51
|
Baijal K, Abramchuk I, Herrera CM, Mah TF, Trent MS, Lavallée-Adam M, Downey M. Polyphosphate kinase regulates LPS structure and polymyxin resistance during starvation in E. coli. PLoS Biol 2024; 22:e3002558. [PMID: 38478588 PMCID: PMC10962826 DOI: 10.1371/journal.pbio.3002558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/25/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Polyphosphates (polyP) are chains of inorganic phosphates that can reach over 1,000 residues in length. In Escherichia coli, polyP is produced by the polyP kinase (PPK) and is thought to play a protective role during the response to cellular stress. However, the molecular pathways impacted by PPK activity and polyP accumulation remain poorly characterized. In this work, we used label-free mass spectrometry to study the response of bacteria that cannot produce polyP (Δppk) during starvation to identify novel pathways regulated by PPK. In response to starvation, we found 92 proteins significantly differentially expressed between wild-type and Δppk mutant cells. Wild-type cells were enriched for proteins related to amino acid biosynthesis and transport, while Δppk mutants were enriched for proteins related to translation and ribosome biogenesis, suggesting that without PPK, cells remain inappropriately primed for growth even in the absence of the required building blocks. From our data set, we were particularly interested in Arn and EptA proteins, which were down-regulated in Δppk mutants compared to wild-type controls, because they play a role in lipid A modifications linked to polymyxin resistance. Using western blotting, we confirm differential expression of these and related proteins in K-12 strains and a uropathogenic isolate, and provide evidence that this mis-regulation in Δppk cells stems from a failure to induce the BasRS two-component system during starvation. We also show that Δppk mutants unable to up-regulate Arn and EptA expression lack the respective L-Ara4N and pEtN modifications on lipid A. In line with this observation, loss of ppk restores polymyxin sensitivity in resistant strains carrying a constitutively active basR allele. Overall, we show a new role for PPK in lipid A modification during starvation and provide a rationale for targeting PPK to sensitize bacteria towards polymyxin treatment. We further anticipate that our proteomics work will provide an important resource for researchers interested in the diverse pathways impacted by PPK.
Collapse
Affiliation(s)
- Kanchi Baijal
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Iryna Abramchuk
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carmen M. Herrera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
52
|
Menezes A, Julião G, Mariath F, Ferreira AL, Oliveira-Nunes MC, Gallucci L, Evaristo JAM, Nogueira FCS, Pereira DDA, Carneiro K. Epigenetic Mechanisms Histone Deacetylase-Dependent Regulate the Glioblastoma Angiogenic Matrisome and Disrupt Endothelial Cell Behavior In Vitro. Mol Cell Proteomics 2024; 23:100722. [PMID: 38272115 PMCID: PMC10883839 DOI: 10.1016/j.mcpro.2024.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/09/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor and different efforts have been employed in the search for new drugs and therapeutic protocols for GBM. Epitranscriptomics has shed light on new druggable Epigenetic therapies specifically designed to modulate GBM biology and behavior such as Histone Deacetylase inhibitors (iHDAC). Although the effects of iHDAC on GBM have been largely explored, there is a lack of information on the underlaying mechanisms HDAC-dependent that modulate the repertoire of GBM secreted molecules focusing on the set of Extracellular Matrix (ECM) associated proteins, the Matrisome, that may impact the surrounding tumor microenvironment. To acquire a better comprehension of the impacts of HDAC activity on the GBM Matrisome, we studied the alterations on the Matrisome-associated ECM regulators, Core Matrisome ECM glycoproteins, ECM-affiliated proteins and Proteoglycans upon HDAC inhibition in vitro as well as their relationship with glioma pathophysiological/clinical features and angiogenesis. For this, U87MG GBM cells were treated for with iHDAC or vehicle (control) and the whole secretome was processed by Mass Spectrometry NANOLC-MS/MS. In silico analyses revealed that proteins associated to the Angiogenic Matrisome (AngioMatrix), including Decorin, ADAM10, ADAM12 and ADAM15 were differentially regulated in iHDAC versus control secretome. Interestingly, genes coding for the Matrisome proteins differentially regulated were found mutated in patients and were correlated to glioma pathophysiological/clinical features. In vitro functional assays, using HBMEC endothelial cells exposed to the secretome of control or iHDAC treated GBM cells, coupled to 2D and 3D GBM cell culture system, showed impaired migratory capacity of endothelial cells and disrupted tubulogenesis in a Fibronectin and VEGF independent fashion. Collectively, our study provides understanding of epigenetic mechanisms HDAC-dependent to key Matrisomal proteins that may contribute to identify new druggable Epigenetic therapies or gliomagenesis biomarkers with relevant implications to improve therapeutic protocols for this malignancy.
Collapse
Affiliation(s)
- Aline Menezes
- Instituto de Ciências Biomédicas e Programa de Pós-graduação em Medicina (Anatomia Patológica), UFRJ/RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glaucia Julião
- Instituto de Ciências Biomédicas e Programa de Pós-graduação em Medicina (Anatomia Patológica), UFRJ/RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Mariath
- Laboratório de Estudos Avançados em Jornalismo, UNICAMP/SP, São Paulo, São Paulo, Brazil
| | - Ana Luiza Ferreira
- Instituto de Ciências Biomédicas e Programa de Pós-graduação em Medicina (Anatomia Patológica), UFRJ/RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lara Gallucci
- Instituto de Ciências Biomédicas e Programa de Pós-graduação em Medicina (Anatomia Patológica), UFRJ/RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fábio César Sousa Nogueira
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise de Abreu Pereira
- Programa de Oncobiologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer- INCA/RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia Carneiro
- Instituto de Ciências Biomédicas e Programa de Pós-graduação em Medicina (Anatomia Patológica), UFRJ/RJ, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
53
|
Gabre JL, Merseburger P, Claeys A, Siaw J, Bekaert SL, Speleman F, Hallberg B, Palmer RH, Van den Eynden J. Preclinical exploration of the DNA damage response pathway using the interactive neuroblastoma cell line explorer CLEAN. NAR Cancer 2024; 6:zcad062. [PMID: 38213997 PMCID: PMC10782898 DOI: 10.1093/narcan/zcad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/10/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Neuroblastoma (NB) is the most common cancer in infancy with an urgent need for more efficient targeted therapies. The development of novel (combinatorial) treatment strategies relies on extensive explorations of signaling perturbations in neuroblastoma cell lines, using RNA-Seq or other high throughput technologies (e.g. phosphoproteomics). This typically requires dedicated bioinformatics support, which is not always available. Additionally, while data from published studies are highly valuable and raw data (e.g. fastq files) are nowadays released in public repositories, data processing is time-consuming and again difficult without bioinformatics support. To facilitate NB research, more user-friendly and immediately accessible platforms are needed to explore newly generated as well as existing high throughput data. To make this possible, we developed an interactive data centralization and visualization web application, called CLEAN (the Cell Line Explorer web Application of Neuroblastoma data; https://ccgg.ugent.be/shiny/clean/). By focusing on the regulation of the DNA damage response, a therapeutic target of major interest in neuroblastoma, we demonstrate how CLEAN can be used to gain novel mechanistic insights and identify putative drug targets in neuroblastoma.
Collapse
Affiliation(s)
- Jonatan L Gabre
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Merseburger
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arne Claeys
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Joachim Siaw
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sarah-Lee Bekaert
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Frank Speleman
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
54
|
Rovnaghi CR, Singhal K, Leib RD, Xenochristou M, Aghaeepour N, Chien AS, Ruiz MO, Dinakarpandian D, Anand KJS. Proteins in scalp hair of preschool children. PSYCH 2024; 6:143-162. [PMID: 39534431 PMCID: PMC11556458 DOI: 10.3390/psych6010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Background (1)Early childhood experiences have long-lasting effects on subsequent mental and physical health, education, and employment. Measurement of these effects relies on insensitive behavioral signs, subjective assessments by adult observers, neuroimaging or neurophysiological studies, or retrospective epidemiologic outcomes. Despite intensive search, the underlying mechanisms for these long-term changes in development and health status remain unknown. Methods (2)We analyzed scalp hair from healthy children and their mothers using an unbiased proteomics platform using tandem mass spectrometry, ultra-performance liquid chromatography, and collision induced dissociation to reveal commonly observed hair proteins with spectral count of 3 or higher. Results (3)We observed 1368 non-structural hair proteins in children, 1438 non-structural hair proteins in mothers, with 1288 proteins showing individual variability. Mothers showed higher numbers of peptide spectral matches and hair proteins compared to children, with important age-related differences between mothers and children. Age-related differences were also observed in children, with differential protein expression patterns between younger (2 years and below) and older children (3-5 years). We observed greater similarity in hair protein patterns between mothers and their biological children as compared to mothers and unrelated children. The top 5% proteins driving population variability represent biological pathways associated with brain development, immune signaling, and stress response regulation. Conclusion (4)Non-structural proteins observed in scalp hair include promising biomarkers to investigate the long-term developmental changes and health status associated with early childhood experiences.
Collapse
Affiliation(s)
- Cynthia R. Rovnaghi
- Child Wellness Lab, Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA
- Stanford University Mass Spectrometry (SUMS) Lab, Stanford University, Stanford, CA
| | - Kratika Singhal
- Stanford University Mass Spectrometry (SUMS) Lab, Stanford University, Stanford, CA
| | - Ryan D. Leib
- Stanford University Mass Spectrometry (SUMS) Lab, Stanford University, Stanford, CA
| | - Maria Xenochristou
- Departments of Anesthesiology (Research), Biomedical Data Science & Pediatrics (Neonatology), Stanford University School of Medicine, Stanford, CA
| | - Nima Aghaeepour
- Departments of Anesthesiology (Research), Biomedical Data Science & Pediatrics (Neonatology), Stanford University School of Medicine, Stanford, CA
| | - Allis S. Chien
- Stanford University Mass Spectrometry (SUMS) Lab, Stanford University, Stanford, CA
| | - Monica O. Ruiz
- Departments of Pediatrics (Critical Care Medicine) and Anesthesiology (by courtesy), Stanford University School of Medicine, Stanford, CA
| | - Deendayal Dinakarpandian
- Department of Medicine (Biomedical Informatics Research), Stanford University School of Medicine, Stanford, CA
| | - Kanwaljeet J. S. Anand
- Child Wellness Lab, Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA
- Stanford University Mass Spectrometry (SUMS) Lab, Stanford University, Stanford, CA
- Departments of Pediatrics (Critical Care Medicine) and Anesthesiology (by courtesy), Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
55
|
Ribeiro DM, Coelho D, Costa M, Carvalho DFP, Leclercq CC, Renaut J, Freire JPB, Almeida AM, Mestre Prates JA. Integrated transcriptomics and proteomics analysis reveals muscle metabolism effects of dietary Ulva lactuca and ulvan lyase supplementation in weaned piglets. Sci Rep 2024; 14:4589. [PMID: 38409238 DOI: 10.1038/s41598-024-55462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Seaweeds, including the green Ulva lactuca, can potentially reduce competition between feed, food, and fuel. They can also contribute to the improved development of weaned piglets. However, their indigestible polysaccharides of the cell wall pose a challenge. This can be addressed through carbohydrase supplementation, such as the recombinant ulvan lyase. The objective of our study was to assess the muscle metabolism of weaned piglets fed with 7% U. lactuca and 0.01% ulvan lyase supplementation, using an integrated transcriptomics (RNA-seq) and proteomics (LC-MS) approach. Feeding piglets with seaweed and enzyme supplementation resulted in reduced macronutrient availability, leading to protein degradation through the proteasome (PSMD2), with resulting amino acids being utilized as an energy source (GOT2, IDH3B). Moreover, mineral element accumulation may have contributed to increased oxidative stress, evident from elevated levels of antioxidant proteins like catalase, as a response to maintaining tissue homeostasis. The upregulation of the gene AQP7, associated with the osmotic stress response, further supports these findings. Consequently, an increase in chaperone activity, including HSP90, was required to repair damaged proteins. Our results suggest that enzymatic supplementation may exacerbate the effects observed from feeding U. lactuca alone, potentially due to side effects of cell wall degradation during digestion.
Collapse
Affiliation(s)
- David Miguel Ribeiro
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Diogo Coelho
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mónica Costa
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Daniela Filipa Pires Carvalho
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Céline C Leclercq
- Biotechnology Environmental Analysis Platform (BEAP), Environmental Research and Innovation Department (ERIN), LIST- Luxembourg Institute of Science and Technology, 5, Rue Bommel, 4940, Hautcharage, Luxembourg
| | - Jenny Renaut
- Biotechnology Environmental Analysis Platform (BEAP), Environmental Research and Innovation Department (ERIN), LIST- Luxembourg Institute of Science and Technology, 5, Rue Bommel, 4940, Hautcharage, Luxembourg
| | - João Pedro Bengala Freire
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - André Martinho Almeida
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - José António Mestre Prates
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal.
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|
56
|
Ribeiro DM, Leclercqc CC, Charton SAB, Costa MM, Carvalho DFP, Sergeant K, Cocco E, Renaut J, Freire JPB, Prates JAM, de Almeida AM. The impact of dietary Laminaria digitata and alginate lyase supplementation on the weaned piglet liver: A comprehensive proteomics and metabolomics approach. J Proteomics 2024; 293:105063. [PMID: 38151157 DOI: 10.1016/j.jprot.2023.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
The brown seaweed Laminaria digitata, a novel feedstuff for weaned piglets, has potentially beneficial prebiotic properties. However, its recalcitrant cell wall challenges digestion in monogastrics. Alginate lyase is a promising supplement to mitigate this issue. This study's aim was to investigate the impact of incorporating 10% dietary Laminaria digitata, supplemented with alginate lyase, on the hepatic proteome and metabolome of weaned piglets. These diets introduced minor variations to the metabolome and caused significant shifts in the proteome. Dietary seaweed provided a rich source of n-3 PUFAs that could signal hepatic fatty acid oxidation (FABP, ACADSB and ALDH1B1). This may have affected the oxidative stability of the tissue, requiring an elevated abundance of GST for regulation. The presence of reactive oxygen species likely inflicted protein damage, triggering increased proteolytic activity (LAPTM4B and PSMD4). Alginate lyase supplementation augmented the number of differentially abundant proteins, which included GBE1 and LDHC, contributing to maintain circulating glucose levels by mobilizing glycogen stores and branched-chain amino acids. The enzymatic supplementation with alginate lyase amplified the effects of the seaweed-only diet. An additional filter was employed to test the effect of missing values on the proteomics analysis, which is discussed from a technical perspective. SIGNIFICANCE: Brown seaweeds such as Laminaria digitata have prebiotic and immune-modulatory components, such as laminarin, that can improve weaned piglet health. However, they have recalcitrant cell wall polysaccharides, such as alginate, that can elicit antinutritional effects on the monogastric digestive system. The aim of this study was to evaluate the effect of a high level of dietary L. digitata and alginate lyase supplementation on the hepatic metabolism of weaned piglets, using high throughput Omics approaches.
Collapse
Affiliation(s)
- David M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Celine C Leclercqc
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Sophie A B Charton
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Mónica M Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Portugal
| | - Daniela F P Carvalho
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Kjell Sergeant
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Emmanuelle Cocco
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Jenny Renaut
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - João P B Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José A M Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Portugal
| | - André M de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
57
|
PV A, Mehatre SH, Verfaillie CM, Alam MT, Khurana S. Glycolytic state of aortic endothelium favors hematopoietic transition during the emergence of definitive hematopoiesis. SCIENCE ADVANCES 2024; 10:eadh8478. [PMID: 38363844 PMCID: PMC10871539 DOI: 10.1126/sciadv.adh8478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
The first definitive hematopoietic progenitors emerge through the process of endothelial-to-hematopoietic transition in vertebrate embryos. With molecular regulators for this process worked out, the role of metabolic pathways used remains unclear. Here, we performed nano-LC-MS/MS-based proteomic analysis and predicted a metabolic switch from a glycolytic to oxidative state upon hematopoietic transition. Mitochondrial activity, glucose uptake, and glycolytic flux analysis supported this hypothesis. Systemic inhibition of lactate dehydrogenase A (LDHA) increased oxygen consumption rate in the hemato-endothelial system and inhibited the emergence of intra-aortic hematopoietic clusters. These findings were corroborated using Tie2-Cre-mediated deletion of Ldha that showed similar effects on hematopoietic emergence. Conversely, stabilization of HIF-1α via inhibition of oxygen-sensing pathway led to decreased oxidative flux and promoted hematopoietic emergence in mid-gestation embryos. Thus, cell-intrinsic regulation of metabolic state overrides oxygenated microenvironment in the aorta to promote a glycolytic metabolic state that is crucial for hematopoietic emergence in mammalian embryos.
Collapse
Affiliation(s)
- Anu PV
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Shubham Haribhau Mehatre
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | | | - Mohammad Tauqeer Alam
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, UAE
| | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
58
|
Phung TK, Berndsen K, Shastry R, Phan TLCHB, Muqit MMK, Alessi DR, Nirujogi RS. CURTAIN-A unique web-based tool for exploration and sharing of MS-based proteomics data. Proc Natl Acad Sci U S A 2024; 121:e2312676121. [PMID: 38324566 PMCID: PMC10873628 DOI: 10.1073/pnas.2312676121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/14/2023] [Indexed: 02/09/2024] Open
Abstract
To facilitate analysis and sharing of mass spectrometry (MS)-based proteomics data, we created online tools called CURTAIN (https://curtain.proteo.info) and CURTAIN-PTM (https://curtainptm.proteo.info) with an accompanying series of video tutorials (https://www.youtube.com/@CURTAIN-me6hl). These are designed to enable non-MS experts to interactively peruse volcano plots and deconvolute primary experimental data so that replicates can be visualized in bar charts or violin plots and exported in publication-ready format. They also allow assessment of overall experimental quality by correlation matrix and profile plot analysis. After making a selection of protein "hits", the user can analyze known domain structure, AlphaFold predicted structure, reported interactors, relative expression as well as disease links. CURTAIN-PTM permits analysis of all identified PTM sites on protein(s) of interest with selected databases. CURTAIN-PTM also links with the Kinase Library to predict upstream kinases that may phosphorylate sites of interest. We provide examples of the utility of CURTAIN and CURTAIN-PTM in analyzing how targeted degradation of the PPM1H Rab phosphatase that counteracts the Parkinson's LRRK2 kinase impacts cellular protein levels and phosphorylation sites. We also reanalyzed a ubiquitylation dataset, characterizing the PINK1-Parkin pathway activation in primary neurons, revealing data of interest not highlighted previously. CURTAIN and CURTAIN-PTM are free to use and open source, enabling researchers to share and maximize the impact of their proteomics data. We advocate that MS data published in volcano plot format be reported containing a shareable CURTAIN weblink, thereby allowing readers to better analyze and exploit the data.
Collapse
Affiliation(s)
- Toan K. Phung
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Kerryn Berndsen
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Rosamund Shastry
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Tran L. C. H. B. Phan
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Miratul M. K. Muqit
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Raja S. Nirujogi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
59
|
Kumar B, Lorusso E, Fosso B, Pesole G. A comprehensive overview of microbiome data in the light of machine learning applications: categorization, accessibility, and future directions. Front Microbiol 2024; 15:1343572. [PMID: 38419630 PMCID: PMC10900530 DOI: 10.3389/fmicb.2024.1343572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Metagenomics, Metabolomics, and Metaproteomics have significantly advanced our knowledge of microbial communities by providing culture-independent insights into their composition and functional potential. However, a critical challenge in this field is the lack of standard and comprehensive metadata associated with raw data, hindering the ability to perform robust data stratifications and consider confounding factors. In this comprehensive review, we categorize publicly available microbiome data into five types: shotgun sequencing, amplicon sequencing, metatranscriptomic, metabolomic, and metaproteomic data. We explore the importance of metadata for data reuse and address the challenges in collecting standardized metadata. We also, assess the limitations in metadata collection of existing public repositories collecting metagenomic data. This review emphasizes the vital role of metadata in interpreting and comparing datasets and highlights the need for standardized metadata protocols to fully leverage metagenomic data's potential. Furthermore, we explore future directions of implementation of Machine Learning (ML) in metadata retrieval, offering promising avenues for a deeper understanding of microbial communities and their ecological roles. Leveraging these tools will enhance our insights into microbial functional capabilities and ecological dynamics in diverse ecosystems. Finally, we emphasize the crucial metadata role in ML models development.
Collapse
Affiliation(s)
- Bablu Kumar
- Università degli Studi di Milano, Milan, Italy
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
| | - Erika Lorusso
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
- National Research Council, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Bruno Fosso
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
- National Research Council, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| |
Collapse
|
60
|
Yang Z, Guan F, Bronk L, Zhao L. Multi-omics approaches for biomarker discovery in predicting the response of esophageal cancer to neoadjuvant therapy: A multidimensional perspective. Pharmacol Ther 2024; 254:108591. [PMID: 38286161 DOI: 10.1016/j.pharmthera.2024.108591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
Neoadjuvant chemoradiotherapy (NCRT) followed by surgery has been established as the standard treatment strategy for operable locally advanced esophageal cancer (EC). However, achieving pathologic complete response (pCR) or near pCR to NCRT is significantly associated with a considerable improvement in survival outcomes, while pCR patients may help organ preservation for patients by active surveillance to avoid planned surgery. Thus, there is an urgent need for improved biomarkers to predict EC chemoradiation response in research and clinical settings. Advances in multiple high-throughput technologies such as next-generation sequencing have facilitated the discovery of novel predictive biomarkers, specifically based on multi-omics data, including genomic/transcriptomic sequencings and proteomic/metabolomic mass spectra. The application of multi-omics data has shown the benefits in improving the understanding of underlying mechanisms of NCRT sensitivity/resistance in EC. Particularly, the prominent development of artificial intelligence (AI) has introduced a new direction in cancer research. The integration of multi-omics data has significantly advanced our knowledge of the disease and enabled the identification of valuable biomarkers for predicting treatment response from diverse dimension levels, especially with rapid advances in biotechnological and AI methodologies. Herein, we summarize the current status of research on the use of multi-omics technologies in predicting NCRT response for EC patients. Current limitations, challenges, and future perspectives of these multi-omics platforms will be addressed to assist in experimental designs and clinical use for further integrated analysis.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 15 West Changle Road, Xi'an, China
| | - Fada Guan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Lawrence Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 15 West Changle Road, Xi'an, China.
| |
Collapse
|
61
|
Mashini A, Oakley CA, Peng L, Grossman AR, Weis VM, Davy SK. Proteomes of native and non-native symbionts reveal responses underpinning host-symbiont specificity in the cnidarian-dinoflagellate symbiosis. THE ISME JOURNAL 2024; 18:wrae122. [PMID: 38988135 PMCID: PMC11473927 DOI: 10.1093/ismejo/wrae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/02/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
Cellular mechanisms responsible for the regulation of nutrient exchange, immune responses, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved, particularly with respect to the dinoflagellate symbiont. Here, we characterized proteomic changes in the native symbiont Breviolum minutum during colonization of its host sea anemone Exaiptasia diaphana ("Aiptasia"). We also compared the proteome of this native symbiont in the established symbiotic state with that of a non-native symbiont, Durusdinium trenchii. The onset of symbiosis between Aiptasia and Breviolum minutum increased the accumulation of symbiont proteins associated with the acquisition of inorganic carbon and photosynthesis, nitrogen metabolism, micro- and macronutrient starvation, suppression of host immune responses, tolerance to low pH, and management of oxidative stress. Such responses are consistent with a functional, persistent symbiosis. In contrast, D. trenchii predominantly showed elevated levels of immunosuppressive proteins, consistent with the view that this symbiont is an opportunist that forms a less beneficial, less well-integrated symbiosis with this model anemone. By adding symbiont analysis to the already known responses of the host proteome, our results provide a more holistic view of cellular processes that determine host-symbiont specificity and how differences in symbiont partners (i.e. native versus non-native symbionts) may impact the fitness of the cnidarian-dinoflagellate symbiosis.
Collapse
Affiliation(s)
- Amir Mashini
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Arthur R Grossman
- Biosphere Sciences and Engineering, The Carnegie Institution for Science, Stanford, CA 94305, United States
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, United States
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
62
|
Glærum IL, Dunville K, Moan K, Krause M, Montaldo NP, Kirikae H, Nigro MJ, Sætrom P, van Loon B, Quattrocolo G. Postnatal persistence of hippocampal Cajal-Retzius cells has a crucial role in the establishment of the hippocampal circuit. Development 2024; 151:dev202236. [PMID: 38095282 PMCID: PMC10820737 DOI: 10.1242/dev.202236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Cajal-Retzius (CR) cells are a transient neuron type that populate the postnatal hippocampus. To understand how the persistence of CR cells influences the maturation of hippocampal circuits, we combined a specific transgenic mouse line with viral vector injection to selectively ablate CR cells from the postnatal hippocampus. We observed layer-specific changes in the dendritic complexity and spine density of CA1 pyramidal cells. In addition, transcriptomic analysis highlighted significant changes in the expression of synapse-related genes across development. Finally, we were able to identify significant changes in the expression levels of latrophilin 2, a postsynaptic guidance molecule known for its role in the entorhinal-hippocampal connectivity. These findings were supported by changes in the synaptic proteomic content in CA1 stratum lacunosum-moleculare. Our results reveal a crucial role for CR cells in the establishment of the hippocampal network.
Collapse
Affiliation(s)
- Ingvild Lynneberg Glærum
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
- Mohn Research Center for the Brain, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Keagan Dunville
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Kristian Moan
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Maike Krause
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Nicola Pietro Montaldo
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Hinako Kirikae
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Maximiliano Jose Nigro
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Barbara van Loon
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Giulia Quattrocolo
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
- Mohn Research Center for the Brain, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| |
Collapse
|
63
|
Carvalho LB, Teigas-Campos PAD, Jorge S, Protti M, Mercolini L, Dhir R, Wiśniewski JR, Lodeiro C, Santos HM, Capelo JL. Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets. Talanta 2024; 266:124953. [PMID: 37490822 DOI: 10.1016/j.talanta.2023.124953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Normalization is a crucial step in proteomics data analysis as it enables data adjustment and enhances comparability between datasets by minimizing multiple sources of variability, such as sampling, sample handling, storage, treatment, and mass spectrometry measurements. In this study, we investigated different normalization methods, including Z-score normalization, median divide normalization, and quantile normalization, to evaluate their performance using a case study based on renal cell carcinoma datasets. Our results demonstrate that when comparing datasets by pairs, both the Z-score and quantile normalization methods consistently provide better results in terms of the number of proteins identified and quantified as well as in identifying statistically significant up or down-regulated proteins. However, when three or more datasets are compared at the same time the differences are found to be negligible.
Collapse
Affiliation(s)
- Luis B Carvalho
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - Pedro A D Teigas-Campos
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - Susana Jorge
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - Hugo M Santos
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal; Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - José L Capelo
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal.
| |
Collapse
|
64
|
Guo M, He M, Zhang Y, Liu W, Qi M, Liu Z, Yi G, Deng S, Li Y, Sun X, Zhao L, Chen T, Liu Y. Nucleo-cytoplasmic shuttling of 14-3-3 epsilon carrying hnRNP C promotes autophagy. Cancer Biol Ther 2023; 24:2246203. [PMID: 37599448 PMCID: PMC10443976 DOI: 10.1080/15384047.2023.2246203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
Translocation of 14-3-3 protein epsilon (14-3-3ε) was found to be involved in Triptolide (Tp)-induced inhibition of colorectal cancer (CRC) cell proliferation. However, the form of cell death induced by 14-3-3ε translocation and mechanisms underlying this effect remain unclear. This study employed label-free LC-MS/MS to identify 14-3-3ε-associated proteins in CRC cells treated with or without Tp. Our results confirmed that heterogeneous nuclear ribonucleoproteins C1/C2 (hnRNP C) were exported out of the nucleus by 14-3-3ε and degraded by ubiquitination. The nucleo-cytoplasmic shuttling of 14-3-3ε carrying hnRNP C mediated Tp-induced proliferation inhibition, cell cycle arrest and autophagic processes. These findings have broad implications for our understanding of 14-3-3ε function, provide an explanation for the mechanism of nucleo-cytoplasmic shuttling of hnRNP C and provide new insights into the complex regulation of autophagy.
Collapse
Affiliation(s)
- Manlan Guo
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Minyi He
- Center for Clinical Medical Education, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, Guizhou Cancer Hospital, Guiyang, Guizhou, China
| | - Weiwen Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Min Qi
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Zhifeng Liu
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, China
| | - Guozhong Yi
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Shengze Deng
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Yaomin Li
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Xuegang Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, China
| | - Tengxiang Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| |
Collapse
|
65
|
Krause GJ, Kirchner P, Stiller B, Morozova K, Diaz A, Chen KH, Krogan NJ, Agullo-Pascual E, Clement CC, Lindenau K, Swaney DL, Dilipkumar S, Bravo-Cordero JJ, Santambrogio L, Cuervo AM. Molecular determinants of the crosstalk between endosomal microautophagy and chaperone-mediated autophagy. Cell Rep 2023; 42:113529. [PMID: 38060380 PMCID: PMC10807933 DOI: 10.1016/j.celrep.2023.113529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/12/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI) are pathways for selective degradation of cytosolic proteins in lysosomes and late endosomes, respectively. These autophagic processes share as a first step the recognition of the same five-amino-acid motif in substrate proteins by the Hsc70 chaperone, raising the possibility of coordinated activity of both pathways. In this work, we show the existence of a compensatory relationship between CMA and eMI and identify a role for the chaperone protein Bag6 in triage and internalization of eMI substrates into late endosomes. Association and dynamics of Bag6 at the late endosome membrane change during starvation, a stressor that, contrary to other autophagic pathways, causes a decline in eMI activity. Collectively, these results show a coordinated function of eMI with CMA, identify the interchangeable subproteome degraded by these pathways, and start to elucidate the molecular mechanisms that facilitate the switch between them.
Collapse
Affiliation(s)
- Gregory J Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Philipp Kirchner
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Barbara Stiller
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kateryna Morozova
- Department of Radiation Oncology, Weill Cornell School of Medicine, New York, NY 10021, USA
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kuei-Ho Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; The J. David Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; The J. David Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Cristina C Clement
- Department of Radiation Oncology, Weill Cornell School of Medicine, New York, NY 10021, USA
| | - Kristen Lindenau
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; The J. David Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shilpa Dilipkumar
- Microscopy CoRE, Dean's CoREs, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell School of Medicine, New York, NY 10021, USA.
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
66
|
Yan T, Boatner LM, Cui L, Tontonoz PJ, Backus KM. Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics. JACS AU 2023; 3:3506-3523. [PMID: 38155636 PMCID: PMC10751780 DOI: 10.1021/jacsau.3c00707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
The plasma membrane proteome is a rich resource of functionally important and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here, we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of low-density lipoprotein (LDL) particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Lisa M. Boatner
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Liujuan Cui
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Peter J. Tontonoz
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Keriann M. Backus
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE
Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli
and Edythe
Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
67
|
Betsinger CN, Justice JL, Tyl MD, Edgar JE, Budayeva HG, Abu YF, Cristea IM. Sirtuin 2 promotes human cytomegalovirus replication by regulating cell cycle progression. mSystems 2023; 8:e0051023. [PMID: 37916830 PMCID: PMC10734535 DOI: 10.1128/msystems.00510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE This study expands the growing understanding that protein acetylation is a highly regulated molecular toggle of protein function in both host anti-viral defense and viral replication. We describe a pro-viral role for the human enzyme SIRT2, showing that its deacetylase activity supports HCMV replication. By integrating quantitative proteomics, flow cytometry cell cycle assays, microscopy, and functional virology assays, we investigate the temporality of SIRT2 functions and substrates. We identify a pro-viral role for the SIRT2 deacetylase activity via regulation of CDK2 K6 acetylation and the G1-S cell cycle transition. These findings highlight a link between viral infection, protein acetylation, and cell cycle progression.
Collapse
Affiliation(s)
- Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Joshua L. Justice
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Julia E. Edgar
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Hanna G. Budayeva
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Yaa F. Abu
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| |
Collapse
|
68
|
Thapa P, Olek K, Kowalska A, Serwa RA, Pokrzywa W. SAM, SAH and C. elegans longevity: insights from a partial AHCY deficiency model. NPJ AGING 2023; 9:27. [PMID: 38052822 PMCID: PMC10698036 DOI: 10.1038/s41514-023-00125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/22/2023] [Indexed: 12/07/2023]
Abstract
Supplementation with S-adenosylhomocysteine (SAH) extends the lifespan of model organisms. To explore the impact of SAH on aging, we generated a Caenorhabditis elegans model by introducing the S-adenosylhomocysteine hydrolase (AHCY-1) variant Y145C, corresponding to the human AHCY Y143C pathogenic mutation. This mutation is anticipated to impair SAH hydrolysis, resulting in its increased levels. Our findings revealed that animals with this endogenous mutation exhibited delayed aging, accompanied by decreased S-adenosylmethionine (SAM) and moderately increased SAH levels. The extended lifespan of these worms depends on the AMP-activated protein kinase (AMPK), its activator Vaccinia virus-related kinase (VRK-1), and the DAF-16 transcription factor. The results underline the complex nature of SAH's influence on aging, proposing that the balance between SAM and SAH might play a pivotal role in defining the lifespan of C. elegans. Moreover, our partial AHCY-1 deficiency model offers a tool for studying the intersection of methionine metabolism and aging.
Collapse
Affiliation(s)
- Pankaj Thapa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Katarzyna Olek
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Agata Kowalska
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
69
|
Dey KK, Yarbro JM, Liu D, Han X, Wang Z, Jiao Y, Wu Z, Yang S, Lee D, Dasgupta A, Yuan ZF, Wang X, Zhu L, Peng J. Identifying Sex-Specific Serum Patterns of Alzheimer's Mice through Deep TMT Profiling and a Concentration-Dependent Concatenation Strategy. J Proteome Res 2023; 22:3843-3853. [PMID: 37910662 PMCID: PMC10872962 DOI: 10.1021/acs.jproteome.3c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, disproportionately affecting women in disease prevalence and progression. Comprehensive analysis of the serum proteome in a common AD mouse model offers potential in identifying possible AD pathology- and gender-associated biomarkers. Here, we introduce a multiplexed, nondepleted mouse serum proteome profiling via tandem mass-tag (TMTpro) labeling. The labeled sample was separated into 475 fractions using basic reversed-phase liquid chromatography (RPLC), which were categorized into low-, medium-, and high-concentration fractions for concatenation. This concentration-dependent concatenation strategy resulted in 128 fractions for acidic RPLC-tandem mass spectrometry (MS/MS) analysis, collecting ∼5 million MS/MS scans and identifying 3972 unique proteins (3413 genes) that cover a dynamic range spanning at least 6 orders of magnitude. The differential expression analysis between wild type and the commonly used AD model (5xFAD) mice exhibited minimal significant protein alterations. However, we detected 60 statistically significant (FDR < 0.05), sex-specific proteins, including complement components, serpins, carboxylesterases, major urinary proteins, cysteine-rich secretory protein 1, pregnancy-associated murine protein 1, prolactin, amyloid P component, epidermal growth factor receptor, fibrinogen-like protein 1, and hepcidin. The results suggest that our platform possesses the sensitivity and reproducibility required to detect sex-specific differentially expressed proteins in mouse serum samples.
Collapse
Affiliation(s)
- Kaushik Kumar Dey
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jay M. Yarbro
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee, TN 38163, USA
| | - Danting Liu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Xian Han
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yun Jiao
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Shu Yang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - DongGeun Lee
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Abhijit Dasgupta
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zuo-Fei Yuan
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Xusheng Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Liqin Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
70
|
Park E, Yang CR, Raghuram V, Chen L, Chou CL, Knepper MA. Using CRISPR-Cas9/phosphoproteomics to identify substrates of calcium/calmodulin-dependent kinase 2δ. J Biol Chem 2023; 299:105371. [PMID: 37865316 PMCID: PMC10783575 DOI: 10.1016/j.jbc.2023.105371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Ca2+/Calmodulin-dependent protein kinase 2 (CAMK2) family proteins are involved in the regulation of cellular processes in a variety of tissues including brain, heart, liver, and kidney. One member, CAMK2δ (CAMK2D), has been proposed to be involved in vasopressin signaling in the renal collecting duct, which controls water excretion through regulation of the water channel aquaporin-2 (AQP2). To identify CAMK2D target proteins in renal collecting duct cells (mpkCCD), we deleted Camk2d and carried out LC-MS/MS-based quantitative phosphoproteomics. Specifically, we used CRISPR/Cas9 with two different guide RNAs targeting the CAMK2D catalytic domain to create multiple CAMK2D KO cell lines. AQP2 protein abundance was lower in the CAMK2D KO cells than in CAMK2D-intact controls. AQP2 phosphorylation at Ser256 and Ser269 (normalized for total AQP2) was decreased. However, trafficking of AQP2 to and from the apical plasma membrane was sustained. Large-scale quantitative phosphoproteomic analysis (TMT-labeling) in the presence of the vasopressin analog dDAVP (0.1 nM, 30 min) allowed quantification of 11,570 phosphosites of which 169 were significantly decreased, while 206 were increased in abundance in CAMK2D KO clones. These data are available for browsing or download at https://esbl.nhlbi.nih.gov/Databases/CAMK2D-proteome/. Motif analysis of the decreased phosphorylation sites revealed a target preference of -(R/K)-X-X-p(S/T)-X-(D/E), matching the motif identified in previous in vitro phosphorylation studies using recombinant CAMK2D. Thirty five of the significantly downregulated phosphorylation sites in CAMK2D KO cells had exactly this motif and are judged to be likely direct CAMK2D targets. This adds to the list of known CAMK2D target proteins found in prior reductionist studies.
Collapse
Affiliation(s)
- Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
71
|
Reisbeck L, Linder B, Tascher G, Bozkurt S, Weber KJ, Herold-Mende C, van Wijk SJL, Marschalek R, Schaefer L, Münch C, Kögel D. The iron chelator and OXPHOS inhibitor VLX600 induces mitophagy and an autophagy-dependent type of cell death in glioblastoma cells. Am J Physiol Cell Physiol 2023; 325:C1451-C1469. [PMID: 37899749 DOI: 10.1152/ajpcell.00293.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Induction of alternative, non-apoptotic cell death programs such as cell-lethal autophagy and mitophagy represent possible strategies to combat glioblastoma (GBM). Here we report that VLX600, a novel iron chelator and oxidative phosphorylation (OXPHOS) inhibitor, induces a caspase-independent type of cell death that is partially rescued in adherent U251 ATG5/7 (autophagy related 5/7) knockout (KO) GBM cells and NCH644 ATG5/7 knockdown (KD) glioma stem-like cells (GSCs), suggesting that VLX600 induces an autophagy-dependent cell death (ADCD) in GBM. This ADCD is accompanied by decreased oxygen consumption, increased expression/mitochondrial localization of BNIP3 (BCL2 interacting protein 3) and BNIP3L (BCL2 interacting protein 3 like), the induction of mitophagy as demonstrated by diminished levels of mitochondrial marker proteins [e.g., COX4I1 (cytochrome c oxidase subunit 4I1)] and the mitoKeima assay as well as increased histone H3 and H4 lysine tri-methylation. Furthermore, the extracellular addition of iron is able to significantly rescue VLX600-induced cell death and mitophagy, pointing out an important role of iron metabolism for GBM cell homeostasis. Interestingly, VLX600 is also able to completely eliminate NCH644 GSC tumors in an organotypic brain slice transplantation model. Our data support the therapeutic concept of ADCD induction in GBM and suggest that VLX600 may be an interesting novel drug candidate for the treatment of this tumor.NEW & NOTEWORTHY Induction of cell-lethal autophagy represents a possible strategy to combat glioblastoma (GBM). Here, we demonstrate that the novel iron chelator and OXPHOS inhibitor VLX600 exerts pronounced tumor cell-killing effects in adherently cultured GBM cells and glioblastoma stem-like cell (GSC) spheroid cultures that depend on the iron-chelating function of VLX600 and on autophagy activation, underscoring the context-dependent role of autophagy in therapy responses. VLX600 represents an interesting novel drug candidate for the treatment of this tumor.
Collapse
Affiliation(s)
- Lisa Reisbeck
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany
| | - Benedikt Linder
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Süleyman Bozkurt
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Katharina J Weber
- Neurological Institute (Edinger Institute), Goethe University Hospital, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Main, a partnership between DKFZ and University Hospital, Frankfurt, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Sjoerd J L van Wijk
- Institute for Pediatric Hematology and Oncology, Goethe University Hospital Frankfurt/Main, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Main, a partnership between DKFZ and University Hospital, Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Diagnostic Center of Acute Leukemia, University of Frankfurt, Frankfurt/Main, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Main, a partnership between DKFZ and University Hospital, Frankfurt, Germany
| |
Collapse
|
72
|
Rojas Ramírez C, Espino JA, Jones LM, Polasky DA, Nesvizhskii AI. Efficient Analysis of Proteome-Wide FPOP Data by FragPipe. Anal Chem 2023; 95:16131-16137. [PMID: 37878603 DOI: 10.1021/acs.analchem.3c02388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Monitoring protein structure before and after environmental alterations (e.g., different cell states) can give insights into the role and function of proteins. Fast photochemical oxidation of proteins (FPOP) coupled with mass spectrometry (MS) allows for monitoring of structural rearrangements by exposing proteins to OH radicals that oxidize solvent-accessible residues, indicating protein regions undergoing movement. Some of the benefits of FPOP include high throughput and a lack of scrambling due to label irreversibility. However, the challenges of processing FPOP data have thus far limited its proteome-scale uses. Here, we present a computational workflow for fast and sensitive analysis of FPOP data sets. Our workflow, implemented as part of the FragPipe computational platform, combines the speed of the MSFragger search with a unique hybrid search method to restrict the large search space of FPOP modifications. Together, these features enable more than 10-fold faster FPOP searches that identify 150% more modified peptide spectra than previous methods. We hope this new workflow will increase the accessibility of FPOP to enable more protein structure and function relationships to be explored.
Collapse
Affiliation(s)
- Carolina Rojas Ramírez
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica A Espino
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21202, United States
| | - Lisa M Jones
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California 92093, United States
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
73
|
Joosten SE, Gregoricchio S, Stelloo S, Yapıcı E, Huang CCF, Collier MD, Morova T, Altintas B, Kim Y, Canisius S, Korkmaz G, Lack N, Vermeulen M, Linn SC, Zwart W. Breast cancer risk SNPs converge on estrogen receptor binding sites commonly shared between breast tumors to locally alter estrogen signalling output. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564691. [PMID: 37961147 PMCID: PMC10634999 DOI: 10.1101/2023.10.30.564691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Estrogen Receptor alpha (ERα) is the main driver and prime drug target in luminal breast. ERα chromatin binding is extensively studied in cell lines and a limited number of human tumors, using consensi of peaks shared among samples. However, little is known about inter-tumor heterogeneity of ERα chromatin action, along with its biological implications. Here, we use a large set of ERα ChIP-seq data from 70 ERα+ breast cancers to explore inter-patient heterogeneity in ERα DNA binding, to reveal a striking inter-tumor heterogeneity of ERα action. Interestingly, commonly-shared ERα sites showed the highest estrogen-driven enhancer activity and were most-engaged in long-range chromatin interactions. In addition, the most-commonly shared ERα-occupied enhancers were enriched for breast cancer risk SNP loci. We experimentally confirm SNVs to impact chromatin binding potential for ERα and its pioneer factor FOXA1. Finally, in the TCGA breast cancer cohort, we could confirm these variations to associate with differences in expression for the target gene. Cumulatively, we reveal a natural hierarchy of ERα-chromatin interactions in breast cancers within a highly heterogeneous inter-tumor ERα landscape, with the most-common shared regions being most active and affected by germline functional risk SNPs for breast cancer development.
Collapse
|
74
|
Camacho MF, Stuginski DR, Andrade-Silva D, Nishiyama-Jr MY, Valente RH, Zelanis A. A snapshot of Bothrops jararaca snake venom gland subcellular proteome. Biochimie 2023; 214:1-10. [PMID: 37315762 DOI: 10.1016/j.biochi.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/01/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Snake venom protein synthesis undergoes finely regulated processes in the specialized secretory epithelium within the venom gland. Such processes occur within a defined period in the cell and at specific cellular locations. Thus, the determination of subcellular proteomes allows the characterization of protein groups for which the site may be relevant to their biological roles, thereby allowing the deconvolution of complex biological circuits into functional information. In this regard, we performed subcellular fractionation of proteins from B. jararaca venom gland, focusing on nuclear proteins since this cellular compartment comprises key effectors that shape gene expression. Our results provided a snapshot of B. jararaca's subcellular venom gland proteome and pointed to a 'conserved' proteome core among different life stages (newborn and adult) and between sexes (adult male and female). Overall, the top 15 highly abundant proteins identified in B. jararaca venom glands mirrored the panel of highly expressed genes in human salivary glands. Therefore, the expression profile observed for such a protein set could be considered a conserved core signature of salivary gland secretory epithelium. Moreover, the newborn venom gland displayed a unique expression signature of transcription factors involved in regulating transcription and biosynthetic processes and may mirror biological constraints of the ontogenetic development of B. jararaca, contributing to venom proteome diversity.
Collapse
Affiliation(s)
- Maurício Frota Camacho
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, SP, 12231-280, Brazil
| | - Daniel R Stuginski
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Débora Andrade-Silva
- Telomeres Laboratory, Chemical and Biological Sciences Department, IBB-UNESP, Botucatu, São Paulo, Brazil
| | - Milton Y Nishiyama-Jr
- Laboratory of Applied Toxinology, Butantan Institute, Sao Paulo, SP, 05503-900, Brazil
| | - Richard H Valente
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, SP, 12231-280, Brazil.
| |
Collapse
|
75
|
Dobish KK, Wittorf KJ, Swenson SA, Bean DC, Gavile CM, Woods NT, Ghosal G, Hyde RK, Buckley SM. FBXO21 mediated degradation of p85α regulates proliferation and survival of acute myeloid leukemia. Leukemia 2023; 37:2197-2208. [PMID: 37689825 PMCID: PMC10624613 DOI: 10.1038/s41375-023-02020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by clonal expansion of myeloid blasts in the bone marrow (BM). Despite advances in therapy, the prognosis for AML patients remains poor, and there is a need to identify novel molecular pathways regulating tumor cell survival and proliferation. F-box ubiquitin E3 ligase, FBXO21, has low expression in AML, but expression correlates with survival in AML patients and patients with higher expression have poorer outcomes. Silencing FBXO21 in human-derived AML cell lines and primary patient samples leads to differentiation, inhibition of tumor progression, and sensitization to chemotherapy agents. Additionally, knockdown of FBXO21 leads to up-regulation of cytokine signaling pathways. Through a mass spectrometry-based proteomic analysis of FBXO21 in AML, we identified that FBXO21 ubiquitylates p85α, a regulatory subunit of the phosphoinositide 3-kinase (PI3K) pathway, for degradation resulting in decreased PI3K signaling, dimerization of free p85α and ERK activation. These findings reveal the ubiquitin E3 ligase, FBXO21, plays a critical role in regulating AML pathogenesis, specifically through alterations in PI3K via regulation of p85α protein stability.
Collapse
Affiliation(s)
- Kasidy K Dobish
- Department of Internal Medicine, Division of Hematology & Hematopoietic Malignancies, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karli J Wittorf
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samantha A Swenson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dalton C Bean
- Department of Internal Medicine, Division of Hematology & Hematopoietic Malignancies, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, USA
| | - Catherine M Gavile
- Department of Internal Medicine, Division of Hematology & Hematopoietic Malignancies, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nicholas T Woods
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - R Katherine Hyde
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon M Buckley
- Department of Internal Medicine, Division of Hematology & Hematopoietic Malignancies, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
- Department of Oncological Sciences, University of Utah, Salt Lake City, USA.
| |
Collapse
|
76
|
Giese J, Eirich J, Walther D, Zhang Y, Lassowskat I, Fernie AR, Elsässer M, Maurino VG, Schwarzländer M, Finkemeier I. The interplay of post-translational protein modifications in Arabidopsis leaves during photosynthesis induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1172-1193. [PMID: 37522418 DOI: 10.1111/tpj.16406] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Diurnal dark to light transition causes profound physiological changes in plant metabolism. These changes require distinct modes of regulation as a unique feature of photosynthetic lifestyle. The activities of several key metabolic enzymes are regulated by light-dependent post-translational modifications (PTM) and have been studied at depth at the level of individual proteins. In contrast, a global picture of the light-dependent PTMome dynamics is lacking, leaving the response of a large proportion of cellular function undefined. Here, we investigated the light-dependent metabolome and proteome changes in Arabidopsis rosettes in a time resolved manner to dissect their kinetic interplay, focusing on phosphorylation, lysine acetylation, and cysteine-based redox switches. Of over 24 000 PTM sites that were detected, more than 1700 were changed during the transition from dark to light. While the first changes, as measured 5 min after onset of illumination, occurred mainly in the chloroplasts, PTM changes at proteins in other compartments coincided with the full activation of the Calvin-Benson cycle and the synthesis of sugars at later timepoints. Our data reveal connections between metabolism and PTM-based regulation throughout the cell. The comprehensive multiome profiling analysis provides unique insight into the extent by which photosynthesis reprograms global cell function and adds a powerful resource for the dissection of diverse cellular processes in the context of photosynthetic function.
Collapse
Affiliation(s)
- Jonas Giese
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Dirk Walther
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, Potsdam, D-14476, Germany
| | - Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, Potsdam, D-14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Ines Lassowskat
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, Potsdam, D-14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Marlene Elsässer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Veronica G Maurino
- Institute of Cellular and Molecular Botany (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| |
Collapse
|
77
|
Ribeiro DM, Leclercq CC, Charton SAB, Costa MM, Carvalho DFP, Cocco E, Sergeant K, Renaut J, Freire JPB, Prates JAM, de Almeida AM. Enhanced ileum function in weaned piglets via Laminaria digitata and alginate lyase dietary inclusion: A combined proteomics and metabolomics analysis. J Proteomics 2023; 289:105013. [PMID: 37775079 DOI: 10.1016/j.jprot.2023.105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Laminaria digitata, a brown seaweed with prebiotic properties, can potentially enhance the resilience of weaned piglets to nutritional distress. However, their cell wall polysaccharides elude digestion by monogastric animals' endogenous enzymes. In vitro studies suggest alginate lyase's ability to degrade such polysaccharides. This study aimed to assess the impact of a 10% dietary inclusion of L. digitata and alginate lyase supplementation on the ileum proteome and metabolome, adopting a hypothesis-generating approach. Findings indicated that control piglets escalated glucose usage as an enteric energy source, as evidenced by the increased abundance of PKLR and PCK2 proteins and decreased tissue glucose concentration. Additionally, the inclusion of seaweed fostered a rise in proteins linked to enhanced enterocyte structural integrity (ACTBL2, CRMP1, FLII, EML2 and MYLK), elevated peptidase activity (NAALADL1 and CAPNS1), and heightened anti-inflammatory activity (C3), underscoring improved intestinal function. In addition, seaweed-fed piglets showed a reduced abundance of proteins related to apoptosis (ERN2) and proteolysis (DPP4). Alginate lyase supplementation appeared to amplify the initial effects of seaweed-only feeding, by boosting the number of differential proteins within the same pathways. This amplification is potentially due to increased intracellular nutrient availability, making a compelling case for further exploration of this dietary approach. SIGNIFICANCE: Pig production used to rely heavily on antibiotics and zinc oxide to deal with post-weaning stress in a cost-effective way. Their negative repercussions on public health and the environment have motivated heavy restrictions, and a consequent search for alternative feed ingredients/supplements. One of such alternatives is Laminaria digitata, a brown seaweed whose prebiotic components that can help weaned piglets deal with nutritional stress, by improving their gut health and immune status. However, their recalcitrant cell walls have antinutritional properties, for which alginate lyase supplementation is a possible solution. By evaluating ileal metabolism as influenced by dietary seaweed and enzyme supplementation, we aim at discovering how the weaned piglet adapts to them and what are their effects on this important segment of the digestive system.
Collapse
Affiliation(s)
- David Miguel Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Céline C Leclercq
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Sophie A B Charton
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Mónica M Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Daniela Filipa Pires Carvalho
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Emmanuelle Cocco
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Kjell Sergeant
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Jenny Renaut
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - João Pedro Bengala Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José António Mestre Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - André Martinho de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
78
|
Yan T, Boatner LM, Cui L, Tontonoz P, Backus KM. Defining the Cell Surface Cysteinome using Two-step Enrichment Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562832. [PMID: 37904933 PMCID: PMC10614875 DOI: 10.1101/2023.10.17.562832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The plasma membrane proteome is a rich resource of functional and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of LDL particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Lisa M. Boatner
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Liujuan Cui
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Keriann M. Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095 (USA)
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095 (USA)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095 (USA)
| |
Collapse
|
79
|
Wu L, Hoque A, Lam H. Spectroscape enables real-time query and visualization of a spectral archive in proteomics. Nat Commun 2023; 14:6267. [PMID: 37805652 PMCID: PMC10560257 DOI: 10.1038/s41467-023-42006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023] Open
Abstract
In proteomics, spectral archives organize the enormous amounts of publicly available peptide tandem mass spectra by similarity, offering opportunities for error correction and novel discoveries. Here we adapt an indexing algorithm developed by Facebook for organizing online multimedia resources to tandem mass spectra and achieve practically instantaneous retrieval and clustering of approximate nearest neighbors in a large spectral archive. An interactive web-based graphical user interface enables the user to view a query spectrum in its clustered neighborhood, which facilitates contextual validation of peptide identifications and exploration of the dark proteome.
Collapse
Affiliation(s)
- Long Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
- Department of Electrical and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Ayman Hoque
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
80
|
Pereira RS, Kumar R, Cais A, Paulini L, Kahler A, Bravo J, Minciacchi VR, Krack T, Kowarz E, Zanetti C, Godavarthy PS, Hoeller F, Llavona P, Stark T, Tascher G, Nowak D, Meduri E, Huntly BJP, Münch C, Pampaloni F, Marschalek R, Krause DS. Distinct and targetable role of calcium-sensing receptor in leukaemia. Nat Commun 2023; 14:6242. [PMID: 37802982 PMCID: PMC10558580 DOI: 10.1038/s41467-023-41770-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/12/2023] [Indexed: 10/08/2023] Open
Abstract
Haematopoietic stem cells (HSC) reside in the bone marrow microenvironment (BMM), where they respond to extracellular calcium [eCa2+] via the G-protein coupled calcium-sensing receptor (CaSR). Here we show that a calcium gradient exists in this BMM, and that [eCa2+] and response to [eCa2+] differ between leukaemias. CaSR influences the location of MLL-AF9+ acute myeloid leukaemia (AML) cells within this niche and differentially impacts MLL-AF9+ AML versus BCR-ABL1+ leukaemias. Deficiency of CaSR reduces AML leukaemic stem cells (LSC) 6.5-fold. CaSR interacts with filamin A, a crosslinker of actin filaments, affects stemness-associated factors and modulates pERK, β-catenin and c-MYC signaling and intracellular levels of [Ca2+] in MLL-AF9+ AML cells. Combination treatment of cytarabine plus CaSR-inhibition in various models may be superior to cytarabine alone. Our studies suggest CaSR to be a differential and targetable factor in leukaemia progression influencing self-renewal of AML LSC via [eCa2+] cues from the BMM.
Collapse
Affiliation(s)
- Raquel S Pereira
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Alessia Cais
- Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lara Paulini
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Alisa Kahler
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Jimena Bravo
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Valentina R Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Theresa Krack
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Eric Kowarz
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Costanza Zanetti
- University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Fabian Hoeller
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Pablo Llavona
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Tabea Stark
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eshwar Meduri
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Brian J P Huntly
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS, CEF-MC), Goethe University, Frankfurt am Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.
- Institute of General Pharmacology and Toxicology, Goethe-University, Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Frankfurt Cancer Institute, Frankfurt, Germany.
| |
Collapse
|
81
|
Boykov IN, Montgomery MM, Hagen JT, Aruleba RT, McLaughlin KL, Coalson HS, Nelson MA, Pereyra AS, Ellis JM, Zeczycki TN, Vohra NA, Tan SF, Cabot MC, Fisher-Wellman KH. Pan-tissue mitochondrial phenotyping reveals lower OXPHOS expression and function across cancer types. Sci Rep 2023; 13:16742. [PMID: 37798427 PMCID: PMC10556099 DOI: 10.1038/s41598-023-43963-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023] Open
Abstract
Targeting mitochondrial oxidative phosphorylation (OXPHOS) to treat cancer has been hampered due to serious side-effects potentially arising from the inability to discriminate between non-cancerous and cancerous mitochondria. Herein, comprehensive mitochondrial phenotyping was leveraged to define both the composition and function of OXPHOS across various murine cancers and compared to both matched normal tissues and other organs. When compared to both matched normal tissues, as well as high OXPHOS reliant organs like heart, intrinsic expression of the OXPHOS complexes, as well as OXPHOS flux were discovered to be consistently lower across distinct cancer types. Assuming intrinsic OXPHOS expression/function predicts OXPHOS reliance in vivo, these data suggest that pharmacologic blockade of mitochondrial OXPHOS likely compromises bioenergetic homeostasis in healthy oxidative organs prior to impacting tumor mitochondrial flux in a clinically meaningful way. Although these data caution against the use of indiscriminate mitochondrial inhibitors for cancer treatment, considerable heterogeneity was observed across cancer types with respect to both mitochondrial proteome composition and substrate-specific flux, highlighting the possibility for targeting discrete mitochondrial proteins or pathways unique to a given cancer type.
Collapse
Affiliation(s)
- Ilya N Boykov
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - McLane M Montgomery
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - James T Hagen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Raphael T Aruleba
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Kelsey L McLaughlin
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Hannah S Coalson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Margaret A Nelson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Andrea S Pereyra
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Jessica M Ellis
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Nasreen A Vohra
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Su-Fern Tan
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Myles C Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA.
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
82
|
Webber CJ, Murphy CN, Rondón-Ortiz AN, van der Spek SJF, Kelly EX, Lampl NM, Chiesa G, Khalil AS, Emili A, Wolozin B. Human herpesvirus 8 ORF57 protein is able to reduce TDP-43 pathology: network analysis identifies interacting pathways. Hum Mol Genet 2023; 32:2966-2980. [PMID: 37522762 PMCID: PMC10549787 DOI: 10.1093/hmg/ddad122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023] Open
Abstract
Aggregation of TAR DNA-binding protein 43 kDa (TDP-43) is thought to drive the pathophysiology of amyotrophic lateral sclerosis and some frontotemporal dementias. TDP-43 is normally a nuclear protein that in neurons translocates to the cytoplasm and can form insoluble aggregates upon activation of the integrated stress response (ISR). Viruses evolved to control the ISR. In the case of Herpesvirus 8, the protein ORF57 acts to bind protein kinase R, inhibit phosphorylation of eIF2α and reduce activation of the ISR. We hypothesized that ORF57 might also possess the ability to inhibit aggregation of TDP-43. ORF57 was expressed in the neuronal SH-SY5Y line and its effects on TDP-43 aggregation characterized. We report that ORF57 inhibits TDP-43 aggregation by 55% and elicits a 2.45-fold increase in the rate of dispersion of existing TDP-43 granules. These changes were associated with a 50% decrease in cell death. Proteomic studies were carried out to identify the protein interaction network of ORF57. We observed that ORF57 directly binds to TDP-43 as well as interacts with many components of the ISR, including elements of the proteostasis machinery known to reduce TDP-43 aggregation. We propose that viral proteins designed to inhibit a chronic ISR can be engineered to remove aggregated proteins and dampen a chronic ISR.
Collapse
Affiliation(s)
- Chelsea J Webber
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Caroline N Murphy
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Alejandro N Rondón-Ortiz
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sophie J F van der Spek
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Elena X Kelly
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Noah M Lampl
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
| | - Giulio Chiesa
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biochemistry, Boston University, Boston, MA 02115, USA
- Department of Biochemistry, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Benjamin Wolozin
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
- Center for Neurophotonics, Boston University, Boston, MA 02115, USA
- Department of Neurology, Boston University, Boston, MA 02115, USA
| |
Collapse
|
83
|
Zumsteg J, Hirschler A, Carapito C, Maurer L, Villette C, Heintz D, Dahl C, El Nayal A, Sangal V, Mahmoud H, Van Dorsselaer A, Ismail W. Mechanistic insights into sulfur source-driven physiological responses and metabolic reorganization in the fuel-biodesulfurizing Rhodococcus qingshengii IGTS8. Appl Environ Microbiol 2023; 89:e0082623. [PMID: 37655899 PMCID: PMC10537767 DOI: 10.1128/aem.00826-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023] Open
Abstract
Comparative proteomics and untargeted metabolomics were combined to study the physiological and metabolic adaptations of Rhodococcus qingshengii IGTS8 under biodesulfurization conditions. After growth in a chemically defined medium with either dibenzothiophene (DBT) or MgSO4 as the sulfur source, many differentially produced proteins and metabolites associated with several metabolic and physiological processes were detected including the metabolism of carbohydrates, amino acids, lipids, nucleotides, vitamins, protein synthesis, transcriptional regulation, cell envelope biogenesis, and cell division. Increased production of the redox cofactor mycofactocin and associated proteins was one of the most striking adaptations under biodesulfurization conditions. While most central metabolic enzymes were less abundant in the presence of DBT, a key enzyme of the glyoxylate shunt, isocitrate lyase, was up to 26-fold more abundant. Several C1 metabolism and oligotrophy-related enzymes were significantly more abundant in the biodesulfurizing culture. R. qingshengii IGTS8 exhibited oligotrophic growth in liquid and solid media under carbon starvation. Moreover, the oligotrophic growth was faster on the solid medium in the presence of DBT compared to MgSO4 cultures. In the DBT culture, the cell envelope and phospholipids were remodeled, with lower levels of phosphatidylethanolamine and unsaturated and short-chain fatty acids being the most prominent changes. Biodesulfurization increased the biosynthesis of osmoprotectants (ectoine and mannosylglycerate) as well as glutamate and induced the stringent response. Our findings reveal highly diverse and overlapping stress responses that could protect the biodesulfurizing culture not only from the associated sulfate limitation but also from chemical, oxidative, and osmotic stress, allowing efficient resource management. IMPORTANCE Despite decades of research, a commercially viable bioprocess for fuel desulfurization has not been developed yet. This is mainly due to lack of knowledge of the physiology and metabolism of fuel-biodesulfurizing bacteria. Being a stressful condition, biodesulfurization could provoke several stress responses that are not understood. This is particularly important because a thorough understanding of the microbial stress response is essential for the development of environmentally friendly and industrially efficient microbial biocatalysts. Our comparative systems biology studies provide a mechanistic understanding of the biology of biodesulfurization, which is crucial for informed developments through the rational design of recombinant biodesulfurizers and optimization of the bioprocess conditions. Our findings enhance the understanding of the physiology, metabolism, and stress response not only in biodesulfurizing bacteria but also in rhodococci, a precious group of biotechnologically important bacteria.
Collapse
Affiliation(s)
- Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI FR2048, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI FR2048, Strasbourg, France
| | - Loïc Maurer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Département mécanique, ICube Laboratoire des sciences de l’ingénieur, de l’informatique et de l’imagerie, UNISTRA/CNRS/ENGEES/INSA, Strasbourg, France
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Ashraf El Nayal
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Huda Mahmoud
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI FR2048, Strasbourg, France
| | - Wael Ismail
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
84
|
Pleiko K, Haugas M, Parfejevs V, Pantelejevs T, Parisini E, Teesalu T, Riekstina U. Targeting triple-negative breast cancer cells with a β1-integrin binding aptamer. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:871-884. [PMID: 37680989 PMCID: PMC10481362 DOI: 10.1016/j.omtn.2023.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Targeted therapies have increased the treatment options for triple-negative breast cancer patients. However, the paucity of targetable biomarkers and tumor heterogeneity have limited the ability of precision-guided interventions to live up to their full potential. As affinity-targeting ligands, aptamers show high selectivity toward target molecules. Compared with antibodies, aptamers have lower molecular weight, increased stability during transportation, reduced immunogenicity, and increased tissue uptake. Recently, we reported discovery of the GreenB1 aptamer, which is internalized in cultured triple-negative MDA-MB-231 human breast cancer cells. We show that the GreenB1 aptamer specifically targets β1-integrin, a protein linked previously to breast cancer cell invasiveness and migration. Aptamer binds to β1-integrin with low nanomolar affinity. Our findings suggest potential applications for GreenB1-guided precision agents for diagnosis and therapy of cancers overexpressing β1-integrin.
Collapse
Affiliation(s)
- Karlis Pleiko
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, 1004 Riga, Latvia
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Maarja Haugas
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, 1004 Riga, Latvia
| | | | - Emilio Parisini
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Tambet Teesalu
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Una Riekstina
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, 1004 Riga, Latvia
| |
Collapse
|
85
|
Zhang L, Wirth M, Patra U, Stroh J, Isaakidis K, Rieger L, Kossatz S, Milanovic M, Zang C, Demel U, Keiten‐Schmitz J, Wagner K, Steiger K, Rad R, Bassermann F, Müller S, Keller U, Schick M. Actionable loss of SLF2 drives B-cell lymphomagenesis and impairs the DNA damage response. EMBO Mol Med 2023; 15:e16431. [PMID: 37485814 PMCID: PMC10493575 DOI: 10.15252/emmm.202216431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
The DNA damage response (DDR) acts as a barrier to malignant transformation and is often impaired during tumorigenesis. Exploiting the impaired DDR can be a promising therapeutic strategy; however, the mechanisms of inactivation and corresponding biomarkers are incompletely understood. Starting from an unbiased screening approach, we identified the SMC5-SMC6 Complex Localization Factor 2 (SLF2) as a regulator of the DDR and biomarker for a B-cell lymphoma (BCL) patient subgroup with an adverse prognosis. SLF2-deficiency leads to loss of DDR factors including Claspin (CLSPN) and consequently impairs CHK1 activation. In line with this mechanism, genetic deletion of Slf2 drives lymphomagenesis in vivo. Tumor cells lacking SLF2 are characterized by a high level of DNA damage, which leads to alterations of the post-translational SUMOylation pathway as a safeguard. The resulting co-dependency confers synthetic lethality to a clinically applicable SUMOylation inhibitor (SUMOi), and inhibitors of the DDR pathway act highly synergistic with SUMOi. Together, our results identify SLF2 as a DDR regulator and reveal co-targeting of the DDR and SUMOylation as a promising strategy for treating aggressive lymphoma.
Collapse
Affiliation(s)
- Le Zhang
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Matthias Wirth
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Upayan Patra
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Jacob Stroh
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Medicine III, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Konstandina Isaakidis
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Leonie Rieger
- Department of Medicine III, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
| | - Susanne Kossatz
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
- Nuclear Medicine, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Maja Milanovic
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Chuanbing Zang
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Uta Demel
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
- Clinician Scientist ProgramBerlin Institute of Health (BIH)BerlinGermany
| | - Jan Keiten‐Schmitz
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Kristina Wagner
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Katja Steiger
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Comparative Experimental Pathology, Institute of PathologyTechnical University of MunichMunichGermany
| | - Roland Rad
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
- Institute of Molecular Oncology and Functional Genomics, TUM School of MedicineTechnische Universität MünchenMunichGermany
| | - Florian Bassermann
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Medicine III, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
| | - Stefan Müller
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Markus Schick
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| |
Collapse
|
86
|
Handin N, Yuan D, Ölander M, Wegler C, Karlsson C, Jansson-Löfmark R, Hjelmesæth J, Åsberg A, Lauschke VM, Artursson P. Proteome deconvolution of liver biopsies reveals hepatic cell composition as an important marker of fibrosis. Comput Struct Biotechnol J 2023; 21:4361-4369. [PMID: 37711184 PMCID: PMC10498185 DOI: 10.1016/j.csbj.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Human liver tissue is composed of heterogeneous mixtures of different cell types and their cellular stoichiometry can provide information on hepatic physiology and disease progression. Deconvolution algorithms for the identification of cell types and their proportions have recently been developed for transcriptomic data. However, no method for the deconvolution of bulk proteomics data has been presented to date. Here, we show that proteomes, which usually contain less data than transcriptomes, can provide useful information for cell type deconvolution using different algorithms. We demonstrate that proteomes from defined mixtures of cell lines, isolated primary liver cells, and human liver biopsies can be deconvoluted with high accuracy. In contrast to transcriptome-based deconvolution, liver tissue proteomes also provided information about extracellular compartments. Using deconvolution of proteomics data from liver biopsies of 56 patients undergoing Roux-en-Y gastric bypass surgery we show that proportions of immune and stellate cells correlate with inflammatory markers and altered composition of extracellular matrix proteins characteristic of early-stage fibrosis. Our results thus demonstrate that proteome deconvolution can be used as a molecular microscope for investigations of the composition of cell types, extracellular compartments, and for exploring cell-type specific pathological events. We anticipate that these findings will allow the refinement of retrospective analyses of the growing number of proteome datasets from various liver disease states and pave the way for AI-supported clinical and preclinical diagnostics.
Collapse
Affiliation(s)
- Niklas Handin
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| | - Di Yuan
- Department of Information Technology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Magnus Ölander
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| | - Cecilia Karlsson
- Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-43183, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE- 41345, Sweden
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-43153, Sweden
| | - Jøran Hjelmesæth
- Morbid Obesity Centre, Department of Medi cine, Vestfold Hospital Trust, NO-3103 Tønsberg, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, NO-0318 Oslo, Norway
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, NO-0316 Oslo, Norway
- Department of Transplanation Medicin, Oslo University Hospital-Rikshospitalet, NO-0424 Oslo, Norway
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Per Artursson
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| |
Collapse
|
87
|
Färber B, Lapshyna O, Künstner A, Kohl M, Sauer T, Bichmann K, Heckelmann B, Watzelt J, Honselmann K, Bolm L, ten Winkel M, Busch H, Ungefroren H, Keck T, Gemoll T, Wellner UF, Braun R. Molecular profiling and specific targeting of gemcitabine-resistant subclones in heterogeneous pancreatic cancer cell populations. Front Oncol 2023; 13:1230382. [PMID: 37719017 PMCID: PMC10502231 DOI: 10.3389/fonc.2023.1230382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose Chemotherapy is pivotal in the multimodal treatment of pancreatic ductal adenocarcinoma (PDAC). Technical advances unveiled a high degree of inter- and intratumoral heterogeneity. We hypothesized that intratumoral heterogeneity (ITH) impacts response to gemcitabine treatment and demands specific targeting of resistant subclones. Methods Using single cell-derived cell lines (SCDCLs) from the classical cell line BxPC3 and the basal-like cell line Panc-1, we addressed the effect of ITH on response to gemcitabine treatment. Results Individual SCDCLs of both parental tumor cell populations showed considerable heterogeneity in response to gemcitabine. Unsupervised PCA including the 1,000 most variably expressed genes showed a clustering of the SCDCLs according to their respective sensitivity to gemcitabine treatment for BxPC3, while this was less clear for Panc-1. In BxPC3 SCDCLs, enriched signaling pathways EMT, TNF signaling via NfKB, and IL2STAT5 signaling correlated with more resistant behavior to gemcitabine. In Panc-1 SCDCLs MYC targets V1 and V2 as well as E2F targets were associated with stronger resistance. We used recursive feature elimination for Feature Selection in order to compute sets of proteins that showed strong association with the response to gemcitabine. The optimal protein set calculated for Panc-1 comprised fewer proteins in comparison to the protein set determined for BxPC3. Based on molecular profiles, we could show that the gemcitabine-resistant SCDCLs of both BxPC3 and Panc-1 are more sensitive to the BET inhibitor JQ1 compared to the respective gemcitabine-sensitive SCDCLs. Conclusion Our model system of SCDCLs identified gemcitabine-resistant subclones and provides evidence for the critical role of ITH for treatment response in PDAC. We exploited molecular differences as the basis for differential response and used these for more targeted therapy of resistant subclones.
Collapse
Affiliation(s)
- Benedikt Färber
- Department of Surgery, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Olga Lapshyna
- Department of Surgery, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Michael Kohl
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Thorben Sauer
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Kira Bichmann
- Department of Surgery, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Benjamin Heckelmann
- Department of Surgery, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Jessica Watzelt
- Department of Surgery, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Kim Honselmann
- Department of Surgery, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Louisa Bolm
- Department of Surgery, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Meike ten Winkel
- Department of Surgery, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Hendrik Ungefroren
- First Department of Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany
- Institute of Pathology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Tobias Keck
- Department of Surgery, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Timo Gemoll
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Ulrich F. Wellner
- Department of Surgery, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Rüdiger Braun
- Department of Surgery, University Medical Center Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
88
|
Wang YY, Lin YH, Wu VC, Lin YH, Huang CY, Ku WC, Sun CY. Decreased Klotho Expression Causes Accelerated Decline of Male Fecundity through Oxidative Injury in Murine Testis. Antioxidants (Basel) 2023; 12:1671. [PMID: 37759974 PMCID: PMC10526093 DOI: 10.3390/antiox12091671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress is the etiology for 30-80% of male patients affected by infertility, which is a major health problem worldwide. Klotho protein is an aging suppressor that functions as a humoral factor modulating various cellular processes including antioxidation and anti-inflammation, and its dysregulation leads to human pathologies. Male mice lacking Klotho are sterile, and decreased Klotho levels in the serum are observed in men suffering from infertility with lower sperm counts. However, the mechanism by which Klotho maintains healthy male fertility remains unclear. Klotho haplodeficiency (Kl+/-) accelerates fertility reduction by impairing sperm quality and spermatogenesis in Kl+/- mice. Testicular proteomic analysis revealed that loss of Klotho predominantly disturbed oxidation and the glutathione-related pathway. We further focused on the glutathione-S-transferase (GST) family which counteracts oxidative stress in most cell types and closely relates with fertility. Several GST proteins, including GSTP1, GSTO2, and GSTK1, were significantly downregulated, which subsequently resulted in increased levels of the lipid peroxidation product 4-hydroxynonenal and apoptosis in murine testis with low or no expression of Klotho. Taken together, the loss of one Kl allele accelerates male fecundity loss because diminished antioxidant capability induces oxidative injury in mice. This is the first study that highlights a connection between Klotho and GST proteins.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-Y.W.); (Y.-H.L.)
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-Y.W.); (Y.-H.L.)
| | - Vin-Cent Wu
- Taiwan Consortium for Acute Kidney Injury and Renal Diseases (CAKs), Taipei 100, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yu-Hua Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan;
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City 231, Taiwan
| | - Chia-Yen Huang
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 106, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Chiao-Yin Sun
- Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
89
|
Neely BA, Ellisor DL, Davis WC. Proteomics as a Metrological Tool to Evaluate Genome Annotation Accuracy Following De Novo Genome Assembly: A Case Study Using the Atlantic Bottlenose Dolphin ( Tursiops truncatus). Genes (Basel) 2023; 14:1696. [PMID: 37761836 PMCID: PMC10531373 DOI: 10.3390/genes14091696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The last decade has witnessed dramatic improvements in whole-genome sequencing capabilities coupled to drastically decreased costs, leading to an inundation of high-quality de novo genomes. For this reason, the continued development of genome quality metrics is imperative. Using the 2016 Atlantic bottlenose dolphin NCBI RefSeq annotation and mass spectrometry-based proteomic analysis of six tissues, we confirmed 10,402 proteins from 4711 protein groups, constituting nearly one-third of the possible predicted proteins. Since the identification of larger proteins with more identified peptides implies reduced database fragmentation and improved gene annotation accuracy, we propose the metric NP10, which attempts to capture this quality improvement. The NP10 metric is calculated by first stratifying proteomic results by identifying the top decile (or 10th 10-quantile) of identified proteins based on the number of peptides per protein and then returns the median molecular weight of the resulting proteins. When using the 2016 versus 2012 Tursiops truncatus genome annotation to search this proteomic data set, there was a 21% improvement in NP10. This metric was further demonstrated by using a publicly available proteomic data set to compare human genome annotations from 2004, 2013 and 2016, which showed a 33% improvement in NP10. These results demonstrate that proteomics may be a useful metrological tool to benchmark genome accuracy, though there is a need for reference proteomic datasets across species to facilitate the evaluation of new de novo and existing genome.
Collapse
Affiliation(s)
- Benjamin A. Neely
- National Institute of Standards and Technology, NIST Charleston, 331 Fort Johnson Road, Charleston, SC 29412, USA; (D.L.E.); (W.C.D.)
| | | | | |
Collapse
|
90
|
Wang C, Ulryck N, Herzel L, Pythoud N, Kleiber N, Guérineau V, Jactel V, Moritz C, Bohnsack M, Carapito C, Touboul D, Bohnsack K, Graille M. N 2-methylguanosine modifications on human tRNAs and snRNA U6 are important for cell proliferation, protein translation and pre-mRNA splicing. Nucleic Acids Res 2023; 51:7496-7519. [PMID: 37283053 PMCID: PMC10415138 DOI: 10.1093/nar/gkad487] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Modified nucleotides in non-coding RNAs, such as tRNAs and snRNAs, represent an important layer of gene expression regulation through their ability to fine-tune mRNA maturation and translation. Dysregulation of such modifications and the enzymes installing them have been linked to various human pathologies including neurodevelopmental disorders and cancers. Several methyltransferases (MTases) are regulated allosterically by human TRMT112 (Trm112 in Saccharomyces cerevisiae), but the interactome of this regulator and targets of its interacting MTases remain incompletely characterized. Here, we have investigated the interaction network of human TRMT112 in intact cells and identify three poorly characterized putative MTases (TRMT11, THUMPD3 and THUMPD2) as direct partners. We demonstrate that these three proteins are active N2-methylguanosine (m2G) MTases and that TRMT11 and THUMPD3 methylate positions 10 and 6 of tRNAs, respectively. For THUMPD2, we discovered that it directly associates with the U6 snRNA, a core component of the catalytic spliceosome, and is required for the formation of m2G, the last 'orphan' modification in U6 snRNA. Furthermore, our data reveal the combined importance of TRMT11 and THUMPD3 for optimal protein synthesis and cell proliferation as well as a role for THUMPD2 in fine-tuning pre-mRNA splicing.
Collapse
Affiliation(s)
- Can Wang
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Nathalie Ulryck
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Lydia Herzel
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Nicolas Pythoud
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI, FR2048 Strasbourg, France
| | - Nicole Kleiber
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Vincent Jactel
- Laboratoire de Synthèse Organique (LSO), CNRS, École polytechnique, ENSTA, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Chloé Moritz
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI, FR2048 Strasbourg, France
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI, FR2048 Strasbourg, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
91
|
Abellon-Ruiz J, Jana K, Silale A, Frey AM, Baslé A, Trost M, Kleinekathöfer U, van den Berg B. BtuB TonB-dependent transporters and BtuG surface lipoproteins form stable complexes for vitamin B 12 uptake in gut Bacteroides. Nat Commun 2023; 14:4714. [PMID: 37543597 PMCID: PMC10404256 DOI: 10.1038/s41467-023-40427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Vitamin B12 (cobalamin) is required for most human gut microbes, many of which are dependent on scavenging to obtain this vitamin. Since bacterial densities in the gut are extremely high, competition for this keystone micronutrient is severe. Contrasting with Enterobacteria, members of the dominant genus Bacteroides often encode several BtuB vitamin B12 outer membrane transporters together with a conserved array of surface-exposed B12-binding lipoproteins. Here we show that the BtuB transporters from Bacteroides thetaiotaomicron form stable, pedal bin-like complexes with surface-exposed BtuG lipoprotein lids, which bind B12 with high affinities. Closing of the BtuG lid following B12 capture causes destabilisation of the bound B12 by a conserved BtuB extracellular loop, causing translocation of the vitamin to BtuB and subsequent transport. We propose that TonB-dependent, lipoprotein-assisted small molecule uptake is a general feature of Bacteroides spp. that is important for the success of this genus in colonising the human gut.
Collapse
Affiliation(s)
- Javier Abellon-Ruiz
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Kalyanashis Jana
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Augustinas Silale
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andrew M Frey
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Arnaud Baslé
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Matthias Trost
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Bert van den Berg
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
92
|
Beaumal C, Beck A, Hernandez-Alba O, Carapito C. Advanced mass spectrometry workflows for accurate quantification of trace-level host cell proteins in drug products: Benefits of FAIMS separation and gas-phase fractionation DIA. Proteomics 2023; 23:e2300172. [PMID: 37148167 DOI: 10.1002/pmic.202300172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
Therapeutic monoclonal antibodies (mAb) production relies on multiple purification steps before release as a drug product (DP). A few host cell proteins (HCPs) may co-purify with the mAb. Their monitoring is crucial due to the considerable risk they represent for mAb stability, integrity, and efficacy and their potential immunogenicity. Enzyme-linked immunosorbent assays (ELISA) commonly used for global HCP monitoring present limitations in terms of identification and quantification of individual HCPs. Therefore, liquid chromatography tandem mass spectrometry (LC-MS/MS) has emerged as a promising alternative. Challenging DP samples show an extreme dynamic range requiring high performing methods to detect and reliably quantify trace-level HCPs. Here, we investigated the benefits of adding high-field asymmetric ion mobility spectrometry (FAIMS) separation and gas phase fractionation (GPF) prior to data independent acquisition (DIA). FAIMS LC-MS/MS analysis allowed the identification of 221 HCPs among which 158 were reliably quantified for a global amount of 880 ng/mg of NIST mAb Reference Material. Our methods have also been successfully applied to two FDA/EMA approved DPs and allowed digging deeper into the HCP landscape with the identification and quantification of a few tens of HCPs with sensitivity down to the sub-ng/mg of mAb level.
Collapse
Affiliation(s)
- Corentin Beaumal
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Alain Beck
- IRPF, Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| |
Collapse
|
93
|
Yan T, Julio AR, Villanueva M, Jones AE, Ball AB, Boatner LM, Turmon AC, Nguyễn KB, Yen SL, Desai HS, Divakaruni AS, Backus KM. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome. Cell Chem Biol 2023; 30:811-827.e7. [PMID: 37419112 PMCID: PMC10510412 DOI: 10.1016/j.chembiol.2023.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/01/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxICAT, Biotin Switch, and SP3-Rox, these methods typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. Here we establish the local cysteine capture (Cys-LoC) and local cysteine oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole-cell proteomic analysis. Application of the Cys-LOx method to LPS-stimulated immortalized murine bone marrow-derived macrophages (iBMDM), revealed previously unidentified, mitochondrially localized cysteine oxidative modifications upon pro-inflammatory activation, including those associated with oxidative mitochondrial metabolism.
Collapse
Affiliation(s)
- Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Ashley R Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Andréa B Ball
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Alexandra C Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Kaitlyn B Nguyễn
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Stephanie L Yen
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA; DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
94
|
Ukkola I, Nummela P, Heiskanen A, Holm M, Zafar S, Kero M, Haglund C, Satomaa T, Kytölä S, Ristimäki A. N-Glycomic Profiling of Microsatellite Unstable Colorectal Cancer. Cancers (Basel) 2023; 15:3571. [PMID: 37509233 PMCID: PMC10376987 DOI: 10.3390/cancers15143571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Aberrant glycosylation affects cancer progression and immune evasion. Approximately 15% of colorectal cancers (CRCs) demonstrate microsatellite instability (MSI) and display major differences in outcomes and therapeutic responses, as compared to corresponding microsatellite stable (MSS) tumors. We compared the N-glycan profiles of stage II and IV MSI CRC tumors, further subdivided into BRAFV600E wild-type and mutated subgroups (n = 10 in each subgroup), with each other and with those of paired non-neoplastic mucosal samples using mass spectrometry. Further, the N-glycans of BRAFV600E wild-type stage II MSI tumors were compared to corresponding MSS tumors (n = 9). Multiple differences in N-glycan profiles were identified between the MSI CRCs and control tissues, as well as between the stage II MSI and MSS samples. The MSI CRC tumors showed a lower relative abundance of high-mannose N-glycans than did the control tissues or the MSS CRCs. Among MSI CRC subgroups, acidic N-glycans showed tumor stage and BRAF mutation status-dependent variation. Specifically, the large, sulfated/phosphorylated, and putative terminal N-acetylhexosamine-containing acidic N-glycans differed between the MSI CRC subgroups, showing opposite changes in stages II and IV, when comparing BRAF mutated and wild-type tumors. Our results show that molecular subgroups of CRC exhibit characteristic glycan profiles that may explain certain carcinogenic properties of MSI tumors.
Collapse
Affiliation(s)
- Iiris Ukkola
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| | - Pirjo Nummela
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| | | | - Matilda Holm
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Surgery, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Sadia Zafar
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| | - Mia Kero
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Caj Haglund
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Surgery, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Tero Satomaa
- Glykos Finland Co., Ltd., 00790 Helsinki, Finland
| | - Soili Kytölä
- HUSLAB, Department of Genetics, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Ari Ristimäki
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
95
|
Baijal K, Abramchuk I, Herrera CM, Stephen Trent M, Lavallée-Adam M, Downey M. Proteomics analysis reveals a role for E. coli polyphosphate kinase in membrane structure and polymyxin resistance during starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.546892. [PMID: 37461725 PMCID: PMC10350021 DOI: 10.1101/2023.07.06.546892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Polyphosphates (polyP) are chains of inorganic phosphates that can reach over 1000 residues in length. In Escherichia coli, polyP is produced by the polyP kinase (PPK) and is thought to play a protective role during the response to cellular stress. However, the molecular pathways impacted by PPK activity and polyP accumulation remain poorly characterized. In this work we used label-free mass spectrometry to study the response of bacteria that cannot produce polyP (∆ppk) during starvation to identify novel pathways regulated by PPK. In response to starvation, we found 92 proteins significantly differentially expressed between wild-type and ∆ppk mutant cells. Wild-type cells were enriched for proteins related to amino acid biosynthesis and transport, while Δppk mutants were enriched for proteins related to translation and ribosome biogenesis, suggesting that without PPK, cells remain inappropriately primed for growth even in the absence of required building blocks. From our dataset, we were particularly interested in Arn and EptA proteins, which were downregulated in ∆ppk mutants compared to wild-type controls, because they play a role in lipid A modifications linked to polymyxin resistance. Using western blotting, we confirm differential expression of these and related proteins, and provide evidence that this mis-regulation in ∆ppk cells stems from a failure to induce the BasS/BasR two-component system during starvation. We also show that ∆ppk mutants unable to upregulate Arn and EptA expression lack the respective L-Ara4N and pEtN modifications on lipid A. In line with this observation, loss of ppk restores polymyxin sensitivity in resistant strains carrying a constitutively active basR allele. Overall, we show a new role for PPK in lipid A modification during starvation and provide a rationale for targeting PPK to sensitize bacteria towards polymyxin treatment. We further anticipate that our proteomics work will provide an important resource for researchers interested in the diverse pathways impacted by PPK.
Collapse
Affiliation(s)
- Kanchi Baijal
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Iryna Abramchuk
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carmen M. Herrera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
96
|
Yao Y, Bade R, Li G, Zhang A, Zhao H, Fan L, Zhu R, Yuan J. Global-Scale Profiling of Differential Expressed Lysine-Lactylated Proteins in the Cerebral Endothelium of Cerebral Ischemia-Reperfusion Injury Rats. Cell Mol Neurobiol 2023; 43:1989-2004. [PMID: 36030297 PMCID: PMC11412193 DOI: 10.1007/s10571-022-01277-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Abstract
Acute ischemic stroke (AIS) is a serious threat to human health. Following AIS, cerebral ischemia-reperfusion injury (CIRI) must be treated to improve prognosis. By combining 4D label-free quantitative proteomics with lactylation modification-specific proteomics analysis, we assessed lysine lactylation (Kla) in cortical proteins of a CIRI rat model. We identified a total of 1003 lactylation sites on 469 proteins in this study, gathering quantitative information (PXD034232) on 660 of 310 proteins, which were further classified by cell composition, molecular function, and biological processes. In addition, we analyzed the metabolic pathways, domains, and protein-protein interaction networks. Lastly, we evaluated differentially expressed lysine lactylation sites, determining 49 upregulated proteins and 99 downregulated proteins with 54 upregulated sites and 54 downregulated sites in the experimental group in comparison with the healthy control group. Moreover, we identified the Kla of Scl25a4 and Slc25a5 in the Ca2+ signaling pathway, but the Kla of Vdac1 was eliminated, as confirmed in vivo. Overall, these results provide new insights into lactylation involved in the underlying mechanism of CIRI because this post-translational modification affects the mitochondrial apoptosis pathway and mediates neuronal death. Therefore, this study may enable us to develop new molecules with therapeutic properties, which have both theoretical significance and broad clinical application prospects. A new model of cerebral ischemia-reperfusion injury (CIRI) induced by lactylation through the regulation of key proteins of the Ca2+ signaling pathway.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Neurology, Inner Mongolia People's Hospital, Hohhot, 010017, China.
- Inner Mongolia University People's Hospital, Hohhot, 010017, China.
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Rengui Bade
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014060, China
- Medical College of Neuroscience Institute, School of Medical Technology and Anesthesiology, Baotou Medical College, Baotou, 014060, China
| | - Guotao Li
- Inner Mongolia University People's Hospital, Hohhot, 010017, China
| | - Aoqi Zhang
- Inner Mongolia University People's Hospital, Hohhot, 010017, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Haile Zhao
- Inner Mongolia University People's Hospital, Hohhot, 010017, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014060, China
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Runxiu Zhu
- Department of Neurology, Inner Mongolia People's Hospital, Hohhot, 010017, China.
- Inner Mongolia University People's Hospital, Hohhot, 010017, China.
| | - Jun Yuan
- Department of Neurology, Inner Mongolia People's Hospital, Hohhot, 010017, China.
- Inner Mongolia University People's Hospital, Hohhot, 010017, China.
| |
Collapse
|
97
|
Potts M, Fletcher-Etherington A, Nightingale K, Mescia F, Bergamaschi L, Calero-Nieto FJ, Antrobus R, Williamson J, Parsons H, Huttlin EL, Kingston N, Göttgens B, Bradley JR, Lehner PJ, Matheson NJ, Smith KGC, Wills MR, Lyons PA, Weekes MP. Proteomic analysis of circulating immune cells identifies cellular phenotypes associated with COVID-19 severity. Cell Rep 2023; 42:112613. [PMID: 37302069 PMCID: PMC10243220 DOI: 10.1016/j.celrep.2023.112613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Certain serum proteins, including C-reactive protein (CRP) and D-dimer, have prognostic value in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nonetheless, these factors are non-specific, providing limited mechanistic insight into the peripheral blood mononuclear cell (PBMC) populations that drive the pathogenesis of severe COVID-19. To identify cellular phenotypes associated with disease, we performed a comprehensive, unbiased analysis of total and plasma-membrane PBMC proteomes from 40 unvaccinated individuals with SARS-CoV-2, spanning the whole disease spectrum. Combined with RNA sequencing (RNA-seq) and flow cytometry from the same donors, we define a comprehensive multi-omic profile for each severity level, revealing that immune-cell dysregulation progresses with increasing disease. The cell-surface proteins CEACAMs1, 6, and 8, CD177, CD63, and CD89 are strongly associated with severe COVID-19, corresponding to the emergence of atypical CD3+CD4+CEACAM1/6/8+CD177+CD63+CD89+ and CD16+CEACAM1/6/8+ mononuclear cells. Utilization of these markers may facilitate real-time patient assessment by flow cytometry and identify immune populations that could be targeted to ameliorate immunopathology.
Collapse
Affiliation(s)
- Martin Potts
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alice Fletcher-Etherington
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Federica Mescia
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Laura Bergamaschi
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - James Williamson
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Harriet Parsons
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Berthold Göttgens
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 OAW, UK
| | - John R Bradley
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Nicholas J Matheson
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; NHS Blood and Transplant, Cambridge CB2 0PT, UK
| | - Kenneth G C Smith
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Mark R Wills
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
98
|
Ramírez CR, Espino JA, Jones LM, Polasky DA, Nesvizhskii AI. Efficient Analysis of Proteome-wide FPOP Data by FragPipe. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543263. [PMID: 37333157 PMCID: PMC10274679 DOI: 10.1101/2023.06.01.543263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Monitoring protein structure before and after perturbations can give insights into the role and function of proteins. Fast photochemical oxidation of proteins (FPOP) coupled with mass spectrometry (MS) allows monitoring of structural rearrangements by exposing proteins to OH radicals that oxidize solvent accessible residues, indicating protein regions undergoing movement. Some of the benefits of FPOP include high throughput and lack of scrambling due to label irreversibility. However, the challenges of processing FPOP data have thus far limited its proteome-scale uses. Here, we present a computational workflow for fast and sensitive analysis of FPOP datasets. Our workflow combines the speed of MSFragger search with a unique hybrid search method to restrict the large search space of FPOP modifications. Together, these features enable more than 10-fold faster FPOP searches that identify 50% more modified peptide spectra than previous methods. We hope this new workflow will increase the accessibility of FPOP to enable more protein structure and function relationships to be explored.
Collapse
Affiliation(s)
| | - Jessica Arlett Espino
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21202, USA
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21202, USA
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
99
|
Murashov AK, Pak ES, Mar J, O’Brien K, Fisher-Wellman K, Bhat KM. Paternal Western diet causes transgenerational increase in food consumption in Drosophila with parallel alterations in the offspring brain proteome and microRNAs. FASEB J 2023; 37:e22966. [PMID: 37227156 PMCID: PMC10234493 DOI: 10.1096/fj.202300239rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
Several lines of evidence indicate that ancestral diet might play an important role in determining offspring's metabolic traits. However, it is not yet clear whether ancestral diet can affect offspring's food choices and feeding behavior. In the current study, taking advantage of Drosophila model system, we demonstrate that paternal Western diet (WD) increases offspring food consumption up to the fourth generation. Paternal WD also induced alterations in F1 offspring brain proteome. Using enrichment analyses of pathways for upregulated and downregulated proteins, we found that upregulated proteins had significant enrichments in terms related to translation and translation factors, whereas downregulated proteins displayed enrichments in small molecule metabolic processes, TCA cycles, and electron transport chain (ETC). Using MIENTURNET miRNA prediction tool, dme-miR-10-3p was identified as the top conserved miRNA predicted to target proteins regulated by ancestral diet. RNAi-based knockdown of miR-10 in the brain significantly increased food consumption, implicating miR-10 as a potential factor in programming feeding behavior. Together, these findings suggest that ancestral nutrition may influence offspring feeding behavior through alterations in miRNAs.
Collapse
Affiliation(s)
- Alexander K. Murashov
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Elena S. Pak
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Jordan Mar
- Department of Molecular Medicine, University of South Florida, Tampa, FL
| | - Kevin O’Brien
- Department of Biostatistics, College of Allied Health Sciences, East Carolina University, Greenville, NC
| | - Kelsey Fisher-Wellman
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Krishna M. Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
100
|
Moran JJ, Bernstein HC, Mobberley JM, Thompson AM, Kim YM, Dana KL, Cory AB, Courtney S, Renslow RS, Fredrickson JK, Kreuzer HW, Lipton MS. Daylight-driven carbon exchange through a vertically structured microbial community. Front Microbiol 2023; 14:1139213. [PMID: 37303779 PMCID: PMC10251406 DOI: 10.3389/fmicb.2023.1139213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Interactions between autotrophs and heterotrophs are central to carbon (C) exchange across trophic levels in essentially all ecosystems and metabolite exchange is a frequent mechanism for distributing C within spatially structured ecosystems. Yet, despite the importance of C exchange, the timescales at which fixed C is transferred in microbial communities is poorly understood. We employed a stable isotope tracer combined with spatially resolved isotope analysis to quantify photoautotrophic uptake of bicarbonate and track subsequent exchanges across a vertical depth gradient in a stratified microbial mat over a light-driven diel cycle. We observed that C mobility, both across the vertical strata and between taxa, was highest during periods of active photoautotrophy. Parallel experiments with 13C-labeled organic substrates (acetate and glucose) showed comparably less exchange of C within the mat. Metabolite analysis showed rapid incorporation of 13C into molecules that can both comprise a portion of the extracellular polymeric substances in the system and serve to transport C between photoautotrophs and heterotrophs. Stable isotope proteomic analysis revealed rapid C exchange between cyanobacterial and associated heterotrophic community members during the day with decreased exchange at night. We observed strong diel control on the spatial exchange of freshly fixed C within tightly interacting mat communities suggesting a rapid redistribution, both spatially and taxonomically, primarily during daylight periods.
Collapse
Affiliation(s)
- James J. Moran
- Pacific Northwest National Laboratory, Richland, WA, United States
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Hans C. Bernstein
- Pacific Northwest National Laboratory, Richland, WA, United States
- Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
- ARC – The Arctic Centre for Sustainable Energy, UiT The Arctic University of Norway, Tromsø, Norway
| | | | | | - Young-Mo Kim
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Karl L. Dana
- Pacific Northwest National Laboratory, Richland, WA, United States
| | | | - Steph Courtney
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Ryan S. Renslow
- Pacific Northwest National Laboratory, Richland, WA, United States
| | | | - Helen W. Kreuzer
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Mary S. Lipton
- Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|