51
|
Batth IS, Huang SB, Villarreal M, Gong J, Chakravarthy D, Keppler B, Jayamohan S, Osmulski P, Xie J, Rivas P, Bedolla R, Liss MA, Yeh IT, Reddick R, Miyamoto H, Ghosh R, Kumar AP. Evidence for 2-Methoxyestradiol-Mediated Inhibition of Receptor Tyrosine Kinase RON in the Management of Prostate Cancer. Int J Mol Sci 2021; 22:ijms22041852. [PMID: 33673346 PMCID: PMC7918140 DOI: 10.3390/ijms22041852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 11/16/2022] Open
Abstract
2-Methoxyestradiol (2-ME2) possesses anti-tumorigenic activities in multiple tumor models with acceptable tolerability profile in humans. Incomplete understanding of the mechanism has hindered its development as an anti-tumorigenic compound. We have identified for the first-time macrophage stimulatory protein 1 receptor (MST1R) as a potential target of 2-ME2 in prostate cancer cells. Human tissue validation studies show that MST1R (a.k.a RON) protein levels are significantly elevated in prostate cancer tissues compared to adjacent normal/benign glands. Serum levels of macrophage stimulatory protein (MSP), a ligand for RON, is not only associated with the risk of disease recurrence, but also significantly elevated in samples from African American patients. 2-ME2 treatment inhibited mechanical properties such as adhesion and elasticity that are associated with epithelial mesenchymal transition by downregulating mRNA expression and protein levels of MST1R in prostate cancer cell lines. Intervention with 2-ME2 significantly reduced tumor burden in mice. Notably, global metabolomic profiling studies identified significantly higher circulating levels of bile acids in castrated animals that were decreased with 2-ME2 intervention. In summary, findings presented in this manuscript identified MSP as a potential marker for predicting biochemical recurrence and suggest repurposing 2-ME2 to target RON signaling may be a potential therapeutic modality for prostate cancer.
Collapse
Affiliation(s)
- Izhar Singh Batth
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Shih-Bo Huang
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Michelle Villarreal
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Jingjing Gong
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Divya Chakravarthy
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Brian Keppler
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Sridharan Jayamohan
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Pawel Osmulski
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Jianping Xie
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Paul Rivas
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Roble Bedolla
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Michael A. Liss
- Urology, University of Texas Health, San Antonio, TX 78229, USA; (M.A.L.); (R.G.)
- Mays Cancer Center, San Antonio, TX 78229, USA
| | - I-Tien Yeh
- Pathology, University of Texas Health, San Antonio, TX 78229, USA; (I.-T.Y.); (R.R.)
| | - Robert Reddick
- Pathology, University of Texas Health, San Antonio, TX 78229, USA; (I.-T.Y.); (R.R.)
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Rita Ghosh
- Urology, University of Texas Health, San Antonio, TX 78229, USA; (M.A.L.); (R.G.)
- Mays Cancer Center, San Antonio, TX 78229, USA
| | - Addanki P. Kumar
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
- Urology, University of Texas Health, San Antonio, TX 78229, USA; (M.A.L.); (R.G.)
- Mays Cancer Center, San Antonio, TX 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX 78229, USA
- Correspondence:
| |
Collapse
|
52
|
Vernia F, Longo S, Stefanelli G, Viscido A, Latella G. Dietary Factors Modulating Colorectal Carcinogenesis. Nutrients 2021; 13:nu13010143. [PMID: 33401525 PMCID: PMC7824178 DOI: 10.3390/nu13010143] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
The development of colorectal cancer, responsible for 9% of cancer-related deaths, is favored by a combination of genetic and environmental factors. The modification of diet and lifestyle may modify the risk of colorectal cancer (CRC) and prevent neoplasia in up to 50% of cases. The Western diet, characterized by a high intake of fat, red meat and processed meat has emerged as an important contributor. Conversely, a high intake of dietary fiber partially counteracts the unfavorable effects of meat through multiple mechanisms, including reduced intestinal transit time and dilution of carcinogenic compounds. Providing antioxidants (e.g., vitamins C and E) and leading to increased intraluminal production of protective fermentation products, like butyrate, represent other beneficial and useful effects of a fiber-rich diet. Protective effects on the risk of developing colorectal cancer have been also advocated for some specific micronutrients like vitamin D, selenium, and calcium. Diet-induced modifications of the gut microbiota modulate colonic epithelial cell homeostasis and carcinogenesis. This can have, under different conditions, opposite effects on the risk of CRC, through the production of mutagenic and carcinogenic agents or, conversely, of protective compounds. The aim of this review is to summarize the most recent evidence on the role of diet as a potential risk factor for the development of colorectal malignancies, as well as providing possible prevention dietary strategies.
Collapse
|
53
|
Impact of Deoxycholic Acid on Oesophageal Adenocarcinoma Invasion: Effect on Matrix Metalloproteinases. Int J Mol Sci 2020; 21:ijms21218042. [PMID: 33126685 PMCID: PMC7672620 DOI: 10.3390/ijms21218042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Bile acids (BAs) have been implicated in the development of oesophagitis, Barrett’s oesophagus and oesophageal adenocarcinoma (OAC). However, whether BAs promote cancer invasiveness has not been elucidated. We evaluated the role of BAs, in particular deoxycholic acid (DCA), in OAC invasion. Migration and invasiveness in untreated and BA-treated oesophageal SKGT-4 cancer cells were evaluated. Activity and expression of different matrix metalloproteinases (MMPs) were determined by zymography, ELISA, PCR and Western blot. Finally, human OAC tissues were stained for MMP-10 by immunohistochemistry. It was found that SKGT-4 cells incubated with low concentrations of DCA had a significant increase in invasion. In addition, MMP-10 mRNA and protein expression were also increased in the presence of DCA. MMP-10 was found to be highly expressed both in-vitro and in-vivo in neoplastic OAC cells relative to non-neoplastic squamous epithelial cells. Our results show that DCA promotes OAC invasion and MMP-10 overexpression. This study will advance our understanding of the pathophysiological mechanisms involved in human OAC and shows promise for the development of new therapeutic strategies.
Collapse
|
54
|
Probiotic Lactobacillus rhamnosus GG reduces mortality of septic mice by modulating gut microbiota composition and metabolic profiles. Nutrition 2020; 78:110863. [PMID: 32593948 DOI: 10.1016/j.nut.2020.110863] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
|
55
|
Schupbach D, Comeau-Gauthier M, Harvey E, Merle G. Wnt modulation in bone healing. Bone 2020; 138:115491. [PMID: 32569871 DOI: 10.1016/j.bone.2020.115491] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Genetic studies have been instrumental in the field of orthopaedics for finding tools to improve the standard management of fractures and delayed unions. The Wnt signaling pathway that is crucial for development and maintenance of many organs also has a very promising pathway for enhancement of bone regeneration. The Wnt pathway has been shown to have a direct effect on stem cells during bone regeneration, making Wnt a potential target to stimulate bone repair after trauma. A more complete view of how Wnt influences animal bone regeneration has slowly come to light. This review article provides an overview of studies done investigating the modulation of the canonical Wnt pathway in animal bone regeneration models. This not only includes a summary of the recent work done elucidating the roles of Wnt and β-catenin in fracture healing, but also the results of thirty transgenic studies, and thirty-eight pharmacological studies. Finally, we discuss the discontinuation of sclerostin clinical trials, ongoing clinical trials with lithium, the results of Dkk antibody clinical trials, the shift into combination therapies and the future opportunities to enhance bone repair and regeneration through the modulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Drew Schupbach
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Marianne Comeau-Gauthier
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Edward Harvey
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada.
| | - Geraldine Merle
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Department of Chemical Engineering, Polytechnique Montreal, 2500, chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
56
|
Mohajeri M, Iranpour P, Vahidi Y, Haghighi RR, Faghih Z, Bararjanian M, Salehi P. Pegylated Deoxycholic Acid Coated Gold Nanoparticles as a Highly Stable CT Contrast Agent. ChemistrySelect 2020. [DOI: 10.1002/slct.202001634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mohammad Mohajeri
- Department of PhytochemistryMedicinal Plants and Drugs Research InstituteShahid Beheshti University via G. C., Evin 1983963113 Tehran Iran
| | - Pooya Iranpour
- Medical Imaging Research CenterShiraz University of Medical Sciences Shiraz Iran
| | - Yasmin Vahidi
- Shiraz Institute for Cancer ResearchSchool of MedicineShiraz University of Medical Sciences Shiraz Iran
| | | | - Zahra Faghih
- Shiraz Institute for Cancer ResearchSchool of MedicineShiraz University of Medical Sciences Shiraz Iran
| | - Morteza Bararjanian
- Department of PhytochemistryMedicinal Plants and Drugs Research InstituteShahid Beheshti University via G. C., Evin 1983963113 Tehran Iran
| | - Peyman Salehi
- Department of PhytochemistryMedicinal Plants and Drugs Research InstituteShahid Beheshti University via G. C., Evin 1983963113 Tehran Iran
| |
Collapse
|
57
|
Abstract
Vertebrates synthesize a diverse set of steroids and bile acids that undergo bacterial biotransformations. The endocrine literature has principally focused on the biochemistry and molecular biology of host synthesis and tissue-specific metabolism of steroids. Host-associated microbiota possess a coevolved set of steroid and bile acid modifying enzymes that match the majority of host peripheral biotransformations in addition to unique capabilities. The set of host-associated microbial genes encoding enzymes involved in steroid transformations is known as the sterolbiome. This review focuses on the current knowledge of the sterolbiome as well as its importance in medicine and agriculture.
Collapse
|
58
|
Dougherty MW, Kudin O, Mühlbauer M, Neu J, Gharaibeh RZ, Jobin C. Gut microbiota maturation during early human life induces enterocyte proliferation via microbial metabolites. BMC Microbiol 2020; 20:205. [PMID: 32652929 PMCID: PMC7353703 DOI: 10.1186/s12866-020-01892-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/02/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The intestinal tract undergoes a period of cellular maturation during early life, primarily characterized by the organization of epithelial cells into specialized crypt and villus structures. These processes are in part mediated by the acquisition of microbes. Infants delivered at term typically harbor a stable, low diversity microbiota characterized by an overrepresentation of various Bacilli spp., while pre-term infants are colonized by an assortment of bacteria during the first several weeks after delivery. However, the functional effects of these changes on intestinal epithelium homeostasis and maturation remain unclear. To study these effects, human neonate feces were obtained from term and pre-term infants. Fecal 16S rDNA sequencing and global untargeted LC-MS were performed to characterize microbial composition and metabolites from each population. Murine enteral organoids (enteroids) were cultured with 0.22 μm filtered stool supernatant pooled from term or pre-term infants. RESULTS Term and pre-term microbial communities differed significantly from each other by principle components analysis (PCoA, PERMANOVA p < 0.001), with the pre-term microbiome characterized by increased OTU diversity (Wilcox test p < 0.01). Term communities were less diverse and dominated by Bacilli (81.54%). Pre-term stools had an increased abundance of vitamins, amino acid derivatives and unconjugated bile acids. Pathway analysis revealed a significant increase in multiple metabolic pathways in pre-term samples mapped to E. coli using the KEGG database related to the fermentation of various amino acids and vitamin biosynthesis. Enteroids cultured with supernatant from pre-term stools proliferated at a higher rate than those cultured with supernatant from term stools (cell viability: 207% vs. 147.7%, p < 0.01), grew larger (area: 81,189μm2 vs. 41,777μm2, p < 0.001), and bud at a higher rate (6.5 vs. 4, p < 0.01). Additionally, genes involved in stem cell proliferation were upregulated in pre-term stool treated enteroid cultures (Lgr5, Ephb2, Ascl2 Sox9) but not term stool treated enteroids. CONCLUSIONS Our findings indicate that microbial metabolites from the more diverse gut microbiome associated with pre-term infants facilitate stem cell proliferation. Therefore, perturbations of the pre-term microbiota may impair intestinal homeostasis.
Collapse
Affiliation(s)
- Michael W Dougherty
- Department of Medicine, Division of Gastroenterology, University of Florida, CGRC, 2033 Mowry Rd, Florida, 32610, USA
| | - Oleksandr Kudin
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Marcus Mühlbauer
- Department of Medicine, Division of Gastroenterology, University of Florida, CGRC, 2033 Mowry Rd, Florida, 32610, USA
| | - Josef Neu
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Raad Z Gharaibeh
- Department of Medicine, Division of Gastroenterology, University of Florida, CGRC, 2033 Mowry Rd, Florida, 32610, USA
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, University of Florida, CGRC, 2033 Mowry Rd, Florida, 32610, USA.
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
59
|
Wolf PG, Gaskins HR, Ridlon JM, Freels S, Hamm A, Goldberg S, Petrilli P, Schering T, Vergis S, Gomez-Perez S, Yazici C, Braunschweig C, Mutlu E, Tussing-Humphreys L. Effects of taurocholic acid metabolism by gut bacteria: A controlled feeding trial in adult African American subjects at elevated risk for colorectal cancer. Contemp Clin Trials Commun 2020; 19:100611. [PMID: 32695922 PMCID: PMC7363648 DOI: 10.1016/j.conctc.2020.100611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 01/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer and second leading cause of cancer death in the United States. Recent evidence has linked a high fat and animal protein diet and microbial metabolism of host bile acids as environmental risk factors for CRC development. We hypothesize that the primary bile salt taurocholic acid (TCA) is a key, diet-controlled metabolite whose use by bacteria yields a carcinogen and tumor-promoter, respectively. The work is motivated by our published data indicating hydrogen sulfide (H2S) and secondary bile acid production by colonic bacteria, serve as environmental insults contributing to CRC risk. The central aim of this study is to test whether a diet high in animal protein and saturated fat increases abundance of bacteria that generate H2S and pro-inflammatory secondary bile acids in African Americans (AAs) at high risk for CRC. Our prospective, randomized, crossover feeding trial will examine two microbial mechanisms by which an animal-based diet may support the growth of TCA metabolizing bacteria. Each subject will receive two diets in a crossover design- an animal-based diet, rich in taurine and saturated fat, and a plant-based diet, low in taurine and saturated fat. A mediation model will be used to determine the extent to which diet (independent variable) and mucosal markers of CRC risk and DNA damage (dependent variables) are explained by colonic bacteria and their functions (mediator variables). This research will generate novel information targeted to develop effective dietary interventions that may reduce the unequal CRC burden in AAs.
Collapse
Affiliation(s)
- Patricia G Wolf
- Institute for Health Research and Policy, University of Illinois, IL, 60608, USA.,Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - H Rex Gaskins
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jason M Ridlon
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sally Freels
- School of Public Health, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alyshia Hamm
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah Goldberg
- Division of Digestive Diseases, Hepatology and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Phyllis Petrilli
- Institute for Health Research and Policy, University of Illinois, IL, 60608, USA
| | - Teresa Schering
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Sevasti Vergis
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.,Division of Academic and Internal Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sandra Gomez-Perez
- Department of Clinical Nutrition, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Cemal Yazici
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Carol Braunschweig
- Department of Kinesiology and Nutrition, University of Illinois at Chicago at Chicago, Chicago, IL, USA
| | - Ece Mutlu
- Division of Digestive Diseases, Hepatology and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Lisa Tussing-Humphreys
- Institute for Health Research and Policy, University of Illinois, IL, 60608, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.,Division of Academic and Internal Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
60
|
Ridlon JM, Devendran S, Alves JM, Doden H, Wolf PG, Pereira GV, Ly L, Volland A, Takei H, Nittono H, Murai T, Kurosawa T, Chlipala GE, Green SJ, Hernandez AG, Fields CJ, Wright CL, Kakiyama G, Cann I, Kashyap P, McCracken V, Gaskins HR. The ' in vivo lifestyle' of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice. Gut Microbes 2020; 11:381-404. [PMID: 31177942 PMCID: PMC7524365 DOI: 10.1080/19490976.2019.1618173] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The formation of secondary bile acids by gut microbes is a current topic of considerable biomedical interest. However, a detailed understanding of the biology of anaerobic bacteria in the genus Clostridium that are capable of generating secondary bile acids is lacking. We therefore sought to determine the transcriptional responses of two prominent secondary bile acid producing bacteria, Clostridium hylemonae and Clostridium hiranonis to bile salts (in vitro) and the cecal environment of gnotobiotic mice. The genomes of C. hylemonae DSM 15053 and C. hiranonis DSM 13275 were closed, and found to encode 3,647 genes (3,584 protein-coding) and 2,363 predicted genes (of which 2,239 are protein-coding), respectively, and 1,035 orthologs were shared between C. hylemonae and C. hiranonis. RNA-Seq analysis was performed in growth medium alone, and in the presence of cholic acid (CA) and deoxycholic acid (DCA). Growth with CA resulted in differential expression (>0.58 log2FC; FDR < 0.05) of 197 genes in C. hiranonis and 118 genes in C. hylemonae. The bile acid-inducible operons (bai) from each organism were highly upregulated in the presence of CA but not DCA. We then colonized germ-free mice with human gut bacterial isolates capable of metabolizing taurine-conjugated bile acids. This consortium included bile salt hydrolase-expressing Bacteroides uniformis ATCC 8492, Bacteroides vulgatus ATCC 8482, Parabacteroides distasonis DSM 20701, as well as taurine-respiring Bilophila wadsworthia DSM 11045, and deoxycholic/lithocholic acid generating Clostridium hylemonae DSM 15053 and Clostridium hiranonis DSM 13275. Butyrate and iso-bile acid-forming Blautia producta ATCC 27340 was also included. The Bacteroidetes made up 84.71% of 16S rDNA cecal reads, B. wadsworthia, constituted 14.7%, and the clostridia made up <.75% of 16S rDNA cecal reads. Bile acid metabolomics of the cecum, serum, and liver indicate that the synthetic community were capable of functional bile salt deconjugation, oxidation/isomerization, and 7α-dehydroxylation of bile acids. Cecal metatranscriptome analysis revealed expression of genes involved in metabolism of taurine-conjugated bile acids. The in vivo transcriptomes of C. hylemonae and C. hiranonis suggest fermentation of simple sugars and utilization of amino acids glycine and proline as electron acceptors. Genes predicted to be involved in trimethylamine (TMA) formation were also expressed.
Collapse
Affiliation(s)
- Jason M. Ridlon
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,CONTACT Jason M. Ridlon, Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology
| | - Saravanan Devendran
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - João Mp Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Heidi Doden
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Patricia G. Wolf
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gabriel V. Pereira
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lindsey Ly
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alyssa Volland
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Meguro-Ku, Tokyo, Japan
| | | | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Takao Kurosawa
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - George E. Chlipala
- UIC Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Stefan J. Green
- UIC Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Alvaro G. Hernandez
- Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher J. Fields
- Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christy L. Wright
- Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Genta Kakiyama
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Isaac Cann
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Purna Kashyap
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Vance McCracken
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA,Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - H. Rex Gaskins
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
61
|
Tsvetikova SA, Koshel EI. Microbiota and cancer: host cellular mechanisms activated by gut microbial metabolites. Int J Med Microbiol 2020; 310:151425. [PMID: 32423739 DOI: 10.1016/j.ijmm.2020.151425] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
|
62
|
Krumz LM, Gudkova RB, Indejkina LK, Sabelnikova EA, Parfenov AI. [Bile acids are a risk factor for colorectal cancer]. TERAPEVT ARKH 2020; 92:93-96. [PMID: 32598725 DOI: 10.26442/00403660.2020.02.000457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 11/22/2022]
Abstract
Bile acids were first considered carcinogenic in 1939. Since then, accumulated data have associated colon cell changes with high levels of bile acids as an important risk factor for developing colorectal cancer, which is more common among people who consume large amounts of dietary fat. Secondary bile acids formed under the influence of the intestinal microbiota can cause the formation of reactive forms of oxygen and nitrogen, disruption of the cell membrane, mitochondria, DNA damage, reduction of apoptosis, increased cell mutation, turning them into cancer cells. High-fat diet, intestinal microflora, bile acids are a risk factors for colorectal cancer.
Collapse
Affiliation(s)
- L M Krumz
- Loginov Moscow Clinical Scientific Practical Center
| | - R B Gudkova
- Loginov Moscow Clinical Scientific Practical Center
| | | | | | - A I Parfenov
- Loginov Moscow Clinical Scientific Practical Center
| |
Collapse
|
63
|
Xing PY, Pettersson S, Kundu P. Microbial Metabolites and Intestinal Stem Cells Tune Intestinal Homeostasis. Proteomics 2020; 20:e1800419. [PMID: 31994831 DOI: 10.1002/pmic.201800419] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Microorganisms that colonize the gastrointestinal tract, collectively known as the gut microbiota, are known to produce small molecules and metabolites that significantly contribute to host intestinal development, functions, and homeostasis. Emerging insights from microbiome research reveal that gut microbiota-derived signals and molecules influence another key player maintaining intestinal homeostasis-the intestinal stem cell niche, which regulates epithelial self-renewal. In this review, the literature on gut microbiota-host crosstalk is surveyed, highlighting the effects of gut microbial metabolites on intestinal stem cells. The production of various classes of metabolites, their actions on intestinal stem cells are discussed and, finally, how the production and function of metabolites are modulated by aging and dietary intake is commented upon.
Collapse
Affiliation(s)
- Peter Yuli Xing
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.,Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, South Spine, Level B3, Block S2-B3a, Singapore, 639798, Singapore
| | - Sven Pettersson
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, SE, 17 177, Stockholm, Sweden
| | - Parag Kundu
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.,The Center for Microbes, Development and Health, Laboratory for Microbiota-Host Interactions, Institute Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building, Shanghai, 200031, China
| |
Collapse
|
64
|
Mizutani S, Yamada T, Yachida S. Significance of the gut microbiome in multistep colorectal carcinogenesis. Cancer Sci 2020; 111:766-773. [PMID: 31910311 PMCID: PMC7060472 DOI: 10.1111/cas.14298] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is highly prevalent worldwide. In 2018, there were over 1.8 million new cases. Most sporadic CRC develop from polypoid adenomas and are preceded by intramucosal carcinoma (stage 0), which can progress into more malignant forms. This developmental process is known as the adenoma-carcinoma sequence. Early detection and endoscopic removal are crucial for CRC management. Accumulating evidence suggests that the gut microbiota is associated with CRC development in humans. Comprehensive characterization of this microbiota is of great importance to assess its potential as a diagnostic marker in the very early stages of CRC. In this review, we summarized recent studies on CRC-associated bacteria and their carcinogenic mechanisms in animal models, human cell lines and human cohorts. High-throughput technologies have facilitated the identification of CRC-associated bacteria in human samples. We have presented our metagenome and metabolome studies on fecal samples collected from a large Japanese cohort that revealed stage-specific phenotypes of the microbiota in CRC. Furthermore, we have discussed the potential carcinogenic mechanisms of the gut microbiota, from which we can infer whether changes in the gut microbiota are a cause or effect in the multi-step process of CRC carcinogenesis.
Collapse
Affiliation(s)
- Sayaka Mizutani
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
65
|
Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M. Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. Int J Mol Sci 2019; 20:ijms20051214. [PMID: 30862015 PMCID: PMC6429521 DOI: 10.3390/ijms20051214] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Secondary bile acids (BAs) and short chain fatty acids (SCFAs), two major types of bacterial metabolites in the colon, cause opposing effects on colonic inflammation at chronically high physiological levels. Primary BAs play critical roles in cholesterol metabolism, lipid digestion, and host–microbe interaction. Although BAs are reabsorbed via enterohepatic circulation, primary BAs serve as substrates for bacterial biotransformation to secondary BAs in the colon. High-fat diets increase secondary BAs, such as deoxycholic acid (DCA) and lithocholic acid (LCA), which are risk factors for colonic inflammation and cancer. In contrast, increased dietary fiber intake is associated with anti-inflammatory and anticancer effects. These effects may be due to the increased production of the SCFAs acetate, propionate, and butyrate during dietary fiber fermentation in the colon. Elucidation of the molecular events by which secondary BAs and SCFAs regulate colonic cell proliferation and inflammation will lead to a better understanding of the anticancer potential of dietary fiber in the context of high-fat diet-related colon cancer. This article reviews the current knowledge concerning the effects of secondary BAs and SCFAs on the proliferation of colon epithelial cells, inflammation, cancer, and the associated microbiome.
Collapse
Affiliation(s)
- Huawei Zeng
- U. S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA.
| | - Shahid Umar
- Department of Surgery and University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| | - Bret Rust
- U. S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA.
| | - Darina Lazarova
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA.
| | - Michael Bordonaro
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA.
| |
Collapse
|
66
|
Fu T, Coulter S, Yoshihara E, Oh TG, Fang S, Cayabyab F, Zhu Q, Zhang T, Leblanc M, Liu S, He M, Waizenegger W, Gasser E, Schnabl B, Atkins AR, Yu RT, Knight R, Liddle C, Downes M, Evans RM. FXR Regulates Intestinal Cancer Stem Cell Proliferation. Cell 2019; 176:1098-1112.e18. [PMID: 30794774 PMCID: PMC6701863 DOI: 10.1016/j.cell.2019.01.036] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/28/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Increased levels of intestinal bile acids (BAs) are a risk factor for colorectal cancer (CRC). Here, we show that the convergence of dietary factors (high-fat diet) and dysregulated WNT signaling (APC mutation) alters BA profiles to drive malignant transformations in Lgr5-expressing (Lgr5+) cancer stem cells and promote an adenoma-to-adenocarcinoma progression. Mechanistically, we show that BAs that antagonize intestinal farnesoid X receptor (FXR) function, including tauro-β-muricholic acid (T-βMCA) and deoxycholic acid (DCA), induce proliferation and DNA damage in Lgr5+ cells. Conversely, selective activation of intestinal FXR can restrict abnormal Lgr5+ cell growth and curtail CRC progression. This unexpected role for FXR in coordinating intestinal self-renewal with BA levels implicates FXR as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Ting Fu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sally Coulter
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead NSW 2145, Australia
| | - Eiji Yoshihara
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sungsoon Fang
- Severance Biomedical Science Institute, BK21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Fritz Cayabyab
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Qiyun Zhu
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Tong Zhang
- Waitt Biophotonics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mathias Leblanc
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sihao Liu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mingxiao He
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wanda Waizenegger
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emanuel Gasser
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Bernd Schnabl
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92037, USA
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rob Knight
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92037, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead NSW 2145, Australia
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
67
|
Microbial Metabolites in Cancer Promotion or Prevention. MICROBIOME AND CANCER 2019. [DOI: 10.1007/978-3-030-04155-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
68
|
Banerjee A, Jothimani G, Prasad SV, Marotta F, Pathak S. Targeting Wnt Signaling through Small molecules in Governing Stem Cell Fate and Diseases. Endocr Metab Immune Disord Drug Targets 2019; 19:233-246. [PMID: 30657051 DOI: 10.2174/1871530319666190118103907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/27/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The conserved Wnt/β-catenin signaling pathway is responsible for multiple functions including regulation of stem cell pluripotency, cell migration, self-renewability and cell fate determination. This signaling pathway is of utmost importance, owing to its ability to fuel tissue repair and regeneration of stem cell activity in diverse organs. The human adult stem cells including hematopoietic cells, intestinal cells, mammary and mesenchymal cells rely on the manifold effects of Wnt pathway. The consequences of any dysfunction or manipulation in the Wnt genes or Wnt pathway components result in specific developmental defects and may even lead to cancer, as it is often implicated in stem cell control. It is absolutely essential to possess a comprehensive understanding of the inhibition and/ or stimulation of the Wnt signaling pathway which in turn is implicated in determining the fate of the stem cells. RESULTS In recent years, there has been considerable interest in the studies associated with the implementation of small molecule compounds in key areas of stem cell biology including regeneration differentiation, proliferation. In support of this statement, small molecules have unfolded as imperative tools to selectively activate and inhibit specific developmental signaling pathways involving the less complex mechanism of action. These compounds have been reported to modulate the core molecular mechanisms by which the stem cells regenerate and differentiate. CONCLUSION This review aims to provide an overview of the prevalent trends in the small molecules based regulation of stem cell fate via targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603 103, India
| | - Ganesan Jothimani
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603 103, India
| | - Suhanya Veronica Prasad
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603 103, India
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention, Milano, Italy and San Babila Clinic, Healthy Aging Unit by Genomics and Biotechnology, Milano, Italy
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603 103, India
| |
Collapse
|
69
|
Nguyen TT, Ung TT, Kim NH, Jung YD. Role of bile acids in colon carcinogenesis. World J Clin Cases 2018; 6:577-588. [PMID: 30430113 PMCID: PMC6232560 DOI: 10.12998/wjcc.v6.i13.577] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/15/2018] [Accepted: 10/12/2018] [Indexed: 02/05/2023] Open
Abstract
Bile acids (BAs) are cholesterol derivatives synthesized in the liver and then secreted into the intestine for lipid absorption. There are numerous scientific reports describing BAs, especially secondary BAs, as strong carcinogens or promoters of colon cancers. Firstly, BAs act as strong stimulators of colorectal cancer (CRC) initiation by damaging colonic epithelial cells, and inducing reactive oxygen species production, genomic destabilization, apoptosis resistance, and cancer stem cells-like formation. Consequently, BAs promote CRC progression via multiple mechanisms, including inhibiting apoptosis, enhancing cancer cell proliferation, invasion, and angiogenesis. There are diverse signals involved in the carcinogenesis mechanism of BAs, with a major role of epidermal growth factor receptor, and its down-stream signaling, involving mitogen-activated protein kinase, phosphoinositide 3-kinase/Akt, and nuclear factor kappa-light-chain-enhancer of activated B cells. BAs regulate numerous genes including the human leukocyte antigen class I gene, p53, matrix metalloprotease, urokinase plasminogen activator receptor, Cyclin D1, cyclooxygenase-2, interleukin-8, and miRNAs of CRC cells, leading to CRC promotion. These evidence suggests that targeting BAs is an efficacious strategies for CRC prevention and treatment.
Collapse
Affiliation(s)
- Thi Thinh Nguyen
- Department of Biochemistry, Chonnam National University Medical School, Jeonnam 58138, South Korea
| | - Trong Thuan Ung
- Department of Biochemistry, Chonnam National University Medical School, Jeonnam 58138, South Korea
| | - Nam Ho Kim
- Department of Nephrology, Chonnam National University Medical School, Gwangju 501-190, South Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Jeonnam 58138, South Korea
| |
Collapse
|
70
|
Tsukune N, Naito M, Ohashi A, Ninomiya T, Sato S, Takahashi T. Forced expression of mouse progerin attenuates the osteoblast differentiation interrupting β-catenin signal pathway in vitro. Cell Tissue Res 2018; 375:655-664. [PMID: 30284086 DOI: 10.1007/s00441-018-2930-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/18/2018] [Indexed: 02/01/2023]
Abstract
Nuclear protein, lamin A, which is a component of inner membrane on nucleoplasm, plays a role in nuclear formation and cell differentiation. The expression of mutated lamin A, termed progerin, causes a rare genetic aging disorder, Hutchinson-Gilford progeria syndrome, which shows abnormal bone formation with the decrease in a number of osteoblasts and osteocytes. However, exact molecular mechanism how progerin exerts depressive effects on osteogenesis has not been fully understood. Here, we created mouse lamin A dC50 cDNA encoding progerin that lacks 50 amino acid residues at C-terminus, transfected it in mouse preosteoblast-like MC3T3-E1 cells, and examined the changes in osteoblast phenotype. When lamin A dC50-expressed cells were cultured with differentiation-inductive medium, alkaline phosphatase (ALP) activity and mRNA levels of major osteoblast markers, type I collagen (Col1), bone sialoprotein (BSP), dentine matrix protein 1 (DMP1), and Runx2 were significantly decreased, and no mineralized nodules were detected as seen in control cells expressing empty vector. In the culture with mineralization-inductive medium, mRNA levels of BSP, osteocalcin, DMP1, Runx2, and osterix were strongly decreased parallel with loss of mineralization in lamin A dC50-expressed cells, while mineralized nodules appear at 21 days in control cells. Furthermore, lamin A dC50 expression was depressed nuclear localization of β-catenin with the decrease of GSK-3β phosphorylation level. These results suggest that lamin A dC50 depresses osteoblast differentiation in both early and late stages, and it negatively regulates β-catenin activity interacting with GSK-3β in cytoplasm.
Collapse
Affiliation(s)
- Naoya Tsukune
- Division of Applied Oral Science, Nihon University Graduate School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masako Naito
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Akiko Ohashi
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Tadashi Ninomiya
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Tomihisa Takahashi
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| |
Collapse
|
71
|
Li X, Yang J, Bao M, Zeng K, Fu S, Wang C, Ye L. Wnt signaling in bone metastasis: mechanisms and therapeutic opportunities. Life Sci 2018; 208:33-45. [PMID: 29969609 DOI: 10.1016/j.lfs.2018.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 02/05/2023]
Abstract
Bone metastasis frequently occurs in advanced cancer patients, who will develop osteogenic/osteolytic bone lesions in the late stage of the disease. Wnt signaling pathway, which is mainly grouped into the β-catenin dependent pathway and β-catenin independent pathway, is a well-organized cascade that has been reported to play important roles in a variety of physiological and pathological conditions, including bone metastasis. Regulation of Wnt signaling in bone metastasis involves multiple stages, including dissemination of primary tumor cells to bone, dormancy and outgrowth of metastatic tumor cells, and tumor-induced osteogenic and osteolytic bone destruction, suggesting the importance of Wnt signaling in bone metastasis pathology. In this review, we will introduce the involvement of Wnt signaling components in specific bone metastasis stages and summarize the promising Wnt modulators that have shown potential as bone metastasis therapeutics, in the hope to maximize the therapeutic opportunities of Wnt signaling for bone metastasis.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Minyue Bao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kan Zeng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shijin Fu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
72
|
Huang J, Mondul AM, Weinstein SJ, Karoly ED, Sampson JN, Albanes D. Prospective serum metabolomic profile of prostate cancer by size and extent of primary tumor. Oncotarget 2018; 8:45190-45199. [PMID: 28423352 PMCID: PMC5542177 DOI: 10.18632/oncotarget.16775] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Two recent investigations found serum lipid and energy metabolites related to aggressive prostate cancer up to 20 years prior to diagnosis. To elucidate whether those metabolomic profiles represent etiologic or tumor biomarker signals, we prospectively examined serum metabolites of prostate cancer cases by size and extent of primary tumors in a nested case-control analysis in the ATBC Study cohort that compared cases diagnosed with T2 (n = 71), T3 (n = 51), or T4 (n = 15) disease to controls (n = 200). Time from fasting serum collection to diagnosis averaged 10 years (range 1-20). LC/MS-GC/MS identified 625 known compounds, and logistic regression estimated odds ratios (ORs) associated with one-standard deviation differences in log-metabolites. N-acetyl-3-methylhistidine, 3-methylhistidine and 2'-deoxyuridine were elevated in men with T2 cancers compared to controls (ORs = 1.38-1.79; 0.0002 ≤ p ≤ 0.01). By contrast, four lipid metabolites were inversely associated with T3 tumors: oleoyl-linoleoyl-glycerophosphoinositol (GPI), palmitoyl-linoleoyl-GPI, cholate, and inositol 1-phosphate (ORs = 0.49-0.60; 0.000017 ≤ p ≤ 0.003). Secondary bile acid lipids, sex steroids and caffeine-related xanthine metabolites were elevated, while two Krebs cycle metabolites were decreased, in men diagnosed with T4 cancers. Men with T2, T3, and T4 prostate cancer primaries exhibit qualitatively different metabolite profiles years in advance of diagnosis that may represent etiologic factors, molecular patterns reflective of distinct primary tumors, or a combination of both.
Collapse
Affiliation(s)
- Jiaqi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | - Alison M Mondul
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | | | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
73
|
Abstract
Emerging evidence points to a strong association between the gut microbiota and the risk, development and progression of gastrointestinal cancers such as colorectal cancer (CRC) and hepatocellular carcinoma (HCC). Bile acids, produced in the liver, are metabolized by enzymes derived from intestinal bacteria and are critically important for maintaining a healthy gut microbiota, balanced lipid and carbohydrate metabolism, insulin sensitivity and innate immunity. Given the complexity of bile acid signalling and the direct biochemical interactions between the gut microbiota and the host, a systems biology perspective is required to understand the liver-bile acid-microbiota axis and its role in gastrointestinal carcinogenesis to reverse the microbiota-mediated alterations in bile acid metabolism that occur in disease states. An examination of recent research progress in this area is urgently needed. In this Review, we discuss the mechanistic links between bile acids and gastrointestinal carcinogenesis in CRC and HCC, which involve two major bile acid-sensing receptors, farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (TGR5). We also highlight the strategies and cutting-edge technologies to target gut-microbiota-dependent alterations in bile acid metabolism in the context of cancer therapy.
Collapse
Affiliation(s)
- Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawaii 96813, USA
| | - Guoxiang Xie
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawaii 96813, USA
| | - Weiping Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
74
|
Liu X, Chen B, You W, Xue S, Qin H, Jiang H. The membrane bile acid receptor TGR5 drives cell growth and migration via activation of the JAK2/STAT3 signaling pathway in non-small cell lung cancer. Cancer Lett 2018; 412:194-207. [PMID: 29074425 DOI: 10.1016/j.canlet.2017.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/01/2017] [Accepted: 10/12/2017] [Indexed: 12/24/2022]
|
75
|
Ghaffarzadegan T, Zhong Y, Fåk Hållenius F, Nyman M. Effects of barley variety, dietary fiber and β-glucan content on bile acid composition in cecum of rats fed low- and high-fat diets. J Nutr Biochem 2017; 53:104-110. [PMID: 29202273 DOI: 10.1016/j.jnutbio.2017.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Abstract
Diet-induced obesity and insulin resistance have been linked to changes in bile acid (BA) profiles, which in turn are highly dependent on the dietary composition and activity of the gut microbiota. The objective of the present study was to investigate whether the type and level of fiber had an effect on cecal BA composition when included in low- and high-fat diets. Groups of rats were fed two barley varieties, which resulted in three test diets containing three levels of β-glucans and two levels of dietary fiber. BAs were preconcentrated using hollow fiber liquid-phase microextraction and quantified by gas chromatography. The amount of the secondary BAs, lithocholic-, deoxycholic- and hyodexycholic acids was generally higher in groups fed high-fat diets compared with corresponding acids in groups fed low-fat diets (P<.05). In contrast, most of the primary and the secondary BAs, ursodeoxycholic acid and β- and ω-muricholic acids, were two to five times higher (P<.05) in groups fed low-fat diets than in groups fed high-fat diets. This was particularly true for groups fed the highest level of β-glucans and in some cases also the medium level. The BA profile in the gut was strongly dependent on the amount and type of dietary fiber in the diet, which may be useful in the prevention/treatment of diseases associated with changes in BA profiles.
Collapse
Affiliation(s)
- Tannaz Ghaffarzadegan
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Yadong Zhong
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Frida Fåk Hållenius
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Margareta Nyman
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
76
|
Huang S, Fantini D, Merrill BJ, Bagchi S, Guzman G, Raychaudhuri P. DDB2 Is a Novel Regulator of Wnt Signaling in Colon Cancer. Cancer Res 2017; 77:6562-6575. [PMID: 29021137 DOI: 10.1158/0008-5472.can-17-1570] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/29/2017] [Accepted: 09/28/2017] [Indexed: 01/23/2023]
Abstract
Deregulation of the Wnt/β-catenin signaling pathway drives the development of colorectal cancer, but understanding of this pathway remains incomplete. Here, we report that the damage-specific DNA-binding protein DDB2 is critical for β-catenin-mediated activation of RNF43, which restricts Wnt signaling by removing Wnt receptors from the cell surface. Reduced expression of DDB2 and RNF43 was observed in human hyperplastic colonic foci. DDB2 recruited EZH2 and β-catenin at an upstream site in the Rnf43 gene, enabling functional interaction with distant TCF4/β-catenin-binding sites in the intron of Rnf43 This novel activity of DDB2 was required for RNF43 function as a negative feedback regulator of Wnt signaling. Mice genetically deficient in DDB2 exhibited increased susceptibility to colon tumor development in a manner associated with higher abundance of the Wnt receptor-expressing cells and greater activation of the downstream Wnt pathway. Our results identify DDB2 as both a partner and regulator of Wnt signaling, with an important role in suppressing colon cancer development. Cancer Res; 77(23); 6562-75. ©2017 AACR.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois
| | - Damiano Fantini
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois.,Genome Editing Core, University of Illinois, Chicago, Illinois
| | - Srilata Bagchi
- Department of Oral Biology, College of Dentistry, University of Illinois, Chicago, Illinois.
| | - Grace Guzman
- Department of Pathology, University of Illinois, Chicago, Illinois
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois. .,Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
77
|
Proungvitaya S, Klinthong W, Proungvitaya T, Limpaiboon T, Jearanaikoon P, Roytrakul S, Wongkham C, Nimboriboonporn A, Wongkham S. High expression of CCDC25 in cholangiocarcinoma tissue samples. Oncol Lett 2017; 14:2566-2572. [PMID: 28789463 DOI: 10.3892/ol.2017.6446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant transformation of biliary epithelial cells. It is a slow growing tumor, but is also highly metastatic with a poor prognosis. Bile acids are known to transactivate the epidermal growth factor receptor (EGFR) in cholangiocytes and induce cyclooxygenase-2 expression. The protein expression profiles of bile acid-treated CCA cells were studied using a proteomic approach. To elucidate the possible mechanisms involved in the bile acid-mediated enhancement of CCA cell migration, the effects of six bile acids, including cholic, deoxycholic, taurocholic, taurodeoxycholic, glycocholic and glycodeoxycholic acid, on the migration of CCA cells were examined in vitro using wound healing assays. Subsequently, the possible proteins involved in enhanced CCA cell migration were investigated using a proteomic approach. Changes to the protein expression profiles of CCA cells following bile acid treatment was examined using two-dimensional electrophoresis and mass spectrometry. The results demonstrated that cholic and deoxycholic acid significantly enhanced the migration of CCA cells, compared with the treated MMNK-1 control cells. CCA cells had 77 overexpressed protein spots following cholic acid treatment, and 50 protein spots following deoxycholic acid treatment, compared with the treated MMNK-1 control cells. Liquid chromatography tandem-mass spectrometry analysis revealed that coiled-coil domain containing 25 (CCDC25) was significantly overexpressed in cholic acid-treated CCA cells compared with in cholic acid-treated control cells. When the expression levels of CCDC25 were investigated using western blot analysis, CCDC25 was demonstrated to be highly expressed in CCA tissues, but not in the adjacent non-cancerous tissue samples. The identified proteins were further analyzed for protein-chemical interactions using STITCH version 3.1 software. CCDC25 protein was identified to be associated with Son of sevenless homolog 1 and growth factor receptor-bound protein 2, which are involved in EGFR signaling. The results of the present study demonstrated that following cholic acid treatment, CCDC25 is overexpressed in CCA cells, which is associated with significantly enhanced cell migration. This suggests that CCDC25 is a potential therapeutic target for the treatment of patients with CCA.
Collapse
Affiliation(s)
- Siriporn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen 40002, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wachiraya Klinthong
- Centre of Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tanakorn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen 40002, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Temduang Limpaiboon
- Centre of Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen 40002, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharee Jearanaikoon
- Centre of Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen 40002, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, Pathumthani 12120, Thailand
| | - Chaisiri Wongkham
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anongporn Nimboriboonporn
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sopit Wongkham
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
78
|
Bile Acid Administration Elicits an Intestinal Antimicrobial Program and Reduces the Bacterial Burden in Two Mouse Models of Enteric Infection. Infect Immun 2017; 85:IAI.00942-16. [PMID: 28348052 DOI: 10.1128/iai.00942-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
In addition to their chemical antimicrobial nature, bile acids are thought to have other functions in the homeostatic control of gastrointestinal immunity. However, those functions have remained largely undefined. In this work, we used ileal explants and mouse models of bile acid administration to investigate the role of bile acids in the regulation of the intestinal antimicrobial response. Mice fed on a diet supplemented with 0.1% chenodeoxycholic acid (CDCA) showed an upregulated expression of Paneth cell α-defensins as well as an increased synthesis of the type-C lectins Reg3b and Reg3g by the ileal epithelium. CDCA acted on several epithelial cell types, by a mechanism independent from farnesoid X receptor (FXR) and not involving STAT3 or β-catenin activation. CDCA feeding did not change the relative abundance of major commensal bacterial groups of the ileum, as shown by 16S analyses. However, administration of CDCA increased the expression of ileal Muc2 and induced a change in the composition of the mucosal immune cell repertoire, decreasing the proportion of Ly6G+ and CD68+ cells, while increasing the relative amount of IgGκ+ B cells. Oral administration of CDCA to mice attenuated infections with the bile-resistant pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium, promoting lower systemic colonization and faster bacteria clearance, respectively. Our results demonstrate that bile acid signaling in the ileum triggers an antimicrobial program that can be potentially used as a therapeutic option against intestinal bacterial infections.
Collapse
|
79
|
Farhana L, Nangia-Makker P, Arbit E, Shango K, Sarkar S, Mahmud H, Hadden T, Yu Y, Majumdar APN. Bile acid: a potential inducer of colon cancer stem cells. Stem Cell Res Ther 2016; 7:181. [PMID: 27908290 PMCID: PMC5134122 DOI: 10.1186/s13287-016-0439-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/26/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022] Open
Abstract
Background Although the unconjugated secondary bile acids, specifically deoxycholic acid (DCA) and lithocholic acid (LCA), are considered to be risk factors for colorectal cancer, the precise mechanism(s) by which they regulate carcinogenesis is poorly understood. We hypothesize that the cytotoxic bile acids may promote stemness in colonic epithelial cells leading to generation of cancer stem cells (CSCs) that play a role in the development and progression of colon cancer. Methods Normal human colonic epithelial cells (HCoEpiC) were used to study bile acid DCA/LCA-mediated induction of CSCs. The expression of CSC markers was measured by real-time qPCR. Flow cytometry was used to isolate CSCs. T-cell factor/lymphoid-enhancing factor (TCF/LEF) luciferase assay was employed to examine the transcriptional activity of β-catenin. Downregulation of muscarinic 3 receptor (M3R) was achieved through transfection of corresponding siRNA. Results We found DCA/LCA to induce CSCs in normal human colonic epithelial cells, as evidenced by the increased proportion of CSCs, elevated levels of several CSC markers, as well as a number of epithelial–mesenchymal transition markers together with increased colonosphere formation, drug exclusion, ABCB1 and ABCG2 expression, and induction of M3R, p-EGFR, matrix metallopeptidases, and c-Myc. Inhibition of M3R signaling greatly suppressed DCA/LCA induction of the CSC marker ALDHA1 and also c-Myc mRNA expression as well as transcriptional activation of TCF/LEF. Conclusions Our results suggest that bile acids, specifically DCA and LCA, induce cancer stemness in colonic epithelial cells by modulating M3R and Wnt/β-catenin signaling and thus could be considered promoters of colon cancer.
Collapse
Affiliation(s)
- Lulu Farhana
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA.,Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Pratima Nangia-Makker
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA.,Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Evan Arbit
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA
| | - Kathren Shango
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA
| | - Sarah Sarkar
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA
| | - Hamidah Mahmud
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA
| | - Timothy Hadden
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA.,Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Yingjie Yu
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA.,Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Adhip P N Majumdar
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA. .,Karmanos Cancer Institute, Detroit, MI, 48201, USA. .,Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
80
|
Zhao S, Gong Z, Zhou J, Tian C, Gao Y, Xu C, Chen Y, Cai W, Wu J. Deoxycholic Acid Triggers NLRP3 Inflammasome Activation and Aggravates DSS-Induced Colitis in Mice. Front Immunol 2016; 7:536. [PMID: 27965665 PMCID: PMC5124666 DOI: 10.3389/fimmu.2016.00536] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022] Open
Abstract
A westernized high-fat diet (HFD) is associated with the development of inflammatory bowel disease (IBD). High-level fecal deoxycholic acid (DCA) caused by HFD contributes to the colonic inflammatory injury of IBD; however, the mechanism concerning the initiation of inflammatory response by DCA remains unclear. In this study, we sought to investigate the role and mechanism of DCA in the induction of inflammation via promoting NLRP3 inflammasome activation. Here, we, for the first time, showed that DCA dose-dependently induced NLRP3 inflammasome activation and highly pro-inflammatory cytokine-IL-1β production in macrophages. Mechanistically, DCA-triggered NLRP3 inflammasome activation by promoting cathepsin B release at least partially through sphingosine-1-phosphate receptor 2. Colorectal instillation of DCA significantly increased mature IL-1β level in colonic tissue and exacerbated DSS-induced colitis, while in vivo blockage of NLRP3 inflammasome or macrophage depletion dramatically reduced the mature IL-1β production and ameliorated the aggravated inflammatory injury imposed by DCA. Thus, our findings show that high-level fecal DCA may serve as an endogenous danger signal to activate NLRP3 inflammasome and contribute to HFD-related colonic inflammation. NLRP3 inflammasome may represent a new potential therapeutical target for treatment of IBD.
Collapse
Affiliation(s)
- Shengnan Zhao
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Zizhen Gong
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jiefei Zhou
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Chunyan Tian
- State Key Laboratory of Proteomics, National Center for Proteomics Science, Beijing Institute of Radiation Medicine, Beijing, China; National Engineering Research Center for Protein Drugs, Beijing, China
| | - Yanhong Gao
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Congfeng Xu
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yingwei Chen
- Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jin Wu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
81
|
Abstract
Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively.
Collapse
Affiliation(s)
- Jason M. Ridlon
- Carl R. Woese Institute for Genome Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Patricia G. Wolf
- Carl R. Woese Institute for Genome Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - H. Rex Gaskins
- Carl R. Woese Institute for Genome Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA,University of Illinois Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
82
|
Bhattarai Y, Kashyap PC. Agaro-oligosaccharides: a new frontier in the fight against colon cancer? Am J Physiol Gastrointest Liver Physiol 2016; 310:G335-6. [PMID: 26867562 PMCID: PMC4796294 DOI: 10.1152/ajpgi.00049.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 01/31/2023]
Affiliation(s)
- Yogesh Bhattarai
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Purna C. Kashyap
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
83
|
Bile Salts at Low pH Cause Dilation of Intercellular Spaces in In Vitro Stratified Primary Esophageal Cells, Possibly by Modulating Wnt Signaling. J Gastrointest Surg 2016; 20:500-9. [PMID: 26715559 PMCID: PMC7202037 DOI: 10.1007/s11605-015-3062-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 12/14/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND The presence of dilated intercellular spaces in the stratified squamous lining of the esophagus is the pathognomonic feature of reflux esophagitis secondary to gastroesophageal reflux disease (GERD). In addition to stomach acid, bile salts are major constituents of gastroesophageal refluxate. The aim of our study was to determine the effect of bile salts cocktail at different pHs on epithelial junctions in an in vitro transwell model of stratified esophageal squamous epithelium. DISCUSSION Human telomerase reverse transcriptase (hTERT) immortalized primary esophageal EPC1 cells were grown on polyester transwell surfaces in calcium-enriched media. The cells exhibited gradual stratification into an 11-layered squamous epithelium over 7 days, together with epithelial barrier function as indicated by increased transepithelial electrical resistance (TEER). This stratified epithelium demonstrated well-formed tight junctions, adherens junctions, and desmosomes as visualized by immunofluorescence and electron microscopy. When exposed to short pulses of bile salts at pH 5, but not either condition alone, there was loss of stratification and decrease in TEER, concomitant with disruption of adherens junctions, tight junctions, and desmosomes, leading to the appearance of dilated intercellular spaces. At the cellular level, bile salts at pH 5 activated the Wnt pathway (indicated by increased β-catenin Ser552 phosphorylation). CONCLUSION In conclusion, in our in vitro transwell model bile salts at pH 5, but not bile salts or media at pH 5 alone, modulate Wnt signaling, disrupt different junctional complexes, and cause increased permeability of stratified squamous esophageal epithelium. These changes approximate the appearance of dilated intercellular space similar to that found in GERD patients.
Collapse
|
84
|
Grebennikova TA, Belaya ZE, Rozhinskaya LY, Melnichenko GA. [The canonical Wnt/β-catenin pathway: From the history of its discovery to clinical application]. TERAPEVT ARKH 2016; 88:74-81. [PMID: 28635854 DOI: 10.17116/terarkh201688674-81] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The Wnt/β signaling pathway (Wnt-SP) is a phylogenetically ancient mechanism that regulates development and maintains tissue homeostasis through the control of cell proliferation, differentiation, migration, and apoptosis. The accurate regulation of the canonical Wnt/β-catenin signaling pathway (Wnt-SP) is critical for embryogenesis and postnatal development; and impaired signal transduction at one of its stages leads to various diseases, including organ malformations, cancers, metabolic and neurodegenerative disorders. The literature review discusses the biological role of the canonical Wnt-SP in the development of the skeleton and in the remodeling of bone tissue. The Wnt signal transmission changes observed during genetic mutations cause various human skeletal diseases. Understanding the functional mechanism involved in the development of bone abnormality could open new horizons in the treatment of osteoporosis, by affecting the Wnt-SP. The design of antibodies to sclerostin, a Wnt-SP inhibitor, is most promising now. The paper summarizes the studies that have investigated the canonical Wnt-SP and designed drugs to treat osteoporosis.
Collapse
Affiliation(s)
- T A Grebennikova
- Endocrinology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - Zh E Belaya
- Endocrinology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - L Ya Rozhinskaya
- Endocrinology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - G A Melnichenko
- Endocrinology Research Center, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
85
|
Kundu S, Kumar S, Bajaj A. Cross-talk between bile acids and gastrointestinal tract for progression and development of cancer and its therapeutic implications. IUBMB Life 2015; 67:514-23. [PMID: 26177921 DOI: 10.1002/iub.1399] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2022]
Abstract
Increasing incidences of gastrointestinal (GI) cancer are linked to changes in lifestyle with excess of red meat/fat consumption, and elevated secretion of bile acids. Bile acids are strong signaling molecules that control various physiological processes. Failure in bile acid regulation has detrimental effects, often linked with development and promotion of cancer of digestive tract including esophagus, stomach, liver, and intestine. Excessive concentration of bile acids especially lipophillic secondary bile acids are cytotoxic causing apoptosis and reactive oxygen species-mediated damage to the cells. Resistance to this apoptosis and accumulation of mutations leads to progression of cancer. Cytotoxicity of bile acids is contingent on their chemical structure. In this review, we discuss the chemistry of bile acids, bile acid mediated cellular signaling processes, their role in GI cancer progression, and therapeutic potential of synthetic bile acid derivatives for cancer therapy.
Collapse
Affiliation(s)
- Somanath Kundu
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, Faridabad, Haryana, 121001, India.,Manipal University, Manipal, Karnataka, India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, Faridabad, Haryana, 121001, India.,Manipal University, Manipal, Karnataka, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|
86
|
Yadunandam AK, Yoon JS, Jeong YT, Kim WY, Lee SY, Kim GD. Differential effects of tetrahydropyridinol derivatives on β-catenin signaling and invasion in human hepatocellular and breast carcinoma cells. Int J Mol Med 2015; 36:577-87. [PMID: 26059838 DOI: 10.3892/ijmm.2015.2240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 05/15/2015] [Indexed: 11/06/2022] Open
Abstract
In continuation of previous efforts to investigate the biological potency of tetrahydropyridinol derivatives, the present study synthesized three target compounds: N-(bromoacetyl)-3-carboxyethyl-2,6-diphenyl-4-O-(pentafluorobenzoyl)-Δ3-tetra-hydropyridine (5a), N-(chloroacetyl)-3-carboxyethyl-2,6-diphenyl-4-O-(pentafluorobenzoyl)-Δ3-tetrahydropyridine (5b) and N-(2-bromopropanoyl)-3-carboxyethyl-2,6-diphenyl-4-O-(pentafluorobenzoyl)-Δ3-tetrahydropyridine (5c), and examined their anticancer potency. Experiments were performed using the Sk-Hep1 and Hep3B human hepatocellular carcinoma cell lines and MDA-MB-231 breast adenocarcinoma cell line. Among the three compounds, 5a and 5b were comparably and significantly cytotoxic to the Sk-Hep1, Hep3B and MDA-MB-231 cells. The highest level of cytotoxicity was detected in theSk-Hep1 cells with half maximal inhibitory concentrations for compounds 5a and 5b at 12 and 6 µM, respectively. These two compounds induced cell cycle arrest in the Sk-Hep1 and MDA-MB-231 cells through the downregulation of β-catenin and upregulation of glycogen synthase kinase-3β and E-cadherin. By contrast, 5a and 5b induced G1 arrest in the Hep3B cells by modulating the p21 and p27 cell cycle regulatory molecules and cyclin-dependent kinase 2. In addition, 5a and 5b significantly inhibited the invasion of Sk-Hep1 and MDA-MB-231 cells. These results suggested that the 5a and 5b compounds induce cell cycle arrest by suppressing Wnt/β-catenin signaling in highly invasive Sk-Hep1 and MDA-MB-231 cells, and by inducing p53 independent cell cycle arrest in Hep3B cells.
Collapse
Affiliation(s)
- Anandam Kasin Yadunandam
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 608-737, Republic of Korea
| | - Jin-Soo Yoon
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Yeon Tae Jeong
- Department of Image Science and Engineering, College of Engineering, Pukyong National University, Busan 608-737, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sang-Yeol Lee
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 608-737, Republic of Korea
| |
Collapse
|
87
|
Ohishi K, Toume K, Arai MA, Koyano T, Kowithayakorn T, Mizoguchi T, Itoh M, Ishibashi M. 9-Hydroxycanthin-6-one, a β-Carboline Alkaloid from Eurycoma longifolia, Is the First Wnt Signal Inhibitor through Activation of Glycogen Synthase Kinase 3β without Depending on Casein Kinase 1α. JOURNAL OF NATURAL PRODUCTS 2015; 78:1139-1146. [PMID: 25905468 DOI: 10.1021/acs.jnatprod.5b00153] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Wnt signaling regulates various processes such as cell proliferation, differentiation, and embryo development. However, numerous diseases have been attributed to the aberrant transduction of Wnt signaling. We screened a plant extract library targeting TCF/β-catenin transcriptional modulating activity with a cell-based luciferase assay. Activity-guided fractionation of the MeOH extract of the E. longifolia root led to the isolation of 9-hydroxycanthin-6-one (1). Compound 1 exhibited TCF/β-catenin inhibitory activity. Compound 1 decreased the expression of Wnt signal target genes, mitf and zic2a, in zebrafish embryos. Treatment of SW480 cells with 1 decreased β-catenin and increased phosphorylated β-catenin (Ser 33, 37, Tyr 41) protein levels. The degradation of β-catenin by 1 was suppressed by GSK3β-siRNA, while compound 1 decreased β-catenin even in the presence of CK1α-siRNA. These results suggest that 1 inhibits Wnt signaling through the activation of GSK3β independent of CK1α.
Collapse
Affiliation(s)
- Kensuke Ohishi
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kazufumi Toume
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Midori A Arai
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takashi Koyano
- ‡Temko Corporation, 4-27-4 Honcho, Nakano, Tokyo 164-0012, Japan
| | | | - Takamasa Mizoguchi
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Motoyuki Itoh
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masami Ishibashi
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
88
|
Leung A, Tsoi H, Yu J. Fusobacterium and Escherichia: models of colorectal cancer driven by microbiota and the utility of microbiota in colorectal cancer screening. Expert Rev Gastroenterol Hepatol 2015; 9:651-7. [PMID: 25582922 DOI: 10.1586/17474124.2015.1001745] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intestinal microbiota has emerging roles in the development of colorectal cancer (CRC). Intestinal dysbiosis, with altered levels of specific bacteria, is consistently seen in CRC. The heart of the debate lies in whether these bacteria are a cause or consequence of CRC. Two bacteria in particular, Fusobacterium nucleatum and Escherichia coli, have consistently been associated with CRC. This review will examine evidence supporting oncogenic roles of F. nucleatum and E. coli. The proposed mechanisms of tumor formation follow two models: bacterial induced chronic inflammation leads to cell proliferation and tumor formation and virulence factors directly induce tumor formation. This review will further examine the potential for microbiota as biomarkers in CRC, with a focus on F. nucleatum.
Collapse
Affiliation(s)
- Andrea Leung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
89
|
Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics. Acta Pharm Sin B 2015; 5:99-105. [PMID: 26579434 PMCID: PMC4629220 DOI: 10.1016/j.apsb.2015.01.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/05/2015] [Indexed: 01/05/2023] Open
Abstract
The human body is now viewed as a complex ecosystem that on a cellular and gene level is mainly prokaryotic. The mammalian liver synthesizes and secretes hydrophilic primary bile acids, some of which enter the colon during the enterohepatic circulation, and are converted into numerous hydrophobic metabolites which are capable of entering the portal circulation, returned to the liver, and in humans, accumulating in the biliary pool. Bile acids are hormones that regulate their own synthesis, transport, in addition to glucose and lipid homeostasis, and energy balance. The gut microbial community through their capacity to produce bile acid metabolites distinct from the liver can be thought of as an “endocrine organ” with potential to alter host physiology, perhaps to their own favor. We propose the term “sterolbiome” to describe the genetic potential of the gut microbiome to produce endocrine molecules from endogenous and exogenous steroids in the mammalian gut. The affinity of secondary bile acid metabolites to host nuclear receptors is described, the potential of secondary bile acids to promote tumors, and the potential of bile acids to serve as therapeutic agents are discussed.
Collapse
Key Words
- APC, adenomatous polyposis coli
- BA, bile acids
- BSH, bile salt hydrolases
- Bile acids
- CA, cholic acid
- CDCA, chenodeoxycholic acid
- COX-2, cyclooxygenase-2
- CRC, colorectal cancer
- CYP27A1, sterol-27-hydroxylase
- CYP7A1, cholesterol 7α-hydroxylase
- CYP8B1, sterol 12α-hydroxylase
- DCA, deoxycholic acid
- EGFR, epidermal growth factor receptor
- FAP, familial adenomatous polyposis
- FGF15/19, fibroblast growth factor 15/19
- FXR, farnesoid X receptor
- GABA, γ-aminobutyric acid
- GPCR, G-protein coupled receptors
- Gut microbiome
- HMP, Human Microbiome Project
- HSDH, hydroxysteroid dehydrogenase
- LCA, lithocholic acid
- LOX, lipooxygenase
- MetaHIT, Metagenomics of the Human Intestinal Tract
- Metabolite
- NSAIDs, non-steroidal anti-inflammatory drugs
- PKC, protein kinase C
- PSC, primary sclerosing cholangitis
- PXR, pregnane X receptor
- Sterolbiome
- Therapeutic agent
- UDCA, ursodeoxycholic acid
- VDR, vitamin D receptor
Collapse
|
90
|
Ohtani N. Microbiome and cancer. Semin Immunopathol 2014; 37:65-72. [PMID: 25463638 DOI: 10.1007/s00281-014-0457-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/03/2014] [Indexed: 02/07/2023]
Abstract
The human intestine is believed to contain approximately 100 trillion intestinal (gut) microbiota, comprising about 500-1000 different species. These intestinal microbiota exist in a symbiotic relationship with their host, by metabolizing compounds that the host is unable to utilize and controlling the immune balance of the host's body. However, the composition of the intestinal microbiota is known to vary, depending on diet, nutrition status, and other factors. The recently developed meta-omics microbial data and the technical progress for the metabolome analysis provide a substantial understanding of the role of intestinal microbes and their metabolism. Interestingly, accumulating evidence suggests that the intestinal microbiota contributes to the onset of colorectal cancer, not only via the pro-carcinogenic activities of specific pathogens but also via the influence of the bacterial metabolites. Moreover, since the gut microbial metabolites circulate in the host's body, it has been increasingly recognized that the intestinal microbiota are involved in the pathogenesis of diseases not only in the intestine but also in the organs located distant from the intestine. We recently found that metabolites from obesity-induced intestinal microbiota promoted liver cancer, and elucidated the underlying molecular mechanism. In this review, I first summarize the general understanding on the carcinogenic process by bacterial metabolites, and then discuss on the association between intestinal microbiota and colorectal cancer. In the last part, I will introduce our recent findings on liver cancer promotion by a metabolite of the obesity-induced intestinal microbiota.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Applied Bioscience, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, Japan,
| |
Collapse
|
91
|
Centuori SM, Martinez JD. Differential regulation of EGFR-MAPK signaling by deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) in colon cancer. Dig Dis Sci 2014; 59:2367-80. [PMID: 25027205 PMCID: PMC4163523 DOI: 10.1007/s10620-014-3190-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
Abstract
A high-fat diet coincides with increased levels of bile acids. This increase in bile acids, particularly deoxycholic acid (DCA), has been strongly associated with the development of colon cancer. Conversely, ursodeoxycholic acid (UDCA) may have chemopreventive properties. Although structurally similar, DCA and UDCA present different biological and pathological effects in colon cancer progression. The differential regulation of cancer by these two bile acids is not yet fully understood. However, one possible explanation for their diverging effects is their ability to differentially regulate signaling pathways involved in the multistep progression of colon cancer, such as the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway. This review will examine the biological effects of DCA and UDCA on colon cancer development, as well as the diverging effects of these bile acids on the oncogenic signaling pathways that play a role in colon cancer development, with a particular emphasis on bile acid regulation of the EGFR-MAPK pathway.
Collapse
Affiliation(s)
- Sara M. Centuori
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson AZ 85724
| | - Jesse D. Martinez
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson AZ 85724
| |
Collapse
|
92
|
The secondary bile acid, deoxycholate accelerates intestinal adenoma–adenocarcinoma sequence in Apc min/+ mice through enhancing Wnt signaling. Fam Cancer 2014; 13:563-71. [PMID: 25106466 DOI: 10.1007/s10689-014-9742-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
93
|
Ohishi K, Toume K, Arai MA, Sadhu SK, Ahmed F, Mizoguchi T, Itoh M, Ishibashi M. Ricinine: a pyridone alkaloid from Ricinus communis that activates the Wnt signaling pathway through casein kinase 1α. Bioorg Med Chem 2014; 22:4597-601. [PMID: 25124862 DOI: 10.1016/j.bmc.2014.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 12/13/2022]
Abstract
Wnt signaling plays important roles in proliferation, differentiation, development of cells, and various diseases. Activity-guided fractionation of the MeOH extract of the Ricinus communis stem led to the isolation of four compounds (1-4). The TCF/β-catenin transcription activities of 1 and 3 were 2.2 and 2.5 fold higher at 20 and 30μM, respectively. Cells treated with ricinine (1) had higher β-catenin and lower of p-β-catenin (ser 33, 37, 45, Thr 41) protein levels, whereas glycogen synthase kinase 3β (GSK3β) and casein kinase 1α (CK1α) protein levels remained unchanged. Cells treated with pyrvinium, an activator of CK1α, had lower β-catenin levels. However, the combined treatment of pyrvinium and 1 led to higher β-catenin levels than those in cells treated with pyrvinium alone, which suggested that 1 inhibited CK1α activity. Furthermore, 1 increased β-catenin protein levels in zebrafish embryos. These results indicated that 1 activated the Wnt signaling pathway by inhibiting CK1α.
Collapse
Affiliation(s)
- Kensuke Ohishi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kazufumi Toume
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Midori A Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Samir K Sadhu
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Takamasa Mizoguchi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
94
|
Kakiyama G, Hylemon PB, Zhou H, Pandak WM, Heuman DM, Kang DJ, Takei H, Nittono H, Ridlon JM, Fuchs M, Gurley EC, Wang Y, Liu R, Sanyal AJ, Gillevet PM, Bajaj JS. Colonic inflammation and secondary bile acids in alcoholic cirrhosis. Am J Physiol Gastrointest Liver Physiol 2014; 306:G929-37. [PMID: 24699327 PMCID: PMC4152166 DOI: 10.1152/ajpgi.00315.2013] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcohol abuse with/without cirrhosis is associated with an impaired gut barrier and inflammation. Gut microbiota can transform primary bile acids (BA) to secondary BAs, which can adversely impact the gut barrier. The purpose of this study was to define the effect of active alcohol intake on fecal BA levels and ileal and colonic inflammation in cirrhosis. Five age-matched groups {two noncirrhotic (control and drinkers) and three cirrhotic [nondrinkers/nonalcoholics (NAlc), abstinent alcoholic for >3 mo (AbsAlc), currently drinking (CurrAlc)]} were included. Fecal and serum BA analysis, serum endotoxin, and stool microbiota using pyrosequencing were performed. A subgroup of controls, NAlc, and CurrAlc underwent ileal and sigmoid colonic biopsies on which mRNA expression of TNF-α, IL-1β, IL-6, and cyclooxygenase-2 (Cox-2) were performed. One hundred three patients (19 healthy, 6 noncirrhotic drinkers, 10 CurrAlc, 38 AbsAlc, and 30 NAlc, age 56 yr, median MELD: 10.5) were included. Five each of healthy, CurrAlc, and NAlc underwent ileal/colonic biopsies. Endotoxin, serum-conjugated DCA and stool total BAs, and secondary-to-primary BA ratios were highest in current drinkers. On biopsies, a significantly higher mRNA expression of TNF-α, IL-1β, IL-6, and Cox-2 in colon but not ileum was seen in CurrAlc compared with NAlc and controls. Active alcohol use in cirrhosis is associated with a significant increase in the secondary BA formation compared with abstinent alcoholic cirrhotics and nonalcoholic cirrhotics. This increase in secondary BAs is associated with a significant increase in expression of inflammatory cytokines in colonic mucosa but not ileal mucosa, which may contribute to alcohol-induced gut barrier injury.
Collapse
Affiliation(s)
- Genta Kakiyama
- 1Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Phillip B. Hylemon
- 2Department of Microbiology, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Huiping Zhou
- 3Department of Immunology, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - William M. Pandak
- 1Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Douglas M. Heuman
- 1Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Dae Joong Kang
- 1Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Hajime Takei
- 4Junshin Clinic Bile Acid Institute, Tokyo, Japan; and
| | | | - Jason M. Ridlon
- 2Department of Microbiology, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Michael Fuchs
- 1Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Emily C. Gurley
- 2Department of Microbiology, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Yun Wang
- 3Department of Immunology, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Runping Liu
- 3Department of Immunology, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Arun J. Sanyal
- 1Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | | | - Jasmohan S. Bajaj
- 1Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| |
Collapse
|
95
|
Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer. World J Surg Oncol 2014; 12:164. [PMID: 24884764 PMCID: PMC4041630 DOI: 10.1186/1477-7819-12-164] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 05/09/2014] [Indexed: 12/14/2022] Open
Abstract
Bile acids were first proposed as carcinogens in 1939. Since then, accumulated evidence has linked exposure of cells of the gastrointestinal tract to repeated high physiologic levels of bile acids as an important risk factor for gastrointestinal cancers. High exposure to bile acids may occur in a number of settings, but most importantly, is prevalent among individuals who have a high dietary fat intake. A rapid effect on cells of high bile acid exposure is the generation of reactive oxygen species and reactive nitrogen species, disruption of the cell membrane and mitochondria, induction of DNA damage, mutation and apoptosis, and development of reduced apoptosis capability upon chronic exposure. Here, we review the substantial evidence of the mechanism of secondary bile acids and their role in colon cancer.
Collapse
Affiliation(s)
- Hana Ajouz
- Department of Hematology/Oncology, American University of Beirut Medical Center, PO Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
| | - Deborah Mukherji
- Department of Hematology/Oncology, American University of Beirut Medical Center, PO Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
| | - Ali Shamseddine
- Department of Hematology/Oncology, American University of Beirut Medical Center, PO Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
| |
Collapse
|
96
|
Rudge F, Dale T. Therapeutic Targetingof the Wnt Signaling Network. WNT SIGNALING IN DEVELOPMENT AND DISEASE 2014:421-444. [DOI: 10.1002/9781118444122.ch32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
97
|
Metabolomic evaluation of the response to endocrine therapy in patients with prostate cancer. Eur J Pharmacol 2014; 729:132-7. [PMID: 24556387 DOI: 10.1016/j.ejphar.2014.01.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 11/19/2022]
|
98
|
Bailey AM, Zhan L, Maru D, Shureiqi I, Pickering CR, Kiriakova G, Izzo J, He N, Wei C, Baladandayuthapani V, Liang H, Kopetz S, Powis G, Guo GL. FXR silencing in human colon cancer by DNA methylation and KRAS signaling. Am J Physiol Gastrointest Liver Physiol 2014; 306:G48-58. [PMID: 24177031 PMCID: PMC3920083 DOI: 10.1152/ajpgi.00234.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Farnesoid X receptor (FXR) is a bile acid nuclear receptor described through mouse knockout studies as a tumor suppressor for the development of colon adenocarcinomas. This study investigates the regulation of FXR in the development of human colon cancer. We used immunohistochemistry of FXR in normal tissue (n = 238), polyps (n = 32), and adenocarcinomas, staged I-IV (n = 43, 39, 68, and 9), of the colon; RT-quantitative PCR, reverse-phase protein array, and Western blot analysis in 15 colon cancer cell lines; NR1H4 promoter methylation and mRNA expression in colon cancer samples from The Cancer Genome Atlas; DNA methyltransferase inhibition; methyl-DNA immunoprecipitation (MeDIP); bisulfite sequencing; and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) knockdown assessment to investigate FXR regulation in colon cancer development. Immunohistochemistry and quantitative RT-PCR revealed that expression and function of FXR was reduced in precancerous lesions and silenced in a majority of stage I-IV tumors. FXR expression negatively correlated with phosphatidylinositol-4, 5-bisphosphate 3 kinase signaling and the epithelial-to-mesenchymal transition. The NR1H4 promoter is methylated in ~12% colon cancer The Cancer Genome Atlas samples, and methylation patterns segregate with tumor subtypes. Inhibition of DNA methylation and KRAS silencing both increased FXR expression. FXR expression is decreased early in human colon cancer progression, and both DNA methylation and KRAS signaling may be contributing factors to FXR silencing. FXR potentially suppresses epithelial-to-mesenchymal transition and other oncogenic signaling cascades, and restoration of FXR activity, by blocking silencing mechanisms or increasing residual FXR activity, represents promising therapeutic options for the treatment of colon cancer.
Collapse
Affiliation(s)
- Ann M. Bailey
- 1Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas; ,2Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas;
| | - Le Zhan
- 2Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas; ,10Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Dipen Maru
- 3Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas;
| | - Imad Shureiqi
- 4Department of Gastrointestinal (GI) Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas;
| | - Curtis R. Pickering
- 5Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas;
| | - Galina Kiriakova
- 1Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas;
| | - Julie Izzo
- 1Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas;
| | - Nan He
- 6Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas;
| | - Caimiao Wei
- 7Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas;
| | | | - Han Liang
- 8Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas;
| | - Scott Kopetz
- 4Department of Gastrointestinal (GI) Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas;
| | - Garth Powis
- 1Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas; ,9Sanford Burnham Medical Research Institute, Cancer Center, La Jolla, California; and
| | - Grace L. Guo
- 2Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas; ,10Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
99
|
Luo X, Wang J, Gu X, Zhang C, Hu X, Zhang TC. The Analysis of the Inhibition Effect of Cholic Acid Derivatives on the Proliferation of Breast Cancer Cells. PROCEEDINGS OF THE 2012 INTERNATIONAL CONFERENCE ON APPLIED BIOTECHNOLOGY (ICAB 2012) 2014. [DOI: 10.1007/978-3-642-37922-2_87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
100
|
Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, Cui J, Li R, Zhang W, Kong Y, Zhang J, Shui W, Lamplot J, Rogers MR, Zhao C, Wang N, Rajan P, Tomal J, Statz J, Wu N, Luu HH, Haydon RC, He TC. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis 2013; 5:13-31. [PMID: 23514963 DOI: 10.1177/1759720x12466608] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Wnt signaling pathway plays an important role not only in embryonic development but also in the maintenance and differentiation of the stem cells in adulthood. In particular, Wnt signaling has been shown as an important regulatory pathway in the osteogenic differentiation of mesenchymal stem cells. Induction of the Wnt signaling pathway promotes bone formation while inactivation of the pathway leads to osteopenic states. Our current understanding of Wnt signaling in osteogenesis elucidates the molecular mechanisms of classic osteogenic pathologies. Activating and inactivating aberrations of the canonical Wnt signaling pathway in osteogenesis results in sclerosteosis and osteoporosis respectively. Recent studies have sought to target the Wnt signaling pathway to treat osteogenic disorders. Potential therapeutic approaches attempt to stimulate the Wnt signaling pathway by upregulating the intracellular mediators of the Wnt signaling cascade and inhibiting the endogenous antagonists of the pathway. Antibodies against endogenous antagonists, such as sclerostin and dickkopf-1, have demonstrated promising results in promoting bone formation and fracture healing. Lithium, an inhibitor of glycogen synthase kinase 3β, has also been reported to stimulate osteogenesis by stabilizing β catenin. Although manipulating the Wnt signaling pathway has abundant therapeutic potential, it requires cautious approach due to risks of tumorigenesis. The present review discusses the role of the Wnt signaling pathway in osteogenesis and examines its targeted therapeutic potential.
Collapse
Affiliation(s)
- Jeong Hwan Kim
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|