three months increased susceptibility to respiratory tract bacterial infections and the prevalence of UTI.
Collapse
Affiliation(s)
- Bar Cohen
- Health Division, Maccabi Healthcare Services, Tel Aviv 6812509, Israel; (B.C.); (S.S.B.D.); (D.R.-C.); (A.S.); (I.Y.); (A.B.-K.); (J.A.)
- The Faculty of Health Science, Ben Gurion University, Beer Sheva 8443944, Israel
| | - Shirley Shapiro Ben David
- Health Division, Maccabi Healthcare Services, Tel Aviv 6812509, Israel; (B.C.); (S.S.B.D.); (D.R.-C.); (A.S.); (I.Y.); (A.B.-K.); (J.A.)
- Department of Family Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniella Rahamim-Cohen
- Health Division, Maccabi Healthcare Services, Tel Aviv 6812509, Israel; (B.C.); (S.S.B.D.); (D.R.-C.); (A.S.); (I.Y.); (A.B.-K.); (J.A.)
| | - Afif Nakhleh
- Diabetes and Endocrinology Clinic, Maccabi Healthcare Services, Haifa 3299001, Israel;
- Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa 3109601, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Arnon Shahar
- Health Division, Maccabi Healthcare Services, Tel Aviv 6812509, Israel; (B.C.); (S.S.B.D.); (D.R.-C.); (A.S.); (I.Y.); (A.B.-K.); (J.A.)
| | - Ilan Yehoshua
- Health Division, Maccabi Healthcare Services, Tel Aviv 6812509, Israel; (B.C.); (S.S.B.D.); (D.R.-C.); (A.S.); (I.Y.); (A.B.-K.); (J.A.)
- The Faculty of Health Science, Ben Gurion University, Beer Sheva 8443944, Israel
| | - Avital Bilitzky-Kopit
- Health Division, Maccabi Healthcare Services, Tel Aviv 6812509, Israel; (B.C.); (S.S.B.D.); (D.R.-C.); (A.S.); (I.Y.); (A.B.-K.); (J.A.)
| | - Joseph Azuri
- Health Division, Maccabi Healthcare Services, Tel Aviv 6812509, Israel; (B.C.); (S.S.B.D.); (D.R.-C.); (A.S.); (I.Y.); (A.B.-K.); (J.A.)
- Department of Family Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Miri Mizrahi Reuveni
- Health Division, Maccabi Healthcare Services, Tel Aviv 6812509, Israel; (B.C.); (S.S.B.D.); (D.R.-C.); (A.S.); (I.Y.); (A.B.-K.); (J.A.)
| | - Limor Adler
- Health Division, Maccabi Healthcare Services, Tel Aviv 6812509, Israel; (B.C.); (S.S.B.D.); (D.R.-C.); (A.S.); (I.Y.); (A.B.-K.); (J.A.)
- Department of Family Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
77
|
Lalbiaktluangi C, Yadav MK, Singh PK, Singh A, Iyer M, Vellingiri B, Zomuansangi R, Zothanpuia, Ram H. A cooperativity between virus and bacteria during respiratory infections. Front Microbiol 2023; 14:1279159. [PMID: 38098657 PMCID: PMC10720647 DOI: 10.3389/fmicb.2023.1279159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Respiratory tract infections remain the leading cause of morbidity and mortality worldwide. The burden is further increased by polymicrobial infection or viral and bacterial co-infection, often exacerbating the existing condition. Way back in 1918, high morbidity due to secondary pneumonia caused by bacterial infection was known, and a similar phenomenon was observed during the recent COVID-19 pandemic in which secondary bacterial infection worsens the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) condition. It has been observed that viruses paved the way for subsequent bacterial infection; similarly, bacteria have also been found to aid in viral infection. Viruses elevate bacterial infection by impairing the host's immune response, disrupting epithelial barrier integrity, expression of surface receptors and adhesion proteins, direct binding of virus to bacteria, altering nutritional immunity, and effecting the bacterial biofilm. Similarly, the bacteria enhance viral infection by altering the host's immune response, up-regulation of adhesion proteins, and activation of viral proteins. During co-infection, respiratory bacterial and viral pathogens were found to adapt and co-exist in the airways of their survival and to benefit from each other, i.e., there is a cooperative existence between the two. This review comprehensively reviews the mechanisms involved in the synergistic/cooperativity relationship between viruses and bacteria and their interaction in clinically relevant respiratory infections.
Collapse
Affiliation(s)
- C. Lalbiaktluangi
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College, Aizawl, Mizoram, India
| | - Amit Singh
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Mahalaxmi Iyer
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | | - Ruth Zomuansangi
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College, Aizawl, Mizoram, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, India
| |
Collapse
|
78
|
Dang X, Yu Z, Wang X, Li N. Eco-Friendly Cellulose-Based Nonionic Antimicrobial Polymers with Excellent Biocompatibility, Nonleachability, and Polymer Miscibility. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50344-50359. [PMID: 37862609 DOI: 10.1021/acsami.3c10902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
This study aims to prepare natural biomass-based nonionic antimicrobial polymers with excellent biocompatibility, nonleachability, antimicrobial activity, and polymer miscibility. Two new cellulose-based nonionic antimicrobial polymers (MIPA and MICA) containing many terminal indole groups were synthesized using a sustainable one-pot method. The structures and properties of the nonionic antimicrobial polymers were characterized using nuclear magnetic resonance hydrogen spectroscopy (1H NMR), infrared spectroscopy (FTIR), wide-angle X-ray diffractometry (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), gel chromatography (GPC), and other analytical techniques. The results showed that microcrystalline cellulose (MCC) molecules combined with indole derivatives through an esterification reaction to produce MICA and MIPA. The crystallinity of the prepared MICA and MIPA molecules decreased after MCC modification; their morphological structure changed from short fibrous to granular and showed better thermal stability and solubility. The paper diffusion method showed that both nonionic polymers had good bactericidal effects against the two common pathogenic bacteria Escherichia coli (E. coli, inhibition zone diameters >22 mm) and Staphylococcus aureus (S. aureus, inhibition zone diameters >38 mm). Moreover, MICA and MIPA showed good miscibility with biodegradable poly(vinyl alcohol) (PVA), and the miscible cellulose-based composite films (PVA-MICA and PVA-MIPA) showed good phase compatibility, light transmission, thermal stability (maximum thermal decomposition temperature >300 °C), biocompatibility, biological cell activity (no cytotoxicity), nonleachability, antimicrobial activity, and mechanical properties (maximum fracture elongation at >390%).
Collapse
Affiliation(s)
- Xugang Dang
- Institute for Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Zhenfu Yu
- Institute for Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Xuechuan Wang
- Institute for Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Nan Li
- Institute for Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
79
|
Roe K. Deadly interactions: Synergistic manipulations of concurrent pathogen infections potentially enabling future pandemics. Drug Discov Today 2023; 28:103762. [PMID: 37660981 DOI: 10.1016/j.drudis.2023.103762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Certain mono-infections of influenza viruses and novel coronaviruses, including severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) are significant threats to human health. Concurrent infections by influenza viruses and coronaviruses increases their danger. Influenza viruses have eight manipulations capable of assisting SARS-CoV-2 and other coronaviruses, and several of these manipulations, which are not specific to viruses, can also directly or indirectly boost dangerous secondary bacterial pneumonias. The influenza virus manipulations include: inhibiting transcription factors and cytokine expression; impairing defensive protein expression; increasing RNA viral replication; inhibiting defenses by manipulating cellular sensors and signaling pathways; inhibiting defenses by secreting exosomes; stimulating cholesterol production to increase synthesized virion infectivities; increasing cellular autophagy to assist viral replication; and stimulating glucocorticoid synthesis to suppress innate and adaptive immune defenses by inhibiting cytokine, chemokine, and adhesion molecule production. Teaser: Rapidly spreading multidrug-resistant respiratory bacteria, combined with influenza virus's far-reaching cellular defense manipulations benefiting evolving SARS-CoV-2 or other coronaviruses and/or respiratory bacteria, can enable more severe pandemics or co-pandemics.
Collapse
|
80
|
Ho EC, Cataldi JR, Silveira LJ, Birkholz M, Loi MM, Osborne CM, Dominguez SR. Outbreak of Invasive Group A Streptococcus in Children-Colorado, October 2022-April 2023. J Pediatric Infect Dis Soc 2023; 12:540-548. [PMID: 37792995 DOI: 10.1093/jpids/piad080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND In the fall of 2022, we observed a sharp rise in pediatric Invasive Group A Streptococcus (iGAS) hospitalizations in Colorado. We compared the epidemiology, clinical features, and patient outcomes in this outbreak to prior years. METHODS Between October 2022 and April 2023, we prospectively identified and reviewed iGAS cases in hospitalized pediatric patients at Children's Hospital Colorado. Using laboratory specimen records, we also retrospectively compared the number of patients with sterile site GAS-positive cultures across three time periods: pre-COVID-19 (January 2015-March 2020), height of COVID-19 pandemic (April 2020-September 2022), and outbreak (October 2022-April 2023). RESULTS Among 96 prospectively identified iGAS cases, median age was 5.7 years old; 66% were male, 70% previously healthy, 39% required critical care, and four patients died. Almost 60% had associated respiratory viral symptoms, 10% had toxic shock syndrome, and 4% had necrotizing fasciitis. Leukopenia, bandemia, and higher C-reactive protein values were laboratory findings associated with need for critical care. There were significantly more cases during the outbreak (9.9/month outbreak vs 3.9/month pre-pandemic vs 1.3/month pandemic), including more cases with pneumonia (28% outbreak vs 15% pre-pandemic vs 0% pandemic) and multifocal disease (17% outbreak vs 3% pre-pandemic vs 0% pandemic), P < .001 for all. CONCLUSIONS Outbreak case numbers were almost triple the pre-pandemic baseline. The high percentage of cases with associated viral symptoms suggests a link to coinciding surges in respiratory viruses during this time. Invasive GAS can be severe and evolve rapidly; clinical and laboratory features may help in earlier identification of critically ill children.
Collapse
Affiliation(s)
- Erin C Ho
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Jessica R Cataldi
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Lori J Silveira
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Meghan Birkholz
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Michele M Loi
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Critical Care Medicine, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Christina M Osborne
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA and
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Samuel R Dominguez
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
81
|
Tang S, De Jesus AC, Chavez D, Suthakaran S, Moore SK, Suthakaran K, Homami S, Rathnasinghe R, May AJ, Schotsaert M, Britto CJ, Bhattacharya J, Hook JL. Rescue of alveolar wall liquid secretion blocks fatal lung injury due to influenza-staphylococcal coinfection. J Clin Invest 2023; 133:e163402. [PMID: 37581936 PMCID: PMC10541650 DOI: 10.1172/jci163402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
Secondary lung infection by inhaled Staphylococcus aureus (SA) is a common and lethal event for individuals infected with influenza A virus (IAV). How IAV disrupts host defense to promote SA infection in lung alveoli, where fatal lung injury occurs, is not known. We addressed this issue using real-time determinations of alveolar responses to IAV in live, intact, perfused lungs. Our findings show that IAV infection blocked defensive alveolar wall liquid (AWL) secretion and induced airspace liquid absorption, thereby reversing normal alveolar liquid dynamics and inhibiting alveolar clearance of inhaled SA. Loss of AWL secretion resulted from inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel in the alveolar epithelium, and airspace liquid absorption was caused by stimulation of the alveolar epithelial Na+ channel (ENaC). Loss of AWL secretion promoted alveolar stabilization of inhaled SA, but rescue of AWL secretion protected against alveolar SA stabilization and fatal SA-induced lung injury in IAV-infected mice. These findings reveal a central role for AWL secretion in alveolar defense against inhaled SA and identify AWL inhibition as a critical mechanism of IAV lung pathogenesis. AWL rescue may represent a new therapeutic approach for IAV-SA coinfection.
Collapse
Affiliation(s)
- Stephanie Tang
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Graduate School of Biomedical Sciences
| | - Ana Cassandra De Jesus
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Deebly Chavez
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Sayahi Suthakaran
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Graduate School of Biomedical Sciences
| | - Sarah K.L. Moore
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Keshon Suthakaran
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Sonya Homami
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Graduate School of Biomedical Sciences
| | - Raveen Rathnasinghe
- Graduate School of Biomedical Sciences
- Global Health and Emerging Pathogens Institute, Department of Microbiology
| | - Alison J. May
- Department of Cell, Developmental and Regenerative Biology
- Department of Otolaryngology, and
- Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Global Health and Emerging Pathogens Institute, Department of Microbiology
| | - Clemente J. Britto
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jahar Bhattacharya
- Departments of Medicine and Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York, USA
| | - Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Global Health and Emerging Pathogens Institute, Department of Microbiology
| |
Collapse
|
82
|
Locke BW, Aberegg SK. The Verity of a Unifying Diagnosis. Med Decis Making 2023; 43:755-757. [PMID: 37706444 PMCID: PMC10841113 DOI: 10.1177/0272989x231192521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Affiliation(s)
- Brian W Locke
- Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Scott K Aberegg
- Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
83
|
Dar S, Erickson D, Manca C, Lozy T, Shashkina E, Kordalewska M, Mediavilla JR, Chen L, Rojtman A, Kreiswirth BN. The impact of COVID on bacterial sepsis. Eur J Clin Microbiol Infect Dis 2023; 42:1173-1181. [PMID: 37597051 DOI: 10.1007/s10096-023-04655-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE To identify the predictors of morbidity and mortality in matched COVID-19 positive and negative patients who were septic with Gram positive or Gram negative infections. METHODS We conducted a retrospective review, from March to October 2020, of matched septic patients at five Hackensack Meridian Health hospitals who had bacteremia with Staphylococcus aureus, Klebsiella pneumoniae or Escherichia coli with and without COVID-19. We extracted patient demographics, comorbidities and clinical outcomes data using ICD-10 codes. Bacterial isolates were compared by whole genome sequencing analysis. Multivariate logistic regression was used to analyze independent predictors of morbidity and mortality. RESULTS A total of 208 patients were grouped by positive bloodstream infection (BSI) with COVID-19 (n = 104) and without COVID-19 (n = 104). Most patients were over age 50 (90% vs. 89%) and Caucasian (78% vs. 86%). Inpatient mortality was higher in patients with COVID-19 for both GP (35% vs. 8%, p < 0.05) and GN (28% vs. 10%, p < 0.05) BSIs. Patients with Gram positive (GP) BSIs had a significant increase in mortality risk (OR 4.5, CI 1.4-14.5, p < 0.05) in contrast to those with Gram negative (GN) infections (OR 0.4, CI 0.4-4.0, p = 0.4). CONCLUSION Concurrent COVID-19 infection is associated with a significant increase in morbidity and mortality in patients with GP and GN BSIs. Patients with S. aureus BSIs with COVID-19 are more likely to develop shock and respiratory failure and have higher rates and odds of mortality than those without COVID-19. These findings provide an essential insight into the care of these patients, especially those co-infected with Staphylococcus aureus.
Collapse
Affiliation(s)
- Sophia Dar
- Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA
- Long Island Jewish Medical Center-Northshore University Hospital, Manhasset, NY, 11030, USA
| | - Daniel Erickson
- Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA
| | - Claudia Manca
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Tara Lozy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Elena Shashkina
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Milena Kordalewska
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Jose R Mediavilla
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Albert Rojtman
- Jersey Shore University Medical Center, Neptune, NJ, 07753, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA.
| |
Collapse
|
84
|
Roe K. Increased Fungal Infection Mortality Induced by Concurrent Viral Cellular Manipulations. Lung 2023; 201:467-476. [PMID: 37670187 DOI: 10.1007/s00408-023-00642-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023]
Abstract
Certain respiratory fungal pathogen mono-infections can cause high mortality rates. Several viral pathogen mono-infections, including influenza viruses and coronaviruses including SARS-CoV-2, can also cause high mortality rates. Concurrent infections by fungal pathogens and highly manipulative viral pathogens can synergistically interact in the respiratory tract to substantially increase their mortality rates. There are at least five viral manipulations which can assist secondary fungal infections. These viral manipulations include the following: (1) inhibiting transcription factors and cytokine expressions, (2) impairing defensive protein expressions, (3) inhibiting defenses by manipulating cellular sensors and signaling pathways, (4) inhibiting defenses by secreting exosomes, and (5) stimulating glucocorticoid synthesis to suppress immune defenses by inhibiting cytokine, chemokine, and adhesion molecule production. The highest mortality respiratory viral pandemics up to now have had substantially boosted mortalities by inducing secondary bacterial pneumonias. However, numerous animal species besides humans are also carriers of endemic infections by viral and multidrug-resistant fungal pathogens. The vast multi-species scope of endemic infection opportunities make it plausible that the pro-fungal manipulations of a respiratory virus can someday evolve to enable a very high mortality rate viral pandemic inducing multidrug-resistant secondary fungal pathogen infections. Since such pandemics can quickly spread world-wide and outrun existing treatments, it would be worthwhile to develop new antifungal treatments well before such a high mortality event occurs.
Collapse
|
85
|
Lee T, Walley KR, Boyd JH, Cawcutt KA, Kalil A, Russell JA. Impact of the COVID-19 pandemic on non-COVID-19 community-acquired pneumonia: a retrospective cohort study. BMJ Open Respir Res 2023; 10:e001810. [PMID: 37865420 PMCID: PMC10603472 DOI: 10.1136/bmjresp-2023-001810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/22/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic could impact frequency and mortality of non-COVID-19 community-acquired pneumonia (CAP). Changes in frequency, patient mix, treatment and organ dysfunction could cascade together to increase mortality of CAP during compared with pre-COVID-19. METHODS Hospitalised CAP patients at St. Paul's Hospital, Vancouver, Canada pre-COVID-19 (fiscal years 2018/2019 and 2019/2020) and during COVID-19 pandemic (2020/2021 and 2021/2022) were evaluated. RESULTS In 5219 CAP patients, there was no significant difference prepandemic versus during pandemic in mean age, gender and Charlson Comorbidity Score. However, hospital mortality increased significantly from pre-COVID-19 versus during COVID-19 (7.5% vs 12.1% respectively, (95% CI for difference: 3.0% to 6.3%), p<0.001), a 61% relative increase, coincident with increases in ICU admission (18.3% vs 25.5%, respectively, (95% CI for difference: 5.0% to 9.5%) p<0.001, 39% relative increase) and ventilation (12.7% vs 17.5%, respectively, (95% CI for difference: 2.8% to 6.7%) p<0.001, 38% relative increase). Results remained the same after regression adjustment for age, sex and Charlson score. CAP hospital admissions decreased 27% from pre-COVID-19 (n=1349 and 1433, 2018/2019 and 2019/2020, respectively) versus the first COVID-19 pandemic year (n=1047 in 2020/2021) then rose to prepandemic number (n=1390 in 2021/2022). During prepandemic years, CAP admissions peaked in winter; during COVID-19, the CAP admissions peaked every 6 months. CONCLUSIONS AND RELEVANCE This is the first study to show that the COVID-19 pandemic was associated with increases in hospital mortality, ICU admission and invasive mechanical ventilation rates of non-COVID-19 CAP and a transient, 1-year frequency decrease. There was no winter seasonality of CAP during the COVID-19 pandemic era. These novel findings could be used to guide future pandemic planning for CAP hospital care.
Collapse
Affiliation(s)
- Terry Lee
- Centre for Health Evaluation and Outcome Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Keith R Walley
- Division of Critical Care Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - John H Boyd
- Division of Critical Care Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly A Cawcutt
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Andre Kalil
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - James A Russell
- Division of Critical Care Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
86
|
Gilbertson B, Subbarao K. What Have We Learned by Resurrecting the 1918 Influenza Virus? Annu Rev Virol 2023; 10:25-47. [PMID: 37774132 DOI: 10.1146/annurev-virology-111821-104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The 1918 Spanish influenza pandemic was one of the deadliest infectious disease events in recorded history, resulting in approximately 50-100 million deaths worldwide. The origins of the 1918 virus and the molecular basis for its exceptional virulence remained a mystery for much of the 20th century because the pandemic predated virologic techniques to isolate, passage, and store influenza viruses. In the late 1990s, overlapping fragments of influenza viral RNA preserved in the tissues of several 1918 victims were amplified and sequenced. The use of influenza reverse genetics then permitted scientists to reconstruct the 1918 virus entirely from cloned complementary DNA, leading to new insights into the origin of the virus and its pathogenicity. Here, we discuss some of the advances made by resurrection of the 1918 virus, including the rise of innovative molecular research, which is a topic in the dual use debate.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia;
| |
Collapse
|
87
|
Little JS, Tandon M, Hong JS, Nadeem O, Sperling AS, Raje N, Munshi N, Frigault M, Barmettler S, Hammond SP. Respiratory infections predominate after day 100 following B-cell maturation antigen-directed CAR T-cell therapy. Blood Adv 2023; 7:5485-5495. [PMID: 37486599 PMCID: PMC10514400 DOI: 10.1182/bloodadvances.2023010524] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Infections are an important complication after B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T-cell therapy and risks may differ between the early and late periods. We evaluated infections in 99 adults who received a first BCMA-directed CAR T-cell therapy (commercial and investigational autologous BCMA CAR T-cell products at the recommended phase 2 dose) for relapsed/refractory multiple myeloma between November 2016 and May 2022. Infections were recorded until day 365, if patients experienced symptoms with a microbiologic diagnosis, or for symptomatic site-specific infections treated with antimicrobials. One-year cumulative incidence functions were calculated based on time to first respiratory infection using dates of infection-free death and receipt of additional antineoplastic therapies as competing risks. Secondary analysis evaluated risk factors for late respiratory infections using univariate and multivariable Cox regression models. Thirty-seven patients (37%) experienced 64 infectious events over the first year after BCMA-directed CAR T-cell therapy, with 42 early infectious events (days, 0-100), and 22 late infectious events (days, 101-365). Respiratory infections were the most common site-specific infection and the relative proportion of respiratory infections increased in the late period (31% of early events vs 77% of late events). On multivariable analysis, hypogammaglobulinemia (hazard ratio [HR], 6.06; P = .044) and diagnosis of an early respiratory viral infection (HR, 2.95; P = .048) were independent risk factors for late respiratory infection. Respiratory infections predominate after BCMA CAR T-cell therapy, particularly after day 100. Hypogammaglobulinemia and diagnosis of an early respiratory infection are risk factors for late respiratory infections that may be used to guide targeted preventive strategies.
Collapse
Affiliation(s)
- Jessica S. Little
- Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA
| | - Megha Tandon
- Harvard Medical School, Boston, MA
- Division of Allergy and Immunology, Massachusetts General Hospital, Boston, MA
| | - Joseph Seungpyo Hong
- Harvard Medical School, Boston, MA
- Division of Allergy and Immunology, Massachusetts General Hospital, Boston, MA
| | - Omar Nadeem
- Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - Adam S. Sperling
- Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women’s Hospital, Boston, MA
| | - Noopur Raje
- Harvard Medical School, Boston, MA
- Massachusetts General Hospital Cancer Center, Boston, MA
| | - Nikhil Munshi
- Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - Matthew Frigault
- Harvard Medical School, Boston, MA
- Massachusetts General Hospital Cancer Center, Boston, MA
| | - Sara Barmettler
- Harvard Medical School, Boston, MA
- Division of Allergy and Immunology, Massachusetts General Hospital, Boston, MA
| | - Sarah P. Hammond
- Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
- Massachusetts General Hospital Cancer Center, Boston, MA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
88
|
Li H, Wang A, Zhang Y, Wei F. Diverse roles of lung macrophages in the immune response to influenza A virus. Front Microbiol 2023; 14:1260543. [PMID: 37779697 PMCID: PMC10534047 DOI: 10.3389/fmicb.2023.1260543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Influenza viruses are one of the major causes of human respiratory infections and the newly emerging and re-emerging strains of influenza virus are the cause of seasonal epidemics and occasional pandemics, resulting in a huge threat to global public health systems. As one of the early immune cells can rapidly recognize and respond to influenza viruses in the respiratory, lung macrophages play an important role in controlling the severity of influenza disease by limiting viral replication, modulating the local inflammatory response, and initiating subsequent adaptive immune responses. However, influenza virus reproduction in macrophages is both strain- and macrophage type-dependent, and ineffective replication of some viral strains in mouse macrophages has been observed. This review discusses the function of lung macrophages in influenza virus infection in order to better understand the pathogenesis of the influenza virus.
Collapse
Affiliation(s)
- Haoning Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Aoxue Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanhua Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
89
|
Low ZY, Wong KH, Wen Yip AJ, Choo WS. The convergent evolution of influenza A virus: Implications, therapeutic strategies and what we need to know. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100202. [PMID: 37700857 PMCID: PMC10493511 DOI: 10.1016/j.crmicr.2023.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Influenza virus infection, more commonly known as the 'cold flu', is an etiological agent that gives rise to recurrent annual flu and many pandemics. Dated back to the 1918- Spanish Flu, the influenza infection has caused the loss of many human lives and significantly impacted the economy and daily lives. Influenza virus can be classified into four different genera: influenza A-D, with the former two, influenza A and B, relevant to humans. The capacity of antigenic drift and shift in Influenza A has given rise to many novel variants, rendering vaccines and antiviral therapies useless. In light of the emergence of a novel betacoronavirus, the SARS-CoV-2, unravelling the underpinning mechanisms that support the recurrent influenza epidemics and pandemics is essential. Given the symptom similarities between influenza and covid infection, it is crucial to reiterate what we know about the influenza infection. This review aims to describe the origin and evolution of influenza infection. Apart from that, the risk factors entail the implication of co-infections, especially regarding the COVID-19 pandemic is further discussed. In addition, antiviral strategies, including the potential of drug repositioning, are discussed in this context. The diagnostic approach is also critically discussed in an effort to understand better and prepare for upcoming variants and potential influenza pandemics in the future. Lastly, this review encapsulates the challenges in curbing the influenza spread and provides insights for future directions in influenza management.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ka Heng Wong
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
90
|
Widere JC, Davis CL, Loomba JJ, Bell TD, Enfield KB, Barros AJ. Early Empiric Antibiotic Use in Patients Hospitalized With COVID-19: A Retrospective Cohort Study. Crit Care Med 2023; 51:1168-1176. [PMID: 37125800 PMCID: PMC10426778 DOI: 10.1097/ccm.0000000000005901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
OBJECTIVE To investigate temporal trends and outcomes associated with early antibiotic prescribing in patients hospitalized with COVID-19. DESIGN Retrospective propensity-matched cohort study using the National COVID Cohort Collaborative (N3C) database. SETTING Sixty-six health systems throughout the United States that were contributing to the N3C database. Centers that had fewer than 500 admissions in their dataset were excluded. PATIENTS Patients hospitalized with COVID-19 were included. Patients were defined to have early antibiotic use if they received at least 3 calendar days of intravenous antibiotics within the first 5 days of admission. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Of 322,867 qualifying first hospitalizations, 43,089 patients received early empiric antibiotics. Antibiotic use declined across all centers in the data collection period, from March 2020 (23%) to June 2022 (9.6%). Average rates of early empiric antibiotic use (EEAU) also varied significantly between centers (deviance explained 7.33% vs 20.0%, p < 0.001). Antibiotic use decreased slightly by day 2 of hospitalization and was significantly reduced by day 5. Mechanical ventilation before day 2 (odds ratio [OR] 3.57; 95% CI, 3.42-3.72), extracorporeal membrane oxygenation before day 2 (OR 2.14; 95% CI, 1.75-2.61), and early vasopressor use (OR 1.85; 95% CI, 1.78-1.93) but not region of residence was associated with EEAU. After propensity matching, EEAU was associated with an increased risk for in-hospital mortality (OR 1.27; 95% CI, 1.23-1.33), prolonged mechanical ventilation (OR 1.65; 95% CI, 1.50-1.82), late broad-spectrum antibiotic exposure (OR 3.24; 95% CI, 2.99-3.52), and late Clostridium difficile infection (OR 1.60; 95% CI, 1.37-1.87). CONCLUSIONS Although treatment of COVID-19 patients with empiric antibiotics has declined during the pandemic, the frequency of use remains high. There is significant inter-center variation in antibiotic prescribing practices and evidence of potential harm. Our findings are hypothesis-generating and future work should prospectively compare outcomes and adverse events.
Collapse
Affiliation(s)
| | - Claire Leilani Davis
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Johanna Jean Loomba
- Integrated Translational Health Research Institute of Virginia, University of Virginia, Charlottesville, VA
| | - Taison D Bell
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Kyle B Enfield
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Andrew Julio Barros
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
91
|
Li L, Guo T, Yuan Y, Xiao J, Yang R, Wang H, Xu W, Yin Y, Zhang X. ΔA146Ply-HA stem protein immunization protects mice against influenza A virus infection and co-infection with Streptococcus pneumoniae. Mol Immunol 2023; 161:91-103. [PMID: 37531919 DOI: 10.1016/j.molimm.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Influenza virus (IV) is a common pathogen affecting the upper respiratory tract, that causes various diseases. Secondary bacterial pneumonia is a common complication and a major cause of death in influenza patients. Streptococcus pneumoniae (S. pneumoniae) is the predominant co-infected bacteria in the pandemic, which colonizes healthy people but can cause diseases in immunocompromised individuals. Vaccination is a crucial strategy for avoiding infection, however, no universal influenza vaccine (UIV) that is resistant to multiple influenza viruses is available. Despite its limited immunogenicity, the hemagglutinin (HA) stem is a candidate peptide for UIV. ΔA146Ply (pneumolysin with a single deletion of A146) not only retains the Toll-like receptor 4 agonist effect but also is a potential vaccine adjuvant and a candidate protein for the S. pneumoniae vaccine. We constructed the fusion protein ΔA146Ply-HA stem and studied its immunoprotective effect in mice infection models. The results showed that intramuscular immunization of ΔA146Ply-HA stem without adjuvant could induce specific antibodies against HA stem and specific CD4+ T and CD8+ T cellular immunity in BALB/c and C57BL/6 mice, which could improve the survival rate of mice infected with IAV and co-infected with S. pneumoniae, but the protective effect on BALB/c mice was better than that on C57BL/6 mice. ΔA146Ply-HA stem serum antibody could protect BALB/c and C57BL/6 mice from IAV, and recognized HA polypeptides of H3N2, H5N1, H7N9, and H9N2 viruses. Moreover, ΔA146Ply-HA stem intramuscular immunization had a high safety profile with no obvious toxic side effects. The results indicated that coupling ΔA146Ply with influenza protein as a vaccine was a safe and effective strategy against the IV and secondary S. pneumoniae infection.
Collapse
Affiliation(s)
- Lian Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Ting Guo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yuan Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Rui Yang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Hanyi Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Wenlong Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
92
|
Shun K, Ying-Li S, Zhi-Juan L, Jian-Liang L, Feng X, Lu-Jiao D, Peng Y, Jiang S, Zhi-Jing X. Stimulation of lipopolysaccharide from Pseudomonas aeruginosa following H9N2 IAV infection exacerbates inflammatory responses of alveolar macrophages and decreases virus replication. Microb Pathog 2023; 182:106254. [PMID: 37481007 DOI: 10.1016/j.micpath.2023.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
H9N2 IAV infection contributed to P. aeruginosa coinfection, causing severe hemorrhagic pneumonia in mink. In this study, the in vitro alveolar macrophage models were developed to investigate the innate immune responses to P. aeruginosa LPS stimulation following H9N2 IAV infection, using MH-S cells. The cytokine levels, apoptosis levels and the viral nucleic acid levels were detected and analyzed. As a result, the levels of IFN-α, IL-1β, TNF-α, and IL-10 in MH-S cells with P. aeruginosa LPS stimulation following H9N2 IAV infection were significantly higher than those in MH-S cells with single H9N2 IAV infection and single LPS stimulation (P < 0.05), exacerbating inflammatory responses. LPS stimulation aggravated the apoptosis of MH-S cells with H9N2 IAV infection. Interestingly, LPS stimulation influences H9N2 IAV replication and indirectly reduced H9N2 IAV replications in in vitro AMs. It implied that LPS should play an important role in the pathogenesis of H9N2 IAV and P. aeruginosa coinfection.
Collapse
Affiliation(s)
- Kang Shun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Sun Ying-Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Li Zhi-Juan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Li Jian-Liang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Xiao Feng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Dong Lu-Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Yuan Peng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Shijin Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Xie Zhi-Jing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, 271018, China.
| |
Collapse
|
93
|
Dibos M, Haschka SJ, Abbassi R, Schneider J, Schmid RM, Rasch S, Lahmer T. Influence of a Structured Microbiological Endotracheal Monitoring Program on the Outcome of Critically Ill COVID-19 Patients: An Observational Study. J Clin Med 2023; 12:5622. [PMID: 37685689 PMCID: PMC10488947 DOI: 10.3390/jcm12175622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND In past influenza pandemics and the current COVID-19 pandemic, bacterial endotracheal superinfections are a well-known risk factor for higher morbidity and mortality. The goal of this study was to investigate the influence of a structured, objective, microbiological monitoring program on the prognosis of COVID-19 patients with mechanical ventilation. METHODS A structured microbiological monitoring program (at intubation, then every 3 days) included collection of endotracheal material. Data analysis focused on the spectrum of bacterial pathogens, mortality, as well as intensive care unit (ICU), hospital, and mechanical ventilation duration. RESULTS A total of 29% of the patients showed bacterial coinfection at the time of intubation, and within 48 h, 56% developed ventilator-associated pneumonia (VAP). Even though patients with VAP had significantly longer ICU, hospital, and mechanical ventilation durations, there was no significant difference in mortality between patients with VAP pneumonia and patients without bacterial infection. CONCLUSION VAP is a common complication in COVID-19 patients. In contrast to already published studies, in our study implementing a structured microbiological monitoring program, COVID-19 patients with bacterial coinfection or VAP did not show higher mortality. Thus, a standardized, objective, microbiological screening can help detect coinfection and ventilator-associated infections, refining anti-infective therapy and positively influencing patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tobias Lahmer
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (M.D.)
| |
Collapse
|
94
|
Wei J, Zhang C, Ma W, Ma J, Liu Z, Ren F, Li N. Antibacterial Activity of Thesium chinense Turcz Extract Against Bacteria Associated with Upper Respiratory Tract Infections. Infect Drug Resist 2023; 16:5091-5105. [PMID: 37576521 PMCID: PMC10422991 DOI: 10.2147/idr.s425398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose The drug resistance of Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes and Haemophilus influenzae has become more and more serious, and it is urgent to seek new antibacterial drugs. In this study, Thesium chinense Turcz. extracts were tested for its potential antibacterial activities. Methods T. chinense powder was extracted with 5 solvents of different polarity (ethyl alcohol, petroleum ether, ethyl acetate, n-butyl alcohol and double distilled water), and their antibacterial activities were tested. The Broth dilution method was used to evaluate the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of highly active plant extracts with a concentration of 1g/mL. The inhibitory activity of this extract on biofilm formation was investigated. Afterwards, we investigated its effect on the transcriptome of S. aureus. Results The ethanol extract coded as BRY, only inhibited S. aureus, whereas the ethyl acetate extract coded as BY2 showed inhibitory effect on all the tested bacteria. The MIC of BRY on S. aureus was 128 mg/mL, and the MBC was 512 mg/mL. The MIC of BY2 against S. aureus, S. pneumoniae, S. pyogenes and H. influenzae were 8 mg/mL, 4 mg/mL, 4 mg/mL, and 4 mg/mL, respectively. The MBC of BY2 for these four bacteria ranged from 4 to 256 mg/mL. Mechanism studies have shown that BRY and BY2 have an impact on anti-formation of biofilms at MIC concentrations. Transcriptome sequencing results showed that 531 genes were up-regulated and 340 genes showed down-regulated expression in S. aureus after BY2 treatment. Conclusion BY2 has a broader antibacterial spectrum than BRY. Meanwhile, the inhibitory effect of BY2 on S. aureus is better than BRY. The mechanism of BY2 against S. aureus may relate to its inhibition of ribosome synthesis, restriction of key enzymes of citric acid cycle, decrease of pathogenicity and influence on biofilm formation. The results confirmed that BY2 was the main antibacterial part of T. chinense, which can be used as a source of antibacterial agents.
Collapse
Affiliation(s)
- Juanru Wei
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Cong Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Wei Ma
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Juncheng Ma
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Zhenzhen Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Fucai Ren
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Ning Li
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
95
|
Influence of a structured microbiological endotracheal monitoring on the outcome of critically ill COVID-19 patients: an observational study.. [DOI: 10.21203/rs.3.rs-2436406/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Abstract
The full text of this preprint has been withdrawn by the authors due to author disagreement with the posting of the preprint. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.
Collapse
|
96
|
Hossain MJ, Jabin N, Ahmmed F, Sultana A, Abdur Rahman SM, Islam MR. Irrational use of antibiotics and factors associated with antibiotic resistance: Findings from a cross-sectional study in Bangladesh. Health Sci Rep 2023; 6:e1465. [PMID: 37520458 PMCID: PMC10375841 DOI: 10.1002/hsr2.1465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
Background and aims Irrational antibiotic (AB) usage poses a serious concern to third-world countries because of poor surveillance, lack of information, and patients' propensity for self-medication. Additionally, the unpredictability of the coronavirus disease 2019 (COVID-19) pandemic promoted the abuse of ABs, which accelerated the prevalence of antibiotic resistance (ABR). The primary aim of this study was to assess the pattern of AB usage and irrational use of ABs-related potential factors associated with ABR among the students and teachers of a leading public university of Bangladesh. Methods A cross-sectional web-based survey was conducted among the students and teachers (n = 783) of the selected university, from January 1 to February 28, 2022. Descriptive statistics, χ 2 test, and logistic regression analysis were employed to analyze the collected data. Results The regression analysis supported that male participants had a 34% lower experience of acquiring ABR than female respondents (adjusted odds ratio [AOR] = 0.66, 95% confidence interval [CI] = 0.448, 0.973; p = 0.036). The 1st/2nd-year level students had more than two times higher experience with ABR than the master's or higher-class students (AOR = 2.149, 95% CI = 1.047, 4.412; p = 0.037). The participants who took ABs for 4-6 days showed more than two times ABR experience than those who took ABs for above 10 days (AOR = 2.016, 95% CI = 1.016, 4.003; p = 0.045). Respondents who finished their AB medication (dose completion) had a 57% less chance of acquiring ABR than the participants who did not complete their dose. Conclusion This study found that irrational use of ABs is more prevalent among the youth and female participants. At this stage, there is an urgent need for comprehensive statutory AB control rules, as well as measures for appropriate information, education, and surveillance throughout different groups of Bangladesh.
Collapse
Affiliation(s)
| | - Nasrin Jabin
- Department of Peace and Conflict StudiesUniversity of DhakaDhakaBangladesh
| | - Foyez Ahmmed
- Department of StatisticsComilla UniversityCumillaBangladesh
| | - Arifa Sultana
- Department of Pharmaceutical Chemistry, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | | |
Collapse
|
97
|
Villalva C, Patil G, Narayanan S, Chanda D, Ghimire R, Snider T, Ramachandran A, Channappanavar R, More S. Klebsiella pneumoniae C o-infection Leads to Fatal Pneumonia in SARS-CoV-2-infected Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551035. [PMID: 37577517 PMCID: PMC10418095 DOI: 10.1101/2023.07.28.551035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
SARS-CoV-2 patients have been reported to have high rates of secondary Klebsiella pneumoniae infections. Klebsiella pneumoniae is a commensal that is typically found in the respiratory and gastrointestinal tracts. However, it can cause severe disease when a person's immune system is compromised. Despite a high number of K. pneumoniae cases reported in SARS-CoV-2 patients, a co-infection animal model evaluating the pathogenesis is not available. We describe a mouse model to study disease pathogenesis of SARS-CoV-2 and K. pneumoniae co-infection. BALB/cJ mice were inoculated with mouse-adapted SARS-CoV-2 followed by a challenge with K. pneumoniae . Mice were monitored for body weight change, clinical signs, and survival during infection. The bacterial load, viral titers, immune cell accumulation and phenotype, and histopathology were evaluated in the lungs. The co-infected mice showed severe clinical disease and a higher mortality rate within 48 h of K. pneumoniae infection. The co-infected mice had significantly elevated bacterial load in the lungs, however, viral loads were similar between co-infected and single-infected mice. Histopathology of co-infected mice showed severe bronchointerstitial pneumonia with copious intralesional bacteria. Flow cytometry analysis showed significantly higher numbers of neutrophils and macrophages in the lungs. Collectively, our results demonstrated that co-infection of SARS-CoV-2 with K. pneumoniae causes severe disease with increased mortality in mice.
Collapse
|
98
|
Schwerdtner M, Skalik A, Limburg H, Bierwagen J, Jung AL, Dorna J, Kaufmann A, Bauer S, Schmeck B, Böttcher-Friebertshäuser E. Expression of TMPRSS2 is up-regulated by bacterial flagellin, LPS, and Pam3Cys in human airway cells. Life Sci Alliance 2023; 6:e202201813. [PMID: 37208193 PMCID: PMC10200810 DOI: 10.26508/lsa.202201813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
Many viruses require proteolytic activation of their envelope proteins for infectivity, and relevant host proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of influenza A virus (IAV) and various coronaviruses (CoV). Increased TMPRSS2 expression has been associated with a higher risk of severe influenza infection and enhanced susceptibility to SARS-CoV-2. Here, we found that Legionella pneumophila stimulates the increased expression of TMPRSS2-mRNA in Calu-3 human airway cells. We identified flagellin as the dominant structural component inducing TMPRSS2 expression. The flagellin-induced increase was not observed at this magnitude for other virus-activating host proteases. TMPRSS2-mRNA expression was also significantly increased by LPS, Pam3Cys, and Streptococcus pneumoniae, although less pronounced. Multicycle replication of H1N1pdm and H3N2 IAV but not SARS-CoV-2 and SARS-CoV was enhanced by flagellin treatment. Our data suggest that bacteria, particularly flagellated bacteria, up-regulate the expression of TMPRSS2 in human airway cells and, thereby, may support enhanced activation and replication of IAV upon co-infections. In addition, our data indicate a physiological role of TMPRSS2 in antimicrobial host response.
Collapse
Affiliation(s)
- Marie Schwerdtner
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Annika Skalik
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Hannah Limburg
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Jeff Bierwagen
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Jens Dorna
- Institute of Immunology, Philipps-University Marburg, Marburg, Germany
| | - Andreas Kaufmann
- Institute of Immunology, Philipps-University Marburg, Marburg, Germany
| | - Stefan Bauer
- Institute of Immunology, Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Department of Pulmonary and Critical Care Medicine, Philipps-University Marburg, Marburg, Germany, Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | | |
Collapse
|
99
|
Earnhardt EY, Tipper JL, D’Mello A, Jian MY, Conway ES, Mobley JA, Orihuela CJ, Tettelin H, Harrod KS. Influenza A-induced cystic fibrosis transmembrane conductance regulator dysfunction increases susceptibility to Streptococcus pneumoniae. JCI Insight 2023; 8:e170022. [PMID: 37318849 PMCID: PMC10443798 DOI: 10.1172/jci.insight.170022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023] Open
Abstract
Influenza A virus (IAV) infection is commonly complicated by secondary bacterial infections that lead to increased morbidity and mortality. Our recent work demonstrates that IAV disrupts airway homeostasis, leading to airway pathophysiology resembling cystic fibrosis disease through diminished cystic fibrosis transmembrane conductance regulator (CFTR) function. Here, we use human airway organotypic cultures to investigate how IAV alters the airway microenvironment to increase susceptibility to secondary infection with Streptococcus pneumoniae (Spn). We observed that IAV-induced CFTR dysfunction and airway surface liquid acidification is central to increasing susceptibility to Spn. Additionally, we observed that IAV induced profound transcriptional changes in the airway epithelium and proteomic changes in the airway surface liquid in both CFTR-dependent and -independent manners. These changes correspond to multiple diminished host defense pathways and altered airway epithelial function. Collectively, these findings highlight both the importance of CFTR function during infectious challenge and demonstrate a central role for the lung epithelium in secondary bacterial infections following IAV.
Collapse
Affiliation(s)
- Erin Y. Earnhardt
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L. Tipper
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adonis D’Mello
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ming-Yuan Jian
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elijah S. Conway
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Carlos J. Orihuela
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kevin S. Harrod
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
100
|
Platt AP, Bradley BT, Nasir N, Stein SR, Ramelli SC, Ramos-Benitez MJ, Dickey JM, Purcell M, Singireddy S, Hays N, Wu J, Raja K, Curto R, Salipante SJ, Chisholm C, Carnes S, Marshall DA, Cookson BT, Vannella KM, Madathil RJ, Soherwardi S, McCurdy MT, Saharia KK, Rabin J, Nih Covid-Autopsy Consortium, Grazioli A, Kleiner DE, Hewitt SM, Lieberman JA, Chertow DS. Pulmonary Co-Infections Detected Premortem Underestimate Postmortem Findings in a COVID-19 Autopsy Case Series. Pathogens 2023; 12:932. [PMID: 37513779 PMCID: PMC10383307 DOI: 10.3390/pathogens12070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial and fungal co-infections are reported complications of coronavirus disease 2019 (COVID-19) in critically ill patients but may go unrecognized premortem due to diagnostic limitations. We compared the premortem with the postmortem detection of pulmonary co-infections in 55 fatal COVID-19 cases from March 2020 to March 2021. The concordance in the premortem versus the postmortem diagnoses and the pathogen identification were evaluated. Premortem pulmonary co-infections were extracted from medical charts while applying standard diagnostic definitions. Postmortem co-infection was defined by compatible lung histopathology with or without the detection of an organism in tissue by bacterial or fungal staining, or polymerase chain reaction (PCR) with broad-range bacterial and fungal primers. Pulmonary co-infection was detected premortem in significantly fewer cases (15/55, 27%) than were detected postmortem (36/55, 65%; p < 0.0001). Among cases in which co-infection was detected postmortem by histopathology, an organism was identified in 27/36 (75%) of cases. Pseudomonas, Enterobacterales, and Staphylococcus aureus were the most frequently identified bacteria both premortem and postmortem. Invasive pulmonary fungal infection was detected in five cases postmortem, but in no cases premortem. According to the univariate analyses, the patients with undiagnosed pulmonary co-infection had significantly shorter hospital (p = 0.0012) and intensive care unit (p = 0.0006) stays and significantly fewer extra-pulmonary infections (p = 0.0021). Bacterial and fungal pulmonary co-infection are under-recognized complications in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Andrew P Platt
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Benjamin T Bradley
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Nadia Nasir
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sydney R Stein
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Sabrina C Ramelli
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcos J Ramos-Benitez
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
- Department of Basic Sciences, Division of Microbiology, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - James M Dickey
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | - Nicole Hays
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jocelyn Wu
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katherine Raja
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ryan Curto
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Claire Chisholm
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | | | - Desiree A Marshall
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Brad T Cookson
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Kevin M Vannella
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Ronson J Madathil
- Department of Surgery, Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Michael T McCurdy
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland St. Joseph Medical Center, Towson, MD 21204, USA
| | - Kapil K Saharia
- Institute of Human Virology, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph Rabin
- R Adams Cowley Shock Trauma Center, Department of Surgery and Program in Trauma, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Alison Grazioli
- R Adams Cowley Shock Trauma Center, Department of Medicine and Program in Trauma, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua A Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Daniel S Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| |
Collapse
|