51
|
Fernández-Calvino L, Guzmán-Benito I, Del Toro FJ, Donaire L, Castro-Sanz AB, Ruíz-Ferrer V, Llave C. Activation of senescence-associated Dark-inducible (DIN) genes during infection contributes to enhanced susceptibility to plant viruses. MOLECULAR PLANT PATHOLOGY 2016; 17:3-15. [PMID: 25787925 PMCID: PMC6638341 DOI: 10.1111/mpp.12257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Virus infections in plants cause changes in host gene expression that are common to other environmental stresses. In this work, we found extensive overlap in the transcriptional responses between Arabidopsis thaliana plants infected with Tobacco rattle virus (TRV) and plants undergoing senescence. This is exemplified by the up-regulation during infection of several senescence-associated Dark-inducible (DIN) genes, including AtDIN1 (Senescence 1, SEN1), AtDIN6 (Asparagine synthetase 1, AtASN1) and AtDIN11. DIN1, DIN6 and DIN11 homologues were also activated in Nicotiana benthamiana in response to TRV and Potato virus X (PVX) infection. Reduced TRV levels in RNA interference (RNAi) lines targeting AtDIN11 indicate that DIN11 is an important modulator of susceptibility to TRV in Arabidopsis. Furthermore, low accumulation of TRV in Arabidopsis protoplasts from RNAi lines suggests that AtDIN11 supports virus multiplication in this species. The effect of DIN6 on virus accumulation was negligible in Arabidopsis, perhaps as a result of gene or functional redundancy. However, TRV-induced silencing of NbASN, the DIN6 homologue in N. benthamiana, compromises TRV and PVX accumulation in systemically infected leaves. Interestingly, NbASN inactivation correlates with the appearance of morphological defects in infected leaves. We found that DIN6 and DIN11 regulate virus multiplication in a step prior to the activation of plant defence responses. We hypothesize on the possible roles of DIN6 and DIN11 during virus infection.
Collapse
Affiliation(s)
- Lourdes Fernández-Calvino
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Irene Guzmán-Benito
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Francisco J Del Toro
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Livia Donaire
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana B Castro-Sanz
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Virginia Ruíz-Ferrer
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - César Llave
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|
52
|
Koramutla MK, Bhatt D, Negi M, Venkatachalam P, Jain PK, Bhattacharya R. Strength, Stability, and cis-Motifs of In silico Identified Phloem-Specific Promoters in Brassica juncea (L.). FRONTIERS IN PLANT SCIENCE 2016; 7:457. [PMID: 27148290 PMCID: PMC4834444 DOI: 10.3389/fpls.2016.00457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/24/2016] [Indexed: 05/03/2023]
Abstract
Aphids, a hemipteran group of insects pose a serious threat to many of the major crop species including Brassica oilseeds. Transgenic strategies for developing aphid-resistant plant types necessitate phloem-bound expression of the insecticidal genes. A few known phloem-specific promoters, in spite of tissue-specific activity fail to confer high level gene-expression. Here, we identified seven orthologues of phloem-specific promoters in B. juncea (Indian mustard), and experimentally validated their strength of expression in phloem exudates. Significant cis-motifs, globally occurring in phloem-specific promoters showed variable distribution frequencies in these putative phloem-specific promoters of B. juncea. In RT-qPCR based gene-expression study promoter of Glutamine synthetase 3A (GS3A) showed multifold higher activity compared to others, across the different growth stages of B. juncea plants. A statistical method employing four softwares was devised for rapidly analysing stability of the promoter-activities across the plant developmental stages. Different statistical softwares ranked these B. juncea promoters differently in terms of their stability in promoter-activity. Nevertheless, the consensus in output empirically suggested consistency in promoter-activity of the six B. juncea phloem- specific promoters including GS3A. The study identified suitable endogenous promoters for high level and consistent gene-expression in B. juncea phloem exudate. The study also demonstrated a rapid method of assessing species-specific strength and stability in expression of the endogenous promoters.
Collapse
Affiliation(s)
- Murali Krishna Koramutla
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute CampusNew Delhi, India
| | - Deepa Bhatt
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute CampusNew Delhi, India
| | - Manisha Negi
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute CampusNew Delhi, India
| | | | - Pradeep K. Jain
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute CampusNew Delhi, India
| | - Ramcharan Bhattacharya
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute CampusNew Delhi, India
- *Correspondence: Ramcharan Bhattacharya ;
| |
Collapse
|
53
|
Davenport S, Le Lay P, Sanchez-Tamburrrino JP. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:96-107. [PMID: 26447683 DOI: 10.1016/j.plaphy.2015.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 05/07/2023]
Abstract
Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants.
Collapse
Affiliation(s)
- Susie Davenport
- British American Tobacco, R&D Cambridge, 210 The Science Park, Cambridge, CB4 0WA, UK.
| | - Pascaline Le Lay
- British American Tobacco, R&D Cambridge, 210 The Science Park, Cambridge, CB4 0WA, UK
| | | |
Collapse
|
54
|
Li J, Qin RY, Li H, Xu RF, Yang YC, Ni DH, Ma H, Li L, Wei PC, Yang JB. Low-Temperature-Induced Expression of Rice Ureidoglycolate Amidohydrolase is Mediated by a C-Repeat/Dehydration-Responsive Element that Specifically Interacts with Rice C-Repeat-Binding Factor 3. FRONTIERS IN PLANT SCIENCE 2015; 6:1011. [PMID: 26617632 PMCID: PMC4643140 DOI: 10.3389/fpls.2015.01011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/02/2015] [Indexed: 05/30/2023]
Abstract
Nitrogen recycling and redistribution are important for the environmental stress response of plants. In non-nitrogen-fixing plants, ureide metabolism is crucial to nitrogen recycling from organic sources. Various studies have suggested that the rate-limiting components of ureide metabolism respond to environmental stresses. However, the underlying regulation mechanism is not well understood. In this report, rice ureidoglycolate amidohydrolase (OsUAH), which is a recently identified enzyme catalyzing the final step of ureide degradation, was identified as low-temperature- (LT) but not abscisic acid- (ABA) regulated. To elucidate the LT regulatory mechanism at the transcriptional level, we isolated and characterized the promoter region of OsUAH (P OsUAH ). Series deletions revealed that a minimal region between -522 and -420 relative to the transcriptional start site was sufficient for the cold induction of P OsUAH . Detailed analyses of this 103-bp fragment indicated that a C-repeat/dehydration-responsive (CRT/DRE) element localized at position -434 was essential for LT-responsive expression. A rice C-repeat-binding factors/DRE-binding proteins 1 (CBFs/DREB1s) subfamily member, OsCBF3, was screened to specifically bind to the CRT/DRE element in the minimal region both in yeast one-hybrid assays and in in vitro gel-shift analysis. Moreover, the promoter could be exclusively trans-activated by the interaction between the CRT/DRE element and OsCBF3 in vivo. These findings may help to elucidate the regulation mechanism of stress-responsive ureide metabolism genes and provide an example of the member-specific manipulation of the CBF/DREB1 subfamily.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jian-Bo Yang
- *Correspondence: Peng-Cheng Wei, ; jian-Bo Yang,
| |
Collapse
|
55
|
Vega A, Canessa P, Hoppe G, Retamal I, Moyano TC, Canales J, Gutiérrez RA, Rubilar J. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2015; 6:911. [PMID: 26583019 PMCID: PMC4631835 DOI: 10.3389/fpls.2015.00911] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/12/2015] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.
Collapse
Affiliation(s)
- Andrea Vega
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de ChileSantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Paulo Canessa
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
- Millennium Nucleus for Fungal Integrative and Synthetic BiologySantiago, Chile
| | - Gustavo Hoppe
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de ChileSantiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ignacio Retamal
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Tomas C. Moyano
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Javier Canales
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de ChileValdivia, Chile
| | - Rodrigo A. Gutiérrez
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Joselyn Rubilar
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
56
|
Van Bockhaven J, Steppe K, Bauweraerts I, Kikuchi S, Asano T, Höfte M, De Vleesschauwer D. Primary metabolism plays a central role in moulding silicon-inducible brown spot resistance in rice. MOLECULAR PLANT PATHOLOGY 2015; 16:811-24. [PMID: 25583155 PMCID: PMC6638399 DOI: 10.1111/mpp.12236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Over recent decades, a multitude of studies have shown the ability of silicon (Si) to protect various plants against a range of microbial pathogens exhibiting different lifestyles and infection strategies. Despite this relative wealth of knowledge, an understanding of the action mechanism of Si is still in its infancy, which hinders its widespread application for agricultural purposes. In an attempt to further elucidate the molecular underpinnings of Si-induced disease resistance, we studied the transcriptome of control and Si-treated rice plants infected with the necrotrophic brown spot fungus Cochliobolus miyabeanus. Analysis of brown spot-infected control plants suggested that C. miyabeanus represses plant photosynthetic processes and nitrate reduction in order to trigger premature senescence and cause disease. In Si-treated plants, however, these pathogen-induced metabolic alterations are strongly impaired, suggesting that Si alleviates stress imposed by the pathogen. Interestingly, Si also significantly increased photorespiration rates in brown spot-infected plants. Although photorespiration is often considered as a wasteful process, recent studies have indicated that this metabolic bypass also enhances resistance during abiotic stress and pathogen attack by protecting the plant's photosynthetic machinery. In view of these findings, our results favour a scenario in which Si enhances brown spot resistance by counteracting C. miyabeanus-induced senescence and cell death via increased photorespiration. Moreover, our results shed light onto the mechanistic basis of Si-induced disease control and support the view that, in addition to activating plant immune responses, Si can also reduce disease severity by interfering with pathogen virulence strategies.
Collapse
Affiliation(s)
- Jonas Van Bockhaven
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Ingvar Bauweraerts
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Shoshi Kikuchi
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Ibaraki, Japan
| | - Takayuki Asano
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Ibaraki, Japan
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - David De Vleesschauwer
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| |
Collapse
|
57
|
Jeffery Daim LD, Ooi TEK, Ithnin N, Mohd Yusof H, Kulaveerasingam H, Abdul Majid N, Karsani SA. Comparative proteomic analysis of oil palm leaves infected with Ganoderma boninense revealed changes in proteins involved in photosynthesis, carbohydrate metabolism, and immunity and defense. Electrophoresis 2015; 36:1699-710. [PMID: 25930948 DOI: 10.1002/elps.201400608] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/08/2022]
Abstract
The basidiomycete fungal pathogen Ganoderma boninense is the causative agent for the incurable basal stem rot (BSR) disease in oil palm. This disease causes significant annual crop losses in the oil palm industry. Currently, there is no effective method for disease control and elimination, nor is any molecular marker for early detection of the disease available. An understanding of how BSR affects protein expression in plants may help identify and/or assist in the development of an early detection protocol. Although the mode of infection of BSR disease is primarily via the root system, defense-related genes have been shown to be expressed in both the root and leafs. Thus, to provide an insight into the changes in the global protein expression profile in infected plants, comparative 2DE was performed on leaf tissues sampled from palms with and without artificial inoculation of the Ganoderma fungus. Comparative 2DE revealed that 54 protein spots changed in abundance. A total of 51 protein spots were successfully identified by LC-QTOF MS/MS. The majority of these proteins were those involved in photosynthesis, carbohydrate metabolism as well as immunity and defense.
Collapse
Affiliation(s)
- Leona Daniela Jeffery Daim
- Integrative and Applied Biology Department, Sime Darby Technology Centre Sdn Bhd, UPM-MTDC Technology Centre III, University Putra Malaysia, Selangor, Malaysia
| | - Tony Eng Keong Ooi
- Integrative and Applied Biology Department, Sime Darby Technology Centre Sdn Bhd, UPM-MTDC Technology Centre III, University Putra Malaysia, Selangor, Malaysia
| | - Nalisha Ithnin
- Integrative and Applied Biology Department, Sime Darby Technology Centre Sdn Bhd, UPM-MTDC Technology Centre III, University Putra Malaysia, Selangor, Malaysia
| | - Hirzun Mohd Yusof
- Integrative and Applied Biology Department, Sime Darby Technology Centre Sdn Bhd, UPM-MTDC Technology Centre III, University Putra Malaysia, Selangor, Malaysia
| | - Harikrishna Kulaveerasingam
- Integrative and Applied Biology Department, Sime Darby Technology Centre Sdn Bhd, UPM-MTDC Technology Centre III, University Putra Malaysia, Selangor, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,University of Malaya Centre for Proteomics Research (UMCPR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
58
|
Dimou M, Tsaniklidis G, Aivalakis G, Katinakis P. Gene transcript accumulation and in situ mRNA hybridization of two putative glutamate dehydrogenase genes in etiolated Glycine max seedlings. Biotech Histochem 2015; 90:453-60. [PMID: 25922975 DOI: 10.3109/10520295.2015.1020875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Glutamate dehydrogenase (EC 1.4.1.2) is a multimeric enzyme that catalyzes the reversible amination of α-ketoglutarate to form glutamate. We characterized cDNA clones of two Glycine max sequences, GmGDH1 and GmGDH2, that code for putative α- and β-subunits, respectively, of the NADH dependent enzyme. Temporal and spatial gene transcript accumulation studies using semiquantitative RT-PCR and in situ hybridization have shown an overlapping gene transcript accumulation pattern with differences in relative gene transcript accumulation in the organs examined. Detection of NADH-dependent glutamate dehydrogenase activity in situ using a histochemical method showed concordance with the spatial gene transcript accumulation patterns. Our findings suggest that although the two gene transcripts are co-localized in roots of etiolated soybean seedlings, the ratio of the two subunits of the active holoenzyme may vary among tissues.
Collapse
Affiliation(s)
- M Dimou
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens , Athens , Greece
| | | | | | | |
Collapse
|
59
|
Van Bockhaven J, Spíchal L, Novák O, Strnad M, Asano T, Kikuchi S, Höfte M, De Vleesschauwer D. Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. THE NEW PHYTOLOGIST 2015; 206:761-73. [PMID: 25625327 DOI: 10.1111/nph.13270] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/04/2014] [Indexed: 05/04/2023]
Abstract
Although numerous studies have shown the ability of silicon (Si) to mitigate a wide variety of abiotic and biotic stresses, relatively little is known about the underlying mechanism(s). Here, we have investigated the role of hormone defense pathways in Si-induced resistance to the rice brown spot fungus Cochliobolus miyabeanus. To delineate the involvement of multiple hormone pathways, a multidisciplinary approach was pursued, combining exogenous hormone applications, pharmacological inhibitor experiments, time-resolved hormone measurements, and bioassays with hormone-deficient and/or -insensitive mutant lines. Contrary to other types of induced resistance, we found Si-induced brown spot resistance to function independently of the classic immune hormones salicylic acid and jasmonic acid. Our data also rule out a major role of the abscisic acid (ABA) and cytokinin pathways, but suggest that Si mounts resistance to C. miyabeanus by preventing the fungus from hijacking the rice ethylene (ET) machinery. Interestingly, rather than suppressing rice ET signaling per se, Si probably interferes with the production and/or action of fungal ET. Together our findings favor a scenario whereby Si induces brown spot resistance by disarming fungal ET and argue that impairment of pathogen virulence factors is a core resistance mechanism underpinning Si-induced plant immunity.
Collapse
Affiliation(s)
- Jonas Van Bockhaven
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Proteome changes induced by Pyrenophora tritici-repentis ToxA in both insensitive and sensitive wheat indicate senescence-like signaling. Proteome Sci 2015; 13:3. [PMID: 25663824 PMCID: PMC4320625 DOI: 10.1186/s12953-014-0060-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/23/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pyrenophora tritici-repentis is a phytopathogenic fungus which causes tan spot on wheat. Some races of P. tritici-repentis produce host-specific toxins which present symptoms of chlorosis or necrosis on susceptible wheat cultivars. One such toxin is Ptr ToxA, which enters mesophyll cells through a putative toxin-receptor and localizes with chloroplasts, ultimately causing damage and necrosis on leaves. These symptoms can occur even in the absence of the pathogen. Insensitive cultivars lack the receptor and Ptr ToxA cannot enter cells. The molecular mechanisms surrounding this plant-pathogen interaction are still largely unknown, although some details have begun to emerge. RESULTS Using 2-D electrophoresis, fifteen protein changes were identified reproducibly in the leaf proteomes of a sensitive and an insensitive cultivar over three days after inoculation of purified Ptr ToxA. Functional analysis of the proteins indicated that senescence signals may be induced in the sensitive cultivar. In the insensitive cultivar proteins involved in some features of senescence inhibition were seen. Complementary responses at the biochemical level may be actively promoting a localized senescence-like response in sensitive wheat cultivars whilst actively inhibiting this response in insensitive cultivars. CONCLUSION This is the first report of a biochemical response in an insensitive cultivar in this plant-pathogen interaction. Findings support the involvement of ethylene, and the activation of complementary pathways in sensitive versus insensitive wheat cultivars responding to Ptr ToxA. The nature of the system permits using purified toxin to mimic disease, which eliminates the pathogen proteome and ensures a synchronous response in inoculated leaves.
Collapse
|
61
|
Ahn CS, Ahn HK, Pai HS. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:827-40. [PMID: 25399018 PMCID: PMC4321543 DOI: 10.1093/jxb/eru438] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tap46, a regulatory subunit of protein phosphatase 2A (PP2A), plays an essential role in plant growth and development through a functional link with the Target of Rapamycin (TOR) signalling pathway. Here, we have characterized the molecular mechanisms behind a gain-of-function phenotype of Tap46 and its relationship with TOR to gain further insights into Tap46 function in plants. Constitutive overexpression of Tap46 in Arabidopsis resulted in overall growth stimulation with enlarged organs, such as leaves and siliques. Kinematic analysis of leaf growth revealed that increased cell size was mainly responsible for the leaf enlargement. Tap46 overexpression also enhanced seed size and viability under accelerated ageing conditions. Enhanced plant growth was also observed in dexamethasone (DEX)-inducible Tap46 overexpression Arabidopsis lines, accompanied by increased cellular activities of nitrate-assimilating enzymes. DEX-induced Tap46 overexpression and Tap46 RNAi resulted in increased and decreased phosphorylation of S6 kinase (S6K), respectively, which is a sensitive indicator of endogenous TOR activity, and Tap46 interacted with S6K in planta based on bimolecular fluorescence complementation and co-immunoprecipitation. Furthermore, inactivation of TOR by estradiol-inducible RNAi or rapamycin treatment decreased Tap46 protein levels, but increased PP2A catalytic subunit levels. Real-time quantitative PCR analysis revealed that Tap46 overexpression induced transcriptional modulation of genes involved in nitrogen metabolism, ribosome biogenesis, and lignin biosynthesis. These findings suggest that Tap46 modulates plant growth as a positive effector of the TOR signalling pathway and Tap46/PP2Ac protein abundance is regulated by TOR activity.
Collapse
Affiliation(s)
- Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
62
|
Fagard M, Launay A, Clément G, Courtial J, Dellagi A, Farjad M, Krapp A, Soulié MC, Masclaux-Daubresse C. Nitrogen metabolism meets phytopathology. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5643-56. [PMID: 25080088 DOI: 10.1093/jxb/eru323] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nitrogen (N) is essential for life and is a major limiting factor of plant growth. Because soils frequently lack sufficient N, large quantities of inorganic N fertilizers are added to soils for crop production. However, nitrate, urea, and ammonium are a major source of global pollution, because much of the N that is not taken up by plants enters streams, groundwater, and lakes, where it affects algal production and causes an imbalance in aquatic food webs. Many agronomical data indicate that the higher use of N fertilizers during the green revolution had an impact on the incidence of crop diseases. In contrast, examples in which a decrease in N fertilization increases disease severity are also reported, indicating that there is a complex relationship linking N uptake and metabolism and the disease infection processes. Thus, although it is clear that N availability affects disease, the underlying mechanisms remain unclear. The aim of this review is to describe current knowledge of the mechanisms that link plant N status to the plant's response to pathogen infection and to the virulence and nutritional status of phytopathogens.
Collapse
Affiliation(s)
- Mathilde Fagard
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Alban Launay
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Gilles Clément
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Julia Courtial
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Alia Dellagi
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Mahsa Farjad
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Anne Krapp
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Marie-Christine Soulié
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Céline Masclaux-Daubresse
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| |
Collapse
|
63
|
Golemiec E, Tokarz K, Wielanek M, Niewiadomska E. A dissection of the effects of ethylene, H2O2 and high irradiance on antioxidants and several genes associated with stress and senescence in tobacco leaves. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:269-75. [PMID: 24119414 DOI: 10.1016/j.jplph.2013.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 06/02/2023]
Abstract
Ethylene and hydrogen peroxide are involved in the modulation of stress responses in plants, but their interrelation is not well understood. This work was designed to find differences between the actions of ethylene and H2O2 on antioxidants and senescence markers. Leaves of Nicotiana tabacum were sprayed with H2O2 or with ethephon (precursor of ethylene). To find the possible modulation of responses to acute abiotic stress, ethephon- and H2O2-sprayed leaves were further subjected to high irradiance (HL). The application of H2O2 strongly stimulated ethylene synthesis (ACC). Ethylene and H2O2, as single factors, stimulated the trolox equivalent antioxidant capacity (TEAC) and the activity of catalase (CAT), in contrast to HL alone (stimulation of nonspecific peroxidases and the total glutathione pool). However, after combined treatments (ethylene+HL and H2O2+HL), the stimulatory action of H2O2 was related to TEAC and CAT activity, while the application of ethylene stimulated the total glutathione pool. Hydrogen peroxide enhanced the expression of the three CAT genes (Cat1, Cat2 and Cat3), in contrast to ethylene (Cat2 and Cat3) and HL (Cat1). In regard to the markers of senescence and pathogenesis the most pronounced difference between the actions of ethylene and H2O2, as single factors, was related to NPR1, whereas when leaf spraying was combined with HL, differences were found at WRKY53 and PR1a. HL reversed the stimulatory effects of H2O2/ethylene-driven enhancements of the expression of several genes (Cat1, Cat2, NPR1, WRKY53). These results show that multiple stressors, as usually encountered by plants in nature, may largely change those expression patterns of genes determined in a single factor analysis. Moreover, the actions of HL (often considered the internal H2O2 trigger) and of exogenous H2O2 on gene expression are clearly different.
Collapse
Affiliation(s)
- Elżbieta Golemiec
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Krzysztof Tokarz
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Marzena Wielanek
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Ewa Niewiadomska
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland.
| |
Collapse
|
64
|
Seifi HS, De Vleesschauwer D, Aziz A, Höfte M. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction. PLANT SIGNALING & BEHAVIOR 2014; 9:e27995. [PMID: 24521937 PMCID: PMC4091234 DOI: 10.4161/psb.27995] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 05/20/2023]
Abstract
The fungal plant pathogen Botrytis cinerea is the causal agent of the "gray mold" disease on a broad range of hosts. As an archetypal necrotroph, B. cinerea has evolved multiple virulence strategies for inducing cell death in its host. Moreover, progress of B. cinerea colonization is commonly associated with induction of senescence in the host tissue, even in non-invaded regions. In a recent study, we showed that abscisic acid deficiency in the sitiens tomato mutant culminates in an anti-senescence defense mechanism which effectively contributes to resistance against B. cinerea infection. Conversely, in susceptible wild-type tomato a strong induction of senescence could be observed following B. cinerea infection. Building upon this earlier work, we here discuss the immune-regulatory role of a key senescence-associated protein, asparagine synthetase. We found that infection of wild-type tomato leads to a strong transcriptional upregulation of asparagine synthetase, followed by a severe depletion of asparagine titers. In contrast, resistant sitiens plants displayed a strong induction of asparagine throughout the course of infection. We hypothesize that rapid activation of asparagine synthetase in susceptible tomato may play a dual role in promoting Botrytis cinerea pathogenesis by providing a rich source of N for the pathogen, on the one hand, and facilitating pathogen-induced host senescence, on the other.
Collapse
Affiliation(s)
- Hamed Soren Seifi
- Laboratory of Phytopathology; Department of Crop Protection; Faculty of Bioscience Engineering; Ghent University; Ghent, Belgium
- Correspondence to: Hamed Soren Seifi,
| | - David De Vleesschauwer
- Laboratory of Phytopathology; Department of Crop Protection; Faculty of Bioscience Engineering; Ghent University; Ghent, Belgium
| | - Aziz Aziz
- Laboratory of SDRP—URVVC EA 4707; University of Reims; Campus Moulin de la Housse; Cedex 2, France
| | - Monica Höfte
- Laboratory of Phytopathology; Department of Crop Protection; Faculty of Bioscience Engineering; Ghent University; Ghent, Belgium
| |
Collapse
|
65
|
Cheng LJ, Hung MJ, Cheng YI, Cheng TS. Calcium-mediated responses and glutamine synthetase expression in greater duckweed (Spirodela polyrhiza L.) under diethyl phthalate-induced stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:124-132. [PMID: 24177215 DOI: 10.1016/j.aquatox.2013.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/01/2013] [Accepted: 10/06/2013] [Indexed: 06/02/2023]
Abstract
This study was carried out to assess the influence of diethyl phthalate (DEP) alone or associated with calcium chloride (CaCl2) on greater duckweed plants, emphasizing the implications of calcium in amelioration of DEP-induced stress on plant growth. Greater duckweed were treated with DEP in variable concentrations, as 0, 0.25, 0.5, 1.0 and 2.0mM for 7 days, or treated with the same concentration either 2mM DEP or 2mM DEP plus 10mM CaCl2·2H2O in different duration 0-7 days. Treatment with 2mM DEP resulted in increasing proline content, protease activity, and ammonia accumulation in duckweed tissues. NADH-glutamate dehydrogenase (NADH-GDH; EC 1.4.1.2) and Δ(1)-pyrroline-5-carboxylate reductase (P5CR; EC 1.5.1.2), two key enzymes in the glutamate pathway of proline synthesis, showed increase in activity with DEP treatment and positively correlated with proline accumulation. No further increase in proline accumulation was observed with addition of calcium chloride to the DEP-treated cultures. However, supplementation of Ca(2+) can mitigate the adverse effect of DEP, at least in part to decrease the DEP-induced superoxide accumulation and increase in GDH activity for ammonia assimilation in duckweed fronds. In addition, effects of calcium on mitigation of DEP injury were also observed in glutamine synthetase (GS; EC 6.3.1.2) expression. Both GS1 and GS2 polypeptide accumulation and the level of total GS activity were nearly equivalent to the control. Exogenous proline protects GS2 from DEP-modulated redox damage in the chloroplast lysates but there is no remarkable protection effects on D1 (the 32kDa protein in photosystem II reaction center) degradation. In conclusion, the glutamate pathway of proline synthesis might be involved in mitigation of DEP-induced injury, and calcium plays an important role in increasing GDH, P5CR, and GS expression.
Collapse
Affiliation(s)
- Lee-Ju Cheng
- Department of Applied Life Science and Health, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC
| | | | | | | |
Collapse
|
66
|
Schultz JC, Appel HM, Ferrieri AP, Arnold TM. Flexible resource allocation during plant defense responses. FRONTIERS IN PLANT SCIENCE 2013; 4:324. [PMID: 23986767 PMCID: PMC3749688 DOI: 10.3389/fpls.2013.00324] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/31/2013] [Indexed: 05/02/2023]
Abstract
Plants are organisms composed of modules connected by xylem and phloem transport streams. Attack by both insects and pathogens elicits sometimes rapid defense responses in the attacked module. We have also known for some time that proteins are often reallocated away from pathogen-infected tissues, while the same infection sites may draw carbohydrates to them. This has been interpreted as a tug of war in which the plant withdraws critical resources to block microbial growth while the microbes attempt to acquire more resources. Sink-source regulated transport among modules of critical resources, particularly carbon and nitrogen, is also altered in response to attack. Insects and jasmonate can increase local sink strength, drawing carbohydrates that support defense production. Shortly after attack, carbohydrates may also be drawn to the root. The rate and direction of movement of photosynthate or signals in phloem in response to attack is subject to constraints that include branching, degree of connection among tissues, distance between sources and sinks, proximity, strength, and number of competing sinks, and phloem loading/unloading regulators. Movement of materials (e.g., amino acids, signals) to or from attack sites in xylem is less well understood but is partly driven by transpiration. The root is an influential sink and may regulate sink-source interactions and transport above and below ground as well as between the plant and the rhizosphere and nearby, connected plants. Research on resource translocation in response to pathogens or herbivores has focused on biochemical mechanisms; whole-plant research is needed to determine which, if any, of these plant behaviors actually influence plant fitness.
Collapse
Affiliation(s)
- Jack C. Schultz
- Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Heidi M. Appel
- Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Abigail P. Ferrieri
- Department of Molecular Ecology, Max Planck Institute for Chemical EcologyJena, Germany
| | - Thomas M. Arnold
- Biochemistry and Molecular Biology Program, Department of Biology, Dickinson College, CarlislePA, USA
| |
Collapse
|
67
|
Seifi HS, Curvers K, De Vleesschauwer D, Delaere I, Aziz A, Höfte M. Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea. THE NEW PHYTOLOGIST 2013; 199:490-504. [PMID: 23627463 DOI: 10.1111/nph.12283] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/14/2013] [Indexed: 05/22/2023]
Abstract
Deficiency of abscisic acid (ABA) in the sitiens mutant of tomato (Solanum lycopersicum) culminates in increased resistance to Botrytis cinerea through a rapid epidermal hypersensitive response (HR) and associated phenylpropanoid pathway-derived cell wall fortifications. This study focused on understanding the role of primary carbon : nitrogen (C : N) metabolism in the resistance response of sitiens to B. cinerea. How alterations in C : N metabolism are linked with the HR-mediated epidermal arrest of the pathogen has been also investigated. Temporal alterations in the γ-aminobutyric acid (GABA) shunt, glutamine synthetase/glutamate synthase (GS/GOGAT) cycle and phenylpropanoid pathway were transcriptionally, enzymatically and metabolically monitored in both wild-type and sitiens plants. Virus-induced gene silencing, microscopic analyses and pharmacological assays were used to further confirm the data. Our results on the sitiens-B. cinerea interaction favor a model in which cell viability in the cells surrounding the invaded tissue is maintained by a constant replenishment of the tricarboxylic acid (TCA) cycle through overactivation of the GS/GOGAT cycle and the GABA shunt, resulting in resistance through both tightly controlling the defense-associated HR and slowing down the pathogen-induced senescence. Collectively, this study shows that maintaining cell viability via alterations in host C : N metabolism plays a vital role in the resistance response against necrotrophic pathogens.
Collapse
Affiliation(s)
- Hamed Soren Seifi
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Katrien Curvers
- Laboratory of Applied Molecular Genetics, Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - David De Vleesschauwer
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ilse Delaere
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Aziz Aziz
- Laboratory of SDRP - URVVC EA 4707, University of Reims, Campus Moulin de la Housse, 51687, Reims Cedex 2, France
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
68
|
Seifi HS, Van Bockhaven J, Angenon G, Höfte M. Glutamate Metabolism in Plant Disease and Defense: Friend or Foe? MOLECULAR PLANT-MICROBE INTERACTIONS® 2013; 26:475-85. [PMID: 23342972 DOI: 10.1094/mpmi-07-12-0176-cr] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant glutamate metabolism (GM) plays a pivotal role in amino acid metabolism and orchestrates crucial metabolic functions, with key roles in plant defense against pathogens. These functions concern three major areas: nitrogen transportation via the glutamine synthetase and glutamine-oxoglutarate aminotransferase cycle, cellular redox regulation, and tricarboxylic acid cycle-dependent energy reprogramming. During interactions with pathogens, the host GM is markedly altered, leading to either a metabolic state, termed “endurance”, in which cell viability is maintained, or to an opposite metabolic state, termed “evasion”, in which the process of cell death is facilitated. It seems that endurance-natured modulations result in resistance to necrotrophic pathogens and susceptibility to biotrophs, whereas evasion-related reconfigurations lead to resistance to biotrophic pathogens but stimulate the infection by necrotrophs. Pathogens, however, have evolved strategies such as toxin secretion, hemibiotrophy, and selective amino acid utilization to exploit the plant GM to their own benefit. Collectively, alterations in the host GM in response to different pathogenic scenarios appear to function in two opposing ways, either backing the ongoing defense strategy to ultimately shape an efficient resistance response or being exploited by the pathogen to promote and facilitate infection.
Collapse
|
69
|
Parker J, Koh J, Yoo MJ, Zhu N, Feole M, Yi S, Chen S. Quantitative proteomics of tomato defense against Pseudomonas syringae infection. Proteomics 2013; 13:1934-46. [PMID: 23533086 DOI: 10.1002/pmic.201200402] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/17/2013] [Accepted: 02/08/2013] [Indexed: 12/12/2022]
Abstract
Genetic and microarray analyses have provided useful information in the area of plant and pathogen interactions. Pseudomonas syringae pv. tomato DC3000 (Pst) causes bacterial speck disease in tomato. Previous studies have shown that changes in response to pathogen infection at transcript level are variable at different time points. This study provides information not only on proteomic changes between a resistant and a susceptible genotype, but also information on changes between an early and a late time point. Using the iTRAQ quantitative proteomics approach, we have identified 2369 proteins in tomato leaves, and 477 of them were determined to be responsive to Pst inoculation. Unique and differential proteins after each comparison were further analyzed to provide information about protein changes and the potential functions they play in the pathogen response. This information is applicable not only to tomato proteomics, but also adds to the repertoire of proteins now available for crop proteomic analysis and how they change in response to pathogen infection.
Collapse
Affiliation(s)
- Jennifer Parker
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Zhang WJ, Dewey RE, Boss W, Phillippy BQ, Qu R. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. PLANT MOLECULAR BIOLOGY 2013; 81:273-286. [PMID: 23242917 DOI: 10.1007/s11103-012-9997-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 12/06/2012] [Indexed: 05/27/2023]
Abstract
Plant defense responses can lead to altered metabolism and even cell death at the sites of Agrobacterium infection, and thus lower transformation frequencies. In this report, we demonstrate that the utilization of culture conditions associated with an attenuation of defense responses in monocot plant cells led to highly improved Agrobacterium-mediated transformation efficiencies in perennial ryegrass (Lolium perenne L.). The removal of myo-inositol from the callus culture media in combination with a cold shock pretreatment and the addition of L-Gln prior to and during Agrobacterium-infection resulted in about 84 % of the treated calluses being stably transformed. The omission of myo-inositol from the callus culture media was associated with the failure of certain pathogenesis related genes to be induced after Agrobacterium infection. The addition of a cold shock and supplemental Gln appeared to have synergistic effects on infection and transformation efficiencies. Nearly 60 % of the stably transformed calluses regenerated into green plantlets. Calluses cultured on media lacking myo-inositol also displayed profound physiological and biochemical changes compared to ones cultured on standard growth media, such as reduced lignin within the cell walls, increased starch and inositol hexaphosphate accumulation, enhanced Agrobacterium binding to the cell surface, and less H(2)O(2) production after Agrobacterium infection. Furthermore, the cold treatment greatly reduced callus browning after infection. The simple modifications described in this report may have broad application for improving genetic transformation of recalcitrant monocot species.
Collapse
Affiliation(s)
- Wan-Jun Zhang
- Department of Grassland Science, China Agricultural University, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
71
|
Hung CY, Fan L, Kittur FS, Sun K, Qiu J, Tang S, Holliday BM, Xiao B, Burkey KO, Bush LP, Conkling MA, Roje S, Xie J. Alteration of the alkaloid profile in genetically modified tobacco reveals a role of methylenetetrahydrofolate reductase in nicotine N-demethylation. PLANT PHYSIOLOGY 2013; 161:1049-60. [PMID: 23221678 PMCID: PMC3561002 DOI: 10.1104/pp.112.209247] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/03/2012] [Indexed: 05/08/2023]
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes the reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine, forming methionine, which is then used for the synthesis of S-adenosyl-methionine, a universal methyl donor for numerous methylation reactions, to produce primary and secondary metabolites. Here, we demonstrate that manipulating tobacco (Nicotiana tabacum) MTHFR gene (NtMTHFR1) expression dramatically alters the alkaloid profile in transgenic tobacco plants by negatively regulating the expression of a secondary metabolic pathway nicotine N-demethylase gene, CYP82E4. Quantitative real-time polymerase chain reaction and alkaloid analyses revealed that reducing NtMTHFR expression by RNA interference dramatically induced CYP82E4 expression, resulting in higher nicotine-to-nornicotine conversion rates. Conversely, overexpressing NtMTHFR1 suppressed CYP82E4 expression, leading to lower nicotine-to-nornicotine conversion rates. However, the reduced expression of NtMTHFR did not affect the methionine and S-adenosyl-methionine levels in the knockdown lines. Our finding reveals a new regulatory role of NtMTHFR1 in nicotine N-demethylation and suggests that the negative regulation of CYP82E4 expression may serve to recruit methyl groups from nicotine into the C1 pool under C1-deficient conditions.
Collapse
Affiliation(s)
- Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707 (C.-Y.H., F.S.K., B.M.H., J.X.); Department of Agronomy, Zhejiang University, Hangzhou 310029, China (L.F., J.Q., S.T.); Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (K.S., S.R.); Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China (B.X.); United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 (K.O.B.); Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (L.P.B.); and AgriTech Interface, Chapel Hill, North Carolina 27516 (M.A.C.)
| | - Longjiang Fan
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707 (C.-Y.H., F.S.K., B.M.H., J.X.); Department of Agronomy, Zhejiang University, Hangzhou 310029, China (L.F., J.Q., S.T.); Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (K.S., S.R.); Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China (B.X.); United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 (K.O.B.); Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (L.P.B.); and AgriTech Interface, Chapel Hill, North Carolina 27516 (M.A.C.)
| | - Farooqahmed S. Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707 (C.-Y.H., F.S.K., B.M.H., J.X.); Department of Agronomy, Zhejiang University, Hangzhou 310029, China (L.F., J.Q., S.T.); Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (K.S., S.R.); Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China (B.X.); United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 (K.O.B.); Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (L.P.B.); and AgriTech Interface, Chapel Hill, North Carolina 27516 (M.A.C.)
| | - Kehan Sun
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707 (C.-Y.H., F.S.K., B.M.H., J.X.); Department of Agronomy, Zhejiang University, Hangzhou 310029, China (L.F., J.Q., S.T.); Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (K.S., S.R.); Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China (B.X.); United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 (K.O.B.); Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (L.P.B.); and AgriTech Interface, Chapel Hill, North Carolina 27516 (M.A.C.)
| | - Jie Qiu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707 (C.-Y.H., F.S.K., B.M.H., J.X.); Department of Agronomy, Zhejiang University, Hangzhou 310029, China (L.F., J.Q., S.T.); Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (K.S., S.R.); Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China (B.X.); United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 (K.O.B.); Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (L.P.B.); and AgriTech Interface, Chapel Hill, North Carolina 27516 (M.A.C.)
| | - She Tang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707 (C.-Y.H., F.S.K., B.M.H., J.X.); Department of Agronomy, Zhejiang University, Hangzhou 310029, China (L.F., J.Q., S.T.); Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (K.S., S.R.); Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China (B.X.); United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 (K.O.B.); Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (L.P.B.); and AgriTech Interface, Chapel Hill, North Carolina 27516 (M.A.C.)
| | | | - Bingguang Xiao
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707 (C.-Y.H., F.S.K., B.M.H., J.X.); Department of Agronomy, Zhejiang University, Hangzhou 310029, China (L.F., J.Q., S.T.); Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (K.S., S.R.); Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China (B.X.); United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 (K.O.B.); Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (L.P.B.); and AgriTech Interface, Chapel Hill, North Carolina 27516 (M.A.C.)
| | - Kent O. Burkey
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707 (C.-Y.H., F.S.K., B.M.H., J.X.); Department of Agronomy, Zhejiang University, Hangzhou 310029, China (L.F., J.Q., S.T.); Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (K.S., S.R.); Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China (B.X.); United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 (K.O.B.); Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (L.P.B.); and AgriTech Interface, Chapel Hill, North Carolina 27516 (M.A.C.)
| | - Lowell P. Bush
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707 (C.-Y.H., F.S.K., B.M.H., J.X.); Department of Agronomy, Zhejiang University, Hangzhou 310029, China (L.F., J.Q., S.T.); Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (K.S., S.R.); Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China (B.X.); United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 (K.O.B.); Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (L.P.B.); and AgriTech Interface, Chapel Hill, North Carolina 27516 (M.A.C.)
| | - Mark A. Conkling
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707 (C.-Y.H., F.S.K., B.M.H., J.X.); Department of Agronomy, Zhejiang University, Hangzhou 310029, China (L.F., J.Q., S.T.); Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (K.S., S.R.); Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China (B.X.); United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 (K.O.B.); Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (L.P.B.); and AgriTech Interface, Chapel Hill, North Carolina 27516 (M.A.C.)
| | - Sanja Roje
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707 (C.-Y.H., F.S.K., B.M.H., J.X.); Department of Agronomy, Zhejiang University, Hangzhou 310029, China (L.F., J.Q., S.T.); Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (K.S., S.R.); Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China (B.X.); United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 (K.O.B.); Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (L.P.B.); and AgriTech Interface, Chapel Hill, North Carolina 27516 (M.A.C.)
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707 (C.-Y.H., F.S.K., B.M.H., J.X.); Department of Agronomy, Zhejiang University, Hangzhou 310029, China (L.F., J.Q., S.T.); Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (K.S., S.R.); Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China (B.X.); United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 (K.O.B.); Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (L.P.B.); and AgriTech Interface, Chapel Hill, North Carolina 27516 (M.A.C.)
| |
Collapse
|
72
|
Brychkova G, Grishkevich V, Fluhr R, Sagi M. An essential role for tomato sulfite oxidase and enzymes of the sulfite network in maintaining leaf sulfite homeostasis. PLANT PHYSIOLOGY 2013; 161:148-64. [PMID: 23148079 PMCID: PMC3532248 DOI: 10.1104/pp.112.208660] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/12/2012] [Indexed: 05/19/2023]
Abstract
Little is known about the homeostasis of sulfite levels, a cytotoxic by-product of plant sulfur turnover. By employing extended dark to induce catabolic pathways, we followed key elements of the sulfite network enzymes that include adenosine-5'-phosphosulfate reductase and the sulfite scavengers sulfite oxidase (SO), sulfite reductase, UDP-sulfoquinovose synthase, and β-mercaptopyruvate sulfurtransferases. During extended dark, SO was enhanced in tomato (Solanum lycopersicum) wild-type leaves, while the other sulfite network components were down-regulated. SO RNA interference plants lacking SO activity accumulated sulfite, resulting in leaf damage and mortality. Exogenous sulfite application induced up-regulation of the sulfite scavenger activities in dark-stressed or unstressed wild-type plants, while expression of the sulfite producer, adenosine-5'-phosphosulfate reductase, was down-regulated. Unstressed or dark-stressed wild-type plants were resistant to sulfite applications, but SO RNA interference plants showed sensitivity and overaccumulation of sulfite. Hence, under extended dark stress, SO activity is necessary to cope with rising endogenous sulfite levels. However, under nonstressed conditions, the sulfite network can control sulfite levels in the absence of SO activity. The novel evidence provided by the synchronous dark-induced turnover of sulfur-containing compounds, augmented by exogenous sulfite applications, underlines the role of SO and other sulfite network components in maintaining sulfite homeostasis, where sulfite appears to act as an orchestrating signal molecule.
Collapse
|
73
|
Gupta KJ, Brotman Y, Segu S, Zeier T, Zeier J, Persijn ST, Cristescu SM, Harren FJM, Bauwe H, Fernie AR, Kaiser WM, Mur LAJ. The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:553-68. [PMID: 23230025 PMCID: PMC3542047 DOI: 10.1093/jxb/ers348] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Different forms of nitrogen (N) fertilizer affect disease development; however, this study investigated the effects of N forms on the hypersensitivity response (HR)-a pathogen-elicited cell death linked to resistance. HR-eliciting Pseudomonas syringae pv. phaseolicola was infiltrated into leaves of tobacco fed with either NO₃⁻ or NH₄⁺. The speed of cell death was faster in NO₃⁻-fed compared with NH₄⁺-fed plants, which correlated, respectively, with increased and decreased resistance. Nitric oxide (NO) can be generated by nitrate reductase (NR) to influence the formation of the HR. NO generation was reduced in NH₄⁺-fed plants where N assimilation bypassed the NR step. This was similar to that elicited by the disease-forming P. syringae pv. tabaci strain, further suggesting that resistance was compromised with NH₄⁺ feeding. PR1a is a biomarker for the defence signal salicylic acid (SA), and expression was reduced in NH₄⁺-fed compared with NO₃⁻ fed plants at 24h after inoculation. This pattern correlated with actual SA measurements. Conversely, total amino acid, cytosolic and apoplastic glucose/fructose and sucrose were elevated in - treated plants. Gas chromatography/mass spectroscopy was used to characterize metabolic events following different N treatments. Following NO₃⁻ nutrition, polyamine biosynthesis was predominant, whilst after NH₄⁺ nutrition, flux appeared to be shifted towards the production of 4-aminobutyric acid. The mechanisms whereby feeding enhances SA, NO, and polyamine-mediated HR-linked defence whilst these are compromised with NH₄⁺, which also increases the availability of nutrients to pathogens, are discussed.
Collapse
Affiliation(s)
- Kapuganti J. Gupta
- Department of Plant Physiology, University of Rostock, Albert Einstein Str 3, D-18059, Rostock, Germany
| | - Yariv Brotman
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm-Potsdam, Germany
| | - Shruthi Segu
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm-Potsdam, Germany
| | - Tatiana Zeier
- Institute for Plant Molecular Ecophysiology, Heinrich-Heine-Universität Universitätsstrasse1 40225 Düsseldorf
| | - Jürgen Zeier
- Institute for Plant Molecular Ecophysiology, Heinrich-Heine-Universität Universitätsstrasse1 40225 Düsseldorf
| | - Stefan T. Persijn
- Dutch Metrology Institute, VSL, Thijsseweg 11, 2629 JA Delft, The Netherlands
| | - Simona M. Cristescu
- Molecular and Laser Physics, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Frans J. M. Harren
- Molecular and Laser Physics, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Hermann Bauwe
- Department of Plant Physiology, University of Rostock, Albert Einstein Str 3, D-18059, Rostock, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm-Potsdam, Germany
| | - Werner M. Kaiser
- Lehrstuhl Botanik I, Julius-von-Sachs-Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Luis A. J. Mur
- Aberystwyth University, Institute of Environmental and Rural Science, Edward Llwyd Building, Aberystwyth, UK, SY23 3DA
| |
Collapse
|
74
|
Cheng TS. The toxic effects of diethyl phthalate on the activity of glutamine synthetase in greater duckweed (Spirodela polyrhiza L.). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 124-125:171-178. [PMID: 22975440 DOI: 10.1016/j.aquatox.2012.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 06/01/2023]
Abstract
The toxic effects of diethyl phthalate (DEP), a potent allelochemical, on the enzyme activity and polypeptide accumulation of glutamine synthetase (GS) in greater duckweed were investigated. In our previous studies, DEP induced oxidative responses at concentrations from 0.5 to 2 mM in greater duckweed and the antioxidant enzymes played important roles in the defense strategy against DEP stress. In this study, DAB-H(2)O(2) and NBT stain for superoxide radicals (O(2)(·-)), lipid peroxidation, HSP70, and ammonia accumulation in DEP-treated duckweed tissues revealed adverse effect of DEP in plant growth. Biochemical analysis and physiological methods were combined to investigate GS activity and polypeptide accumulation under DEP-induced stress. The results showed that GS activity was reduced with the increasing concentration of DEP, indicative of enhanced toxic effect. Immunoblot analysis with chloroplast soluble fractions indicated that the chloroplastic GS (GS2) polypeptide from greater duckweed was degraded under DEP stress conditions. The response of GS2 to the DEP stress may be modulated by means of redox change in plant tissues, chloroplasts, and chloroplast lysates. The results suggest that DEP is toxic to the greater duckweed by inhibition of the GS isoenzymes in nitrogen assimilation and the GS2 plays important roles in the adaptation strategy against DEP toxicity.
Collapse
Affiliation(s)
- Tai-Sheng Cheng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan, ROC.
| |
Collapse
|
75
|
Yao YA, Wang J, Ma X, Lutts S, Sun C, Ma J, Yang Y, Achal V, Xu G. Proteomic analysis of Mn-induced resistance to powdery mildew in grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5155-70. [PMID: 22936830 DOI: 10.1093/jxb/ers175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Previous studies documented that metal hyperaccumulation armours plants with direct defences against pathogens. In the present study, it was found that high leaf Mn concentrations (<2500 µg g(-1)) induced grapevine resistance to powdery mildew [Uncinula necator (Schw.) Burr]. Manganese delayed pathogen spreading after powdery mildew (PM) inoculation, but did not directly inhibit pathogen growth on a long-term basis. It was postulated that the grapevine resistance resulted from the induction of protective mechanisms in planta. To test this hypothesis, the proteome profile was analysed by Difference Gel Electrophoresis (DIGE) methods to identify proteins that are putatively involved in pathogen resistance. A high Mn concentration caused little oxidative pressure in grapevine, but oxidative stress was deeply enhanced by PM stress. Except for a few proteins that were related to oxidative pressure and proteins specially regulated by Mn or PM, most of the detected proteins exhibited similar changes under excess Mn stress and under PM stress, suggesting that similar signalling processes mediate the responses to the two stresses. As well as PM stress, high leaf Mn concentration significantly enhanced salicylic acid concentration and increased the expression of proteins involved in ethylene and jasmonic acid synthesis. The proteins related to pathogen resistance were also enhanced by excess Mn, including a PR-like protein, an NBS-LRR analogue, and a JOSL protein, and this was accompanied by the increased activity of phenylalanine ammonia lyase. It was concluded that high leaf Mn concentration triggered protective mechanisms against pathogens in grapevine.
Collapse
Affiliation(s)
- Yin An Yao
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, PR China 830011.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Alkan N, Fluhr R, Prusky D. Ammonium secretion during Colletotrichum coccodes infection modulates salicylic and jasmonic acid pathways of ripe and unripe tomato fruit. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:85-96. [PMID: 22150075 DOI: 10.1094/mpmi-01-11-0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The postharvest pathogens Colletotrichum coccodes remains quiescent after infection of unripe fruit. However, during fruit ripening, the pathogen assumes a necrotrophic life style, rapidly colonizing the tissue. C. coccodes secretes ammonium during germination and colonization of host tissue that induces host programmed cell death. We further examined the role of ammonia in the infection process by analyzing transcriptome expression from infected and ammonia-treated fruit tissue compared with healthy tissue. The analysis revealed 82 and 237 common upregulated and downregulated genes, respectively. Quantitative reverse-transcriptase polymerase chain reaction analysis of select transcripts in normal and transgenic NADPH oxidase antisense plants revealed that their expression was NADPH oxidase dependent. Common-upregulated genes showed overrepresentation of salicylic acid (SA)-dependent genes as well as genes related to biotic stress. The downregulated genes showed overrepresentation of jasmonic acid (JA)-dependent genes. Indeed, direct application of SA to the fruit enhanced C. coccodes necrotrophic colonization, whereas the application of JA delayed colonization. Importantly, green fruit and red fruit displayed similar gene expression patterns although only red fruit is susceptible to colonization. Thus, it is likely that the resistance of green fruit to C. coccodes colonization is due to additional factors.
Collapse
Affiliation(s)
- Noam Alkan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Bet Dagan, Israel
| | | | | |
Collapse
|
77
|
Gong X, Qu C, Liu C, Hong M, Wang L, Hong F. Effects of manganese deficiency and added cerium on nitrogen metabolism of maize. Biol Trace Elem Res 2011; 144:1240-50. [PMID: 21660532 DOI: 10.1007/s12011-011-9105-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/29/2011] [Indexed: 11/29/2022]
Abstract
Manganese is one of the essential microelements for plant growth, and cerium is a beneficial element for plant growth. However, whether manganese deficiency affects nitrogen metabolism of plants and cerium improves the nitrogen metabolism of plants by exposure to manganese-deficient media are still unclear. The main aim of the study was to determine the effects of manganese deficiency in nitrogen metabolism and the roles of cerium in the improvement of manganese-deficient effects in maize seedlings. Maize seedlings were cultivated in manganese present Meider's nutrient solution. They were subjected to manganese deficiency and to cerium chloride administered in the manganese-present and manganese-deficient media. Maize seedlings grown in the various media were measured for key enzyme activities involved in nitrogen metabolism, such as nitrate reductase, glutamate dehydrogenase, glutamine synthetase, and glutamic-oxaloace transaminase. We found that manganese deficiency restricted uptake and transport of NO(3)(-), inhibited activities of nitrogen-metabolism-related enzymes, such as nitrate reductase, glutamine synthetase, and glutamic-oxaloace transaminase, thus decreasing the synthesis of chlorophyll and soluble protein, and inhibited the growth of maize seedlings. Manganese deficiency promoted the activity of glutamate dehydrogenase and reduced the toxicity of excess ammonia to the plant, while added cerium relieved the damage to nitrogen metabolism caused by manganese deficiency in maize seedlings. However, cerium addition exerted positively to relieve the damage of nitrogen metabolism process in maize seedlings caused by exposure to manganese-deficient media.
Collapse
Affiliation(s)
- Xiaolan Gong
- Medical College, Soochow University, Suzhou, 215123, People's Republic of China
| | | | | | | | | | | |
Collapse
|
78
|
Britto D, Pirovani C, Gonzalez E, Silva J, Gesteira A, Cascardo J. Oxidative stress as an indicator of lower quality eucalyptus for pulp and paper industry. BMC Proc 2011. [PMCID: PMC3240004 DOI: 10.1186/1753-6561-5-s7-p156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
79
|
Pérez-Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcón-Aguilar C, Ferrol N. GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 2011; 48:1044-55. [DOI: 10.1016/j.fgb.2011.08.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/27/2011] [Accepted: 08/15/2011] [Indexed: 11/16/2022]
|
80
|
Brauc S, De Vooght E, Claeys M, Höfte M, Angenon G. Influence of over-expression of cytosolic aspartate aminotransferase on amino acid metabolism and defence responses against Botrytis cinerea infection in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1813-9. [PMID: 21676488 DOI: 10.1016/j.jplph.2011.05.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/18/2011] [Accepted: 05/10/2011] [Indexed: 05/08/2023]
Abstract
Arabidopsis possesses several genes encoding aspartate aminotransferase, which catalyzes the bidirectional conversion of aspartate into glutamate. These amino acids together with asparagine and glutamine play an important role in N storage and distribution. In addition, they act as precursors for other amino acids. The gene encoding cytosolic aspartate aminotransferase, Asp2, was found to be induced upon infection with the necrotrophic pathogen Botrytis cinerea in Arabidopsis. Asp2 over-expression lines and a T-DNA insertion mutant were used to study the role of aspartate aminotransferase in Arabidopsis defence responses. Over-expression of Asp2 led to changes in aspartate content and aspartate-derived amino acids. The Asp2 knockout mutant was also slightly affected in its amino acid composition. Under standard growth conditions, the Asp2 transgenic lines did not show morphological changes in comparison with the wild-type. However, transgenic lines with the highest Asp2 expression displayed more spreading lesions when infected with B. cinerea. We discuss how this gene involved in amino acid metabolism might interact with plant defence responses.
Collapse
Affiliation(s)
- Sigrid Brauc
- Laboratory of Plant Genetics, Institute for Molecular Biology and Biotechnology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | |
Collapse
|
81
|
Li J, Ezquer I, Bahaji A, Montero M, Ovecka M, Baroja-Fernández E, Muñoz FJ, Mérida A, Almagro G, Hidalgo M, Sesma MT, Pozueta-Romero J. Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1165-78. [PMID: 21649509 DOI: 10.1094/mpmi-05-11-0112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microbial volatiles promote the accumulation of exceptionally high levels of starch in leaves. Time-course analyses of starch accumulation in Arabidopsis leaves exposed to fungal volatiles (FV) emitted by Alternaria alternata revealed that a microbial volatile-induced starch accumulation process (MIVOISAP) is due to stimulation of starch biosynthesis during illumination. The increase of starch content in illuminated leaves of FV-treated hy1/cry1, hy1/cry2, and hy1/cry1/cry2 Arabidopsis mutants was many-fold lower than that of wild-type (WT) leaves, indicating that MIVOISAP is subjected to photoreceptor-mediated control. This phenomenon was inhibited by cordycepin and accompanied by drastic changes in the Arabidopsis transcriptome. MIVOISAP was also accompanied by enhancement of the total 3-phosphoglycerate/Pi ratio, and a two- to threefold increase of the levels of the reduced form of ADP-glucose pyrophosphorylase. Using different Arabidopsis knockout mutants, we investigated the impact in MIVOISAP of downregulation of genes directly or indirectly related to starch metabolism. These analyses revealed that the magnitude of the FV-induced starch accumulation was low in mutants impaired in starch synthase (SS) classes III and IV and plastidial NADP-thioredoxin reductase C (NTRC). Thus, the overall data showed that Arabidopsis MIVOISAP involves a photocontrolled, transcriptionally and post-translationally regulated network wherein photoreceptor-, SSIII-, SSIV-, and NTRC-mediated changes in redox status of plastidial enzymes play important roles.
Collapse
Affiliation(s)
- Jun Li
- Instituto de Agrobiotecnología, Nafarroa, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Hwang IS, An SH, Hwang BK. Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:749-62. [PMID: 21535260 DOI: 10.1111/j.1365-313x.2011.04622.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Asparagine synthetase is a key enzyme in the production of the nitrogen-rich amino acid asparagine, which is crucial to primary nitrogen metabolism. Despite its importance physiologically, the roles that asparagine synthetase plays during plant defense responses remain unknown. Here, we determined that pepper (Capsicum annuum) asparagine synthetase 1 (CaAS1) is essential for plant defense to microbial pathogens. Infection with Xanthomonas campestris pv. vesicatoria (Xcv) induced early and strong CaAS1 expression in pepper leaves and silencing of this gene resulted in enhanced susceptibility to Xcv infection. Transgenic Arabidopsis (Arabidopsis thaliana) plants that overexpressed CaAS1 exhibited enhanced resistance to Pseudomonas syringae pv. tomato DC3000 and Hyaloperonospora arabidopsidis. Increased CaAS1 expression influenced early defense responses in diseased leaves, including increased electrolyte leakage, reactive oxygen species and nitric oxide bursts. In plants, increased conversion of aspartate to asparagine appears to be associated with enhanced resistance to bacterial and oomycete pathogens. In CaAS1-silenced pepper and/or CaAS1-overexpressing Arabidopsis, CaAS1-dependent changes in asparagine levels correlated with increased susceptibility or defense responses to microbial pathogens, respectively. Linking transcriptional and targeted metabolite studies, our results suggest that CaAS1 is required for asparagine synthesis and disease resistance in plants.
Collapse
Affiliation(s)
- In Sun Hwang
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Korea
| | | | | |
Collapse
|
83
|
Ghanta S, Bhattacharyya D, Sinha R, Banerjee A, Chattopadhyay S. Nicotiana tabacum overexpressing γ-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway. PLANTA 2011; 233:895-910. [PMID: 21234598 DOI: 10.1007/s00425-011-1349-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/04/2011] [Indexed: 05/09/2023]
Abstract
The elaborate networks and the crosstalk of established signaling molecules like salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), reactive oxygen species (ROS) and glutathione (GSH) play key role in plant defense response. To obtain further insight into the mechanism through which GSH is involved in this crosstalk to mitigate biotic stress, transgenic Nicotiana tabacum overexpressing Lycopersicon esculentum gamma-glutamylcysteine synthetase (LeECS) gene (NtGB lines) were generated with enhanced level of GSH in comparison with wild-type plants exhibiting resistance to pathogenesis as well. The expression levels of non-expressor of pathogenesis-related genes 1 (NPR1)-dependent genes like pathogenesis-related gene 1 (NtPR1), mitogen-activated protein kinase kinase (NtMAPKK), glutamine synthetase (NtGLS) were significantly enhanced along with NtNPR1. However, the expression levels of NPR1-independent genes like NtPR2, NtPR5 and short-chain dehydrogenase/reductase family protein (NtSDRLP) were either insignificant or were downregulated. Additionally, increase in expression of thioredoxin (NtTRXh), S-nitrosoglutathione reductase 1 (NtGSNOR1) and suppression of isochorismate synthase 1 (NtICS1) was noted. Comprehensive analysis of GSH-fed tobacco BY2 cell line in a time-dependent manner reciprocated the in planta results. Better tolerance of NtGB lines against biotrophic Pseudomonas syringae pv. tabaci was noted as compared to necrotrophic Alternaria alternata. Through two-dimensional gel electrophoresis (2-DE) and image analysis, 48 differentially expressed spots were identified and through identification as well as functional categorization, ten proteins were found to be SA-related. Collectively, our results suggest GSH to be a member in cross-communication with other signaling molecules in mitigating biotic stress likely through NPR1-dependent SA-mediated pathway.
Collapse
Affiliation(s)
- Srijani Ghanta
- Plant Biotechnology Laboratory, Drug Development/Diagnostics and Biotechnology Division, Indian Institute of Chemical Biology (A unit of Council of Scientific and Industrial Research), 4, Raja S. C. Mullick Road, Kolkata 700-032, India
| | | | | | | | | |
Collapse
|
84
|
Bertrand A, Castonguay Y, Azaiez A, Hsiang T, Dionne J. Cold-induced responses in annual bluegrass genotypes with differential resistance to pink snow mold (Microdochium nivale). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:111-119. [PMID: 21421353 DOI: 10.1016/j.plantsci.2010.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 07/30/2010] [Accepted: 08/17/2010] [Indexed: 05/28/2023]
Abstract
Greens-type annual bluegrass (Poa annua L.) is susceptible to winter stresses including subfreezing temperatures and pink snow mold (SM). To better understand the mechanisms of SM resistance in annual bluegrass, four SM-resistant and four SM-sensitive genotypes were incubated at low temperature with Microdochium nivale (Fries) Samuels & Hallett, the causal agent of pink snow mold. We assessed the impact of a 6-week incubation period with SM at 2 °C under high humidity (≥ 98%) on the accumulation of cold-induced metabolites and on freezing tolerance. Incubation of annual bluegrass inoculated with SM lead to a major decrease in concentration of cryoprotective sugars such as sucrose and HDP (high degree of polymerization) fructans. Conversely, major amino acids linked to stress resistance such as glutamine and arginine increased in crowns of annual bluegrass in response to SM inoculation. One of the major differences between resistant and sensitive genotypes was found in the concentration of HDP fructans, which remained higher in SM-resistant genotypes throughout the incubation period. HDP fructans were also more abundant in freeze-tolerant genotypes, reinforcing their positive impact on winter survival of annual bluegrass. The identification of genotypes that are resistant to both SM and freezing shows the possibility of being able to improve both traits concomitantly.
Collapse
Affiliation(s)
- Annick Bertrand
- Soils and Crops Research and Development Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Québec City, Québec G1V2J3, Canada.
| | | | | | | | | |
Collapse
|
85
|
Ahn CS, Han JA, Lee HS, Lee S, Pai HS. The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. THE PLANT CELL 2011; 23:185-209. [PMID: 21216945 PMCID: PMC3051261 DOI: 10.1105/tpc.110.074005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 11/29/2010] [Accepted: 12/17/2010] [Indexed: 05/18/2023]
Abstract
Tap42/α4, a regulatory subunit of protein phosphatase 2A, is a downstream effector of the target of rapamycin (TOR) protein kinase, which regulates cell growth in coordination with nutrient and environmental conditions in yeast and mammals. In this study, we characterized the functions and phosphatase regulation of plant Tap46. Depletion of Tap46 resulted in growth arrest and acute plant death with morphological markers of programmed cell death. Tap46 interacted with PP2A and PP2A-like phosphatases PP4 and PP6. Tap46 silencing modulated cellular PP2A activities in a time-dependent fashion similar to TOR silencing. Immunoprecipitated full-length and deletion forms of Arabidopsis thaliana TOR phosphorylated recombinant Tap46 protein in vitro, supporting a functional link between Tap46 and TOR. Tap46 depletion reproduced the signature phenotypes of TOR inactivation, such as dramatic repression of global translation and activation of autophagy and nitrogen mobilization, indicating that Tap46 may act as a positive effector of TOR signaling in controlling those processes. Additionally, Tap46 silencing in tobacco (Nicotiana tabacum) BY-2 cells caused chromatin bridge formation at anaphase, indicating its role in sister chromatid segregation. These findings suggest that Tap46, in conjunction with associated phosphatases, plays an essential role in plant growth and development as a component of the TOR signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - Hyun-Sook Pai
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
86
|
Liu G, Ji Y, Bhuiyan NH, Pilot G, Selvaraj G, Zou J, Wei Y. Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. THE PLANT CELL 2010; 22:3845-63. [PMID: 21097712 PMCID: PMC3015111 DOI: 10.1105/tpc.110.079392] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 09/13/2010] [Accepted: 10/28/2010] [Indexed: 05/17/2023]
Abstract
The tight association between nitrogen status and pathogenesis has been broadly documented in plant-pathogen interactions. However, the interface between primary metabolism and disease responses remains largely unclear. Here, we show that knockout of a single amino acid transporter, LYSINE HISTIDINE TRANSPORTER1 (LHT1), is sufficient for Arabidopsis thaliana plants to confer a broad spectrum of disease resistance in a salicylic acid-dependent manner. We found that redox fine-tuning in photosynthetic cells was causally linked to the lht1 mutant-associated phenotypes. Furthermore, the enhanced resistance in lht1 could be attributed to a specific deficiency of its main physiological substrate, Gln, and not to a general nitrogen deficiency. Thus, by enabling nitrogen metabolism to moderate the cellular redox status, a plant primary metabolite, Gln, plays a crucial role in plant disease resistance.
Collapse
Affiliation(s)
- Guosheng Liu
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Yuanyuan Ji
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Nazmul H. Bhuiyan
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Guillaume Pilot
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Gopalan Selvaraj
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Jitao Zou
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
87
|
Hu Y, Sun G. Leaf nitrogen dioxide uptake coupling apoplastic chemistry, carbon/sulfur assimilation, and plant nitrogen status. PLANT CELL REPORTS 2010; 29:1069-77. [PMID: 20628880 DOI: 10.1007/s00299-010-0898-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 07/03/2010] [Accepted: 07/04/2010] [Indexed: 05/08/2023]
Abstract
Emission and plant uptake of atmospheric nitrogen oxides (NO + NO(2)) significantly influence regional climate change by regulating the oxidative chemistry of the lower atmosphere, species composition and the recycling of carbon and nutrients, etc. Plant uptake of nitrogen dioxide (NO(2)) is concentration-dependent and species-specific, and covaries with environmental factors. An important factor determining NO(2) influx into leaves is the replenishment of the substomatal cavity. The apoplastic chemistry of the substomatal cavity plays crucial roles in NO(2) deposition rates and the tolerance to NO(2), involving the reactions between NO(2) and apoplastic antioxidants, NO(2)-responsive germin-like proteins, apoplastic acidification, and nitrite-dependent NO synthesis, etc. Moreover, leaf apoplast is a favorable site for the colonization by microbes, which disturbs nitrogen metabolism of host plants. For most plant species, NO(2) assimilation in a leaf primarily depends on the nitrate (NO(3) (-)) assimilation pathway. NO(2)-N assimilation is coupled with carbon and sulfur (sulfate and SO(2)) assimilation as indicated by the mutual needs for metabolic intermediates (or metabolites) and the NO(2)-caused changes of key metabolic enzymes such as phosphoenolpyruvate carboxylase (PEPc) and adenosine 5'-phosphosulfate sulfotransferase, organic acids, and photorespiration. Moreover, arbuscular mycorrhizal (AM) colonization improves the tolerance of host plants to NO(2) by enhancing the efficiency of nutrient absorption and translocation and influencing foliar chemistry. Further progress is proposed to gain a better understanding of the coordination between NO(2)-N, S and C assimilation, especially the investigation of metabolic checkpoints, and the effects of photorespiratory nitrogen cycle, diverse PEPc and the metabolites such as cysteine, O-acetylserine (OAS) and glutathione.
Collapse
Affiliation(s)
- Yanbo Hu
- College of Life Science, Northeast Forestry University, 26# Hexing Road, Xiangfang District, Harbin 150040, People's Republic of China.
| | | |
Collapse
|
88
|
Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. ANNALS OF BOTANY 2010; 105:1141-57. [PMID: 20299346 PMCID: PMC2887065 DOI: 10.1093/aob/mcq028] [Citation(s) in RCA: 688] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/13/2009] [Accepted: 12/17/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Productive agriculture needs a large amount of expensive nitrogenous fertilizers. Improving nitrogen use efficiency (NUE) of crop plants is thus of key importance. NUE definitions differ depending on whether plants are cultivated to produce biomass or grain yields. However, for most plant species, NUE mainly depends on how plants extract inorganic nitrogen from the soil, assimilate nitrate and ammonium, and recycle organic nitrogen. Efforts have been made to study the genetic basis as well as the biochemical and enzymatic mechanisms involved in nitrogen uptake, assimilation, and remobilization in crops and model plants. The detection of the limiting factors that could be manipulated to increase NUE is the major goal of such research. SCOPE An overall examination of the physiological, metabolic, and genetic aspects of nitrogen uptake, assimilation and remobilization is presented in this review. The enzymes and regulatory processes manipulated to improve NUE components are presented. Results obtained from natural variation and quantitative trait loci studies are also discussed. CONCLUSIONS This review presents the complexity of NUE and supports the idea that the integration of the numerous data coming from transcriptome studies, functional genomics, quantitative genetics, ecophysiology and soil science into explanatory models of whole-plant behaviour will be promising.
Collapse
|
89
|
Miyara I, Shafran H, Davidzon M, Sherman A, Prusky D. pH Regulation of ammonia secretion by Colletotrichum gloeosporioides and its effect on appressorium formation and pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:304-16. [PMID: 20121452 DOI: 10.1094/mpmi-23-3-0304] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Host-tissue alkalinization via ammonia accumulation is key to Colletotrichum spp. colonization. Using macroarrays carrying C. gloeosporioides cDNAs, we monitored gene expression during the alkalinization process. A set of genes involved in synthesis and catabolism of ammonia accumulation were identified. Expression of NAD(+)-specific glutamate dehydrogenase (GDH2, encoding ammonia synthesis) and the ammonia exporter AMET were induced at pH 4.0 to 4.5. Conversely, ammonia uptake and transcript activation of the ammonia and glutamate importers (MEP and GLT, respectively) and glutamine synthase (GS1) were higher at pH 6.0 to 7.0. Accumulated ammonia in the wild-type mycelium decreased during ambient alkalinization, concurrent with increased GS1 expression. Deltapac1 mutants of C. gloeosporioides, which are sensitive to alkaline pH changes, showed upregulation of the acid-expressed GDH2 and downregulation of the alkaline-expressed GS1, resulting in 60% higher ammonia accumulation inside the mycelium. Deltagdh2 strains of C. gloeosporioides, impaired in ammonia production, showed 85% inhibition in appressorium formation followed by reduced colonization on avocado fruit (Persea americana cv. Fuerte) pericarp, while exogenic ammonia addition restored appressoria formation. Thus the modulation of genes involved in ammonia metabolism and catabolism by C. gloeosporioides is ambient pH-dependent. Aside from its contribution to necrotrophic stages, ammonia accumulation by germinating spores regulates appressorium formation and determines the initiation of biotrophic stages of avocado-fruit colonization by Colletotrichum spp.
Collapse
Affiliation(s)
- Itay Miyara
- Department Of Postharvest Sciences Of Fresh Produce, Agricultural Reserach Organization, The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | |
Collapse
|
90
|
Albinsky D, Kusano M, Higuchi M, Hayashi N, Kobayashi M, Fukushima A, Mori M, Ichikawa T, Matsui K, Kuroda H, Horii Y, Tsumoto Y, Sakakibara H, Hirochika H, Matsui M, Saito K. Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism. MOLECULAR PLANT 2010; 3:125-42. [PMID: 20085895 DOI: 10.1093/mp/ssp069] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant metabolomics developed as a powerful tool to examine gene functions and to gain deeper insight into the physiology of the plant cell. In this study, we screened Arabidopsis lines overexpressing rice full-length (FL) cDNAs (rice FOX Arabidopsis lines) using a gas chromatography-time-of-flight mass spectrometry (GC-TOF/MS)-based technique to identify rice genes that caused metabolic changes. This screening system allows fast and reliable identification of candidate lines showing altered metabolite profiles. We performed metabolomic and transcriptomic analysis of a rice FOX Arabidopsis line that harbored the FL cDNA of the rice ortholog of the Lateral Organ Boundaries (LOB) Domain (LBD)/Asymmetric Leaves2-like (ASL) gene of Arabidopsis, At-LBD37/ASL39. The investigated rice FOX Arabidopsis line showed prominent changes in the levels of metabolites related to nitrogen metabolism. The transcriptomic data as well as the results from the metabolite analysis of the Arabidopsis At-LBD37/ASL39-overexpressor plants were consistent with these findings. Furthermore, the metabolomic and transcriptomic analysis of the Os-LBD37/ASL39-overexpressing rice plants indicated that Os-LBD37/ASL39 is associated with processes related to nitrogen metabolism in rice. Thus, the combination of a metabolomics-based screening method and a gain-of-function approach is useful for rapid characterization of novel genes in both Arabidopsis and rice.
Collapse
|
91
|
Cecconi D, Orzetti S, Vandelle E, Rinalducci S, Zolla L, Delledonne M. Protein nitration during defense response in Arabidopsis thaliana. Electrophoresis 2009; 30:2460-8. [PMID: 19598157 DOI: 10.1002/elps.200800826] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide and reactive oxygen species play a key role in the plant hypersensitive disease resistance response, and protein tyrosine nitration is emerging as an important mechanism of their co-operative interaction. Up to now, the proteins targeted by this post-translational modification in plants are still totally unknown. In this study, we analyzed for the first time proteins undergoing nitration during the hypersensitive response by analyzing via 1D- and 2D-western blot the protein extracts from Arabidopsis thaliana plants challenged with an avirulent bacterial pathogen (Pseudomonas syringae pv. Tomato). We show that the plant disease resistance response is correlated with a modulation of nitration of proteins involved in important cellular process, such as photosynthesis, glycolysis and nitrate assimilation. These findings shed new light on the signaling functions of nitric oxide and reactive oxygen species, paving the way on studies on the role of this post-translational modification in plants.
Collapse
Affiliation(s)
- Daniela Cecconi
- Dipartimento di Biotecnologie, University of Verona, Verona, Italy
| | | | | | | | | | | |
Collapse
|
92
|
Valcu CM, Junqueira M, Shevchenko A, Schlink K. Comparative proteomic analysis of responses to pathogen infection and wounding in Fagus sylvatica. J Proteome Res 2009; 8:4077-91. [PMID: 19575529 DOI: 10.1021/pr900456c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Defense responses of Fagus sylvatica seedlings elicited by infection with the root pathogen Phytophthora citricola and root or leaf wounding were compared at local and systemic levels in differential display experiments using two-dimensional gel electrophoresis followed by homology-driven mass spectrometric identification of proteins. A total of 68 protein spots were identified representing 51 protein functions related to protein synthesis and processing, energy, primary and secondary metabolism, as well as signal transduction, stress and defense. Changes in the abundance of root and leaf proteins partly overlapped between plant responses to the different stressors. The response to pathogen infection was rather late, weak and unspecific and accompanied by adjustments of the energy and primary metabolism which suggested either a lack of recognition or a suppression of host's defense reaction by the invading pathogen. The response to wounding involved changes in the basal metabolism as well as activation of defense mechanisms. Both types of changes were largely specific to the wounded organ. Similarities between the defense mechanisms activated by root infection and root wounding were also observed.
Collapse
|
93
|
Dulermo T, Bligny R, Gout E, Cotton P. Amino acid changes during sunflower infection by the necrotrophic fungus B. cinerea. PLANT SIGNALING & BEHAVIOR 2009; 4:859-61. [PMID: 19847103 PMCID: PMC2802803 DOI: 10.4161/psb.4.9.9397] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 06/26/2009] [Indexed: 05/19/2023]
Abstract
Metabolic changes that occur in host tissues during a necrotrophic plant/fungal interaction have been poorly investigated. Whereas carbon metabolism reprogramming and photosynthesis disturbances have been studied, data on plant amino acids stores during infection are scarce. Here we report an analysis of sunflower cotyledon amino acid content during infection with the necrotrophic fungus Botrytis cinerea, by using (13)C-NMR spectroscopy. A rapid disappearance of plant amino acids was observed, most probably due to fungal assimilation. In order to explore amino acid changes due to host reaction, we investigated the amino acid content in healthy and invaded region of infected leaves. During the course of infection, glutamate store was affected at distance in the non invaded region. Glutamate depletion was correlated to an enhanced sunflower glutamate dehydrogenase (GDH) transcription level in the area invaded by pathogen. Our data suggest that glutamate could be transferred to the invaded region to supply nitrogen. Such a strategy could delay cell death, and consequently disturb fungal progression in plant tissues.
Collapse
Affiliation(s)
- Thierry Dulermo
- Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR Microbiologie, Adaptation & Pathogénie, Université de Lyon, Lyon, France.
| | | | | | | |
Collapse
|
94
|
Bolton MD. Primary Metabolism and Plant Defense—Fuel for the Fire. MOLECULAR PLANT-MICROBE INTERACTIONS® 2009; 22:487-97. [PMID: 19348567 DOI: 10.1094/mpmi-22-5-0487] [Citation(s) in RCA: 467] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have the ability to recognize and respond to a multitude of microorganisms. Recognition of pathogens results in a massive reprogramming of the plant cell to activate and deploy defense responses to halt pathogen growth. Such responses are associated with increased demands for energy, reducing equivalents, and carbon skeletons that are provided by primary metabolic pathways. Although pathogen recognition and downstream resistance responses have been the focus of major study, an intriguing and comparatively understudied phenomenon is how plants are able to recruit energy for the defense response. To that end, this review will summarize current research on energy-producing primary metabolism pathways and their role in fueling the resistance response.
Collapse
|
95
|
Bernard SM, Habash DZ. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. THE NEW PHYTOLOGIST 2009; 182:608-620. [PMID: 19422547 DOI: 10.1111/j.1469-8137.2009.02823.x] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.
Collapse
Affiliation(s)
- Stéphanie M Bernard
- Earth Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Dimah Z Habash
- Plant Science Department, Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
96
|
Clement M, Lambert A, Herouart D, Boncompagni E. Identification of new up-regulated genes under drought stress in soybean nodules. Gene 2008; 426:15-22. [PMID: 18817859 DOI: 10.1016/j.gene.2008.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 07/28/2008] [Accepted: 08/13/2008] [Indexed: 10/21/2022]
Abstract
Legumes/rhizobium biological N(2) fixation (BNF) is dramatically affected under abiotic stress such as drought, salt, cold and heavy metal stresses. Nodule response to drought stress at the molecular level was analysed using soybean (Glycine max) and Bradyrhizobium japonicum as a model, since this symbiotic partnership is extremely sensitive to this stress. To gain insight into molecular mechanisms involved in drought-induced BNF inhibition, we have constructed a SSH (Suppression Subtractive Hybridisation) cDNA library from nodular tissue of plants irrigated at field capacity or plants water deprived for 5 days. Sequence analysis of the first set of 128 non redundant ESTs using protein databases and the Blastx program indicated that 70% of ESTs could be classified into putative known functions. Using reverse northern hybridization, 56 ESTs were validated as up-regulated genes in response to drought. Interestingly, only a few of them had been previously described as involved in plant response to drought, therefore most of the ESTs could be considered as new markers of drought stress. Here we discuss the potential role of some of these up-regulated genes in response to drought. Our analysis focused on two genes, encoding respectively a ferritin and a metallothionein, which are known to be involved in homeostasis and detoxification of metals and in response to oxidative stress. Their spatiotemporal expression patterns showed a high accumulation of transcripts restricted to infected cells of nodules in response to drought.
Collapse
Affiliation(s)
- Mathilde Clement
- UMR "UMR Interactions Biotiques et Santé Végétale" INRA 1301-CNRS 6243-Université de Nice-Sophia Antipolis 400, routes des Chappes F-06903 SOPHIA-ANTIPOLIS cedex, France
| | | | | | | |
Collapse
|
97
|
Ahsan N, Lee DG, Lee KW, Alam I, Lee SH, Bahk JD, Lee BH. Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:1062-70. [PMID: 18755596 DOI: 10.1016/j.plaphy.2008.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 07/10/2008] [Indexed: 05/19/2023]
Abstract
Glyphosate is one of the most widely used herbicides in cereal-growing regions worldwide. In the present work, the protein expression profile of rice leaves exposed to glyphosate was analyzed in order to investigate the alternative effects of glyphosate on plants. Two-week-old rice leaves were subjected to glyphosate or a reactive oxygen species (ROS) inducing herbicide paraquat, and total soluble proteins were extracted and analyzed by two-dimensional gel electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) analysis. A total of 25 differentially expressed proteins were identified from the glyphosate treated sample, wherein 18 proteins were up-regulated and 7 proteins were down-regulated. These proteins had shown a parallel expression pattern in response to paraquat. Results from the 2-DE analysis, combined with immunoblotting, clearly revealed that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit was significantly decreased by the treatment of both herbicides. An increased accumulation of antioxidant enzymes including ascorbate peroxidase, glutathione S-transferase, thioredoxin h-type, nucleoside diphosphate kinase 1, peroxiredoxin and a superoxide dismutase [Cu-Zn] chloroplast precursor in the glyphosate-treated sample suggests that a glyphosate treatment possibly generates oxidative stress in plants. Moreover, a gene expression analysis of five antioxidant enzymes by Northern blot confirmed their mRNA levels in the rice leaves. A histo-cytochemical investigation with DAB (3,3-diaminobenzidine) to localize H(2)O(2) and increases of the thiobarbituric acid reactive substances (TBARS) concentration revealed that the glyphosate application generates ROS, which resulted in the peroxidation and destruction of lipids in the rice leaves.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Applied Life Sciences (BK21 Program), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
98
|
Kocal N, Sonnewald U, Sonnewald S. Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria. PLANT PHYSIOLOGY 2008; 148:1523-36. [PMID: 18784281 PMCID: PMC2577280 DOI: 10.1104/pp.108.127977] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 09/05/2008] [Indexed: 05/18/2023]
Abstract
Cell wall-bound invertase (cw-Inv) plays an important role in carbohydrate partitioning and regulation of sink-source interaction. There is increasing evidence that pathogens interfere with sink-source interaction, and induction of cw-Inv activity has frequently been shown in response to pathogen infection. To investigate the role of cw-Inv, transgenic tomato (Solanum lycopersicum) plants silenced for the major leaf cw-Inv isoforms were generated and analyzed during normal growth and during the compatible interaction with Xanthomonas campestris pv vesicatoria. Under normal growth conditions, activities of sucrolytic enzymes as well as photosynthesis and respiration were unaltered in the transgenic plants compared with wild-type plants. However, starch levels of source leaves were strongly reduced, which was most likely caused by an enhanced sucrose exudation rate. Following X. campestris pv vesicatoria infection, cw-Inv-silenced plants showed an increased sucrose to hexose ratio in the apoplast of leaves. Symptom development, inhibition of photosynthesis, and expression of photosynthetic genes were clearly delayed in transgenic plants compared with wild-type plants. In addition, induction of senescence-associated and pathogenesis-related genes observed in infected wild-type plants was abolished in cw-Inv-silenced tomato lines. These changes were not associated with decreased bacterial growth. In conclusion, cw-Inv restricts carbon export from source leaves and regulates the sucrose to hexose ratio in the apoplast. Furthermore, an increased apoplastic hexose to sucrose ratio can be linked to inhibition of photosynthesis and induction of pathogenesis-related gene expression but does not significantly influence bacterial growth. Indirectly, bacteria may benefit from low invertase activity, since the longevity of host cells is raised and basal defense might be dampened.
Collapse
Affiliation(s)
- Nurcan Kocal
- Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany
| | | | | |
Collapse
|
99
|
Characterization of unique and differentially expressed proteins in anthracnose-tolerant Florida hybrid bunch grapes. Appl Biochem Biotechnol 2008; 157:395-406. [PMID: 18931950 DOI: 10.1007/s12010-008-8380-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
Abstract
Anthracnose is a major disease in Florida hybrid bunch grapes, caused by a fungus viz. Elsinoe ampelina. Florida hybrid bunch grapes are grown in southeastern USA for their superior wine characteristics. However, the effect of anthracnose on grape productivity and wine quality is a major concern to grape growers. Our research is aimed at determining biochemical basis of anthracnose tolerance in Florida hybrid bunch grape. Leaf samples were collected from the plants infected with E. ampelina at different periods and analyzed for differential protein expression using high throughput two-dimensional gel electrophoresis. Among the 32 differentially expressed leaf proteins, two were uniquely expressed in tolerant genotypes in response to E. ampelina infection. These proteins were identified as mitochondrial adenosine triphosphate synthase and glutamine synthetase, which are known to play a major role in carbohydrate metabolism and defense. Several proteins including ribulose 1-5 bisphosphate-carboxylase involved in photosynthesis were found to be suppressed in susceptible genotypes compared to tolerant genotypes following E. ampelina infection. The results indicate that the anthracnose-tolerant genotypes have the ability to up-regulate and induce new proteins upon infection to defend the invasion of the pathogen as well as maintain the normal regulatory processes.
Collapse
|
100
|
Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M. Leaf nitrogen remobilisation for plant development and grain filling. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10 Suppl 1:23-36. [PMID: 18721309 DOI: 10.1111/j.1438-8677.2008.00097.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A major challenge of modern agriculture is to reduce the excessive input of fertilisers and, at the same time, to improve grain quality without affecting yield. One way to achieve this goal is to improve plant nitrogen economy through manipulating nitrogen recycling, and especially nitrogen remobilisation, from senescing plant organs. In this review, the contribution of nitrogen remobilisation efficiency (NRE) to global nitrogen use efficiency (NUE), and tools dedicated to the determination of NRE are described. An overall examination of the physiological, metabolic and genetic aspects of nitrogen remobilisation is presented.
Collapse
Affiliation(s)
- C Masclaux-Daubresse
- Unité de Nutrition Azotée des Plantes, Institut National de la Recherche Agronomique, Route de Saint Cyr, Versailles, France.
| | | | | |
Collapse
|