51
|
Wang X, Ouyang F, Feng L, Wang X, Liu Z, Zhang J. Maternal Urinary Triclosan Concentration in Relation to Maternal and Neonatal Thyroid Hormone Levels: A Prospective Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:067017. [PMID: 28669941 PMCID: PMC5743753 DOI: 10.1289/ehp500] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/05/2016] [Accepted: 11/07/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Triclosan (TCS) is a synthetic antibacterial chemical widely used in personal care products. TCS exposure has been associated with decreased thyroid hormone levels in animals, but human studies are scarce and controversial. OBJECTIVE We evaluated the association between maternal TCS exposure and thyroid hormone levels of mothers and newborns. METHODS TCS was measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in urine samples collected during gestational weeks 38.8±1.1 from 398 pregnant women in a prospective birth cohort enrolled in 2012-2013 in Shanghai, China. Maternal serum levels of free thyroxine (FT4), thyroid-stimulating hormone (TSH), and thyroid peroxidase antibody (TPOAb) were obtained from medical records. Cord blood levels of free triiodothyronine (FT3), FT4, TSH, and TPOAb were measured. Multiple linear and logistic regression models were used to examine the relationship between maternal urinary TCS and thyroid hormone levels. RESULTS TCS was detectable (≥0.1 ng/mL) in 98.24% of maternal urine samples with tertile of urinary TCS levels: low (>0.1-2.75 μg/g.Cr), medium (2.75–9.78 μg/g.Cr), and high (9.78–427.38 μg/g.Cr). With adjustment for potential confounders, cord blood log(FT3)pmol/L concentration was 0.11 lower in newborns of mothers with medium and high urinary TCS levels compared with those with low levels. At third trimester, the high TCS concentration was associated with 0.03 [95% confidence interval (CI) −0.08, −0.02] lower maternal serum log(FT4)pmol/L, whereas the medium TCS concentration was associated with 0.15 (95% CI: −0.28, −0.03) lower serum log(TSH)mIU/L with adjustment for covariates. CONCLUSIONS Our results suggest significant inverse associations between maternal urinary TCS and cord blood FT3 as well as maternal blood FT4 concentrations at third trimester. https://doi.org/10.1289/EHP500.
Collapse
Affiliation(s)
- Xu Wang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengxiu Ouyang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xia Wang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Liu
- Department of Neonatology, International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
52
|
Halden RU, Lindeman AE, Aiello AE, Andrews D, Arnold WA, Fair P, Fuoco RE, Geer LA, Johnson PI, Lohmann R, McNeill K, Sacks VP, Schettler T, Weber R, Zoeller RT, Blum A. The Florence Statement on Triclosan and Triclocarban. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:064501. [PMID: 28632490 PMCID: PMC5644973 DOI: 10.1289/ehp1788] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 05/20/2023]
Abstract
The Florence Statement on Triclosan and Triclocarban documents a consensus of more than 200 scientists and medical professionals on the hazards of and lack of demonstrated benefit from common uses of triclosan and triclocarban. These chemicals may be used in thousands of personal care and consumer products as well as in building materials. Based on extensive peer-reviewed research, this statement concludes that triclosan and triclocarban are environmentally persistent endocrine disruptors that bioaccumulate in and are toxic to aquatic and other organisms. Evidence of other hazards to humans and ecosystems from triclosan and triclocarban is presented along with recommendations intended to prevent future harm from triclosan, triclocarban, and antimicrobial substances with similar properties and effects. Because antimicrobials can have unintended adverse health and environmental impacts, they should only be used when they provide an evidence-based health benefit. Greater transparency is needed in product formulations, and before an antimicrobial is incorporated into a product, the long-term health and ecological impacts should be evaluated. https://doi.org/10.1289/EHP1788.
Collapse
Affiliation(s)
- Rolf U Halden
- Biodesign Center for Environmental Security, Arizona State University , Tempe, Arizona, USA
| | | | - Allison E Aiello
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina , Chapel Hill, North Carolina, USA
| | - David Andrews
- Environmental Working Group, Washington, District of Columbia, USA
| | - William A Arnold
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota , Minneapolis, Minnesota, USA
| | - Patricia Fair
- Medical University of South Carolina , Department of Public Health Sciences, Charleston, South Carolina, USA
| | - Rebecca E Fuoco
- Health Research Communication Strategies , Los Angeles, California, USA
| | - Laura A Geer
- Department of Environmental and Occupational Health Sciences, State University of New York, Downstate School of Public Health , Brooklyn, New York, USA
| | - Paula I Johnson
- California Safe Cosmetics Program, California Department of Public Health , Richmond, California, USA
| | - Rainer Lohmann
- University of Rhode Island Graduate School of Oceanography , Narragansett, Rhode Island, USA
| | - Kristopher McNeill
- Institute for Biogeochemistry and Pollutant Dynamics , ETH Zurich, Zurich, Switzerland
| | | | - Ted Schettler
- Science and Environmental Health Network, Ames, Iowa, USA
| | - Roland Weber
- POPs Environmental Consulting, Schwäbisch Gmünd, Germany
| | - R Thomas Zoeller
- University of Massachusetts Amherst , Amherst, Massachusetts, USA
| | - Arlene Blum
- Department of Chemistry, University of California at Berkeley , Berkeley, California, USA
| |
Collapse
|
53
|
Prichystalova R, Fini JB, Trasande L, Bellanger M, Demeneix B, Maxim L. Comparison of methods for calculating the health costs of endocrine disrupters: a case study on triclosan. Environ Health 2017; 16:55. [PMID: 28599657 PMCID: PMC5466740 DOI: 10.1186/s12940-017-0265-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Socioeconomic analysis is currently used in the Europe Union as part of the regulatory process in Regulation Registration, Evaluation and Authorisation of Chemicals (REACH), with the aim of assessing and managing risks from dangerous chemicals. The political impact of the socio-economic analysis is potentially high in the authorisation and restriction procedures, however, current socio-economic analysis dossiers submitted under REACH are very heterogeneous in terms of methodology used and quality. Furthermore, the economic literature is not very helpful for regulatory purposes, as most published calculations of health costs associated with chemical exposures use epidemiological studies as input data, but such studies are rarely available for most substances. The quasi-totality of the data used in the REACH dossiers comes from toxicological studies. METHODS This paper assesses the use of the integrated probabilistic risk assessment, based on toxicological data, for the calculation of health costs associated with endocrine disrupting effects of triclosan. The results are compared with those obtained using the population attributable fraction, based on epidemiological data. RESULTS The results based on the integrated probabilistic risk assessment indicated that 4894 men could have reproductive deficits based on the decreased vas deferens weights observed in rats, 0 cases of changed T3 levels, and 0 cases of girls with early pubertal development. The results obtained with the Population Attributable Fraction method showed 7,199,228 cases of obesity per year, 281,923 girls per year with early pubertal development and 88,957 to 303,759 cases per year with increased total T3 hormone levels. The economic costs associated with increased BMI due to TCS exposure could be calculated. Direct health costs were estimated at €5.8 billion per year. CONCLUSIONS The two methods give very different results for the same effects. The choice of a toxicological-based or an epidemiological-based method in the socio-economic analysis will therefore significantly impact the estimated health costs and consequently the political risk management decision. Additional work should be done for understanding the reasons of these significant differences.
Collapse
Affiliation(s)
- Radka Prichystalova
- Institut des Sciences de la Communication (UMS 3665), CNRS (Centre National de la Recherche Scientifique)/Université Paris Sorbonne/UPMC (Université Pierre et Marie Curie), 20 rue Berbier du Mets, 75013 Paris, France
| | - Jean-Baptiste Fini
- Sorbonne Universités, CNRS UMR 7221, RDDM, Muséum d’Histoire Naturelle, F-75005 Paris, France
| | - Leonardo Trasande
- Department of Pediatrics, NYU School of Medicine, 403 E 34th St, New York, NY 10016 USA
| | - Martine Bellanger
- School of Public Health, University Sorbonne Paris Cité, EA7348 MOS, Paris, France
| | - Barbara Demeneix
- Sorbonne Universités, CNRS UMR 7221, RDDM, Muséum d’Histoire Naturelle, F-75005 Paris, France
| | - Laura Maxim
- Institut des Sciences de la Communication (UMS 3665), CNRS (Centre National de la Recherche Scientifique)/Université Paris Sorbonne/UPMC (Université Pierre et Marie Curie), 20 rue Berbier du Mets, 75013 Paris, France
| |
Collapse
|
54
|
Martínez-Paz P, Morales M, Urien J, Morcillo G, Martínez-Guitarte JL. Endocrine-related genes are altered by antibacterial agent triclosan in Chironomus riparius aquatic larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 140:185-190. [PMID: 28260683 DOI: 10.1016/j.ecoenv.2017.02.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Triclosan (TCS) is an antibacterial agent widely used in personal care and consumer products and commonly detected in aquatic ecosystems. In the present study, the effects of TCS on endocrine-related genes of Chironomus riparius aquatic larvae, a reference organism in aquatic toxicology, were evaluated. Twenty-four-hour in vivo exposures at 10µg/L, 100µg/L, and 1000µg/L TCS revealed that this xenobiotic was able to alter the transcriptional activity of ecdysone receptor gene (EcR), the ultraspiracle gene (usp), the estrogen-related receptor gene (ERR), and the E74 early ecdysone-inducible gene, as measured by real-time RT-PCR. Moreover, the hsp70 gene, a heat shock protein gene, was upregulated after exposure to TCS. The results of the present work provide the first evidence of the potential disruptive effects of TCS in endocrine-related genes suggesting a mode of action that mimics ecdysteroid hormones in insects.
Collapse
Affiliation(s)
- Pedro Martínez-Paz
- Grupo de Biología y Toxicología Ambiental. Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain.
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental. Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain
| | - Josune Urien
- Grupo de Biología y Toxicología Ambiental. Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental. Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain
| | - José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental. Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
55
|
Cao X, Hua X, Wang X, Chen L. Exposure of pregnant mice to triclosan impairs placental development and nutrient transport. Sci Rep 2017; 7:44803. [PMID: 28322267 PMCID: PMC5359620 DOI: 10.1038/srep44803] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/14/2017] [Indexed: 11/09/2022] Open
Abstract
Triclosan (TCS) is associated with spontaneous abortions and fetal growth restriction. Here, we showed that when pregnant mice were treated with 8 mg/kg TCS (8-TCS mice) on gestational days (GD) 6–18 fetal body weights were lower than controls. Placental weights and volumes were reduced in 8-TCS mice. The placental proliferative cells and expression of PCNA and Cyclin D3 on GD13 were remarkably decreased in 8-TCS mice. The decreases in activities and expression of placental System A amino acid or glucose transporters on GD14 and GD17 were observed in 8-TCS mice. Levels of serum thyroxine (T4) and triiodothyronine (T3) were lower in 8-TCS mice than those in controls. Declines of placental Akt, mTOR and P70S6K phosphorylation in 8-TCS mice were corrected by L-thyroxinein (T4). Treating 8-TCS mice with T4 rescued the placental cell proliferation and recovered the activity and expression of amino acid and glucose transporters, which were sensitive to mTOR inhibition by rapamycin. Furthermore, the replacement of T4 could rescue the decrease in fetal body weight, which was blocked by rapamycin. These findings indicate that TCS-induced hypothyroxinemia in gestation mice through reducing Akt-mTOR signaling may impair placental development and nutrient transfer leading to decreases in fetal body weight.
Collapse
Affiliation(s)
- Xinyuan Cao
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xu Hua
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoli Wang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.,Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
56
|
Zeng F, Lerro C, Lavoué J, Huang H, Siemiatycki J, Zhao N, Ma S, Deziel NC, Friesen MC, Udelsman R, Zhang Y. Occupational exposure to pesticides and other biocides and risk of thyroid cancer. Occup Environ Med 2017; 74:502-510. [PMID: 28202579 DOI: 10.1136/oemed-2016-103931] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 01/05/2017] [Accepted: 01/18/2017] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To assess the associations between occupational exposure to biocides and pesticides and risk of thyroid cancer. METHODS Using data from a population-based case-control study involving 462 incident thyroid cancer cases and 498 controls in Connecticut collected in 2010-2011, we examined the association with occupational exposure to biocides and pesticides through a job-exposure matrix. We used unconditional logistic regression models to estimate OR and 95% CI, adjusting for potential confounders. RESULTS Individuals who were occupationally ever exposed to biocides had an increased risk of thyroid cancer (OR=1.65, 95% CI 1.16 to 2.35), and the highest risk was observed for the high cumulative probability of exposure (OR=2.18, 95% CI 1.28 to 3.73). The observed associations were similar when we restricted to papillary thyroid cancer and well-differentiated thyroid cancer. Stronger associations were observed for thyroid microcarcinomas (tumour size ≤1 cm). No significant association was observed for occupational exposure to pesticides. CONCLUSIONS Our study provides the first evidence linking occupational exposure to biocides and risk of thyroid cancer. The results warrant further investigation.
Collapse
Affiliation(s)
- Fanhua Zeng
- Chongqing Safety Engineering Institute, Chongqing University of Science and Technology, Chongqing, China.,Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Catherine Lerro
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Jérôme Lavoué
- Department of Environmental and Occupational Health, University of Montreal, Montreal, Canada
| | - Huang Huang
- Department of Surgery, Section of Surgical Outcomes and Epidemiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jack Siemiatycki
- Department of Environmental and Occupational Health, University of Montreal, Montreal, Canada
| | - Nan Zhao
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Melissa C Friesen
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Udelsman
- Department of Surgery and Yale Cancer Center, Yale School of Medicine, Yale New Haven Hospital, New Haven, Connecticut, USA
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA.,Department of Surgery, Section of Surgical Outcomes and Epidemiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
57
|
Mihaich E, Capdevielle M, Urbach-Ross D, Slezak B. Hypothesis-driven weight-of-evidence analysis of endocrine disruption potential: a case study with triclosan. Crit Rev Toxicol 2017; 47:263-285. [DOI: 10.1080/10408444.2016.1269722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ellen Mihaich
- Environmental and Regulatory Resources, LLC, Durham, NC, USA
| | | | | | | |
Collapse
|
58
|
Louis GW, Hallinger DR, Braxton MJ, Kamel A, Stoker TE. Effects of chronic exposure to triclosan on reproductive and thyroid endpoints in the adult Wistar female rat. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:236-249. [PMID: 28569618 PMCID: PMC5994608 DOI: 10.1080/15287394.2017.1287029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Triclosan (TCS), an antibacterial, has been shown to be an endocrine disruptor in the rat. Previously, subchronic TCS treatment to female rats was found to advance puberty and potentiate the effect of ethinyl estradiol (EE) on uterine growth when EE and TCS were co-administered prior to weaning. In the pubertal study, a decrease in serum thyroxine (T4) concentrations with no significant change in serum thyroid-stimulating hormone (TSH) was also observed. The purpose of the present study was to further characterize the influence of TCS on the reproductive and thyroid axes of the female rat using a chronic exposure regimen. Female Wistar rats were exposed by oral gavage to vehicle control, EE (1 μg/kg), or TCS (2.35, 4.69, 9.375 or 37.5 mg/kg) for 8 months and estrous cyclicity monitored. Although a divergent pattern of reproductive senescence appeared to emerge from 5 to 11 months of age between controls and EE-treated females, no significant difference in cyclicity was noted between TCS-treated and control females. A higher % control females displayed persistent diestrus (PD) by the end of the study, whereas animals administered with positive control (EE) were predominately persistent estrus (PE). Thyroxine concentration was significantly decreased in TCS-administered 9.375 and 37.5 mg/kg groups, with no marked effects on TSH levels, thyroid tissue weight, or histology. Results demonstrate that a long-term exposure to TCS did not significantly alter estrous cyclicity or timing of reproductive senescence in females but suppressed T4 levels at a lower dose than previously observed.
Collapse
Affiliation(s)
- Gwendolyn W. Louis
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
- Oak Ridge Institute for Science and Education (ORISE), US Department of Energy, Oak Ridge, TN, USA
| | - Daniel R. Hallinger
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
| | - M. Janay Braxton
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
| | - Alaa Kamel
- Analytical Chemistry Branch, Biological and Economic Analysis Division, Office of Pesticide Programs, U.S. EPA, Fort Meade, MD, USA
| | - Tammy E. Stoker
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
| |
Collapse
|
59
|
Weatherly LM, Gosse JA. Triclosan exposure, transformation, and human health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:447-469. [PMID: 29182464 PMCID: PMC6126357 DOI: 10.1080/10937404.2017.1399306] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Triclosan (TCS) is an antimicrobial used so ubiquitously that 75% of the US population is likely exposed to this compound via consumer goods and personal care products. In September 2016, TCS was banned from soap products following the risk assessment by the US Food and Drug Administration (FDA). However, TCS still remains, at high concentrations, in other personal care products such as toothpaste, mouthwash, hand sanitizer, and surgical soaps. TCS is readily absorbed into human skin and oral mucosa and found in various human tissues and fluids. The aim of this review was to describe TCS exposure routes and levels as well as metabolism and transformation processes. The burgeoning literature on human health effects associated with TCS exposure, such as reproductive problems, was also summarized.
Collapse
Affiliation(s)
- Lisa M. Weatherly
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Julie A. Gosse
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| |
Collapse
|
60
|
Ruszkiewicz JA, Li S, Rodriguez MB, Aschner M. Is Triclosan a neurotoxic agent? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:104-117. [PMID: 28339349 DOI: 10.1080/10937404.2017.1281181] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS) is an antibacterial agent that has been used in many products since 1960s. Given its broad usage as an antiseptic TCS is present ubiquitously in the environment. Trace levels of TCS continue to be detected in many organisms, and it has been shown to be particularly toxic to aquatic species. The mechanisms underlying TCS-mediated toxicity include hormone dyshomeostasis, induction of oxidative stress, apoptosis and inflammation. Although TCS has been considered to be non-toxic to mammals, the adverse effects of continuous, long-term and low concentration exposure remain unknown. Epidemiological studies revealed that levels of TCS in human tissues, urine, plasma and breast milk correlate with the usage of this antimicrobial. This led to concerns regarding TCS safety and potential toxicity in humans, with special emphasis on early development. The Food and Drug Administration (FDA) recently issued a directive banning the use of TCS in consumer soaps, justifying the move attributed to data gaps on its effectiveness and safety, indicating the need for more studies addressing this chemical-mediated effects on various tissues including the central nervous system (CNS). The aim of this review was to (1) summarize the current findings on the neurotoxic effects of TCS and given the paucity of data, to (2) broaden the discussion to other effects of TCS, which might plausibly be related to neuronal functions.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- a Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , United States
| | - Shaojun Li
- b Department of Toxicology, School of Public Health , Guangxi Medical University , Guangxi , China
| | - Maliya B Rodriguez
- a Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , United States
| | - Michael Aschner
- a Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , United States
| |
Collapse
|
61
|
Schnitzler JG, Frédérich B, Dussenne M, Klaren PHM, Silvestre F, Das K. Triclosan exposure results in alterations of thyroid hormone status and retarded early development and metamorphosis in Cyprinodon variegatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 181:1-10. [PMID: 27810487 DOI: 10.1016/j.aquatox.2016.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/10/2016] [Accepted: 10/22/2016] [Indexed: 06/06/2023]
Abstract
Thyroid hormones are critically involved in somatic growth, development and metamorphosis of vertebrates. The structural similarity between thyroid hormones and triclosan, an antimicrobial compound widely employed in consumer personal care products, suggests triclosan can have adverse effects on the thyroid system. The sheepshead minnow, Cyprinodon variegatus, is now used in ecotoxicological studies that have recently begun to focus on potential disruption of the thyroid axis by endocrine disrupting compounds. Here, we investigate the in vivo effects of exposure to triclosan (20, 50, and 100μgL-1) on the thyroid system and the embryonic and larval development of C. variegatus. Triclosan exposure did not affect hatching success, but delayed hatching time by 6-13h compared to control embryos. Triclosan exposure affected the ontogenetic variations of whole body thyroid hormone concentrations during the larval phase. The T3 peak around 12-15 dph, described to be indicative for the metamorphosis climax in C. variegatus, was absent in triclosan-exposed larvae. Triclosan exposure did not produce any deformity or allometric repatterning, but a delayed development of 18-32h was observed. We conclude that the triclosan-induced disruption of the thyroid system delays in vivo the start of metamorphosis in our experimental model. We observed a global developmental delay of 24-45h, equivalent to 4-7% prolongation of the developmental time in C. variegatus. The costs of delayed metamorphosis can lead to reduction of juvenile fitness and could be a determining factor in the outcome of competitive interactions.
Collapse
Affiliation(s)
| | - Bruno Frédérich
- Laboratoire de Morphologie Fonctionnelle et Evolutive, AFFISH Research Center, Liège University, Liège, Belgium.
| | - Mélanie Dussenne
- Laboratory of Oceanology, MARE, B6c, Liège University, Liège, Belgium.
| | - Peter H M Klaren
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology-URBE, UNamur, B-5000 Namur, Belgium.
| | - Krishna Das
- Laboratory of Oceanology, MARE, B6c, Liège University, Liège, Belgium.
| |
Collapse
|
62
|
Szychowski KA, Wnuk A, Kajta M, Wójtowicz AK. Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons. ENVIRONMENTAL RESEARCH 2016; 151:106-114. [PMID: 27474938 DOI: 10.1016/j.envres.2016.07.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitizing products, such as soaps, toothpastes, and hair products. A number of studies have revealed the presence of TCS in human tissues, such as fat, liver and brain, in addition to blood and breast milk. The aim of the present study was to investigate the impact of TCS on AhR and Cyp1a1/Cyp1b1 signaling in mouse neocortical neurons in primary cultures. In addition to the use of selective ligands and siRNAs, expression levels of mRNA and proteins as well as caspase-3 activity, reactive oxygen species (ROS) formation, and lactate dehydrogenase (LDH) release have been measured. We also studied the involvement of the AhR in TCS-induced LDH release and caspase-3 activation as well as the effect of TCS on ROS generation. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine, and the neurons were exposed to 1 and 10µM TCS. Our experiments showed that the expression of AhR and Cyp1a1 mRNA decreased in cells exposed to 10µM TCS for 3 or 6h. In the case of Cyp1b1, mRNA expression remained unchanged compared with the control group following 3h of exposure to TCS, but after 6h, the mRNA expression of Cyp1b1 was decreased. Our results confirmed that the AhR is involved in the TCS mechanism of action, and our data demonstrated that after the cells were transfected with AhR siRNA, the cytotoxic and pro-apoptotic properties of TCS were decreased. The decrease in Cyp1a1 mRNA and protein expression levels accompanied by a decrease in its activity. The stimulation of Cyp1a1 activity produced by the application of an AhR agonist (βNF) was attenuated by TCS, whereas the addition of AhR antagonist (αNF) reversed the inhibitory effects of TCS. In our experiments, TCS diminished Cyp1b1 mRNA and enhanced its protein expression. In case of Cyp1a1 we observed paradoxical effect of TCS action, which caused the decrease in activity and protein expression of Cyp1a1 and the increase in protein level of AhR. Therefore, we determined the effects of TCS on the production of ROS. Our results revealed that TCS increased the production of ROS and that this effect of TCS was reversed by 10µM N-acetyl-L-cysteine (NAC), the ROS scavenger. To confirm an involvement of ROS in TCS-induced neurotoxicity we measured AhR, Cyp1a1, and Cyp1b1 mRNA expression levels in cells co-treated with TCS and NAC. In the presence of NAC, TCS enhanced mRNA expression of the cytochromes and AhR at 3 and 6h, respectively. We postulate that TCS exhibits primary and secondary effects. The primary effects such as impairment of Cyp1a1 signaling are mediated by TCS-induced ROS production, whereas secondary effects of TCS are due to transcriptional activity of AhR and estrogenic properties of TCS.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; Department of Animal Biotechnology, Animal Sciences Faculty, University of Agriculture, Redzina 1B, 30-248 Krakow, Poland
| | - Agnieszka Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Małgorzata Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Anna K Wójtowicz
- Department of Animal Biotechnology, Animal Sciences Faculty, University of Agriculture, Redzina 1B, 30-248 Krakow, Poland.
| |
Collapse
|
63
|
Harley KG, Kogut K, Madrigal DS, Cardenas M, Vera IA, Meza-Alfaro G, She J, Gavin Q, Zahedi R, Bradman A, Eskenazi B, Parra KL. Reducing Phthalate, Paraben, and Phenol Exposure from Personal Care Products in Adolescent Girls: Findings from the HERMOSA Intervention Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1600-1607. [PMID: 26947464 PMCID: PMC5047791 DOI: 10.1289/ehp.1510514] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/08/2015] [Accepted: 02/18/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Personal care products are a source of exposure to potentially endocrine-disrupting chemicals such as phthalates, parabens, triclosan, and benzophenone-3 (BP-3) for adolescent girls. METHODS We enrolled 100 Latina girls in a youth-led, community-based participatory research intervention study to determine whether using personal care products whose labels stated they did not contain these chemicals for 3 days could lower urinary concentrations. Pre- and postintervention urine samples were analyzed for phthalate metabolites, parabens, triclosan, and BP-3 using high-performance liquid chromatography/tandem mass spectrometry. RESULTS Urinary concentrations of mono-ethyl phthalate (MEP) decreased by 27.4% (95% CI: -39.3, -13.2) on average over the 3-day intervention; no significant changes were seen in urinary concentrations of mono-n-butyl phthalate (MnBP) and mono-isobutyl phthalate (MiBP). Methyl and propyl paraben concentrations decreased by 43.9% (95% CI: -61.3, -18.8) and 45.4% (95% CI: -63.7, -17.9), respectively. Unexpectedly, concentrations of ethyl and butyl paraben concentrations increased, although concentrations were low overall and not detected in almost half the samples. Triclosan concentrations decreased by 35.7% (95% CI: -53.3, -11.6), and BP-3 concentrations decreased by 36.0% (95% CI: -51.0, -16.4). DISCUSSION This study demonstrates that techniques available to consumers, such as choosing personal care products that are labeled to be free of phthalates, parabens, triclosan, and BP-3, can reduce personal exposure to possible endocrine-disrupting chemicals. Involving youth in the design and implementation of the study was key to recruitment, retention, compliance, and acceptability of the intervention. CITATION Harley KG, Kogut K, Madrigal DS, Cardenas M, Vera IA, Meza-Alfaro G, She J, Gavin Q, Zahedi R, Bradman A, Eskenazi B, Parra KL. 2016. Reducing phthalate, paraben, and phenol exposure from personal care products in adolescent girls: findings from the HERMOSA Intervention Study. Environ Health Perspect 124:1600-1607; http://dx.doi.org/10.1289/ehp.1510514.
Collapse
Affiliation(s)
- Kim G. Harley
- Center for Environmental Research and Children’s Health (CERCH), University of California, Berkeley, Berkeley, California, USA
- Address correspondence to K.G. Harley, Center for Environmental Research and Children’s Health (CERCH), UC Berkeley, 1995 University Ave., Suite 265, Berkeley, CA 94704 USA. Telephone: (510) 643-1310. E-mail:
| | - Katherine Kogut
- Center for Environmental Research and Children’s Health (CERCH), University of California, Berkeley, Berkeley, California, USA
| | - Daniel S. Madrigal
- Center for Environmental Research and Children’s Health (CERCH), University of California, Berkeley, Berkeley, California, USA
| | - Maritza Cardenas
- Center for Environmental Research and Children’s Health (CERCH), University of California, Berkeley, Berkeley, California, USA
| | - Irene A. Vera
- Center for Environmental Research and Children’s Health (CERCH), University of California, Berkeley, Berkeley, California, USA
| | - Gonzalo Meza-Alfaro
- Center for Environmental Research and Children’s Health (CERCH), University of California, Berkeley, Berkeley, California, USA
| | - Jianwen She
- Environmental Health Laboratory, California Department of Public Heath, Richmond, California, USA
| | - Qi Gavin
- Environmental Health Laboratory, California Department of Public Heath, Richmond, California, USA
| | - Rana Zahedi
- Environmental Health Laboratory, California Department of Public Heath, Richmond, California, USA
| | - Asa Bradman
- Center for Environmental Research and Children’s Health (CERCH), University of California, Berkeley, Berkeley, California, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children’s Health (CERCH), University of California, Berkeley, Berkeley, California, USA
| | | |
Collapse
|
64
|
Arnold C. Toward a Better Beauty Regimen: Reducing Potential EDC Exposures from Personal Care Products. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:A188. [PMID: 27689913 PMCID: PMC5047787 DOI: 10.1289/ehp.124-a188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
65
|
Yueh MF, Tukey RH. Triclosan: A Widespread Environmental Toxicant with Many Biological Effects. Annu Rev Pharmacol Toxicol 2016; 56:251-72. [PMID: 26738475 DOI: 10.1146/annurev-pharmtox-010715-103417] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Triclosan (TCS) is a broad-spectrum antimicrobial agent that has been added to personal care products, including hand soaps and cosmetics, and impregnated in numerous different materials ranging from athletic clothing to food packaging. The constant disposal of TCS into the sewage system is creating a major environmental and public health hazard. Owing to its chemical properties of bioaccumulation and resistance to degradation, TCS is widely detected in various environmental compartments in concentrations ranging from nanograms to micrograms per liter. Epidemiology studies indicate that significant levels of TCS are detected in body fluids in all human age groups. We document here the emerging evidence--from in vitro and in vivo animal studies and environmental toxicology studies--demonstrating that TCS exerts adverse effects on different biological systems through various modes of action. Considering the fact that humans are simultaneously exposed to TCS and many TCS-like chemicals, we speculate that TCS-induced adverse effects may be relevant to human health.
Collapse
Affiliation(s)
- Mei-Fei Yueh
- Laboratory of Environmental Toxicology, Department of Chemistry and Biochemistry and Department of Pharmacology, University of California, San Diego, La Jolla, California 92093; ,
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Chemistry and Biochemistry and Department of Pharmacology, University of California, San Diego, La Jolla, California 92093; ,
| |
Collapse
|
66
|
Verslycke T, Mayfield DB, Tabony JA, Capdevielle M, Slezak B. Human health risk assessment of triclosan in land-applied biosolids. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2358-2367. [PMID: 27552397 DOI: 10.1002/etc.3370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/24/2015] [Accepted: 01/08/2016] [Indexed: 06/06/2023]
Abstract
Triclosan (5-chloro-2-[2,4-dichlorophenoxy]-phenol) is an antimicrobial agent found in a variety of pharmaceutical and personal care products. Numerous studies have examined the occurrence and environmental fate of triclosan in wastewater, biosolids, biosolids-amended soils, and plants and organisms exposed to biosolid-amended soils. Triclosan has a propensity to adhere to organic carbon in biosolids and biosolid-amended soils. Land application of biosolids containing triclosan has the potential to contribute to multiple direct and indirect human health exposure pathways. To estimate exposures and human health risks from biosolid-borne triclosan, a risk assessment was conducted in general accordance with the methodology incorporated into the US Environmental Protection Agency's Part 503 biosolids rule. Human health exposures to biosolid-borne triclosan were estimated on the basis of published empirical data or modeled using upper-end environmental partitioning estimates. Similarly, a range of published triclosan human health toxicity values was evaluated. Margins of safety were estimated for 10 direct and indirect exposure pathways, both individually and combined. The present risk assessment found large margins of safety (>1000 to >100 000) for potential exposures to all pathways, even under the most conservative exposure and toxicity assumptions considered. The human health exposures and risks from biosolid-borne triclosan are concluded to be de minimis. Environ Toxicol Chem 2016;35:2358-2367. © 2016 SETAC.
Collapse
Affiliation(s)
| | | | | | | | - Brian Slezak
- Colgate-Palmolive Company, Piscataway, New Jersey, USA
| |
Collapse
|
67
|
Haggard DE, Noyes PD, Waters KM, Tanguay RL. Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish. Toxicol Appl Pharmacol 2016; 308:32-45. [PMID: 27538710 DOI: 10.1016/j.taap.2016.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/17/2016] [Accepted: 08/12/2016] [Indexed: 02/08/2023]
Abstract
Triclosan (TCS) is an antimicrobial agent commonly found in a variety of personal care products and cosmetics. TCS readily enters the environment through wastewater and is detected in human plasma, urine, and breast milk due to its widespread use. Studies have implicated TCS as a disruptor of thyroid and estrogen signaling; therefore, research examining the developmental effects of TCS is warranted. In this study, we used embryonic zebrafish to investigate the developmental toxicity and potential mechanism of action of TCS. Embryos were exposed to graded concentrations of TCS from 6 to 120hours post-fertilization (hpf) and the concentration where 80% of the animals had mortality or morbidity at 120hpf (EC80) was calculated. Transcriptomic profiling was conducted on embryos exposed to the EC80 (7.37μM). We identified a total of 922 significant differentially expressed transcripts (FDR adjusted P-value≤0.05; fold change ≥2). Pathway and gene ontology enrichment analyses identified biological networks and transcriptional hubs involving normal liver functioning, suggesting TCS may be hepatotoxic in zebrafish. Tissue-specific gene enrichment analysis further supported the role of the liver as a target organ for TCS toxicity. We also examined the in vitro bioactivity profile of TCS reported by the ToxCast screening program. TCS had a diverse bioactivity profile and was a hit in 217 of the 385 assay endpoints we identified. We observed similarities in gene expression and hepatic steatosis assays; however, hit data for TCS were more concordant with the hypothesized CAR/PXR activity of TCS from rodent and human in vitro studies.
Collapse
Affiliation(s)
- Derik E Haggard
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Pamela D Noyes
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States; Office of Science Coordination and Policy (OSCP), Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency, Washington, DC, United States
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
68
|
Potera C. An Informatics Approach to Reading the Label: Identifying Common Chemical Mixtures in Personal Care Products. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:A149. [PMID: 27479446 PMCID: PMC4977037 DOI: 10.1289/ehp.124-a149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
69
|
Johnson PI, Koustas E, Vesterinen HM, Sutton P, Atchley DS, Kim AN, Campbell M, Donald JM, Sen S, Bero L, Zeise L, Woodruff TJ. Application of the Navigation Guide systematic review methodology to the evidence for developmental and reproductive toxicity of triclosan. ENVIRONMENT INTERNATIONAL 2016; 92-93:716-28. [PMID: 27156197 PMCID: PMC4951161 DOI: 10.1016/j.envint.2016.03.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND There are reports of developmental and reproductive health effects associated with the widely used biocide triclosan. OBJECTIVE Apply the Navigation Guide systematic review methodology to answer the question: Does exposure to triclosan have adverse effects on human development or reproduction? METHODS We applied the first 3 steps of the Navigation Guide methodology: 1) Specify a study question, 2) Select the evidence, and 3) Rate quality and strength of the evidence. We developed a protocol, conducted a comprehensive search of the literature, and identified relevant studies using pre-specified criteria. We assessed the number and type of all relevant studies. We evaluated each included study for risk of bias and rated the quality and strength of the evidence for the selected outcomes. We conducted a meta-analysis on a subset of suitable data. RESULTS We found 4282 potentially relevant records, and 81 records met our inclusion criteria. Of the more than 100 endpoints identified by our search, we focused our evaluation on hormone concentration outcomes, which had the largest human and non-human mammalian data set. Three human studies and 8 studies conducted in rats reported thyroxine levels as outcomes. The rat data were amenable to meta-analysis. Because only one of the human thyroxine studies quantified exposure, we did not conduct a meta-analysis of the human data. Through meta-analysis of the data for rats, we estimated for prenatal exposure a 0.09% (95% CI: -0.20, 0.02) reduction in thyroxine concentration per mg triclosan/kg-bw in fetal and young rats compared to control. For postnatal exposure we estimated a 0.31% (95% CI: -0.38, -0.23) reduction in thyroxine per mg triclosan/kg-bw, also compared to control. Overall, we found low to moderate risk of bias across the human studies and moderate to high risk of bias across the non-human studies, and assigned a "moderate/low" quality rating to the body of evidence for human thyroid hormone alterations and a "moderate" quality rating to the body of evidence for non-human thyroid hormone alterations. CONCLUSION Based on this application of the Navigation Guide systematic review methodology, we concluded that there was "sufficient" non-human evidence and "inadequate" human evidence of an association between triclosan exposure and thyroxine concentrations, and consequently, triclosan is "possibly toxic" to reproductive and developmental health. Thyroid hormone disruption is an upstream indicator of developmental toxicity. Additional endpoints may be identified as being of equal or greater concern as other data are developed or evaluated.
Collapse
Affiliation(s)
- Paula I Johnson
- University of California San Francisco, Program on Reproductive Health and the Environment, Oakland, CA, USA.
| | - Erica Koustas
- ORISE Post-doctoral Fellowship, U.S. Environmental Protection Agency, Office of Policy, National Center for Environmental Economics, Washington, D.C., USA
| | - Hanna M Vesterinen
- University of California San Francisco, Program on Reproductive Health and the Environment, Oakland, CA, USA
| | - Patrice Sutton
- University of California San Francisco, Program on Reproductive Health and the Environment, Oakland, CA, USA
| | - Dylan S Atchley
- University of California San Francisco, Program on Reproductive Health and the Environment, Oakland, CA, USA
| | - Allegra N Kim
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, CA, USA
| | - Marlissa Campbell
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, CA, USA
| | - James M Donald
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, CA, USA
| | - Saunak Sen
- University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| | - Lisa Bero
- University of California San Francisco, Department of Clinical Pharmacy, San Francisco, CA, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, CA, USA
| | - Tracey J Woodruff
- University of California San Francisco, Program on Reproductive Health and the Environment, Oakland, CA, USA
| |
Collapse
|
70
|
Leonard JA, Tan YM, Gilbert M, Isaacs K, El-Masri H. Estimating Margin of Exposure to Thyroid Peroxidase Inhibitors Using High-Throughput in vitro Data, High-Throughput Exposure Modeling, and Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling. Toxicol Sci 2016; 151:57-70. [PMID: 26865668 PMCID: PMC4914794 DOI: 10.1093/toxsci/kfw022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some pharmaceuticals and environmental chemicals bind the thyroid peroxidase (TPO) enzyme and disrupt thyroid hormone production. The potential for TPO inhibition is a function of both the binding affinity and concentration of the chemical within the thyroid gland. The former can be determined through in vitro assays, and the latter is influenced by pharmacokinetic properties, along with environmental exposure levels. In this study, a physiologically based pharmacokinetic (PBPK) model was integrated with a pharmacodynamic (PD) model to establish internal doses capable of inhibiting TPO in relation to external exposure levels predicted through exposure modeling. The PBPK/PD model was evaluated using published serum or thyroid gland chemical concentrations or circulating thyroxine (T4) and triiodothyronine (T3) hormone levels measured in rats and humans. After evaluation, the model was used to estimate human equivalent intake doses resulting in reduction of T4 and T3 levels by 10% (ED10) for 6 chemicals of varying TPO-inhibiting potencies. These chemicals were methimazole, 6-propylthiouracil, resorcinol, benzophenone-2, 2-mercaptobenzothiazole, and triclosan. Margin of exposure values were estimated for these chemicals using the ED10 and predicted population exposure levels for females of child-bearing age. The modeling approach presented here revealed that examining hazard or exposure alone when prioritizing chemicals for risk assessment may be insufficient, and that consideration of pharmacokinetic properties is warranted. This approach also provides a mechanism for integrating in vitro data, pharmacokinetic properties, and exposure levels predicted through high-throughput means when interpreting adverse outcome pathways based on biological responses.
Collapse
Affiliation(s)
- Jeremy A Leonard
- *Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, 37831; National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, 27709
| | - Yu-Mei Tan
- National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, 27709
| | - Mary Gilbert
- National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, 27709
| | - Kristin Isaacs
- National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, 27709
| | - Hisham El-Masri
- National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, 27709
| |
Collapse
|
71
|
Paul Friedman K, Watt ED, Hornung MW, Hedge JM, Judson RS, Crofton KM, Houck KA, Simmons SO. Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries. Toxicol Sci 2016; 151:160-80. [PMID: 26884060 DOI: 10.1093/toxsci/kfw034] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
High-throughput screening for potential thyroid-disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limited in the U.S. Environmental Protection Agency ToxCast screening assay portfolio. To fill 1 critical screening gap, the Amplex UltraRed-thyroperoxidase (AUR-TPO) assay was developed to identify chemicals that inhibit TPO, as decreased TPO activity reduces TH synthesis. The ToxCast phase I and II chemical libraries, comprised of 1074 unique chemicals, were initially screened using a single, high concentration to identify potential TPO inhibitors. Chemicals positive in the single-concentration screen were retested in concentration-response. Due to high false-positive rates typically observed with loss-of-signal assays such as AUR-TPO, we also employed 2 additional assays in parallel to identify possible sources of nonspecific assay signal loss, enabling stratification of roughly 300 putative TPO inhibitors based upon selective AUR-TPO activity. A cell-free luciferase inhibition assay was used to identify nonspecific enzyme inhibition among the putative TPO inhibitors, and a cytotoxicity assay using a human cell line was used to estimate the cellular tolerance limit. Additionally, the TPO inhibition activities of 150 chemicals were compared between the AUR-TPO and an orthogonal peroxidase oxidation assay using guaiacol as a substrate to confirm the activity profiles of putative TPO inhibitors. This effort represents the most extensive TPO inhibition screening campaign to date and illustrates a tiered screening approach that focuses resources, maximizes assay throughput, and reduces animal use.
Collapse
Affiliation(s)
- Katie Paul Friedman
- *Oak Ridge Institute for Science Education Postdoctoral Fellow, Oak Ridge, TN, 37831 Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Eric D Watt
- *Oak Ridge Institute for Science Education Postdoctoral Fellow, Oak Ridge, TN, 37831 National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Michael W Hornung
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, 55804
| | - Joan M Hedge
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Richard S Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Kevin M Crofton
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Keith A Houck
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Steven O Simmons
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711,
| |
Collapse
|
72
|
Wu Y, Beland FA, Fang JL. Effect of triclosan, triclocarban, 2,2',4,4'-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis. Toxicol In Vitro 2016; 32:310-9. [PMID: 26827900 DOI: 10.1016/j.tiv.2016.01.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 12/24/2022]
Abstract
Triclosan, triclocarban, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), and bisphenol A (BPA) have been reported to disturb thyroid hormone (TH) homeostasis. We have examined the effects of these chemicals on sodium/iodide symporter (NIS)-mediated iodide uptake and the expression of genes involved in TH synthesis in rat thyroid follicular FRTL-5 cells, and on the activity of thyroid peroxidase (TPO) using rat thyroid microsomes. All four chemicals inhibited NIS-mediated iodide uptake in a concentration-dependent manner. A decrease in the iodide uptake was also observed in the absence of sodium iodide. Kinetic studies showed that all four chemicals were non-competitive inhibitors of NIS, with the order of Ki values being triclosan<triclocarban<BDE-47<BPA. The transcriptional expression of three genes involved in TH synthesis, Slc5a5, Tpo, and Tgo, and three thyroid transcription factor genes, Pax8, Foxe1, and Nkx2-1, was examined using quantitative real-time PCR. No significant changes in the expression of any genes were observed with triclosan or triclocarban. BDE-47 decreased the level of Tpo, while BPA altered the expression of all six genes. Triclosan and triclocarban inhibited the activity of TPO at 166 and >300 μM, respectively. Neither BDE-47 nor BPA affected TPO activity. In conclusion, triclosan, triclocarban, BDE-47, and BPA inhibited iodide uptake, but had differential effects on the expression of TH synthesis-related genes and the activity of TPO.
Collapse
Affiliation(s)
- Yuanfeng Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
73
|
Squance ML, Reeves G, Attia J, Bridgman H, Guest M. Self-reported Lupus flare: Association with everyday home and personal product exposure. Toxicol Rep 2015; 2:880-888. [PMID: 28962424 PMCID: PMC5598386 DOI: 10.1016/j.toxrep.2015.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/21/2015] [Accepted: 05/24/2015] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The number of chemicals in household products has driven concern about potential adverse health through their use. Most research concentrates on product chemicals with reproductive and carcinogenic consequences, however some evidence exists that immune effects can lead to exacerbation of autoimmune illnesses such as lupus (SLE). OBJECTIVES This paper examines household and personal product exposure patterns in a pilot case/control study of female Australians. We also examined associations between common product exposure and SLE symptom exacerbation over a year period. METHODS We enrolled 41 control and 80 SLE participants aged 18-80 years. Qualitative techniques of structured interview and thematic analysis retrospectively explored patterns of product use, and flare history data of SLE participants. Negative binomial regression models explored associations between self-reported flare (SRF) days and exposure to 34 common home product groups. RESULTS Mean product counts did not differ between participant groups (mean 33.1: SD 11.8), or flare groups (flare mean 32.6:SD 12, no-flare 31.8:SD 6.6). Products used for personal hygiene and general house cleaning were most frequently used.Significant association with increased SRF day relative risk (IRR) was seen for bath oil use (IRR 1.008, CI 1.00-1.02). Paradoxical "protective" effects, (reduced SRF days) were found for cleansing beauty (IRR 0.999, CI 0.998-0.999), make-up (IRR 0.998, CI 0.997-0.999); adhesives (IRR 0.994, CI 0.991-0.997) and paint (IRR 0.99, CI 0.986-0.995). CONCLUSIONS Everyday product exposures can impact on symptom exacerbation in SLE. Some offering protection and others increased health risk. Identifying environmental associations offer the possibility of life-style interventions to reduce illness impact.
Collapse
Affiliation(s)
- Marline L. Squance
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
- Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308, Australia
- Autoimmune Resource and Research Center, New Lambton Heights, NSW 2305, Australia
- Hunter New England Health District, New Lambton Heights, NSW 2305, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Glenn Reeves
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
- Autoimmune Resource and Research Center, New Lambton Heights, NSW 2305, Australia
- Hunter New England Health District, New Lambton Heights, NSW 2305, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - John Attia
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW 2305, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Howard Bridgman
- Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Maya Guest
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
74
|
Can exposure to environmental chemicals increase the risk of diabetes type 1 development? BIOMED RESEARCH INTERNATIONAL 2015; 2015:208947. [PMID: 25883945 PMCID: PMC4391693 DOI: 10.1155/2015/208947] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/14/2014] [Indexed: 01/09/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease, where destruction of beta-cells causes insulin deficiency. The incidence of T1DM has increased in the last decades and cannot entirely be explained by genetic predisposition. Several environmental factors are suggested to promote T1DM, like early childhood enteroviral infections and nutritional factors, but the evidence is inconclusive. Prenatal and early life exposure to environmental pollutants like phthalates, bisphenol A, perfluorinated compounds, PCBs, dioxins, toxicants, and air pollutants can have negative effects on the developing immune system, resulting in asthma-like symptoms and increased susceptibility to childhood infections. In this review the associations between environmental chemical exposure and T1DM development is summarized. Although information on environmental chemicals as possible triggers for T1DM is sparse, we conclude that it is plausible that environmental chemicals can contribute to T1DM development via impaired pancreatic beta-cell and immune-cell functions and immunomodulation. Several environmental factors and chemicals could act together to trigger T1DM development in genetically susceptible individuals, possibly via hormonal or epigenetic alterations. Further observational T1DM cohort studies and animal exposure experiments are encouraged.
Collapse
|
75
|
Cullinan MP, Palmer JE, Carle AD, West MJ, Westerman B, Seymour GJ. The influence of a triclosan toothpaste on adverse events in patients with cardiovascular disease over 5-years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 508:546-552. [PMID: 25442641 DOI: 10.1016/j.scitotenv.2014.11.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Adverse effects of long-term usage of triclosan-containing toothpaste in humans are currently unknown. We assessed the effect of long-term use of 0.3% triclosan-toothpaste on serious adverse events (SAEs) in patients with cardiovascular disease (CVD). 438 patients with a history of stable CVD were entered into the 5-year longitudinal Cardiovascular and Periodontal Study at Prince Charles Hospital, Brisbane, Australia and randomised into test (triclosan) or placebo groups. There were no significant differences in demographics or clinical features between the groups. Patients were examined at baseline, and annually for 5-years. SAEs were classified according to the System Organ Classes defined by MedDRA (Medical Dictionary for Regulatory Activities). Results were analysed using chi square and Kaplan Meier analysis. Overall, 232 patients (123 in the triclosan group; 109 in the placebo group) experienced 569 SAEs (288 in the triclosan group and 281 in the placebo group). There was no significant difference between the groups in numbers of patients experiencing SAEs (p=0.35) or specific cardiovascular SAEs (p=0.82), nor in time to the first SAE or first cardiovascular SAE, irrespective of gender, age or BMI after adjusting for multiple comparisons (p>0.05). The adjusted odds of experiencing an SAE were estimated to increase by 2.7% for each year of age (p=0.02) and the adjusted odds of experiencing a cardiovascular SAE were estimated to increase by 5.1% for each unit increase in BMI (p=0.02). Most cardiovascular events were related to unstable angina or myocardial infarcts, 21 were associated with arrhythmia and 41 were vascular events such as aortic aneurysm and cerebrovascular accident. Within the limitations of the present study the data suggest that the use of triclosan-toothpaste may not be associated with any increase in SAEs in this CVD population. The long-term impact of triclosan on hormone-related disease, such as cancer, in humans remains to be determined.
Collapse
Affiliation(s)
- Mary P Cullinan
- School of Medicine, University of Queensland, Prince Charles Hospital, Rode Road, Chermside, Queensland 4032, Australia; Sir John Walsh Research Institute, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand.
| | - Janet E Palmer
- School of Medicine, University of Queensland, Prince Charles Hospital, Rode Road, Chermside, Queensland 4032, Australia.
| | - Anne D Carle
- Metro North Hospital and Health Service, Prince Charles Hospital, Rode Road, Chermside, Queensland 4032, Australia.
| | - Malcolm J West
- School of Medicine, University of Queensland, Prince Charles Hospital, Rode Road, Chermside, Queensland 4032, Australia.
| | - Bill Westerman
- School of Medicine, University of Queensland, Prince Charles Hospital, Rode Road, Chermside, Queensland 4032, Australia.
| | - Gregory J Seymour
- School of Medicine, University of Queensland, Prince Charles Hospital, Rode Road, Chermside, Queensland 4032, Australia; Sir John Walsh Research Institute, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand.
| |
Collapse
|
76
|
Fang JL, M. Vanlandingham M, Juliar BE, R. Olson G, E. Patton R, Beland FA. Dose–response assessment of the dermal toxicity of triclosan in B6C3F1 mice. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00152d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Triclosan [5-chloro-2-(2,4-dichlorophenoxy)phenol] is a widely used antimicrobial agent in personal care products, household items, medical devices, and clinical settings.
Collapse
Affiliation(s)
- Jia-Long Fang
- Division of Biochemical Toxicology
- National Center for Toxicological Research
- Jefferson
- USA
| | | | - Beth E. Juliar
- Division of Bioinformatics and Biostatistics
- National Center for Toxicological Research
- Jefferson
- USA
| | - Greg R. Olson
- Toxicologic Pathology Associates
- Inc
- National Center for Toxicological Research
- Jefferson
- USA
| | - Ralph E. Patton
- Toxicologic Pathology Associates
- Inc
- National Center for Toxicological Research
- Jefferson
- USA
| | - Frederick A. Beland
- Division of Biochemical Toxicology
- National Center for Toxicological Research
- Jefferson
- USA
| |
Collapse
|
77
|
El-Zawawy LA, El-Said D, Mossallam SF, Ramadan HS, Younis SS. Preventive prospective of triclosan and triclosan-liposomal nanoparticles against experimental infection with a cystogenic ME49 strain of Toxoplasma gondii. Acta Trop 2015; 141:103-11. [PMID: 25305510 DOI: 10.1016/j.actatropica.2014.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/18/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022]
Abstract
The preventative effect of triclosan (TS) and TS liposomal nanoparticles was studied on the early establishment of chronic infection with Toxoplasma gondii (T. gondii). Swiss albino mice were orally infected with 10 cysts of avirulent ME49 strain of T. gondii, and 2 weeks later they were orally treated with dual daily doses of 200mg/kg and 120 mg/kg TS and TS liposomes for 30 days; respectively. Effect of TS and TS liposomes was parasitologically and ultrastructurally evaluated, versus infected non-treated control. Their safety was biochemically assessed. Parasitologically, both TS and TS liposomes induced significant reduction in mice mortality, brain parasite burden and infectivity of cysts obtained from the brains of treated mice. Ultrastructurally, scanning electron microscopy of cysts obtained from infected mice treated with either TS or TS liposomes showed surface irregularities, protrusions and depressions. Transmission electron microscopy revealed disintegration of the cyst wall and vacuolation of the bradyzoites with disintegration of plasma membranes of both cysts and bradyzoites whether treated with TS or TS liposomes. Biochemical study reflected the safety of the TS and TS liposomes. Therefore, TS proved an effective, promising and safe preventive drug against early establishment of chronic toxoplasmosis. Loading TS on liposomes marginally enhanced its efficacy against T. gondii cysts yet allowed its use in a lower dose.
Collapse
Affiliation(s)
- Lobna A El-Zawawy
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Doaa El-Said
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Shereen F Mossallam
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt.
| | - Heba S Ramadan
- Medical Bio-Physics Department, Medical Research Institute, Alexandria University, Egypt
| | - Salwa S Younis
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
78
|
Triclosan and triclosan-loaded liposomal nanoparticles in the treatment of acute experimental toxoplasmosis. Exp Parasitol 2014; 149:54-64. [PMID: 25499511 DOI: 10.1016/j.exppara.2014.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 11/21/2022]
Abstract
Efficacy of triclosan (TS) and TS-loaded liposomes against the virulent strain of Toxoplasma gondii (T. gondii) was evaluated. Swiss albino mice were intraperitoneally infected with 10(4) tachyzoites of RH HXGPRT(-) strain of T. gondii, then were orally treated with 150 mg/kg TS or 100 mg/kg TS liposomes twice daily for 4 days. Mice mortality, peritoneal and liver parasite burdens, viability, infectivity and ultrastructural changes of peritoneal tachyzoites of infected treated mice were studied, in comparison with those of infected non-treated controls. Drug safety was biochemically assessed by measuring liver enzymes and thyroxin. Both TS and TS liposomes induced significant reduction in mice mortality, parasite burden, viability and infectivity of tachyzoites harvested from infected treated mice. Scanning electron microscopy of treated tachyzoites showed distorted shapes, reduced sizes, irregularities, surface protrusions, erosions and peeling besides apical region distortion. Transmission electron microscopy showed that treated tachyzoites were intracellularly distorted, had cytoplasmic vacuolation, discontinuous plasma membranes, nuclear abnormalities and disrupted internal structures. Besides, in TS liposomes-treated subgroup, most tachyzoites were seen intracellularly with complete disintegration of the parasite plasma and nuclear membranes, with complete destruction of the internal structures. Biochemical safety of TS and TS liposomes was proven. Accordingly, TS can be considered as a promising alternative to the standard therapy for treating acute murine toxoplasmosis. Liposomal formulation of TS enhanced its efficacy and allowed its use in a lower dose.
Collapse
|
79
|
Exposures, mechanisms, and impacts of endocrine-active flame retardants. Curr Opin Pharmacol 2014; 19:125-33. [PMID: 25306433 DOI: 10.1016/j.coph.2014.09.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/23/2022]
Abstract
This review summarizes the endocrine and neurodevelopmental effects of two current-use additive flame retardants (FRs), tris (1,3-dichloro-isopropyl) phosphate (TDCPP) and Firemaster(®) 550 (FM 550), and the recently phased-out polybrominated diphenyl ethers (PBDEs), all of which were historically or are currently used in polyurethane foam applications. Use of these chemicals in consumer products has led to widespread exposure in indoor environments. PBDEs and their hydroxylated metabolites appear to primarily target the thyroid system, likely due to their structural similarity to endogenous thyroid hormones. In contrast, much less is known about the toxicity of TDCPP and FM 550. However, recent in vitro and in vivo studies suggest that both should be considered endocrine disruptors as studies have linked TDCPP exposure with changes in circulating hormone levels, and FM 550 exposure with changes in adipogenic and osteogenic pathways.
Collapse
|
80
|
Witorsch RJ. Critical analysis of endocrine disruptive activity of triclosan and its relevance to human exposure through the use of personal care products. Crit Rev Toxicol 2014; 44:535-55. [PMID: 24897554 DOI: 10.3109/10408444.2014.910754] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review examines the mammalian and human literature pertaining to the potential endocrine disruptive effects of triclosan (TCS). Dietary exposure to TCS consistently produces a dose-dependent decrease in serum thyroxine (T4) in rats without any consistent change in TSH or triiodothyronine (T3). Human studies reveal no evidence that the TCS exposure through personal care product use affects the thyroid system. TCS binds to both androgen and estrogen receptors in vitro with low affinity and evokes diverse responses (e.g., agonist, antagonist, or none) in steroid receptor transfected cell-based reporter assays. Two of three studies in rats have failed to show that TCS exposure suppresses male reproductive function in vivo. Three of four studies have failed to show that TCS possesses estrogenic (or uterotrophic) activity in rats. However, two studies reported that, while TCS lacks estrogenic activity, it can amplify the action of estrogen in vivo. The in vitro, in vivo, and epidemiologic studies reviewed herein show little evidence that TCS adversely affects gestation or postpartum development of offspring. Furthermore, previously reported toxicity testing in a variety of mammalian species shows little evidence that TCS adversely affects thyroid function, male and female reproductive function, gestation, or postpartum development of offspring. Finally, doses of TCS reported to produce hypothyroxinemia, and occasional effects on male and female reproduction, gestation, and offspring in animal studies are several orders of magnitude greater than the estimated exposure levels of TCS in humans. Overall, little evidence exists that TCS exposure through personal care product use presents a risk of endocrine disruptive adverse health effects in humans.
Collapse
Affiliation(s)
- Raphael J Witorsch
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
81
|
Histological study of adult male rat seminiferous tubules following triclosan administration and the possible protective role of pomegranate juice. ACTA ACUST UNITED AC 2014. [DOI: 10.1097/01.ehx.0000446590.49937.e9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
82
|
Huang H, Du G, Zhang W, Hu J, Wu D, Song L, Xia Y, Wang X. Thein Vitroestrogenic activities of triclosan and triclocarban. J Appl Toxicol 2014; 34:1060-7. [PMID: 24740835 DOI: 10.1002/jat.3012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/22/2014] [Accepted: 03/09/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Hongyu Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology; Nanjing Medical University; Nanjing 211166 China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health; Nanjing Medical University; Nanjing 211166 China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology; Nanjing Medical University; Nanjing 211166 China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health; Nanjing Medical University; Nanjing 211166 China
| | - Wei Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology; Nanjing Medical University; Nanjing 211166 China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health; Nanjing Medical University; Nanjing 211166 China
| | - Jialei Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology; Nanjing Medical University; Nanjing 211166 China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health; Nanjing Medical University; Nanjing 211166 China
| | - Di. Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology; Nanjing Medical University; Nanjing 211166 China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health; Nanjing Medical University; Nanjing 211166 China
| | - Ling Song
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology; Nanjing Medical University; Nanjing 211166 China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health; Nanjing Medical University; Nanjing 211166 China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology; Nanjing Medical University; Nanjing 211166 China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health; Nanjing Medical University; Nanjing 211166 China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology; Nanjing Medical University; Nanjing 211166 China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health; Nanjing Medical University; Nanjing 211166 China
| |
Collapse
|
83
|
Halden RU. On the need and speed of regulating triclosan and triclocarban in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3603-11. [PMID: 24588513 PMCID: PMC3974611 DOI: 10.1021/es500495p] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The polychlorinated aromatic antimicrobials triclosan and triclocarban are in widespread use for killing microorganisms indiscriminately, rapidly, and by nonspecific action. While their utility in healthcare settings is undisputed, benefits to users of antimicrobial personal care products are few to none. Yet, these latter, high-volume uses have caused widespread contamination of the environment, wildlife, and human populations. This feature article presents a timeline of scientific evidence and regulatory actions in the U.S. concerning persistent polychlorinated biocides, showing a potential path forward to judicious and sustainable uses of synthetic antimicrobials, including the design of greener and safer next-generation alternatives.
Collapse
|
84
|
Paul KB, Hedge JM, Rotroff DM, Hornung MW, Crofton KM, Simmons SO. Development of a Thyroperoxidase Inhibition Assay for High-Throughput Screening. Chem Res Toxicol 2014; 27:387-99. [DOI: 10.1021/tx400310w] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Katie B. Paul
- Oak Ridge Institute for Science
Education Postdoctoral Fellow, ‡Integrated Systems
Toxicology Division, §Mid-Continent Ecology Division, National Health and Environmental
Effects Research Laboratory, and ∥National Center for Computational Toxicology,
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Joan M. Hedge
- Oak Ridge Institute for Science
Education Postdoctoral Fellow, ‡Integrated Systems
Toxicology Division, §Mid-Continent Ecology Division, National Health and Environmental
Effects Research Laboratory, and ∥National Center for Computational Toxicology,
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Daniel M. Rotroff
- Oak Ridge Institute for Science
Education Postdoctoral Fellow, ‡Integrated Systems
Toxicology Division, §Mid-Continent Ecology Division, National Health and Environmental
Effects Research Laboratory, and ∥National Center for Computational Toxicology,
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Michael W. Hornung
- Oak Ridge Institute for Science
Education Postdoctoral Fellow, ‡Integrated Systems
Toxicology Division, §Mid-Continent Ecology Division, National Health and Environmental
Effects Research Laboratory, and ∥National Center for Computational Toxicology,
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Kevin M. Crofton
- Oak Ridge Institute for Science
Education Postdoctoral Fellow, ‡Integrated Systems
Toxicology Division, §Mid-Continent Ecology Division, National Health and Environmental
Effects Research Laboratory, and ∥National Center for Computational Toxicology,
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Steven O. Simmons
- Oak Ridge Institute for Science
Education Postdoctoral Fellow, ‡Integrated Systems
Toxicology Division, §Mid-Continent Ecology Division, National Health and Environmental
Effects Research Laboratory, and ∥National Center for Computational Toxicology,
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
85
|
Paul KB, Hedge JM, Macherla C, Filer DL, Burgess E, Simmons SO, Crofton KM, Hornung MW. Cross-species analysis of thyroperoxidase inhibition by xenobiotics demonstrates conservation of response between pig and rat. Toxicology 2013; 312:97-107. [DOI: 10.1016/j.tox.2013.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/02/2013] [Accepted: 08/09/2013] [Indexed: 10/26/2022]
|
86
|
Wegehaupt FJ, Tauböck TT, Attin T. Durability of the anti-erosive effect of surfaces sealants under erosive abrasive conditions. Acta Odontol Scand 2013; 71:1188-94. [PMID: 23294118 DOI: 10.3109/00016357.2012.757361] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To test the durability of sealants applied for prevention of erosive dentine mineral loss under erosive/abrasive conditions. METHODS Forty-eight bovine dentine samples doped with (32)P were randomly allocated to four groups (1-4). All samples performed a de- and remineralizations pre-cycling (6 × 1 min erosion in HCl: pH 3.0, mean time and overnight immersion in artificial saliva) for 1 day. Sealing was done as follows; (1) unsealed, (2) Seal & Protect, (3) K-0184 (experimental sealer) and (4) OptiBond FL. After sealing, samples were immersed in HCl for 3 h (baseline measurement). Then, the following erosive/abrasive and remineralisations cycling was performed for 8 days: 3 h/day erosion with HCl, 600 brushing strokes/day and storage in artificial saliva for the rest of the day. Sealer permeability was evaluated by assignation of (32)P in the acid used for the erosive attacks. RESULTS At baseline, the significantly highest dentine loss was observed for the unsealed control group, while the mineral loss was not statistically significantly different between the sealed groups 2 and 3. At all days of the erosive/abrasive and remineralizations cycling and cumulatively the significantly highest mineral loss was observed for group 1, while the significantly lowest mineral loss was observed for the samples sealed with Seal & Protect (group 2) and K-0184 (group 3). In all groups, no significant increase in the (32)P release was observed. CONCLUSION Surface sealants are able to reduce the erosive dentine mineral loss and maintain this erosion-preventing efficacy over the whole duration (simulating 8 month in-vivo) of the erosive/abrasive cycling.
Collapse
Affiliation(s)
- Florian J Wegehaupt
- Department for Preventive Dentistry, Periodontology and Cariology University of Zurich, Plattenstrasse 11, CH-8032 Zürich, Switzerland.
| | | | | |
Collapse
|
87
|
Paul KB, Thompson JT, Simmons SO, Vanden Heuvel JP, Crofton KM. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors. Toxicol In Vitro 2013; 27:2049-60. [PMID: 23899473 DOI: 10.1016/j.tiv.2013.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/05/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
Abstract
The bacteriostat triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether) (TCS) decreases rat serum thyroxine via putative nuclear receptor (NR) interaction(s) and subsequent transcriptional up-regulation of hepatic catabolism and clearance. However, due to the evolutionary divergence of the constitutive androstane and pregnane-X receptors (CAR, PXR), TCS-mediated downstream effects may be species-dependent. To test the hypothesis that TCS activates xenobiotic NRs across species, cell-based NR reporter assays were employed to assess potential activation of rat, mouse, and human PXR, and rat, mouse, and three splice variants of human CAR. TCS activated hPXR, acted as an inverse agonist of hCAR1, and as a weak agonist of hCAR3. TCS failed to activate rPXR in full-length receptor reporter assays, and instead acted as a modest inverse agonist of rCAR. Consistent with the rat data, TCS also failed to activate mPXR and was a modest inverse agonist of mCAR. These data suggest that TCS may interact with multiple NRs, including hPXR, hCAR1, hCAR3, and rCAR in order to potentially affect hepatic catabolism. Overall these data support the conclusion that TCS may interact with NRs to regulate hepatic catabolism and downstream thyroid hormone homeostasis in both rat and human models, though perhaps by divergent mechanisms.
Collapse
Affiliation(s)
- Katie B Paul
- University of North Carolina at Chapel Hill, Curriculum in Toxicology, CB 7270, Chapel Hill, NC 27599, United States; Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, United States
| | | | | | | | | |
Collapse
|
88
|
Axelstad M, Boberg J, Vinggaard AM, Christiansen S, Hass U. Triclosan exposure reduces thyroxine levels in pregnant and lactating rat dams and in directly exposed offspring. Food Chem Toxicol 2013; 59:534-40. [PMID: 23831729 DOI: 10.1016/j.fct.2013.06.050] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 01/23/2023]
Abstract
Thyroid disrupting chemicals can potentially disrupt brain development. Two studies investigating the effect of the antibacterial compound triclosan on thyroxine (T₄) levels in rats are reported. In the first, Wistar rat dams were gavaged with 75, 150 or 300 mg triclosan/kg bw/day throughout gestation and lactation. Total T₄ serum levels were measured in dams and offspring, and all doses of triclosan significantly lowered T₄ in dams, but no significant effects on T₄ levels were seen in the offspring at the end of the lactation period. Since this lack of effect could be due to minimal exposure through maternal milk, a second study using direct per oral pup exposure from postnatal day 3-16 to 50 or 150 mg triclosan/kg bw/day was performed. This exposure pointed to significant T₄ reductions in 16 day old offspring in both dose groups. These results corroborate previous studies showing that in rats lactational transfer of triclosan seems limited. Since an optimal study design for testing potential developmental neurotoxicants in rats, should include exposure during both the pre- and postnatal periods of brain development, we suggest that in the case of triclosan, direct dosing of pups may be the best way to obtain that goal.
Collapse
Affiliation(s)
- Marta Axelstad
- National Food Institute, Technical University of Denmark, Division of Toxicology and Risk Assessment, Søborg, Denmark.
| | | | | | | | | |
Collapse
|
89
|
Wegehaupt FJ, Tauböck TT, Attin T. Influence of prophylaxis paste treatment on the abrasive wear of surface sealants. Acta Odontol Scand 2013; 71:744-50. [PMID: 22900836 DOI: 10.3109/00016357.2012.715201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the abrasive wear of surface sealants (Seal&Protect and K-0184 (experimental sealant)) and the influence of pre-treatment with mineral deposit forming prophylaxis pastes (NUPRO Sensodyne and NUPRO) on this wear. METHODS One hundred and eight bovine dentine samples were randomly allocated to nine groups (1-9). Pre-treatment (10 s): groups 1-3: untreated, groups 4-6: NUPRO, groups 7-9: NUPRO Sensodyne. Sealing: groups 1, 4 and 7: unsealed, groups 2, 5 and 8: Seal&Protect, groups 3, 6 and 9: K-0184 (experimental sealer). Samples were then brushed with 12 000 brushing strokes (BS) with toothpaste slurry in an automatic brushing machine (120 BS/min; F = 2.5 N). Surface profiles were recorded at baseline, after pre-treatment and sealing and after each 2000 BS. RESULTS Total profile change (wear or gain due to pre-treatment, treatment and 12 000 BS): groups 1, 4 and 7 (no surface sealant) showed a not significantly different wear of 18.48 ± 2.63 µm, 24.98 ± 3.02 µm and 21.50 ± 5.47 µm, respectively. Remaining groups (sealed) showed a gain in height with no significant difference among each other. Wear in sealed groups (2, 3, 5, 6, 8 and 9) were not significantly different at all numbers of brushing strokes. Starting with 4000 BS, the wear in unsealed groups (1, 4 and 7) was statistically significantly higher compared to all other groups. CONCLUSION Stability and wear resistance of surface sealants are not affected by pre-treatment of dentine with NUPRO Sensodyne. The surface sealants tested provide a stable protective surface layer on dentine, which lasts for at least 12 000 brushing strokes.
Collapse
Affiliation(s)
- Florian J Wegehaupt
- Department for Preventive Dentistry, Periodontology and Cariology University of Zurich, Plattenstrasse 11, CH-8032 Zürich, Switzerland.
| | | | | |
Collapse
|
90
|
Louis GW, Hallinger DR, Stoker TE. The effect of triclosan on the uterotrophic response to extended doses of ethinyl estradiol in the weanling rat. Reprod Toxicol 2013; 36:71-7. [DOI: 10.1016/j.reprotox.2012.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/03/2012] [Accepted: 12/08/2012] [Indexed: 01/29/2023]
|
91
|
Murk AJ, Rijntjes E, Blaauboer BJ, Clewell R, Crofton KM, Dingemans MML, Furlow JD, Kavlock R, Köhrle J, Opitz R, Traas T, Visser TJ, Xia M, Gutleb AC. Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicol In Vitro 2013; 27:1320-46. [PMID: 23453986 DOI: 10.1016/j.tiv.2013.02.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/07/2013] [Accepted: 02/18/2013] [Indexed: 11/16/2022]
Abstract
The thyroid hormone (TH) system is involved in several important physiological processes, including regulation of energy metabolism, growth and differentiation, development and maintenance of brain function, thermo-regulation, osmo-regulation, and axis of regulation of other endocrine systems, sexual behaviour and fertility and cardiovascular function. Therefore, concern about TH disruption (THD) has resulted in strategies being developed to identify THD chemicals (THDCs). Information on potential of chemicals causing THD is typically derived from animal studies. For the majority of chemicals, however, this information is either limited or unavailable. It is also unlikely that animal experiments will be performed for all THD relevant chemicals in the near future for ethical, financial and practical reasons. In addition, typical animal experiments often do not provide information on the mechanism of action of THDC, making it harder to extrapolate results across species. Relevant effects may not be identified in animal studies when the effects are delayed, life stage specific, not assessed by the experimental paradigm (e.g., behaviour) or only occur when an organism has to adapt to environmental factors by modulating TH levels. Therefore, in vitro and in silico alternatives to identify THDC and quantify their potency are needed. THDC have many potential mechanisms of action, including altered hormone production, transport, metabolism, receptor activation and disruption of several feed-back mechanisms. In vitro assays are available for many of these endpoints, and the application of modern '-omics' technologies, applicable for in vivo studies can help to reveal relevant and possibly new endpoints for inclusion in a targeted THDC in vitro test battery. Within the framework of the ASAT initiative (Assuring Safety without Animal Testing), an international group consisting of experts in the areas of thyroid endocrinology, toxicology of endocrine disruption, neurotoxicology, high-throughput screening, computational biology, and regulatory affairs has reviewed the state of science for (1) known mechanisms for THD plus examples of THDC; (2) in vitro THD tests currently available or under development related to these mechanisms; and (3) in silico methods for estimating the blood levels of THDC. Based on this scientific review, the panel has recommended a battery of test methods to be able to classify chemicals as of less or high concern for further hazard and risk assessment for THD. In addition, research gaps and needs are identified to be able to optimize and validate the targeted THD in vitro test battery for a mechanism-based strategy for a decision to opt out or to proceed with further testing for THD.
Collapse
Affiliation(s)
- AlberTinka J Murk
- Wageningen University, Sub-department of Toxicology, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Koeppe ES, Ferguson KK, Colacino JA, Meeker JD. Relationship between urinary triclosan and paraben concentrations and serum thyroid measures in NHANES 2007-2008. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 445-446:299-305. [PMID: 23340023 PMCID: PMC3572338 DOI: 10.1016/j.scitotenv.2012.12.052] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 04/15/2023]
Abstract
Triclosan and parabens are broad spectrum antimicrobials used in a range of consumer products. In vitro and animal studies have suggested the potential for these compounds to disrupt thyroid function, though studies in humans have been limited. The objective of the study was to assess the relationship of urinary concentrations of triclosan and parabens with serum thyroid measures in a large, representative sample of the US population. We conducted an exploratory, cross-sectional analysis of data on urinary biomarkers of triclosan and paraben exposure and serum thyroid measures obtained from 1831 subjects (ages≥12 years) as part of the 2007-2008 National Health and Nutrition Examination Survey (NHANES). We found evidence of some inverse associations between parabens and circulating thyroid hormone levels in adults, with the strongest and most consistent associations among females. We also observed a positive association between triclosan and total triiodothyonine (T3) concentrations in adolescents. These results, in accordance with the in vitro and animal literature, suggest that paraben, and potentially triclosan, exposures may be associated with altered thyroid hormone levels in humans. Further research is needed for confirmation and to determine the potential clinical and public health significance of these findings.
Collapse
Affiliation(s)
- Erika S. Koeppe
- Department of Environmental Health Sciences, University of Michigan School of Public Health Ann Arbor, MI
| | - Kelly K. Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health Ann Arbor, MI
| | - Justin A. Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health Ann Arbor, MI
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health Ann Arbor, MI
| |
Collapse
|
93
|
Marlatt VL, Veldhoen N, Lo BP, Bakker D, Rehaume V, Vallée K, Haberl M, Shang D, van Aggelen GC, Skirrow RC, Elphick JR, Helbing CC. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:85-94. [PMID: 23159728 DOI: 10.1016/j.aquatox.2012.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 06/01/2023]
Abstract
The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26-28) tadpoles were immersed for 21 days in solvent control, 1.5 μg/L thyroxine (T(4)), 0.3, 3 and 30 μg/L (nominal) TCS, or combined T(4)/TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T(4) treatment alone accelerated development concomitant with altered levels of TH receptors α and β, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 μg/L) was protective against tadpole mortality, this protection was lost in the presence of T(4). The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent.
Collapse
|
94
|
Pinto PIS, Guerreiro EM, Power DM. Triclosan interferes with the thyroid axis in the zebrafish (Danio rerio). Toxicol Res (Camb) 2013. [DOI: 10.1039/c2tx20005h] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
95
|
Rotroff DM, Dix DJ, Houck KA, Knudsen TB, Martin MT, McLaurin KW, Reif DM, Crofton KM, Singh AV, Xia M, Huang R, Judson RS. Using in vitro high throughput screening assays to identify potential endocrine-disrupting chemicals. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:7-14. [PMID: 23052129 PMCID: PMC3546348 DOI: 10.1289/ehp.1205065] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 09/28/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Over the past 20 years, an increased focus on detecting environmental chemicals that pose a risk of adverse effects due to endocrine disruption has driven the creation of the U.S. Environmental Protection Agency (EPA) Endocrine Disruptor Screening Program (EDSP). Thousands of chemicals are subject to the EDSP; thus, processing these chemicals using current test batteries could require millions of dollars and decades. A need for increased throughput and efficiency motivated the development of methods using in vitro high throughput screening (HTS) assays to prioritize chemicals for EDSP Tier 1 screening (T1S). OBJECTIVE In this study we used U.S. EPA ToxCast HTS assays for estrogen, androgen, steroidogenic, and thyroid-disrupting mechanisms to classify compounds and compare ToxCast results to in vitro and in vivo data from EDSP T1S assays. METHOD We implemented an iterative model that optimized the ability of endocrine-related HTS assays to predict components of EDSP T1S and related results. Balanced accuracy was used as a measure of model performance. RESULTS ToxCast estrogen receptor and androgen receptor assays predicted the results of relevant EDSP T1S assays with balanced accuracies of 0.91 (p < 0.001) and 0.92 (p < 0.001), respectively. Uterotrophic and Hershberger assay results were predicted with balanced accuracies of 0.89 (p < 0.001) and 1 (p < 0.001), respectively. Models for steroidogenic and thyroid-related effects could not be developed with the currently published ToxCast data. CONCLUSIONS Overall, results suggest that current ToxCast assays can accurately identify chemicals with potential to interact with the estrogenic and androgenic pathways, and could help prioritize chemicals for EDSP T1S assays.
Collapse
Affiliation(s)
- Daniel M Rotroff
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Dodson RE, Nishioka M, Standley LJ, Perovich LJ, Brody JG, Rudel RA. Endocrine disruptors and asthma-associated chemicals in consumer products. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:935-43. [PMID: 22398195 PMCID: PMC3404651 DOI: 10.1289/ehp.1104052] [Citation(s) in RCA: 345] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 02/21/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Laboratory and human studies raise concerns about endocrine disruption and asthma resulting from exposure to chemicals in consumer products. Limited labeling or testing information is available to evaluate products as exposure sources. OBJECTIVES We analytically quantified endocrine disruptors and asthma-related chemicals in a range of cosmetics, personal care products, cleaners, sunscreens, and vinyl products. We also evaluated whether product labels provide information that can be used to select products without these chemicals. METHODS We selected 213 commercial products representing 50 product types. We tested 42 composited samples of high-market-share products, and we tested 43 alternative products identified using criteria expected to minimize target compounds. Analytes included parabens, phthalates, bisphenol A (BPA), triclosan, ethanolamines, alkylphenols, fragrances, glycol ethers, cyclosiloxanes, and ultraviolet (UV) filters. RESULTS We detected 55 compounds, indicating a wide range of exposures from common products. Vinyl products contained > 10% bis(2-ethylhexyl) phthalate (DEHP) and could be an important source of DEHP in homes. In other products, the highest concentrations and numbers of detects were in the fragranced products (e.g., perfume, air fresheners, and dryer sheets) and in sunscreens. Some products that did not contain the well-known endocrine-disrupting phthalates contained other less-studied phthalates (dicyclohexyl phthalate, diisononyl phthalate, and di-n-propyl phthalate; also endocrine-disrupting compounds), suggesting a substitution. Many detected chemicals were not listed on product labels. CONCLUSIONS Common products contain complex mixtures of EDCs and asthma-related compounds. Toxicological studies of these mixtures are needed to understand their biological activity. Regarding epidemiology, our findings raise concern about potential confounding from co-occurring chemicals and misclassification due to variability in product composition. Consumers should be able to avoid some target chemicals-synthetic fragrances, BPA, and regulated active ingredients-using purchasing criteria. More complete product labeling would enable consumers to avoid the rest of the target chemicals.
Collapse
Affiliation(s)
- Robin E Dodson
- Silent Spring Institute, Newton, Massachusetts 02458, USA.
| | | | | | | | | | | |
Collapse
|
97
|
Paul KB, Hedge JM, Bansal R, Zoeller RT, Peter R, DeVito MJ, Crofton KM. Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: a dynamic and kinetic evaluation of a putative mode-of-action. Toxicology 2012; 300:31-45. [PMID: 22659317 DOI: 10.1016/j.tox.2012.05.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/11/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
This work tests the mode-of-action (MOA) hypothesis that maternal and developmental triclosan (TCS) exposure decreases circulating thyroxine (T4) concentrations via up-regulation of hepatic catabolism and elimination of T4. Time-pregnant Long-Evans rats received TCS po (0-300mg/kg/day) from gestational day (GD) 6 through postnatal day (PND) 21. Serum and liver were collected from dams (GD20, PND22) and offspring (GD20, PND4, PND14, PND21). Serum T4, triiodothyronine (T3), and thyroid-stimulating hormone (TSH) concentrations were measured by radioimmunoassay. Ethoxy-O-deethylase (EROD), pentoxyresorufin-O-depentylase (PROD) and uridine diphosphate glucuronyltransferase (UGT) enzyme activities were measured in liver microsomes. Custom Taqman(®) qPCR arrays were employed to measure hepatic mRNA expression of select cytochrome P450s, UGTs, sulfotransferases, transporters, and thyroid hormone-responsive genes. TCS was quantified by LC/MS/MS in serum and liver. Serum T4 decreased approximately 30% in GD20 dams and fetuses, PND4 pups and PND22 dams (300mg/kg/day). Hepatic PROD activity increased 2-3 fold in PND4 pups and PND22 dams, and UGT activity was 1.5 fold higher in PND22 dams only (300mg/kg/day). Minor up-regulation of Cyp2b and Cyp3a expression in dams was consistent with hypothesized activation of the constitutive androstane and/or pregnane X receptor. T4 reductions of 30% for dams and GD20 and PND4 offspring with concomitant increases in PROD (PND4 neonates and PND22 dams) and UGT activity (PND22 dams) suggest that up-regulated hepatic catabolism may contribute to TCS-induced hypothyroxinemia during development. Serum and liver TCS concentrations demonstrated greater fetal than postnatal internal exposure, consistent with the lack of T4 changes in PND14 and PND21 offspring. These data support the MOA hypothesis that TCS exposure leads to hypothyroxinemia via increased hepatic catabolism; however, the minor effects on thyroid hormone metabolism may reflect the low efficacy of TCS as thyroid hormone disruptor or highlight the possibility that other MOAs may also contribute to the observed maternal and early neonatal hypothyroxinemia.
Collapse
Affiliation(s)
- Katie B Paul
- University of North Carolina at Chapel Hill, Curriculum in Toxicology, CB 7270, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Guo LW, Wu Q, Green B, Nolen G, Shi L, Losurdo J, Deng H, Bauer S, Fang JL, Ning B. Cytotoxicity and inhibitory effects of low-concentration triclosan on adipogenic differentiation of human mesenchymal stem cells. Toxicol Appl Pharmacol 2012; 262:117-23. [PMID: 22726953 DOI: 10.1016/j.taap.2012.04.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 01/14/2023]
Abstract
Humans at all ages are continually exposed to triclosan (TCS), a widely used antimicrobial agent that can be found in many daily hygiene products, such as toothpastes and shampoos; however, the toxicological and biological effects of TCS in the human body after long-term and low-concentration exposure are far from being well understood. In the current study, we investigated the effects of TCS on the differentiation of human mesenchymal stem cells (hMSCs) by measuring the cytotoxicity, morphological changes, lipid accumulation, and the expression of adipocyte differentiation biomarkers during 21-day adipogenesis. Significant cytotoxicity was observed in un-induced hMSCs treated with high-concentration TCS (≥ 5.0 μM TCS), but not with low-concentration treatments (≤ 2.5 μM TCS). TCS inhibited adipocyte differentiation of hMSCs in a concentration-dependent manner in the 0.156 to 2.5 μM range as indicated by morphological changes with Oil Red O staining, which is an index of lipid accumulation. The inhibitory effect was confirmed by a decrease in gene expression of specific adipocyte differentiation biomarkers including adipocyte protein 2, lipoprotein lipase, and adiponectin. Our study demonstrates that TCS inhibits adipocyte differentiation of hMSCs under concentrations that are not cytotoxic and in the range observed in human blood.
Collapse
Affiliation(s)
- Li-Wu Guo
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Latosińska JN, Latosińska M, Tomczak MA, Seliger J, Zagar V, Maurin JK. Conformations and intermolecular interactions pattern in solid chloroxylenol and triclosan (API of anti-infective agents and drugs). A (35)Cl NQR, (1)H-(14)N NQDR, X-ray and DFT/QTAIM study. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2012; 50:89-105. [PMID: 22354770 DOI: 10.1002/mrc.2799] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 05/22/2011] [Accepted: 08/08/2011] [Indexed: 05/31/2023]
Abstract
Two antibacterial and antifungal agents, chloroxylenol (4-chloro-3,5-dimethyl-phenol) and triclosan (5-chloro-2-(2',4'-dichlorophenoxy)-phenol), were studied experimentally in solid state with an X-ray, (35)Cl-nuclear quadrupole resonance (NQR) and (17)O-nuclear quadrupole double resonance (NQDR) spectroscopies and, theoretically, with the density functional theory/quantum theory of atoms in molecules (DFT/QTAIM). The crystallographic structure of triclosan, which crystallises in space group P31 with one molecule in the asymmetric unit [a = 12.64100(10), b = 12.64100(10), c = 6.71630(10) Å], was solved with an X-ray and refined to a final R-factor of 2.81% at room temperature. The NQR frequencies of (35)Cl and (17)O were detected with the help of the density functional theory (DFT) assigned to particular chlorine and oxygen sites in the molecules of both compounds. The NQR frequencies at (35)Cl sites in chloroxylenol and triclosan were found to be more differentiated than frequencies at the (17)O site. The former better describes the substituent withdrawing effects connected to π-electron delocalization within the benzene rings and the influence of temperature; whereas, those at the (17)O site provide more information on O-H bond and intermolecular interactions pattern. The conformation adopted by diphenyl ether of triclosan in solid state was found to be typical of diphenyl ethers, but the opposite to those adopted when it was bound to different inhibitors. According to an X-ray study, temperature had no effect on the conformation of the diphenyl ring of triclosan, which was the same at 90 K and at room temperature (RT). The scattering of NQR frequencies reproduced by the DFT under assumption of the X-ray data at 90 K and RT is found to be a good indicator of the quality of resolution of the crystallographic structure.
Collapse
Affiliation(s)
- J N Latosińska
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland.
| | | | | | | | | | | |
Collapse
|
100
|
Cullinan MP, Palmer JE, Carle AD, West MJ, Seymour GJ. Long term use of triclosan toothpaste and thyroid function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 416:75-79. [PMID: 22197412 DOI: 10.1016/j.scitotenv.2011.11.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/20/2011] [Accepted: 11/22/2011] [Indexed: 05/31/2023]
Abstract
The long term effects of usage of triclosan-containing toothpaste on thyroid function are currently unknown. Triclosan is structurally similar to thyroid hormones and reductions in serum thyroid hormone levels have been observed in animal studies following oral administration of triclosan. Therefore, an assessment of thyroid function over 4 years was undertaken in a subset of individuals in a randomised, placebo controlled clinical trial comparing the effects of 0.3% triclosan toothpaste with placebo toothpaste in subjects with coronary heart disease. Thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), antithyroglobulin antibody (anti-TGab) and antithyroid peroxidase antibody (TPOab) were measured. Paired serum samples at year 1 and year 5 from 132 subjects (64 triclosan group, 68 placebo group) were analysed. At year 1 there were no significant differences in thyroid function between the groups: mean (SD) TSH 1.4 (0.8) and 1.6 (0.9) mU/L, triclosan and placebo groups respectively, fT4 15.8 (2.2) and 15.2 (2.1) pmol/L; fT3 4.8 (0.5) and 4.8 (0.5) pmol/L. Similarly, for antithyroid antibodies there were no group differences at year 1. Median (25th, 75th percentile) for anti-TGab, 38 (34, 42) and 37 (30, 42) U/mL triclosan and placebo groups respectively; anti-TPOab, 15 (10, 22) and 18 (10, 24) U/mL. At year 5, fT4 was the only measure to show a significant difference between groups (mean and 95% Confidence Interval) 15.6 (15.1, 16.1) and 14.7 (14.2, 15.1) pmol/L triclosan and placebo respectively (p=0.01). This reflects reduced levels in the placebo group but no change in the triclosan group. In conclusion, over 4 years triclosan toothpaste had no detectable effect on thyroid function. The data support the view that 0.3% triclosan in toothpaste is safe and free of significant thyroid adverse effects.
Collapse
Affiliation(s)
- Mary P Cullinan
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|